1#ifndef	DEBG
2#define DEBG(x)
3#endif
4#ifndef	DEBG1
5#define DEBG1(x)
6#endif
7/* inflate.c -- Not copyrighted 1992 by Mark Adler
8   version c10p1, 10 January 1993 */
9
10/*
11 * Adapted for booting Linux by Hannu Savolainen 1993
12 * based on gzip-1.0.3
13 *
14 * Nicolas Pitre <nico@cam.org>, 1999/04/14 :
15 *   Little mods for all variable to reside either into rodata or bss segments
16 *   by marking constant variables with 'const' and initializing all the others
17 *   at run-time only.  This allows for the kernel uncompressor to run
18 *   directly from Flash or ROM memory on embedded systems.
19 */
20
21/*
22   Inflate deflated (PKZIP's method 8 compressed) data.  The compression
23   method searches for as much of the current string of bytes (up to a
24   length of 258) in the previous 32 K bytes.  If it doesn't find any
25   matches (of at least length 3), it codes the next byte.  Otherwise, it
26   codes the length of the matched string and its distance backwards from
27   the current position.  There is a single Huffman code that codes both
28   single bytes (called "literals") and match lengths.  A second Huffman
29   code codes the distance information, which follows a length code.  Each
30   length or distance code actually represents a base value and a number
31   of "extra" (sometimes zero) bits to get to add to the base value.  At
32   the end of each deflated block is a special end-of-block (EOB) literal/
33   length code.  The decoding process is basically: get a literal/length
34   code; if EOB then done; if a literal, emit the decoded byte; if a
35   length then get the distance and emit the referred-to bytes from the
36   sliding window of previously emitted data.
37
38   There are (currently) three kinds of inflate blocks: stored, fixed, and
39   dynamic.  The compressor deals with some chunk of data at a time, and
40   decides which method to use on a chunk-by-chunk basis.  A chunk might
41   typically be 32 K or 64 K.  If the chunk is incompressible, then the
42   "stored" method is used.  In this case, the bytes are simply stored as
43   is, eight bits per byte, with none of the above coding.  The bytes are
44   preceded by a count, since there is no longer an EOB code.
45
46   If the data is compressible, then either the fixed or dynamic methods
47   are used.  In the dynamic method, the compressed data is preceded by
48   an encoding of the literal/length and distance Huffman codes that are
49   to be used to decode this block.  The representation is itself Huffman
50   coded, and so is preceded by a description of that code.  These code
51   descriptions take up a little space, and so for small blocks, there is
52   a predefined set of codes, called the fixed codes.  The fixed method is
53   used if the block codes up smaller that way (usually for quite small
54   chunks), otherwise the dynamic method is used.  In the latter case, the
55   codes are customized to the probabilities in the current block, and so
56   can code it much better than the pre-determined fixed codes.
57
58   The Huffman codes themselves are decoded using a multi-level table
59   lookup, in order to maximize the speed of decoding plus the speed of
60   building the decoding tables.  See the comments below that precede the
61   lbits and dbits tuning parameters.
62 */
63
64
65/*
66   Notes beyond the 1.93a appnote.txt:
67
68   1. Distance pointers never point before the beginning of the output
69      stream.
70   2. Distance pointers can point back across blocks, up to 32k away.
71   3. There is an implied maximum of 7 bits for the bit length table and
72      15 bits for the actual data.
73   4. If only one code exists, then it is encoded using one bit.  (Zero
74      would be more efficient, but perhaps a little confusing.)  If two
75      codes exist, they are coded using one bit each (0 and 1).
76   5. There is no way of sending zero distance codes--a dummy must be
77      sent if there are none.  (History: a pre 2.0 version of PKZIP would
78      store blocks with no distance codes, but this was discovered to be
79      too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
80      zero distance codes, which is sent as one code of zero bits in
81      length.
82   6. There are up to 286 literal/length codes.  Code 256 represents the
83      end-of-block.  Note however that the static length tree defines
84      288 codes just to fill out the Huffman codes.  Codes 286 and 287
85      cannot be used though, since there is no length base or extra bits
86      defined for them.  Similarly, there are up to 30 distance codes.
87      However, static trees define 32 codes (all 5 bits) to fill out the
88      Huffman codes, but the last two had better not show up in the data.
89   7. Unzip can check dynamic Huffman blocks for complete code sets.
90      The exception is that a single code would not be complete (see #4).
91   8. The five bits following the block type is really the number of
92      literal codes sent minus 257.
93   9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
94      (1+6+6).  Therefore, to output three times the length, you output
95      three codes (1+1+1), whereas to output four times the same length,
96      you only need two codes (1+3).  Hmm.
97  10. In the tree reconstruction algorithm, Code = Code + Increment
98      only if BitLength(i) is not zero.  (Pretty obvious.)
99  11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
100  12. Note: length code 284 can represent 227-258, but length code 285
101      really is 258.  The last length deserves its own, short code
102      since it gets used a lot in very redundant files.  The length
103      258 is special since 258 - 3 (the min match length) is 255.
104  13. The literal/length and distance code bit lengths are read as a
105      single stream of lengths.  It is possible (and advantageous) for
106      a repeat code (16, 17, or 18) to go across the boundary between
107      the two sets of lengths.
108 */
109
110/* FILE-CSTYLED */
111
112#ifdef RCSID
113static char rcsid[] = "#Id: inflate.c,v 0.14 1993/06/10 13:27:04 jloup Exp #";
114#endif
115
116#ifndef STATIC
117
118#if defined(STDC_HEADERS) || defined(HAVE_STDLIB_H)
119#  include <sys/types.h>
120#  include <stdlib.h>
121#endif
122
123#include "gzip.h"
124#define STATIC
125#endif /* !STATIC */
126
127#define slide window
128
129/* Huffman code lookup table entry--this entry is four bytes for machines
130   that have 16-bit pointers (e.g. PC's in the small or medium model).
131   Valid extra bits are 0..13.  e == 15 is EOB (end of block), e == 16
132   means that v is a literal, 16 < e < 32 means that v is a pointer to
133   the next table, which codes e - 16 bits, and lastly e == 99 indicates
134   an unused code.  If a code with e == 99 is looked up, this implies an
135   error in the data. */
136struct huft {
137  uch e;                /* number of extra bits or operation */
138  uch b;                /* number of bits in this code or subcode */
139  union {
140    ush n;              /* literal, length base, or distance base */
141    struct huft *t;     /* pointer to next level of table */
142  } v;
143};
144
145
146/* Function prototypes */
147STATIC int huft_build OF((unsigned *, unsigned, unsigned,
148		const ush *, const ush *, struct huft **, int *));
149STATIC int huft_free OF((struct huft *));
150STATIC int inflate_codes OF((struct huft *, struct huft *, int, int));
151STATIC int inflate_stored OF((void));
152STATIC int inflate_fixed OF((void));
153STATIC int inflate_dynamic OF((void));
154STATIC int inflate_block OF((int *));
155STATIC int inflate OF((void));
156
157
158/* The inflate algorithm uses a sliding 32 K byte window on the uncompressed
159   stream to find repeated byte strings.  This is implemented here as a
160   circular buffer.  The index is updated simply by incrementing and then
161   ANDing with 0x7fff (32K-1). */
162/* It is left to other modules to supply the 32 K area.  It is assumed
163   to be usable as if it were declared "uch slide[32768];" or as just
164   "uch *slide;" and then malloc'ed in the latter case.  The definition
165   must be in unzip.h, included above. */
166/* unsigned wp;             current position in slide */
167#define wp outcnt
168#define flush_output(w) (wp=(w),flush_window())
169
170/* Tables for deflate from PKZIP's appnote.txt. */
171static const unsigned border[] = {    /* Order of the bit length code lengths */
172        16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
173static const ush cplens[] = {         /* Copy lengths for literal codes 257..285 */
174        3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
175        35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
176        /* note: see note #13 above about the 258 in this list. */
177static const ush cplext[] = {         /* Extra bits for literal codes 257..285 */
178        0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
179        3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */
180static const ush cpdist[] = {         /* Copy offsets for distance codes 0..29 */
181        1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
182        257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
183        8193, 12289, 16385, 24577};
184static const ush cpdext[] = {         /* Extra bits for distance codes */
185        0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
186        7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
187        12, 12, 13, 13};
188
189
190
191/* Macros for inflate() bit peeking and grabbing.
192   The usage is:
193
194        NEEDBITS(j)
195        x = b & mask_bits[j];
196        DUMPBITS(j)
197
198   where NEEDBITS makes sure that b has at least j bits in it, and
199   DUMPBITS removes the bits from b.  The macros use the variable k
200   for the number of bits in b.  Normally, b and k are register
201   variables for speed, and are initialized at the beginning of a
202   routine that uses these macros from a global bit buffer and count.
203
204   If we assume that EOB will be the longest code, then we will never
205   ask for bits with NEEDBITS that are beyond the end of the stream.
206   So, NEEDBITS should not read any more bytes than are needed to
207   meet the request.  Then no bytes need to be "returned" to the buffer
208   at the end of the last block.
209
210   However, this assumption is not true for fixed blocks--the EOB code
211   is 7 bits, but the other literal/length codes can be 8 or 9 bits.
212   (The EOB code is shorter than other codes because fixed blocks are
213   generally short.  So, while a block always has an EOB, many other
214   literal/length codes have a significantly lower probability of
215   showing up at all.)  However, by making the first table have a
216   lookup of seven bits, the EOB code will be found in that first
217   lookup, and so will not require that too many bits be pulled from
218   the stream.
219 */
220
221STATIC ulg bb;                         /* bit buffer */
222STATIC unsigned bk;                    /* bits in bit buffer */
223
224STATIC const ush mask_bits[] = {
225    0x0000,
226    0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
227    0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
228};
229
230#define NEXTBYTE()  (uch)get_byte()
231#define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE())<<k;k+=8;}}
232#define DUMPBITS(n) {b>>=(n);k-=(n);}
233
234
235/*
236   Huffman code decoding is performed using a multi-level table lookup.
237   The fastest way to decode is to simply build a lookup table whose
238   size is determined by the longest code.  However, the time it takes
239   to build this table can also be a factor if the data being decoded
240   is not very long.  The most common codes are necessarily the
241   shortest codes, so those codes dominate the decoding time, and hence
242   the speed.  The idea is you can have a shorter table that decodes the
243   shorter, more probable codes, and then point to subsidiary tables for
244   the longer codes.  The time it costs to decode the longer codes is
245   then traded against the time it takes to make longer tables.
246
247   This results of this trade are in the variables lbits and dbits
248   below.  lbits is the number of bits the first level table for literal/
249   length codes can decode in one step, and dbits is the same thing for
250   the distance codes.  Subsequent tables are also less than or equal to
251   those sizes.  These values may be adjusted either when all of the
252   codes are shorter than that, in which case the longest code length in
253   bits is used, or when the shortest code is *longer* than the requested
254   table size, in which case the length of the shortest code in bits is
255   used.
256
257   There are two different values for the two tables, since they code a
258   different number of possibilities each.  The literal/length table
259   codes 286 possible values, or in a flat code, a little over eight
260   bits.  The distance table codes 30 possible values, or a little less
261   than five bits, flat.  The optimum values for speed end up being
262   about one bit more than those, so lbits is 8+1 and dbits is 5+1.
263   The optimum values may differ though from machine to machine, and
264   possibly even between compilers.  Your mileage may vary.
265 */
266
267
268STATIC const int lbits = 9;          /* bits in base literal/length lookup table */
269STATIC const int dbits = 6;          /* bits in base distance lookup table */
270
271
272/* If BMAX needs to be larger than 16, then h and x[] should be ulg. */
273#define BMAX 16         /* maximum bit length of any code (16 for explode) */
274#define N_MAX 288       /* maximum number of codes in any set */
275
276
277STATIC unsigned hufts;         /* track memory usage */
278
279
280STATIC int huft_build(b, n, s, d, e, t, m)
281unsigned *b;            /* code lengths in bits (all assumed <= BMAX) */
282unsigned n;             /* number of codes (assumed <= N_MAX) */
283unsigned s;             /* number of simple-valued codes (0..s-1) */
284const ush *d;                 /* list of base values for non-simple codes */
285const ush *e;                 /* list of extra bits for non-simple codes */
286struct huft **t;        /* result: starting table */
287int *m;                 /* maximum lookup bits, returns actual */
288/* Given a list of code lengths and a maximum table size, make a set of
289   tables to decode that set of codes.  Return zero on success, one if
290   the given code set is incomplete (the tables are still built in this
291   case), two if the input is invalid (all zero length codes or an
292   oversubscribed set of lengths), and three if not enough memory. */
293{
294  unsigned a;                   /* counter for codes of length k */
295  unsigned c[BMAX+1];           /* bit length count table */
296  unsigned f;                   /* i repeats in table every f entries */
297  int g;                        /* maximum code length */
298  int h;                        /* table level */
299  register unsigned i;          /* counter, current code */
300  register unsigned j;          /* counter */
301  register int k;               /* number of bits in current code */
302  int l;                        /* bits per table (returned in m) */
303  register unsigned *p;         /* pointer into c[], b[], or v[] */
304  register struct huft *q;      /* points to current table */
305  struct huft r;                /* table entry for structure assignment */
306  struct huft *u[BMAX];         /* table stack */
307  unsigned v[N_MAX];            /* values in order of bit length */
308  register int w;               /* bits before this table == (l * h) */
309  unsigned x[BMAX+1];           /* bit offsets, then code stack */
310  unsigned *xp;                 /* pointer into x */
311  int y;                        /* number of dummy codes added */
312  unsigned z;                   /* number of entries in current table */
313
314DEBG("huft1 ");
315
316  /* Generate counts for each bit length */
317  memzero(c, sizeof(c));
318  p = b;  i = n;
319  do {
320    Tracecv(*p, (stderr, (n-i >= ' ' && n-i <= '~' ? "%c %d\n" : "0x%x %d\n"),
321	    n-i, *p));
322    c[*p]++;                    /* assume all entries <= BMAX */
323    p++;                      /* Can't combine with above line (Solaris bug) */
324  } while (--i);
325  if (c[0] == n)                /* null input--all zero length codes */
326  {
327    *t = (struct huft *)NULL;
328    *m = 0;
329    return 0;
330  }
331
332DEBG("huft2 ");
333
334  /* Find minimum and maximum length, bound *m by those */
335  l = *m;
336  for (j = 1; j <= BMAX; j++)
337    if (c[j])
338      break;
339  k = j;                        /* minimum code length */
340  if ((unsigned)l < j)
341    l = j;
342  for (i = BMAX; i; i--)
343    if (c[i])
344      break;
345  g = i;                        /* maximum code length */
346  if ((unsigned)l > i)
347    l = i;
348  *m = l;
349
350DEBG("huft3 ");
351
352  /* Adjust last length count to fill out codes, if needed */
353  for (y = 1 << j; j < i; j++, y <<= 1)
354    if ((y -= c[j]) < 0)
355      return 2;                 /* bad input: more codes than bits */
356  if ((y -= c[i]) < 0)
357    return 2;
358  c[i] += y;
359
360DEBG("huft4 ");
361
362  /* Generate starting offsets into the value table for each length */
363  x[1] = j = 0;
364  p = c + 1;  xp = x + 2;
365  while (--i) {                 /* note that i == g from above */
366    *xp++ = (j += *p++);
367  }
368
369DEBG("huft5 ");
370
371  /* Make a table of values in order of bit lengths */
372  p = b;  i = 0;
373  do {
374    if ((j = *p++) != 0)
375      v[x[j]++] = i;
376  } while (++i < n);
377
378DEBG("h6 ");
379
380  /* Generate the Huffman codes and for each, make the table entries */
381  x[0] = i = 0;                 /* first Huffman code is zero */
382  p = v;                        /* grab values in bit order */
383  h = -1;                       /* no tables yet--level -1 */
384  w = -l;                       /* bits decoded == (l * h) */
385  u[0] = (struct huft *)NULL;   /* just to keep compilers happy */
386  q = (struct huft *)NULL;      /* ditto */
387  z = 0;                        /* ditto */
388DEBG("h6a ");
389
390  /* go through the bit lengths (k already is bits in shortest code) */
391  for (; k <= g; k++)
392  {
393DEBG("h6b ");
394    a = c[k];
395    while (a--)
396    {
397DEBG("h6b1 ");
398      /* here i is the Huffman code of length k bits for value *p */
399      /* make tables up to required level */
400      while (k > w + l)
401      {
402DEBG1("1 ");
403        h++;
404        w += l;                 /* previous table always l bits */
405
406        /* compute minimum size table less than or equal to l bits */
407        z = (z = g - w) > (unsigned)l ? l : z;  /* upper limit on table size */
408        if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
409        {                       /* too few codes for k-w bit table */
410DEBG1("2 ");
411          f -= a + 1;           /* deduct codes from patterns left */
412          xp = c + k;
413          while (++j < z)       /* try smaller tables up to z bits */
414          {
415            if ((f <<= 1) <= *++xp)
416              break;            /* enough codes to use up j bits */
417            f -= *xp;           /* else deduct codes from patterns */
418          }
419        }
420DEBG1("3 ");
421        z = 1 << j;             /* table entries for j-bit table */
422
423        /* allocate and link in new table */
424        if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) ==
425            (struct huft *)NULL)
426        {
427          if (h)
428            huft_free(u[0]);
429          return 3;             /* not enough memory */
430        }
431DEBG1("4 ");
432        hufts += z + 1;         /* track memory usage */
433        *t = q + 1;             /* link to list for huft_free() */
434        *(t = &(q->v.t)) = (struct huft *)NULL;
435        u[h] = ++q;             /* table starts after link */
436
437DEBG1("5 ");
438        /* connect to last table, if there is one */
439        if (h)
440        {
441          x[h] = i;             /* save pattern for backing up */
442          r.b = (uch)l;         /* bits to dump before this table */
443          r.e = (uch)(16 + j);  /* bits in this table */
444          r.v.t = q;            /* pointer to this table */
445          j = i >> (w - l);     /* (get around Turbo C bug) */
446          u[h-1][j] = r;        /* connect to last table */
447        }
448DEBG1("6 ");
449      }
450DEBG("h6c ");
451
452      /* set up table entry in r */
453      r.b = (uch)(k - w);
454      if (p >= v + n)
455        r.e = 99;               /* out of values--invalid code */
456      else if (*p < s)
457      {
458        r.e = (uch)(*p < 256 ? 16 : 15);    /* 256 is end-of-block code */
459        r.v.n = (ush)(*p);             /* simple code is just the value */
460	p++;                           /* one compiler does not like *p++ */
461      }
462      else
463      {
464        r.e = (uch)e[*p - s];   /* non-simple--look up in lists */
465        r.v.n = d[*p++ - s];
466      }
467DEBG("h6d ");
468
469      /* fill code-like entries with r */
470      f = 1 << (k - w);
471      for (j = i >> w; j < z; j += f)
472        q[j] = r;
473
474      /* backwards increment the k-bit code i */
475      for (j = 1 << (k - 1); i & j; j >>= 1)
476        i ^= j;
477      i ^= j;
478
479      /* backup over finished tables */
480      while ((i & ((1 << w) - 1)) != x[h])
481      {
482        h--;                    /* don't need to update q */
483        w -= l;
484      }
485DEBG("h6e ");
486    }
487DEBG("h6f ");
488  }
489
490DEBG("huft7 ");
491
492  /* Return true (1) if we were given an incomplete table */
493  return y != 0 && g != 1;
494}
495
496
497
498STATIC int huft_free(t)
499struct huft *t;         /* table to free */
500/* Free the malloc'ed tables built by huft_build(), which makes a linked
501   list of the tables it made, with the links in a dummy first entry of
502   each table. */
503{
504  register struct huft *p, *q;
505
506
507  /* Go through linked list, freeing from the malloced (t[-1]) address. */
508  p = t;
509  while (p != (struct huft *)NULL)
510  {
511    q = (--p)->v.t;
512    free((char*)p);
513    p = q;
514  }
515  return 0;
516}
517
518
519STATIC int inflate_codes(tl, td, bl, bd)
520struct huft *tl, *td;   /* literal/length and distance decoder tables */
521int bl, bd;             /* number of bits decoded by tl[] and td[] */
522/* inflate (decompress) the codes in a deflated (compressed) block.
523   Return an error code or zero if it all goes ok. */
524{
525  register unsigned e;  /* table entry flag/number of extra bits */
526  unsigned n, d;        /* length and index for copy */
527  unsigned w;           /* current window position */
528  struct huft *t;       /* pointer to table entry */
529  unsigned ml, md;      /* masks for bl and bd bits */
530  register ulg b;       /* bit buffer */
531  register unsigned k;  /* number of bits in bit buffer */
532
533
534  /* make local copies of globals */
535  b = bb;                       /* initialize bit buffer */
536  k = bk;
537  w = wp;                       /* initialize window position */
538
539  /* inflate the coded data */
540  ml = mask_bits[bl];           /* precompute masks for speed */
541  md = mask_bits[bd];
542  for (;;)                      /* do until end of block */
543  {
544    NEEDBITS((unsigned)bl)
545    if ((e = (t = tl + ((unsigned)b & ml))->e) > 16)
546      do {
547        if (e == 99)
548          return 1;
549        DUMPBITS(t->b)
550        e -= 16;
551        NEEDBITS(e)
552      } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
553    DUMPBITS(t->b)
554    if (e == 16)                /* then it's a literal */
555    {
556      slide[w++] = (uch)t->v.n;
557      Tracevv((stderr, "%c", slide[w-1]));
558      if (w == WSIZE)
559      {
560        flush_output(w);
561        w = 0;
562      }
563    }
564    else                        /* it's an EOB or a length */
565    {
566      /* exit if end of block */
567      if (e == 15)
568        break;
569
570      /* get length of block to copy */
571      NEEDBITS(e)
572      n = t->v.n + ((unsigned)b & mask_bits[e]);
573      DUMPBITS(e);
574
575      /* decode distance of block to copy */
576      NEEDBITS((unsigned)bd)
577      if ((e = (t = td + ((unsigned)b & md))->e) > 16)
578        do {
579          if (e == 99)
580            return 1;
581          DUMPBITS(t->b)
582          e -= 16;
583          NEEDBITS(e)
584        } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
585      DUMPBITS(t->b)
586      NEEDBITS(e)
587      d = w - t->v.n - ((unsigned)b & mask_bits[e]);
588      DUMPBITS(e)
589      Tracevv((stderr,"\\[%d,%d]", w-d, n));
590
591      /* do the copy */
592      do {
593        n -= (e = (e = WSIZE - ((d &= WSIZE-1) > w ? d : w)) > n ? n : e);
594#if !defined(NOMEMCPY) && !defined(DEBUG)
595        if (w - d >= e)         /* (this test assumes unsigned comparison) */
596        {
597          memcpy(slide + w, slide + d, e);
598          w += e;
599          d += e;
600        }
601        else                      /* do it slow to avoid memcpy() overlap */
602#endif /* !NOMEMCPY */
603          do {
604            slide[w++] = slide[d++];
605	    Tracevv((stderr, "%c", slide[w-1]));
606          } while (--e);
607        if (w == WSIZE)
608        {
609          flush_output(w);
610          w = 0;
611        }
612      } while (n);
613    }
614  }
615
616
617  /* restore the globals from the locals */
618  wp = w;                       /* restore global window pointer */
619  bb = b;                       /* restore global bit buffer */
620  bk = k;
621
622  /* done */
623  return 0;
624}
625
626
627
628STATIC int inflate_stored()
629/* "decompress" an inflated type 0 (stored) block. */
630{
631  unsigned n;           /* number of bytes in block */
632  unsigned w;           /* current window position */
633  register ulg b;       /* bit buffer */
634  register unsigned k;  /* number of bits in bit buffer */
635
636DEBG("<stor");
637
638  /* make local copies of globals */
639  b = bb;                       /* initialize bit buffer */
640  k = bk;
641  w = wp;                       /* initialize window position */
642
643
644  /* go to byte boundary */
645  n = k & 7;
646  DUMPBITS(n);
647
648
649  /* get the length and its complement */
650  NEEDBITS(16)
651  n = ((unsigned)b & 0xffff);
652  DUMPBITS(16)
653  NEEDBITS(16)
654  if (n != (unsigned)((~b) & 0xffff))
655    return 1;                   /* error in compressed data */
656  DUMPBITS(16)
657
658
659  /* read and output the compressed data */
660  while (n--)
661  {
662    NEEDBITS(8)
663    slide[w++] = (uch)b;
664    if (w == WSIZE)
665    {
666      flush_output(w);
667      w = 0;
668    }
669    DUMPBITS(8)
670  }
671
672
673  /* restore the globals from the locals */
674  wp = w;                       /* restore global window pointer */
675  bb = b;                       /* restore global bit buffer */
676  bk = k;
677
678  DEBG(">");
679  return 0;
680}
681
682
683
684STATIC int inflate_fixed()
685/* decompress an inflated type 1 (fixed Huffman codes) block.  We should
686   either replace this with a custom decoder, or at least precompute the
687   Huffman tables. */
688{
689  int i;                /* temporary variable */
690  struct huft *tl;      /* literal/length code table */
691  struct huft *td;      /* distance code table */
692  int bl;               /* lookup bits for tl */
693  int bd;               /* lookup bits for td */
694  unsigned l[288];      /* length list for huft_build */
695
696DEBG("<fix");
697
698  /* set up literal table */
699  for (i = 0; i < 144; i++)
700    l[i] = 8;
701  for (; i < 256; i++)
702    l[i] = 9;
703  for (; i < 280; i++)
704    l[i] = 7;
705  for (; i < 288; i++)          /* make a complete, but wrong code set */
706    l[i] = 8;
707  bl = 7;
708  if ((i = huft_build(l, 288, 257, cplens, cplext, &tl, &bl)) != 0)
709    return i;
710
711
712  /* set up distance table */
713  for (i = 0; i < 30; i++)      /* make an incomplete code set */
714    l[i] = 5;
715  bd = 5;
716  if ((i = huft_build(l, 30, 0, cpdist, cpdext, &td, &bd)) > 1)
717  {
718    huft_free(tl);
719
720    DEBG(">");
721    return i;
722  }
723
724
725  /* decompress until an end-of-block code */
726  if (inflate_codes(tl, td, bl, bd))
727    return 1;
728
729
730  /* free the decoding tables, return */
731  huft_free(tl);
732  huft_free(td);
733  return 0;
734}
735
736
737
738STATIC int inflate_dynamic()
739/* decompress an inflated type 2 (dynamic Huffman codes) block. */
740{
741  int i;                /* temporary variables */
742  unsigned j;
743  unsigned l;           /* last length */
744  unsigned m;           /* mask for bit lengths table */
745  unsigned n;           /* number of lengths to get */
746  struct huft *tl;      /* literal/length code table */
747  struct huft *td;      /* distance code table */
748  int bl;               /* lookup bits for tl */
749  int bd;               /* lookup bits for td */
750  unsigned nb;          /* number of bit length codes */
751  unsigned nl;          /* number of literal/length codes */
752  unsigned nd;          /* number of distance codes */
753#ifdef PKZIP_BUG_WORKAROUND
754  unsigned ll[288+32];  /* literal/length and distance code lengths */
755#else
756  unsigned ll[286+30];  /* literal/length and distance code lengths */
757#endif
758  register ulg b;       /* bit buffer */
759  register unsigned k;  /* number of bits in bit buffer */
760
761DEBG("<dyn");
762
763  /* make local bit buffer */
764  b = bb;
765  k = bk;
766
767
768  /* read in table lengths */
769  NEEDBITS(5)
770  nl = 257 + ((unsigned)b & 0x1f);      /* number of literal/length codes */
771  DUMPBITS(5)
772  NEEDBITS(5)
773  nd = 1 + ((unsigned)b & 0x1f);        /* number of distance codes */
774  DUMPBITS(5)
775  NEEDBITS(4)
776  nb = 4 + ((unsigned)b & 0xf);         /* number of bit length codes */
777  DUMPBITS(4)
778#ifdef PKZIP_BUG_WORKAROUND
779  if (nl > 288 || nd > 32)
780#else
781  if (nl > 286 || nd > 30)
782#endif
783    return 1;                   /* bad lengths */
784
785DEBG("dyn1 ");
786
787  /* read in bit-length-code lengths */
788  for (j = 0; j < nb; j++)
789  {
790    NEEDBITS(3)
791    ll[border[j]] = (unsigned)b & 7;
792    DUMPBITS(3)
793  }
794  for (; j < 19; j++)
795    ll[border[j]] = 0;
796
797DEBG("dyn2 ");
798
799  /* build decoding table for trees--single level, 7 bit lookup */
800  bl = 7;
801  if ((i = huft_build(ll, 19, 19, NULL, NULL, &tl, &bl)) != 0)
802  {
803    if (i == 1)
804      huft_free(tl);
805    return i;                   /* incomplete code set */
806  }
807
808DEBG("dyn3 ");
809
810  /* read in literal and distance code lengths */
811  n = nl + nd;
812  m = mask_bits[bl];
813  i = l = 0;
814  while ((unsigned)i < n)
815  {
816    NEEDBITS((unsigned)bl)
817    j = (td = tl + ((unsigned)b & m))->b;
818    DUMPBITS(j)
819    j = td->v.n;
820    if (j < 16)                 /* length of code in bits (0..15) */
821      ll[i++] = l = j;          /* save last length in l */
822    else if (j == 16)           /* repeat last length 3 to 6 times */
823    {
824      NEEDBITS(2)
825      j = 3 + ((unsigned)b & 3);
826      DUMPBITS(2)
827      if ((unsigned)i + j > n)
828        return 1;
829      while (j--)
830        ll[i++] = l;
831    }
832    else if (j == 17)           /* 3 to 10 zero length codes */
833    {
834      NEEDBITS(3)
835      j = 3 + ((unsigned)b & 7);
836      DUMPBITS(3)
837      if ((unsigned)i + j > n)
838        return 1;
839      while (j--)
840        ll[i++] = 0;
841      l = 0;
842    }
843    else                        /* j == 18: 11 to 138 zero length codes */
844    {
845      NEEDBITS(7)
846      j = 11 + ((unsigned)b & 0x7f);
847      DUMPBITS(7)
848      if ((unsigned)i + j > n)
849        return 1;
850      while (j--)
851        ll[i++] = 0;
852      l = 0;
853    }
854  }
855
856DEBG("dyn4 ");
857
858  /* free decoding table for trees */
859  huft_free(tl);
860
861DEBG("dyn5 ");
862
863  /* restore the global bit buffer */
864  bb = b;
865  bk = k;
866
867DEBG("dyn5a ");
868
869  /* build the decoding tables for literal/length and distance codes */
870  bl = lbits;
871  if ((i = huft_build(ll, nl, 257, cplens, cplext, &tl, &bl)) != 0)
872  {
873DEBG("dyn5b ");
874    if (i == 1) {
875      error(" incomplete literal tree\n");
876      huft_free(tl);
877    }
878    return i;                   /* incomplete code set */
879  }
880DEBG("dyn5c ");
881  bd = dbits;
882  if ((i = huft_build(ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0)
883  {
884DEBG("dyn5d ");
885    if (i == 1) {
886      error(" incomplete distance tree\n");
887#ifdef PKZIP_BUG_WORKAROUND
888      i = 0;
889    }
890#else
891      huft_free(td);
892    }
893    huft_free(tl);
894    return i;                   /* incomplete code set */
895#endif
896  }
897
898DEBG("dyn6 ");
899
900  /* decompress until an end-of-block code */
901  if (inflate_codes(tl, td, bl, bd))
902    return 1;
903
904DEBG("dyn7 ");
905
906  /* free the decoding tables, return */
907  huft_free(tl);
908  huft_free(td);
909
910  DEBG(">");
911  return 0;
912}
913
914
915
916STATIC int inflate_block(e)
917int *e;                 /* last block flag */
918/* decompress an inflated block */
919{
920  unsigned t;           /* block type */
921  register ulg b;       /* bit buffer */
922  register unsigned k;  /* number of bits in bit buffer */
923
924  DEBG("<blk");
925
926  /* make local bit buffer */
927  b = bb;
928  k = bk;
929
930
931  /* read in last block bit */
932  NEEDBITS(1)
933  *e = (int)b & 1;
934  DUMPBITS(1)
935
936
937  /* read in block type */
938  NEEDBITS(2)
939  t = (unsigned)b & 3;
940  DUMPBITS(2)
941
942
943  /* restore the global bit buffer */
944  bb = b;
945  bk = k;
946
947  /* inflate that block type */
948  if (t == 2)
949    return inflate_dynamic();
950  if (t == 0)
951    return inflate_stored();
952  if (t == 1)
953    return inflate_fixed();
954
955  DEBG(">");
956
957  /* bad block type */
958  return 2;
959}
960
961
962
963STATIC int inflate()
964/* decompress an inflated entry */
965{
966  int e;                /* last block flag */
967  int r;                /* result code */
968  unsigned h;           /* maximum struct huft's malloc'ed */
969  void *ptr;
970
971  /* initialize window, bit buffer */
972  wp = 0;
973  bk = 0;
974  bb = 0;
975
976
977  /* decompress until the last block */
978  h = 0;
979  do {
980    hufts = 0;
981    gzip_mark(&ptr);
982    if ((r = inflate_block(&e)) != 0) {
983      gzip_release(&ptr);
984      return r;
985    }
986    gzip_release(&ptr);
987    if (hufts > h)
988      h = hufts;
989  } while (!e);
990
991  /* Undo too much lookahead. The next read will be byte aligned so we
992   * can discard unused bits in the last meaningful byte.
993   */
994  while (bk >= 8) {
995    bk -= 8;
996    inptr--;
997  }
998
999  /* flush out slide */
1000  flush_output(wp);
1001
1002
1003  /* return success */
1004#ifdef DEBUG
1005  fprintf(stderr, "<%u> ", h);
1006#endif /* DEBUG */
1007  return 0;
1008}
1009
1010/**********************************************************************
1011 *
1012 * The following are support routines for inflate.c
1013 *
1014 **********************************************************************/
1015
1016static ulg crc_32_tab[256];
1017static ulg crc;		/* initialized in makecrc() so it'll reside in bss */
1018#define CRC_VALUE (crc ^ 0xffffffffUL)
1019
1020/*
1021 * Code to compute the CRC-32 table. Borrowed from
1022 * gzip-1.0.3/makecrc.c.
1023 */
1024
1025static void
1026makecrc(void)
1027{
1028/* Not copyrighted 1990 Mark Adler	*/
1029
1030  unsigned long c;      /* crc shift register */
1031  unsigned long e;      /* polynomial exclusive-or pattern */
1032  int i;                /* counter for all possible eight bit values */
1033  int k;                /* byte being shifted into crc apparatus */
1034
1035  /* terms of polynomial defining this crc (except x^32): */
1036  static const int p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
1037
1038  /* Make exclusive-or pattern from polynomial */
1039  e = 0;
1040  for (i = 0; i < sizeof(p)/sizeof(int); i++)
1041    e |= 1L << (31 - p[i]);
1042
1043  crc_32_tab[0] = 0;
1044
1045  for (i = 1; i < 256; i++)
1046  {
1047    c = 0;
1048    for (k = i | 256; k != 1; k >>= 1)
1049    {
1050      c = c & 1 ? (c >> 1) ^ e : c >> 1;
1051      if (k & 1)
1052        c ^= e;
1053    }
1054    crc_32_tab[i] = c;
1055  }
1056
1057  /* this is initialized here so this code could reside in ROM */
1058  crc = (ulg)0xffffffffUL; /* shift register contents */
1059}
1060
1061/* gzip flag byte */
1062#define ASCII_FLAG   0x01 /* bit 0 set: file probably ASCII text */
1063#define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
1064#define EXTRA_FIELD  0x04 /* bit 2 set: extra field present */
1065#define ORIG_NAME    0x08 /* bit 3 set: original file name present */
1066#define COMMENT      0x10 /* bit 4 set: file comment present */
1067#define ENCRYPTED    0x20 /* bit 5 set: file is encrypted */
1068#define RESERVED     0xC0 /* bit 6,7:   reserved */
1069
1070/*
1071 * Do the uncompression!
1072 */
1073static int gunzip(void)
1074{
1075    uch flags;
1076    unsigned char magic[2]; /* magic header */
1077    char method;
1078    ulg orig_crc = 0;       /* original crc */
1079    ulg orig_len = 0;       /* original uncompressed length */
1080    int res;
1081
1082    magic[0] = (unsigned char)get_byte();
1083    magic[1] = (unsigned char)get_byte();
1084    method = (unsigned char)get_byte();
1085
1086    if (magic[0] != 037 ||
1087	((magic[1] != 0213) && (magic[1] != 0236))) {
1088	    error("bad gzip magic numbers");
1089	    return -1;
1090    }
1091
1092    /* We only support method #8, DEFLATED */
1093    if (method != 8)  {
1094	    error("internal error, invalid method");
1095	    return -1;
1096    }
1097
1098    flags  = (uch)get_byte();
1099    if ((flags & ENCRYPTED) != 0) {
1100	    error("Input is encrypted\n");
1101	    return -1;
1102    }
1103    if ((flags & CONTINUATION) != 0) {
1104	    error("Multi part input\n");
1105	    return -1;
1106    }
1107    if ((flags & RESERVED) != 0) {
1108	    error("Input has invalid flags\n");
1109	    return -1;
1110    }
1111    (ulg)get_byte();	/* Get timestamp */
1112    ((ulg)get_byte()) << 8;
1113    ((ulg)get_byte()) << 16;
1114    ((ulg)get_byte()) << 24;
1115
1116    (void)get_byte();  /* Ignore extra flags for the moment */
1117    (void)get_byte();  /* Ignore OS type for the moment */
1118
1119    if ((flags & EXTRA_FIELD) != 0) {
1120	    unsigned len = (unsigned)get_byte();
1121	    len |= ((unsigned)get_byte())<<8;
1122	    while (len--) (void)get_byte();
1123    }
1124
1125    /* Get original file name if it was truncated */
1126    if ((flags & ORIG_NAME) != 0) {
1127	    /* Discard the old name */
1128	    while (get_byte() != 0) /* null */ ;
1129    }
1130
1131    /* Discard file comment if any */
1132    if ((flags & COMMENT) != 0) {
1133	    while (get_byte() != 0) /* null */ ;
1134    }
1135
1136    /* Decompress */
1137    if ((res = inflate())) {
1138	    switch (res) {
1139	    case 0:
1140		    break;
1141	    case 1:
1142		    error("invalid compressed format (err=1)");
1143		    break;
1144	    case 2:
1145		    error("invalid compressed format (err=2)");
1146		    break;
1147	    case 3:
1148		    error("out of memory");
1149		    break;
1150	    default:
1151		    error("invalid compressed format (other)");
1152	    }
1153	    return -1;
1154    }
1155
1156    /* Get the crc and original length */
1157    /* crc32  (see algorithm.doc)
1158     * uncompressed input size modulo 2^32
1159     */
1160    orig_crc = (ulg) get_byte();
1161    orig_crc |= (ulg) get_byte() << 8;
1162    orig_crc |= (ulg) get_byte() << 16;
1163    orig_crc |= (ulg) get_byte() << 24;
1164
1165    orig_len = (ulg) get_byte();
1166    orig_len |= (ulg) get_byte() << 8;
1167    orig_len |= (ulg) get_byte() << 16;
1168    orig_len |= (ulg) get_byte() << 24;
1169
1170    /* Validate decompression */
1171    if (orig_crc != CRC_VALUE) {
1172	    error("crc error");
1173	    return -1;
1174    }
1175    if (orig_len != bytes_out) {
1176	    error("length error");
1177	    return -1;
1178    }
1179    return 0;
1180}
1181
1182
1183