1/* $Id: bitops.h,v 1.1.1.1 2008/10/15 03:29:18 james26_jang Exp $
2 * bitops.h: Bit string operations on the V9.
3 *
4 * Copyright 1996, 1997 David S. Miller (davem@caip.rutgers.edu)
5 */
6
7#ifndef _SPARC64_BITOPS_H
8#define _SPARC64_BITOPS_H
9
10#include <asm/byteorder.h>
11
12extern long ___test_and_set_bit(unsigned long nr, volatile void *addr);
13extern long ___test_and_clear_bit(unsigned long nr, volatile void *addr);
14extern long ___test_and_change_bit(unsigned long nr, volatile void *addr);
15
16#define test_and_set_bit(nr,addr)	({___test_and_set_bit(nr,addr)!=0;})
17#define test_and_clear_bit(nr,addr)	({___test_and_clear_bit(nr,addr)!=0;})
18#define test_and_change_bit(nr,addr)	({___test_and_change_bit(nr,addr)!=0;})
19#define set_bit(nr,addr)		((void)___test_and_set_bit(nr,addr))
20#define clear_bit(nr,addr)		((void)___test_and_clear_bit(nr,addr))
21#define change_bit(nr,addr)		((void)___test_and_change_bit(nr,addr))
22
23/* "non-atomic" versions... */
24#define __set_bit(X,Y)					\
25do {	unsigned long __nr = (X);			\
26	long *__m = ((long *) (Y)) + (__nr >> 6);	\
27	*__m |= (1UL << (__nr & 63));			\
28} while (0)
29#define __clear_bit(X,Y)				\
30do {	unsigned long __nr = (X);			\
31	long *__m = ((long *) (Y)) + (__nr >> 6);	\
32	*__m &= ~(1UL << (__nr & 63));			\
33} while (0)
34#define __change_bit(X,Y)				\
35do {	unsigned long __nr = (X);			\
36	long *__m = ((long *) (Y)) + (__nr >> 6);	\
37	*__m ^= (1UL << (__nr & 63));			\
38} while (0)
39#define __test_and_set_bit(X,Y)				\
40({	unsigned long __nr = (X);			\
41	long *__m = ((long *) (Y)) + (__nr >> 6);	\
42	long __old = *__m;				\
43	long __mask = (1UL << (__nr & 63));		\
44	*__m = (__old | __mask);			\
45	((__old & __mask) != 0);			\
46})
47#define __test_and_clear_bit(X,Y)			\
48({	unsigned long __nr = (X);			\
49	long *__m = ((long *) (Y)) + (__nr >> 6);	\
50	long __old = *__m;				\
51	long __mask = (1UL << (__nr & 63));		\
52	*__m = (__old & ~__mask);			\
53	((__old & __mask) != 0);			\
54})
55#define __test_and_change_bit(X,Y)			\
56({	unsigned long __nr = (X);			\
57	long *__m = ((long *) (Y)) + (__nr >> 6);	\
58	long __old = *__m;				\
59	long __mask = (1UL << (__nr & 63));		\
60	*__m = (__old ^ __mask);			\
61	((__old & __mask) != 0);			\
62})
63
64#define smp_mb__before_clear_bit()	do { } while(0)
65#define smp_mb__after_clear_bit()	do { } while(0)
66
67extern __inline__ int test_bit(int nr, __const__ void *addr)
68{
69	return (1UL & (((__const__ long *) addr)[nr >> 6] >> (nr & 63))) != 0UL;
70}
71
72/* The easy/cheese version for now. */
73extern __inline__ unsigned long ffz(unsigned long word)
74{
75	unsigned long result;
76
77#ifdef ULTRA_HAS_POPULATION_COUNT	    /* Thanks for nothing Sun... */
78	__asm__ __volatile__(
79"	brz,pn	%0, 1f\n"
80"	 neg	%0, %%g1\n"
81"	xnor	%0, %%g1, %%g2\n"
82"	popc	%%g2, %0\n"
83"1:	" : "=&r" (result)
84	  : "0" (word)
85	  : "g1", "g2");
86#else
87	result = 0;
88	while(word & 1) {
89		result++;
90		word >>= 1;
91	}
92#endif
93	return result;
94}
95
96#ifdef __KERNEL__
97
98/*
99 * ffs: find first bit set. This is defined the same way as
100 * the libc and compiler builtin ffs routines, therefore
101 * differs in spirit from the above ffz (man ffs).
102 */
103
104#define ffs(x) generic_ffs(x)
105
106/*
107 * hweightN: returns the hamming weight (i.e. the number
108 * of bits set) of a N-bit word
109 */
110
111#ifdef ULTRA_HAS_POPULATION_COUNT
112
113extern __inline__ unsigned int hweight32(unsigned int w)
114{
115	unsigned int res;
116
117	__asm__ ("popc %1,%0" : "=r" (res) : "r" (w & 0xffffffff));
118	return res;
119}
120
121extern __inline__ unsigned int hweight16(unsigned int w)
122{
123	unsigned int res;
124
125	__asm__ ("popc %1,%0" : "=r" (res) : "r" (w & 0xffff));
126	return res;
127}
128
129extern __inline__ unsigned int hweight8(unsigned int w)
130{
131	unsigned int res;
132
133	__asm__ ("popc %1,%0" : "=r" (res) : "r" (w & 0xff));
134	return res;
135}
136
137#else
138
139#define hweight32(x) generic_hweight32(x)
140#define hweight16(x) generic_hweight16(x)
141#define hweight8(x) generic_hweight8(x)
142
143#endif
144#endif /* __KERNEL__ */
145
146/* find_next_zero_bit() finds the first zero bit in a bit string of length
147 * 'size' bits, starting the search at bit 'offset'. This is largely based
148 * on Linus's ALPHA routines, which are pretty portable BTW.
149 */
150
151extern __inline__ unsigned long find_next_zero_bit(void *addr, unsigned long size, unsigned long offset)
152{
153	unsigned long *p = ((unsigned long *) addr) + (offset >> 6);
154	unsigned long result = offset & ~63UL;
155	unsigned long tmp;
156
157	if (offset >= size)
158		return size;
159	size -= result;
160	offset &= 63UL;
161	if (offset) {
162		tmp = *(p++);
163		tmp |= ~0UL >> (64-offset);
164		if (size < 64)
165			goto found_first;
166		if (~tmp)
167			goto found_middle;
168		size -= 64;
169		result += 64;
170	}
171	while (size & ~63UL) {
172		if (~(tmp = *(p++)))
173			goto found_middle;
174		result += 64;
175		size -= 64;
176	}
177	if (!size)
178		return result;
179	tmp = *p;
180
181found_first:
182	tmp |= ~0UL << size;
183	if (tmp == ~0UL)        /* Are any bits zero? */
184		return result + size; /* Nope. */
185found_middle:
186	return result + ffz(tmp);
187}
188
189#define find_first_zero_bit(addr, size) \
190        find_next_zero_bit((addr), (size), 0)
191
192extern long ___test_and_set_le_bit(int nr, volatile void *addr);
193extern long ___test_and_clear_le_bit(int nr, volatile void *addr);
194
195#define test_and_set_le_bit(nr,addr)	({___test_and_set_le_bit(nr,addr)!=0;})
196#define test_and_clear_le_bit(nr,addr)	({___test_and_clear_le_bit(nr,addr)!=0;})
197#define set_le_bit(nr,addr)		((void)___test_and_set_le_bit(nr,addr))
198#define clear_le_bit(nr,addr)		((void)___test_and_clear_le_bit(nr,addr))
199
200extern __inline__ int test_le_bit(int nr, __const__ void * addr)
201{
202	int			mask;
203	__const__ unsigned char	*ADDR = (__const__ unsigned char *) addr;
204
205	ADDR += nr >> 3;
206	mask = 1 << (nr & 0x07);
207	return ((mask & *ADDR) != 0);
208}
209
210#define find_first_zero_le_bit(addr, size) \
211        find_next_zero_le_bit((addr), (size), 0)
212
213extern __inline__ unsigned long find_next_zero_le_bit(void *addr, unsigned long size, unsigned long offset)
214{
215	unsigned long *p = ((unsigned long *) addr) + (offset >> 6);
216	unsigned long result = offset & ~63UL;
217	unsigned long tmp;
218
219	if (offset >= size)
220		return size;
221	size -= result;
222	offset &= 63UL;
223	if(offset) {
224		tmp = __swab64p(p++);
225		tmp |= (~0UL >> (64-offset));
226		if(size < 64)
227			goto found_first;
228		if(~tmp)
229			goto found_middle;
230		size -= 64;
231		result += 64;
232	}
233	while(size & ~63) {
234		if(~(tmp = __swab64p(p++)))
235			goto found_middle;
236		result += 64;
237		size -= 64;
238	}
239	if(!size)
240		return result;
241	tmp = __swab64p(p);
242found_first:
243	tmp |= (~0UL << size);
244	if (tmp == ~0UL)        /* Are any bits zero? */
245		return result + size; /* Nope. */
246found_middle:
247	return result + ffz(tmp);
248}
249
250#ifdef __KERNEL__
251
252#define ext2_set_bit			test_and_set_le_bit
253#define ext2_clear_bit			test_and_clear_le_bit
254#define ext2_test_bit  			test_le_bit
255#define ext2_find_first_zero_bit	find_first_zero_le_bit
256#define ext2_find_next_zero_bit		find_next_zero_le_bit
257
258/* Bitmap functions for the minix filesystem.  */
259#define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr)
260#define minix_set_bit(nr,addr) set_bit(nr,addr)
261#define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr)
262#define minix_test_bit(nr,addr) test_bit(nr,addr)
263#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
264
265#endif /* __KERNEL__ */
266
267#endif /* defined(_SPARC64_BITOPS_H) */
268