1/*
2 *  linux/fs/ext3/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 *  from
10 *
11 *  linux/fs/minix/inode.c
12 *
13 *  Copyright (C) 1991, 1992  Linus Torvalds
14 *
15 *  Goal-directed block allocation by Stephen Tweedie
16 * 	(sct@redhat.com), 1993, 1998
17 *  Big-endian to little-endian byte-swapping/bitmaps by
18 *        David S. Miller (davem@caip.rutgers.edu), 1995
19 *  64-bit file support on 64-bit platforms by Jakub Jelinek
20 * 	(jj@sunsite.ms.mff.cuni.cz)
21 *
22 *  Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
23 */
24
25#include <linux/fs.h>
26#include <linux/sched.h>
27#include <linux/ext3_jbd.h>
28#include <linux/jbd.h>
29#include <linux/locks.h>
30#include <linux/smp_lock.h>
31#include <linux/highuid.h>
32#include <linux/quotaops.h>
33#include <linux/module.h>
34
35/*
36 * SEARCH_FROM_ZERO forces each block allocation to search from the start
37 * of the filesystem.  This is to force rapid reallocation of recently-freed
38 * blocks.  The file fragmentation is horrendous.
39 */
40#undef SEARCH_FROM_ZERO
41
42/* The ext3 forget function must perform a revoke if we are freeing data
43 * which has been journaled.  Metadata (eg. indirect blocks) must be
44 * revoked in all cases.
45 *
46 * "bh" may be NULL: a metadata block may have been freed from memory
47 * but there may still be a record of it in the journal, and that record
48 * still needs to be revoked.
49 */
50
51static int ext3_forget(handle_t *handle, int is_metadata,
52		       struct inode *inode, struct buffer_head *bh,
53		       int blocknr)
54{
55	int err;
56
57	BUFFER_TRACE(bh, "enter");
58
59	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
60		  "data mode %lx\n",
61		  bh, is_metadata, inode->i_mode,
62		  test_opt(inode->i_sb, DATA_FLAGS));
63
64	/* Never use the revoke function if we are doing full data
65	 * journaling: there is no need to, and a V1 superblock won't
66	 * support it.  Otherwise, only skip the revoke on un-journaled
67	 * data blocks. */
68
69	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
70	    (!is_metadata && !ext3_should_journal_data(inode))) {
71		if (bh) {
72			BUFFER_TRACE(bh, "call journal_forget");
73			ext3_journal_forget(handle, bh);
74		}
75		return 0;
76	}
77
78	/*
79	 * data!=journal && (is_metadata || should_journal_data(inode))
80	 */
81	BUFFER_TRACE(bh, "call ext3_journal_revoke");
82	err = ext3_journal_revoke(handle, blocknr, bh);
83	if (err)
84		ext3_abort(inode->i_sb, __FUNCTION__,
85			   "error %d when attempting revoke", err);
86	BUFFER_TRACE(bh, "exit");
87	return err;
88}
89
90/*
91 * Truncate transactions can be complex and absolutely huge.  So we need to
92 * be able to restart the transaction at a conventient checkpoint to make
93 * sure we don't overflow the journal.
94 *
95 * start_transaction gets us a new handle for a truncate transaction,
96 * and extend_transaction tries to extend the existing one a bit.  If
97 * extend fails, we need to propagate the failure up and restart the
98 * transaction in the top-level truncate loop. --sct
99 */
100
101static handle_t *start_transaction(struct inode *inode)
102{
103	long needed;
104	handle_t *result;
105
106	needed = inode->i_blocks;
107	if (needed > EXT3_MAX_TRANS_DATA)
108		needed = EXT3_MAX_TRANS_DATA;
109
110	result = ext3_journal_start(inode, EXT3_DATA_TRANS_BLOCKS + needed);
111	if (!IS_ERR(result))
112		return result;
113
114	ext3_std_error(inode->i_sb, PTR_ERR(result));
115	return result;
116}
117
118/*
119 * Try to extend this transaction for the purposes of truncation.
120 *
121 * Returns 0 if we managed to create more room.  If we can't create more
122 * room, and the transaction must be restarted we return 1.
123 */
124static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
125{
126	long needed;
127
128	if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
129		return 0;
130	needed = inode->i_blocks;
131	if (needed > EXT3_MAX_TRANS_DATA)
132		needed = EXT3_MAX_TRANS_DATA;
133	if (!ext3_journal_extend(handle, EXT3_RESERVE_TRANS_BLOCKS + needed))
134		return 0;
135	return 1;
136}
137
138/*
139 * Restart the transaction associated with *handle.  This does a commit,
140 * so before we call here everything must be consistently dirtied against
141 * this transaction.
142 */
143static int ext3_journal_test_restart(handle_t *handle, struct inode *inode)
144{
145	long needed = inode->i_blocks;
146	if (needed > EXT3_MAX_TRANS_DATA)
147		needed = EXT3_MAX_TRANS_DATA;
148	jbd_debug(2, "restarting handle %p\n", handle);
149	return ext3_journal_restart(handle, EXT3_DATA_TRANS_BLOCKS + needed);
150}
151
152/*
153 * Called at each iput()
154 */
155void ext3_put_inode (struct inode * inode)
156{
157	ext3_discard_prealloc (inode);
158}
159
160/*
161 * Called at the last iput() if i_nlink is zero.
162 */
163void ext3_delete_inode (struct inode * inode)
164{
165	handle_t *handle;
166
167	if (is_bad_inode(inode) ||
168	    inode->i_ino == EXT3_ACL_IDX_INO ||
169	    inode->i_ino == EXT3_ACL_DATA_INO)
170		goto no_delete;
171
172	lock_kernel();
173	handle = start_transaction(inode);
174	if (IS_ERR(handle)) {
175		/* If we're going to skip the normal cleanup, we still
176		 * need to make sure that the in-core orphan linked list
177		 * is properly cleaned up. */
178		ext3_orphan_del(NULL, inode);
179
180		ext3_std_error(inode->i_sb, PTR_ERR(handle));
181		unlock_kernel();
182		goto no_delete;
183	}
184
185	if (IS_SYNC(inode))
186		handle->h_sync = 1;
187	inode->i_size = 0;
188	if (inode->i_blocks)
189		ext3_truncate(inode);
190	/*
191	 * Kill off the orphan record which ext3_truncate created.
192	 * AKPM: I think this can be inside the above `if'.
193	 * Note that ext3_orphan_del() has to be able to cope with the
194	 * deletion of a non-existent orphan - this is because we don't
195	 * know if ext3_truncate() actually created an orphan record.
196	 * (Well, we could do this if we need to, but heck - it works)
197	 */
198	ext3_orphan_del(handle, inode);
199	inode->u.ext3_i.i_dtime	= CURRENT_TIME;
200
201	/*
202	 * One subtle ordering requirement: if anything has gone wrong
203	 * (transaction abort, IO errors, whatever), then we can still
204	 * do these next steps (the fs will already have been marked as
205	 * having errors), but we can't free the inode if the mark_dirty
206	 * fails.
207	 */
208	if (ext3_mark_inode_dirty(handle, inode))
209		/* If that failed, just do the required in-core inode clear. */
210		clear_inode(inode);
211	else
212		ext3_free_inode(handle, inode);
213	ext3_journal_stop(handle, inode);
214	unlock_kernel();
215	return;
216no_delete:
217	clear_inode(inode);	/* We must guarantee clearing of inode... */
218}
219
220void ext3_discard_prealloc (struct inode * inode)
221{
222#ifdef EXT3_PREALLOCATE
223	lock_kernel();
224	/* Writer: ->i_prealloc* */
225	if (inode->u.ext3_i.i_prealloc_count) {
226		unsigned short total = inode->u.ext3_i.i_prealloc_count;
227		unsigned long block = inode->u.ext3_i.i_prealloc_block;
228		inode->u.ext3_i.i_prealloc_count = 0;
229		inode->u.ext3_i.i_prealloc_block = 0;
230		/* Writer: end */
231		ext3_free_blocks (inode, block, total);
232	}
233	unlock_kernel();
234#endif
235}
236
237static int ext3_alloc_block (handle_t *handle,
238			struct inode * inode, unsigned long goal, int *err)
239{
240#ifdef EXT3FS_DEBUG
241	static unsigned long alloc_hits = 0, alloc_attempts = 0;
242#endif
243	unsigned long result;
244
245#ifdef EXT3_PREALLOCATE
246	/* Writer: ->i_prealloc* */
247	if (inode->u.ext3_i.i_prealloc_count &&
248	    (goal == inode->u.ext3_i.i_prealloc_block ||
249	     goal + 1 == inode->u.ext3_i.i_prealloc_block))
250	{
251		result = inode->u.ext3_i.i_prealloc_block++;
252		inode->u.ext3_i.i_prealloc_count--;
253		/* Writer: end */
254		ext3_debug ("preallocation hit (%lu/%lu).\n",
255			    ++alloc_hits, ++alloc_attempts);
256	} else {
257		ext3_discard_prealloc (inode);
258		ext3_debug ("preallocation miss (%lu/%lu).\n",
259			    alloc_hits, ++alloc_attempts);
260		if (S_ISREG(inode->i_mode))
261			result = ext3_new_block (inode, goal,
262				 &inode->u.ext3_i.i_prealloc_count,
263				 &inode->u.ext3_i.i_prealloc_block, err);
264		else
265			result = ext3_new_block (inode, goal, 0, 0, err);
266		/*
267		 * AKPM: this is somewhat sticky.  I'm not surprised it was
268		 * disabled in 2.2's ext3.  Need to integrate b_committed_data
269		 * guarding with preallocation, if indeed preallocation is
270		 * effective.
271		 */
272	}
273#else
274	result = ext3_new_block (handle, inode, goal, 0, 0, err);
275#endif
276	return result;
277}
278
279
280typedef struct {
281	u32	*p;
282	u32	key;
283	struct buffer_head *bh;
284} Indirect;
285
286static inline void add_chain(Indirect *p, struct buffer_head *bh, u32 *v)
287{
288	p->key = *(p->p = v);
289	p->bh = bh;
290}
291
292static inline int verify_chain(Indirect *from, Indirect *to)
293{
294	while (from <= to && from->key == *from->p)
295		from++;
296	return (from > to);
297}
298
299/**
300 *	ext3_block_to_path - parse the block number into array of offsets
301 *	@inode: inode in question (we are only interested in its superblock)
302 *	@i_block: block number to be parsed
303 *	@offsets: array to store the offsets in
304 *
305 *	To store the locations of file's data ext3 uses a data structure common
306 *	for UNIX filesystems - tree of pointers anchored in the inode, with
307 *	data blocks at leaves and indirect blocks in intermediate nodes.
308 *	This function translates the block number into path in that tree -
309 *	return value is the path length and @offsets[n] is the offset of
310 *	pointer to (n+1)th node in the nth one. If @block is out of range
311 *	(negative or too large) warning is printed and zero returned.
312 *
313 *	Note: function doesn't find node addresses, so no IO is needed. All
314 *	we need to know is the capacity of indirect blocks (taken from the
315 *	inode->i_sb).
316 */
317
318/*
319 * Portability note: the last comparison (check that we fit into triple
320 * indirect block) is spelled differently, because otherwise on an
321 * architecture with 32-bit longs and 8Kb pages we might get into trouble
322 * if our filesystem had 8Kb blocks. We might use long long, but that would
323 * kill us on x86. Oh, well, at least the sign propagation does not matter -
324 * i_block would have to be negative in the very beginning, so we would not
325 * get there at all.
326 */
327
328static int ext3_block_to_path(struct inode *inode, long i_block, int offsets[4])
329{
330	int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
331	int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
332	const long direct_blocks = EXT3_NDIR_BLOCKS,
333		indirect_blocks = ptrs,
334		double_blocks = (1 << (ptrs_bits * 2));
335	int n = 0;
336
337	if (i_block < 0) {
338		ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
339	} else if (i_block < direct_blocks) {
340		offsets[n++] = i_block;
341	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
342		offsets[n++] = EXT3_IND_BLOCK;
343		offsets[n++] = i_block;
344	} else if ((i_block -= indirect_blocks) < double_blocks) {
345		offsets[n++] = EXT3_DIND_BLOCK;
346		offsets[n++] = i_block >> ptrs_bits;
347		offsets[n++] = i_block & (ptrs - 1);
348	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
349		offsets[n++] = EXT3_TIND_BLOCK;
350		offsets[n++] = i_block >> (ptrs_bits * 2);
351		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
352		offsets[n++] = i_block & (ptrs - 1);
353	} else {
354		ext3_warning (inode->i_sb, "ext3_block_to_path", "block > big");
355	}
356	return n;
357}
358
359/**
360 *	ext3_get_branch - read the chain of indirect blocks leading to data
361 *	@inode: inode in question
362 *	@depth: depth of the chain (1 - direct pointer, etc.)
363 *	@offsets: offsets of pointers in inode/indirect blocks
364 *	@chain: place to store the result
365 *	@err: here we store the error value
366 *
367 *	Function fills the array of triples <key, p, bh> and returns %NULL
368 *	if everything went OK or the pointer to the last filled triple
369 *	(incomplete one) otherwise. Upon the return chain[i].key contains
370 *	the number of (i+1)-th block in the chain (as it is stored in memory,
371 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
372 *	number (it points into struct inode for i==0 and into the bh->b_data
373 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
374 *	block for i>0 and NULL for i==0. In other words, it holds the block
375 *	numbers of the chain, addresses they were taken from (and where we can
376 *	verify that chain did not change) and buffer_heads hosting these
377 *	numbers.
378 *
379 *	Function stops when it stumbles upon zero pointer (absent block)
380 *		(pointer to last triple returned, *@err == 0)
381 *	or when it gets an IO error reading an indirect block
382 *		(ditto, *@err == -EIO)
383 *	or when it notices that chain had been changed while it was reading
384 *		(ditto, *@err == -EAGAIN)
385 *	or when it reads all @depth-1 indirect blocks successfully and finds
386 *	the whole chain, all way to the data (returns %NULL, *err == 0).
387 */
388static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
389				 Indirect chain[4], int *err)
390{
391	struct super_block *sb = inode->i_sb;
392	Indirect *p = chain;
393	struct buffer_head *bh;
394
395	*err = 0;
396	/* i_data is not going away, no lock needed */
397	add_chain (chain, NULL, inode->u.ext3_i.i_data + *offsets);
398	if (!p->key)
399		goto no_block;
400	while (--depth) {
401		bh = sb_bread(sb, le32_to_cpu(p->key));
402		if (!bh)
403			goto failure;
404		/* Reader: pointers */
405		if (!verify_chain(chain, p))
406			goto changed;
407		add_chain(++p, bh, (u32*)bh->b_data + *++offsets);
408		/* Reader: end */
409		if (!p->key)
410			goto no_block;
411	}
412	return NULL;
413
414changed:
415	brelse(bh);
416	*err = -EAGAIN;
417	goto no_block;
418failure:
419	*err = -EIO;
420no_block:
421	return p;
422}
423
424/**
425 *	ext3_find_near - find a place for allocation with sufficient locality
426 *	@inode: owner
427 *	@ind: descriptor of indirect block.
428 *
429 *	This function returns the prefered place for block allocation.
430 *	It is used when heuristic for sequential allocation fails.
431 *	Rules are:
432 *	  + if there is a block to the left of our position - allocate near it.
433 *	  + if pointer will live in indirect block - allocate near that block.
434 *	  + if pointer will live in inode - allocate in the same
435 *	    cylinder group.
436 *	Caller must make sure that @ind is valid and will stay that way.
437 */
438
439static inline unsigned long ext3_find_near(struct inode *inode, Indirect *ind)
440{
441	u32 *start = ind->bh ? (u32*) ind->bh->b_data : inode->u.ext3_i.i_data;
442	u32 *p;
443
444	/* Try to find previous block */
445	for (p = ind->p - 1; p >= start; p--)
446		if (*p)
447			return le32_to_cpu(*p);
448
449	/* No such thing, so let's try location of indirect block */
450	if (ind->bh)
451		return ind->bh->b_blocknr;
452
453	/*
454	 * It is going to be refered from inode itself? OK, just put it into
455	 * the same cylinder group then.
456	 */
457	return (inode->u.ext3_i.i_block_group *
458		EXT3_BLOCKS_PER_GROUP(inode->i_sb)) +
459	       le32_to_cpu(inode->i_sb->u.ext3_sb.s_es->s_first_data_block);
460}
461
462/**
463 *	ext3_find_goal - find a prefered place for allocation.
464 *	@inode: owner
465 *	@block:  block we want
466 *	@chain:  chain of indirect blocks
467 *	@partial: pointer to the last triple within a chain
468 *	@goal:	place to store the result.
469 *
470 *	Normally this function find the prefered place for block allocation,
471 *	stores it in *@goal and returns zero. If the branch had been changed
472 *	under us we return -EAGAIN.
473 */
474
475static int ext3_find_goal(struct inode *inode, long block, Indirect chain[4],
476			  Indirect *partial, unsigned long *goal)
477{
478	/* Writer: ->i_next_alloc* */
479	if (block == inode->u.ext3_i.i_next_alloc_block + 1) {
480		inode->u.ext3_i.i_next_alloc_block++;
481		inode->u.ext3_i.i_next_alloc_goal++;
482	}
483#ifdef SEARCH_FROM_ZERO
484	inode->u.ext3_i.i_next_alloc_block = 0;
485	inode->u.ext3_i.i_next_alloc_goal = 0;
486#endif
487	/* Writer: end */
488	/* Reader: pointers, ->i_next_alloc* */
489	if (verify_chain(chain, partial)) {
490		/*
491		 * try the heuristic for sequential allocation,
492		 * failing that at least try to get decent locality.
493		 */
494		if (block == inode->u.ext3_i.i_next_alloc_block)
495			*goal = inode->u.ext3_i.i_next_alloc_goal;
496		if (!*goal)
497			*goal = ext3_find_near(inode, partial);
498#ifdef SEARCH_FROM_ZERO
499		*goal = 0;
500#endif
501		return 0;
502	}
503	/* Reader: end */
504	return -EAGAIN;
505}
506
507/**
508 *	ext3_alloc_branch - allocate and set up a chain of blocks.
509 *	@inode: owner
510 *	@num: depth of the chain (number of blocks to allocate)
511 *	@offsets: offsets (in the blocks) to store the pointers to next.
512 *	@branch: place to store the chain in.
513 *
514 *	This function allocates @num blocks, zeroes out all but the last one,
515 *	links them into chain and (if we are synchronous) writes them to disk.
516 *	In other words, it prepares a branch that can be spliced onto the
517 *	inode. It stores the information about that chain in the branch[], in
518 *	the same format as ext3_get_branch() would do. We are calling it after
519 *	we had read the existing part of chain and partial points to the last
520 *	triple of that (one with zero ->key). Upon the exit we have the same
521 *	picture as after the successful ext3_get_block(), excpet that in one
522 *	place chain is disconnected - *branch->p is still zero (we did not
523 *	set the last link), but branch->key contains the number that should
524 *	be placed into *branch->p to fill that gap.
525 *
526 *	If allocation fails we free all blocks we've allocated (and forget
527 *	their buffer_heads) and return the error value the from failed
528 *	ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
529 *	as described above and return 0.
530 */
531
532static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
533			     int num,
534			     unsigned long goal,
535			     int *offsets,
536			     Indirect *branch)
537{
538	int blocksize = inode->i_sb->s_blocksize;
539	int n = 0, keys = 0;
540	int err = 0;
541	int i;
542	int parent = ext3_alloc_block(handle, inode, goal, &err);
543
544	branch[0].key = cpu_to_le32(parent);
545	if (parent) {
546		for (n = 1; n < num; n++) {
547			struct buffer_head *bh;
548			/* Allocate the next block */
549			int nr = ext3_alloc_block(handle, inode, parent, &err);
550			if (!nr)
551				break;
552			branch[n].key = cpu_to_le32(nr);
553			keys = n+1;
554
555			/*
556			 * Get buffer_head for parent block, zero it out
557			 * and set the pointer to new one, then send
558			 * parent to disk.
559			 */
560			bh = sb_getblk(inode->i_sb, parent);
561			branch[n].bh = bh;
562			lock_buffer(bh);
563			BUFFER_TRACE(bh, "call get_create_access");
564			err = ext3_journal_get_create_access(handle, bh);
565			if (err) {
566				unlock_buffer(bh);
567				brelse(bh);
568				break;
569			}
570
571			memset(bh->b_data, 0, blocksize);
572			branch[n].p = (u32*) bh->b_data + offsets[n];
573			*branch[n].p = branch[n].key;
574			BUFFER_TRACE(bh, "marking uptodate");
575			mark_buffer_uptodate(bh, 1);
576			unlock_buffer(bh);
577
578			BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
579			err = ext3_journal_dirty_metadata(handle, bh);
580			if (err)
581				break;
582
583			parent = nr;
584		}
585	}
586	if (n == num)
587		return 0;
588
589	/* Allocation failed, free what we already allocated */
590	for (i = 1; i < keys; i++) {
591		BUFFER_TRACE(branch[i].bh, "call journal_forget");
592		ext3_journal_forget(handle, branch[i].bh);
593	}
594	for (i = 0; i < keys; i++)
595		ext3_free_blocks(handle, inode, le32_to_cpu(branch[i].key), 1);
596	return err;
597}
598
599/**
600 *	ext3_splice_branch - splice the allocated branch onto inode.
601 *	@inode: owner
602 *	@block: (logical) number of block we are adding
603 *	@chain: chain of indirect blocks (with a missing link - see
604 *		ext3_alloc_branch)
605 *	@where: location of missing link
606 *	@num:   number of blocks we are adding
607 *
608 *	This function verifies that chain (up to the missing link) had not
609 *	changed, fills the missing link and does all housekeeping needed in
610 *	inode (->i_blocks, etc.). In case of success we end up with the full
611 *	chain to new block and return 0. Otherwise (== chain had been changed)
612 *	we free the new blocks (forgetting their buffer_heads, indeed) and
613 *	return -EAGAIN.
614 */
615
616static int ext3_splice_branch(handle_t *handle, struct inode *inode, long block,
617			      Indirect chain[4], Indirect *where, int num)
618{
619	int i;
620	int err = 0;
621
622	/*
623	 * If we're splicing into a [td]indirect block (as opposed to the
624	 * inode) then we need to get write access to the [td]indirect block
625	 * before the splice.
626	 */
627	if (where->bh) {
628		BUFFER_TRACE(where->bh, "get_write_access");
629		err = ext3_journal_get_write_access(handle, where->bh);
630		if (err)
631			goto err_out;
632	}
633	/* Verify that place we are splicing to is still there and vacant */
634
635	/* Writer: pointers, ->i_next_alloc* */
636	if (!verify_chain(chain, where-1) || *where->p)
637		/* Writer: end */
638		goto changed;
639
640	/* That's it */
641
642	*where->p = where->key;
643	inode->u.ext3_i.i_next_alloc_block = block;
644	inode->u.ext3_i.i_next_alloc_goal = le32_to_cpu(where[num-1].key);
645#ifdef SEARCH_FROM_ZERO
646	inode->u.ext3_i.i_next_alloc_block = 0;
647	inode->u.ext3_i.i_next_alloc_goal = 0;
648#endif
649	/* Writer: end */
650
651	/* We are done with atomic stuff, now do the rest of housekeeping */
652
653	inode->i_ctime = CURRENT_TIME;
654	ext3_mark_inode_dirty(handle, inode);
655
656	/* had we spliced it onto indirect block? */
657	if (where->bh) {
658		/*
659		 * akpm: If we spliced it onto an indirect block, we haven't
660		 * altered the inode.  Note however that if it is being spliced
661		 * onto an indirect block at the very end of the file (the
662		 * file is growing) then we *will* alter the inode to reflect
663		 * the new i_size.  But that is not done here - it is done in
664		 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
665		 */
666		jbd_debug(5, "splicing indirect only\n");
667		BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
668		err = ext3_journal_dirty_metadata(handle, where->bh);
669		if (err)
670			goto err_out;
671	} else {
672		/*
673		 * OK, we spliced it into the inode itself on a direct block.
674		 * Inode was dirtied above.
675		 */
676		jbd_debug(5, "splicing direct\n");
677	}
678	return err;
679
680changed:
681	/*
682	 * AKPM: if where[i].bh isn't part of the current updating
683	 * transaction then we explode nastily.  Test this code path.
684	 */
685	jbd_debug(1, "the chain changed: try again\n");
686	err = -EAGAIN;
687
688err_out:
689	for (i = 1; i < num; i++) {
690		BUFFER_TRACE(where[i].bh, "call journal_forget");
691		ext3_journal_forget(handle, where[i].bh);
692	}
693	/* For the normal collision cleanup case, we free up the blocks.
694	 * On genuine filesystem errors we don't even think about doing
695	 * that. */
696	if (err == -EAGAIN)
697		for (i = 0; i < num; i++)
698			ext3_free_blocks(handle, inode,
699					 le32_to_cpu(where[i].key), 1);
700	return err;
701}
702
703/*
704 * Allocation strategy is simple: if we have to allocate something, we will
705 * have to go the whole way to leaf. So let's do it before attaching anything
706 * to tree, set linkage between the newborn blocks, write them if sync is
707 * required, recheck the path, free and repeat if check fails, otherwise
708 * set the last missing link (that will protect us from any truncate-generated
709 * removals - all blocks on the path are immune now) and possibly force the
710 * write on the parent block.
711 * That has a nice additional property: no special recovery from the failed
712 * allocations is needed - we simply release blocks and do not touch anything
713 * reachable from inode.
714 *
715 * akpm: `handle' can be NULL if create == 0.
716 *
717 * The BKL may not be held on entry here.  Be sure to take it early.
718 */
719
720static int ext3_get_block_handle(handle_t *handle, struct inode *inode,
721				 long iblock,
722				 struct buffer_head *bh_result, int create)
723{
724	int err = -EIO;
725	int offsets[4];
726	Indirect chain[4];
727	Indirect *partial;
728	unsigned long goal;
729	int left;
730	int depth = ext3_block_to_path(inode, iblock, offsets);
731	loff_t new_size;
732
733	J_ASSERT(handle != NULL || create == 0);
734
735	if (depth == 0)
736		goto out;
737
738	lock_kernel();
739reread:
740	partial = ext3_get_branch(inode, depth, offsets, chain, &err);
741
742	/* Simplest case - block found, no allocation needed */
743	if (!partial) {
744		bh_result->b_state &= ~(1UL << BH_New);
745got_it:
746		bh_result->b_dev = inode->i_dev;
747		bh_result->b_blocknr = le32_to_cpu(chain[depth-1].key);
748		bh_result->b_state |= (1UL << BH_Mapped);
749		/* Clean up and exit */
750		partial = chain+depth-1; /* the whole chain */
751		goto cleanup;
752	}
753
754	/* Next simple case - plain lookup or failed read of indirect block */
755	if (!create || err == -EIO) {
756cleanup:
757		while (partial > chain) {
758			BUFFER_TRACE(partial->bh, "call brelse");
759			brelse(partial->bh);
760			partial--;
761		}
762		BUFFER_TRACE(bh_result, "returned");
763		unlock_kernel();
764out:
765		return err;
766	}
767
768	/*
769	 * Indirect block might be removed by truncate while we were
770	 * reading it. Handling of that case (forget what we've got and
771	 * reread) is taken out of the main path.
772	 */
773	if (err == -EAGAIN)
774		goto changed;
775
776	if (ext3_find_goal(inode, iblock, chain, partial, &goal) < 0)
777		goto changed;
778
779	left = (chain + depth) - partial;
780
781	/*
782	 * Block out ext3_truncate while we alter the tree
783	 */
784	down_read(&inode->u.ext3_i.truncate_sem);
785	err = ext3_alloc_branch(handle, inode, left, goal,
786					offsets+(partial-chain), partial);
787
788	/* The ext3_splice_branch call will free and forget any buffers
789	 * on the new chain if there is a failure, but that risks using
790	 * up transaction credits, especially for bitmaps where the
791	 * credits cannot be returned.  Can we handle this somehow?  We
792	 * may need to return -EAGAIN upwards in the worst case.  --sct */
793	if (!err)
794		err = ext3_splice_branch(handle, inode, iblock, chain,
795					 partial, left);
796	up_read(&inode->u.ext3_i.truncate_sem);
797	if (err == -EAGAIN)
798		goto changed;
799	if (err)
800		goto cleanup;
801
802	new_size = inode->i_size;
803	/*
804	 * This is not racy against ext3_truncate's modification of i_disksize
805	 * because VM/VFS ensures that the file cannot be extended while
806	 * truncate is in progress.  It is racy between multiple parallel
807	 * instances of get_block, but we have the BKL.
808	 */
809	if (new_size > inode->u.ext3_i.i_disksize)
810		inode->u.ext3_i.i_disksize = new_size;
811
812	bh_result->b_state |= (1UL << BH_New);
813	goto got_it;
814
815changed:
816	while (partial > chain) {
817		jbd_debug(1, "buffer chain changed, retrying\n");
818		BUFFER_TRACE(partial->bh, "brelsing");
819		brelse(partial->bh);
820		partial--;
821	}
822	goto reread;
823}
824
825/*
826 * The BKL is not held on entry here.
827 */
828static int ext3_get_block(struct inode *inode, long iblock,
829			struct buffer_head *bh_result, int create)
830{
831	handle_t *handle = 0;
832	int ret;
833
834	if (create) {
835		handle = ext3_journal_current_handle();
836		J_ASSERT(handle != 0);
837	}
838	ret = ext3_get_block_handle(handle, inode, iblock, bh_result, create);
839	return ret;
840}
841
842/*
843 * `handle' can be NULL if create is zero
844 */
845struct buffer_head *ext3_getblk(handle_t *handle, struct inode * inode,
846				long block, int create, int * errp)
847{
848	struct buffer_head dummy;
849	int fatal = 0, err;
850
851	J_ASSERT(handle != NULL || create == 0);
852
853	dummy.b_state = 0;
854	dummy.b_blocknr = -1000;
855	buffer_trace_init(&dummy.b_history);
856	*errp = ext3_get_block_handle(handle, inode, block, &dummy, create);
857	if (!*errp && buffer_mapped(&dummy)) {
858		struct buffer_head *bh;
859		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
860		if (buffer_new(&dummy)) {
861			J_ASSERT(create != 0);
862			J_ASSERT(handle != 0);
863
864			/* Now that we do not always journal data, we
865			   should keep in mind whether this should
866			   always journal the new buffer as metadata.
867			   For now, regular file writes use
868			   ext3_get_block instead, so it's not a
869			   problem. */
870			lock_kernel();
871			lock_buffer(bh);
872			BUFFER_TRACE(bh, "call get_create_access");
873			fatal = ext3_journal_get_create_access(handle, bh);
874			if (!fatal) {
875				memset(bh->b_data, 0,
876				       inode->i_sb->s_blocksize);
877				mark_buffer_uptodate(bh, 1);
878			}
879			unlock_buffer(bh);
880			BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
881			err = ext3_journal_dirty_metadata(handle, bh);
882			if (!fatal) fatal = err;
883			unlock_kernel();
884		} else {
885			BUFFER_TRACE(bh, "not a new buffer");
886		}
887		if (fatal) {
888			*errp = fatal;
889			brelse(bh);
890			bh = NULL;
891		}
892		return bh;
893	}
894	return NULL;
895}
896
897struct buffer_head *ext3_bread(handle_t *handle, struct inode * inode,
898			       int block, int create, int *err)
899{
900	struct buffer_head * bh;
901	int prev_blocks;
902
903	prev_blocks = inode->i_blocks;
904
905	bh = ext3_getblk (handle, inode, block, create, err);
906	if (!bh)
907		return bh;
908#ifdef EXT3_PREALLOCATE
909	/*
910	 * If the inode has grown, and this is a directory, then use a few
911	 * more of the preallocated blocks to keep directory fragmentation
912	 * down.  The preallocated blocks are guaranteed to be contiguous.
913	 */
914	if (create &&
915	    S_ISDIR(inode->i_mode) &&
916	    inode->i_blocks > prev_blocks &&
917	    EXT3_HAS_COMPAT_FEATURE(inode->i_sb,
918				    EXT3_FEATURE_COMPAT_DIR_PREALLOC)) {
919		int i;
920		struct buffer_head *tmp_bh;
921
922		for (i = 1;
923		     inode->u.ext3_i.i_prealloc_count &&
924		     i < EXT3_SB(inode->i_sb)->s_es->s_prealloc_dir_blocks;
925		     i++) {
926			/*
927			 * ext3_getblk will zero out the contents of the
928			 * directory for us
929			 */
930			tmp_bh = ext3_getblk(handle, inode,
931						block+i, create, err);
932			if (!tmp_bh) {
933				brelse (bh);
934				return 0;
935			}
936			brelse (tmp_bh);
937		}
938	}
939#endif
940	if (buffer_uptodate(bh))
941		return bh;
942	ll_rw_block (READ, 1, &bh);
943	wait_on_buffer (bh);
944	if (buffer_uptodate(bh))
945		return bh;
946	brelse (bh);
947	*err = -EIO;
948	return NULL;
949}
950
951static int walk_page_buffers(	handle_t *handle,
952				struct inode *inode,
953				struct buffer_head *head,
954				unsigned from,
955				unsigned to,
956				int *partial,
957				int (*fn)(	handle_t *handle,
958						struct inode *inode,
959						struct buffer_head *bh))
960{
961	struct buffer_head *bh;
962	unsigned block_start, block_end;
963	unsigned blocksize = head->b_size;
964	int err, ret = 0;
965
966	for (	bh = head, block_start = 0;
967		ret == 0 && (bh != head || !block_start);
968	    	block_start = block_end, bh = bh->b_this_page)
969	{
970		block_end = block_start + blocksize;
971		if (block_end <= from || block_start >= to) {
972			if (partial && !buffer_uptodate(bh))
973				*partial = 1;
974			continue;
975		}
976		err = (*fn)(handle, inode, bh);
977		if (!ret)
978			ret = err;
979	}
980	return ret;
981}
982
983/*
984 * To preserve ordering, it is essential that the hole instantiation and
985 * the data write be encapsulated in a single transaction.  We cannot
986 * close off a transaction and start a new one between the ext3_get_block()
987 * and the commit_write().  So doing the journal_start at the start of
988 * prepare_write() is the right place.
989 *
990 * Also, this function can nest inside ext3_writepage() ->
991 * block_write_full_page(). In that case, we *know* that ext3_writepage()
992 * has generated enough buffer credits to do the whole page.  So we won't
993 * block on the journal in that case, which is good, because the caller may
994 * be PF_MEMALLOC.
995 *
996 * By accident, ext3 can be reentered when a transaction is open via
997 * quota file writes.  If we were to commit the transaction while thus
998 * reentered, there can be a deadlock - we would be holding a quota
999 * lock, and the commit would never complete if another thread had a
1000 * transaction open and was blocking on the quota lock - a ranking
1001 * violation.
1002 *
1003 * So what we do is to rely on the fact that journal_stop/journal_start
1004 * will _not_ run commit under these circumstances because handle->h_ref
1005 * is elevated.  We'll still have enough credits for the tiny quotafile
1006 * write.
1007 */
1008
1009static int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1010				       struct buffer_head *bh)
1011{
1012	return ext3_journal_get_write_access(handle, bh);
1013}
1014
1015static int ext3_prepare_write(struct file *file, struct page *page,
1016			      unsigned from, unsigned to)
1017{
1018	struct inode *inode = page->mapping->host;
1019	int ret, needed_blocks = ext3_writepage_trans_blocks(inode);
1020	handle_t *handle;
1021
1022	lock_kernel();
1023	handle = ext3_journal_start(inode, needed_blocks);
1024	if (IS_ERR(handle)) {
1025		ret = PTR_ERR(handle);
1026		goto out;
1027	}
1028	unlock_kernel();
1029	ret = block_prepare_write(page, from, to, ext3_get_block);
1030	lock_kernel();
1031	if (ret != 0)
1032		goto prepare_write_failed;
1033
1034	if (ext3_should_journal_data(inode)) {
1035		ret = walk_page_buffers(handle, inode, page->buffers,
1036				from, to, NULL, do_journal_get_write_access);
1037		if (ret) {
1038			/*
1039			 * We're going to fail this prepare_write(),
1040			 * so commit_write() will not be called.
1041			 * We need to undo block_prepare_write()'s kmap().
1042			 * AKPM: Do we need to clear PageUptodate?  I don't
1043			 * think so.
1044			 */
1045			kunmap(page);
1046		}
1047	}
1048prepare_write_failed:
1049	if (ret)
1050		ext3_journal_stop(handle, inode);
1051out:
1052	unlock_kernel();
1053	return ret;
1054}
1055
1056static int journal_dirty_sync_data(handle_t *handle, struct inode *inode,
1057				   struct buffer_head *bh)
1058{
1059	int ret = ext3_journal_dirty_data(handle, bh, 0);
1060	buffer_insert_inode_data_queue(bh, inode);
1061	return ret;
1062}
1063
1064/*
1065 * For ext3_writepage().  We also brelse() the buffer to account for
1066 * the bget() which ext3_writepage() performs.
1067 */
1068static int journal_dirty_async_data(handle_t *handle, struct inode *inode,
1069				    struct buffer_head *bh)
1070{
1071	int ret = ext3_journal_dirty_data(handle, bh, 1);
1072	buffer_insert_inode_data_queue(bh, inode);
1073	__brelse(bh);
1074	return ret;
1075}
1076
1077/* For commit_write() in data=journal mode */
1078static int commit_write_fn(handle_t *handle, struct inode *inode,
1079			   struct buffer_head *bh)
1080{
1081	set_bit(BH_Uptodate, &bh->b_state);
1082	return ext3_journal_dirty_metadata(handle, bh);
1083}
1084
1085/*
1086 * We need to pick up the new inode size which generic_commit_write gave us
1087 * `file' can be NULL - eg, when called from block_symlink().
1088 *
1089 * ext3 inode->i_dirty_buffers policy:  If we're journalling data we
1090 * definitely don't want them to appear on the inode at all - instead
1091 * we need to manage them at the JBD layer and we need to intercept
1092 * the relevant sync operations and translate them into journal operations.
1093 *
1094 * If we're not journalling data then we can just leave the buffers
1095 * on ->i_dirty_buffers.  If someone writes them out for us then thanks.
1096 * Otherwise we'll do it in commit, if we're using ordered data.
1097 */
1098
1099static int ext3_commit_write(struct file *file, struct page *page,
1100			     unsigned from, unsigned to)
1101{
1102	handle_t *handle = ext3_journal_current_handle();
1103	struct inode *inode = page->mapping->host;
1104	int ret = 0, ret2;
1105
1106	lock_kernel();
1107	if (ext3_should_journal_data(inode)) {
1108		/*
1109		 * Here we duplicate the generic_commit_write() functionality
1110		 */
1111		int partial = 0;
1112		loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1113
1114		ret = walk_page_buffers(handle, inode, page->buffers,
1115			from, to, &partial, commit_write_fn);
1116		if (!partial)
1117			SetPageUptodate(page);
1118		kunmap(page);
1119		if (pos > inode->i_size)
1120			inode->i_size = pos;
1121		EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1122	} else {
1123		if (ext3_should_order_data(inode)) {
1124			ret = walk_page_buffers(handle, inode, page->buffers,
1125				from, to, NULL, journal_dirty_sync_data);
1126		}
1127		/* Be careful here if generic_commit_write becomes a
1128		 * required invocation after block_prepare_write. */
1129		if (ret == 0) {
1130			ret = generic_commit_write(file, page, from, to);
1131		} else {
1132			/*
1133			 * block_prepare_write() was called, but we're not
1134			 * going to call generic_commit_write().  So we
1135			 * need to perform generic_commit_write()'s kunmap
1136			 * by hand.
1137			 */
1138			kunmap(page);
1139		}
1140	}
1141	if (inode->i_size > inode->u.ext3_i.i_disksize) {
1142		inode->u.ext3_i.i_disksize = inode->i_size;
1143		ret2 = ext3_mark_inode_dirty(handle, inode);
1144		if (!ret)
1145			ret = ret2;
1146	}
1147	ret2 = ext3_journal_stop(handle, inode);
1148	unlock_kernel();
1149	if (!ret)
1150		ret = ret2;
1151	return ret;
1152}
1153
1154/*
1155 * bmap() is special.  It gets used by applications such as lilo and by
1156 * the swapper to find the on-disk block of a specific piece of data.
1157 *
1158 * Naturally, this is dangerous if the block concerned is still in the
1159 * journal.  If somebody makes a swapfile on an ext3 data-journaling
1160 * filesystem and enables swap, then they may get a nasty shock when the
1161 * data getting swapped to that swapfile suddenly gets overwritten by
1162 * the original zero's written out previously to the journal and
1163 * awaiting writeback in the kernel's buffer cache.
1164 *
1165 * So, if we see any bmap calls here on a modified, data-journaled file,
1166 * take extra steps to flush any blocks which might be in the cache.
1167 */
1168static int ext3_bmap(struct address_space *mapping, long block)
1169{
1170	struct inode *inode = mapping->host;
1171	journal_t *journal;
1172	int err;
1173
1174	if (EXT3_I(inode)->i_state & EXT3_STATE_JDATA) {
1175		/*
1176		 * This is a REALLY heavyweight approach, but the use of
1177		 * bmap on dirty files is expected to be extremely rare:
1178		 * only if we run lilo or swapon on a freshly made file
1179		 * do we expect this to happen.
1180		 *
1181		 * (bmap requires CAP_SYS_RAWIO so this does not
1182		 * represent an unprivileged user DOS attack --- we'd be
1183		 * in trouble if mortal users could trigger this path at
1184		 * will.)
1185		 *
1186		 * NB. EXT3_STATE_JDATA is not set on files other than
1187		 * regular files.  If somebody wants to bmap a directory
1188		 * or symlink and gets confused because the buffer
1189		 * hasn't yet been flushed to disk, they deserve
1190		 * everything they get.
1191		 */
1192
1193		EXT3_I(inode)->i_state &= ~EXT3_STATE_JDATA;
1194		journal = EXT3_JOURNAL(inode);
1195		journal_lock_updates(journal);
1196		err = journal_flush(journal);
1197		journal_unlock_updates(journal);
1198
1199		if (err)
1200			return 0;
1201	}
1202
1203	return generic_block_bmap(mapping,block,ext3_get_block);
1204}
1205
1206static int bget_one(handle_t *handle, struct inode *inode,
1207		    struct buffer_head *bh)
1208{
1209	atomic_inc(&bh->b_count);
1210	return 0;
1211}
1212
1213static int ext3_writepage(struct page *page)
1214{
1215	struct inode *inode = page->mapping->host;
1216	struct buffer_head *page_buffers;
1217	handle_t *handle = NULL;
1218	int ret = 0, err;
1219	int needed;
1220	int order_data;
1221
1222	J_ASSERT(PageLocked(page));
1223
1224	/*
1225	 * We give up here if we're reentered, because it might be
1226	 * for a different filesystem.  One *could* look for a
1227	 * nested transaction opportunity.
1228	 */
1229	lock_kernel();
1230	if (ext3_journal_current_handle())
1231		goto out_fail;
1232
1233	needed = ext3_writepage_trans_blocks(inode);
1234	if (current->flags & PF_MEMALLOC)
1235		handle = ext3_journal_try_start(inode, needed);
1236	else
1237		handle = ext3_journal_start(inode, needed);
1238
1239	if (IS_ERR(handle)) {
1240		ret = PTR_ERR(handle);
1241		goto out_fail;
1242	}
1243
1244	order_data = ext3_should_order_data(inode) ||
1245			ext3_should_journal_data(inode);
1246
1247	unlock_kernel();
1248
1249	page_buffers = NULL;	/* Purely to prevent compiler warning */
1250
1251	/* bget() all the buffers */
1252	if (order_data) {
1253		if (!page->buffers)
1254			create_empty_buffers(page,
1255				inode->i_dev, inode->i_sb->s_blocksize);
1256		page_buffers = page->buffers;
1257		walk_page_buffers(handle, inode, page_buffers, 0,
1258				PAGE_CACHE_SIZE, NULL, bget_one);
1259	}
1260
1261	ret = block_write_full_page(page, ext3_get_block);
1262
1263	/*
1264	 * The page can become unlocked at any point now, and
1265	 * truncate can then come in and change things.  So we
1266	 * can't touch *page from now on.  But *page_buffers is
1267	 * safe due to elevated refcount.
1268	 */
1269
1270	handle = ext3_journal_current_handle();
1271	lock_kernel();
1272
1273	/* And attach them to the current transaction */
1274	if (order_data) {
1275		err = walk_page_buffers(handle, inode, page_buffers,
1276			0, PAGE_CACHE_SIZE, NULL, journal_dirty_async_data);
1277		if (!ret)
1278			ret = err;
1279	}
1280
1281	err = ext3_journal_stop(handle, inode);
1282	if (!ret)
1283		ret = err;
1284	unlock_kernel();
1285	return ret;
1286
1287out_fail:
1288
1289	unlock_kernel();
1290	SetPageDirty(page);
1291	UnlockPage(page);
1292	return ret;
1293}
1294
1295static int ext3_readpage(struct file *file, struct page *page)
1296{
1297	return block_read_full_page(page,ext3_get_block);
1298}
1299
1300
1301static int ext3_flushpage(struct page *page, unsigned long offset)
1302{
1303	journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1304	return journal_flushpage(journal, page, offset);
1305}
1306
1307static int ext3_releasepage(struct page *page, int wait)
1308{
1309	journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1310	return journal_try_to_free_buffers(journal, page, wait);
1311}
1312
1313
1314struct address_space_operations ext3_aops = {
1315	readpage:	ext3_readpage,		/* BKL not held.  Don't need */
1316	writepage:	ext3_writepage,		/* BKL not held.  We take it */
1317	sync_page:	block_sync_page,
1318	prepare_write:	ext3_prepare_write,	/* BKL not held.  We take it */
1319	commit_write:	ext3_commit_write,	/* BKL not held.  We take it */
1320	bmap:		ext3_bmap,		/* BKL held */
1321	flushpage:	ext3_flushpage,		/* BKL not held.  Don't need */
1322	releasepage:	ext3_releasepage,	/* BKL not held.  Don't need */
1323};
1324
1325/*
1326 * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1327 * up to the end of the block which corresponds to `from'.
1328 * This required during truncate. We need to physically zero the tail end
1329 * of that block so it doesn't yield old data if the file is later grown.
1330 */
1331static int ext3_block_truncate_page(handle_t *handle,
1332		struct address_space *mapping, loff_t from)
1333{
1334	unsigned long index = from >> PAGE_CACHE_SHIFT;
1335	unsigned offset = from & (PAGE_CACHE_SIZE-1);
1336	unsigned blocksize, iblock, length, pos;
1337	struct inode *inode = mapping->host;
1338	struct page *page;
1339	struct buffer_head *bh;
1340	int err;
1341
1342	blocksize = inode->i_sb->s_blocksize;
1343	length = offset & (blocksize - 1);
1344
1345	/* Block boundary? Nothing to do */
1346	if (!length)
1347		return 0;
1348
1349	length = blocksize - length;
1350	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1351
1352	page = grab_cache_page(mapping, index);
1353	err = -ENOMEM;
1354	if (!page)
1355		goto out;
1356
1357	if (!page->buffers)
1358		create_empty_buffers(page, inode->i_dev, blocksize);
1359
1360	/* Find the buffer that contains "offset" */
1361	bh = page->buffers;
1362	pos = blocksize;
1363	while (offset >= pos) {
1364		bh = bh->b_this_page;
1365		iblock++;
1366		pos += blocksize;
1367	}
1368
1369	err = 0;
1370	if (!buffer_mapped(bh)) {
1371		/* Hole? Nothing to do */
1372		if (buffer_uptodate(bh))
1373			goto unlock;
1374		ext3_get_block(inode, iblock, bh, 0);
1375		/* Still unmapped? Nothing to do */
1376		if (!buffer_mapped(bh))
1377			goto unlock;
1378	}
1379
1380	/* Ok, it's mapped. Make sure it's up-to-date */
1381	if (Page_Uptodate(page))
1382		set_bit(BH_Uptodate, &bh->b_state);
1383
1384	if (!buffer_uptodate(bh)) {
1385		err = -EIO;
1386		ll_rw_block(READ, 1, &bh);
1387		wait_on_buffer(bh);
1388		/* Uhhuh. Read error. Complain and punt. */
1389		if (!buffer_uptodate(bh))
1390			goto unlock;
1391	}
1392
1393	if (ext3_should_journal_data(inode)) {
1394		BUFFER_TRACE(bh, "get write access");
1395		err = ext3_journal_get_write_access(handle, bh);
1396		if (err)
1397			goto unlock;
1398	}
1399
1400	memset(kmap(page) + offset, 0, length);
1401	flush_dcache_page(page);
1402	kunmap(page);
1403
1404	BUFFER_TRACE(bh, "zeroed end of block");
1405
1406	err = 0;
1407	if (ext3_should_journal_data(inode)) {
1408		err = ext3_journal_dirty_metadata(handle, bh);
1409	} else {
1410		if (ext3_should_order_data(inode))
1411			err = ext3_journal_dirty_data(handle, bh, 0);
1412		__mark_buffer_dirty(bh);
1413	}
1414
1415unlock:
1416	UnlockPage(page);
1417	page_cache_release(page);
1418out:
1419	return err;
1420}
1421
1422/*
1423 * Probably it should be a library function... search for first non-zero word
1424 * or memcmp with zero_page, whatever is better for particular architecture.
1425 * Linus?
1426 */
1427static inline int all_zeroes(u32 *p, u32 *q)
1428{
1429	while (p < q)
1430		if (*p++)
1431			return 0;
1432	return 1;
1433}
1434
1435/**
1436 *	ext3_find_shared - find the indirect blocks for partial truncation.
1437 *	@inode:	  inode in question
1438 *	@depth:	  depth of the affected branch
1439 *	@offsets: offsets of pointers in that branch (see ext3_block_to_path)
1440 *	@chain:	  place to store the pointers to partial indirect blocks
1441 *	@top:	  place to the (detached) top of branch
1442 *
1443 *	This is a helper function used by ext3_truncate().
1444 *
1445 *	When we do truncate() we may have to clean the ends of several
1446 *	indirect blocks but leave the blocks themselves alive. Block is
1447 *	partially truncated if some data below the new i_size is refered
1448 *	from it (and it is on the path to the first completely truncated
1449 *	data block, indeed).  We have to free the top of that path along
1450 *	with everything to the right of the path. Since no allocation
1451 *	past the truncation point is possible until ext3_truncate()
1452 *	finishes, we may safely do the latter, but top of branch may
1453 *	require special attention - pageout below the truncation point
1454 *	might try to populate it.
1455 *
1456 *	We atomically detach the top of branch from the tree, store the
1457 *	block number of its root in *@top, pointers to buffer_heads of
1458 *	partially truncated blocks - in @chain[].bh and pointers to
1459 *	their last elements that should not be removed - in
1460 *	@chain[].p. Return value is the pointer to last filled element
1461 *	of @chain.
1462 *
1463 *	The work left to caller to do the actual freeing of subtrees:
1464 *		a) free the subtree starting from *@top
1465 *		b) free the subtrees whose roots are stored in
1466 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
1467 *		c) free the subtrees growing from the inode past the @chain[0].
1468 *			(no partially truncated stuff there).  */
1469
1470static Indirect *ext3_find_shared(struct inode *inode,
1471				int depth,
1472				int offsets[4],
1473				Indirect chain[4],
1474				u32 *top)
1475{
1476	Indirect *partial, *p;
1477	int k, err;
1478
1479	*top = 0;
1480	/* Make k index the deepest non-null offest + 1 */
1481	for (k = depth; k > 1 && !offsets[k-1]; k--)
1482		;
1483	partial = ext3_get_branch(inode, k, offsets, chain, &err);
1484	/* Writer: pointers */
1485	if (!partial)
1486		partial = chain + k-1;
1487	/*
1488	 * If the branch acquired continuation since we've looked at it -
1489	 * fine, it should all survive and (new) top doesn't belong to us.
1490	 */
1491	if (!partial->key && *partial->p)
1492		/* Writer: end */
1493		goto no_top;
1494	for (p=partial; p>chain && all_zeroes((u32*)p->bh->b_data,p->p); p--)
1495		;
1496	/*
1497	 * OK, we've found the last block that must survive. The rest of our
1498	 * branch should be detached before unlocking. However, if that rest
1499	 * of branch is all ours and does not grow immediately from the inode
1500	 * it's easier to cheat and just decrement partial->p.
1501	 */
1502	if (p == chain + k - 1 && p > chain) {
1503		p->p--;
1504	} else {
1505		*top = *p->p;
1506		/* Nope, don't do this in ext3.  Must leave the tree intact */
1507	}
1508	/* Writer: end */
1509
1510	while(partial > p)
1511	{
1512		brelse(partial->bh);
1513		partial--;
1514	}
1515no_top:
1516	return partial;
1517}
1518
1519/*
1520 * Zero a number of block pointers in either an inode or an indirect block.
1521 * If we restart the transaction we must again get write access to the
1522 * indirect block for further modification.
1523 *
1524 * We release `count' blocks on disk, but (last - first) may be greater
1525 * than `count' because there can be holes in there.
1526 */
1527static void
1528ext3_clear_blocks(handle_t *handle, struct inode *inode, struct buffer_head *bh,
1529		unsigned long block_to_free, unsigned long count,
1530		u32 *first, u32 *last)
1531{
1532	u32 *p;
1533	if (try_to_extend_transaction(handle, inode)) {
1534		if (bh) {
1535			BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1536			ext3_journal_dirty_metadata(handle, bh);
1537		}
1538		ext3_mark_inode_dirty(handle, inode);
1539		ext3_journal_test_restart(handle, inode);
1540		if (bh) {
1541			BUFFER_TRACE(bh, "retaking write access");
1542			ext3_journal_get_write_access(handle, bh);
1543		}
1544	}
1545
1546	/*
1547	 * Any buffers which are on the journal will be in memory. We find
1548	 * them on the hash table so journal_revoke() will run journal_forget()
1549	 * on them.  We've already detached each block from the file, so
1550	 * bforget() in journal_forget() should be safe.
1551	 *
1552	 * AKPM: turn on bforget in journal_forget()!!!
1553	 */
1554	for (p = first; p < last; p++) {
1555		u32 nr = le32_to_cpu(*p);
1556		if (nr) {
1557			struct buffer_head *bh;
1558
1559			*p = 0;
1560			bh = sb_get_hash_table(inode->i_sb, nr);
1561			ext3_forget(handle, 0, inode, bh, nr);
1562		}
1563	}
1564
1565	ext3_free_blocks(handle, inode, block_to_free, count);
1566}
1567
1568/**
1569 * ext3_free_data - free a list of data blocks
1570 * @handle:	handle for this transaction
1571 * @inode:	inode we are dealing with
1572 * @this_bh:	indirect buffer_head which contains *@first and *@last
1573 * @first:	array of block numbers
1574 * @last:	points immediately past the end of array
1575 *
1576 * We are freeing all blocks refered from that array (numbers are stored as
1577 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
1578 *
1579 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
1580 * blocks are contiguous then releasing them at one time will only affect one
1581 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
1582 * actually use a lot of journal space.
1583 *
1584 * @this_bh will be %NULL if @first and @last point into the inode's direct
1585 * block pointers.
1586 */
1587static void ext3_free_data(handle_t *handle, struct inode *inode,
1588			   struct buffer_head *this_bh, u32 *first, u32 *last)
1589{
1590	unsigned long block_to_free = 0;    /* Starting block # of a run */
1591	unsigned long count = 0;	    /* Number of blocks in the run */
1592	u32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
1593					       corresponding to
1594					       block_to_free */
1595	unsigned long nr;		    /* Current block # */
1596	u32 *p;				    /* Pointer into inode/ind
1597					       for current block */
1598	int err;
1599
1600	if (this_bh) {				/* For indirect block */
1601		BUFFER_TRACE(this_bh, "get_write_access");
1602		err = ext3_journal_get_write_access(handle, this_bh);
1603		/* Important: if we can't update the indirect pointers
1604		 * to the blocks, we can't free them. */
1605		if (err)
1606			return;
1607	}
1608
1609	for (p = first; p < last; p++) {
1610		nr = le32_to_cpu(*p);
1611		if (nr) {
1612			/* accumulate blocks to free if they're contiguous */
1613			if (count == 0) {
1614				block_to_free = nr;
1615				block_to_free_p = p;
1616				count = 1;
1617			} else if (nr == block_to_free + count) {
1618				count++;
1619			} else {
1620				ext3_clear_blocks(handle, inode, this_bh,
1621						  block_to_free,
1622						  count, block_to_free_p, p);
1623				block_to_free = nr;
1624				block_to_free_p = p;
1625				count = 1;
1626			}
1627		}
1628	}
1629
1630	if (count > 0)
1631		ext3_clear_blocks(handle, inode, this_bh, block_to_free,
1632				  count, block_to_free_p, p);
1633
1634	if (this_bh) {
1635		BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
1636		ext3_journal_dirty_metadata(handle, this_bh);
1637	}
1638}
1639
1640/**
1641 *	ext3_free_branches - free an array of branches
1642 *	@handle: JBD handle for this transaction
1643 *	@inode:	inode we are dealing with
1644 *	@parent_bh: the buffer_head which contains *@first and *@last
1645 *	@first:	array of block numbers
1646 *	@last:	pointer immediately past the end of array
1647 *	@depth:	depth of the branches to free
1648 *
1649 *	We are freeing all blocks refered from these branches (numbers are
1650 *	stored as little-endian 32-bit) and updating @inode->i_blocks
1651 *	appropriately.
1652 */
1653static void ext3_free_branches(handle_t *handle, struct inode *inode,
1654			       struct buffer_head *parent_bh,
1655			       u32 *first, u32 *last, int depth)
1656{
1657	unsigned long nr;
1658	u32 *p;
1659
1660	if (is_handle_aborted(handle))
1661		return;
1662
1663	if (depth--) {
1664		struct buffer_head *bh;
1665		int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
1666		p = last;
1667		while (--p >= first) {
1668			nr = le32_to_cpu(*p);
1669			if (!nr)
1670				continue;		/* A hole */
1671
1672			/* Go read the buffer for the next level down */
1673			bh = sb_bread(inode->i_sb, nr);
1674
1675			/*
1676			 * A read failure? Report error and clear slot
1677			 * (should be rare).
1678			 */
1679			if (!bh) {
1680				ext3_error(inode->i_sb, "ext3_free_branches",
1681					   "Read failure, inode=%ld, block=%ld",
1682					   inode->i_ino, nr);
1683				continue;
1684			}
1685
1686			/* This zaps the entire block.  Bottom up. */
1687			BUFFER_TRACE(bh, "free child branches");
1688			ext3_free_branches(handle, inode, bh, (u32*)bh->b_data,
1689					   (u32*)bh->b_data + addr_per_block,
1690					   depth);
1691
1692			/*
1693			 * We've probably journalled the indirect block several
1694			 * times during the truncate.  But it's no longer
1695			 * needed and we now drop it from the transaction via
1696			 * journal_revoke().
1697			 *
1698			 * That's easy if it's exclusively part of this
1699			 * transaction.  But if it's part of the committing
1700			 * transaction then journal_forget() will simply
1701			 * brelse() it.  That means that if the underlying
1702			 * block is reallocated in ext3_get_block(),
1703			 * unmap_underlying_metadata() will find this block
1704			 * and will try to get rid of it.  damn, damn.
1705			 *
1706			 * If this block has already been committed to the
1707			 * journal, a revoke record will be written.  And
1708			 * revoke records must be emitted *before* clearing
1709			 * this block's bit in the bitmaps.
1710			 */
1711			ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
1712
1713			/*
1714			 * Everything below this this pointer has been
1715			 * released.  Now let this top-of-subtree go.
1716			 *
1717			 * We want the freeing of this indirect block to be
1718			 * atomic in the journal with the updating of the
1719			 * bitmap block which owns it.  So make some room in
1720			 * the journal.
1721			 *
1722			 * We zero the parent pointer *after* freeing its
1723			 * pointee in the bitmaps, so if extend_transaction()
1724			 * for some reason fails to put the bitmap changes and
1725			 * the release into the same transaction, recovery
1726			 * will merely complain about releasing a free block,
1727			 * rather than leaking blocks.
1728			 */
1729			if (is_handle_aborted(handle))
1730				return;
1731			if (try_to_extend_transaction(handle, inode)) {
1732				ext3_mark_inode_dirty(handle, inode);
1733				ext3_journal_test_restart(handle, inode);
1734			}
1735
1736			ext3_free_blocks(handle, inode, nr, 1);
1737
1738			if (parent_bh) {
1739				/*
1740				 * The block which we have just freed is
1741				 * pointed to by an indirect block: journal it
1742				 */
1743				BUFFER_TRACE(parent_bh, "get_write_access");
1744				if (!ext3_journal_get_write_access(handle,
1745								   parent_bh)){
1746					*p = 0;
1747					BUFFER_TRACE(parent_bh,
1748					"call ext3_journal_dirty_metadata");
1749					ext3_journal_dirty_metadata(handle,
1750								    parent_bh);
1751				}
1752			}
1753		}
1754	} else {
1755		/* We have reached the bottom of the tree. */
1756		BUFFER_TRACE(parent_bh, "free data blocks");
1757		ext3_free_data(handle, inode, parent_bh, first, last);
1758	}
1759}
1760
1761/*
1762 * ext3_truncate()
1763 *
1764 * We block out ext3_get_block() block instantiations across the entire
1765 * transaction, and VFS/VM ensures that ext3_truncate() cannot run
1766 * simultaneously on behalf of the same inode.
1767 *
1768 * As we work through the truncate and commmit bits of it to the journal there
1769 * is one core, guiding principle: the file's tree must always be consistent on
1770 * disk.  We must be able to restart the truncate after a crash.
1771 *
1772 * The file's tree may be transiently inconsistent in memory (although it
1773 * probably isn't), but whenever we close off and commit a journal transaction,
1774 * the contents of (the filesystem + the journal) must be consistent and
1775 * restartable.  It's pretty simple, really: bottom up, right to left (although
1776 * left-to-right works OK too).
1777 *
1778 * Note that at recovery time, journal replay occurs *before* the restart of
1779 * truncate against the orphan inode list.
1780 *
1781 * The committed inode has the new, desired i_size (which is the same as
1782 * i_disksize in this case).  After a crash, ext3_orphan_cleanup() will see
1783 * that this inode's truncate did not complete and it will again call
1784 * ext3_truncate() to have another go.  So there will be instantiated blocks
1785 * to the right of the truncation point in a crashed ext3 filesystem.  But
1786 * that's fine - as long as they are linked from the inode, the post-crash
1787 * ext3_truncate() run will find them and release them.
1788 */
1789
1790void ext3_truncate(struct inode * inode)
1791{
1792	handle_t *handle;
1793	u32 *i_data = inode->u.ext3_i.i_data;
1794	int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
1795	int offsets[4];
1796	Indirect chain[4];
1797	Indirect *partial;
1798	int nr = 0;
1799	int n;
1800	long last_block;
1801	unsigned blocksize;
1802
1803	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1804	    S_ISLNK(inode->i_mode)))
1805		return;
1806	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1807		return;
1808
1809	ext3_discard_prealloc(inode);
1810
1811	handle = start_transaction(inode);
1812	if (IS_ERR(handle))
1813		return;		/* AKPM: return what? */
1814
1815	blocksize = inode->i_sb->s_blocksize;
1816	last_block = (inode->i_size + blocksize-1)
1817					>> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
1818
1819	ext3_block_truncate_page(handle, inode->i_mapping, inode->i_size);
1820
1821
1822	n = ext3_block_to_path(inode, last_block, offsets);
1823	if (n == 0)
1824		goto out_stop;	/* error */
1825
1826	/*
1827	 * OK.  This truncate is going to happen.  We add the inode to the
1828	 * orphan list, so that if this truncate spans multiple transactions,
1829	 * and we crash, we will resume the truncate when the filesystem
1830	 * recovers.  It also marks the inode dirty, to catch the new size.
1831	 *
1832	 * Implication: the file must always be in a sane, consistent
1833	 * truncatable state while each transaction commits.
1834	 */
1835	if (ext3_orphan_add(handle, inode))
1836		goto out_stop;
1837
1838	/*
1839	 * The orphan list entry will now protect us from any crash which
1840	 * occurs before the truncate completes, so it is now safe to propagate
1841	 * the new, shorter inode size (held for now in i_size) into the
1842	 * on-disk inode. We do this via i_disksize, which is the value which
1843	 * ext3 *really* writes onto the disk inode.
1844	 */
1845	inode->u.ext3_i.i_disksize = inode->i_size;
1846
1847	/*
1848	 * From here we block out all ext3_get_block() callers who want to
1849	 * modify the block allocation tree.
1850	 */
1851	down_write(&inode->u.ext3_i.truncate_sem);
1852
1853	if (n == 1) {		/* direct blocks */
1854		ext3_free_data(handle, inode, NULL, i_data+offsets[0],
1855			       i_data + EXT3_NDIR_BLOCKS);
1856		goto do_indirects;
1857	}
1858
1859	partial = ext3_find_shared(inode, n, offsets, chain, &nr);
1860	/* Kill the top of shared branch (not detached) */
1861	if (nr) {
1862		if (partial == chain) {
1863			/* Shared branch grows from the inode */
1864			ext3_free_branches(handle, inode, NULL,
1865					   &nr, &nr+1, (chain+n-1) - partial);
1866			*partial->p = 0;
1867			/*
1868			 * We mark the inode dirty prior to restart,
1869			 * and prior to stop.  No need for it here.
1870			 */
1871		} else {
1872			/* Shared branch grows from an indirect block */
1873			BUFFER_TRACE(partial->bh, "get_write_access");
1874			ext3_free_branches(handle, inode, partial->bh,
1875					partial->p,
1876					partial->p+1, (chain+n-1) - partial);
1877		}
1878	}
1879	/* Clear the ends of indirect blocks on the shared branch */
1880	while (partial > chain) {
1881		ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
1882				   (u32*)partial->bh->b_data + addr_per_block,
1883				   (chain+n-1) - partial);
1884		BUFFER_TRACE(partial->bh, "call brelse");
1885		brelse (partial->bh);
1886		partial--;
1887	}
1888do_indirects:
1889	/* Kill the remaining (whole) subtrees */
1890	switch (offsets[0]) {
1891		default:
1892			nr = i_data[EXT3_IND_BLOCK];
1893			if (nr) {
1894				ext3_free_branches(handle, inode, NULL,
1895						   &nr, &nr+1, 1);
1896				i_data[EXT3_IND_BLOCK] = 0;
1897			}
1898		case EXT3_IND_BLOCK:
1899			nr = i_data[EXT3_DIND_BLOCK];
1900			if (nr) {
1901				ext3_free_branches(handle, inode, NULL,
1902						   &nr, &nr+1, 2);
1903				i_data[EXT3_DIND_BLOCK] = 0;
1904			}
1905		case EXT3_DIND_BLOCK:
1906			nr = i_data[EXT3_TIND_BLOCK];
1907			if (nr) {
1908				ext3_free_branches(handle, inode, NULL,
1909						   &nr, &nr+1, 3);
1910				i_data[EXT3_TIND_BLOCK] = 0;
1911			}
1912		case EXT3_TIND_BLOCK:
1913			;
1914	}
1915	up_write(&inode->u.ext3_i.truncate_sem);
1916	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1917	ext3_mark_inode_dirty(handle, inode);
1918
1919	/* In a multi-transaction truncate, we only make the final
1920	 * transaction synchronous */
1921	if (IS_SYNC(inode))
1922		handle->h_sync = 1;
1923out_stop:
1924	/*
1925	 * If this was a simple ftruncate(), and the file will remain alive
1926	 * then we need to clear up the orphan record which we created above.
1927	 * However, if this was a real unlink then we were called by
1928	 * ext3_delete_inode(), and we allow that function to clean up the
1929	 * orphan info for us.
1930	 */
1931	if (inode->i_nlink)
1932		ext3_orphan_del(handle, inode);
1933
1934	ext3_journal_stop(handle, inode);
1935}
1936
1937/*
1938 * ext3_get_inode_loc returns with an extra refcount against the
1939 * inode's underlying buffer_head on success.
1940 */
1941
1942int ext3_get_inode_loc (struct inode *inode, struct ext3_iloc *iloc)
1943{
1944	struct buffer_head *bh = 0;
1945	unsigned long block;
1946	unsigned long block_group;
1947	unsigned long group_desc;
1948	unsigned long desc;
1949	unsigned long offset;
1950	struct ext3_group_desc * gdp;
1951
1952	if ((inode->i_ino != EXT3_ROOT_INO &&
1953		inode->i_ino != EXT3_ACL_IDX_INO &&
1954		inode->i_ino != EXT3_ACL_DATA_INO &&
1955		inode->i_ino != EXT3_JOURNAL_INO &&
1956		inode->i_ino < EXT3_FIRST_INO(inode->i_sb)) ||
1957		inode->i_ino > le32_to_cpu(
1958			inode->i_sb->u.ext3_sb.s_es->s_inodes_count)) {
1959		ext3_error (inode->i_sb, "ext3_get_inode_loc",
1960			    "bad inode number: %lu", inode->i_ino);
1961		goto bad_inode;
1962	}
1963	block_group = (inode->i_ino - 1) / EXT3_INODES_PER_GROUP(inode->i_sb);
1964	if (block_group >= inode->i_sb->u.ext3_sb.s_groups_count) {
1965		ext3_error (inode->i_sb, "ext3_get_inode_loc",
1966			    "group >= groups count");
1967		goto bad_inode;
1968	}
1969	group_desc = block_group >> EXT3_DESC_PER_BLOCK_BITS(inode->i_sb);
1970	desc = block_group & (EXT3_DESC_PER_BLOCK(inode->i_sb) - 1);
1971	bh = inode->i_sb->u.ext3_sb.s_group_desc[group_desc];
1972	if (!bh) {
1973		ext3_error (inode->i_sb, "ext3_get_inode_loc",
1974			    "Descriptor not loaded");
1975		goto bad_inode;
1976	}
1977
1978	gdp = (struct ext3_group_desc *) bh->b_data;
1979	/*
1980	 * Figure out the offset within the block group inode table
1981	 */
1982	offset = ((inode->i_ino - 1) % EXT3_INODES_PER_GROUP(inode->i_sb)) *
1983		EXT3_INODE_SIZE(inode->i_sb);
1984	block = le32_to_cpu(gdp[desc].bg_inode_table) +
1985		(offset >> EXT3_BLOCK_SIZE_BITS(inode->i_sb));
1986	if (!(bh = sb_bread(inode->i_sb, block))) {
1987		ext3_error (inode->i_sb, "ext3_get_inode_loc",
1988			    "unable to read inode block - "
1989			    "inode=%lu, block=%lu", inode->i_ino, block);
1990		goto bad_inode;
1991	}
1992	offset &= (EXT3_BLOCK_SIZE(inode->i_sb) - 1);
1993
1994	iloc->bh = bh;
1995	iloc->raw_inode = (struct ext3_inode *) (bh->b_data + offset);
1996	iloc->block_group = block_group;
1997
1998	return 0;
1999
2000 bad_inode:
2001	return -EIO;
2002}
2003
2004void ext3_read_inode(struct inode * inode)
2005{
2006	struct ext3_iloc iloc;
2007	struct ext3_inode *raw_inode;
2008	struct buffer_head *bh;
2009	int block;
2010
2011	if(ext3_get_inode_loc(inode, &iloc))
2012		goto bad_inode;
2013	bh = iloc.bh;
2014	raw_inode = iloc.raw_inode;
2015	init_rwsem(&inode->u.ext3_i.truncate_sem);
2016	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2017	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2018	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2019	if(!(test_opt (inode->i_sb, NO_UID32))) {
2020		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2021		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2022	}
2023	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2024	inode->i_size = le32_to_cpu(raw_inode->i_size);
2025	inode->i_atime = le32_to_cpu(raw_inode->i_atime);
2026	inode->i_ctime = le32_to_cpu(raw_inode->i_ctime);
2027	inode->i_mtime = le32_to_cpu(raw_inode->i_mtime);
2028	inode->u.ext3_i.i_dtime = le32_to_cpu(raw_inode->i_dtime);
2029	/* We now have enough fields to check if the inode was active or not.
2030	 * This is needed because nfsd might try to access dead inodes
2031	 * the test is that same one that e2fsck uses
2032	 * NeilBrown 1999oct15
2033	 */
2034	if (inode->i_nlink == 0) {
2035		if (inode->i_mode == 0 ||
2036		    !(inode->i_sb->u.ext3_sb.s_mount_state & EXT3_ORPHAN_FS)) {
2037			/* this inode is deleted */
2038			brelse (bh);
2039			goto bad_inode;
2040		}
2041		/* The only unlinked inodes we let through here have
2042		 * valid i_mode and are being read by the orphan
2043		 * recovery code: that's fine, we're about to complete
2044		 * the process of deleting those. */
2045	}
2046	inode->i_blksize = PAGE_SIZE;	/* This is the optimal IO size
2047					 * (for stat), not the fs block
2048					 * size */
2049	inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2050	inode->i_version = ++event;
2051	inode->u.ext3_i.i_flags = le32_to_cpu(raw_inode->i_flags);
2052#ifdef EXT3_FRAGMENTS
2053	inode->u.ext3_i.i_faddr = le32_to_cpu(raw_inode->i_faddr);
2054	inode->u.ext3_i.i_frag_no = raw_inode->i_frag;
2055	inode->u.ext3_i.i_frag_size = raw_inode->i_fsize;
2056#endif
2057	inode->u.ext3_i.i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2058	if (!S_ISREG(inode->i_mode)) {
2059		inode->u.ext3_i.i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2060	} else {
2061		inode->i_size |=
2062			((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2063	}
2064	inode->u.ext3_i.i_disksize = inode->i_size;
2065	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2066#ifdef EXT3_PREALLOCATE
2067	inode->u.ext3_i.i_prealloc_count = 0;
2068#endif
2069	inode->u.ext3_i.i_block_group = iloc.block_group;
2070
2071	/*
2072	 * NOTE! The in-memory inode i_data array is in little-endian order
2073	 * even on big-endian machines: we do NOT byteswap the block numbers!
2074	 */
2075	for (block = 0; block < EXT3_N_BLOCKS; block++)
2076		inode->u.ext3_i.i_data[block] = iloc.raw_inode->i_block[block];
2077	INIT_LIST_HEAD(&inode->u.ext3_i.i_orphan);
2078
2079	brelse (iloc.bh);
2080
2081	if (inode->i_ino == EXT3_ACL_IDX_INO ||
2082	    inode->i_ino == EXT3_ACL_DATA_INO)
2083		/* Nothing to do */ ;
2084	else if (S_ISREG(inode->i_mode)) {
2085		inode->i_op = &ext3_file_inode_operations;
2086		inode->i_fop = &ext3_file_operations;
2087		inode->i_mapping->a_ops = &ext3_aops;
2088	} else if (S_ISDIR(inode->i_mode)) {
2089		inode->i_op = &ext3_dir_inode_operations;
2090		inode->i_fop = &ext3_dir_operations;
2091	} else if (S_ISLNK(inode->i_mode)) {
2092		if (!inode->i_blocks)
2093			inode->i_op = &ext3_fast_symlink_inode_operations;
2094		else {
2095			inode->i_op = &page_symlink_inode_operations;
2096			inode->i_mapping->a_ops = &ext3_aops;
2097		}
2098	} else
2099		init_special_inode(inode, inode->i_mode,
2100				   le32_to_cpu(iloc.raw_inode->i_block[0]));
2101	/* inode->i_attr_flags = 0;				unused */
2102	if (inode->u.ext3_i.i_flags & EXT3_SYNC_FL) {
2103		/* inode->i_attr_flags |= ATTR_FLAG_SYNCRONOUS; unused */
2104		inode->i_flags |= S_SYNC;
2105	}
2106	if (inode->u.ext3_i.i_flags & EXT3_APPEND_FL) {
2107		/* inode->i_attr_flags |= ATTR_FLAG_APPEND;	unused */
2108		inode->i_flags |= S_APPEND;
2109	}
2110	if (inode->u.ext3_i.i_flags & EXT3_IMMUTABLE_FL) {
2111		/* inode->i_attr_flags |= ATTR_FLAG_IMMUTABLE;	unused */
2112		inode->i_flags |= S_IMMUTABLE;
2113	}
2114	if (inode->u.ext3_i.i_flags & EXT3_NOATIME_FL) {
2115		/* inode->i_attr_flags |= ATTR_FLAG_NOATIME;	unused */
2116		inode->i_flags |= S_NOATIME;
2117	}
2118	return;
2119
2120bad_inode:
2121	make_bad_inode(inode);
2122	return;
2123}
2124
2125/*
2126 * Post the struct inode info into an on-disk inode location in the
2127 * buffer-cache.  This gobbles the caller's reference to the
2128 * buffer_head in the inode location struct.
2129 */
2130
2131static int ext3_do_update_inode(handle_t *handle,
2132				struct inode *inode,
2133				struct ext3_iloc *iloc)
2134{
2135	struct ext3_inode *raw_inode = iloc->raw_inode;
2136	struct buffer_head *bh = iloc->bh;
2137	int err = 0, rc, block;
2138
2139	if (handle) {
2140		BUFFER_TRACE(bh, "get_write_access");
2141		err = ext3_journal_get_write_access(handle, bh);
2142		if (err)
2143			goto out_brelse;
2144	}
2145	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2146	if(!(test_opt(inode->i_sb, NO_UID32))) {
2147		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2148		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2149/*
2150 * Fix up interoperability with old kernels. Otherwise, old inodes get
2151 * re-used with the upper 16 bits of the uid/gid intact
2152 */
2153		if(!inode->u.ext3_i.i_dtime) {
2154			raw_inode->i_uid_high =
2155				cpu_to_le16(high_16_bits(inode->i_uid));
2156			raw_inode->i_gid_high =
2157				cpu_to_le16(high_16_bits(inode->i_gid));
2158		} else {
2159			raw_inode->i_uid_high = 0;
2160			raw_inode->i_gid_high = 0;
2161		}
2162	} else {
2163		raw_inode->i_uid_low =
2164			cpu_to_le16(fs_high2lowuid(inode->i_uid));
2165		raw_inode->i_gid_low =
2166			cpu_to_le16(fs_high2lowgid(inode->i_gid));
2167		raw_inode->i_uid_high = 0;
2168		raw_inode->i_gid_high = 0;
2169	}
2170	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2171	raw_inode->i_size = cpu_to_le32(inode->u.ext3_i.i_disksize);
2172	raw_inode->i_atime = cpu_to_le32(inode->i_atime);
2173	raw_inode->i_ctime = cpu_to_le32(inode->i_ctime);
2174	raw_inode->i_mtime = cpu_to_le32(inode->i_mtime);
2175	raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
2176	raw_inode->i_dtime = cpu_to_le32(inode->u.ext3_i.i_dtime);
2177	raw_inode->i_flags = cpu_to_le32(inode->u.ext3_i.i_flags);
2178#ifdef EXT3_FRAGMENTS
2179	raw_inode->i_faddr = cpu_to_le32(inode->u.ext3_i.i_faddr);
2180	raw_inode->i_frag = inode->u.ext3_i.i_frag_no;
2181	raw_inode->i_fsize = inode->u.ext3_i.i_frag_size;
2182#else
2183	/* If we are not tracking these fields in the in-memory inode,
2184	 * then preserve them on disk, but still initialise them to zero
2185	 * for new inodes. */
2186	if (EXT3_I(inode)->i_state & EXT3_STATE_NEW) {
2187		raw_inode->i_faddr = 0;
2188		raw_inode->i_frag = 0;
2189		raw_inode->i_fsize = 0;
2190	}
2191#endif
2192	raw_inode->i_file_acl = cpu_to_le32(inode->u.ext3_i.i_file_acl);
2193	if (!S_ISREG(inode->i_mode)) {
2194		raw_inode->i_dir_acl = cpu_to_le32(inode->u.ext3_i.i_dir_acl);
2195	} else {
2196		raw_inode->i_size_high =
2197			cpu_to_le32(inode->u.ext3_i.i_disksize >> 32);
2198		if (inode->u.ext3_i.i_disksize > 0x7fffffffULL) {
2199			struct super_block *sb = inode->i_sb;
2200			if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
2201					EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
2202			    EXT3_SB(sb)->s_es->s_rev_level ==
2203					cpu_to_le32(EXT3_GOOD_OLD_REV)) {
2204			       /* If this is the first large file
2205				* created, add a flag to the superblock.
2206				*/
2207				err = ext3_journal_get_write_access(handle,
2208						sb->u.ext3_sb.s_sbh);
2209				if (err)
2210					goto out_brelse;
2211				ext3_update_dynamic_rev(sb);
2212				EXT3_SET_RO_COMPAT_FEATURE(sb,
2213					EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
2214				sb->s_dirt = 1;
2215				handle->h_sync = 1;
2216				err = ext3_journal_dirty_metadata(handle,
2217						sb->u.ext3_sb.s_sbh);
2218			}
2219		}
2220	}
2221	raw_inode->i_generation = le32_to_cpu(inode->i_generation);
2222	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
2223		raw_inode->i_block[0] =
2224			cpu_to_le32(kdev_t_to_nr(inode->i_rdev));
2225	else for (block = 0; block < EXT3_N_BLOCKS; block++)
2226		raw_inode->i_block[block] = inode->u.ext3_i.i_data[block];
2227
2228	BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2229	rc = ext3_journal_dirty_metadata(handle, bh);
2230	if (!err)
2231		err = rc;
2232	EXT3_I(inode)->i_state &= ~EXT3_STATE_NEW;
2233
2234out_brelse:
2235	brelse (bh);
2236	ext3_std_error(inode->i_sb, err);
2237	return err;
2238}
2239
2240/*
2241 * ext3_write_inode()
2242 *
2243 * We are called from a few places:
2244 *
2245 * - Within generic_file_write() for O_SYNC files.
2246 *   Here, there will be no transaction running. We wait for any running
2247 *   trasnaction to commit.
2248 *
2249 * - Within sys_sync(), kupdate and such.
2250 *   We wait on commit, if tol to.
2251 *
2252 * - Within prune_icache() (PF_MEMALLOC == true)
2253 *   Here we simply return.  We can't afford to block kswapd on the
2254 *   journal commit.
2255 *
2256 * In all cases it is actually safe for us to return without doing anything,
2257 * because the inode has been copied into a raw inode buffer in
2258 * ext3_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
2259 * knfsd.
2260 *
2261 * Note that we are absolutely dependent upon all inode dirtiers doing the
2262 * right thing: they *must* call mark_inode_dirty() after dirtying info in
2263 * which we are interested.
2264 *
2265 * It would be a bug for them to not do this.  The code:
2266 *
2267 *	mark_inode_dirty(inode)
2268 *	stuff();
2269 *	inode->i_size = expr;
2270 *
2271 * is in error because a kswapd-driven write_inode() could occur while
2272 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
2273 * will no longer be on the superblock's dirty inode list.
2274 */
2275void ext3_write_inode(struct inode *inode, int wait)
2276{
2277	if (current->flags & PF_MEMALLOC)
2278		return;
2279
2280	if (ext3_journal_current_handle()) {
2281		jbd_debug(0, "called recursively, non-PF_MEMALLOC!\n");
2282		return;
2283	}
2284
2285	if (!wait)
2286		return;
2287
2288	ext3_force_commit(inode->i_sb);
2289}
2290
2291/*
2292 * ext3_setattr()
2293 *
2294 * Called from notify_change.
2295 *
2296 * We want to trap VFS attempts to truncate the file as soon as
2297 * possible.  In particular, we want to make sure that when the VFS
2298 * shrinks i_size, we put the inode on the orphan list and modify
2299 * i_disksize immediately, so that during the subsequent flushing of
2300 * dirty pages and freeing of disk blocks, we can guarantee that any
2301 * commit will leave the blocks being flushed in an unused state on
2302 * disk.  (On recovery, the inode will get truncated and the blocks will
2303 * be freed, so we have a strong guarantee that no future commit will
2304 * leave these blocks visible to the user.)
2305 *
2306 * This is only needed for regular files.  rmdir() has its own path, and
2307 * we can never truncate a direcory except on final unlink (at which
2308 * point i_nlink is zero so recovery is easy.)
2309 *
2310 * Called with the BKL.
2311 */
2312
2313int ext3_setattr(struct dentry *dentry, struct iattr *attr)
2314{
2315	struct inode *inode = dentry->d_inode;
2316	int error, rc = 0;
2317	const unsigned int ia_valid = attr->ia_valid;
2318
2319	error = inode_change_ok(inode, attr);
2320	if (error)
2321		return error;
2322
2323	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
2324		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
2325		error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
2326		if (error)
2327			return error;
2328	}
2329
2330	if (attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
2331		handle_t *handle;
2332
2333		handle = ext3_journal_start(inode, 3);
2334		if (IS_ERR(handle)) {
2335			error = PTR_ERR(handle);
2336			goto err_out;
2337		}
2338
2339		error = ext3_orphan_add(handle, inode);
2340		inode->u.ext3_i.i_disksize = attr->ia_size;
2341		rc = ext3_mark_inode_dirty(handle, inode);
2342		if (!error)
2343			error = rc;
2344		ext3_journal_stop(handle, inode);
2345	}
2346
2347	rc = inode_setattr(inode, attr);
2348
2349	/* If inode_setattr's call to ext3_truncate failed to get a
2350	 * transaction handle at all, we need to clean up the in-core
2351	 * orphan list manually. */
2352	if (inode->i_nlink)
2353		ext3_orphan_del(NULL, inode);
2354
2355err_out:
2356	ext3_std_error(inode->i_sb, error);
2357	if (!error)
2358		error = rc;
2359	return error;
2360}
2361
2362
2363/*
2364 * akpm: how many blocks doth make a writepage()?
2365 *
2366 * With N blocks per page, it may be:
2367 * N data blocks
2368 * 2 indirect block
2369 * 2 dindirect
2370 * 1 tindirect
2371 * N+5 bitmap blocks (from the above)
2372 * N+5 group descriptor summary blocks
2373 * 1 inode block
2374 * 1 superblock.
2375 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
2376 *
2377 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
2378 *
2379 * With ordered or writeback data it's the same, less the N data blocks.
2380 *
2381 * If the inode's direct blocks can hold an integral number of pages then a
2382 * page cannot straddle two indirect blocks, and we can only touch one indirect
2383 * and dindirect block, and the "5" above becomes "3".
2384 *
2385 * This still overestimates under most circumstances.  If we were to pass the
2386 * start and end offsets in here as well we could do block_to_path() on each
2387 * block and work out the exact number of indirects which are touched.  Pah.
2388 */
2389
2390int ext3_writepage_trans_blocks(struct inode *inode)
2391{
2392	int bpp = ext3_journal_blocks_per_page(inode);
2393	int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
2394	int ret;
2395
2396	if (ext3_should_journal_data(inode))
2397		ret = 3 * (bpp + indirects) + 2;
2398	else
2399		ret = 2 * (bpp + indirects) + 2;
2400
2401#ifdef CONFIG_QUOTA
2402	ret += 2 * EXT3_SINGLEDATA_TRANS_BLOCKS;
2403#endif
2404
2405	return ret;
2406}
2407
2408int
2409ext3_mark_iloc_dirty(handle_t *handle,
2410		     struct inode *inode,
2411		     struct ext3_iloc *iloc)
2412{
2413	int err = 0;
2414
2415	if (handle) {
2416		/* the do_update_inode consumes one bh->b_count */
2417		atomic_inc(&iloc->bh->b_count);
2418		err = ext3_do_update_inode(handle, inode, iloc);
2419		/* ext3_do_update_inode() does journal_dirty_metadata */
2420		brelse(iloc->bh);
2421	} else {
2422		printk(KERN_EMERG "%s: called with no handle!\n", __FUNCTION__);
2423	}
2424	return err;
2425}
2426
2427/*
2428 * On success, We end up with an outstanding reference count against
2429 * iloc->bh.  This _must_ be cleaned up later.
2430 */
2431
2432int
2433ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
2434			 struct ext3_iloc *iloc)
2435{
2436	int err = 0;
2437	if (handle) {
2438		err = ext3_get_inode_loc(inode, iloc);
2439		if (!err) {
2440			BUFFER_TRACE(iloc->bh, "get_write_access");
2441			err = ext3_journal_get_write_access(handle, iloc->bh);
2442			if (err) {
2443				brelse(iloc->bh);
2444				iloc->bh = NULL;
2445			}
2446		}
2447	}
2448	ext3_std_error(inode->i_sb, err);
2449	return err;
2450}
2451
2452/*
2453 * akpm: What we do here is to mark the in-core inode as clean
2454 * with respect to inode dirtiness (it may still be data-dirty).
2455 * This means that the in-core inode may be reaped by prune_icache
2456 * without having to perform any I/O.  This is a very good thing,
2457 * because *any* task may call prune_icache - even ones which
2458 * have a transaction open against a different journal.
2459 *
2460 * Is this cheating?  Not really.  Sure, we haven't written the
2461 * inode out, but prune_icache isn't a user-visible syncing function.
2462 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
2463 * we start and wait on commits.
2464 *
2465 * Is this efficient/effective?  Well, we're being nice to the system
2466 * by cleaning up our inodes proactively so they can be reaped
2467 * without I/O.  But we are potentially leaving up to five seconds'
2468 * worth of inodes floating about which prune_icache wants us to
2469 * write out.  One way to fix that would be to get prune_icache()
2470 * to do a write_super() to free up some memory.  It has the desired
2471 * effect.
2472 */
2473int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
2474{
2475	struct ext3_iloc iloc;
2476	int err;
2477
2478	err = ext3_reserve_inode_write(handle, inode, &iloc);
2479	if (!err)
2480		err = ext3_mark_iloc_dirty(handle, inode, &iloc);
2481	return err;
2482}
2483
2484/*
2485 * akpm: ext3_dirty_inode() is called from __mark_inode_dirty()
2486 *
2487 * We're really interested in the case where a file is being extended.
2488 * i_size has been changed by generic_commit_write() and we thus need
2489 * to include the updated inode in the current transaction.
2490 *
2491 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
2492 * are allocated to the file.
2493 *
2494 * If the inode is marked synchronous, we don't honour that here - doing
2495 * so would cause a commit on atime updates, which we don't bother doing.
2496 * We handle synchronous inodes at the highest possible level.
2497 */
2498void ext3_dirty_inode(struct inode *inode)
2499{
2500	handle_t *current_handle = ext3_journal_current_handle();
2501	handle_t *handle;
2502
2503	lock_kernel();
2504	handle = ext3_journal_start(inode, 1);
2505	if (IS_ERR(handle))
2506		goto out;
2507	if (current_handle &&
2508		current_handle->h_transaction != handle->h_transaction) {
2509		/* This task has a transaction open against a different fs */
2510		printk(KERN_EMERG "%s: transactions do not match!\n",
2511			__FUNCTION__);
2512	} else {
2513		jbd_debug(5, "marking dirty.  outer handle=%p\n",
2514				current_handle);
2515		ext3_mark_inode_dirty(handle, inode);
2516	}
2517	ext3_journal_stop(handle, inode);
2518out:
2519	unlock_kernel();
2520}
2521
2522#ifdef AKPM
2523/*
2524 * Bind an inode's backing buffer_head into this transaction, to prevent
2525 * it from being flushed to disk early.  Unlike
2526 * ext3_reserve_inode_write, this leaves behind no bh reference and
2527 * returns no iloc structure, so the caller needs to repeat the iloc
2528 * lookup to mark the inode dirty later.
2529 */
2530static inline int
2531ext3_pin_inode(handle_t *handle, struct inode *inode)
2532{
2533	struct ext3_iloc iloc;
2534
2535	int err = 0;
2536	if (handle) {
2537		err = ext3_get_inode_loc(inode, &iloc);
2538		if (!err) {
2539			BUFFER_TRACE(iloc.bh, "get_write_access");
2540			err = journal_get_write_access(handle, iloc.bh);
2541			if (!err)
2542				err = ext3_journal_dirty_metadata(handle,
2543								  iloc.bh);
2544			brelse(iloc.bh);
2545		}
2546	}
2547	ext3_std_error(inode->i_sb, err);
2548	return err;
2549}
2550#endif
2551
2552int ext3_change_inode_journal_flag(struct inode *inode, int val)
2553{
2554	journal_t *journal;
2555	handle_t *handle;
2556	int err;
2557
2558	/*
2559	 * We have to be very careful here: changing a data block's
2560	 * journaling status dynamically is dangerous.  If we write a
2561	 * data block to the journal, change the status and then delete
2562	 * that block, we risk forgetting to revoke the old log record
2563	 * from the journal and so a subsequent replay can corrupt data.
2564	 * So, first we make sure that the journal is empty and that
2565	 * nobody is changing anything.
2566	 */
2567
2568	journal = EXT3_JOURNAL(inode);
2569	if (is_journal_aborted(journal) || IS_RDONLY(inode))
2570		return -EROFS;
2571
2572	journal_lock_updates(journal);
2573	journal_flush(journal);
2574
2575	/*
2576	 * OK, there are no updates running now, and all cached data is
2577	 * synced to disk.  We are now in a completely consistent state
2578	 * which doesn't have anything in the journal, and we know that
2579	 * no filesystem updates are running, so it is safe to modify
2580	 * the inode's in-core data-journaling state flag now.
2581	 */
2582
2583	if (val)
2584		inode->u.ext3_i.i_flags |= EXT3_JOURNAL_DATA_FL;
2585	else
2586		inode->u.ext3_i.i_flags &= ~EXT3_JOURNAL_DATA_FL;
2587
2588	journal_unlock_updates(journal);
2589
2590	/* Finally we can mark the inode as dirty. */
2591
2592	handle = ext3_journal_start(inode, 1);
2593	if (IS_ERR(handle))
2594		return PTR_ERR(handle);
2595
2596	err = ext3_mark_inode_dirty(handle, inode);
2597	handle->h_sync = 1;
2598	ext3_journal_stop(handle, inode);
2599	ext3_std_error(inode->i_sb, err);
2600
2601	return err;
2602}
2603
2604
2605/*
2606 * ext3_aops_journal_start().
2607 *
2608 * <This function died, but the comment lives on>
2609 *
2610 * We need to take the inode semaphore *outside* the
2611 * journal_start/journal_stop.  Otherwise, a different task could do a
2612 * wait_for_commit() while holding ->i_sem, which deadlocks.  The rule
2613 * is: transaction open/closes are considered to be a locking operation
2614 * and they nest *inside* ->i_sem.
2615 * ----------------------------------------------------------------------------
2616 * Possible problem:
2617 *	ext3_file_write()
2618 *	-> generic_file_write()
2619 *	   -> __alloc_pages()
2620 *	      -> page_launder()
2621 *		 -> ext3_writepage()
2622 *
2623 * And the writepage can be on a different fs while we have a
2624 * transaction open against this one!  Bad.
2625 *
2626 * I tried making the task PF_MEMALLOC here, but that simply results in
2627 * 0-order allocation failures passed back to generic_file_write().
2628 * Instead, we rely on the reentrancy protection in ext3_writepage().
2629 * ----------------------------------------------------------------------------
2630 * When we do the journal_start() here we don't really need to reserve
2631 * any blocks - we won't need any until we hit ext3_prepare_write(),
2632 * which does all the needed journal extending.  However!  There is a
2633 * problem with quotas:
2634 *
2635 * Thread 1:
2636 * sys_sync
2637 * ->sync_dquots
2638 *   ->commit_dquot
2639 *     ->lock_dquot
2640 *     ->write_dquot
2641 *       ->ext3_file_write
2642 *         ->journal_start
2643 *         ->ext3_prepare_write
2644 *           ->journal_extend
2645 *           ->journal_start
2646 * Thread 2:
2647 * ext3_create		(for example)
2648 * ->ext3_new_inode
2649 *   ->dquot_initialize
2650 *     ->lock_dquot
2651 *
2652 * Deadlock.  Thread 1's journal_start blocks because thread 2 has a
2653 * transaction open.  Thread 2's transaction will never close because
2654 * thread 2 is stuck waiting for the dquot lock.
2655 *
2656 * So.  We must ensure that thread 1 *never* needs to extend the journal
2657 * for quota writes.  We do that by reserving enough journal blocks
2658 * here, in ext3_aops_journal_start() to ensure that the forthcoming "see if we
2659 * need to extend" test in ext3_prepare_write() succeeds.
2660 */
2661