1/*
2** -----------------------------------------------------------------------------
3**
4**  Perle Specialix driver for Linux
5**  Ported from existing RIO Driver for SCO sources.
6 *
7 *  (C) 1990 - 2000 Specialix International Ltd., Byfleet, Surrey, UK.
8 *
9 *      This program is free software; you can redistribute it and/or modify
10 *      it under the terms of the GNU General Public License as published by
11 *      the Free Software Foundation; either version 2 of the License, or
12 *      (at your option) any later version.
13 *
14 *      This program is distributed in the hope that it will be useful,
15 *      but WITHOUT ANY WARRANTY; without even the implied warranty of
16 *      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 *      GNU General Public License for more details.
18 *
19 *      You should have received a copy of the GNU General Public License
20 *      along with this program; if not, write to the Free Software
21 *      Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22**
23**	Module		: rioboot.c
24**	SID		: 1.3
25**	Last Modified	: 11/6/98 10:33:36
26**	Retrieved	: 11/6/98 10:33:48
27**
28**  ident @(#)rioboot.c	1.3
29**
30** -----------------------------------------------------------------------------
31*/
32
33#ifdef SCCS_LABELS
34static char *_rioboot_c_sccs_ = "@(#)rioboot.c	1.3";
35#endif
36
37#define __NO_VERSION__
38#include <linux/module.h>
39#include <linux/slab.h>
40#include <linux/errno.h>
41#include <linux/interrupt.h>
42#include <asm/io.h>
43#include <asm/system.h>
44#include <asm/string.h>
45#include <asm/semaphore.h>
46
47
48#include <linux/termios.h>
49#include <linux/serial.h>
50
51#include <linux/compatmac.h>
52#include <linux/generic_serial.h>
53
54
55
56#include "linux_compat.h"
57#include "rio_linux.h"
58#include "typdef.h"
59#include "pkt.h"
60#include "daemon.h"
61#include "rio.h"
62#include "riospace.h"
63#include "top.h"
64#include "cmdpkt.h"
65#include "map.h"
66#include "riotypes.h"
67#include "rup.h"
68#include "port.h"
69#include "riodrvr.h"
70#include "rioinfo.h"
71#include "func.h"
72#include "errors.h"
73#include "pci.h"
74
75#include "parmmap.h"
76#include "unixrup.h"
77#include "board.h"
78#include "host.h"
79#include "error.h"
80#include "phb.h"
81#include "link.h"
82#include "cmdblk.h"
83#include "route.h"
84
85static uchar
86RIOAtVec2Ctrl[] =
87{
88	/* 0 */  INTERRUPT_DISABLE,
89	/* 1 */  INTERRUPT_DISABLE,
90	/* 2 */  INTERRUPT_DISABLE,
91	/* 3 */  INTERRUPT_DISABLE,
92	/* 4 */  INTERRUPT_DISABLE,
93	/* 5 */  INTERRUPT_DISABLE,
94	/* 6 */  INTERRUPT_DISABLE,
95	/* 7 */  INTERRUPT_DISABLE,
96	/* 8 */  INTERRUPT_DISABLE,
97	/* 9 */  IRQ_9|INTERRUPT_ENABLE,
98	/* 10 */ INTERRUPT_DISABLE,
99	/* 11 */ IRQ_11|INTERRUPT_ENABLE,
100	/* 12 */ IRQ_12|INTERRUPT_ENABLE,
101	/* 13 */ INTERRUPT_DISABLE,
102	/* 14 */ INTERRUPT_DISABLE,
103	/* 15 */ IRQ_15|INTERRUPT_ENABLE
104};
105
106/*
107** Load in the RTA boot code.
108*/
109int
110RIOBootCodeRTA(p, rbp)
111struct rio_info *	p;
112struct DownLoad *	rbp;
113{
114	int offset;
115
116	func_enter ();
117
118	/* Linux doesn't allow you to disable interrupts during a
119	   "copyin". (Crash when a pagefault occurs). */
120	/* disable(oldspl); */
121
122	rio_dprintk (RIO_DEBUG_BOOT, "Data at user address 0x%x\n",(int)rbp->DataP);
123
124	/*
125	** Check that we have set asside enough memory for this
126	*/
127	if ( rbp->Count > SIXTY_FOUR_K ) {
128		rio_dprintk (RIO_DEBUG_BOOT, "RTA Boot Code Too Large!\n");
129		p->RIOError.Error = HOST_FILE_TOO_LARGE;
130		/* restore(oldspl); */
131		func_exit ();
132		return ENOMEM;
133	}
134
135	if ( p->RIOBooting ) {
136		rio_dprintk (RIO_DEBUG_BOOT, "RTA Boot Code : BUSY BUSY BUSY!\n");
137		p->RIOError.Error = BOOT_IN_PROGRESS;
138		/* restore(oldspl); */
139		func_exit ();
140		return EBUSY;
141	}
142
143	/*
144	** The data we load in must end on a (RTA_BOOT_DATA_SIZE) byte boundary,
145	** so calculate how far we have to move the data up the buffer
146	** to achieve this.
147	*/
148	offset = (RTA_BOOT_DATA_SIZE - (rbp->Count % RTA_BOOT_DATA_SIZE)) %
149							RTA_BOOT_DATA_SIZE;
150
151	/*
152	** Be clean, and clear the 'unused' portion of the boot buffer,
153	** because it will (eventually) be part of the Rta run time environment
154	** and so should be zeroed.
155	*/
156	bzero( (caddr_t)p->RIOBootPackets, offset );
157
158	/*
159	** Copy the data from user space.
160	*/
161
162	if ( copyin((int)rbp->DataP,((caddr_t)(p->RIOBootPackets))+offset,
163				rbp->Count) ==COPYFAIL ) {
164		rio_dprintk (RIO_DEBUG_BOOT, "Bad data copy from user space\n");
165		p->RIOError.Error = COPYIN_FAILED;
166		/* restore(oldspl); */
167		func_exit ();
168		return EFAULT;
169	}
170
171	/*
172	** Make sure that our copy of the size includes that offset we discussed
173	** earlier.
174	*/
175	p->RIONumBootPkts = (rbp->Count+offset)/RTA_BOOT_DATA_SIZE;
176	p->RIOBootCount   = rbp->Count;
177
178	/* restore(oldspl); */
179	func_exit();
180	return 0;
181}
182
183void rio_start_card_running (struct Host * HostP)
184{
185	func_enter ();
186
187	switch ( HostP->Type ) {
188	case RIO_AT:
189		rio_dprintk (RIO_DEBUG_BOOT, "Start ISA card running\n");
190		WBYTE(HostP->Control,
191		      BOOT_FROM_RAM | EXTERNAL_BUS_ON
192		      | HostP->Mode
193		      | RIOAtVec2Ctrl[HostP->Ivec & 0xF] );
194		break;
195
196#ifdef FUTURE_RELEASE
197	case RIO_MCA:
198				/*
199				** MCA handles IRQ vectors differently, so we don't write
200				** them to this register.
201				*/
202		rio_dprintk (RIO_DEBUG_BOOT, "Start MCA card running\n");
203		WBYTE(HostP->Control, McaTpBootFromRam | McaTpBusEnable | HostP->Mode);
204		break;
205
206	case RIO_EISA:
207				/*
208				** EISA is totally different and expects OUTBZs to turn it on.
209				*/
210		rio_dprintk (RIO_DEBUG_BOOT, "Start EISA card running\n");
211		OUTBZ( HostP->Slot, EISA_CONTROL_PORT, HostP->Mode | RIOEisaVec2Ctrl[HostP->Ivec] | EISA_TP_RUN | EISA_TP_BUS_ENABLE | EISA_TP_BOOT_FROM_RAM );
212		break;
213#endif
214
215	case RIO_PCI:
216				/*
217				** PCI is much the same as MCA. Everything is once again memory
218				** mapped, so we are writing to memory registers instead of io
219				** ports.
220				*/
221		rio_dprintk (RIO_DEBUG_BOOT, "Start PCI card running\n");
222		WBYTE(HostP->Control, PCITpBootFromRam | PCITpBusEnable | HostP->Mode);
223		break;
224	default:
225		rio_dprintk (RIO_DEBUG_BOOT, "Unknown host type %d\n", HostP->Type);
226		break;
227	}
228/*
229	printk (KERN_INFO "Done with starting the card\n");
230	func_exit ();
231*/
232	return;
233}
234
235/*
236** Load in the host boot code - load it directly onto all halted hosts
237** of the correct type.
238**
239** Put your rubber pants on before messing with this code - even the magic
240** numbers have trouble understanding what they are doing here.
241*/
242int
243RIOBootCodeHOST(p, rbp)
244struct rio_info *	p;
245register struct DownLoad *rbp;
246{
247	register struct Host *HostP;
248	register caddr_t Cad;
249	register PARM_MAP *ParmMapP;
250	register int RupN;
251	int PortN;
252	uint host;
253	caddr_t StartP;
254	BYTE *DestP;
255	int wait_count;
256	ushort OldParmMap;
257	ushort offset;	/* It is very important that this is a ushort */
258	/* uint byte; */
259	caddr_t DownCode = NULL;
260	unsigned long flags;
261
262	HostP = NULL; /* Assure the compiler we've initialized it */
263	for ( host=0; host<p->RIONumHosts; host++ ) {
264		rio_dprintk (RIO_DEBUG_BOOT, "Attempt to boot host %d\n",host);
265		HostP = &p->RIOHosts[host];
266
267		rio_dprintk (RIO_DEBUG_BOOT,  "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n",
268		    HostP->Type, HostP->Mode, HostP->Ivec);
269
270
271		if ( (HostP->Flags & RUN_STATE) != RC_WAITING ) {
272			rio_dprintk (RIO_DEBUG_BOOT, "%s %d already running\n","Host",host);
273			continue;
274		}
275
276		/*
277		** Grab a 32 bit pointer to the card.
278		*/
279		Cad = HostP->Caddr;
280
281		/*
282		** We are going to (try) and load in rbp->Count bytes.
283		** The last byte will reside at p->RIOConf.HostLoadBase-1;
284		** Therefore, we need to start copying at address
285		** (caddr+p->RIOConf.HostLoadBase-rbp->Count)
286		*/
287		StartP = (caddr_t)&Cad[p->RIOConf.HostLoadBase-rbp->Count];
288
289		rio_dprintk (RIO_DEBUG_BOOT, "kernel virtual address for host is 0x%x\n", (int)Cad );
290		rio_dprintk (RIO_DEBUG_BOOT, "kernel virtual address for download is 0x%x\n", (int)StartP);
291		rio_dprintk (RIO_DEBUG_BOOT, "host loadbase is 0x%x\n",p->RIOConf.HostLoadBase);
292		rio_dprintk (RIO_DEBUG_BOOT, "size of download is 0x%x\n", rbp->Count);
293
294		if ( p->RIOConf.HostLoadBase < rbp->Count ) {
295			rio_dprintk (RIO_DEBUG_BOOT, "Bin too large\n");
296			p->RIOError.Error = HOST_FILE_TOO_LARGE;
297			func_exit ();
298			return EFBIG;
299		}
300		/*
301		** Ensure that the host really is stopped.
302		** Disable it's external bus & twang its reset line.
303		*/
304		RIOHostReset( HostP->Type, (struct DpRam *)HostP->CardP, HostP->Slot );
305
306		/*
307		** Copy the data directly from user space to the SRAM.
308		** This ain't going to be none too clever if the download
309		** code is bigger than this segment.
310		*/
311		rio_dprintk (RIO_DEBUG_BOOT, "Copy in code\n");
312
313		/*
314		** PCI hostcard can't cope with 32 bit accesses and so need to copy
315		** data to a local buffer, and then dripfeed the card.
316		*/
317		if ( HostP->Type == RIO_PCI ) {
318		  /* int offset; */
319
320			DownCode = sysbrk(rbp->Count);
321			if ( !DownCode ) {
322				rio_dprintk (RIO_DEBUG_BOOT, "No system memory available\n");
323				p->RIOError.Error = NOT_ENOUGH_CORE_FOR_PCI_COPY;
324				func_exit ();
325				return ENOMEM;
326			}
327			bzero(DownCode, rbp->Count);
328
329			if ( copyin((int)rbp->DataP,DownCode,rbp->Count)==COPYFAIL ) {
330				rio_dprintk (RIO_DEBUG_BOOT, "Bad copyin of host data\n");
331				p->RIOError.Error = COPYIN_FAILED;
332				func_exit ();
333				return EFAULT;
334			}
335
336			HostP->Copy( DownCode, StartP, rbp->Count );
337
338			sysfree( DownCode, rbp->Count );
339		}
340		else if ( copyin((int)rbp->DataP,StartP,rbp->Count)==COPYFAIL ) {
341			rio_dprintk (RIO_DEBUG_BOOT, "Bad copyin of host data\n");
342			p->RIOError.Error = COPYIN_FAILED;
343			func_exit ();
344			return EFAULT;
345		}
346
347		rio_dprintk (RIO_DEBUG_BOOT, "Copy completed\n");
348
349		/*
350		**			S T O P !
351		**
352		** Upto this point the code has been fairly rational, and possibly
353		** even straight forward. What follows is a pile of crud that will
354		** magically turn into six bytes of transputer assembler. Normally
355		** you would expect an array or something, but, being me, I have
356		** chosen [been told] to use a technique whereby the startup code
357		** will be correct if we change the loadbase for the code. Which
358		** brings us onto another issue - the loadbase is the *end* of the
359		** code, not the start.
360		**
361		** If I were you I wouldn't start from here.
362		*/
363
364		/*
365		** We now need to insert a short boot section into
366		** the memory at the end of Sram2. This is normally (de)composed
367		** of the last eight bytes of the download code. The
368		** download has been assembled/compiled to expect to be
369		** loaded from 0x7FFF downwards. We have loaded it
370		** at some other address. The startup code goes into the small
371		** ram window at Sram2, in the last 8 bytes, which are really
372		** at addresses 0x7FF8-0x7FFF.
373		**
374		** If the loadbase is, say, 0x7C00, then we need to branch to
375		** address 0x7BFE to run the host.bin startup code. We assemble
376		** this jump manually.
377		**
378		** The two byte sequence 60 08 is loaded into memory at address
379		** 0x7FFE,F. This is a local branch to location 0x7FF8 (60 is nfix 0,
380		** which adds '0' to the .O register, complements .O, and then shifts
381		** it left by 4 bit positions, 08 is a jump .O+8 instruction. This will
382		** add 8 to .O (which was 0xFFF0), and will branch RELATIVE to the new
383		** location. Now, the branch starts from the value of .PC (or .IP or
384		** whatever the bloody register is called on this chip), and the .PC
385		** will be pointing to the location AFTER the branch, in this case
386		** .PC == 0x8000, so the branch will be to 0x8000+0xFFF8 = 0x7FF8.
387		**
388		** A long branch is coded at 0x7FF8. This consists of loading a four
389		** byte offset into .O using nfix (as above) and pfix operators. The
390		** pfix operates in exactly the same way as the nfix operator, but
391		** without the complement operation. The offset, of course, must be
392		** relative to the address of the byte AFTER the branch instruction,
393		** which will be (urm) 0x7FFC, so, our final destination of the branch
394		** (loadbase-2), has to be reached from here. Imagine that the loadbase
395		** is 0x7C00 (which it is), then we will need to branch to 0x7BFE (which
396		** is the first byte of the initial two byte short local branch of the
397		** download code).
398		**
399		** To code a jump from 0x7FFC (which is where the branch will start
400		** from) to 0x7BFE, we will need to branch 0xFC02 bytes (0x7FFC+0xFC02)=
401		** 0x7BFE.
402		** This will be coded as four bytes:
403		** 60 2C 20 02
404		** being nfix .O+0
405		**	   pfix .O+C
406		**	   pfix .O+0
407		**	   jump .O+2
408		**
409		** The nfix operator is used, so that the startup code will be
410		** compatible with the whole Tp family. (lies, damn lies, it'll never
411		** work in a month of Sundays).
412		**
413		** The nfix nyble is the 1s compliment of the nyble value you
414		** want to load - in this case we wanted 'F' so we nfix loaded '0'.
415		*/
416
417
418		/*
419		** Dest points to the top 8 bytes of Sram2. The Tp jumps
420		** to 0x7FFE at reset time, and starts executing. This is
421		** a short branch to 0x7FF8, where a long branch is coded.
422		*/
423
424		DestP = (BYTE *)&Cad[0x7FF8];	/* <<<---- READ THE ABOVE COMMENTS */
425
426#define	NFIX(N)	(0x60 | (N))	/* .O  = (~(.O + N))<<4 */
427#define	PFIX(N)	(0x20 | (N))	/* .O  =   (.O + N)<<4  */
428#define	JUMP(N)	(0x00 | (N))	/* .PC =   .PC + .O	 */
429
430		/*
431		** 0x7FFC is the address of the location following the last byte of
432		** the four byte jump instruction.
433		** READ THE ABOVE COMMENTS
434		**
435		** offset is (TO-FROM) % MEMSIZE, but with compound buggering about.
436		** Memsize is 64K for this range of Tp, so offset is a short (unsigned,
437		** cos I don't understand 2's complement).
438		*/
439		offset = (p->RIOConf.HostLoadBase-2)-0x7FFC;
440		WBYTE( DestP[0] , NFIX(((ushort)(~offset) >> (ushort)12) & 0xF) );
441		WBYTE( DestP[1] , PFIX(( offset >> 8) & 0xF) );
442		WBYTE( DestP[2] , PFIX(( offset >> 4) & 0xF) );
443		WBYTE( DestP[3] , JUMP( offset & 0xF) );
444
445		WBYTE( DestP[6] , NFIX(0) );
446		WBYTE( DestP[7] , JUMP(8) );
447
448		rio_dprintk (RIO_DEBUG_BOOT, "host loadbase is 0x%x\n",p->RIOConf.HostLoadBase);
449		rio_dprintk (RIO_DEBUG_BOOT, "startup offset is 0x%x\n",offset);
450
451		/*
452		** Flag what is going on
453		*/
454		HostP->Flags &= ~RUN_STATE;
455		HostP->Flags |= RC_STARTUP;
456
457		/*
458		** Grab a copy of the current ParmMap pointer, so we
459		** can tell when it has changed.
460		*/
461		OldParmMap = RWORD(HostP->__ParmMapR);
462
463		rio_dprintk (RIO_DEBUG_BOOT, "Original parmmap is 0x%x\n",OldParmMap);
464
465		/*
466		** And start it running (I hope).
467		** As there is nothing dodgy or obscure about the
468		** above code, this is guaranteed to work every time.
469		*/
470		rio_dprintk (RIO_DEBUG_BOOT,  "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n",
471		    HostP->Type, HostP->Mode, HostP->Ivec);
472
473		rio_start_card_running(HostP);
474
475		rio_dprintk (RIO_DEBUG_BOOT, "Set control port\n");
476
477		/*
478		** Now, wait for upto five seconds for the Tp to setup the parmmap
479		** pointer:
480		*/
481		for ( wait_count=0; (wait_count<p->RIOConf.StartupTime)&&
482			(RWORD(HostP->__ParmMapR)==OldParmMap); wait_count++ ) {
483			rio_dprintk (RIO_DEBUG_BOOT, "Checkout %d, 0x%x\n",wait_count,RWORD(HostP->__ParmMapR));
484			delay(HostP, HUNDRED_MS);
485
486		}
487
488		/*
489		** If the parmmap pointer is unchanged, then the host code
490		** has crashed & burned in a really spectacular way
491		*/
492		if ( RWORD(HostP->__ParmMapR) == OldParmMap ) {
493			rio_dprintk (RIO_DEBUG_BOOT, "parmmap 0x%x\n", RWORD(HostP->__ParmMapR));
494			rio_dprintk (RIO_DEBUG_BOOT, "RIO Mesg Run Fail\n");
495
496#define	HOST_DISABLE \
497		HostP->Flags &= ~RUN_STATE; \
498		HostP->Flags |= RC_STUFFED; \
499		RIOHostReset( HostP->Type, (struct DpRam *)HostP->CardP, HostP->Slot );\
500		continue
501
502			HOST_DISABLE;
503		}
504
505		rio_dprintk (RIO_DEBUG_BOOT, "Running 0x%x\n", RWORD(HostP->__ParmMapR));
506
507		/*
508		** Well, the board thought it was OK, and setup its parmmap
509		** pointer. For the time being, we will pretend that this
510		** board is running, and check out what the error flag says.
511		*/
512
513		/*
514		** Grab a 32 bit pointer to the parmmap structure
515		*/
516		ParmMapP = (PARM_MAP *)RIO_PTR(Cad,RWORD(HostP->__ParmMapR));
517		rio_dprintk (RIO_DEBUG_BOOT, "ParmMapP : %x\n", (int)ParmMapP);
518		ParmMapP = (PARM_MAP *)((unsigned long)Cad +
519						(unsigned long)((RWORD((HostP->__ParmMapR))) & 0xFFFF));
520		rio_dprintk (RIO_DEBUG_BOOT, "ParmMapP : %x\n", (int)ParmMapP);
521
522		/*
523		** The links entry should be 0xFFFF; we set it up
524		** with a mask to say how many PHBs to use, and
525		** which links to use.
526		*/
527		if ( (RWORD(ParmMapP->links) & 0xFFFF) != 0xFFFF ) {
528			rio_dprintk (RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name);
529			rio_dprintk (RIO_DEBUG_BOOT, "Links = 0x%x\n",RWORD(ParmMapP->links));
530			HOST_DISABLE;
531		}
532
533		WWORD(ParmMapP->links , RIO_LINK_ENABLE);
534
535		rio_dprintk (RIO_DEBUG_BOOT, "Looking for init_done - %d ticks\n",p->RIOConf.StartupTime);
536		HostP->timeout_id = 0;
537		for ( wait_count=0; (wait_count<p->RIOConf.StartupTime) &&
538						!RWORD(ParmMapP->init_done); wait_count++ ) {
539			rio_dprintk (RIO_DEBUG_BOOT, "Waiting for init_done\n");
540			delay(HostP, HUNDRED_MS);
541		}
542		rio_dprintk (RIO_DEBUG_BOOT, "OK! init_done!\n");
543
544		if (RWORD(ParmMapP->error) != E_NO_ERROR ||
545							!RWORD(ParmMapP->init_done) ) {
546			rio_dprintk (RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name);
547			rio_dprintk (RIO_DEBUG_BOOT, "Timedout waiting for init_done\n");
548			HOST_DISABLE;
549		}
550
551		rio_dprintk (RIO_DEBUG_BOOT, "Got init_done\n");
552
553		/*
554		** It runs! It runs!
555		*/
556		rio_dprintk (RIO_DEBUG_BOOT, "Host ID %x Running\n",HostP->UniqueNum);
557
558		/*
559		** set the time period between interrupts.
560		*/
561		WWORD(ParmMapP->timer, (short)p->RIOConf.Timer );
562
563		/*
564		** Translate all the 16 bit pointers in the __ParmMapR into
565		** 32 bit pointers for the driver.
566		*/
567		HostP->ParmMapP	 =	ParmMapP;
568		HostP->PhbP		 =	(PHB*)RIO_PTR(Cad,RWORD(ParmMapP->phb_ptr));
569		HostP->RupP		 =	(RUP*)RIO_PTR(Cad,RWORD(ParmMapP->rups));
570		HostP->PhbNumP	  = (ushort*)RIO_PTR(Cad,RWORD(ParmMapP->phb_num_ptr));
571		HostP->LinkStrP	 =	(LPB*)RIO_PTR(Cad,RWORD(ParmMapP->link_str_ptr));
572
573		/*
574		** point the UnixRups at the real Rups
575		*/
576		for ( RupN = 0; RupN<MAX_RUP; RupN++ ) {
577			HostP->UnixRups[RupN].RupP		= &HostP->RupP[RupN];
578			HostP->UnixRups[RupN].Id		  = RupN+1;
579			HostP->UnixRups[RupN].BaseSysPort = NO_PORT;
580			HostP->UnixRups[RupN].RupLock = SPIN_LOCK_UNLOCKED;
581		}
582
583		for ( RupN = 0; RupN<LINKS_PER_UNIT; RupN++ ) {
584			HostP->UnixRups[RupN+MAX_RUP].RupP	= &HostP->LinkStrP[RupN].rup;
585			HostP->UnixRups[RupN+MAX_RUP].Id  = 0;
586			HostP->UnixRups[RupN+MAX_RUP].BaseSysPort = NO_PORT;
587			HostP->UnixRups[RupN+MAX_RUP].RupLock = SPIN_LOCK_UNLOCKED;
588		}
589
590		/*
591		** point the PortP->Phbs at the real Phbs
592		*/
593		for ( PortN=p->RIOFirstPortsMapped;
594				PortN<p->RIOLastPortsMapped+PORTS_PER_RTA; PortN++ ) {
595			if ( p->RIOPortp[PortN]->HostP == HostP ) {
596				struct Port *PortP = p->RIOPortp[PortN];
597				struct PHB *PhbP;
598				/* int oldspl; */
599
600				if ( !PortP->Mapped )
601					continue;
602
603				PhbP = &HostP->PhbP[PortP->HostPort];
604				rio_spin_lock_irqsave(&PortP->portSem, flags);
605
606				PortP->PhbP = PhbP;
607
608				PortP->TxAdd	= (WORD *)RIO_PTR(Cad,RWORD(PhbP->tx_add));
609				PortP->TxStart  = (WORD *)RIO_PTR(Cad,RWORD(PhbP->tx_start));
610				PortP->TxEnd	= (WORD *)RIO_PTR(Cad,RWORD(PhbP->tx_end));
611				PortP->RxRemove = (WORD *)RIO_PTR(Cad,RWORD(PhbP->rx_remove));
612				PortP->RxStart  = (WORD *)RIO_PTR(Cad,RWORD(PhbP->rx_start));
613				PortP->RxEnd	= (WORD *)RIO_PTR(Cad,RWORD(PhbP->rx_end));
614
615				rio_spin_unlock_irqrestore(&PortP->portSem, flags);
616				/*
617				** point the UnixRup at the base SysPort
618				*/
619				if ( !(PortN % PORTS_PER_RTA) )
620					HostP->UnixRups[PortP->RupNum].BaseSysPort = PortN;
621			}
622		}
623
624		rio_dprintk (RIO_DEBUG_BOOT, "Set the card running... \n");
625		/*
626		** last thing - show the world that everything is in place
627		*/
628		HostP->Flags &= ~RUN_STATE;
629		HostP->Flags |= RC_RUNNING;
630	}
631	/*
632	** MPX always uses a poller. This is actually patched into the system
633	** configuration and called directly from each clock tick.
634	**
635	*/
636	p->RIOPolling = 1;
637
638	p->RIOSystemUp++;
639
640	rio_dprintk (RIO_DEBUG_BOOT, "Done everything %x\n", HostP->Ivec);
641	func_exit ();
642	return 0;
643}
644
645
646
647/*
648** Boot an RTA. If we have successfully processed this boot, then
649** return 1. If we havent, then return 0.
650*/
651int
652RIOBootRup( p, Rup, HostP, PacketP)
653struct rio_info *	p;
654uint Rup;
655struct Host *HostP;
656struct PKT *PacketP;
657{
658	struct PktCmd *PktCmdP = (struct PktCmd *)PacketP->data;
659	struct PktCmd_M *PktReplyP;
660	struct CmdBlk *CmdBlkP;
661	uint sequence;
662
663#ifdef CHECK
664	CheckHost(Host);
665	CheckRup(Rup);
666	CheckHostP(HostP);
667	CheckPacketP(PacketP);
668#endif
669
670	/*
671	** If we haven't been told what to boot, we can't boot it.
672	*/
673	if ( p->RIONumBootPkts == 0 ) {
674		rio_dprintk (RIO_DEBUG_BOOT, "No RTA code to download yet\n");
675		return 0;
676	}
677
678	/* rio_dprint(RIO_DEBUG_BOOT, NULL,DBG_BOOT,"Incoming command packet\n"); */
679	/* ShowPacket( DBG_BOOT, PacketP ); */
680
681	/*
682	** Special case of boot completed - if we get one of these then we
683	** don't need a command block. For all other cases we do, so handle
684	** this first and then get a command block, then handle every other
685	** case, relinquishing the command block if disaster strikes!
686	*/
687	if ( (RBYTE(PacketP->len) & PKT_CMD_BIT) &&
688			(RBYTE(PktCmdP->Command)==BOOT_COMPLETED) )
689		return RIOBootComplete(p, HostP, Rup, PktCmdP );
690
691	/*
692	** try to unhook a command block from the command free list.
693	*/
694	if ( !(CmdBlkP = RIOGetCmdBlk()) ) {
695		rio_dprintk (RIO_DEBUG_BOOT, "No command blocks to boot RTA! come back later.\n");
696		return 0;
697	}
698
699	/*
700	** Fill in the default info on the command block
701	*/
702	CmdBlkP->Packet.dest_unit = Rup < (ushort)MAX_RUP ? Rup : 0;
703	CmdBlkP->Packet.dest_port = BOOT_RUP;
704	CmdBlkP->Packet.src_unit  = 0;
705	CmdBlkP->Packet.src_port  = BOOT_RUP;
706
707	CmdBlkP->PreFuncP = CmdBlkP->PostFuncP = NULL;
708	PktReplyP = (struct PktCmd_M *)CmdBlkP->Packet.data;
709
710	/*
711	** process COMMANDS on the boot rup!
712	*/
713	if ( RBYTE(PacketP->len) & PKT_CMD_BIT ) {
714		/*
715		** We only expect one type of command - a BOOT_REQUEST!
716		*/
717		if ( RBYTE(PktCmdP->Command) != BOOT_REQUEST ) {
718			rio_dprintk (RIO_DEBUG_BOOT, "Unexpected command %d on BOOT RUP %d of host %d\n",
719						PktCmdP->Command,Rup,HostP-p->RIOHosts);
720			ShowPacket( DBG_BOOT, PacketP );
721			RIOFreeCmdBlk( CmdBlkP );
722			return 1;
723		}
724
725		/*
726		** Build a Boot Sequence command block
727		**
728		** 02.03.1999 ARG - ESIL 0820 fix
729		** We no longer need to use "Boot Mode", we'll always allow
730		** boot requests - the boot will not complete if the device
731		** appears in the bindings table.
732		** So, this conditional is not required ...
733		**
734		if (p->RIOBootMode == RC_BOOT_NONE)
735			**
736			** If the system is in slave mode, and a boot request is
737			** received, set command to BOOT_ABORT so that the boot
738			** will not complete.
739			**
740			PktReplyP->Command			 = BOOT_ABORT;
741		else
742		**
743		** We'll just (always) set the command field in packet reply
744		** to allow an attempted boot sequence :
745		*/
746		PktReplyP->Command = BOOT_SEQUENCE;
747
748		PktReplyP->BootSequence.NumPackets = p->RIONumBootPkts;
749		PktReplyP->BootSequence.LoadBase   = p->RIOConf.RtaLoadBase;
750		PktReplyP->BootSequence.CodeSize   = p->RIOBootCount;
751
752		CmdBlkP->Packet.len				= BOOT_SEQUENCE_LEN | PKT_CMD_BIT;
753
754		bcopy("BOOT",(void *)&CmdBlkP->Packet.data[BOOT_SEQUENCE_LEN],4);
755
756		rio_dprintk (RIO_DEBUG_BOOT, "Boot RTA on Host %d Rup %d - %d (0x%x) packets to 0x%x\n",
757			HostP-p->RIOHosts, Rup, p->RIONumBootPkts, p->RIONumBootPkts,
758								p->RIOConf.RtaLoadBase);
759
760		/*
761		** If this host is in slave mode, send the RTA an invalid boot
762		** sequence command block to force it to kill the boot. We wait
763		** for half a second before sending this packet to prevent the RTA
764		** attempting to boot too often. The master host should then grab
765		** the RTA and make it its own.
766		*/
767		p->RIOBooting++;
768		RIOQueueCmdBlk( HostP, Rup, CmdBlkP );
769		return 1;
770	}
771
772	/*
773	** It is a request for boot data.
774	*/
775	sequence = RWORD(PktCmdP->Sequence);
776
777	rio_dprintk (RIO_DEBUG_BOOT, "Boot block %d on Host %d Rup%d\n",sequence,HostP-p->RIOHosts,Rup);
778
779	if ( sequence >= p->RIONumBootPkts ) {
780		rio_dprintk (RIO_DEBUG_BOOT, "Got a request for packet %d, max is %d\n", sequence,
781					p->RIONumBootPkts);
782		ShowPacket( DBG_BOOT, PacketP );
783	}
784
785	PktReplyP->Sequence = sequence;
786
787	bcopy( p->RIOBootPackets[ p->RIONumBootPkts - sequence - 1 ],
788				PktReplyP->BootData, RTA_BOOT_DATA_SIZE );
789
790	CmdBlkP->Packet.len = PKT_MAX_DATA_LEN;
791	ShowPacket( DBG_BOOT, &CmdBlkP->Packet );
792	RIOQueueCmdBlk( HostP, Rup, CmdBlkP );
793	return 1;
794}
795
796/*
797** This function is called when an RTA been booted.
798** If booted by a host, HostP->HostUniqueNum is the booting host.
799** If booted by an RTA, HostP->Mapping[Rup].RtaUniqueNum is the booting RTA.
800** RtaUniq is the booted RTA.
801*/
802int RIOBootComplete( struct rio_info *p, struct Host *HostP, uint Rup, struct PktCmd *PktCmdP )
803{
804	struct Map	*MapP = NULL;
805	struct Map	*MapP2 = NULL;
806	int	Flag;
807	int	found;
808	int	host, rta;
809	int	EmptySlot = -1;
810	int	entry, entry2;
811	char	*MyType, *MyName;
812	uint	MyLink;
813	ushort	RtaType;
814	uint	RtaUniq = (RBYTE(PktCmdP->UniqNum[0])) +
815			  (RBYTE(PktCmdP->UniqNum[1]) << 8) +
816			  (RBYTE(PktCmdP->UniqNum[2]) << 16) +
817			  (RBYTE(PktCmdP->UniqNum[3]) << 24);
818
819	/* Was RIOBooting-- . That's bad. If an RTA sends two of them, the
820	   driver will never think that the RTA has booted... -- REW */
821	p->RIOBooting = 0;
822
823	rio_dprintk (RIO_DEBUG_BOOT, "RTA Boot completed - BootInProgress now %d\n", p->RIOBooting);
824
825	/*
826	** Determine type of unit (16/8 port RTA).
827	*/
828	RtaType = GetUnitType(RtaUniq);
829        if ( Rup >= (ushort)MAX_RUP ) {
830	    rio_dprintk (RIO_DEBUG_BOOT, "RIO: Host %s has booted an RTA(%d) on link %c\n",
831	     HostP->Name, 8 * RtaType, RBYTE(PktCmdP->LinkNum)+'A');
832	} else {
833	    rio_dprintk (RIO_DEBUG_BOOT, "RIO: RTA %s has booted an RTA(%d) on link %c\n",
834	     HostP->Mapping[Rup].Name, 8 * RtaType,
835	     RBYTE(PktCmdP->LinkNum)+'A');
836	}
837
838	rio_dprintk (RIO_DEBUG_BOOT, "UniqNum is 0x%x\n",RtaUniq);
839
840        if ( ( RtaUniq == 0x00000000 ) || ( RtaUniq == 0xffffffff ) )
841	{
842	    rio_dprintk (RIO_DEBUG_BOOT, "Illegal RTA Uniq Number\n");
843	    return TRUE;
844	}
845
846	/*
847	** If this RTA has just booted an RTA which doesn't belong to this
848	** system, or the system is in slave mode, do not attempt to create
849	** a new table entry for it.
850	*/
851	if (!RIOBootOk(p, HostP, RtaUniq))
852	{
853	    MyLink = RBYTE(PktCmdP->LinkNum);
854	    if (Rup < (ushort) MAX_RUP)
855	    {
856		/*
857		** RtaUniq was clone booted (by this RTA). Instruct this RTA
858		** to hold off further attempts to boot on this link for 30
859		** seconds.
860		*/
861		if (RIOSuspendBootRta(HostP, HostP->Mapping[Rup].ID, MyLink))
862		{
863		    rio_dprintk (RIO_DEBUG_BOOT, "RTA failed to suspend booting on link %c\n",
864		     'A' + MyLink);
865		}
866	    }
867	    else
868	    {
869		/*
870		** RtaUniq was booted by this host. Set the booting link
871		** to hold off for 30 seconds to give another unit a
872		** chance to boot it.
873		*/
874		WWORD(HostP->LinkStrP[MyLink].WaitNoBoot, 30);
875	    }
876	    rio_dprintk (RIO_DEBUG_BOOT, "RTA %x not owned - suspend booting down link %c on unit %x\n",
877	      RtaUniq, 'A' + MyLink, HostP->Mapping[Rup].RtaUniqueNum);
878	    return TRUE;
879	}
880
881	/*
882	** Check for a SLOT_IN_USE entry for this RTA attached to the
883	** current host card in the driver table.
884	**
885	** If it exists, make a note that we have booted it. Other parts of
886	** the driver are interested in this information at a later date,
887	** in particular when the booting RTA asks for an ID for this unit,
888	** we must have set the BOOTED flag, and the NEWBOOT flag is used
889	** to force an open on any ports that where previously open on this
890	** unit.
891	*/
892        for ( entry=0; entry<MAX_RUP; entry++ )
893	{
894	    uint sysport;
895
896	    if ((HostP->Mapping[entry].Flags & SLOT_IN_USE) &&
897	       (HostP->Mapping[entry].RtaUniqueNum==RtaUniq))
898	    {
899	        HostP->Mapping[entry].Flags |= RTA_BOOTED|RTA_NEWBOOT;
900#if NEED_TO_FIX
901		RIO_SV_BROADCAST(HostP->svFlags[entry]);
902#endif
903		if ( (sysport=HostP->Mapping[entry].SysPort) != NO_PORT )
904		{
905		   if ( sysport < p->RIOFirstPortsBooted )
906			p->RIOFirstPortsBooted = sysport;
907		   if ( sysport > p->RIOLastPortsBooted )
908			p->RIOLastPortsBooted = sysport;
909		   /*
910		   ** For a 16 port RTA, check the second bank of 8 ports
911		   */
912		   if (RtaType == TYPE_RTA16)
913		   {
914			entry2 = HostP->Mapping[entry].ID2 - 1;
915			HostP->Mapping[entry2].Flags |= RTA_BOOTED|RTA_NEWBOOT;
916#if NEED_TO_FIX
917			RIO_SV_BROADCAST(HostP->svFlags[entry2]);
918#endif
919			sysport = HostP->Mapping[entry2].SysPort;
920			if ( sysport < p->RIOFirstPortsBooted )
921			    p->RIOFirstPortsBooted = sysport;
922			if ( sysport > p->RIOLastPortsBooted )
923			    p->RIOLastPortsBooted = sysport;
924		   }
925		}
926		if (RtaType == TYPE_RTA16) {
927		   rio_dprintk (RIO_DEBUG_BOOT, "RTA will be given IDs %d+%d\n",
928		    entry+1, entry2+1);
929		} else {
930		   rio_dprintk (RIO_DEBUG_BOOT, "RTA will be given ID %d\n",entry+1);
931		}
932		return TRUE;
933	    }
934	}
935
936	rio_dprintk (RIO_DEBUG_BOOT, "RTA not configured for this host\n");
937
938	if ( Rup >= (ushort)MAX_RUP )
939	{
940	    /*
941	    ** It was a host that did the booting
942	    */
943	    MyType = "Host";
944	    MyName = HostP->Name;
945	}
946	else
947	{
948	    /*
949	    ** It was an RTA that did the booting
950	    */
951	    MyType = "RTA";
952	    MyName = HostP->Mapping[Rup].Name;
953	}
954#ifdef CHECK
955	CheckString(MyType);
956	CheckString(MyName);
957#endif
958
959	MyLink = RBYTE(PktCmdP->LinkNum);
960
961	/*
962	** There is no SLOT_IN_USE entry for this RTA attached to the current
963	** host card in the driver table.
964	**
965	** Check for a SLOT_TENTATIVE entry for this RTA attached to the
966	** current host card in the driver table.
967	**
968	** If we find one, then we re-use that slot.
969	*/
970	for ( entry=0; entry<MAX_RUP; entry++ )
971	{
972	    if ( (HostP->Mapping[entry].Flags & SLOT_TENTATIVE) &&
973		 (HostP->Mapping[entry].RtaUniqueNum == RtaUniq) )
974	    {
975		if (RtaType == TYPE_RTA16)
976		{
977		    entry2 = HostP->Mapping[entry].ID2 - 1;
978		    if ( (HostP->Mapping[entry2].Flags & SLOT_TENTATIVE) &&
979			 (HostP->Mapping[entry2].RtaUniqueNum == RtaUniq) )
980			rio_dprintk (RIO_DEBUG_BOOT, "Found previous tentative slots (%d+%d)\n",
981			 entry, entry2);
982		    else
983			continue;
984		}
985		else
986			rio_dprintk (RIO_DEBUG_BOOT, "Found previous tentative slot (%d)\n",entry);
987		if (! p->RIONoMessage)
988		    cprintf("RTA connected to %s '%s' (%c) not configured.\n",MyType,MyName,MyLink+'A');
989		return TRUE;
990	    }
991	}
992
993	/*
994	** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
995	** attached to the current host card in the driver table.
996	**
997	** Check if there is a SLOT_IN_USE or SLOT_TENTATIVE entry on another
998	** host for this RTA in the driver table.
999	**
1000	** For a SLOT_IN_USE entry on another host, we need to delete the RTA
1001	** entry from the other host and add it to this host (using some of
1002	** the functions from table.c which do this).
1003	** For a SLOT_TENTATIVE entry on another host, we must cope with the
1004	** following scenario:
1005	**
1006	** + Plug 8 port RTA into host A. (This creates SLOT_TENTATIVE entry
1007	**   in table)
1008	** + Unplug RTA and plug into host B. (We now have 2 SLOT_TENTATIVE
1009	**   entries)
1010	** + Configure RTA on host B. (This slot now becomes SLOT_IN_USE)
1011	** + Unplug RTA and plug back into host A.
1012	** + Configure RTA on host A. We now have the same RTA configured
1013	**   with different ports on two different hosts.
1014	*/
1015	rio_dprintk (RIO_DEBUG_BOOT, "Have we seen RTA %x before?\n", RtaUniq );
1016	found = 0;
1017	Flag = 0; /* Convince the compiler this variable is initialized */
1018	for ( host = 0; !found && (host < p->RIONumHosts); host++ )
1019	{
1020	    for ( rta=0; rta<MAX_RUP; rta++ )
1021	    {
1022		if ((p->RIOHosts[host].Mapping[rta].Flags &
1023		 (SLOT_IN_USE | SLOT_TENTATIVE)) &&
1024		 (p->RIOHosts[host].Mapping[rta].RtaUniqueNum==RtaUniq))
1025		{
1026		    Flag = p->RIOHosts[host].Mapping[rta].Flags;
1027		    MapP = &p->RIOHosts[host].Mapping[rta];
1028		    if (RtaType == TYPE_RTA16)
1029		    {
1030			MapP2 = &p->RIOHosts[host].Mapping[MapP->ID2 - 1];
1031			rio_dprintk (RIO_DEBUG_BOOT, "This RTA is units %d+%d from host %s\n",
1032			 rta+1, MapP->ID2, p->RIOHosts[host].Name);
1033		    }
1034		    else
1035			rio_dprintk (RIO_DEBUG_BOOT, "This RTA is unit %d from host %s\n",
1036			 rta+1, p->RIOHosts[host].Name);
1037		    found = 1;
1038		    break;
1039		}
1040	    }
1041	}
1042
1043	/*
1044	** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
1045	** attached to the current host card in the driver table.
1046	**
1047	** If we have not found a SLOT_IN_USE or SLOT_TENTATIVE entry on
1048	** another host for this RTA in the driver table...
1049	**
1050	** Check for a SLOT_IN_USE entry for this RTA in the config table.
1051	*/
1052	if ( !MapP )
1053	{
1054	    rio_dprintk (RIO_DEBUG_BOOT, "Look for RTA %x in RIOSavedTable\n",RtaUniq);
1055	    for ( rta=0; rta < TOTAL_MAP_ENTRIES; rta++ )
1056	    {
1057		rio_dprintk (RIO_DEBUG_BOOT, "Check table entry %d (%x)",
1058		      rta,
1059		      p->RIOSavedTable[rta].RtaUniqueNum);
1060
1061		if ( (p->RIOSavedTable[rta].Flags & SLOT_IN_USE) &&
1062		 (p->RIOSavedTable[rta].RtaUniqueNum == RtaUniq) )
1063		{
1064		    MapP = &p->RIOSavedTable[rta];
1065		    Flag = p->RIOSavedTable[rta].Flags;
1066		    if (RtaType == TYPE_RTA16)
1067		    {
1068                        for (entry2 = rta + 1; entry2 < TOTAL_MAP_ENTRIES;
1069                         entry2++)
1070                        {
1071                            if (p->RIOSavedTable[entry2].RtaUniqueNum == RtaUniq)
1072                                break;
1073                        }
1074                        MapP2 = &p->RIOSavedTable[entry2];
1075                        rio_dprintk (RIO_DEBUG_BOOT, "This RTA is from table entries %d+%d\n",
1076                              rta, entry2);
1077		    }
1078		    else
1079			rio_dprintk (RIO_DEBUG_BOOT, "This RTA is from table entry %d\n", rta);
1080		    break;
1081		}
1082	    }
1083	}
1084
1085	/*
1086	** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
1087	** attached to the current host card in the driver table.
1088	**
1089	** We may have found a SLOT_IN_USE entry on another host for this
1090	** RTA in the config table, or a SLOT_IN_USE or SLOT_TENTATIVE entry
1091	** on another host for this RTA in the driver table.
1092	**
1093	** Check the driver table for room to fit this newly discovered RTA.
1094	** RIOFindFreeID() first looks for free slots and if it does not
1095	** find any free slots it will then attempt to oust any
1096	** tentative entry in the table.
1097	*/
1098	EmptySlot = 1;
1099	if (RtaType == TYPE_RTA16)
1100	{
1101	    if (RIOFindFreeID(p, HostP, &entry, &entry2) == 0)
1102	    {
1103		RIODefaultName(p, HostP, entry);
1104		FillSlot(entry, entry2, RtaUniq, HostP);
1105		EmptySlot = 0;
1106	    }
1107	}
1108	else
1109	{
1110	    if (RIOFindFreeID(p, HostP, &entry, NULL) == 0)
1111	    {
1112		RIODefaultName(p, HostP, entry);
1113		FillSlot(entry, 0, RtaUniq, HostP);
1114		EmptySlot = 0;
1115	    }
1116	}
1117
1118	/*
1119	** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
1120	** attached to the current host card in the driver table.
1121	**
1122	** If we found a SLOT_IN_USE entry on another host for this
1123	** RTA in the config or driver table, and there are enough free
1124	** slots in the driver table, then we need to move it over and
1125	** delete it from the other host.
1126	** If we found a SLOT_TENTATIVE entry on another host for this
1127	** RTA in the driver table, just delete the other host entry.
1128	*/
1129	if (EmptySlot == 0)
1130	{
1131	    if ( MapP )
1132	    {
1133		if (Flag & SLOT_IN_USE)
1134		{
1135		    rio_dprintk (RIO_DEBUG_BOOT,
1136    "This RTA configured on another host - move entry to current host (1)\n");
1137		    HostP->Mapping[entry].SysPort = MapP->SysPort;
1138		    CCOPY( MapP->Name, HostP->Mapping[entry].Name, MAX_NAME_LEN );
1139		    HostP->Mapping[entry].Flags =
1140		     SLOT_IN_USE | RTA_BOOTED | RTA_NEWBOOT;
1141#if NEED_TO_FIX
1142		    RIO_SV_BROADCAST(HostP->svFlags[entry]);
1143#endif
1144		    RIOReMapPorts( p, HostP, &HostP->Mapping[entry] );
1145		    if ( HostP->Mapping[entry].SysPort < p->RIOFirstPortsBooted )
1146			p->RIOFirstPortsBooted = HostP->Mapping[entry].SysPort;
1147		    if ( HostP->Mapping[entry].SysPort > p->RIOLastPortsBooted )
1148			p->RIOLastPortsBooted = HostP->Mapping[entry].SysPort;
1149		    rio_dprintk (RIO_DEBUG_BOOT, "SysPort %d, Name %s\n",(int)MapP->SysPort,MapP->Name);
1150		}
1151		else
1152		{
1153		    rio_dprintk (RIO_DEBUG_BOOT,
1154   "This RTA has a tentative entry on another host - delete that entry (1)\n");
1155		    HostP->Mapping[entry].Flags =
1156		     SLOT_TENTATIVE | RTA_BOOTED | RTA_NEWBOOT;
1157#if NEED_TO_FIX
1158		    RIO_SV_BROADCAST(HostP->svFlags[entry]);
1159#endif
1160		}
1161		if (RtaType == TYPE_RTA16)
1162		{
1163		    if (Flag & SLOT_IN_USE)
1164		    {
1165			HostP->Mapping[entry2].Flags = SLOT_IN_USE |
1166			 RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT;
1167#if NEED_TO_FIX
1168			RIO_SV_BROADCAST(HostP->svFlags[entry2]);
1169#endif
1170			HostP->Mapping[entry2].SysPort = MapP2->SysPort;
1171			/*
1172			** Map second block of ttys for 16 port RTA
1173			*/
1174			RIOReMapPorts( p, HostP, &HostP->Mapping[entry2] );
1175		       if (HostP->Mapping[entry2].SysPort < p->RIOFirstPortsBooted)
1176			 p->RIOFirstPortsBooted = HostP->Mapping[entry2].SysPort;
1177		       if (HostP->Mapping[entry2].SysPort > p->RIOLastPortsBooted)
1178			 p->RIOLastPortsBooted = HostP->Mapping[entry2].SysPort;
1179			rio_dprintk (RIO_DEBUG_BOOT, "SysPort %d, Name %s\n",
1180			       (int)HostP->Mapping[entry2].SysPort,
1181			       HostP->Mapping[entry].Name);
1182		    }
1183		    else
1184			HostP->Mapping[entry2].Flags = SLOT_TENTATIVE |
1185			 RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT;
1186#if NEED_TO_FIX
1187			RIO_SV_BROADCAST(HostP->svFlags[entry2]);
1188#endif
1189		    bzero( (caddr_t)MapP2, sizeof(struct Map) );
1190		}
1191		bzero( (caddr_t)MapP, sizeof(struct Map) );
1192		if (! p->RIONoMessage)
1193		    cprintf("An orphaned RTA has been adopted by %s '%s' (%c).\n",MyType,MyName,MyLink+'A');
1194	    }
1195	    else if (! p->RIONoMessage)
1196		cprintf("RTA connected to %s '%s' (%c) not configured.\n",MyType,MyName,MyLink+'A');
1197	    RIOSetChange(p);
1198	    return TRUE;
1199	}
1200
1201	/*
1202	** There is no room in the driver table to make an entry for the
1203	** booted RTA. Keep a note of its Uniq Num in the overflow table,
1204	** so we can ignore it's ID requests.
1205	*/
1206	if (! p->RIONoMessage)
1207	    cprintf("The RTA connected to %s '%s' (%c) cannot be configured.  You cannot configure more than 128 ports to one host card.\n",MyType,MyName,MyLink+'A');
1208	for ( entry=0; entry<HostP->NumExtraBooted; entry++ )
1209	{
1210	    if ( HostP->ExtraUnits[entry] == RtaUniq )
1211	    {
1212		/*
1213		** already got it!
1214		*/
1215		return TRUE;
1216	    }
1217	}
1218	/*
1219	** If there is room, add the unit to the list of extras
1220	*/
1221	if ( HostP->NumExtraBooted < MAX_EXTRA_UNITS )
1222	    HostP->ExtraUnits[HostP->NumExtraBooted++] = RtaUniq;
1223	return TRUE;
1224}
1225
1226
1227/*
1228** If the RTA or its host appears in the RIOBindTab[] structure then
1229** we mustn't boot the RTA and should return FALSE.
1230** This operation is slightly different from the other drivers for RIO
1231** in that this is designed to work with the new utilities
1232** not config.rio and is FAR SIMPLER.
1233** We no longer support the RIOBootMode variable. It is all done from the
1234** "boot/noboot" field in the rio.cf file.
1235*/
1236int
1237RIOBootOk(p, HostP, RtaUniq)
1238struct rio_info *	p;
1239struct Host *		HostP;
1240ulong RtaUniq;
1241{
1242    int		Entry;
1243    uint HostUniq = HostP->UniqueNum;
1244
1245	/*
1246	** Search bindings table for RTA or its parent.
1247	** If it exists, return 0, else 1.
1248	*/
1249	for (Entry = 0;
1250	    ( Entry < MAX_RTA_BINDINGS ) && ( p->RIOBindTab[Entry] != 0 );
1251	    Entry++)
1252	{
1253		if ( (p->RIOBindTab[Entry] == HostUniq) ||
1254		     (p->RIOBindTab[Entry] == RtaUniq) )
1255			return 0;
1256	}
1257	return 1;
1258}
1259
1260/*
1261** Make an empty slot tentative. If this is a 16 port RTA, make both
1262** slots tentative, and the second one RTA_SECOND_SLOT as well.
1263*/
1264
1265void
1266FillSlot(entry, entry2, RtaUniq, HostP)
1267int entry;
1268int entry2;
1269uint RtaUniq;
1270struct Host *HostP;
1271{
1272	int		link;
1273
1274	rio_dprintk (RIO_DEBUG_BOOT, "FillSlot(%d, %d, 0x%x...)\n", entry, entry2, RtaUniq);
1275
1276	HostP->Mapping[entry].Flags = (RTA_BOOTED | RTA_NEWBOOT | SLOT_TENTATIVE);
1277	HostP->Mapping[entry].SysPort = NO_PORT;
1278	HostP->Mapping[entry].RtaUniqueNum = RtaUniq;
1279	HostP->Mapping[entry].HostUniqueNum = HostP->UniqueNum;
1280	HostP->Mapping[entry].ID = entry + 1;
1281	HostP->Mapping[entry].ID2 = 0;
1282	if (entry2) {
1283		HostP->Mapping[entry2].Flags = (RTA_BOOTED | RTA_NEWBOOT |
1284								SLOT_TENTATIVE | RTA16_SECOND_SLOT);
1285		HostP->Mapping[entry2].SysPort = NO_PORT;
1286		HostP->Mapping[entry2].RtaUniqueNum = RtaUniq;
1287		HostP->Mapping[entry2].HostUniqueNum = HostP->UniqueNum;
1288		HostP->Mapping[entry2].Name[0] = '\0';
1289		HostP->Mapping[entry2].ID = entry2 + 1;
1290		HostP->Mapping[entry2].ID2 = entry + 1;
1291		HostP->Mapping[entry].ID2 = entry2 + 1;
1292	}
1293	/*
1294	** Must set these up, so that utilities show
1295	** topology of 16 port RTAs correctly
1296	*/
1297	for ( link=0; link<LINKS_PER_UNIT; link++ ) {
1298		HostP->Mapping[entry].Topology[link].Unit = ROUTE_DISCONNECT;
1299		HostP->Mapping[entry].Topology[link].Link = NO_LINK;
1300		if (entry2) {
1301			HostP->Mapping[entry2].Topology[link].Unit = ROUTE_DISCONNECT;
1302			HostP->Mapping[entry2].Topology[link].Link = NO_LINK;
1303		}
1304	}
1305}
1306
1307