1/*
2 * Compaq Hot Plug Controller Driver
3 *
4 * Copyright (c) 1995,2001 Compaq Computer Corporation
5 * Copyright (c) 2001 Greg Kroah-Hartman (greg@kroah.com)
6 * Copyright (c) 2001 IBM Corp.
7 *
8 * All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18 * NON INFRINGEMENT.  See the GNU General Public License for more
19 * details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 *
25 * Send feedback to <greg@kroah.com>
26 *
27 */
28
29#include <linux/config.h>
30#include <linux/module.h>
31#include <linux/kernel.h>
32#include <linux/types.h>
33#include <linux/slab.h>
34#include <linux/proc_fs.h>
35#include <linux/pci.h>
36#include "cpqphp.h"
37#include "cpqphp_nvram.h"
38#include "../../arch/i386/kernel/pci-i386.h"	/* horrible hack showing how processor dependant we are... */
39
40
41u8 cpqhp_nic_irq;
42u8 cpqhp_disk_irq;
43
44static u16 unused_IRQ;
45
46
47static int is_pci_dev_in_use(struct pci_dev* dev)
48{
49	/*
50	 * dev->driver will be set if the device is in use by a new-style
51	 * driver -- otherwise, check the device's regions to see if any
52	 * driver has claimed them
53	 */
54
55	int i, inuse=0;
56
57	if (dev->driver) return 1; //assume driver feels responsible
58
59	for (i = 0; !dev->driver && !inuse && (i < 6); i++) {
60		if (!pci_resource_start(dev, i))
61			continue;
62
63		if (pci_resource_flags(dev, i) & IORESOURCE_IO)
64			inuse = check_region(pci_resource_start(dev, i),
65					     pci_resource_len(dev, i));
66		else if (pci_resource_flags(dev, i) & IORESOURCE_MEM)
67			inuse = check_mem_region(pci_resource_start(dev, i),
68						 pci_resource_len(dev, i));
69	}
70
71	return inuse;
72
73}
74
75
76static int pci_hp_remove_device(struct pci_dev *dev)
77{
78	if (is_pci_dev_in_use(dev)) {
79		err("***Cannot safely power down device -- "
80		       "it appears to be in use***\n");
81		return -EBUSY;
82	}
83	pci_remove_device(dev);
84	return 0;
85}
86
87
88/*
89 * detect_HRT_floating_pointer
90 *
91 * find the Hot Plug Resource Table in the specified region of memory.
92 *
93 */
94static void *detect_HRT_floating_pointer(void *begin, void *end)
95{
96	void *fp;
97	void *endp;
98	u8 temp1, temp2, temp3, temp4;
99	int status = 0;
100
101	endp = (end - sizeof(struct hrt) + 1);
102
103	for (fp = begin; fp <= endp; fp += 16) {
104		temp1 = readb(fp + SIG0);
105		temp2 = readb(fp + SIG1);
106		temp3 = readb(fp + SIG2);
107		temp4 = readb(fp + SIG3);
108		if (temp1 == '$' &&
109		    temp2 == 'H' &&
110		    temp3 == 'R' &&
111		    temp4 == 'T') {
112			status = 1;
113			break;
114		}
115	}
116
117	if (!status)
118		fp = NULL;
119
120	dbg("Discovered Hotplug Resource Table at %p\n", fp);
121	return fp;
122}
123
124static int configure_visit_pci_dev (struct pci_dev_wrapped *wrapped_dev, struct pci_bus_wrapped *wrapped_bus)
125{
126	struct pci_bus* bus = wrapped_bus->bus;
127	struct pci_dev* dev = wrapped_dev->dev;
128	struct pci_func *temp_func;
129	int i=0;
130
131	//We need to fix up the hotplug function representation with the linux representation
132	do {
133		temp_func = cpqhp_slot_find(dev->bus->number, dev->devfn >> 3, i++);
134	} while (temp_func && (temp_func->function != (dev->devfn & 0x07)));
135
136	if (temp_func) {
137		temp_func->pci_dev = dev;
138	} else {
139		//We did not even find a hotplug rep of the function, create it
140		//This code might be taken out if we can guarantee the creation of functions
141		//in parallel (hotplug and Linux at the same time).
142		dbg("@@@@@@@@@@@ cpqhp_slot_create in "__FUNCTION__"\n");
143		temp_func = cpqhp_slot_create(bus->number);
144		if (temp_func == NULL)
145			return -ENOMEM;
146		temp_func->pci_dev = dev;
147	}
148
149	//Create /proc/bus/pci proc entry for this device and bus device is on
150	//Notify the drivers of the change
151	if (temp_func->pci_dev) {
152		pci_proc_attach_device(temp_func->pci_dev);
153		pci_announce_device_to_drivers(temp_func->pci_dev);
154	}
155
156	return 0;
157}
158
159
160static int unconfigure_visit_pci_dev_phase2 (struct pci_dev_wrapped *wrapped_dev, struct pci_bus_wrapped *wrapped_bus)
161{
162	struct pci_dev* dev = wrapped_dev->dev;
163
164	struct pci_func *temp_func;
165	int i=0;
166
167	//We need to remove the hotplug function representation with the linux representation
168	do {
169		temp_func = cpqhp_slot_find(dev->bus->number, dev->devfn >> 3, i++);
170		if (temp_func) {
171			dbg("temp_func->function = %d\n", temp_func->function);
172		}
173	} while (temp_func && (temp_func->function != (dev->devfn & 0x07)));
174
175	//Now, remove the Linux Representation
176	if (dev) {
177		if (pci_hp_remove_device(dev) == 0) {
178			kfree(dev); //Now, remove
179		} else {
180			return -1; // problems while freeing, abort visitation
181		}
182	}
183
184	if (temp_func) {
185		temp_func->pci_dev = NULL;
186	} else {
187		dbg("No pci_func representation for bus, devfn = %d, %x\n", dev->bus->number, dev->devfn);
188	}
189
190	return 0;
191}
192
193
194static int unconfigure_visit_pci_bus_phase2 (struct pci_bus_wrapped *wrapped_bus, struct pci_dev_wrapped *wrapped_dev)
195{
196	struct pci_bus* bus = wrapped_bus->bus;
197
198	//The cleanup code for proc entries regarding buses should be in the kernel...
199	if (bus->procdir)
200		dbg("detach_pci_bus %s\n", bus->procdir->name);
201	pci_proc_detach_bus(bus);
202	// The cleanup code should live in the kernel...
203	bus->self->subordinate = NULL;
204	// unlink from parent bus
205	list_del(&bus->node);
206
207	// Now, remove
208	if (bus)
209		kfree(bus);
210
211	return 0;
212}
213
214
215static int unconfigure_visit_pci_dev_phase1 (struct pci_dev_wrapped *wrapped_dev, struct pci_bus_wrapped *wrapped_bus)
216{
217	struct pci_dev* dev = wrapped_dev->dev;
218
219	dbg("attempting removal of driver for device (%x, %x, %x)\n", dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn));
220	//Now, remove the Linux Driver Representation
221	if (dev->driver) {
222		if (dev->driver->remove) {
223			dev->driver->remove(dev);
224			dbg("driver was properly removed\n");
225		}
226		dev->driver = NULL;
227	}
228
229	return is_pci_dev_in_use(dev);
230}
231
232
233static struct pci_visit configure_functions = {
234	visit_pci_dev:		configure_visit_pci_dev,
235};
236
237
238static struct pci_visit unconfigure_functions_phase1 = {
239	post_visit_pci_dev:	unconfigure_visit_pci_dev_phase1
240};
241
242static struct pci_visit unconfigure_functions_phase2 = {
243	post_visit_pci_bus:	unconfigure_visit_pci_bus_phase2,
244	post_visit_pci_dev:	unconfigure_visit_pci_dev_phase2
245};
246
247
248int cpqhp_configure_device (struct controller* ctrl, struct pci_func* func)
249{
250	unsigned char bus;
251	struct pci_dev dev0;
252	struct pci_bus *child;
253	struct pci_dev* temp;
254	int rc = 0;
255
256	struct pci_dev_wrapped wrapped_dev;
257	struct pci_bus_wrapped wrapped_bus;
258	memset(&wrapped_dev, 0, sizeof(struct pci_dev_wrapped));
259	memset(&wrapped_bus, 0, sizeof(struct pci_bus_wrapped));
260
261	memset(&dev0, 0, sizeof(struct pci_dev));
262
263	if (func->pci_dev == NULL)
264		func->pci_dev = pci_find_slot(func->bus, (func->device << 3) | (func->function & 0x7));
265
266	//Still NULL ? Well then scan for it !
267	if (func->pci_dev == NULL) {
268		dbg("INFO: pci_dev still null\n");
269		dev0.bus = ctrl->pci_dev->bus;
270		dev0.devfn = (func->device << 3) + (func->function & 0x7);
271		dev0.sysdata = ctrl->pci_dev->sysdata;
272
273		//this will generate pci_dev structures for all functions, but we will only call this case when lookup fails
274		func->pci_dev = pci_scan_slot(&dev0);
275		if (func->pci_dev == NULL) {
276			dbg("ERROR: pci_dev still null\n");
277			return 0;
278		}
279	}
280
281	if (func->pci_dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
282		pci_read_config_byte(func->pci_dev, PCI_SECONDARY_BUS, &bus);
283		child = (struct pci_bus*) pci_add_new_bus(func->pci_dev->bus, (func->pci_dev), bus);
284		pci_do_scan_bus(child);
285
286	}
287
288	temp = func->pci_dev;
289
290	if (temp) {
291		wrapped_dev.dev = temp;
292		wrapped_bus.bus = temp->bus;
293		rc = pci_visit_dev(&configure_functions, &wrapped_dev, &wrapped_bus);
294	}
295	return rc;
296}
297
298
299int cpqhp_unconfigure_device(struct pci_func* func)
300{
301	int rc = 0;
302	int j;
303	struct pci_dev_wrapped wrapped_dev;
304	struct pci_bus_wrapped wrapped_bus;
305
306	memset(&wrapped_dev, 0, sizeof(struct pci_dev_wrapped));
307	memset(&wrapped_bus, 0, sizeof(struct pci_bus_wrapped));
308
309	dbg(__FUNCTION__": bus/dev/func = %x/%x/%x\n",func->bus, func->device, func->function);
310
311	for (j=0; j<8 ; j++) {
312		struct pci_dev* temp = pci_find_slot(func->bus, (func->device << 3) | j);
313		if (temp) {
314			wrapped_dev.dev = temp;
315			wrapped_bus.bus = temp->bus;
316			rc = pci_visit_dev(&unconfigure_functions_phase1, &wrapped_dev, &wrapped_bus);
317			if (rc)
318				break;
319
320			rc = pci_visit_dev(&unconfigure_functions_phase2, &wrapped_dev, &wrapped_bus);
321			if (rc)
322				break;
323		}
324	}
325	return rc;
326}
327
328static int PCI_RefinedAccessConfig(struct pci_ops *ops, u8 bus, u8 device, u8 function, u8 offset, u32 *value)
329{
330	u32 vendID = 0;
331
332	if (pci_read_config_dword_nodev (ops, bus, device, function, PCI_VENDOR_ID, &vendID) == -1)
333		return -1;
334	if (vendID == 0xffffffff)
335		return -1;
336	return pci_read_config_dword_nodev (ops, bus, device, function, offset, value);
337}
338
339
340/*
341 * cpqhp_set_irq
342 *
343 * @bus_num: bus number of PCI device
344 * @dev_num: device number of PCI device
345 * @slot: pointer to u8 where slot number will be returned
346 */
347int cpqhp_set_irq (u8 bus_num, u8 dev_num, u8 int_pin, u8 irq_num)
348{
349	int rc;
350	u16 temp_word;
351	struct pci_dev fakedev;
352	struct pci_bus fakebus;
353
354	fakedev.devfn = dev_num << 3;
355	fakedev.bus = &fakebus;
356	fakebus.number = bus_num;
357	dbg(__FUNCTION__": dev %d, bus %d, pin %d, num %d\n",
358	    dev_num, bus_num, int_pin, irq_num);
359	rc = pcibios_set_irq_routing(&fakedev, int_pin - 0x0a, irq_num);
360	dbg(__FUNCTION__":rc %d\n", rc);
361	if (!rc)
362		return !rc;
363
364	// set the Edge Level Control Register (ELCR)
365	temp_word = inb(0x4d0);
366	temp_word |= inb(0x4d1) << 8;
367
368	temp_word |= 0x01 << irq_num;
369
370	// This should only be for x86 as it sets the Edge Level Control Register
371	outb((u8) (temp_word & 0xFF), 0x4d0);
372	outb((u8) ((temp_word & 0xFF00) >> 8), 0x4d1);
373
374	return 0;
375}
376
377
378/*
379 * WTF??? This function isn't in the code, yet a function calls it, but the
380 * compiler optimizes it away?  strange.  Here as a placeholder to keep the
381 * compiler happy.
382 */
383static int PCI_ScanBusNonBridge (u8 bus, u8 device)
384{
385	return 0;
386}
387
388static int PCI_ScanBusForNonBridge(struct controller *ctrl, u8 bus_num, u8 * dev_num)
389{
390	u8 tdevice;
391	u32 work;
392	u8 tbus;
393
394	for (tdevice = 0; tdevice < 0x100; tdevice++) {
395		//Scan for access first
396		if (PCI_RefinedAccessConfig(ctrl->pci_ops, bus_num, tdevice >> 3, tdevice & 0x7, 0x08, &work) == -1)
397			continue;
398		dbg("Looking for nonbridge bus_num %d dev_num %d\n", bus_num, tdevice);
399		//Yep we got one. Not a bridge ?
400		if ((work >> 8) != PCI_TO_PCI_BRIDGE_CLASS) {
401			*dev_num = tdevice;
402			dbg("found it !\n");
403			return 0;
404		}
405	}
406	for (tdevice = 0; tdevice < 0x100; tdevice++) {
407		//Scan for access first
408		if (PCI_RefinedAccessConfig(ctrl->pci_ops, bus_num, tdevice >> 3, tdevice & 0x7, 0x08, &work) == -1)
409			continue;
410		dbg("Looking for bridge bus_num %d dev_num %d\n", bus_num, tdevice);
411		//Yep we got one. bridge ?
412		if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
413			pci_read_config_byte_nodev (ctrl->pci_ops, tbus, tdevice, 0, PCI_SECONDARY_BUS, &tbus);
414			dbg("Recurse on bus_num %d tdevice %d\n", tbus, tdevice);
415			if (PCI_ScanBusNonBridge(tbus, tdevice) == 0)
416				return 0;
417		}
418	}
419
420	return -1;
421}
422
423
424static int PCI_GetBusDevHelper(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot, u8 nobridge)
425{
426	struct irq_routing_table *PCIIRQRoutingInfoLength;
427	long len;
428	long loop;
429	u32 work;
430
431	u8 tbus, tdevice, tslot;
432
433	PCIIRQRoutingInfoLength = pcibios_get_irq_routing_table();
434
435	len = (PCIIRQRoutingInfoLength->size -
436	       sizeof(struct irq_routing_table)) / sizeof(struct irq_info);
437	// Make sure I got at least one entry
438	if (len == 0) {
439		if (PCIIRQRoutingInfoLength != NULL)
440			kfree(PCIIRQRoutingInfoLength );
441		return -1;
442	}
443
444	for (loop = 0; loop < len; ++loop) {
445		tbus = PCIIRQRoutingInfoLength->slots[loop].bus;
446		tdevice = PCIIRQRoutingInfoLength->slots[loop].devfn;
447		tslot = PCIIRQRoutingInfoLength->slots[loop].slot;
448
449		if (tslot == slot) {
450			*bus_num = tbus;
451			*dev_num = tdevice;
452			pci_read_config_dword_nodev (ctrl->pci_ops, *bus_num, *dev_num >> 3, *dev_num & 0x7, PCI_VENDOR_ID, &work);
453			if (!nobridge || (work == 0xffffffff)) {
454				if (PCIIRQRoutingInfoLength != NULL)
455					kfree(PCIIRQRoutingInfoLength );
456				return 0;
457			}
458
459			dbg("bus_num %d dev_num %d func_num %d\n", *bus_num, *dev_num >> 3, *dev_num & 0x7);
460			pci_read_config_dword_nodev (ctrl->pci_ops, *bus_num, *dev_num >> 3, *dev_num & 0x7, PCI_CLASS_REVISION, &work);
461			dbg("work >> 8 (%x) = BRIDGE (%x)\n", work >> 8, PCI_TO_PCI_BRIDGE_CLASS);
462
463			if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
464				pci_read_config_byte_nodev (ctrl->pci_ops, *bus_num, *dev_num >> 3, *dev_num & 0x7, PCI_SECONDARY_BUS, &tbus);
465				dbg("Scan bus for Non Bridge: bus %d\n", tbus);
466				if (PCI_ScanBusForNonBridge(ctrl, tbus, dev_num) == 0) {
467					*bus_num = tbus;
468					if (PCIIRQRoutingInfoLength != NULL)
469						kfree(PCIIRQRoutingInfoLength );
470					return 0;
471				}
472			} else {
473				if (PCIIRQRoutingInfoLength != NULL)
474					kfree(PCIIRQRoutingInfoLength );
475				return 0;
476			}
477
478		}
479	}
480	if (PCIIRQRoutingInfoLength != NULL)
481		kfree(PCIIRQRoutingInfoLength );
482	return -1;
483}
484
485
486int cpqhp_get_bus_dev (struct controller *ctrl, u8 * bus_num, u8 * dev_num, u8 slot)
487{
488	return PCI_GetBusDevHelper(ctrl, bus_num, dev_num, slot, 0);	//plain (bridges allowed)
489}
490
491
492/* More PCI configuration routines; this time centered around hotplug controller */
493
494
495/*
496 * cpqhp_save_config
497 *
498 * Reads configuration for all slots in a PCI bus and saves info.
499 *
500 * Note:  For non-hot plug busses, the slot # saved is the device #
501 *
502 * returns 0 if success
503 */
504int cpqhp_save_config(struct controller *ctrl, int busnumber, int is_hot_plug)
505{
506	long rc;
507	u8 class_code;
508	u8 header_type;
509	u32 ID;
510	u8 secondary_bus;
511	struct pci_func *new_slot;
512	int sub_bus;
513	int FirstSupported;
514	int LastSupported;
515	int max_functions;
516	int function;
517	u8 DevError;
518	int device = 0;
519	int cloop = 0;
520	int stop_it;
521	int index;
522
523	//              Decide which slots are supported
524
525	if (is_hot_plug) {
526		//*********************************
527		// is_hot_plug is the slot mask
528		//*********************************
529		FirstSupported = is_hot_plug >> 4;
530		LastSupported = FirstSupported + (is_hot_plug & 0x0F) - 1;
531	} else {
532		FirstSupported = 0;
533		LastSupported = 0x1F;
534	}
535
536	//     Save PCI configuration space for all devices in supported slots
537
538	for (device = FirstSupported; device <= LastSupported; device++) {
539		ID = 0xFFFFFFFF;
540		rc = pci_read_config_dword_nodev (ctrl->pci_ops, busnumber, device, 0, PCI_VENDOR_ID, &ID);
541
542		if (ID != 0xFFFFFFFF) {	  //  device in slot
543			rc = pci_read_config_byte_nodev (ctrl->pci_ops, busnumber, device, 0, 0x0B, &class_code);
544			if (rc)
545				return rc;
546
547			rc = pci_read_config_byte_nodev (ctrl->pci_ops, busnumber, device, 0, PCI_HEADER_TYPE, &header_type);
548			if (rc)
549				return rc;
550
551			// If multi-function device, set max_functions to 8
552			if (header_type & 0x80)
553				max_functions = 8;
554			else
555				max_functions = 1;
556
557			function = 0;
558
559			do {
560				DevError = 0;
561
562				if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {   // P-P Bridge
563					//  Recurse the subordinate bus
564					//  get the subordinate bus number
565					rc = pci_read_config_byte_nodev (ctrl->pci_ops, busnumber, device, function, PCI_SECONDARY_BUS, &secondary_bus);
566					if (rc) {
567						return rc;
568					} else {
569						sub_bus = (int) secondary_bus;
570
571						// Save secondary bus cfg spc
572						// with this recursive call.
573						rc = cpqhp_save_config(ctrl, sub_bus, 0);
574
575						if (rc)
576							return rc;
577					}
578				}
579
580				index = 0;
581				new_slot = cpqhp_slot_find(busnumber, device, index++);
582				while (new_slot &&
583				       (new_slot->function != (u8) function))
584					new_slot = cpqhp_slot_find(busnumber, device, index++);
585
586				if (!new_slot) {
587					// Setup slot structure.
588					new_slot = cpqhp_slot_create(busnumber);
589
590					if (new_slot == NULL)
591						return(1);
592				}
593
594				new_slot->bus = (u8) busnumber;
595				new_slot->device = (u8) device;
596				new_slot->function = (u8) function;
597				new_slot->is_a_board = 1;
598				new_slot->switch_save = 0x10;
599				// In case of unsupported board
600				new_slot->status = DevError;
601				new_slot->pci_dev = pci_find_slot(new_slot->bus, (new_slot->device << 3) | new_slot->function);
602
603				for (cloop = 0; cloop < 0x20; cloop++) {
604					rc = pci_read_config_dword_nodev (ctrl->pci_ops, busnumber, device, function, cloop << 2, (u32 *) & (new_slot-> config_space [cloop]));
605					if (rc)
606						return rc;
607				}
608
609				function++;
610
611				stop_it = 0;
612
613				//  this loop skips to the next present function
614				//  reading in Class Code and Header type.
615
616				while ((function < max_functions)&&(!stop_it)) {
617					rc = pci_read_config_dword_nodev (ctrl->pci_ops, busnumber, device, function, PCI_VENDOR_ID, &ID);
618					if (ID == 0xFFFFFFFF) {	 // nothing there.
619						function++;
620					} else {  // Something there
621						rc = pci_read_config_byte_nodev (ctrl->pci_ops, busnumber, device, function, 0x0B, &class_code);
622						if (rc)
623							return rc;
624
625						rc = pci_read_config_byte_nodev (ctrl->pci_ops, busnumber, device, function, PCI_HEADER_TYPE, &header_type);
626						if (rc)
627							return rc;
628
629						stop_it++;
630					}
631				}
632
633			} while (function < max_functions);
634		}		// End of IF (device in slot?)
635		else if (is_hot_plug) {
636			// Setup slot structure with entry for empty slot
637			new_slot = cpqhp_slot_create(busnumber);
638
639			if (new_slot == NULL) {
640				return(1);
641			}
642
643			new_slot->bus = (u8) busnumber;
644			new_slot->device = (u8) device;
645			new_slot->function = 0;
646			new_slot->is_a_board = 0;
647			new_slot->presence_save = 0;
648			new_slot->switch_save = 0;
649		}
650	}			// End of FOR loop
651
652	return(0);
653}
654
655
656/*
657 * cpqhp_save_slot_config
658 *
659 * Saves configuration info for all PCI devices in a given slot
660 * including subordinate busses.
661 *
662 * returns 0 if success
663 */
664int cpqhp_save_slot_config (struct controller *ctrl, struct pci_func * new_slot)
665{
666	long rc;
667	u8 class_code;
668	u8 header_type;
669	u32 ID;
670	u8 secondary_bus;
671	int sub_bus;
672	int max_functions;
673	int function;
674	int cloop = 0;
675	int stop_it;
676
677	ID = 0xFFFFFFFF;
678
679	pci_read_config_dword_nodev (ctrl->pci_ops, new_slot->bus, new_slot->device, 0, PCI_VENDOR_ID, &ID);
680
681	if (ID != 0xFFFFFFFF) {	  //  device in slot
682		pci_read_config_byte_nodev (ctrl->pci_ops, new_slot->bus, new_slot->device, 0, 0x0B, &class_code);
683
684		pci_read_config_byte_nodev (ctrl->pci_ops, new_slot->bus, new_slot->device, 0, PCI_HEADER_TYPE, &header_type);
685
686		if (header_type & 0x80)	// Multi-function device
687			max_functions = 8;
688		else
689			max_functions = 1;
690
691		function = 0;
692
693		do {
694			if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {	  // PCI-PCI Bridge
695				//  Recurse the subordinate bus
696				pci_read_config_byte_nodev (ctrl->pci_ops, new_slot->bus, new_slot->device, function, PCI_SECONDARY_BUS, &secondary_bus);
697
698				sub_bus = (int) secondary_bus;
699
700				// Save the config headers for the secondary bus.
701				rc = cpqhp_save_config(ctrl, sub_bus, 0);
702
703				if (rc)
704					return(rc);
705
706			}	// End of IF
707
708			new_slot->status = 0;
709
710			for (cloop = 0; cloop < 0x20; cloop++) {
711				pci_read_config_dword_nodev (ctrl->pci_ops, new_slot->bus, new_slot->device, function, cloop << 2, (u32 *) & (new_slot-> config_space [cloop]));
712			}
713
714			function++;
715
716			stop_it = 0;
717
718			//  this loop skips to the next present function
719			//  reading in the Class Code and the Header type.
720
721			while ((function < max_functions) && (!stop_it)) {
722				pci_read_config_dword_nodev (ctrl->pci_ops, new_slot->bus, new_slot->device, function, PCI_VENDOR_ID, &ID);
723
724				if (ID == 0xFFFFFFFF) {	 // nothing there.
725					function++;
726				} else {  // Something there
727					pci_read_config_byte_nodev (ctrl->pci_ops, new_slot->bus, new_slot->device, function, 0x0B, &class_code);
728
729					pci_read_config_byte_nodev (ctrl->pci_ops, new_slot->bus, new_slot->device, function, PCI_HEADER_TYPE, &header_type);
730
731					stop_it++;
732				}
733			}
734
735		} while (function < max_functions);
736	}			// End of IF (device in slot?)
737	else {
738		return(2);
739	}
740
741	return(0);
742}
743
744
745/*
746 * cpqhp_save_base_addr_length
747 *
748 * Saves the length of all base address registers for the
749 * specified slot.  this is for hot plug REPLACE
750 *
751 * returns 0 if success
752 */
753int cpqhp_save_base_addr_length(struct controller *ctrl, struct pci_func * func)
754{
755	u8 cloop;
756	u8 header_type;
757	u8 secondary_bus;
758	u8 type;
759	int sub_bus;
760	u32 temp_register;
761	u32 base;
762	u32 rc;
763	struct pci_func *next;
764	int index = 0;
765
766	func = cpqhp_slot_find(func->bus, func->device, index++);
767
768	while (func != NULL) {
769
770		// Check for Bridge
771		pci_read_config_byte_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_HEADER_TYPE, &header_type);
772
773		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
774			// PCI-PCI Bridge
775			pci_read_config_byte_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_SECONDARY_BUS, &secondary_bus);
776
777			sub_bus = (int) secondary_bus;
778
779			next = cpqhp_slot_list[sub_bus];
780
781			while (next != NULL) {
782				rc = cpqhp_save_base_addr_length(ctrl, next);
783
784				if (rc)
785					return(rc);
786
787				next = next->next;
788			}
789
790			//FIXME: this loop is duplicated in the non-bridge case.  The two could be rolled together
791			// Figure out IO and memory base lengths
792			for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
793				temp_register = 0xFFFFFFFF;
794				pci_write_config_dword_nodev(ctrl->pci_ops, func->bus, func->device, func->function, cloop, temp_register);
795				pci_read_config_dword_nodev (ctrl->pci_ops, func->bus, func->device, func->function, cloop, &base);
796
797				if (base) {  // If this register is implemented
798					if (base & 0x01L) {
799						// IO base
800						// set base = amount of IO space requested
801						base = base & 0xFFFFFFFE;
802						base = (~base) + 1;
803
804						type = 1;
805					} else {
806						// memory base
807						base = base & 0xFFFFFFF0;
808						base = (~base) + 1;
809
810						type = 0;
811					}
812				} else {
813					base = 0x0L;
814					type = 0;
815				}
816
817				// Save information in slot structure
818				func->base_length[(cloop - 0x10) >> 2] =
819				base;
820				func->base_type[(cloop - 0x10) >> 2] = type;
821
822			}	// End of base register loop
823
824
825		} else if ((header_type & 0x7F) == 0x00) {	  // PCI-PCI Bridge
826			// Figure out IO and memory base lengths
827			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
828				temp_register = 0xFFFFFFFF;
829				pci_write_config_dword_nodev(ctrl->pci_ops, func->bus, func->device, func->function, cloop, temp_register);
830				pci_read_config_dword_nodev (ctrl->pci_ops, func->bus, func->device, func->function, cloop, &base);
831
832				if (base) {  // If this register is implemented
833					if (base & 0x01L) {
834						// IO base
835						// base = amount of IO space requested
836						base = base & 0xFFFFFFFE;
837						base = (~base) + 1;
838
839						type = 1;
840					} else {
841						// memory base
842						// base = amount of memory space requested
843						base = base & 0xFFFFFFF0;
844						base = (~base) + 1;
845
846						type = 0;
847					}
848				} else {
849					base = 0x0L;
850					type = 0;
851				}
852
853				// Save information in slot structure
854				func->base_length[(cloop - 0x10) >> 2] = base;
855				func->base_type[(cloop - 0x10) >> 2] = type;
856
857			}	// End of base register loop
858
859		} else {	  // Some other unknown header type
860		}
861
862		// find the next device in this slot
863		func = cpqhp_slot_find(func->bus, func->device, index++);
864	}
865
866	return(0);
867}
868
869
870/*
871 * cpqhp_save_used_resources
872 *
873 * Stores used resource information for existing boards.  this is
874 * for boards that were in the system when this driver was loaded.
875 * this function is for hot plug ADD
876 *
877 * returns 0 if success
878 */
879int cpqhp_save_used_resources (struct controller *ctrl, struct pci_func * func)
880{
881	u8 cloop;
882	u8 header_type;
883	u8 secondary_bus;
884	u8 temp_byte;
885	u8 b_base;
886	u8 b_length;
887	u16 command;
888	u16 save_command;
889	u16 w_base;
890	u16 w_length;
891	u32 temp_register;
892	u32 save_base;
893	u32 base;
894	int index = 0;
895	struct pci_resource *mem_node;
896	struct pci_resource *p_mem_node;
897	struct pci_resource *io_node;
898	struct pci_resource *bus_node;
899
900	func = cpqhp_slot_find(func->bus, func->device, index++);
901
902	while ((func != NULL) && func->is_a_board) {
903		// Save the command register
904		pci_read_config_word_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_COMMAND, &save_command);
905
906		// disable card
907		command = 0x00;
908		pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_COMMAND, command);
909
910		// Check for Bridge
911		pci_read_config_byte_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_HEADER_TYPE, &header_type);
912
913		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {	  // PCI-PCI Bridge
914			// Clear Bridge Control Register
915			command = 0x00;
916			pci_write_config_word_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_BRIDGE_CONTROL, command);
917
918			pci_read_config_byte_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_SECONDARY_BUS, &secondary_bus);
919
920			pci_read_config_byte_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_SUBORDINATE_BUS, &temp_byte);
921
922			bus_node =(struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
923			if (!bus_node)
924				return -ENOMEM;
925
926			bus_node->base = secondary_bus;
927			bus_node->length = temp_byte - secondary_bus + 1;
928
929			bus_node->next = func->bus_head;
930			func->bus_head = bus_node;
931
932			// Save IO base and Limit registers
933			pci_read_config_byte_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_IO_BASE, &b_base);
934
935			pci_read_config_byte_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_IO_LIMIT, &b_length);
936
937			if ((b_base <= b_length) && (save_command & 0x01)) {
938				io_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
939				if (!io_node)
940					return -ENOMEM;
941
942				io_node->base = (b_base & 0xF0) << 8;
943				io_node->length = (b_length - b_base + 0x10) << 8;
944
945				io_node->next = func->io_head;
946				func->io_head = io_node;
947			}
948			// Save memory base and Limit registers
949			pci_read_config_word_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_MEMORY_BASE, &w_base);
950
951			pci_read_config_word_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_MEMORY_LIMIT, &w_length);
952
953			if ((w_base <= w_length) && (save_command & 0x02)) {
954				mem_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
955				if (!mem_node)
956					return -ENOMEM;
957
958				mem_node->base = w_base << 16;
959				mem_node->length = (w_length - w_base + 0x10) << 16;
960
961				mem_node->next = func->mem_head;
962				func->mem_head = mem_node;
963			}
964			// Save prefetchable memory base and Limit registers
965			pci_read_config_word_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_PREF_MEMORY_BASE, &w_base);
966
967			pci_read_config_word_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_PREF_MEMORY_LIMIT, &w_length);
968
969			if ((w_base <= w_length) && (save_command & 0x02)) {
970				p_mem_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
971				if (!p_mem_node)
972					return -ENOMEM;
973
974				p_mem_node->base = w_base << 16;
975				p_mem_node->length = (w_length - w_base + 0x10) << 16;
976
977				p_mem_node->next = func->p_mem_head;
978				func->p_mem_head = p_mem_node;
979			}
980			// Figure out IO and memory base lengths
981			for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
982				pci_read_config_dword_nodev (ctrl->pci_ops, func->bus, func->device, func->function, cloop, &save_base);
983
984				temp_register = 0xFFFFFFFF;
985				pci_write_config_dword_nodev(ctrl->pci_ops, func->bus, func->device, func->function, cloop, temp_register);
986
987				pci_read_config_dword_nodev (ctrl->pci_ops, func->bus, func->device, func->function, cloop, &base);
988
989				temp_register = base;
990
991				if (base) {  // If this register is implemented
992					if (((base & 0x03L) == 0x01)
993					    && (save_command & 0x01)) {
994						// IO base
995						// set temp_register = amount of IO space requested
996						temp_register = base & 0xFFFFFFFE;
997						temp_register = (~temp_register) + 1;
998
999						io_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
1000						if (!io_node)
1001							return -ENOMEM;
1002
1003						io_node->base =
1004						save_base & (~0x03L);
1005						io_node->length = temp_register;
1006
1007						io_node->next = func->io_head;
1008						func->io_head = io_node;
1009					} else
1010						if (((base & 0x0BL) == 0x08)
1011						    && (save_command & 0x02)) {
1012						// prefetchable memory base
1013						temp_register = base & 0xFFFFFFF0;
1014						temp_register = (~temp_register) + 1;
1015
1016						p_mem_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
1017						if (!p_mem_node)
1018							return -ENOMEM;
1019
1020						p_mem_node->base = save_base & (~0x0FL);
1021						p_mem_node->length = temp_register;
1022
1023						p_mem_node->next = func->p_mem_head;
1024						func->p_mem_head = p_mem_node;
1025					} else
1026						if (((base & 0x0BL) == 0x00)
1027						    && (save_command & 0x02)) {
1028						// prefetchable memory base
1029						temp_register = base & 0xFFFFFFF0;
1030						temp_register = (~temp_register) + 1;
1031
1032						mem_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
1033						if (!mem_node)
1034							return -ENOMEM;
1035
1036						mem_node->base = save_base & (~0x0FL);
1037						mem_node->length = temp_register;
1038
1039						mem_node->next = func->mem_head;
1040						func->mem_head = mem_node;
1041					} else
1042						return(1);
1043				}
1044			}	// End of base register loop
1045		} else if ((header_type & 0x7F) == 0x00) {	  // Standard header
1046			// Figure out IO and memory base lengths
1047			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
1048				pci_read_config_dword_nodev (ctrl->pci_ops, func->bus, func->device, func->function, cloop, &save_base);
1049
1050				temp_register = 0xFFFFFFFF;
1051				pci_write_config_dword_nodev(ctrl->pci_ops, func->bus, func->device, func->function, cloop, temp_register);
1052
1053				pci_read_config_dword_nodev (ctrl->pci_ops, func->bus, func->device, func->function, cloop, &base);
1054
1055				temp_register = base;
1056
1057				if (base) {	  // If this register is implemented
1058					if (((base & 0x03L) == 0x01)
1059					    && (save_command & 0x01)) {
1060						// IO base
1061						// set temp_register = amount of IO space requested
1062						temp_register = base & 0xFFFFFFFE;
1063						temp_register = (~temp_register) + 1;
1064
1065						io_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
1066						if (!io_node)
1067							return -ENOMEM;
1068
1069						io_node->base = save_base & (~0x01L);
1070						io_node->length = temp_register;
1071
1072						io_node->next = func->io_head;
1073						func->io_head = io_node;
1074					} else
1075						if (((base & 0x0BL) == 0x08)
1076						    && (save_command & 0x02)) {
1077						// prefetchable memory base
1078						temp_register = base & 0xFFFFFFF0;
1079						temp_register = (~temp_register) + 1;
1080
1081						p_mem_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
1082						if (!p_mem_node)
1083							return -ENOMEM;
1084
1085						p_mem_node->base = save_base & (~0x0FL);
1086						p_mem_node->length = temp_register;
1087
1088						p_mem_node->next = func->p_mem_head;
1089						func->p_mem_head = p_mem_node;
1090					} else
1091						if (((base & 0x0BL) == 0x00)
1092						    && (save_command & 0x02)) {
1093						// prefetchable memory base
1094						temp_register = base & 0xFFFFFFF0;
1095						temp_register = (~temp_register) + 1;
1096
1097						mem_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
1098						if (!mem_node)
1099							return -ENOMEM;
1100
1101						mem_node->base = save_base & (~0x0FL);
1102						mem_node->length = temp_register;
1103
1104						mem_node->next = func->mem_head;
1105						func->mem_head = mem_node;
1106					} else
1107						return(1);
1108				}
1109			}	// End of base register loop
1110		} else {	  // Some other unknown header type
1111		}
1112
1113		// find the next device in this slot
1114		func = cpqhp_slot_find(func->bus, func->device, index++);
1115	}
1116
1117	return(0);
1118}
1119
1120
1121/*
1122 * cpqhp_configure_board
1123 *
1124 * Copies saved configuration information to one slot.
1125 * this is called recursively for bridge devices.
1126 * this is for hot plug REPLACE!
1127 *
1128 * returns 0 if success
1129 */
1130int cpqhp_configure_board(struct controller *ctrl, struct pci_func * func)
1131{
1132	int cloop;
1133	u8 header_type;
1134	u8 secondary_bus;
1135	int sub_bus;
1136	struct pci_func *next;
1137	u32 temp;
1138	u32 rc;
1139	int index = 0;
1140
1141	func = cpqhp_slot_find(func->bus, func->device, index++);
1142
1143	while (func != NULL) {
1144		// Start at the top of config space so that the control
1145		// registers are programmed last
1146		for (cloop = 0x3C; cloop > 0; cloop -= 4) {
1147			pci_write_config_dword_nodev(ctrl->pci_ops, func->bus, func->device, func->function, cloop, func->config_space[cloop >> 2]);
1148		}
1149
1150		pci_read_config_byte_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_HEADER_TYPE, &header_type);
1151
1152		// If this is a bridge device, restore subordinate devices
1153		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {	  // PCI-PCI Bridge
1154			pci_read_config_byte_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_SECONDARY_BUS, &secondary_bus);
1155
1156			sub_bus = (int) secondary_bus;
1157
1158			next = cpqhp_slot_list[sub_bus];
1159
1160			while (next != NULL) {
1161				rc = cpqhp_configure_board(ctrl, next);
1162
1163				if (rc)
1164					return rc;
1165
1166				next = next->next;
1167			}
1168		} else {
1169
1170			// Check all the base Address Registers to make sure
1171			// they are the same.  If not, the board is different.
1172
1173			for (cloop = 16; cloop < 40; cloop += 4) {
1174				pci_read_config_dword_nodev (ctrl->pci_ops, func->bus, func->device, func->function, cloop, &temp);
1175
1176				if (temp != func->config_space[cloop >> 2]) {
1177					dbg("Config space compare failure!!! offset = %x\n", cloop);
1178					dbg("bus = %x, device = %x, function = %x\n", func->bus, func->device, func->function);
1179					dbg("temp = %x, config space = %x\n\n", temp, func->config_space[cloop]);
1180					return 1;
1181				}
1182			}
1183		}
1184
1185		func->configured = 1;
1186
1187		func = cpqhp_slot_find(func->bus, func->device, index++);
1188	}
1189
1190	return 0;
1191}
1192
1193
1194/*
1195 * cpqhp_valid_replace
1196 *
1197 * this function checks to see if a board is the same as the
1198 * one it is replacing.  this check will detect if the device's
1199 * vendor or device id's are the same
1200 *
1201 * returns 0 if the board is the same nonzero otherwise
1202 */
1203int cpqhp_valid_replace(struct controller *ctrl, struct pci_func * func)
1204{
1205	u8 cloop;
1206	u8 header_type;
1207	u8 secondary_bus;
1208	u8 type;
1209	u32 temp_register = 0;
1210	u32 base;
1211	u32 rc;
1212	struct pci_func *next;
1213	int index = 0;
1214
1215	if (!func->is_a_board)
1216		return(ADD_NOT_SUPPORTED);
1217
1218	func = cpqhp_slot_find(func->bus, func->device, index++);
1219
1220	while (func != NULL) {
1221		pci_read_config_dword_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_VENDOR_ID, &temp_register);
1222
1223		// No adapter present
1224		if (temp_register == 0xFFFFFFFF)
1225			return(NO_ADAPTER_PRESENT);
1226
1227		if (temp_register != func->config_space[0])
1228			return(ADAPTER_NOT_SAME);
1229
1230		// Check for same revision number and class code
1231		pci_read_config_dword_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_CLASS_REVISION, &temp_register);
1232
1233		// Adapter not the same
1234		if (temp_register != func->config_space[0x08 >> 2])
1235			return(ADAPTER_NOT_SAME);
1236
1237		// Check for Bridge
1238		pci_read_config_byte_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_HEADER_TYPE, &header_type);
1239
1240		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {	  // PCI-PCI Bridge
1241			// In order to continue checking, we must program the
1242			// bus registers in the bridge to respond to accesses
1243			// for it's subordinate bus(es)
1244
1245			temp_register = func->config_space[0x18 >> 2];
1246			pci_write_config_dword_nodev(ctrl->pci_ops, func->bus, func->device, func->function, PCI_PRIMARY_BUS, temp_register);
1247
1248			secondary_bus = (temp_register >> 8) & 0xFF;
1249
1250			next = cpqhp_slot_list[secondary_bus];
1251
1252			while (next != NULL) {
1253				rc = cpqhp_valid_replace(ctrl, next);
1254
1255				if (rc)
1256					return(rc);
1257
1258				next = next->next;
1259			}
1260
1261		}
1262		// Check to see if it is a standard config header
1263		else if ((header_type & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
1264			// Check subsystem vendor and ID
1265			pci_read_config_dword_nodev (ctrl->pci_ops, func->bus, func->device, func->function, PCI_SUBSYSTEM_VENDOR_ID, &temp_register);
1266
1267			if (temp_register != func->config_space[0x2C >> 2]) {
1268				// If it's a SMART-2 and the register isn't filled
1269				// in, ignore the difference because
1270				// they just have an old rev of the firmware
1271
1272				if (!((func->config_space[0] == 0xAE100E11)
1273				      && (temp_register == 0x00L)))
1274					return(ADAPTER_NOT_SAME);
1275			}
1276			// Figure out IO and memory base lengths
1277			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
1278				temp_register = 0xFFFFFFFF;
1279				pci_write_config_dword_nodev(ctrl->pci_ops, func->bus, func->device, func->function, cloop, temp_register);
1280
1281				pci_read_config_dword_nodev (ctrl->pci_ops, func->bus, func->device, func->function, cloop, &base);
1282
1283				if (base) {	  // If this register is implemented
1284					if (base & 0x01L) {
1285						// IO base
1286						// set base = amount of IO space requested
1287						base = base & 0xFFFFFFFE;
1288						base = (~base) + 1;
1289
1290						type = 1;
1291					} else {
1292						// memory base
1293						base = base & 0xFFFFFFF0;
1294						base = (~base) + 1;
1295
1296						type = 0;
1297					}
1298				} else {
1299					base = 0x0L;
1300					type = 0;
1301				}
1302
1303				// Check information in slot structure
1304				if (func->base_length[(cloop - 0x10) >> 2] != base)
1305					return(ADAPTER_NOT_SAME);
1306
1307				if (func->base_type[(cloop - 0x10) >> 2] != type)
1308					return(ADAPTER_NOT_SAME);
1309
1310			}	// End of base register loop
1311
1312		}		// End of (type 0 config space) else
1313		else {
1314			// this is not a type 0 or 1 config space header so
1315			// we don't know how to do it
1316			return(DEVICE_TYPE_NOT_SUPPORTED);
1317		}
1318
1319		// Get the next function
1320		func = cpqhp_slot_find(func->bus, func->device, index++);
1321	}
1322
1323
1324	return(0);
1325}
1326
1327
1328/*
1329 * cpqhp_find_available_resources
1330 *
1331 * Finds available memory, IO, and IRQ resources for programming
1332 * devices which may be added to the system
1333 * this function is for hot plug ADD!
1334 *
1335 * returns 0 if success
1336 */
1337int cpqhp_find_available_resources (struct controller *ctrl, void *rom_start)
1338{
1339	u8 temp;
1340	u8 populated_slot;
1341	u8 bridged_slot;
1342	void *one_slot;
1343	struct pci_func *func = NULL;
1344	int i = 10, index;
1345	u32 temp_dword, rc;
1346	struct pci_resource *mem_node;
1347	struct pci_resource *p_mem_node;
1348	struct pci_resource *io_node;
1349	struct pci_resource *bus_node;
1350	void *rom_resource_table;
1351
1352	rom_resource_table = detect_HRT_floating_pointer(rom_start, rom_start+0xffff);
1353	dbg("rom_resource_table = %p\n", rom_resource_table);
1354
1355	if (rom_resource_table == NULL) {
1356		return -ENODEV;
1357	}
1358	// Sum all resources and setup resource maps
1359	unused_IRQ = readl(rom_resource_table + UNUSED_IRQ);
1360	dbg("unused_IRQ = %x\n", unused_IRQ);
1361
1362	temp = 0;
1363	while (unused_IRQ) {
1364		if (unused_IRQ & 1) {
1365			cpqhp_disk_irq = temp;
1366			break;
1367		}
1368		unused_IRQ = unused_IRQ >> 1;
1369		temp++;
1370	}
1371
1372	dbg("cpqhp_disk_irq= %d\n", cpqhp_disk_irq);
1373	unused_IRQ = unused_IRQ >> 1;
1374	temp++;
1375
1376	while (unused_IRQ) {
1377		if (unused_IRQ & 1) {
1378			cpqhp_nic_irq = temp;
1379			break;
1380		}
1381		unused_IRQ = unused_IRQ >> 1;
1382		temp++;
1383	}
1384
1385	dbg("cpqhp_nic_irq= %d\n", cpqhp_nic_irq);
1386	unused_IRQ = readl(rom_resource_table + PCIIRQ);
1387
1388	temp = 0;
1389
1390	if (!cpqhp_nic_irq) {
1391		cpqhp_nic_irq = ctrl->interrupt;
1392	}
1393
1394	if (!cpqhp_disk_irq) {
1395		cpqhp_disk_irq = ctrl->interrupt;
1396	}
1397
1398	dbg("cpqhp_disk_irq, cpqhp_nic_irq= %d, %d\n", cpqhp_disk_irq, cpqhp_nic_irq);
1399
1400	rc = compaq_nvram_load(rom_start, ctrl);
1401	if (rc)
1402		return rc;
1403
1404	one_slot = rom_resource_table + sizeof (struct hrt);
1405
1406	i = readb(rom_resource_table + NUMBER_OF_ENTRIES);
1407	dbg("number_of_entries = %d\n", i);
1408
1409	if (!readb(one_slot + SECONDARY_BUS)) {
1410		return(1);
1411	}
1412
1413	dbg("dev|IO base|length|Mem base|length|Pre base|length|PB SB MB\n");
1414
1415	while (i && readb(one_slot + SECONDARY_BUS)) {
1416		u8 dev_func = readb(one_slot + DEV_FUNC);
1417		u8 primary_bus = readb(one_slot + PRIMARY_BUS);
1418		u8 secondary_bus = readb(one_slot + SECONDARY_BUS);
1419		u8 max_bus = readb(one_slot + MAX_BUS);
1420		u16 io_base = readw(one_slot + IO_BASE);
1421		u16 io_length = readw(one_slot + IO_LENGTH);
1422		u16 mem_base = readw(one_slot + MEM_BASE);
1423		u16 mem_length = readw(one_slot + MEM_LENGTH);
1424		u16 pre_mem_base = readw(one_slot + PRE_MEM_BASE);
1425		u16 pre_mem_length = readw(one_slot + PRE_MEM_LENGTH);
1426
1427		dbg("%2.2x | %4.4x  | %4.4x | %4.4x   | %4.4x | %4.4x   | %4.4x |%2.2x %2.2x %2.2x\n",
1428		    dev_func, io_base, io_length, mem_base, mem_length, pre_mem_base, pre_mem_length,
1429		    primary_bus, secondary_bus, max_bus);
1430
1431		// If this entry isn't for our controller's bus, ignore it
1432		if (primary_bus != ctrl->bus) {
1433			i--;
1434			one_slot += sizeof (struct slot_rt);
1435			continue;
1436		}
1437		// find out if this entry is for an occupied slot
1438		pci_read_config_dword_nodev (ctrl->pci_ops, primary_bus, dev_func >> 3, dev_func & 0x07, PCI_VENDOR_ID, &temp_dword);
1439
1440		dbg("temp_D_word = %x\n", temp_dword);
1441
1442		if (temp_dword != 0xFFFFFFFF) {
1443			index = 0;
1444			func = cpqhp_slot_find(primary_bus, dev_func >> 3, 0);
1445
1446			while (func && (func->function != (dev_func & 0x07))) {
1447				dbg("func = %p (bus, dev, fun) = (%d, %d, %d)\n", func, primary_bus, dev_func >> 3, index);
1448				func = cpqhp_slot_find(primary_bus, dev_func >> 3, index++);
1449			}
1450
1451			// If we can't find a match, skip this table entry
1452			if (!func) {
1453				i--;
1454				one_slot += sizeof (struct slot_rt);
1455				continue;
1456			}
1457			// this may not work and shouldn't be used
1458			if (secondary_bus != primary_bus)
1459				bridged_slot = 1;
1460			else
1461				bridged_slot = 0;
1462
1463			populated_slot = 1;
1464		} else {
1465			populated_slot = 0;
1466			bridged_slot = 0;
1467		}
1468
1469
1470		// If we've got a valid IO base, use it
1471
1472		temp_dword = io_base + io_length;
1473
1474		if ((io_base) && (temp_dword < 0x10000)) {
1475			io_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
1476			if (!io_node)
1477				return -ENOMEM;
1478
1479			io_node->base = io_base;
1480			io_node->length = io_length;
1481
1482			dbg("found io_node(base, length) = %x, %x\n", io_node->base, io_node->length);
1483			dbg("populated slot =%d \n", populated_slot);
1484			if (!populated_slot) {
1485				io_node->next = ctrl->io_head;
1486				ctrl->io_head = io_node;
1487			} else {
1488				io_node->next = func->io_head;
1489				func->io_head = io_node;
1490			}
1491		}
1492
1493		// If we've got a valid memory base, use it
1494		temp_dword = mem_base + mem_length;
1495		if ((mem_base) && (temp_dword < 0x10000)) {
1496			mem_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
1497			if (!mem_node)
1498				return -ENOMEM;
1499
1500			mem_node->base = mem_base << 16;
1501
1502			mem_node->length = mem_length << 16;
1503
1504			dbg("found mem_node(base, length) = %x, %x\n", mem_node->base, mem_node->length);
1505			dbg("populated slot =%d \n", populated_slot);
1506			if (!populated_slot) {
1507				mem_node->next = ctrl->mem_head;
1508				ctrl->mem_head = mem_node;
1509			} else {
1510				mem_node->next = func->mem_head;
1511				func->mem_head = mem_node;
1512			}
1513		}
1514
1515		// If we've got a valid prefetchable memory base, and
1516		// the base + length isn't greater than 0xFFFF
1517		temp_dword = pre_mem_base + pre_mem_length;
1518		if ((pre_mem_base) && (temp_dword < 0x10000)) {
1519			p_mem_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
1520			if (!p_mem_node)
1521				return -ENOMEM;
1522
1523			p_mem_node->base = pre_mem_base << 16;
1524
1525			p_mem_node->length = pre_mem_length << 16;
1526			dbg("found p_mem_node(base, length) = %x, %x\n", p_mem_node->base, p_mem_node->length);
1527			dbg("populated slot =%d \n", populated_slot);
1528
1529			if (!populated_slot) {
1530				p_mem_node->next = ctrl->p_mem_head;
1531				ctrl->p_mem_head = p_mem_node;
1532			} else {
1533				p_mem_node->next = func->p_mem_head;
1534				func->p_mem_head = p_mem_node;
1535			}
1536		}
1537
1538		// If we've got a valid bus number, use it
1539		// The second condition is to ignore bus numbers on
1540		// populated slots that don't have PCI-PCI bridges
1541		if (secondary_bus && (secondary_bus != primary_bus)) {
1542			bus_node = (struct pci_resource *) kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
1543			if (!bus_node)
1544				return -ENOMEM;
1545
1546			bus_node->base = secondary_bus;
1547			bus_node->length = max_bus - secondary_bus + 1;
1548			dbg("found bus_node(base, length) = %x, %x\n", bus_node->base, bus_node->length);
1549			dbg("populated slot =%d \n", populated_slot);
1550			if (!populated_slot) {
1551				bus_node->next = ctrl->bus_head;
1552				ctrl->bus_head = bus_node;
1553			} else {
1554				bus_node->next = func->bus_head;
1555				func->bus_head = bus_node;
1556			}
1557		}
1558
1559		i--;
1560		one_slot += sizeof (struct slot_rt);
1561	}
1562
1563	// If all of the following fail, we don't have any resources for
1564	// hot plug add
1565	rc = 1;
1566	rc &= cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1567	rc &= cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1568	rc &= cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1569	rc &= cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1570
1571	return(rc);
1572}
1573
1574
1575/*
1576 * cpqhp_return_board_resources
1577 *
1578 * this routine returns all resources allocated to a board to
1579 * the available pool.
1580 *
1581 * returns 0 if success
1582 */
1583int cpqhp_return_board_resources(struct pci_func * func, struct resource_lists * resources)
1584{
1585	int rc = 0;
1586	struct pci_resource *node;
1587	struct pci_resource *t_node;
1588	dbg(__FUNCTION__"\n");
1589
1590	if (!func)
1591		return(1);
1592
1593	node = func->io_head;
1594	func->io_head = NULL;
1595	while (node) {
1596		t_node = node->next;
1597		return_resource(&(resources->io_head), node);
1598		node = t_node;
1599	}
1600
1601	node = func->mem_head;
1602	func->mem_head = NULL;
1603	while (node) {
1604		t_node = node->next;
1605		return_resource(&(resources->mem_head), node);
1606		node = t_node;
1607	}
1608
1609	node = func->p_mem_head;
1610	func->p_mem_head = NULL;
1611	while (node) {
1612		t_node = node->next;
1613		return_resource(&(resources->p_mem_head), node);
1614		node = t_node;
1615	}
1616
1617	node = func->bus_head;
1618	func->bus_head = NULL;
1619	while (node) {
1620		t_node = node->next;
1621		return_resource(&(resources->bus_head), node);
1622		node = t_node;
1623	}
1624
1625	rc |= cpqhp_resource_sort_and_combine(&(resources->mem_head));
1626	rc |= cpqhp_resource_sort_and_combine(&(resources->p_mem_head));
1627	rc |= cpqhp_resource_sort_and_combine(&(resources->io_head));
1628	rc |= cpqhp_resource_sort_and_combine(&(resources->bus_head));
1629
1630	return(rc);
1631}
1632
1633
1634/*
1635 * cpqhp_destroy_resource_list
1636 *
1637 * Puts node back in the resource list pointed to by head
1638 */
1639void cpqhp_destroy_resource_list (struct resource_lists * resources)
1640{
1641	struct pci_resource *res, *tres;
1642
1643	res = resources->io_head;
1644	resources->io_head = NULL;
1645
1646	while (res) {
1647		tres = res;
1648		res = res->next;
1649		kfree(tres);
1650	}
1651
1652	res = resources->mem_head;
1653	resources->mem_head = NULL;
1654
1655	while (res) {
1656		tres = res;
1657		res = res->next;
1658		kfree(tres);
1659	}
1660
1661	res = resources->p_mem_head;
1662	resources->p_mem_head = NULL;
1663
1664	while (res) {
1665		tres = res;
1666		res = res->next;
1667		kfree(tres);
1668	}
1669
1670	res = resources->bus_head;
1671	resources->bus_head = NULL;
1672
1673	while (res) {
1674		tres = res;
1675		res = res->next;
1676		kfree(tres);
1677	}
1678}
1679
1680
1681/*
1682 * cpqhp_destroy_board_resources
1683 *
1684 * Puts node back in the resource list pointed to by head
1685 */
1686void cpqhp_destroy_board_resources (struct pci_func * func)
1687{
1688	struct pci_resource *res, *tres;
1689
1690	res = func->io_head;
1691	func->io_head = NULL;
1692
1693	while (res) {
1694		tres = res;
1695		res = res->next;
1696		kfree(tres);
1697	}
1698
1699	res = func->mem_head;
1700	func->mem_head = NULL;
1701
1702	while (res) {
1703		tres = res;
1704		res = res->next;
1705		kfree(tres);
1706	}
1707
1708	res = func->p_mem_head;
1709	func->p_mem_head = NULL;
1710
1711	while (res) {
1712		tres = res;
1713		res = res->next;
1714		kfree(tres);
1715	}
1716
1717	res = func->bus_head;
1718	func->bus_head = NULL;
1719
1720	while (res) {
1721		tres = res;
1722		res = res->next;
1723		kfree(tres);
1724	}
1725}
1726
1727