1/* sb1000.c: A General Instruments SB1000 driver for linux. */
2/*
3	Written 1998 by Franco Venturi.
4
5	Copyright 1998 by Franco Venturi.
6	Copyright 1994,1995 by Donald Becker.
7	Copyright 1993 United States Government as represented by the
8	Director, National Security Agency.
9
10	This driver is for the General Instruments SB1000 (internal SURFboard)
11
12	The author may be reached as fventuri@mediaone.net
13
14	This program is free software; you can redistribute it
15	and/or  modify it under  the terms of  the GNU General
16	Public  License as  published  by  the  Free  Software
17	Foundation;  either  version 2 of the License, or  (at
18	your option) any later version.
19
20	Changes:
21
22	981115 Steven Hirsch <shirsch@adelphia.net>
23
24	Linus changed the timer interface.  Should work on all recent
25	development kernels.
26
27	980608 Steven Hirsch <shirsch@adelphia.net>
28
29	Small changes to make it work with 2.1.x kernels. Hopefully,
30	nothing major will change before official release of Linux 2.2.
31
32	Merged with 2.2 - Alan Cox
33*/
34
35static char version[] = "sb1000.c:v1.1.2 6/01/98 (fventuri@mediaone.net)\n";
36
37#include <linux/module.h>
38
39#include <linux/version.h>
40#include <linux/kernel.h>
41#include <linux/sched.h>
42#include <linux/string.h>
43#include <linux/interrupt.h>
44#include <linux/ptrace.h>
45#include <linux/errno.h>
46#include <linux/in.h>
47#include <linux/slab.h>
48#include <linux/ioport.h>
49#include <linux/netdevice.h>
50#include <linux/if_arp.h>
51#include <linux/skbuff.h>
52#include <linux/delay.h>	/* for udelay() */
53#include <asm/processor.h>
54
55#include <asm/bitops.h>
56#include <asm/io.h>
57#include <asm/uaccess.h>
58#include <linux/etherdevice.h>
59#include <linux/isapnp.h>
60
61/* for SIOGCM/SIOSCM stuff */
62
63#include <linux/if_cablemodem.h>
64
65#ifdef SB1000_DEBUG
66int sb1000_debug = SB1000_DEBUG;
67#else
68int sb1000_debug = 1;
69#endif
70
71static const int SB1000_IO_EXTENT = 8;
72/* SB1000 Maximum Receive Unit */
73static const int SB1000_MRU = 1500; /* octects */
74
75#define NPIDS 4
76struct sb1000_private {
77	struct sk_buff *rx_skb[NPIDS];
78	short rx_dlen[NPIDS];
79	unsigned int rx_frames;
80	short rx_error_count;
81	short rx_error_dpc_count;
82	unsigned char rx_session_id[NPIDS];
83	unsigned char rx_frame_id[NPIDS];
84	unsigned char rx_pkt_type[NPIDS];
85	struct net_device_stats stats;
86};
87
88/* prototypes for Linux interface */
89extern int sb1000_probe(struct net_device *dev);
90static int sb1000_open(struct net_device *dev);
91static int sb1000_dev_ioctl (struct net_device *dev, struct ifreq *ifr, int cmd);
92static int sb1000_start_xmit(struct sk_buff *skb, struct net_device *dev);
93static void sb1000_interrupt(int irq, void *dev_id, struct pt_regs *regs);
94static struct net_device_stats *sb1000_stats(struct net_device *dev);
95static int sb1000_close(struct net_device *dev);
96
97
98/* SB1000 hardware routines to be used during open/configuration phases */
99static inline void nicedelay(unsigned long usecs);
100static inline int card_wait_for_busy_clear(const int ioaddr[],
101	const char* name);
102static inline int card_wait_for_ready(const int ioaddr[], const char* name,
103	unsigned char in[]);
104static inline int card_send_command(const int ioaddr[], const char* name,
105	const unsigned char out[], unsigned char in[]);
106
107/* SB1000 hardware routines to be used during frame rx interrupt */
108static inline int sb1000_wait_for_ready(const int ioaddr[], const char* name);
109static inline int sb1000_wait_for_ready_clear(const int ioaddr[],
110	const char* name);
111static inline void sb1000_send_command(const int ioaddr[], const char* name,
112	const unsigned char out[]);
113static inline void sb1000_read_status(const int ioaddr[], unsigned char in[]);
114static inline void sb1000_issue_read_command(const int ioaddr[],
115	const char* name);
116
117/* SB1000 commands for open/configuration */
118static inline int sb1000_reset(const int ioaddr[], const char* name);
119static inline int sb1000_check_CRC(const int ioaddr[], const char* name);
120static inline int sb1000_start_get_set_command(const int ioaddr[],
121	const char* name);
122static inline int sb1000_end_get_set_command(const int ioaddr[],
123	const char* name);
124static inline int sb1000_activate(const int ioaddr[], const char* name);
125static inline int sb1000_get_firmware_version(const int ioaddr[],
126	const char* name, unsigned char version[], int do_end);
127static inline int sb1000_get_frequency(const int ioaddr[], const char* name,
128	int* frequency);
129static inline int sb1000_set_frequency(const int ioaddr[], const char* name,
130	int frequency);
131static inline int sb1000_get_PIDs(const int ioaddr[], const char* name,
132	short PID[]);
133static inline int sb1000_set_PIDs(const int ioaddr[], const char* name,
134	const short PID[]);
135
136/* SB1000 commands for frame rx interrupt */
137static inline int sb1000_rx(struct net_device *dev);
138static inline void sb1000_error_dpc(struct net_device *dev);
139
140static struct isapnp_device_id id_table[] = {
141	{	ISAPNP_ANY_ID, ISAPNP_ANY_ID,
142		ISAPNP_VENDOR('G','I','C'), ISAPNP_FUNCTION(0x1000), 0 },
143	{0}
144};
145
146MODULE_DEVICE_TABLE(isapnp, id_table);
147
148/* probe for SB1000 using Plug-n-Play mechanism */
149int
150sb1000_probe(struct net_device *dev)
151{
152
153	unsigned short ioaddr[2], irq;
154	struct pci_dev *idev=NULL;
155	unsigned int serial_number;
156
157	while(1)
158	{
159		/*
160		 *	Find the card
161		 */
162
163		idev=isapnp_find_dev(NULL, ISAPNP_VENDOR('G','I','C'),
164			ISAPNP_FUNCTION(0x1000), idev);
165
166		/*
167		 *	No card
168		 */
169
170		if(idev==NULL)
171			return -ENODEV;
172
173		/*
174		 *	Bring it online
175		 */
176
177		idev->prepare(idev);
178		idev->activate(idev);
179
180		/*
181		 *	Ports free ?
182		 */
183
184		if(!idev->resource[0].start || check_region(idev->resource[0].start, 16))
185			continue;
186		if(!idev->resource[1].start || check_region(idev->resource[1].start, 16))
187			continue;
188
189		serial_number = idev->bus->serial;
190
191		ioaddr[0]=idev->resource[0].start;
192		ioaddr[1]=idev->resource[1].start;
193
194		irq = idev->irq_resource[0].start;
195
196		/* check I/O base and IRQ */
197		if (dev->base_addr != 0 && dev->base_addr != ioaddr[0])
198			continue;
199		if (dev->rmem_end != 0 && dev->rmem_end != ioaddr[1])
200			continue;
201		if (dev->irq != 0 && dev->irq != irq)
202			continue;
203
204		/*
205		 *	Ok set it up.
206		 */
207		if (!request_region(ioaddr[0], 16, dev->name))
208			continue;
209		if (!request_region(ioaddr[1], 16, dev->name)) {
210			release_region(ioaddr[0], 16);
211			continue;
212		}
213
214		dev->base_addr = ioaddr[0];
215		/* rmem_end holds the second I/O address - fv */
216		dev->rmem_end = ioaddr[1];
217		dev->irq = irq;
218
219		if (sb1000_debug > 0)
220			printk(KERN_NOTICE "%s: sb1000 at (%#3.3lx,%#3.3lx), "
221				"S/N %#8.8x, IRQ %d.\n", dev->name, dev->base_addr,
222				dev->rmem_end, serial_number, dev->irq);
223
224		dev = init_etherdev(dev, 0);
225		if (!dev)
226			return -ENOMEM;
227		SET_MODULE_OWNER(dev);
228
229		/* Make up a SB1000-specific-data structure. */
230		dev->priv = kmalloc(sizeof(struct sb1000_private), GFP_KERNEL);
231		if (dev->priv == NULL)
232			return -ENOMEM;
233		memset(dev->priv, 0, sizeof(struct sb1000_private));
234
235		if (sb1000_debug > 0)
236			printk(KERN_NOTICE "%s", version);
237
238		/* The SB1000-specific entries in the device structure. */
239		dev->open = sb1000_open;
240		dev->do_ioctl = sb1000_dev_ioctl;
241		dev->hard_start_xmit = sb1000_start_xmit;
242		dev->stop = sb1000_close;
243		dev->get_stats = sb1000_stats;
244
245		/* Fill in the generic fields of the device structure. */
246		dev->change_mtu		= NULL;
247		dev->hard_header	= NULL;
248		dev->rebuild_header 	= NULL;
249		dev->set_mac_address 	= NULL;
250		dev->header_cache_update= NULL;
251
252		dev->type		= ARPHRD_ETHER;
253		dev->hard_header_len 	= 0;
254		dev->mtu		= 1500;
255		dev->addr_len		= ETH_ALEN;
256		/* hardware address is 0:0:serial_number */
257		dev->dev_addr[0] = 0;
258		dev->dev_addr[1] = 0;
259		dev->dev_addr[2] = serial_number >> 24 & 0xff;
260		dev->dev_addr[3] = serial_number >> 16 & 0xff;
261		dev->dev_addr[4] = serial_number >>  8 & 0xff;
262		dev->dev_addr[5] = serial_number >>  0 & 0xff;
263		dev->tx_queue_len	= 0;
264
265		/* New-style flags. */
266		dev->flags		= IFF_POINTOPOINT|IFF_NOARP;
267
268		/* Lock resources */
269
270		return 0;
271	}
272}
273
274
275/*
276 * SB1000 hardware routines to be used during open/configuration phases
277 */
278
279const int TimeOutJiffies = (875 * HZ) / 100;
280
281static inline void nicedelay(unsigned long usecs)
282{
283	current->state = TASK_INTERRUPTIBLE;
284	schedule_timeout(HZ);
285	return;
286}
287
288/* Card Wait For Busy Clear (cannot be used during an interrupt) */
289static inline int
290card_wait_for_busy_clear(const int ioaddr[], const char* name)
291{
292	unsigned char a;
293	unsigned long timeout;
294
295	a = inb(ioaddr[0] + 7);
296	timeout = jiffies + TimeOutJiffies;
297	while (a & 0x80 || a & 0x40) {
298		/* a little sleep */
299		current->state = TASK_INTERRUPTIBLE;
300		schedule_timeout(0);
301		a = inb(ioaddr[0] + 7);
302		if (time_after_eq(jiffies, timeout)) {
303			printk(KERN_WARNING "%s: card_wait_for_busy_clear timeout\n",
304				name);
305			return -ETIME;
306		}
307	}
308
309	return 0;
310}
311
312/* Card Wait For Ready (cannot be used during an interrupt) */
313static inline int
314card_wait_for_ready(const int ioaddr[], const char* name, unsigned char in[])
315{
316	unsigned char a;
317	unsigned long timeout;
318
319	a = inb(ioaddr[1] + 6);
320	timeout = jiffies + TimeOutJiffies;
321	while (a & 0x80 || !(a & 0x40)) {
322		/* a little sleep */
323		current->state = TASK_INTERRUPTIBLE;
324		schedule_timeout(0);
325		a = inb(ioaddr[1] + 6);
326		if (time_after_eq(jiffies, timeout)) {
327			printk(KERN_WARNING "%s: card_wait_for_ready timeout\n",
328				name);
329			return -ETIME;
330		}
331	}
332
333	in[1] = inb(ioaddr[0] + 1);
334	in[2] = inb(ioaddr[0] + 2);
335	in[3] = inb(ioaddr[0] + 3);
336	in[4] = inb(ioaddr[0] + 4);
337	in[0] = inb(ioaddr[0] + 5);
338	in[6] = inb(ioaddr[0] + 6);
339	in[5] = inb(ioaddr[1] + 6);
340	return 0;
341}
342
343/* Card Send Command (cannot be used during an interrupt) */
344static inline int
345card_send_command(const int ioaddr[], const char* name,
346	const unsigned char out[], unsigned char in[])
347{
348	int status, x;
349
350	if ((status = card_wait_for_busy_clear(ioaddr, name)))
351		return status;
352	outb(0xa0, ioaddr[0] + 6);
353	outb(out[2], ioaddr[0] + 1);
354	outb(out[3], ioaddr[0] + 2);
355	outb(out[4], ioaddr[0] + 3);
356	outb(out[5], ioaddr[0] + 4);
357	outb(out[1], ioaddr[0] + 5);
358	outb(0xa0, ioaddr[0] + 6);
359	outb(out[0], ioaddr[0] + 7);
360	if (out[0] != 0x20 && out[0] != 0x30) {
361		if ((status = card_wait_for_ready(ioaddr, name, in)))
362			return status;
363		inb(ioaddr[0] + 7);
364		if (sb1000_debug > 3)
365			printk(KERN_DEBUG "%s: card_send_command "
366				"out: %02x%02x%02x%02x%02x%02x  "
367				"in: %02x%02x%02x%02x%02x%02x%02x\n", name,
368				out[0], out[1], out[2], out[3], out[4], out[5],
369				in[0], in[1], in[2], in[3], in[4], in[5], in[6]);
370	} else {
371		if (sb1000_debug > 3)
372			printk(KERN_DEBUG "%s: card_send_command "
373				"out: %02x%02x%02x%02x%02x%02x\n", name,
374				out[0], out[1], out[2], out[3], out[4], out[5]);
375	}
376
377	if (out[1] == 0x1b) {
378		x = (out[2] == 0x02);
379	} else {
380		if (out[0] >= 0x80 && in[0] != (out[1] | 0x80))
381			return -EIO;
382	}
383	return 0;
384}
385
386
387/*
388 * SB1000 hardware routines to be used during frame rx interrupt
389 */
390const int Sb1000TimeOutJiffies = 7 * HZ;
391
392/* Card Wait For Ready (to be used during frame rx) */
393static inline int
394sb1000_wait_for_ready(const int ioaddr[], const char* name)
395{
396	unsigned long timeout;
397
398	timeout = jiffies + Sb1000TimeOutJiffies;
399	while (inb(ioaddr[1] + 6) & 0x80) {
400		if (time_after_eq(jiffies, timeout)) {
401			printk(KERN_WARNING "%s: sb1000_wait_for_ready timeout\n",
402				name);
403			return -ETIME;
404		}
405	}
406	timeout = jiffies + Sb1000TimeOutJiffies;
407	while (!(inb(ioaddr[1] + 6) & 0x40)) {
408		if (time_after_eq(jiffies, timeout)) {
409			printk(KERN_WARNING "%s: sb1000_wait_for_ready timeout\n",
410				name);
411			return -ETIME;
412		}
413	}
414	inb(ioaddr[0] + 7);
415	return 0;
416}
417
418/* Card Wait For Ready Clear (to be used during frame rx) */
419static inline int
420sb1000_wait_for_ready_clear(const int ioaddr[], const char* name)
421{
422	unsigned long timeout;
423
424	timeout = jiffies + Sb1000TimeOutJiffies;
425	while (inb(ioaddr[1] + 6) & 0x80) {
426		if (time_after_eq(jiffies, timeout)) {
427			printk(KERN_WARNING "%s: sb1000_wait_for_ready_clear timeout\n",
428				name);
429			return -ETIME;
430		}
431	}
432	timeout = jiffies + Sb1000TimeOutJiffies;
433	while (inb(ioaddr[1] + 6) & 0x40) {
434		if (time_after_eq(jiffies, timeout)) {
435			printk(KERN_WARNING "%s: sb1000_wait_for_ready_clear timeout\n",
436				name);
437			return -ETIME;
438		}
439	}
440	return 0;
441}
442
443/* Card Send Command (to be used during frame rx) */
444static inline void
445sb1000_send_command(const int ioaddr[], const char* name,
446	const unsigned char out[])
447{
448	outb(out[2], ioaddr[0] + 1);
449	outb(out[3], ioaddr[0] + 2);
450	outb(out[4], ioaddr[0] + 3);
451	outb(out[5], ioaddr[0] + 4);
452	outb(out[1], ioaddr[0] + 5);
453	outb(out[0], ioaddr[0] + 7);
454	if (sb1000_debug > 3)
455		printk(KERN_DEBUG "%s: sb1000_send_command out: %02x%02x%02x%02x"
456			"%02x%02x\n", name, out[0], out[1], out[2], out[3], out[4], out[5]);
457	return;
458}
459
460/* Card Read Status (to be used during frame rx) */
461static inline void
462sb1000_read_status(const int ioaddr[], unsigned char in[])
463{
464	in[1] = inb(ioaddr[0] + 1);
465	in[2] = inb(ioaddr[0] + 2);
466	in[3] = inb(ioaddr[0] + 3);
467	in[4] = inb(ioaddr[0] + 4);
468	in[0] = inb(ioaddr[0] + 5);
469	return;
470}
471
472/* Issue Read Command (to be used during frame rx) */
473static inline void
474sb1000_issue_read_command(const int ioaddr[], const char* name)
475{
476	const unsigned char Command0[6] = {0x20, 0x00, 0x00, 0x01, 0x00, 0x00};
477
478	sb1000_wait_for_ready_clear(ioaddr, name);
479	outb(0xa0, ioaddr[0] + 6);
480	sb1000_send_command(ioaddr, name, Command0);
481	return;
482}
483
484
485/*
486 * SB1000 commands for open/configuration
487 */
488/* reset SB1000 card */
489static inline int
490sb1000_reset(const int ioaddr[], const char* name)
491{
492	unsigned char st[7];
493	int port, status;
494	const unsigned char Command0[6] = {0x80, 0x16, 0x00, 0x00, 0x00, 0x00};
495
496	port = ioaddr[1] + 6;
497	outb(0x4, port);
498	inb(port);
499	udelay(1000);
500	outb(0x0, port);
501	inb(port);
502	nicedelay(60000);
503	outb(0x4, port);
504	inb(port);
505	udelay(1000);
506	outb(0x0, port);
507	inb(port);
508	udelay(0);
509
510	if ((status = card_send_command(ioaddr, name, Command0, st)))
511		return status;
512	if (st[3] != 0xf0)
513		return -EIO;
514	return 0;
515}
516
517/* check SB1000 firmware CRC */
518static inline int
519sb1000_check_CRC(const int ioaddr[], const char* name)
520{
521	unsigned char st[7];
522	int crc, status;
523	const unsigned char Command0[6] = {0x80, 0x1f, 0x00, 0x00, 0x00, 0x00};
524
525	/* check CRC */
526	if ((status = card_send_command(ioaddr, name, Command0, st)))
527		return status;
528	if (st[1] != st[3] || st[2] != st[4])
529		return -EIO;
530	crc = st[1] << 8 | st[2];
531	return 0;
532}
533
534static inline int
535sb1000_start_get_set_command(const int ioaddr[], const char* name)
536{
537	unsigned char st[7];
538	const unsigned char Command0[6] = {0x80, 0x1b, 0x00, 0x00, 0x00, 0x00};
539
540	return card_send_command(ioaddr, name, Command0, st);
541}
542
543static inline int
544sb1000_end_get_set_command(const int ioaddr[], const char* name)
545{
546	unsigned char st[7];
547	int status;
548	const unsigned char Command0[6] = {0x80, 0x1b, 0x02, 0x00, 0x00, 0x00};
549	const unsigned char Command1[6] = {0x20, 0x00, 0x00, 0x00, 0x00, 0x00};
550
551	if ((status = card_send_command(ioaddr, name, Command0, st)))
552		return status;
553	return card_send_command(ioaddr, name, Command1, st);
554}
555
556static inline int
557sb1000_activate(const int ioaddr[], const char* name)
558{
559	unsigned char st[7];
560	int status;
561	const unsigned char Command0[6] = {0x80, 0x11, 0x00, 0x00, 0x00, 0x00};
562	const unsigned char Command1[6] = {0x80, 0x16, 0x00, 0x00, 0x00, 0x00};
563
564	nicedelay(50000);
565	if ((status = card_send_command(ioaddr, name, Command0, st)))
566		return status;
567	if ((status = card_send_command(ioaddr, name, Command1, st)))
568		return status;
569	if (st[3] != 0xf1) {
570    	if ((status = sb1000_start_get_set_command(ioaddr, name)))
571			return status;
572		return -EIO;
573	}
574	udelay(1000);
575    return sb1000_start_get_set_command(ioaddr, name);
576}
577
578/* get SB1000 firmware version */
579static inline int
580sb1000_get_firmware_version(const int ioaddr[], const char* name,
581	unsigned char version[], int do_end)
582{
583	unsigned char st[7];
584	int status;
585	const unsigned char Command0[6] = {0x80, 0x23, 0x00, 0x00, 0x00, 0x00};
586
587	if ((status = sb1000_start_get_set_command(ioaddr, name)))
588		return status;
589	if ((status = card_send_command(ioaddr, name, Command0, st)))
590		return status;
591	if (st[0] != 0xa3)
592		return -EIO;
593	version[0] = st[1];
594	version[1] = st[2];
595	if (do_end)
596		return sb1000_end_get_set_command(ioaddr, name);
597	else
598		return 0;
599}
600
601/* get SB1000 frequency */
602static inline int
603sb1000_get_frequency(const int ioaddr[], const char* name, int* frequency)
604{
605	unsigned char st[7];
606	int status;
607	const unsigned char Command0[6] = {0x80, 0x44, 0x00, 0x00, 0x00, 0x00};
608
609	udelay(1000);
610	if ((status = sb1000_start_get_set_command(ioaddr, name)))
611		return status;
612	if ((status = card_send_command(ioaddr, name, Command0, st)))
613		return status;
614	*frequency = ((st[1] << 8 | st[2]) << 8 | st[3]) << 8 | st[4];
615	return sb1000_end_get_set_command(ioaddr, name);
616}
617
618/* set SB1000 frequency */
619static inline int
620sb1000_set_frequency(const int ioaddr[], const char* name, int frequency)
621{
622	unsigned char st[7];
623	int status;
624	unsigned char Command0[6] = {0x80, 0x29, 0x00, 0x00, 0x00, 0x00};
625
626	const int FrequencyLowerLimit = 57000;
627	const int FrequencyUpperLimit = 804000;
628
629	if (frequency < FrequencyLowerLimit || frequency > FrequencyUpperLimit) {
630		printk(KERN_ERR "%s: frequency chosen (%d kHz) is not in the range "
631			"[%d,%d] kHz\n", name, frequency, FrequencyLowerLimit,
632			FrequencyUpperLimit);
633		return -EINVAL;
634	}
635	udelay(1000);
636	if ((status = sb1000_start_get_set_command(ioaddr, name)))
637		return status;
638	Command0[5] = frequency & 0xff;
639	frequency >>= 8;
640	Command0[4] = frequency & 0xff;
641	frequency >>= 8;
642	Command0[3] = frequency & 0xff;
643	frequency >>= 8;
644	Command0[2] = frequency & 0xff;
645	return card_send_command(ioaddr, name, Command0, st);
646}
647
648/* get SB1000 PIDs */
649static inline int
650sb1000_get_PIDs(const int ioaddr[], const char* name, short PID[])
651{
652	unsigned char st[7];
653	int status;
654	const unsigned char Command0[6] = {0x80, 0x40, 0x00, 0x00, 0x00, 0x00};
655	const unsigned char Command1[6] = {0x80, 0x41, 0x00, 0x00, 0x00, 0x00};
656	const unsigned char Command2[6] = {0x80, 0x42, 0x00, 0x00, 0x00, 0x00};
657	const unsigned char Command3[6] = {0x80, 0x43, 0x00, 0x00, 0x00, 0x00};
658
659	udelay(1000);
660	if ((status = sb1000_start_get_set_command(ioaddr, name)))
661		return status;
662
663	if ((status = card_send_command(ioaddr, name, Command0, st)))
664		return status;
665	PID[0] = st[1] << 8 | st[2];
666
667	if ((status = card_send_command(ioaddr, name, Command1, st)))
668		return status;
669	PID[1] = st[1] << 8 | st[2];
670
671	if ((status = card_send_command(ioaddr, name, Command2, st)))
672		return status;
673	PID[2] = st[1] << 8 | st[2];
674
675	if ((status = card_send_command(ioaddr, name, Command3, st)))
676		return status;
677	PID[3] = st[1] << 8 | st[2];
678
679	return sb1000_end_get_set_command(ioaddr, name);
680}
681
682/* set SB1000 PIDs */
683static inline int
684sb1000_set_PIDs(const int ioaddr[], const char* name, const short PID[])
685{
686	unsigned char st[7];
687	short p;
688	int status;
689	unsigned char Command0[6] = {0x80, 0x31, 0x00, 0x00, 0x00, 0x00};
690	unsigned char Command1[6] = {0x80, 0x32, 0x00, 0x00, 0x00, 0x00};
691	unsigned char Command2[6] = {0x80, 0x33, 0x00, 0x00, 0x00, 0x00};
692	unsigned char Command3[6] = {0x80, 0x34, 0x00, 0x00, 0x00, 0x00};
693	const unsigned char Command4[6] = {0x80, 0x2e, 0x00, 0x00, 0x00, 0x00};
694
695	udelay(1000);
696	if ((status = sb1000_start_get_set_command(ioaddr, name)))
697		return status;
698
699	p = PID[0];
700	Command0[3] = p & 0xff;
701	p >>= 8;
702	Command0[2] = p & 0xff;
703	if ((status = card_send_command(ioaddr, name, Command0, st)))
704		return status;
705
706	p = PID[1];
707	Command1[3] = p & 0xff;
708	p >>= 8;
709	Command1[2] = p & 0xff;
710	if ((status = card_send_command(ioaddr, name, Command1, st)))
711		return status;
712
713	p = PID[2];
714	Command2[3] = p & 0xff;
715	p >>= 8;
716	Command2[2] = p & 0xff;
717	if ((status = card_send_command(ioaddr, name, Command2, st)))
718		return status;
719
720	p = PID[3];
721	Command3[3] = p & 0xff;
722	p >>= 8;
723	Command3[2] = p & 0xff;
724	if ((status = card_send_command(ioaddr, name, Command3, st)))
725		return status;
726
727	if ((status = card_send_command(ioaddr, name, Command4, st)))
728		return status;
729	return sb1000_end_get_set_command(ioaddr, name);
730}
731
732
733static inline void
734sb1000_print_status_buffer(const char* name, unsigned char st[],
735	unsigned char buffer[], int size)
736{
737	int i, j, k;
738
739	printk(KERN_DEBUG "%s: status: %02x %02x\n", name, st[0], st[1]);
740	if (buffer[24] == 0x08 && buffer[25] == 0x00 && buffer[26] == 0x45) {
741		printk(KERN_DEBUG "%s: length: %d protocol: %d from: %d.%d.%d.%d:%d "
742			"to %d.%d.%d.%d:%d\n", name, buffer[28] << 8 | buffer[29],
743			buffer[35], buffer[38], buffer[39], buffer[40], buffer[41],
744            buffer[46] << 8 | buffer[47],
745			buffer[42], buffer[43], buffer[44], buffer[45],
746            buffer[48] << 8 | buffer[49]);
747	} else {
748		for (i = 0, k = 0; i < (size + 7) / 8; i++) {
749			printk(KERN_DEBUG "%s: %s", name, i ? "       " : "buffer:");
750			for (j = 0; j < 8 && k < size; j++, k++)
751				printk(" %02x", buffer[k]);
752			printk("\n");
753		}
754	}
755	return;
756}
757
758/*
759 * SB1000 commands for frame rx interrupt
760 */
761/* receive a single frame and assemble datagram
762 * (this is the heart of the interrupt routine)
763 */
764static inline int
765sb1000_rx(struct net_device *dev)
766{
767
768#define FRAMESIZE 184
769	unsigned char st[2], buffer[FRAMESIZE], session_id, frame_id;
770	short dlen;
771	int ioaddr, ns;
772	unsigned int skbsize;
773	struct sk_buff *skb;
774	struct sb1000_private *lp = (struct sb1000_private *)dev->priv;
775	struct net_device_stats *stats = &lp->stats;
776
777	/* SB1000 frame constants */
778	const int FrameSize = FRAMESIZE;
779	const int NewDatagramHeaderSkip = 8;
780	const int NewDatagramHeaderSize = NewDatagramHeaderSkip + 18;
781	const int NewDatagramDataSize = FrameSize - NewDatagramHeaderSize;
782	const int ContDatagramHeaderSkip = 7;
783	const int ContDatagramHeaderSize = ContDatagramHeaderSkip + 1;
784	const int ContDatagramDataSize = FrameSize - ContDatagramHeaderSize;
785	const int TrailerSize = 4;
786
787	ioaddr = dev->base_addr;
788
789	insw(ioaddr, (unsigned short*) st, 1);
790#ifdef XXXDEBUG
791printk("cm0: received: %02x %02x\n", st[0], st[1]);
792#endif /* XXXDEBUG */
793	lp->rx_frames++;
794
795	/* decide if it is a good or bad frame */
796	for (ns = 0; ns < NPIDS; ns++) {
797		session_id = lp->rx_session_id[ns];
798		frame_id = lp->rx_frame_id[ns];
799		if (st[0] == session_id) {
800			if (st[1] == frame_id || (!frame_id && (st[1] & 0xf0) == 0x30)) {
801				goto good_frame;
802			} else if ((st[1] & 0xf0) == 0x30 && (st[0] & 0x40)) {
803				goto skipped_frame;
804			} else {
805				goto bad_frame;
806			}
807		} else if (st[0] == (session_id | 0x40)) {
808			if ((st[1] & 0xf0) == 0x30) {
809				goto skipped_frame;
810			} else {
811				goto bad_frame;
812			}
813		}
814	}
815	goto bad_frame;
816
817skipped_frame:
818	stats->rx_frame_errors++;
819	skb = lp->rx_skb[ns];
820	if (sb1000_debug > 1)
821		printk(KERN_WARNING "%s: missing frame(s): got %02x %02x "
822			"expecting %02x %02x\n", dev->name, st[0], st[1],
823			skb ? session_id : session_id | 0x40, frame_id);
824	if (skb) {
825		dev_kfree_skb(skb);
826		skb = 0;
827	}
828
829good_frame:
830	lp->rx_frame_id[ns] = 0x30 | ((st[1] + 1) & 0x0f);
831	/* new datagram */
832	if (st[0] & 0x40) {
833		/* get data length */
834		insw(ioaddr, buffer, NewDatagramHeaderSize / 2);
835#ifdef XXXDEBUG
836printk("cm0: IP identification: %02x%02x  fragment offset: %02x%02x\n", buffer[30], buffer[31], buffer[32], buffer[33]);
837#endif /* XXXDEBUG */
838		if (buffer[0] != NewDatagramHeaderSkip) {
839			if (sb1000_debug > 1)
840				printk(KERN_WARNING "%s: new datagram header skip error: "
841					"got %02x expecting %02x\n", dev->name, buffer[0],
842					NewDatagramHeaderSkip);
843			stats->rx_length_errors++;
844			insw(ioaddr, buffer, NewDatagramDataSize / 2);
845			goto bad_frame_next;
846		}
847		dlen = ((buffer[NewDatagramHeaderSkip + 3] & 0x0f) << 8 |
848			buffer[NewDatagramHeaderSkip + 4]) - 17;
849		if (dlen > SB1000_MRU) {
850			if (sb1000_debug > 1)
851				printk(KERN_WARNING "%s: datagram length (%d) greater "
852					"than MRU (%d)\n", dev->name, dlen, SB1000_MRU);
853			stats->rx_length_errors++;
854			insw(ioaddr, buffer, NewDatagramDataSize / 2);
855			goto bad_frame_next;
856		}
857		lp->rx_dlen[ns] = dlen;
858		/* compute size to allocate for datagram */
859		skbsize = dlen + FrameSize;
860		if ((skb = alloc_skb(skbsize, GFP_ATOMIC)) == NULL) {
861			if (sb1000_debug > 1)
862				printk(KERN_WARNING "%s: can't allocate %d bytes long "
863					"skbuff\n", dev->name, skbsize);
864			stats->rx_dropped++;
865			insw(ioaddr, buffer, NewDatagramDataSize / 2);
866			goto dropped_frame;
867		}
868		skb->dev = dev;
869		skb->mac.raw = skb->data;
870		skb->protocol = (unsigned short) buffer[NewDatagramHeaderSkip + 16];
871		insw(ioaddr, skb_put(skb, NewDatagramDataSize),
872			NewDatagramDataSize / 2);
873		lp->rx_skb[ns] = skb;
874	} else {
875		/* continuation of previous datagram */
876		insw(ioaddr, buffer, ContDatagramHeaderSize / 2);
877		if (buffer[0] != ContDatagramHeaderSkip) {
878			if (sb1000_debug > 1)
879				printk(KERN_WARNING "%s: cont datagram header skip error: "
880					"got %02x expecting %02x\n", dev->name, buffer[0],
881					ContDatagramHeaderSkip);
882			stats->rx_length_errors++;
883			insw(ioaddr, buffer, ContDatagramDataSize / 2);
884			goto bad_frame_next;
885		}
886		skb = lp->rx_skb[ns];
887		insw(ioaddr, skb_put(skb, ContDatagramDataSize),
888			ContDatagramDataSize / 2);
889		dlen = lp->rx_dlen[ns];
890	}
891	if (skb->len < dlen + TrailerSize) {
892		lp->rx_session_id[ns] &= ~0x40;
893		return 0;
894	}
895
896	/* datagram completed: send to upper level */
897	skb_trim(skb, dlen);
898	netif_rx(skb);
899	dev->last_rx = jiffies;
900	stats->rx_bytes+=dlen;
901	stats->rx_packets++;
902	lp->rx_skb[ns] = 0;
903	lp->rx_session_id[ns] |= 0x40;
904	return 0;
905
906bad_frame:
907	insw(ioaddr, buffer, FrameSize / 2);
908	if (sb1000_debug > 1)
909		printk(KERN_WARNING "%s: frame error: got %02x %02x\n",
910			dev->name, st[0], st[1]);
911	stats->rx_frame_errors++;
912bad_frame_next:
913	if (sb1000_debug > 2)
914		sb1000_print_status_buffer(dev->name, st, buffer, FrameSize);
915dropped_frame:
916	stats->rx_errors++;
917	if (ns < NPIDS) {
918		if ((skb = lp->rx_skb[ns])) {
919			dev_kfree_skb(skb);
920			lp->rx_skb[ns] = 0;
921		}
922		lp->rx_session_id[ns] |= 0x40;
923	}
924	return -1;
925}
926
927static inline void
928sb1000_error_dpc(struct net_device *dev)
929{
930	char *name;
931	unsigned char st[5];
932	int ioaddr[2];
933	struct sb1000_private *lp = (struct sb1000_private *)dev->priv;
934	const unsigned char Command0[6] = {0x80, 0x26, 0x00, 0x00, 0x00, 0x00};
935	const int ErrorDpcCounterInitialize = 200;
936
937	ioaddr[0] = dev->base_addr;
938	/* rmem_end holds the second I/O address - fv */
939	ioaddr[1] = dev->rmem_end;
940	name = dev->name;
941
942	sb1000_wait_for_ready_clear(ioaddr, name);
943	sb1000_send_command(ioaddr, name, Command0);
944	sb1000_wait_for_ready(ioaddr, name);
945	sb1000_read_status(ioaddr, st);
946	if (st[1] & 0x10)
947		lp->rx_error_dpc_count = ErrorDpcCounterInitialize;
948	return;
949}
950
951
952/*
953 * Linux interface functions
954 */
955static int
956sb1000_open(struct net_device *dev)
957{
958	char *name;
959	int ioaddr[2], status;
960	struct sb1000_private *lp = (struct sb1000_private *)dev->priv;
961	const unsigned short FirmwareVersion[] = {0x01, 0x01};
962
963	ioaddr[0] = dev->base_addr;
964	/* rmem_end holds the second I/O address - fv */
965	ioaddr[1] = dev->rmem_end;
966	name = dev->name;
967
968	/* initialize sb1000 */
969	if ((status = sb1000_reset(ioaddr, name)))
970		return status;
971	nicedelay(200000);
972	if ((status = sb1000_check_CRC(ioaddr, name)))
973		return status;
974
975	/* initialize private data before board can catch interrupts */
976	lp->rx_skb[0] = NULL;
977	lp->rx_skb[1] = NULL;
978	lp->rx_skb[2] = NULL;
979	lp->rx_skb[3] = NULL;
980	lp->rx_dlen[0] = 0;
981	lp->rx_dlen[1] = 0;
982	lp->rx_dlen[2] = 0;
983	lp->rx_dlen[3] = 0;
984	lp->rx_frames = 0;
985	lp->rx_error_count = 0;
986	lp->rx_error_dpc_count = 0;
987	lp->rx_session_id[0] = 0x50;
988	lp->rx_session_id[0] = 0x48;
989	lp->rx_session_id[0] = 0x44;
990	lp->rx_session_id[0] = 0x42;
991	lp->rx_frame_id[0] = 0;
992	lp->rx_frame_id[1] = 0;
993	lp->rx_frame_id[2] = 0;
994	lp->rx_frame_id[3] = 0;
995	if (request_irq(dev->irq, &sb1000_interrupt, 0, "sb1000", dev)) {
996		return -EAGAIN;
997	}
998
999	if (sb1000_debug > 2)
1000		printk(KERN_DEBUG "%s: Opening, IRQ %d\n", name, dev->irq);
1001
1002	/* Activate board and check firmware version */
1003	udelay(1000);
1004	if ((status = sb1000_activate(ioaddr, name)))
1005		return status;
1006	udelay(0);
1007	if ((status = sb1000_get_firmware_version(ioaddr, name, version, 0)))
1008		return status;
1009	if (version[0] != FirmwareVersion[0] || version[1] != FirmwareVersion[1])
1010		printk(KERN_WARNING "%s: found firmware version %x.%02x "
1011			"(should be %x.%02x)\n", name, version[0], version[1],
1012			FirmwareVersion[0], FirmwareVersion[1]);
1013
1014
1015	netif_start_queue(dev);
1016	return 0;					/* Always succeed */
1017}
1018
1019static int sb1000_dev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1020{
1021	char* name;
1022	unsigned char version[2];
1023	short PID[4];
1024	int ioaddr[2], status, frequency;
1025	unsigned int stats[5];
1026	struct sb1000_private *lp = (struct sb1000_private *)dev->priv;
1027
1028	if (!(dev && dev->flags & IFF_UP))
1029		return -ENODEV;
1030
1031	ioaddr[0] = dev->base_addr;
1032	/* rmem_end holds the second I/O address - fv */
1033	ioaddr[1] = dev->rmem_end;
1034	name = dev->name;
1035
1036	switch (cmd) {
1037	case SIOCGCMSTATS:		/* get statistics */
1038		stats[0] = lp->stats.rx_bytes;
1039		stats[1] = lp->rx_frames;
1040		stats[2] = lp->stats.rx_packets;
1041		stats[3] = lp->stats.rx_errors;
1042		stats[4] = lp->stats.rx_dropped;
1043		if(copy_to_user(ifr->ifr_data, stats, sizeof(stats)))
1044			return -EFAULT;
1045		status = 0;
1046		break;
1047
1048	case SIOCGCMFIRMWARE:		/* get firmware version */
1049		if ((status = sb1000_get_firmware_version(ioaddr, name, version, 1)))
1050			return status;
1051		if(copy_to_user(ifr->ifr_data, version, sizeof(version)))
1052			return -EFAULT;
1053		break;
1054
1055	case SIOCGCMFREQUENCY:		/* get frequency */
1056		if ((status = sb1000_get_frequency(ioaddr, name, &frequency)))
1057			return status;
1058		if(put_user(frequency, (int*) ifr->ifr_data))
1059			return -EFAULT;
1060		break;
1061
1062	case SIOCSCMFREQUENCY:		/* set frequency */
1063		if (!capable(CAP_NET_ADMIN))
1064			return -EPERM;
1065		if(get_user(frequency, (int*) ifr->ifr_data))
1066			return -EFAULT;
1067		if ((status = sb1000_set_frequency(ioaddr, name, frequency)))
1068			return status;
1069		break;
1070
1071	case SIOCGCMPIDS:			/* get PIDs */
1072		if ((status = sb1000_get_PIDs(ioaddr, name, PID)))
1073			return status;
1074		if(copy_to_user(ifr->ifr_data, PID, sizeof(PID)))
1075			return -EFAULT;
1076		break;
1077
1078	case SIOCSCMPIDS:			/* set PIDs */
1079		if (!capable(CAP_NET_ADMIN))
1080			return -EPERM;
1081		if(copy_from_user(PID, ifr->ifr_data, sizeof(PID)))
1082			return -EFAULT;
1083		if ((status = sb1000_set_PIDs(ioaddr, name, PID)))
1084			return status;
1085		/* set session_id, frame_id and pkt_type too */
1086		lp->rx_session_id[0] = 0x50 | (PID[0] & 0x0f);
1087		lp->rx_session_id[1] = 0x48;
1088		lp->rx_session_id[2] = 0x44;
1089		lp->rx_session_id[3] = 0x42;
1090		lp->rx_frame_id[0] = 0;
1091		lp->rx_frame_id[1] = 0;
1092		lp->rx_frame_id[2] = 0;
1093		lp->rx_frame_id[3] = 0;
1094		break;
1095
1096	default:
1097		status = -EINVAL;
1098		break;
1099	}
1100	return status;
1101}
1102
1103/* transmit function: do nothing since SB1000 can't send anything out */
1104static int
1105sb1000_start_xmit(struct sk_buff *skb, struct net_device *dev)
1106{
1107	printk(KERN_WARNING "%s: trying to transmit!!!\n", dev->name);
1108	/* sb1000 can't xmit datagrams */
1109	dev_kfree_skb(skb);
1110	return 0;
1111}
1112
1113/* SB1000 interrupt handler. */
1114static void sb1000_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1115{
1116	char *name;
1117	unsigned char st;
1118	int ioaddr[2];
1119	struct net_device *dev = (struct net_device *) dev_id;
1120	struct sb1000_private *lp = (struct sb1000_private *)dev->priv;
1121
1122	const unsigned char Command0[6] = {0x80, 0x2c, 0x00, 0x00, 0x00, 0x00};
1123	const unsigned char Command1[6] = {0x80, 0x2e, 0x00, 0x00, 0x00, 0x00};
1124	const int MaxRxErrorCount = 6;
1125
1126	if (dev == NULL) {
1127		printk(KERN_ERR "sb1000_interrupt(): irq %d for unknown device.\n",
1128			irq);
1129		return;
1130	}
1131
1132	ioaddr[0] = dev->base_addr;
1133	/* rmem_end holds the second I/O address - fv */
1134	ioaddr[1] = dev->rmem_end;
1135	name = dev->name;
1136
1137	/* is it a good interrupt? */
1138	st = inb(ioaddr[1] + 6);
1139	if (!(st & 0x08 && st & 0x20)) {
1140		return;
1141	}
1142
1143	if (sb1000_debug > 3)
1144		printk(KERN_DEBUG "%s: entering interrupt\n", dev->name);
1145
1146	st = inb(ioaddr[0] + 7);
1147	if (sb1000_rx(dev))
1148		lp->rx_error_count++;
1149#ifdef SB1000_DELAY
1150	udelay(SB1000_DELAY);
1151#endif /* SB1000_DELAY */
1152	sb1000_issue_read_command(ioaddr, name);
1153	if (st & 0x01) {
1154		sb1000_error_dpc(dev);
1155		sb1000_issue_read_command(ioaddr, name);
1156	}
1157	if (lp->rx_error_dpc_count && !(--lp->rx_error_dpc_count)) {
1158		sb1000_wait_for_ready_clear(ioaddr, name);
1159		sb1000_send_command(ioaddr, name, Command0);
1160		sb1000_wait_for_ready(ioaddr, name);
1161		sb1000_issue_read_command(ioaddr, name);
1162	}
1163	if (lp->rx_error_count >= MaxRxErrorCount) {
1164		sb1000_wait_for_ready_clear(ioaddr, name);
1165		sb1000_send_command(ioaddr, name, Command1);
1166		sb1000_wait_for_ready(ioaddr, name);
1167		sb1000_issue_read_command(ioaddr, name);
1168		lp->rx_error_count = 0;
1169	}
1170
1171	return;
1172}
1173
1174static struct net_device_stats *sb1000_stats(struct net_device *dev)
1175{
1176	struct sb1000_private *lp = (struct sb1000_private *)dev->priv;
1177	return &lp->stats;
1178}
1179
1180static int sb1000_close(struct net_device *dev)
1181{
1182	int i;
1183	int ioaddr[2];
1184	struct sb1000_private *lp = (struct sb1000_private *)dev->priv;
1185
1186	if (sb1000_debug > 2)
1187		printk(KERN_DEBUG "%s: Shutting down sb1000.\n", dev->name);
1188
1189	netif_stop_queue(dev);
1190
1191	ioaddr[0] = dev->base_addr;
1192	/* rmem_end holds the second I/O address - fv */
1193	ioaddr[1] = dev->rmem_end;
1194
1195	free_irq(dev->irq, dev);
1196	/* If we don't do this, we can't re-insmod it later. */
1197	release_region(ioaddr[1], SB1000_IO_EXTENT);
1198	release_region(ioaddr[0], SB1000_IO_EXTENT);
1199
1200	/* free rx_skb's if needed */
1201	for (i=0; i<4; i++) {
1202		if (lp->rx_skb[i]) {
1203			dev_kfree_skb(lp->rx_skb[i]);
1204		}
1205	}
1206	return 0;
1207}
1208
1209#ifdef MODULE
1210MODULE_AUTHOR("Franco Venturi <fventuri@mediaone.net>");
1211MODULE_DESCRIPTION("General Instruments SB1000 driver");
1212MODULE_LICENSE("GPL");
1213
1214MODULE_PARM(io, "1-2i");
1215MODULE_PARM(irq, "i");
1216MODULE_PARM_DESC(io, "SB1000 I/O base addresses");
1217MODULE_PARM_DESC(irq, "SB1000 IRQ number");
1218
1219static struct net_device dev_sb1000;
1220static int io[2];
1221static int irq;
1222
1223int
1224init_module(void)
1225{
1226	int i;
1227	for (i = 0; i < 100; i++) {
1228		sprintf(dev_sb1000.name, "cm%d", i);
1229		if (dev_get(dev_sb1000.name) == 0) break;
1230	}
1231	if (i == 100) {
1232		printk(KERN_ERR "sb1000: can't register any device cm<n>\n");
1233		return -ENFILE;
1234	}
1235	dev_sb1000.init = sb1000_probe;
1236	dev_sb1000.base_addr = io[0];
1237	/* rmem_end holds the second I/O address - fv */
1238	dev_sb1000.rmem_end = io[1];
1239	dev_sb1000.irq = irq;
1240	if (register_netdev(&dev_sb1000) != 0) {
1241		printk(KERN_ERR "sb1000: failed to register device (io: %03x,%03x   "
1242			"irq: %d)\n", io[0], io[1], irq);
1243		return -EIO;
1244	}
1245	return 0;
1246}
1247
1248void cleanup_module(void)
1249{
1250	unregister_netdev(&dev_sb1000);
1251	release_region(dev_sb1000.base_addr, 16);
1252	release_region(dev_sb1000.rmem_end, 16);
1253	kfree(dev_sb1000.priv);
1254	dev_sb1000.priv = NULL;
1255}
1256#endif /* MODULE */
1257
1258/*
1259 * Local variables:
1260 *  compile-command: "gcc -D__KERNEL__ -DMODULE -Wall -Wstrict-prototypes -O -m486 -c sb1000.c"
1261 *  version-control: t
1262 *  tab-width: 4
1263 *  c-basic-offset: 4
1264 * End:
1265 */
1266