• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /asuswrt-rt-n18u-9.0.0.4.380.2695/release/src-rt-6.x.4708/linux/linux-2.6.36/arch/arm/kernel/
1/* Modified by Broadcom Corp. Portions Copyright (c) Broadcom Corp, 2012. */
2/*
3 *  linux/arch/arm/kernel/smp.c
4 *
5 *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/module.h>
12#include <linux/delay.h>
13#include <linux/init.h>
14#include <linux/spinlock.h>
15#include <linux/sched.h>
16#include <linux/interrupt.h>
17#include <linux/cache.h>
18#include <linux/profile.h>
19#include <linux/errno.h>
20#include <linux/mm.h>
21#include <linux/err.h>
22#include <linux/cpu.h>
23#include <linux/smp.h>
24#include <linux/seq_file.h>
25#include <linux/irq.h>
26#include <linux/percpu.h>
27#include <linux/clockchips.h>
28
29#include <asm/atomic.h>
30#include <asm/cacheflush.h>
31#include <asm/cpu.h>
32#include <asm/cputype.h>
33#include <asm/mmu_context.h>
34#include <asm/pgtable.h>
35#include <asm/pgalloc.h>
36#include <asm/processor.h>
37#include <asm/tlbflush.h>
38#include <asm/ptrace.h>
39#include <asm/localtimer.h>
40#include <asm/smp_plat.h>
41
42#ifdef CONFIG_BCM47XX
43extern void soc_watchdog(void);
44#endif
45
46/*
47 * as from 2.5, kernels no longer have an init_tasks structure
48 * so we need some other way of telling a new secondary core
49 * where to place its SVC stack
50 */
51struct secondary_data secondary_data;
52
53/*
54 * structures for inter-processor calls
55 * - A collection of single bit ipi messages.
56 */
57struct ipi_data {
58	spinlock_t lock;
59	unsigned long ipi_count;
60	unsigned long bits;
61};
62
63static DEFINE_PER_CPU(struct ipi_data, ipi_data) = {
64	.lock	= SPIN_LOCK_UNLOCKED,
65};
66
67enum ipi_msg_type {
68	IPI_TIMER,
69	IPI_RESCHEDULE,
70	IPI_CALL_FUNC,
71	IPI_CALL_FUNC_SINGLE,
72	IPI_CPU_STOP,
73};
74
75int __cpuinit __cpu_up(unsigned int cpu)
76{
77	struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
78	struct task_struct *idle = ci->idle;
79	pgd_t *pgd;
80	pmd_t *pmd;
81	int ret;
82
83	/*
84	 * Spawn a new process manually, if not already done.
85	 * Grab a pointer to its task struct so we can mess with it
86	 */
87	if (!idle) {
88		idle = fork_idle(cpu);
89		if (IS_ERR(idle)) {
90			printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
91			return PTR_ERR(idle);
92		}
93		ci->idle = idle;
94	} else {
95		/*
96		 * Since this idle thread is being re-used, call
97		 * init_idle() to reinitialize the thread structure.
98		 */
99		init_idle(idle, cpu);
100	}
101
102	/*
103	 * Allocate initial page tables to allow the new CPU to
104	 * enable the MMU safely.  This essentially means a set
105	 * of our "standard" page tables, with the addition of
106	 * a 1:1 mapping for the physical address of the kernel.
107	 */
108	pgd = pgd_alloc(&init_mm);
109	pmd = pmd_offset(pgd + pgd_index(PHYS_OFFSET), PHYS_OFFSET);
110	*pmd = __pmd((PHYS_OFFSET & PGDIR_MASK) |
111		     PMD_TYPE_SECT | PMD_SECT_AP_WRITE);
112	flush_pmd_entry(pmd);
113	outer_clean_range(__pa(pmd), __pa(pmd + 1));
114
115	/*
116	 * We need to tell the secondary core where to find
117	 * its stack and the page tables.
118	 */
119	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
120	secondary_data.pgdir = virt_to_phys(pgd);
121	__cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
122	outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
123
124	/*
125	 * Now bring the CPU into our world.
126	 */
127	ret = boot_secondary(cpu, idle);
128	if (ret == 0) {
129		/*
130		 * timeout is in fixed jiffies - for slow processor
131	 	 * the HZ is low, making the waiting longer as necesary.
132		 */
133		unsigned long timeout = 128 ;
134
135		/*
136		 * CPU was successfully started, wait for it
137		 * to come online or time out.
138		 */
139		timeout += jiffies ;
140		while (time_before(jiffies, timeout)) {
141			if (cpu_online(cpu))
142				break;
143
144			udelay(10);
145			barrier();
146		}
147
148		if (!cpu_online(cpu))
149			ret = -EIO;
150	}
151
152	secondary_data.stack = NULL;
153	secondary_data.pgdir = 0;
154
155	*pmd = __pmd(0);
156	clean_pmd_entry(pmd);
157	pgd_free(&init_mm, pgd);
158
159	if (ret) {
160		printk(KERN_CRIT "CPU%u: processor failed to boot\n", cpu);
161
162	}
163
164	return ret;
165}
166
167#ifdef CONFIG_HOTPLUG_CPU
168/*
169 * __cpu_disable runs on the processor to be shutdown.
170 */
171int __cpu_disable(void)
172{
173	unsigned int cpu = smp_processor_id();
174	struct task_struct *p;
175	int ret;
176
177	ret = platform_cpu_disable(cpu);
178	if (ret)
179		return ret;
180
181	/*
182	 * Take this CPU offline.  Once we clear this, we can't return,
183	 * and we must not schedule until we're ready to give up the cpu.
184	 */
185	set_cpu_online(cpu, false);
186
187	/*
188	 * OK - migrate IRQs away from this CPU
189	 */
190	migrate_irqs();
191
192	/*
193	 * Stop the local timer for this CPU.
194	 */
195	local_timer_stop();
196
197	/*
198	 * Flush user cache and TLB mappings, and then remove this CPU
199	 * from the vm mask set of all processes.
200	 */
201	flush_cache_all();
202	local_flush_tlb_all();
203
204	read_lock(&tasklist_lock);
205	for_each_process(p) {
206		if (p->mm)
207			cpumask_clear_cpu(cpu, mm_cpumask(p->mm));
208	}
209	read_unlock(&tasklist_lock);
210
211	return 0;
212}
213
214/*
215 * called on the thread which is asking for a CPU to be shutdown -
216 * waits until shutdown has completed, or it is timed out.
217 */
218void __cpu_die(unsigned int cpu)
219{
220	if (!platform_cpu_kill(cpu))
221		printk("CPU%u: unable to kill\n", cpu);
222}
223
224/*
225 * Called from the idle thread for the CPU which has been shutdown.
226 *
227 * Note that we disable IRQs here, but do not re-enable them
228 * before returning to the caller. This is also the behaviour
229 * of the other hotplug-cpu capable cores, so presumably coming
230 * out of idle fixes this.
231 */
232void __ref cpu_die(void)
233{
234	unsigned int cpu = smp_processor_id();
235
236	local_irq_disable();
237	idle_task_exit();
238
239	/*
240	 * actual CPU shutdown procedure is at least platform (if not
241	 * CPU) specific
242	 */
243	platform_cpu_die(cpu);
244
245	/*
246	 * Do not return to the idle loop - jump back to the secondary
247	 * cpu initialisation.  There's some initialisation which needs
248	 * to be repeated to undo the effects of taking the CPU offline.
249	 */
250	__asm__("mov	sp, %0\n"
251	"	b	secondary_start_kernel"
252		:
253		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
254}
255#endif /* CONFIG_HOTPLUG_CPU */
256
257/*
258 * This is the secondary CPU boot entry.  We're using this CPUs
259 * idle thread stack, but a set of temporary page tables.
260 */
261asmlinkage void __cpuinit secondary_start_kernel(void)
262{
263	struct mm_struct *mm = &init_mm;
264	unsigned int cpu = smp_processor_id();
265
266	printk("CPU%u: Booted secondary processor\n", cpu);
267
268	/*
269	 * All kernel threads share the same mm context; grab a
270	 * reference and switch to it.
271	 */
272	atomic_inc(&mm->mm_users);
273	atomic_inc(&mm->mm_count);
274	current->active_mm = mm;
275	cpumask_set_cpu(cpu, mm_cpumask(mm));
276	cpu_switch_mm(mm->pgd, mm);
277	enter_lazy_tlb(mm, current);
278	local_flush_tlb_all();
279
280	cpu_init();
281	preempt_disable();
282
283	/*
284	 * Give the platform a chance to do its own initialisation.
285	 */
286	platform_secondary_init(cpu);
287
288	/*
289	 * Enable local interrupts.
290	 */
291	notify_cpu_starting(cpu);
292	local_irq_enable();
293	local_fiq_enable();
294
295	/*
296	 * Setup the percpu timer for this CPU.
297	 */
298	percpu_timer_setup();
299
300	calibrate_delay();
301
302	smp_store_cpu_info(cpu);
303
304	/*
305	 * OK, now it's safe to let the boot CPU continue
306	 */
307	set_cpu_online(cpu, true);
308
309	/*
310	 * OK, it's off to the idle thread for us
311	 */
312	cpu_idle();
313}
314
315/*
316 * Called by both boot and secondaries to move global data into
317 * per-processor storage.
318 */
319void __cpuinit smp_store_cpu_info(unsigned int cpuid)
320{
321	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
322
323	cpu_info->loops_per_jiffy = loops_per_jiffy;
324}
325
326void __init smp_cpus_done(unsigned int max_cpus)
327{
328	int cpu;
329	unsigned long bogosum = 0;
330
331	for_each_online_cpu(cpu)
332		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
333
334	printk(KERN_INFO "SMP: Total of %d processors activated "
335	       "(%lu.%02lu BogoMIPS).\n",
336	       num_online_cpus(),
337	       bogosum / (500000/HZ),
338	       (bogosum / (5000/HZ)) % 100);
339}
340
341void __init smp_prepare_boot_cpu(void)
342{
343	unsigned int cpu = smp_processor_id();
344
345	per_cpu(cpu_data, cpu).idle = current;
346}
347
348static void send_ipi_message(const struct cpumask *mask, enum ipi_msg_type msg)
349{
350	unsigned long flags;
351	unsigned int cpu;
352
353	local_irq_save(flags);
354
355	for_each_cpu(cpu, mask) {
356		struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
357
358		spin_lock(&ipi->lock);
359		ipi->bits |= 1 << msg;
360		spin_unlock(&ipi->lock);
361	}
362
363	/*
364	 * Call the platform specific cross-CPU call function.
365	 */
366	smp_cross_call(mask);
367
368	local_irq_restore(flags);
369}
370
371void arch_send_call_function_ipi_mask(const struct cpumask *mask)
372{
373	send_ipi_message(mask, IPI_CALL_FUNC);
374}
375
376void arch_send_call_function_single_ipi(int cpu)
377{
378	send_ipi_message(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
379}
380
381void show_ipi_list(struct seq_file *p)
382{
383	unsigned int cpu;
384
385	seq_puts(p, "IPI:");
386
387	for_each_present_cpu(cpu)
388		seq_printf(p, " %10lu", per_cpu(ipi_data, cpu).ipi_count);
389
390	seq_putc(p, '\n');
391}
392
393void show_local_irqs(struct seq_file *p)
394{
395	unsigned int cpu;
396
397	seq_printf(p, "LOC: ");
398
399	for_each_present_cpu(cpu)
400		seq_printf(p, "%10u ", irq_stat[cpu].local_timer_irqs);
401
402	seq_putc(p, '\n');
403}
404
405/*
406 * Timer (local or broadcast) support
407 */
408static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
409
410static void ipi_timer(void)
411{
412	struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
413#ifdef CONFIG_BCM47XX
414	int cpu = smp_processor_id();
415#endif
416	irq_enter();
417	evt->event_handler(evt);
418#ifdef CONFIG_BCM47XX
419	if (cpu == 0)
420		soc_watchdog();
421#endif
422	irq_exit();
423}
424
425#ifdef CONFIG_LOCAL_TIMERS
426asmlinkage void __exception do_local_timer(struct pt_regs *regs)
427{
428	struct pt_regs *old_regs = set_irq_regs(regs);
429	int cpu = smp_processor_id();
430
431	if (local_timer_ack()) {
432		irq_stat[cpu].local_timer_irqs++;
433		ipi_timer();
434	}
435
436	set_irq_regs(old_regs);
437}
438#endif
439
440#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
441static void smp_timer_broadcast(const struct cpumask *mask)
442{
443	send_ipi_message(mask, IPI_TIMER);
444}
445#else
446#define smp_timer_broadcast	NULL
447#endif
448
449#ifndef CONFIG_LOCAL_TIMERS
450static void broadcast_timer_set_mode(enum clock_event_mode mode,
451	struct clock_event_device *evt)
452{
453}
454
455static void local_timer_setup(struct clock_event_device *evt)
456{
457	evt->name	= "dummy_timer";
458	evt->features	= CLOCK_EVT_FEAT_ONESHOT |
459			  CLOCK_EVT_FEAT_PERIODIC |
460			  CLOCK_EVT_FEAT_DUMMY;
461	evt->rating	= 400;
462	evt->mult	= 1;
463	evt->set_mode	= broadcast_timer_set_mode;
464
465	clockevents_register_device(evt);
466}
467#endif
468
469void __cpuinit percpu_timer_setup(void)
470{
471	unsigned int cpu = smp_processor_id();
472	struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
473
474	evt->cpumask = cpumask_of(cpu);
475	evt->broadcast = smp_timer_broadcast;
476
477	local_timer_setup(evt);
478}
479
480static DEFINE_SPINLOCK(stop_lock);
481
482/*
483 * ipi_cpu_stop - handle IPI from smp_send_stop()
484 */
485static void ipi_cpu_stop(unsigned int cpu)
486{
487	if (system_state == SYSTEM_BOOTING ||
488	    system_state == SYSTEM_RUNNING) {
489		spin_lock(&stop_lock);
490		printk(KERN_CRIT "CPU%u: stopping\n", cpu);
491		dump_stack();
492		spin_unlock(&stop_lock);
493	}
494
495	set_cpu_online(cpu, false);
496
497	local_fiq_disable();
498	local_irq_disable();
499
500	while (1)
501		cpu_relax();
502}
503
504/*
505 * Main handler for inter-processor interrupts
506 *
507 * For ARM, the ipimask now only identifies a single
508 * category of IPI (Bit 1 IPIs have been replaced by a
509 * different mechanism):
510 *
511 *  Bit 0 - Inter-processor function call
512 */
513asmlinkage void __exception do_IPI(struct pt_regs *regs)
514{
515	unsigned int cpu = smp_processor_id();
516	struct ipi_data *ipi = &per_cpu(ipi_data, cpu);
517	struct pt_regs *old_regs = set_irq_regs(regs);
518
519	ipi->ipi_count++;
520
521	for (;;) {
522		unsigned long msgs;
523
524		spin_lock(&ipi->lock);
525		msgs = ipi->bits;
526		ipi->bits = 0;
527		spin_unlock(&ipi->lock);
528
529		if (!msgs)
530			break;
531
532		do {
533			unsigned nextmsg;
534
535			nextmsg = msgs & -msgs;
536			msgs &= ~nextmsg;
537			nextmsg = ffz(~nextmsg);
538
539			switch (nextmsg) {
540			case IPI_TIMER:
541				ipi_timer();
542				break;
543
544			case IPI_RESCHEDULE:
545				/*
546				 * nothing more to do - eveything is
547				 * done on the interrupt return path
548				 */
549				break;
550
551			case IPI_CALL_FUNC:
552				generic_smp_call_function_interrupt();
553				break;
554
555			case IPI_CALL_FUNC_SINGLE:
556				generic_smp_call_function_single_interrupt();
557				break;
558
559			case IPI_CPU_STOP:
560				ipi_cpu_stop(cpu);
561				break;
562
563			default:
564				printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
565				       cpu, nextmsg);
566				break;
567			}
568		} while (msgs);
569	}
570
571	set_irq_regs(old_regs);
572}
573
574void smp_send_reschedule(int cpu)
575{
576	send_ipi_message(cpumask_of(cpu), IPI_RESCHEDULE);
577}
578
579void smp_send_stop(void)
580{
581	cpumask_t mask = cpu_online_map;
582	cpu_clear(smp_processor_id(), mask);
583	send_ipi_message(&mask, IPI_CPU_STOP);
584}
585
586/*
587 * not supported here
588 */
589int setup_profiling_timer(unsigned int multiplier)
590{
591	return -EINVAL;
592}
593
594static void
595on_each_cpu_mask(void (*func)(void *), void *info, int wait,
596		const struct cpumask *mask)
597{
598	preempt_disable();
599
600	smp_call_function_many(mask, func, info, wait);
601	if (cpumask_test_cpu(smp_processor_id(), mask))
602		func(info);
603
604	preempt_enable();
605}
606
607/**********************************************************************/
608
609/*
610 * TLB operations
611 */
612struct tlb_args {
613	struct vm_area_struct *ta_vma;
614	unsigned long ta_start;
615	unsigned long ta_end;
616};
617
618static inline void ipi_flush_tlb_all(void *ignored)
619{
620	local_flush_tlb_all();
621}
622
623static inline void ipi_flush_tlb_mm(void *arg)
624{
625	struct mm_struct *mm = (struct mm_struct *)arg;
626
627	local_flush_tlb_mm(mm);
628}
629
630static inline void ipi_flush_tlb_page(void *arg)
631{
632	struct tlb_args *ta = (struct tlb_args *)arg;
633
634	local_flush_tlb_page(ta->ta_vma, ta->ta_start);
635}
636
637static inline void ipi_flush_tlb_kernel_page(void *arg)
638{
639	struct tlb_args *ta = (struct tlb_args *)arg;
640
641	local_flush_tlb_kernel_page(ta->ta_start);
642}
643
644static inline void ipi_flush_tlb_range(void *arg)
645{
646	struct tlb_args *ta = (struct tlb_args *)arg;
647
648	local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
649}
650
651static inline void ipi_flush_tlb_kernel_range(void *arg)
652{
653	struct tlb_args *ta = (struct tlb_args *)arg;
654
655	local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
656}
657
658void flush_tlb_all(void)
659{
660	if (tlb_ops_need_broadcast())
661		on_each_cpu(ipi_flush_tlb_all, NULL, 1);
662	else
663		local_flush_tlb_all();
664}
665
666void flush_tlb_mm(struct mm_struct *mm)
667{
668	if (tlb_ops_need_broadcast())
669		on_each_cpu_mask(ipi_flush_tlb_mm, mm, 1, mm_cpumask(mm));
670	else
671		local_flush_tlb_mm(mm);
672}
673
674void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
675{
676	if (tlb_ops_need_broadcast()) {
677		struct tlb_args ta;
678		ta.ta_vma = vma;
679		ta.ta_start = uaddr;
680		on_each_cpu_mask(ipi_flush_tlb_page, &ta, 1, mm_cpumask(vma->vm_mm));
681	} else
682		local_flush_tlb_page(vma, uaddr);
683}
684
685void flush_tlb_kernel_page(unsigned long kaddr)
686{
687	if (tlb_ops_need_broadcast()) {
688		struct tlb_args ta;
689		ta.ta_start = kaddr;
690		on_each_cpu(ipi_flush_tlb_kernel_page, &ta, 1);
691	} else
692		local_flush_tlb_kernel_page(kaddr);
693}
694
695void flush_tlb_range(struct vm_area_struct *vma,
696                     unsigned long start, unsigned long end)
697{
698	if (tlb_ops_need_broadcast()) {
699		struct tlb_args ta;
700		ta.ta_vma = vma;
701		ta.ta_start = start;
702		ta.ta_end = end;
703		on_each_cpu_mask(ipi_flush_tlb_range, &ta, 1, mm_cpumask(vma->vm_mm));
704	} else
705		local_flush_tlb_range(vma, start, end);
706}
707
708void flush_tlb_kernel_range(unsigned long start, unsigned long end)
709{
710	if (tlb_ops_need_broadcast()) {
711		struct tlb_args ta;
712		ta.ta_start = start;
713		ta.ta_end = end;
714		on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
715	} else
716		local_flush_tlb_kernel_range(start, end);
717}
718