1/* crypto/bn/bn_lcl.h */
2/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to.  The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 *    notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 *    notice, this list of conditions and the following disclaimer in the
30 *    documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 *    must display the following acknowledgement:
33 *    "This product includes cryptographic software written by
34 *     Eric Young (eay@cryptsoft.com)"
35 *    The word 'cryptographic' can be left out if the rouines from the library
36 *    being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 *    the apps directory (application code) you must include an acknowledgement:
39 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed.  i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58/* ====================================================================
59 * Copyright (c) 1998-2000 The OpenSSL Project.  All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 *    notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 *    notice, this list of conditions and the following disclaimer in
70 *    the documentation and/or other materials provided with the
71 *    distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 *    software must display the following acknowledgment:
75 *    "This product includes software developed by the OpenSSL Project
76 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 *    endorse or promote products derived from this software without
80 *    prior written permission. For written permission, please contact
81 *    openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 *    nor may "OpenSSL" appear in their names without prior written
85 *    permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 *    acknowledgment:
89 *    "This product includes software developed by the OpenSSL Project
90 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ====================================================================
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com).  This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111
112#ifndef HEADER_BN_LCL_H
113#define HEADER_BN_LCL_H
114
115#include "bn.h"
116
117#ifdef  __cplusplus
118extern "C" {
119#endif
120
121
122/*
123 * BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions
124 *
125 *
126 * For window size 'w' (w >= 2) and a random 'b' bits exponent,
127 * the number of multiplications is a constant plus on average
128 *
129 *    2^(w-1) + (b-w)/(w+1);
130 *
131 * here  2^(w-1)  is for precomputing the table (we actually need
132 * entries only for windows that have the lowest bit set), and
133 * (b-w)/(w+1)  is an approximation for the expected number of
134 * w-bit windows, not counting the first one.
135 *
136 * Thus we should use
137 *
138 *    w >= 6  if        b > 671
139 *     w = 5  if  671 > b > 239
140 *     w = 4  if  239 > b >  79
141 *     w = 3  if   79 > b >  23
142 *    w <= 2  if   23 > b
143 *
144 * (with draws in between).  Very small exponents are often selected
145 * with low Hamming weight, so we use  w = 1  for b <= 23.
146 */
147#define BN_window_bits_for_exponent_size(b) \
148		((b) > 671 ? 6 : \
149		 (b) > 239 ? 5 : \
150		 (b) >  79 ? 4 : \
151		 (b) >  23 ? 3 : 1)
152
153
154
155/* BN_mod_exp_mont2_conttime is based on the assumption that the
156 * L1 data cache line width of the target processor is at least
157 * the following value.
158 */
159#define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH	( 64 )
160#define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK	(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)
161
162/* Window sizes optimized for fixed window size modular exponentiation
163 * algorithm (BN_mod_exp_mont2_consttime).
164 *
165 * To achieve the security goals of BN_mode_exp_mont_consttime, the
166 * maximum size of the window must not exceed
167 * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH).
168 *
169 * Window size thresholds are defined for cache line sizes of 32 and 64,
170 * cache line sizes where log_2(32)=5 and log_2(64)=6 respectively. A
171 * window size of 7 should only be used on processors that have a 128
172 * byte or greater cache line size.
173 */
174#if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64
175
176#  define BN_window_bits_for_ctime_exponent_size(b) \
177		((b) > 937 ? 6 : \
178		 (b) > 306 ? 5 : \
179		 (b) >  89 ? 4 : \
180		 (b) >  22 ? 3 : 1)
181#  define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE	(6)
182
183#elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32
184
185#  define BN_window_bits_for_ctime_exponent_size(b) \
186		((b) > 306 ? 5 : \
187		 (b) >  89 ? 4 : \
188		 (b) >  22 ? 3 : 1)
189#  define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE	(5)
190
191#endif
192
193
194/* Pentium pro 16,16,16,32,64 */
195/* Alpha       16,16,16,16.64 */
196#define BN_MULL_SIZE_NORMAL			(16) /* 32 */
197#define BN_MUL_RECURSIVE_SIZE_NORMAL		(16) /* 32 less than */
198#define BN_SQR_RECURSIVE_SIZE_NORMAL		(16) /* 32 */
199#define BN_MUL_LOW_RECURSIVE_SIZE_NORMAL	(32) /* 32 */
200#define BN_MONT_CTX_SET_SIZE_WORD		(64) /* 32 */
201
202#if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) && !defined(PEDANTIC)
203/*
204 * BN_UMULT_HIGH section.
205 *
206 * No, I'm not trying to overwhelm you when stating that the
207 * product of N-bit numbers is 2*N bits wide:-) No, I don't expect
208 * you to be impressed when I say that if the compiler doesn't
209 * support 2*N integer type, then you have to replace every N*N
210 * multiplication with 4 (N/2)*(N/2) accompanied by some shifts
211 * and additions which unavoidably results in severe performance
212 * penalties. Of course provided that the hardware is capable of
213 * producing 2*N result... That's when you normally start
214 * considering assembler implementation. However! It should be
215 * pointed out that some CPUs (most notably Alpha, PowerPC and
216 * upcoming IA-64 family:-) provide *separate* instruction
217 * calculating the upper half of the product placing the result
218 * into a general purpose register. Now *if* the compiler supports
219 * inline assembler, then it's not impossible to implement the
220 * "bignum" routines (and have the compiler optimize 'em)
221 * exhibiting "native" performance in C. That's what BN_UMULT_HIGH
222 * macro is about:-)
223 *
224 *					<appro@fy.chalmers.se>
225 */
226# if defined(__alpha) && (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT))
227#  if defined(__DECC)
228#   include <c_asm.h>
229#   define BN_UMULT_HIGH(a,b)	(BN_ULONG)asm("umulh %a0,%a1,%v0",(a),(b))
230#  elif defined(__GNUC__)
231#   define BN_UMULT_HIGH(a,b)	({	\
232	register BN_ULONG ret;		\
233	asm ("umulh	%1,%2,%0"	\
234	     : "=r"(ret)		\
235	     : "r"(a), "r"(b));		\
236	ret;			})
237#  endif	/* compiler */
238# elif defined(_ARCH_PPC) && defined(__64BIT__) && defined(SIXTY_FOUR_BIT_LONG)
239#  if defined(__GNUC__)
240#   define BN_UMULT_HIGH(a,b)	({	\
241	register BN_ULONG ret;		\
242	asm ("mulhdu	%0,%1,%2"	\
243	     : "=r"(ret)		\
244	     : "r"(a), "r"(b));		\
245	ret;			})
246#  endif	/* compiler */
247# elif defined(__x86_64) && defined(SIXTY_FOUR_BIT_LONG)
248#  if defined(__GNUC__)
249#   define BN_UMULT_HIGH(a,b)	({	\
250	register BN_ULONG ret,discard;	\
251	asm ("mulq	%3"		\
252	     : "=a"(discard),"=d"(ret)	\
253	     : "a"(a), "g"(b)		\
254	     : "cc");			\
255	ret;			})
256#   define BN_UMULT_LOHI(low,high,a,b)	\
257	asm ("mulq	%3"		\
258		: "=a"(low),"=d"(high)	\
259		: "a"(a),"g"(b)		\
260		: "cc");
261#  endif
262# elif (defined(_M_AMD64) || defined(_M_X64)) && defined(SIXTY_FOUR_BIT)
263#  if defined(_MSC_VER) && _MSC_VER>=1400
264    unsigned __int64 __umulh	(unsigned __int64 a,unsigned __int64 b);
265    unsigned __int64 _umul128	(unsigned __int64 a,unsigned __int64 b,
266				 unsigned __int64 *h);
267#   pragma intrinsic(__umulh,_umul128)
268#   define BN_UMULT_HIGH(a,b)		__umulh((a),(b))
269#   define BN_UMULT_LOHI(low,high,a,b)	((low)=_umul128((a),(b),&(high)))
270#  endif
271# endif		/* cpu */
272#endif		/* OPENSSL_NO_ASM */
273
274/*************************************************************
275 * Using the long long type
276 */
277#define Lw(t)    (((BN_ULONG)(t))&BN_MASK2)
278#define Hw(t)    (((BN_ULONG)((t)>>BN_BITS2))&BN_MASK2)
279
280#ifdef BN_DEBUG_RAND
281#define bn_clear_top2max(a) \
282	{ \
283	int      ind = (a)->dmax - (a)->top; \
284	BN_ULONG *ftl = &(a)->d[(a)->top-1]; \
285	for (; ind != 0; ind--) \
286		*(++ftl) = 0x0; \
287	}
288#else
289#define bn_clear_top2max(a)
290#endif
291
292#ifdef BN_LLONG
293#define mul_add(r,a,w,c) { \
294	BN_ULLONG t; \
295	t=(BN_ULLONG)w * (a) + (r) + (c); \
296	(r)= Lw(t); \
297	(c)= Hw(t); \
298	}
299
300#define mul(r,a,w,c) { \
301	BN_ULLONG t; \
302	t=(BN_ULLONG)w * (a) + (c); \
303	(r)= Lw(t); \
304	(c)= Hw(t); \
305	}
306
307#define sqr(r0,r1,a) { \
308	BN_ULLONG t; \
309	t=(BN_ULLONG)(a)*(a); \
310	(r0)=Lw(t); \
311	(r1)=Hw(t); \
312	}
313
314#elif defined(BN_UMULT_LOHI)
315#define mul_add(r,a,w,c) {		\
316	BN_ULONG high,low,ret,tmp=(a);	\
317	ret =  (r);			\
318	BN_UMULT_LOHI(low,high,w,tmp);	\
319	ret += (c);			\
320	(c) =  (ret<(c))?1:0;		\
321	(c) += high;			\
322	ret += low;			\
323	(c) += (ret<low)?1:0;		\
324	(r) =  ret;			\
325	}
326
327#define mul(r,a,w,c)	{		\
328	BN_ULONG high,low,ret,ta=(a);	\
329	BN_UMULT_LOHI(low,high,w,ta);	\
330	ret =  low + (c);		\
331	(c) =  high;			\
332	(c) += (ret<low)?1:0;		\
333	(r) =  ret;			\
334	}
335
336#define sqr(r0,r1,a)	{		\
337	BN_ULONG tmp=(a);		\
338	BN_UMULT_LOHI(r0,r1,tmp,tmp);	\
339	}
340
341#elif defined(BN_UMULT_HIGH)
342#define mul_add(r,a,w,c) {		\
343	BN_ULONG high,low,ret,tmp=(a);	\
344	ret =  (r);			\
345	high=  BN_UMULT_HIGH(w,tmp);	\
346	ret += (c);			\
347	low =  (w) * tmp;		\
348	(c) =  (ret<(c))?1:0;		\
349	(c) += high;			\
350	ret += low;			\
351	(c) += (ret<low)?1:0;		\
352	(r) =  ret;			\
353	}
354
355#define mul(r,a,w,c)	{		\
356	BN_ULONG high,low,ret,ta=(a);	\
357	low =  (w) * ta;		\
358	high=  BN_UMULT_HIGH(w,ta);	\
359	ret =  low + (c);		\
360	(c) =  high;			\
361	(c) += (ret<low)?1:0;		\
362	(r) =  ret;			\
363	}
364
365#define sqr(r0,r1,a)	{		\
366	BN_ULONG tmp=(a);		\
367	(r0) = tmp * tmp;		\
368	(r1) = BN_UMULT_HIGH(tmp,tmp);	\
369	}
370
371#else
372/*************************************************************
373 * No long long type
374 */
375
376#define LBITS(a)	((a)&BN_MASK2l)
377#define HBITS(a)	(((a)>>BN_BITS4)&BN_MASK2l)
378#define	L2HBITS(a)	(((a)<<BN_BITS4)&BN_MASK2)
379
380#define LLBITS(a)	((a)&BN_MASKl)
381#define LHBITS(a)	(((a)>>BN_BITS2)&BN_MASKl)
382#define	LL2HBITS(a)	((BN_ULLONG)((a)&BN_MASKl)<<BN_BITS2)
383
384#define mul64(l,h,bl,bh) \
385	{ \
386	BN_ULONG m,m1,lt,ht; \
387 \
388	lt=l; \
389	ht=h; \
390	m =(bh)*(lt); \
391	lt=(bl)*(lt); \
392	m1=(bl)*(ht); \
393	ht =(bh)*(ht); \
394	m=(m+m1)&BN_MASK2; if (m < m1) ht+=L2HBITS((BN_ULONG)1); \
395	ht+=HBITS(m); \
396	m1=L2HBITS(m); \
397	lt=(lt+m1)&BN_MASK2; if (lt < m1) ht++; \
398	(l)=lt; \
399	(h)=ht; \
400	}
401
402#define sqr64(lo,ho,in) \
403	{ \
404	BN_ULONG l,h,m; \
405 \
406	h=(in); \
407	l=LBITS(h); \
408	h=HBITS(h); \
409	m =(l)*(h); \
410	l*=l; \
411	h*=h; \
412	h+=(m&BN_MASK2h1)>>(BN_BITS4-1); \
413	m =(m&BN_MASK2l)<<(BN_BITS4+1); \
414	l=(l+m)&BN_MASK2; if (l < m) h++; \
415	(lo)=l; \
416	(ho)=h; \
417	}
418
419#define mul_add(r,a,bl,bh,c) { \
420	BN_ULONG l,h; \
421 \
422	h= (a); \
423	l=LBITS(h); \
424	h=HBITS(h); \
425	mul64(l,h,(bl),(bh)); \
426 \
427	/* non-multiply part */ \
428	l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
429	(c)=(r); \
430	l=(l+(c))&BN_MASK2; if (l < (c)) h++; \
431	(c)=h&BN_MASK2; \
432	(r)=l; \
433	}
434
435#define mul(r,a,bl,bh,c) { \
436	BN_ULONG l,h; \
437 \
438	h= (a); \
439	l=LBITS(h); \
440	h=HBITS(h); \
441	mul64(l,h,(bl),(bh)); \
442 \
443	/* non-multiply part */ \
444	l+=(c); if ((l&BN_MASK2) < (c)) h++; \
445	(c)=h&BN_MASK2; \
446	(r)=l&BN_MASK2; \
447	}
448#endif /* !BN_LLONG */
449
450void bn_mul_normal2(BN_ULONG *r,BN_ULONG *a,int na,BN_ULONG *b,int nb);
451void bn_mul_comba8_b(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b);
452void bn_mul_comba4_b(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b);
453void bn_sqr_normal2(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp);
454void bn_sqr_comba8_b(BN_ULONG *r,const BN_ULONG *a);
455void bn_sqr_comba4_b(BN_ULONG *r,const BN_ULONG *a);
456int bn_cmp_words2(const BN_ULONG *a,const BN_ULONG *b,int n);
457int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b,
458	int cl, int dl);
459void bn_mul_recursive2(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b,int n2,
460	int dna,int dnb,BN_ULONG *t);
461void bn_mul_part_recursive2(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b,
462	int n,int tna,int tnb,BN_ULONG *t);
463void bn_sqr_recursive2(BN_ULONG *r,const BN_ULONG *a, int n2, BN_ULONG *t);
464void bn_mul_low_normal(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b, int n);
465void bn_mul_low_recursive(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b,int n2,
466	BN_ULONG *t);
467void bn_mul_high2(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b,BN_ULONG *l,int n2,
468	BN_ULONG *t);
469BN_ULONG bn_add_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
470	int cl, int dl);
471BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
472	int cl, int dl);
473
474#ifdef  __cplusplus
475}
476#endif
477
478#endif
479