1/*
2 * $Source: /home/user/PROJECT/WL-520gu-NewUI/src/linux/linux/drivers/char/ftape/compressor/lzrw3.c,v $
3 * $Revision: 1.1.1.1 $
4 * $Date: 2008/10/15 03:26:29 $
5 *
6 * Implementation of Ross Williams lzrw3 algorithm. Adaption for zftape.
7 *
8 */
9
10#include "../compressor/lzrw3.h"       /* Defines single exported function "compress".   */
11
12/******************************************************************************/
13/*                                                                            */
14/*                                    LZRW3.C                                 */
15/*                                                                            */
16/******************************************************************************/
17/*                                                                            */
18/* Author  : Ross Williams.                                                   */
19/* Date    : 30-Jun-1991.                                                     */
20/* Release : 1.                                                               */
21/*                                                                            */
22/******************************************************************************/
23/*                                                                            */
24/* This file contains an implementation of the LZRW3 data compression         */
25/* algorithm in C.                                                            */
26/*                                                                            */
27/* The algorithm is a general purpose compression algorithm that runs fast    */
28/* and gives reasonable compression. The algorithm is a member of the Lempel  */
29/* Ziv family of algorithms and bases its compression on the presence in the  */
30/* data of repeated substrings.                                               */
31/*                                                                            */
32/* This algorithm is unpatented and the code is public domain. As the         */
33/* algorithm is based on the LZ77 class of algorithms, it is unlikely to be   */
34/* the subject of a patent challenge.                                         */
35/*                                                                            */
36/* Unlike the LZRW1 and LZRW1-A algorithms, the LZRW3 algorithm is            */
37/* deterministic and is guaranteed to yield the same compressed               */
38/* representation for a given file each time it is run.                       */
39/*                                                                            */
40/* The LZRW3 algorithm was originally designed and implemented                */
41/* by Ross Williams on 31-Dec-1990.                                           */
42/*                                                                            */
43/* Here are the results of applying this code, compiled under THINK C 4.0     */
44/* and running on a Mac-SE (8MHz 68000), to the standard calgary corpus.      */
45/*                                                                            */
46/*    +----------------------------------------------------------------+      */
47/*    | DATA COMPRESSION TEST                                          |      */
48/*    | =====================                                          |      */
49/*    | Time of run     : Sun 30-Jun-1991 09:31PM                      |      */
50/*    | Timing accuracy : One part in 100                              |      */
51/*    | Context length  : 262144 bytes (= 256.0000K)                   |      */
52/*    | Test suite      : Calgary Corpus Suite                         |      */
53/*    | Files in suite  : 14                                           |      */
54/*    | Algorithm       : LZRW3                                        |      */
55/*    | Note: All averages are calculated from the un-rounded values.  |      */
56/*    +----------------------------------------------------------------+      */
57/*    | File Name   Length  CxB  ComLen  %Remn  Bits  Com K/s  Dec K/s |      */
58/*    | ----------  ------  ---  ------  -----  ----  -------  ------- |      */
59/*    | rpus:Bib.D  111261    1   55033   49.5  3.96    19.46    32.27 |      */
60/*    | us:Book1.D  768771    3  467962   60.9  4.87    17.03    31.07 |      */
61/*    | us:Book2.D  610856    3  317102   51.9  4.15    19.39    34.15 |      */
62/*    | rpus:Geo.D  102400    1   82424   80.5  6.44    11.65    18.18 |      */
63/*    | pus:News.D  377109    2  205670   54.5  4.36    17.14    27.47 |      */
64/*    | pus:Obj1.D   21504    1   13027   60.6  4.85    13.40    18.95 |      */
65/*    | pus:Obj2.D  246814    1  116286   47.1  3.77    19.31    30.10 |      */
66/*    | s:Paper1.D   53161    1   27522   51.8  4.14    18.60    31.15 |      */
67/*    | s:Paper2.D   82199    1   45160   54.9  4.40    18.45    32.84 |      */
68/*    | rpus:Pic.D  513216    2  122388   23.8  1.91    35.29    51.05 |      */
69/*    | us:Progc.D   39611    1   19669   49.7  3.97    18.87    30.64 |      */
70/*    | us:Progl.D   71646    1   28247   39.4  3.15    24.34    40.66 |      */
71/*    | us:Progp.D   49379    1   19377   39.2  3.14    23.91    39.23 |      */
72/*    | us:Trans.D   93695    1   33481   35.7  2.86    25.48    40.37 |      */
73/*    +----------------------------------------------------------------+      */
74/*    | Average     224401    1  110953   50.0  4.00    20.17    32.72 |      */
75/*    +----------------------------------------------------------------+      */
76/*                                                                            */
77/******************************************************************************/
78
79/******************************************************************************/
80
81/* The following structure is returned by the "compress" function below when  */
82/* the user asks the function to return identifying information.              */
83/* The most important field in the record is the working memory field which   */
84/* tells the calling program how much working memory should be passed to      */
85/* "compress" when it is called to perform a compression or decompression.    */
86/* LZRW3 uses the same amount of memory during compression and decompression. */
87/* For more information on this structure see "compress.h".                   */
88
89#define U(X)            ((ULONG) X)
90#define SIZE_P_BYTE     (U(sizeof(UBYTE *)))
91#define SIZE_WORD       (U(sizeof(UWORD  )))
92#define ALIGNMENT_FUDGE (U(16))
93#define MEM_REQ ( U(4096)*(SIZE_P_BYTE) + ALIGNMENT_FUDGE )
94
95static struct compress_identity identity =
96{
97 U(0x032DDEA8),                           /* Algorithm identification number. */
98 MEM_REQ,                                 /* Working memory (bytes) required. */
99 "LZRW3",                                 /* Name of algorithm.               */
100 "1.0",                                   /* Version number of algorithm.     */
101 "31-Dec-1990",                           /* Date of algorithm.               */
102 "Public Domain",                         /* Copyright notice.                */
103 "Ross N. Williams",                      /* Author of algorithm.             */
104 "Renaissance Software",                  /* Affiliation of author.           */
105 "Public Domain"                          /* Vendor of algorithm.             */
106};
107
108LOCAL void compress_compress  (UBYTE *,UBYTE *,ULONG,UBYTE *, LONG *);
109LOCAL void compress_decompress(UBYTE *,UBYTE *,LONG, UBYTE *, ULONG *);
110
111/******************************************************************************/
112
113/* This function is the only function exported by this module.                */
114/* Depending on its first parameter, the function can be requested to         */
115/* compress a block of memory, decompress a block of memory, or to identify   */
116/* itself. For more information, see the specification file "compress.h".     */
117
118EXPORT void lzrw3_compress(action,wrk_mem,src_adr,src_len,dst_adr,p_dst_len)
119UWORD     action;      /* Action to be performed.                             */
120UBYTE   *wrk_mem;      /* Address of working memory we can use.               */
121UBYTE   *src_adr;      /* Address of input data.                              */
122LONG     src_len;      /* Length  of input data.                              */
123UBYTE   *dst_adr;      /* Address to put output data.                         */
124void  *p_dst_len;      /* Address of longword for length of output data.      */
125{
126 switch (action)
127   {
128    case COMPRESS_ACTION_IDENTITY:
129       *((struct compress_identity **)p_dst_len)= &identity;
130       break;
131    case COMPRESS_ACTION_COMPRESS:
132       compress_compress(wrk_mem,src_adr,src_len,dst_adr,(LONG *)p_dst_len);
133       break;
134    case COMPRESS_ACTION_DECOMPRESS:
135       compress_decompress(wrk_mem,src_adr,src_len,dst_adr,(LONG *)p_dst_len);
136       break;
137   }
138}
139
140/******************************************************************************/
141/*                                                                            */
142/* BRIEF DESCRIPTION OF THE LZRW3 ALGORITHM                                   */
143/* ========================================                                   */
144/* The LZRW3 algorithm is identical to the LZRW1-A algorithm except that      */
145/* instead of transmitting history offsets, it transmits hash table indexes.  */
146/* In order to decode the indexes, the decompressor must maintain an          */
147/* identical hash table. Copy items are straightforward:when the decompressor */
148/* receives a copy item, it simply looks up the hash table to translate the   */
149/* index into a pointer into the data already decompressed. To update the     */
150/* hash table, it replaces the same table entry with a pointer to the start   */
151/* of the newly decoded phrase. The tricky part is with literal items, for at */
152/* the time that the decompressor receives a literal item the decompressor    */
153/* does not have the three bytes in the Ziv (that the compressor has) to      */
154/* perform the three-byte hash. To solve this problem, in LZRW3, both the     */
155/* compressor and decompressor are wired up so that they "buffer" these       */
156/* literals and update their hash tables only when three bytes are available. */
157/* This makes the maximum buffering 2 bytes.                                  */
158/*                                                                            */
159/* Replacement of offsets by hash table indexes yields a few percent extra    */
160/* compression at the cost of some speed. LZRW3 is slower than LZRW1, LZRW1-A */
161/* and LZRW2, but yields better compression.                                  */
162/*                                                                            */
163/* Extra compression could be obtained by using a hash table of depth two.    */
164/* However, increasing the depth above one incurs a significant decrease in   */
165/* compression speed which was not considered worthwhile. Another reason for  */
166/* keeping the depth down to one was to allow easy comparison with the        */
167/* LZRW1-A and LZRW2 algorithms so as to demonstrate the exact effect of the  */
168/* use of direct hash indexes.                                                */
169/*                                                                            */
170/*                                  +---+                                     */
171/*                                  |___|4095                                 */
172/*                                  |___|                                     */
173/*              +---------------------*_|<---+   /----+---\                   */
174/*              |                   |___|    +---|Hash    |                   */
175/*              |                   |___|        |Function|                   */
176/*              |                   |___|        \--------/                   */
177/*              |                   |___|0            ^                       */
178/*              |                   +---+             |                       */
179/*              |                   Hash        +-----+                       */
180/*              |                   Table       |                             */
181/*              |                              ---                            */
182/*              v                              ^^^                            */
183/*      +-------------------------------------|----------------+              */
184/*      ||||||||||||||||||||||||||||||||||||||||||||||||||||||||              */
185/*      +-------------------------------------|----------------+              */
186/*      |                                     |1......18|      |              */
187/*      |<------- Lempel=History ------------>|<--Ziv-->|      |              */
188/*      |     (=bytes already processed)      |<-Still to go-->|              */
189/*      |<-------------------- INPUT BLOCK ------------------->|              */
190/*                                                                            */
191/* The diagram above for LZRW3 looks almost identical to the diagram for      */
192/* LZRW1. The difference is that in LZRW3, the compressor transmits hash      */
193/* table indices instead of Lempel offsets. For this to work, the             */
194/* decompressor must maintain a hash table as well as the compressor and both */
195/* compressor and decompressor must "buffer" literals, as the decompressor    */
196/* cannot hash phrases commencing with a literal until another two bytes have */
197/* arrived.                                                                   */
198/*                                                                            */
199/*  LZRW3 Algorithm Execution Summary                                         */
200/*  ---------------------------------                                         */
201/*  1. Hash the first three bytes of the Ziv to yield a hash table index h.   */
202/*  2. Look up the hash table yielding history pointer p.                     */
203/*  3. Match where p points with the Ziv. If there is a match of three or     */
204/*     more bytes, code those bytes (in the Ziv) as a copy item, otherwise    */
205/*     code the next byte in the Ziv as a literal item.                       */
206/*  4. Update the hash table as possible subject to the constraint that only  */
207/*     phrases commencing three bytes back from the Ziv can be hashed and     */
208/*     entered into the hash table. (This enables the decompressor to keep    */
209/*     pace). See the description and code for more details.                  */
210/*                                                                            */
211/******************************************************************************/
212/*                                                                            */
213/*                     DEFINITION OF COMPRESSED FILE FORMAT                   */
214/*                     ====================================                   */
215/*  * A compressed file consists of a COPY FLAG followed by a REMAINDER.      */
216/*  * The copy flag CF uses up four bytes with the first byte being the       */
217/*    least significant.                                                      */
218/*  * If CF=1, then the compressed file represents the remainder of the file  */
219/*    exactly. Otherwise CF=0 and the remainder of the file consists of zero  */
220/*    or more GROUPS, each of which represents one or more bytes.             */
221/*  * Each group consists of two bytes of CONTROL information followed by     */
222/*    sixteen ITEMs except for the last group which can contain from one      */
223/*    to sixteen items.                                                       */
224/*  * An item can be either a LITERAL item or a COPY item.                    */
225/*  * Each item corresponds to a bit in the control bytes.                    */
226/*  * The first control byte corresponds to the first 8 items in the group    */
227/*    with bit 0 corresponding to the first item in the group and bit 7 to    */
228/*    the eighth item in the group.                                           */
229/*  * The second control byte corresponds to the second 8 items in the group  */
230/*    with bit 0 corresponding to the ninth item in the group and bit 7 to    */
231/*    the sixteenth item in the group.                                        */
232/*  * A zero bit in a control word means that the corresponding item is a     */
233/*    literal item. A one bit corresponds to a copy item.                     */
234/*  * A literal item consists of a single byte which represents itself.       */
235/*  * A copy item consists of two bytes that represent from 3 to 18 bytes.    */
236/*  * The first  byte in a copy item will be denoted C1.                      */
237/*  * The second byte in a copy item will be denoted C2.                      */
238/*  * Bits will be selected using square brackets.                            */
239/*    For example: C1[0..3] is the low nibble of the first control byte.      */
240/*    of copy item C1.                                                        */
241/*  * The LENGTH of a copy item is defined to be C1[0..3]+3 which is a number */
242/*    in the range [3,18].                                                    */
243/*  * The INDEX of a copy item is defined to be C1[4..7]*256+C2[0..8] which   */
244/*    is a number in the range [0,4095].                                      */
245/*  * A copy item represents the sequence of bytes                            */
246/*       text[POS-OFFSET..POS-OFFSET+LENGTH-1] where                          */
247/*          text   is the entire text of the uncompressed string.             */
248/*          POS    is the index in the text of the character following the    */
249/*                   string represented by all the items preceeding the item  */
250/*                   being defined.                                           */
251/*          OFFSET is obtained from INDEX by looking up the hash table.       */
252/*                                                                            */
253/******************************************************************************/
254
255/* The following #define defines the length of the copy flag that appears at  */
256/* the start of the compressed file. The value of four bytes was chosen       */
257/* because the fast_copy routine on my Macintosh runs faster if the source    */
258/* and destination blocks are relatively longword aligned.                    */
259/* The actual flag data appears in the first byte. The rest are zeroed so as  */
260/* to normalize the compressed representation (i.e. not non-deterministic).   */
261#define FLAG_BYTES 4
262
263/* The following #defines define the meaning of the values of the copy        */
264/* flag at the start of the compressed file.                                  */
265#define FLAG_COMPRESS 0     /* Signals that output was result of compression. */
266#define FLAG_COPY     1     /* Signals that output was simply copied over.    */
267
268/* The 68000 microprocessor (on which this algorithm was originally developed */
269/* is fussy about non-aligned arrays of words. To avoid these problems the    */
270/* following macro can be used to "waste" from 0 to 3 bytes so as to align    */
271/* the argument pointer.                                                      */
272#define ULONG_ALIGN_UP(X) ((((ULONG)X)+sizeof(ULONG)-1)&~(sizeof(ULONG)-1))
273
274
275/* The following constant defines the maximum length of an uncompressed item. */
276/* This definition must not be changed; its value is hardwired into the code. */
277/* The longest number of bytes that can be spanned by a single item is 18     */
278/* for the longest copy item.                                                 */
279#define MAX_RAW_ITEM (18)
280
281/* The following constant defines the maximum length of an uncompressed group.*/
282/* This definition must not be changed; its value is hardwired into the code. */
283/* A group contains at most 16 items which explains this definition.          */
284#define MAX_RAW_GROUP (16*MAX_RAW_ITEM)
285
286/* The following constant defines the maximum length of a compressed group.   */
287/* This definition must not be changed; its value is hardwired into the code. */
288/* A compressed group consists of two control bytes followed by up to 16      */
289/* compressed items each of which can have a maximum length of two bytes.     */
290#define MAX_CMP_GROUP (2+16*2)
291
292/* The following constant defines the number of entries in the hash table.    */
293/* This definition must not be changed; its value is hardwired into the code. */
294#define HASH_TABLE_LENGTH (4096)
295
296/* LZRW3, unlike LZRW1(-A), must initialize its hash table so as to enable    */
297/* the compressor and decompressor to stay in step maintaining identical hash */
298/* tables. In an early version of the algorithm, the tables were simply       */
299/* initialized to zero and a check for zero was included just before the      */
300/* matching code. However, this test costs time. A better solution is to      */
301/* initialize all the entries in the hash table to point to a constant        */
302/* string. The decompressor does the same. This solution requires no extra    */
303/* test. The contents of the string do not matter so long as the string is    */
304/* the same for the compressor and decompressor and contains at least         */
305/* MAX_RAW_ITEM bytes. I chose consecutive decimal digits because they do not */
306/* have white space problems (e.g. there is no chance that the compiler will  */
307/* replace more than one space by a TAB) and because they make the length of  */
308/* the string obvious by inspection.                                          */
309#define START_STRING_18 ((UBYTE *) "123456789012345678")
310
311/* In this algorithm, hash values have to be calculated at more than one      */
312/* point. The following macro neatens the code up for this.                   */
313#define HASH(PTR) \
314   (((40543*(((*(PTR))<<8)^((*((PTR)+1))<<4)^(*((PTR)+2))))>>4) & 0xFFF)
315
316/******************************************************************************/
317
318LOCAL void compress_compress
319           (p_wrk_mem,p_src_first,src_len,p_dst_first,p_dst_len)
320/* Input  : Hand over the required amount of working memory in p_wrk_mem.     */
321/* Input  : Specify input block using p_src_first and src_len.                */
322/* Input  : Point p_dst_first to the start of the output zone (OZ).           */
323/* Input  : Point p_dst_len to a ULONG to receive the output length.          */
324/* Input  : Input block and output zone must not overlap.                     */
325/* Output : Length of output block written to *p_dst_len.                     */
326/* Output : Output block in Mem[p_dst_first..p_dst_first+*p_dst_len-1]. May   */
327/* Output : write in OZ=Mem[p_dst_first..p_dst_first+src_len+MAX_CMP_GROUP-1].*/
328/* Output : Upon completion guaranteed *p_dst_len<=src_len+FLAG_BYTES.        */
329UBYTE *p_wrk_mem;
330UBYTE *p_src_first;
331ULONG  src_len;
332UBYTE *p_dst_first;
333LONG  *p_dst_len;
334{
335 /* p_src and p_dst step through the source and destination blocks.           */
336 register UBYTE *p_src = p_src_first;
337 register UBYTE *p_dst = p_dst_first;
338
339 /* The following variables are never modified and are used in the            */
340 /* calculations that determine when the main loop terminates.                */
341 UBYTE *p_src_post  = p_src_first+src_len;
342 UBYTE *p_dst_post  = p_dst_first+src_len;
343 UBYTE *p_src_max1  = p_src_first+src_len-MAX_RAW_ITEM;
344 UBYTE *p_src_max16 = p_src_first+src_len-MAX_RAW_ITEM*16;
345
346 /* The variables 'p_control' and 'control' are used to buffer control bits.  */
347 /* Before each group is processed, the next two bytes of the output block    */
348 /* are set aside for the control word for the group about to be processed.   */
349 /* 'p_control' is set to point to the first byte of that word. Meanwhile,    */
350 /* 'control' buffers the control bits being generated during the processing  */
351 /* of the group. Instead of having a counter to keep track of how many items */
352 /* have been processed (=the number of bits in the control word), at the     */
353 /* start of each group, the top word of 'control' is filled with 1 bits.     */
354 /* As 'control' is shifted for each item, the 1 bits in the top word are     */
355 /* absorbed or destroyed. When they all run out (i.e. when the top word is   */
356 /* all zero bits, we know that we are at the end of a group.                 */
357# define TOPWORD 0xFFFF0000
358 UBYTE *p_control;
359 register ULONG control=TOPWORD;
360
361 /* THe variable 'hash' always points to the first element of the hash table. */
362 UBYTE **hash= (UBYTE **)  ULONG_ALIGN_UP(p_wrk_mem);
363
364 /* The following two variables represent the literal buffer. p_h1 points to  */
365 /* the hash table entry corresponding to the youngest literal. p_h2 points   */
366 /* to the hash table entry corresponding to the second youngest literal.     */
367 /* Note: p_h1=0=>p_h2=0 because zero values denote absence of a pending      */
368 /* literal. The variables are initialized to zero meaning an empty "buffer". */
369 UBYTE **p_h1=0;
370 UBYTE **p_h2=0;
371
372 /* To start, we write the flag bytes. Being optimistic, we set the flag to   */
373 /* FLAG_COMPRESS. The remaining flag bytes are zeroed so as to keep the      */
374 /* algorithm deterministic.                                                  */
375 *p_dst++=FLAG_COMPRESS;
376 {UWORD i; for (i=2;i<=FLAG_BYTES;i++) *p_dst++=0;}
377
378 /* Reserve the first word of output as the control word for the first group. */
379 /* Note: This is undone at the end if the input block is empty.              */
380 p_control=p_dst; p_dst+=2;
381
382 /* Initialize all elements of the hash table to point to a constant string.  */
383 /* Use of an unrolled loop speeds this up considerably.                      */
384 {UWORD i; UBYTE **p_h=hash;
385#  define ZH *p_h++=START_STRING_18
386  for (i=0;i<256;i++)     /* 256=HASH_TABLE_LENGTH/16. */
387    {ZH;ZH;ZH;ZH;
388     ZH;ZH;ZH;ZH;
389     ZH;ZH;ZH;ZH;
390     ZH;ZH;ZH;ZH;}
391 }
392
393 /* The main loop processes either 1 or 16 items per iteration. As its        */
394 /* termination logic is complicated, I have opted for an infinite loop       */
395 /* structure containing 'break' and 'goto' statements.                       */
396 while (TRUE)
397   {/* Begin main processing loop. */
398
399    /* Note: All the variables here except unroll should be defined within    */
400    /*       the inner loop. Unfortunately the loop hasn't got a block.       */
401     register UBYTE *p;         /* Scans through targ phrase during matching. */
402     register UBYTE *p_ziv= NULL ;     /* Points to first byte of current Ziv.       */
403     register UWORD unroll;     /* Loop counter for unrolled inner loop.      */
404     register UWORD index;      /* Index of current hash table entry.         */
405     register UBYTE **p_h0 = NULL ;     /* Pointer to current hash table entry.       */
406
407    /* Test for overrun and jump to overrun code if necessary.                */
408    if (p_dst>p_dst_post)
409       goto overrun;
410
411    /* The following cascade of if statements efficiently catches and deals   */
412    /* with varying degrees of closeness to the end of the input block.       */
413    /* When we get very close to the end, we stop updating the table and      */
414    /* code the remaining bytes as literals. This makes the code simpler.     */
415    unroll=16;
416    if (p_src>p_src_max16)
417      {
418       unroll=1;
419       if (p_src>p_src_max1)
420         {
421          if (p_src==p_src_post)
422             break;
423          else
424             goto literal;
425         }
426      }
427
428    /* This inner unrolled loop processes 'unroll' (whose value is either 1   */
429    /* or 16) items. I have chosen to implement this loop with labels and     */
430    /* gotos to heighten the ease with which the loop may be implemented with */
431    /* a single decrement and branch instruction in assembly language and     */
432    /* also because the labels act as highly readable place markers.          */
433    /* (Also because we jump into the loop for endgame literals (see above)). */
434
435    begin_unrolled_loop:
436
437       /* To process the next phrase, we hash the next three bytes and use    */
438       /* the resultant hash table index to look up the hash table. A pointer */
439       /* to the entry is stored in p_h0 so as to avoid an array lookup. The  */
440       /* hash table entry *p_h0 is looked up yielding a pointer p to a       */
441       /* potential match of the Ziv in the history.                          */
442       index=HASH(p_src);
443       p_h0=&hash[index];
444       p=*p_h0;
445
446       /* Having looked up the candidate position, we are in a position to    */
447       /* attempt a match. The match loop has been unrolled using the PS      */
448       /* macro so that failure within the first three bytes automatically    */
449       /* results in the literal branch being taken. The coding is simple.    */
450       /* p_ziv saves p_src so we can let p_src wander.                       */
451#       define PS *p++!=*p_src++
452       p_ziv=p_src;
453       if (PS || PS || PS)
454         {
455          /* Literal. */
456
457          /* Code the literal byte as itself and a zero control bit.          */
458          p_src=p_ziv; literal: *p_dst++=*p_src++; control&=0xFFFEFFFF;
459
460          /* We have just coded a literal. If we had two pending ones, that   */
461          /* makes three and we can update the hash table.                    */
462          if (p_h2!=0)
463             {*p_h2=p_ziv-2;}
464
465          /* In any case, rotate the hash table pointers for next time. */
466          p_h2=p_h1; p_h1=p_h0;
467
468         }
469       else
470         {
471          /* Copy */
472
473          /* Match up to 15 remaining bytes using an unrolled loop and code. */
474          if (
475               !( PS || PS || PS || PS || PS || PS || PS || PS ||
476                  PS || PS || PS || PS || PS || PS || PS )
477             ) p_src++;
478          *p_dst++=((index&0xF00)>>4)|(--p_src-p_ziv-3);
479          *p_dst++=index&0xFF;
480
481          /* As we have just coded three bytes, we are now in a position to   */
482          /* update the hash table with the literal bytes that were pending   */
483          /* upon the arrival of extra context bytes.                         */
484          if (p_h1!=0)
485            {
486             if (p_h2!=0)
487               {*p_h2=p_ziv-2; p_h2=0;}
488             *p_h1=p_ziv-1; p_h1=0;
489            }
490
491          /* In any case, we can update the hash table based on the current   */
492          /* position as we just coded at least three bytes in a copy items.  */
493          *p_h0=p_ziv;
494
495         }
496       control>>=1;
497
498       /* This loop is all set up for a decrement and jump instruction! */
499#ifndef linux
500`    end_unrolled_loop: if (--unroll) goto begin_unrolled_loop;
501#else
502    /* end_unrolled_loop: */ if (--unroll) goto begin_unrolled_loop;
503#endif
504
505    /* At this point it will nearly always be the end of a group in which     */
506    /* case, we have to do some control-word processing. However, near the    */
507    /* end of the input block, the inner unrolled loop is only executed once. */
508    /* This necessitates the 'if' test.                                       */
509    if ((control&TOPWORD)==0)
510      {
511       /* Write the control word to the place we saved for it in the output. */
512       *p_control++=  control     &0xFF;
513       *p_control  = (control>>8) &0xFF;
514
515       /* Reserve the next word in the output block for the control word */
516       /* for the group about to be processed.                           */
517       p_control=p_dst; p_dst+=2;
518
519       /* Reset the control bits buffer. */
520       control=TOPWORD;
521      }
522
523   } /* End main processing loop. */
524
525 /* After the main processing loop has executed, all the input bytes have     */
526 /* been processed. However, the control word has still to be written to the  */
527 /* word reserved for it in the output at the start of the most recent group. */
528 /* Before writing, the control word has to be shifted so that all the bits   */
529 /* are in the right place. The "empty" bit positions are filled with 1s      */
530 /* which partially fill the top word.                                        */
531 while(control&TOPWORD) control>>=1;
532 *p_control++= control     &0xFF;
533 *p_control++=(control>>8) &0xFF;
534
535 /* If the last group contained no items, delete the control word too.        */
536 if (p_control==p_dst) p_dst-=2;
537
538 /* Write the length of the output block to the dst_len parameter and return. */
539 *p_dst_len=p_dst-p_dst_first;
540 return;
541
542 /* Jump here as soon as an overrun is detected. An overrun is defined to     */
543 /* have occurred if p_dst>p_dst_first+src_len. That is, the moment the       */
544 /* length of the output written so far exceeds the length of the input block.*/
545 /* The algorithm checks for overruns at least at the end of each group       */
546 /* which means that the maximum overrun is MAX_CMP_GROUP bytes.              */
547 /* Once an overrun occurs, the only thing to do is to set the copy flag and  */
548 /* copy the input over.                                                      */
549 overrun:
550 fast_copy(p_src_first,p_dst_first,src_len);
551 *p_dst_len= -src_len; /* return a negative number to indicate uncompressed data */
552}
553
554/******************************************************************************/
555
556LOCAL void compress_decompress
557           (p_wrk_mem,p_src_first,src_len,p_dst_first,p_dst_len)
558/* Input  : Hand over the required amount of working memory in p_wrk_mem.     */
559/* Input  : Specify input block using p_src_first and src_len.                */
560/* Input  : Point p_dst_first to the start of the output zone.                */
561/* Input  : Point p_dst_len to a ULONG to receive the output length.          */
562/* Input  : Input block and output zone must not overlap. User knows          */
563/* Input  : upperbound on output block length from earlier compression.       */
564/* Input  : In any case, maximum expansion possible is nine times.            */
565/* Output : Length of output block written to *p_dst_len.                     */
566/* Output : Output block in Mem[p_dst_first..p_dst_first+*p_dst_len-1].       */
567/* Output : Writes only  in Mem[p_dst_first..p_dst_first+*p_dst_len-1].       */
568UBYTE *p_wrk_mem;
569UBYTE *p_src_first;
570LONG   src_len;
571UBYTE *p_dst_first;
572ULONG *p_dst_len;
573{
574 /* Byte pointers p_src and p_dst scan through the input and output blocks.   */
575 register UBYTE *p_src = p_src_first+FLAG_BYTES;
576 register UBYTE *p_dst = p_dst_first;
577 /* we need to avoid a SEGV when trying to uncompress corrupt data */
578 register UBYTE *p_dst_post = p_dst_first + *p_dst_len;
579
580 /* The following two variables are never modified and are used to control    */
581 /* the main loop.                                                            */
582 UBYTE *p_src_post  = p_src_first+src_len;
583 UBYTE *p_src_max16 = p_src_first+src_len-(MAX_CMP_GROUP-2);
584
585 /* The hash table is the only resident of the working memory. The hash table */
586 /* contains HASH_TABLE_LENGTH=4096 pointers to positions in the history. To  */
587 /* keep Macintoshes happy, it is longword aligned.                           */
588 UBYTE **hash = (UBYTE **) ULONG_ALIGN_UP(p_wrk_mem);
589
590 /* The variable 'control' is used to buffer the control bits which appear in */
591 /* groups of 16 bits (control words) at the start of each compressed group.  */
592 /* When each group is read, bit 16 of the register is set to one. Whenever   */
593 /* a new bit is needed, the register is shifted right. When the value of the */
594 /* register becomes 1, we know that we have reached the end of a group.      */
595 /* Initializing the register to 1 thus instructs the code to follow that it  */
596 /* should read a new control word immediately.                               */
597 register ULONG control=1;
598
599 /* The value of 'literals' is always in the range 0..3. It is the number of  */
600 /* consecutive literal items just seen. We have to record this number so as  */
601 /* to know when to update the hash table. When literals gets to 3, there     */
602 /* have been three consecutive literals and we can update at the position of */
603 /* the oldest of the three.                                                  */
604 register UWORD literals=0;
605
606 /* Check the leading copy flag to see if the compressor chose to use a copy  */
607 /* operation instead of a compression operation. If a copy operation was     */
608 /* used, then all we need to do is copy the data over, set the output length */
609 /* and return.                                                               */
610  if ( src_len < 0 )
611  {
612   fast_copy(p_src_first,p_dst_first,-src_len );
613   *p_dst_len = (ULONG)-src_len;
614   return;
615  }
616
617 /* Initialize all elements of the hash table to point to a constant string.  */
618 /* Use of an unrolled loop speeds this up considerably.                      */
619 {UWORD i; UBYTE **p_h=hash;
620#  define ZJ *p_h++=START_STRING_18
621  for (i=0;i<256;i++)     /* 256=HASH_TABLE_LENGTH/16. */
622    {ZJ;ZJ;ZJ;ZJ;
623     ZJ;ZJ;ZJ;ZJ;
624     ZJ;ZJ;ZJ;ZJ;
625     ZJ;ZJ;ZJ;ZJ;}
626 }
627
628 /* The outer loop processes either 1 or 16 items per iteration depending on  */
629 /* how close p_src is to the end of the input block.                         */
630 while (p_src!=p_src_post)
631   {/* Start of outer loop */
632
633    register UWORD unroll;   /* Counts unrolled loop executions.              */
634
635    /* When 'control' has the value 1, it means that the 16 buffered control  */
636    /* bits that were read in at the start of the current group have all been */
637    /* shifted out and that all that is left is the 1 bit that was injected   */
638    /* into bit 16 at the start of the current group. When we reach the end   */
639    /* of a group, we have to load a new control word and inject a new 1 bit. */
640    if (control==1)
641      {
642       control=0x10000|*p_src++;
643       control|=(*p_src++)<<8;
644      }
645
646    /* If it is possible that we are within 16 groups from the end of the     */
647    /* input, execute the unrolled loop only once, else process a whole group */
648    /* of 16 items by looping 16 times.                                       */
649    unroll= p_src<=p_src_max16 ? 16 : 1;
650
651    /* This inner loop processes one phrase (item) per iteration. */
652    while (unroll--)
653      { /* Begin unrolled inner loop. */
654
655       /* Process a literal or copy item depending on the next control bit. */
656       if (control&1)
657         {
658          /* Copy item. */
659
660          register UBYTE *p;           /* Points to place from which to copy. */
661          register UWORD lenmt;        /* Length of copy item minus three.    */
662          register UBYTE **p_hte;      /* Pointer to current hash table entry.*/
663          register UBYTE *p_ziv=p_dst; /* Pointer to start of current Ziv.    */
664
665          /* Read and dismantle the copy word. Work out from where to copy.   */
666          lenmt=*p_src++;
667          p_hte=&hash[((lenmt&0xF0)<<4)|*p_src++];
668          p=*p_hte;
669          lenmt&=0xF;
670
671          /* Now perform the copy using a half unrolled loop. */
672          *p_dst++=*p++;
673          *p_dst++=*p++;
674          *p_dst++=*p++;
675          while (lenmt--)
676             *p_dst++=*p++;
677
678          /* Because we have just received 3 or more bytes in a copy item     */
679          /* (whose bytes we have just installed in the output), we are now   */
680          /* in a position to flush all the pending literal hashings that had */
681          /* been postponed for lack of bytes.                                */
682          if (literals>0)
683            {
684             register UBYTE *r=p_ziv-literals;;
685             hash[HASH(r)]=r;
686             if (literals==2)
687                {r++; hash[HASH(r)]=r;}
688             literals=0;
689            }
690
691          /* In any case, we can immediately update the hash table with the   */
692          /* current position. We don't need to do a HASH(...) to work out    */
693          /* where to put the pointer, as the compressor just told us!!!      */
694          *p_hte=p_ziv;
695
696         }
697       else
698         {
699          /* Literal item. */
700
701          /* Copy over the literal byte. */
702          *p_dst++=*p_src++;
703
704          /* If we now have three literals waiting to be hashed into the hash */
705          /* table, we can do one of them now (because there are three).      */
706          if (++literals == 3)
707             {register UBYTE *p=p_dst-3; hash[HASH(p)]=p; literals=2;}
708         }
709
710       /* Shift the control buffer so the next control bit is in bit 0. */
711       control>>=1;
712       if (p_dst > p_dst_post)
713       {
714	       /* Shit: we tried to decompress corrupt data */
715	       *p_dst_len = 0;
716	       return;
717       }
718      } /* End unrolled inner loop. */
719
720   } /* End of outer loop */
721
722 /* Write the length of the decompressed data before returning. */
723  *p_dst_len=p_dst-p_dst_first;
724}
725
726/******************************************************************************/
727/*                               End of LZRW3.C                               */
728/******************************************************************************/
729