1#ifndef __ASM_SH_PGTABLE_H
2#define __ASM_SH_PGTABLE_H
3
4/* Copyright (C) 1999 Niibe Yutaka */
5
6#include <asm/pgtable-2level.h>
7
8/*
9 * This file contains the functions and defines necessary to modify and use
10 * the SuperH page table tree.
11 */
12#ifndef __ASSEMBLY__
13#include <asm/processor.h>
14#include <asm/addrspace.h>
15#include <linux/threads.h>
16
17extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
18extern void paging_init(void);
19
20#if defined(__sh3__)
21/* Cache flushing:
22 *
23 *  - flush_cache_all() flushes entire cache
24 *  - flush_cache_mm(mm) flushes the specified mm context's cache lines
25 *  - flush_cache_page(mm, vmaddr) flushes a single page
26 *  - flush_cache_range(mm, start, end) flushes a range of pages
27 *
28 *  - flush_dcache_page(pg) flushes(wback&invalidates) a page for dcache
29 *  - flush_page_to_ram(page) write back kernel page to ram
30 *  - flush_icache_range(start, end) flushes(invalidates) a range for icache
31 *  - flush_icache_page(vma, pg) flushes(invalidates) a page for icache
32 *
33 *  Caches are indexed (effectively) by physical address on SH-3, so
34 *  we don't need them.
35 */
36#define flush_cache_all()			do { } while (0)
37#define flush_cache_mm(mm)			do { } while (0)
38#define flush_cache_range(mm, start, end)	do { } while (0)
39#define flush_cache_page(vma, vmaddr)		do { } while (0)
40#define flush_page_to_ram(page)			do { } while (0)
41#define flush_dcache_page(page)			do { } while (0)
42#define flush_icache_range(start, end)		do { } while (0)
43#define flush_icache_page(vma,pg)		do { } while (0)
44#define flush_icache_user_range(vma,pg,adr,len)	do { } while (0)
45#define flush_cache_sigtramp(vaddr)		do { } while (0)
46
47#define p3_cache_init()				do { } while (0)
48
49#elif defined(__SH4__)
50/*
51 *  Caches are broken on SH-4, so we need them.
52 */
53
54/* Page is 4K, OC size is 16K, there are four lines. */
55#define CACHE_ALIAS 0x00003000
56
57extern void flush_cache_all(void);
58extern void flush_cache_mm(struct mm_struct *mm);
59extern void flush_cache_range(struct mm_struct *mm, unsigned long start,
60			      unsigned long end);
61extern void flush_cache_page(struct vm_area_struct *vma, unsigned long addr);
62extern void flush_dcache_page(struct page *pg);
63extern void flush_icache_range(unsigned long start, unsigned long end);
64extern void flush_cache_sigtramp(unsigned long addr);
65
66#define flush_page_to_ram(page)			do { } while (0)
67#define flush_icache_page(vma,pg)		do { } while (0)
68#define flush_icache_user_range(vma,pg,adr,len)	do { } while (0)
69
70/* Initialization of P3 area for copy_user_page */
71extern void p3_cache_init(void);
72
73#define PG_mapped	PG_arch_1
74
75/* We provide our own get_unmapped_area to avoid cache alias issue */
76#define HAVE_ARCH_UNMAPPED_AREA
77#endif
78
79/* Flush (write-back only) a region (smaller than a page) */
80extern void __flush_wback_region(void *start, int size);
81/* Flush (write-back & invalidate) a region (smaller than a page) */
82extern void __flush_purge_region(void *start, int size);
83/* Flush (invalidate only) a region (smaller than a page) */
84extern void __flush_invalidate_region(void *start, int size);
85
86
87/*
88 * Basically we have the same two-level (which is the logical three level
89 * Linux page table layout folded) page tables as the i386.
90 */
91
92/*
93 * ZERO_PAGE is a global shared page that is always zero: used
94 * for zero-mapped memory areas etc..
95 */
96extern unsigned long empty_zero_page[1024];
97#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
98
99#endif /* !__ASSEMBLY__ */
100
101#define __beep() asm("")
102
103#define PMD_SIZE	(1UL << PMD_SHIFT)
104#define PMD_MASK	(~(PMD_SIZE-1))
105#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
106#define PGDIR_MASK	(~(PGDIR_SIZE-1))
107
108#define USER_PTRS_PER_PGD	(TASK_SIZE/PGDIR_SIZE)
109#define FIRST_USER_PGD_NR	0
110
111#define PTE_PHYS_MASK	0x1ffff000
112
113#ifndef __ASSEMBLY__
114/*
115 * First 1MB map is used by fixed purpose.
116 * Currently only 4-enty (16kB) is used (see arch/sh/mm/cache.c)
117 */
118#define VMALLOC_START	(P3SEG+0x00100000)
119#define VMALLOC_VMADDR(x) ((unsigned long)(x))
120#define VMALLOC_END	P4SEG
121
122/*			0x001     WT-bit on SH-4, 0 on SH-3 */
123#define _PAGE_HW_SHARED	0x002  /* SH-bit  : page is shared among processes */
124#define _PAGE_DIRTY	0x004  /* D-bit   : page changed */
125#define _PAGE_CACHABLE	0x008  /* C-bit   : cachable */
126/*			0x010     SZ0-bit : Size of page */
127#define _PAGE_RW	0x020
128#define _PAGE_USER	0x040
129/*			0x080     SZ1-bit : Size of page (on SH-4) */
130#define _PAGE_PRESENT	0x100  /* V-bit   : page is valid */
131#define _PAGE_PROTNONE	0x200  /* software: if not present  */
132#define _PAGE_ACCESSED 	0x400  /* software: page referenced */
133#define _PAGE_U0_SHARED 0x800  /* software: page is shared in user space */
134
135
136/* software: moves to PTEA.TC (Timing Control) */
137#define _PAGE_PCC_AREA5	0x00000000	/* use BSC registers for area5 */
138#define _PAGE_PCC_AREA6	0x80000000	/* use BSC registers for area6 */
139
140/* software: moves to PTEA.SA[2:0] (Space Attributes) */
141#define _PAGE_PCC_IODYN 0x00000001	/* IO space, dynamically sized bus */
142#define _PAGE_PCC_IO8	0x20000000	/* IO space, 8 bit bus */
143#define _PAGE_PCC_IO16	0x20000001	/* IO space, 16 bit bus */
144#define _PAGE_PCC_COM8	0x40000000	/* Common Memory space, 8 bit bus */
145#define _PAGE_PCC_COM16	0x40000001	/* Common Memory space, 16 bit bus */
146#define _PAGE_PCC_ATR8	0x60000000	/* Attribute Memory space, 8 bit bus */
147#define _PAGE_PCC_ATR16	0x60000001	/* Attribute Memory space, 6 bit bus */
148
149
150/* Mask which drop software flags */
151#if defined(__sh3__)
152/*
153 * MMU on SH-3 has bug on SH-bit: We can't use it if MMUCR.IX=1.
154 * Work around: Just drop SH-bit.
155 */
156#define _PAGE_FLAGS_HARDWARE_MASK	0x1ffff1fc
157#else
158#define _PAGE_FLAGS_HARDWARE_MASK	0x1ffff1fe
159#endif
160/* Hardware flags: SZ=1 (4k-byte) */
161#define _PAGE_FLAGS_HARD		0x00000010
162
163#define _PAGE_SHARED	_PAGE_U0_SHARED
164
165#define _PAGE_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
166#define _KERNPG_TABLE	(_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
167#define _PAGE_CHG_MASK	(PTE_MASK | _PAGE_ACCESSED | _PAGE_CACHABLE | _PAGE_DIRTY | _PAGE_SHARED)
168
169#define PAGE_NONE	__pgprot(_PAGE_PROTNONE | _PAGE_CACHABLE |_PAGE_ACCESSED | _PAGE_FLAGS_HARD)
170#define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_CACHABLE |_PAGE_ACCESSED | _PAGE_SHARED | _PAGE_FLAGS_HARD)
171#define PAGE_COPY	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_FLAGS_HARD)
172#define PAGE_READONLY	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_FLAGS_HARD)
173#define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_CACHABLE | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_HW_SHARED | _PAGE_FLAGS_HARD)
174#define PAGE_KERNEL_RO	__pgprot(_PAGE_PRESENT | _PAGE_CACHABLE | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_HW_SHARED | _PAGE_FLAGS_HARD)
175#define PAGE_KERNEL_PCC(slot, type) \
176			__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_FLAGS_HARD | (slot ? _PAGE_PCC_AREA5 : _PAGE_PCC_AREA6) | (type))
177
178/*
179 * As i386 and MIPS, SuperH can't do page protection for execute, and
180 * considers that the same as a read.  Also, write permissions imply
181 * read permissions. This is the closest we can get..
182 */
183
184#define __P000	PAGE_NONE
185#define __P001	PAGE_READONLY
186#define __P010	PAGE_COPY
187#define __P011	PAGE_COPY
188#define __P100	PAGE_READONLY
189#define __P101	PAGE_READONLY
190#define __P110	PAGE_COPY
191#define __P111	PAGE_COPY
192
193#define __S000	PAGE_NONE
194#define __S001	PAGE_READONLY
195#define __S010	PAGE_SHARED
196#define __S011	PAGE_SHARED
197#define __S100	PAGE_READONLY
198#define __S101	PAGE_READONLY
199#define __S110	PAGE_SHARED
200#define __S111	PAGE_SHARED
201
202#define pte_none(x)	(!pte_val(x))
203#define pte_present(x)	(pte_val(x) & (_PAGE_PRESENT | _PAGE_PROTNONE))
204#define pte_clear(xp)	do { set_pte(xp, __pte(0)); } while (0)
205
206#define pmd_none(x)	(!pmd_val(x))
207#define pmd_present(x)	(pmd_val(x) & _PAGE_PRESENT)
208#define pmd_clear(xp)	do { set_pmd(xp, __pmd(0)); } while (0)
209#define	pmd_bad(x)	((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
210
211#define pages_to_mb(x)	((x) >> (20-PAGE_SHIFT))
212#define pte_page(x) 	phys_to_page(pte_val(x)&PTE_PHYS_MASK)
213
214/*
215 * The following only work if pte_present() is true.
216 * Undefined behaviour if not..
217 */
218static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
219static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
220static inline int pte_dirty(pte_t pte){ return pte_val(pte) & _PAGE_DIRTY; }
221static inline int pte_young(pte_t pte){ return pte_val(pte) & _PAGE_ACCESSED; }
222static inline int pte_write(pte_t pte){ return pte_val(pte) & _PAGE_RW; }
223static inline int pte_not_present(pte_t pte){ return !(pte_val(pte) & _PAGE_PRESENT); }
224
225static inline pte_t pte_rdprotect(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_USER)); return pte; }
226static inline pte_t pte_exprotect(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_USER)); return pte; }
227static inline pte_t pte_mkclean(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_DIRTY)); return pte; }
228static inline pte_t pte_mkold(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_ACCESSED)); return pte; }
229static inline pte_t pte_wrprotect(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_RW)); return pte; }
230static inline pte_t pte_mkread(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) | _PAGE_USER)); return pte; }
231static inline pte_t pte_mkexec(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) | _PAGE_USER)); return pte; }
232static inline pte_t pte_mkdirty(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) | _PAGE_DIRTY)); return pte; }
233static inline pte_t pte_mkyoung(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) | _PAGE_ACCESSED)); return pte; }
234static inline pte_t pte_mkwrite(pte_t pte)	{ set_pte(&pte, __pte(pte_val(pte) | _PAGE_RW)); return pte; }
235
236/*
237 * Conversion functions: convert a page and protection to a page entry,
238 * and a page entry and page directory to the page they refer to.
239 *
240 * extern pte_t mk_pte(struct page *page, pgprot_t pgprot)
241 */
242#define mk_pte(page,pgprot)						\
243({	pte_t __pte;							\
244									\
245	set_pte(&__pte, __pte(PHYSADDR(page_address(page))		\
246				+pgprot_val(pgprot)));			\
247	__pte;								\
248})
249
250/* This takes a physical page address that is used by the remapping functions */
251#define mk_pte_phys(physpage, pgprot) \
252({ pte_t __pte; set_pte(&__pte, __pte(physpage + pgprot_val(pgprot))); __pte; })
253
254static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
255{ set_pte(&pte, __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot))); return pte; }
256
257#define page_pte(page) page_pte_prot(page, __pgprot(0))
258
259#define pmd_page(pmd) \
260((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
261
262/* to find an entry in a page-table-directory. */
263#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
264#define __pgd_offset(address) pgd_index(address)
265#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
266
267/* to find an entry in a kernel page-table-directory */
268#define pgd_offset_k(address) pgd_offset(&init_mm, address)
269
270/* Find an entry in the third-level page table.. */
271#define __pte_offset(address) \
272		((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
273#define pte_offset(dir, address) ((pte_t *) pmd_page(*(dir)) + \
274			__pte_offset(address))
275
276extern void update_mmu_cache(struct vm_area_struct * vma,
277			     unsigned long address, pte_t pte);
278
279/* Encode and de-code a swap entry */
280/*
281 * NOTE: We should set ZEROs at the position of _PAGE_PRESENT
282 *       and _PAGE_PROTONOE bits
283 */
284#define SWP_TYPE(x)		((x).val & 0xff)
285#define SWP_OFFSET(x)		((x).val >> 10)
286#define SWP_ENTRY(type, offset)	((swp_entry_t) { (type) | ((offset) << 10) })
287#define pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
288#define swp_entry_to_pte(x)	((pte_t) { (x).val })
289
290/*
291 * Routines for update of PTE
292 *
293 * We just can use generic implementation, as SuperH has no SMP feature.
294 * (We needed atomic implementation for SMP)
295 *
296 */
297
298#define pte_same(A,B)	(pte_val(A) == pte_val(B))
299
300#endif /* !__ASSEMBLY__ */
301
302/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
303#define PageSkip(page)		(0)
304#define kern_addr_valid(addr)	(1)
305
306#define io_remap_page_range remap_page_range
307
308/*
309 * No page table caches to initialise
310 */
311#define pgtable_cache_init()	do { } while (0)
312
313#endif /* __ASM_SH_PAGE_H */
314