1/*
2 * Linux/PA-RISC Project (http://www.parisc-linux.org/)
3 *
4 * Floating-point emulation code
5 *  Copyright (C) 2001 Hewlett-Packard (Paul Bame) <bame@debian.org>
6 *
7 *    This program is free software; you can redistribute it and/or modify
8 *    it under the terms of the GNU General Public License as published by
9 *    the Free Software Foundation; either version 2, or (at your option)
10 *    any later version.
11 *
12 *    This program is distributed in the hope that it will be useful,
13 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
14 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 *    GNU General Public License for more details.
16 *
17 *    You should have received a copy of the GNU General Public License
18 *    along with this program; if not, write to the Free Software
19 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21#ifdef __NO_PA_HDRS
22    PA header file -- do not include this header file for non-PA builds.
23#endif
24
25/* 32-bit word grabing functions */
26#define Dbl_firstword(value) Dallp1(value)
27#define Dbl_secondword(value) Dallp2(value)
28#define Dbl_thirdword(value) dummy_location
29#define Dbl_fourthword(value) dummy_location
30
31#define Dbl_sign(object) Dsign(object)
32#define Dbl_exponent(object) Dexponent(object)
33#define Dbl_signexponent(object) Dsignexponent(object)
34#define Dbl_mantissap1(object) Dmantissap1(object)
35#define Dbl_mantissap2(object) Dmantissap2(object)
36#define Dbl_exponentmantissap1(object) Dexponentmantissap1(object)
37#define Dbl_allp1(object) Dallp1(object)
38#define Dbl_allp2(object) Dallp2(object)
39
40/* dbl_and_signs ands the sign bits of each argument and puts the result
41 * into the first argument. dbl_or_signs ors those same sign bits */
42#define Dbl_and_signs( src1dst, src2)		\
43    Dallp1(src1dst) = (Dallp1(src2)|~((unsigned int)1<<31)) & Dallp1(src1dst)
44#define Dbl_or_signs( src1dst, src2)		\
45    Dallp1(src1dst) = (Dallp1(src2)&((unsigned int)1<<31)) | Dallp1(src1dst)
46
47/* The hidden bit is always the low bit of the exponent */
48#define Dbl_clear_exponent_set_hidden(srcdst) Deposit_dexponent(srcdst,1)
49#define Dbl_clear_signexponent_set_hidden(srcdst) \
50    Deposit_dsignexponent(srcdst,1)
51#define Dbl_clear_sign(srcdst) Dallp1(srcdst) &= ~((unsigned int)1<<31)
52#define Dbl_clear_signexponent(srcdst) \
53    Dallp1(srcdst) &= Dmantissap1((unsigned int)-1)
54
55/* Exponent field for doubles has already been cleared and may be
56 * included in the shift.  Here we need to generate two double width
57 * variable shifts.  The insignificant bits can be ignored.
58 *      MTSAR f(varamount)
59 *      VSHD	srcdst.high,srcdst.low => srcdst.low
60 *	VSHD	0,srcdst.high => srcdst.high
61 * This is very difficult to model with C expressions since the shift amount
62 * could exceed 32.  */
63/* varamount must be less than 64 */
64#define Dbl_rightshift(srcdstA, srcdstB, varamount)			\
65    {if((varamount) >= 32) {						\
66        Dallp2(srcdstB) = Dallp1(srcdstA) >> (varamount-32);		\
67        Dallp1(srcdstA)=0;						\
68    }									\
69    else if(varamount > 0) {						\
70	Variable_shift_double(Dallp1(srcdstA), Dallp2(srcdstB), 	\
71	  (varamount), Dallp2(srcdstB));				\
72	Dallp1(srcdstA) >>= varamount;					\
73    } }
74/* varamount must be less than 64 */
75#define Dbl_rightshift_exponentmantissa(srcdstA, srcdstB, varamount)	\
76    {if((varamount) >= 32) {						\
77        Dallp2(srcdstB) = Dexponentmantissap1(srcdstA) >> (varamount-32); \
78	Dallp1(srcdstA) &= ((unsigned int)1<<31);  /* clear expmant field */ \
79    }									\
80    else if(varamount > 0) {						\
81	Variable_shift_double(Dexponentmantissap1(srcdstA), Dallp2(srcdstB), \
82	(varamount), Dallp2(srcdstB));					\
83	Deposit_dexponentmantissap1(srcdstA,				\
84	    (Dexponentmantissap1(srcdstA)>>varamount));			\
85    } }
86/* varamount must be less than 64 */
87#define Dbl_leftshift(srcdstA, srcdstB, varamount)			\
88    {if((varamount) >= 32) {						\
89	Dallp1(srcdstA) = Dallp2(srcdstB) << (varamount-32);		\
90	Dallp2(srcdstB)=0;						\
91    }									\
92    else {								\
93	if ((varamount) > 0) {						\
94	    Dallp1(srcdstA) = (Dallp1(srcdstA) << (varamount)) |	\
95		(Dallp2(srcdstB) >> (32-(varamount)));			\
96	    Dallp2(srcdstB) <<= varamount;				\
97	}								\
98    } }
99#define Dbl_leftshiftby1_withextent(lefta,leftb,right,resulta,resultb)	\
100    Shiftdouble(Dallp1(lefta), Dallp2(leftb), 31, Dallp1(resulta));	\
101    Shiftdouble(Dallp2(leftb), Extall(right), 31, Dallp2(resultb))
102
103#define Dbl_rightshiftby1_withextent(leftb,right,dst)		\
104    Extall(dst) = (Dallp2(leftb) << 31) | ((unsigned int)Extall(right) >> 1) | \
105		  Extlow(right)
106
107#define Dbl_arithrightshiftby1(srcdstA,srcdstB)			\
108    Shiftdouble(Dallp1(srcdstA),Dallp2(srcdstB),1,Dallp2(srcdstB));\
109    Dallp1(srcdstA) = (int)Dallp1(srcdstA) >> 1
110
111/* Sign extend the sign bit with an integer destination */
112#define Dbl_signextendedsign(value)  Dsignedsign(value)
113
114#define Dbl_isone_hidden(dbl_value) (Is_dhidden(dbl_value)!=0)
115/* Singles and doubles may include the sign and exponent fields.  The
116 * hidden bit and the hidden overflow must be included. */
117#define Dbl_increment(dbl_valueA,dbl_valueB) \
118    if( (Dallp2(dbl_valueB) += 1) == 0 )  Dallp1(dbl_valueA) += 1
119#define Dbl_increment_mantissa(dbl_valueA,dbl_valueB) \
120    if( (Dmantissap2(dbl_valueB) += 1) == 0 )  \
121    Deposit_dmantissap1(dbl_valueA,dbl_valueA+1)
122#define Dbl_decrement(dbl_valueA,dbl_valueB) \
123    if( Dallp2(dbl_valueB) == 0 )  Dallp1(dbl_valueA) -= 1; \
124    Dallp2(dbl_valueB) -= 1
125
126#define Dbl_isone_sign(dbl_value) (Is_dsign(dbl_value)!=0)
127#define Dbl_isone_hiddenoverflow(dbl_value) (Is_dhiddenoverflow(dbl_value)!=0)
128#define Dbl_isone_lowmantissap1(dbl_valueA) (Is_dlowp1(dbl_valueA)!=0)
129#define Dbl_isone_lowmantissap2(dbl_valueB) (Is_dlowp2(dbl_valueB)!=0)
130#define Dbl_isone_signaling(dbl_value) (Is_dsignaling(dbl_value)!=0)
131#define Dbl_is_signalingnan(dbl_value) (Dsignalingnan(dbl_value)==0xfff)
132#define Dbl_isnotzero(dbl_valueA,dbl_valueB) \
133    (Dallp1(dbl_valueA) || Dallp2(dbl_valueB))
134#define Dbl_isnotzero_hiddenhigh7mantissa(dbl_value) \
135    (Dhiddenhigh7mantissa(dbl_value)!=0)
136#define Dbl_isnotzero_exponent(dbl_value) (Dexponent(dbl_value)!=0)
137#define Dbl_isnotzero_mantissa(dbl_valueA,dbl_valueB) \
138    (Dmantissap1(dbl_valueA) || Dmantissap2(dbl_valueB))
139#define Dbl_isnotzero_mantissap1(dbl_valueA) (Dmantissap1(dbl_valueA)!=0)
140#define Dbl_isnotzero_mantissap2(dbl_valueB) (Dmantissap2(dbl_valueB)!=0)
141#define Dbl_isnotzero_exponentmantissa(dbl_valueA,dbl_valueB) \
142    (Dexponentmantissap1(dbl_valueA) || Dmantissap2(dbl_valueB))
143#define Dbl_isnotzero_low4p2(dbl_value) (Dlow4p2(dbl_value)!=0)
144#define Dbl_iszero(dbl_valueA,dbl_valueB) (Dallp1(dbl_valueA)==0 && \
145    Dallp2(dbl_valueB)==0)
146#define Dbl_iszero_allp1(dbl_value) (Dallp1(dbl_value)==0)
147#define Dbl_iszero_allp2(dbl_value) (Dallp2(dbl_value)==0)
148#define Dbl_iszero_hidden(dbl_value) (Is_dhidden(dbl_value)==0)
149#define Dbl_iszero_hiddenoverflow(dbl_value) (Is_dhiddenoverflow(dbl_value)==0)
150#define Dbl_iszero_hiddenhigh3mantissa(dbl_value) \
151    (Dhiddenhigh3mantissa(dbl_value)==0)
152#define Dbl_iszero_hiddenhigh7mantissa(dbl_value) \
153    (Dhiddenhigh7mantissa(dbl_value)==0)
154#define Dbl_iszero_sign(dbl_value) (Is_dsign(dbl_value)==0)
155#define Dbl_iszero_exponent(dbl_value) (Dexponent(dbl_value)==0)
156#define Dbl_iszero_mantissa(dbl_valueA,dbl_valueB) \
157    (Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)
158#define Dbl_iszero_exponentmantissa(dbl_valueA,dbl_valueB) \
159    (Dexponentmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)
160#define Dbl_isinfinity_exponent(dbl_value)		\
161    (Dexponent(dbl_value)==DBL_INFINITY_EXPONENT)
162#define Dbl_isnotinfinity_exponent(dbl_value)		\
163    (Dexponent(dbl_value)!=DBL_INFINITY_EXPONENT)
164#define Dbl_isinfinity(dbl_valueA,dbl_valueB)			\
165    (Dexponent(dbl_valueA)==DBL_INFINITY_EXPONENT &&	\
166    Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)
167#define Dbl_isnan(dbl_valueA,dbl_valueB)		\
168    (Dexponent(dbl_valueA)==DBL_INFINITY_EXPONENT &&	\
169    (Dmantissap1(dbl_valueA)!=0 || Dmantissap2(dbl_valueB)!=0))
170#define Dbl_isnotnan(dbl_valueA,dbl_valueB)		\
171    (Dexponent(dbl_valueA)!=DBL_INFINITY_EXPONENT ||	\
172    (Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0))
173
174#define Dbl_islessthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\
175    (Dallp1(dbl_op1a) < Dallp1(dbl_op2a) ||			\
176     (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\
177      Dallp2(dbl_op1b) < Dallp2(dbl_op2b)))
178#define Dbl_isgreaterthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\
179    (Dallp1(dbl_op1a) > Dallp1(dbl_op2a) ||			\
180     (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\
181      Dallp2(dbl_op1b) > Dallp2(dbl_op2b)))
182#define Dbl_isnotlessthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\
183    (Dallp1(dbl_op1a) > Dallp1(dbl_op2a) ||			\
184     (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\
185      Dallp2(dbl_op1b) >= Dallp2(dbl_op2b)))
186#define Dbl_isnotgreaterthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \
187    (Dallp1(dbl_op1a) < Dallp1(dbl_op2a) ||			\
188     (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\
189      Dallp2(dbl_op1b) <= Dallp2(dbl_op2b)))
190#define Dbl_isequal(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\
191     ((Dallp1(dbl_op1a) == Dallp1(dbl_op2a)) &&			\
192      (Dallp2(dbl_op1b) == Dallp2(dbl_op2b)))
193
194#define Dbl_leftshiftby8(dbl_valueA,dbl_valueB) \
195    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),24,Dallp1(dbl_valueA)); \
196    Dallp2(dbl_valueB) <<= 8
197#define Dbl_leftshiftby7(dbl_valueA,dbl_valueB) \
198    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),25,Dallp1(dbl_valueA)); \
199    Dallp2(dbl_valueB) <<= 7
200#define Dbl_leftshiftby4(dbl_valueA,dbl_valueB) \
201    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),28,Dallp1(dbl_valueA)); \
202    Dallp2(dbl_valueB) <<= 4
203#define Dbl_leftshiftby3(dbl_valueA,dbl_valueB) \
204    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),29,Dallp1(dbl_valueA)); \
205    Dallp2(dbl_valueB) <<= 3
206#define Dbl_leftshiftby2(dbl_valueA,dbl_valueB) \
207    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),30,Dallp1(dbl_valueA)); \
208    Dallp2(dbl_valueB) <<= 2
209#define Dbl_leftshiftby1(dbl_valueA,dbl_valueB) \
210    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),31,Dallp1(dbl_valueA)); \
211    Dallp2(dbl_valueB) <<= 1
212
213#define Dbl_rightshiftby8(dbl_valueA,dbl_valueB) \
214    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),8,Dallp2(dbl_valueB)); \
215    Dallp1(dbl_valueA) >>= 8
216#define Dbl_rightshiftby4(dbl_valueA,dbl_valueB) \
217    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),4,Dallp2(dbl_valueB)); \
218    Dallp1(dbl_valueA) >>= 4
219#define Dbl_rightshiftby2(dbl_valueA,dbl_valueB) \
220    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),2,Dallp2(dbl_valueB)); \
221    Dallp1(dbl_valueA) >>= 2
222#define Dbl_rightshiftby1(dbl_valueA,dbl_valueB) \
223    Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),1,Dallp2(dbl_valueB)); \
224    Dallp1(dbl_valueA) >>= 1
225
226/* This magnitude comparison uses the signless first words and
227 * the regular part2 words.  The comparison is graphically:
228 *
229 *       1st greater?  -------------
230 *                                 |
231 *       1st less?-----------------+---------
232 *                                 |        |
233 *       2nd greater or equal----->|        |
234 *                               False     True
235 */
236#define Dbl_ismagnitudeless(leftB,rightB,signlessleft,signlessright)	\
237      ((signlessleft <= signlessright) &&				\
238       ( (signlessleft < signlessright) || (Dallp2(leftB)<Dallp2(rightB)) ))
239
240#define Dbl_copytoint_exponentmantissap1(src,dest) \
241    dest = Dexponentmantissap1(src)
242
243/* A quiet NaN has the high mantissa bit clear and at least on other (in this
244 * case the adjacent bit) bit set. */
245#define Dbl_set_quiet(dbl_value) Deposit_dhigh2mantissa(dbl_value,1)
246#define Dbl_set_exponent(dbl_value, exp) Deposit_dexponent(dbl_value,exp)
247
248#define Dbl_set_mantissa(desta,destb,valuea,valueb)	\
249    Deposit_dmantissap1(desta,valuea);			\
250    Dmantissap2(destb) = Dmantissap2(valueb)
251#define Dbl_set_mantissap1(desta,valuea)		\
252    Deposit_dmantissap1(desta,valuea)
253#define Dbl_set_mantissap2(destb,valueb)		\
254    Dmantissap2(destb) = Dmantissap2(valueb)
255
256#define Dbl_set_exponentmantissa(desta,destb,valuea,valueb)	\
257    Deposit_dexponentmantissap1(desta,valuea);			\
258    Dmantissap2(destb) = Dmantissap2(valueb)
259#define Dbl_set_exponentmantissap1(dest,value)			\
260    Deposit_dexponentmantissap1(dest,value)
261
262#define Dbl_copyfromptr(src,desta,destb) \
263    Dallp1(desta) = src->wd0;		\
264    Dallp2(destb) = src->wd1
265#define Dbl_copytoptr(srca,srcb,dest)	\
266    dest->wd0 = Dallp1(srca);		\
267    dest->wd1 = Dallp2(srcb)
268
269/*  An infinity is represented with the max exponent and a zero mantissa */
270#define Dbl_setinfinity_exponent(dbl_value) \
271    Deposit_dexponent(dbl_value,DBL_INFINITY_EXPONENT)
272#define Dbl_setinfinity_exponentmantissa(dbl_valueA,dbl_valueB)	\
273    Deposit_dexponentmantissap1(dbl_valueA, 			\
274    (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH))));	\
275    Dmantissap2(dbl_valueB) = 0
276#define Dbl_setinfinitypositive(dbl_valueA,dbl_valueB)		\
277    Dallp1(dbl_valueA) 						\
278        = (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)));	\
279    Dmantissap2(dbl_valueB) = 0
280#define Dbl_setinfinitynegative(dbl_valueA,dbl_valueB)		\
281    Dallp1(dbl_valueA) = ((unsigned int)1<<31) |		\
282         (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)));	\
283    Dmantissap2(dbl_valueB) = 0
284#define Dbl_setinfinity(dbl_valueA,dbl_valueB,sign)		\
285    Dallp1(dbl_valueA) = ((unsigned int)sign << 31) | 		\
286	(DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)));	\
287    Dmantissap2(dbl_valueB) = 0
288
289#define Dbl_sethigh4bits(dbl_value, extsign) Deposit_dhigh4p1(dbl_value,extsign)
290#define Dbl_set_sign(dbl_value,sign) Deposit_dsign(dbl_value,sign)
291#define Dbl_invert_sign(dbl_value) Deposit_dsign(dbl_value,~Dsign(dbl_value))
292#define Dbl_setone_sign(dbl_value) Deposit_dsign(dbl_value,1)
293#define Dbl_setone_lowmantissap2(dbl_value) Deposit_dlowp2(dbl_value,1)
294#define Dbl_setzero_sign(dbl_value) Dallp1(dbl_value) &= 0x7fffffff
295#define Dbl_setzero_exponent(dbl_value) 		\
296    Dallp1(dbl_value) &= 0x800fffff
297#define Dbl_setzero_mantissa(dbl_valueA,dbl_valueB)	\
298    Dallp1(dbl_valueA) &= 0xfff00000; 			\
299    Dallp2(dbl_valueB) = 0
300#define Dbl_setzero_mantissap1(dbl_value) Dallp1(dbl_value) &= 0xfff00000
301#define Dbl_setzero_mantissap2(dbl_value) Dallp2(dbl_value) = 0
302#define Dbl_setzero_exponentmantissa(dbl_valueA,dbl_valueB)	\
303    Dallp1(dbl_valueA) &= 0x80000000;		\
304    Dallp2(dbl_valueB) = 0
305#define Dbl_setzero_exponentmantissap1(dbl_valueA)	\
306    Dallp1(dbl_valueA) &= 0x80000000
307#define Dbl_setzero(dbl_valueA,dbl_valueB) \
308    Dallp1(dbl_valueA) = 0; Dallp2(dbl_valueB) = 0
309#define Dbl_setzerop1(dbl_value) Dallp1(dbl_value) = 0
310#define Dbl_setzerop2(dbl_value) Dallp2(dbl_value) = 0
311#define Dbl_setnegativezero(dbl_value) \
312    Dallp1(dbl_value) = (unsigned int)1 << 31; Dallp2(dbl_value) = 0
313#define Dbl_setnegativezerop1(dbl_value) Dallp1(dbl_value) = (unsigned int)1<<31
314
315/* Use the following macro for both overflow & underflow conditions */
316#define ovfl -
317#define unfl +
318#define Dbl_setwrapped_exponent(dbl_value,exponent,op) \
319    Deposit_dexponent(dbl_value,(exponent op DBL_WRAP))
320
321#define Dbl_setlargestpositive(dbl_valueA,dbl_valueB) 			\
322    Dallp1(dbl_valueA) = ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \
323			| ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 );		\
324    Dallp2(dbl_valueB) = 0xFFFFFFFF
325#define Dbl_setlargestnegative(dbl_valueA,dbl_valueB) 			\
326    Dallp1(dbl_valueA) = ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \
327			| ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 )		\
328			| ((unsigned int)1<<31);			\
329    Dallp2(dbl_valueB) = 0xFFFFFFFF
330#define Dbl_setlargest_exponentmantissa(dbl_valueA,dbl_valueB)		\
331    Deposit_dexponentmantissap1(dbl_valueA,				\
332	(((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH)))		\
333			| ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 )));	\
334    Dallp2(dbl_valueB) = 0xFFFFFFFF
335
336#define Dbl_setnegativeinfinity(dbl_valueA,dbl_valueB) 			\
337    Dallp1(dbl_valueA) = ((1<<DBL_EXP_LENGTH) | DBL_INFINITY_EXPONENT) 	\
338			 << (32-(1+DBL_EXP_LENGTH)) ; 			\
339    Dallp2(dbl_valueB) = 0
340#define Dbl_setlargest(dbl_valueA,dbl_valueB,sign)			\
341    Dallp1(dbl_valueA) = ((unsigned int)sign << 31) |			\
342         ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) |	 	\
343	 ((1 << (32-(1+DBL_EXP_LENGTH))) - 1 );				\
344    Dallp2(dbl_valueB) = 0xFFFFFFFF
345
346
347/* The high bit is always zero so arithmetic or logical shifts will work. */
348#define Dbl_right_align(srcdstA,srcdstB,shift,extent)			\
349    if( shift >= 32 ) 							\
350	{								\
351	/* Big shift requires examining the portion shift off 		\
352	the end to properly set inexact.  */				\
353	if(shift < 64)							\
354	    {								\
355	    if(shift > 32)						\
356		{							\
357	        Variable_shift_double(Dallp1(srcdstA),Dallp2(srcdstB),	\
358		 shift-32, Extall(extent));				\
359	        if(Dallp2(srcdstB) << 64 - (shift)) Ext_setone_low(extent); \
360	        }							\
361	    else Extall(extent) = Dallp2(srcdstB);			\
362	    Dallp2(srcdstB) = Dallp1(srcdstA) >> (shift - 32);		\
363	    }								\
364	else								\
365	    {								\
366	    Extall(extent) = Dallp1(srcdstA);				\
367	    if(Dallp2(srcdstB)) Ext_setone_low(extent);			\
368	    Dallp2(srcdstB) = 0;					\
369	    }								\
370	Dallp1(srcdstA) = 0;						\
371	}								\
372    else								\
373	{								\
374	/* Small alignment is simpler.  Extension is easily set. */	\
375	if (shift > 0)							\
376	    {								\
377	    Extall(extent) = Dallp2(srcdstB) << 32 - (shift);		\
378	    Variable_shift_double(Dallp1(srcdstA),Dallp2(srcdstB),shift, \
379	     Dallp2(srcdstB));						\
380	    Dallp1(srcdstA) >>= shift;					\
381	    }								\
382	else Extall(extent) = 0;					\
383	}
384
385/*
386 * Here we need to shift the result right to correct for an overshift
387 * (due to the exponent becoming negative) during normalization.
388 */
389#define Dbl_fix_overshift(srcdstA,srcdstB,shift,extent)			\
390	    Extall(extent) = Dallp2(srcdstB) << 32 - (shift);		\
391	    Dallp2(srcdstB) = (Dallp1(srcdstA) << 32 - (shift)) |	\
392		(Dallp2(srcdstB) >> (shift));				\
393	    Dallp1(srcdstA) = Dallp1(srcdstA) >> shift
394
395#define Dbl_hiddenhigh3mantissa(dbl_value) Dhiddenhigh3mantissa(dbl_value)
396#define Dbl_hidden(dbl_value) Dhidden(dbl_value)
397#define Dbl_lowmantissap2(dbl_value) Dlowp2(dbl_value)
398
399/* The left argument is never smaller than the right argument */
400#define Dbl_subtract(lefta,leftb,righta,rightb,resulta,resultb)			\
401    if( Dallp2(rightb) > Dallp2(leftb) ) Dallp1(lefta)--;	\
402    Dallp2(resultb) = Dallp2(leftb) - Dallp2(rightb);		\
403    Dallp1(resulta) = Dallp1(lefta) - Dallp1(righta)
404
405/* Subtract right augmented with extension from left augmented with zeros and
406 * store into result and extension. */
407#define Dbl_subtract_withextension(lefta,leftb,righta,rightb,extent,resulta,resultb)	\
408    Dbl_subtract(lefta,leftb,righta,rightb,resulta,resultb);		\
409    if( (Extall(extent) = 0-Extall(extent)) )				\
410        {								\
411        if((Dallp2(resultb)--) == 0) Dallp1(resulta)--;			\
412        }
413
414#define Dbl_addition(lefta,leftb,righta,rightb,resulta,resultb)		\
415    /* If the sum of the low words is less than either source, then	\
416     * an overflow into the next word occurred. */			\
417    Dallp1(resulta) = Dallp1(lefta) + Dallp1(righta);			\
418    if((Dallp2(resultb) = Dallp2(leftb) + Dallp2(rightb)) < Dallp2(rightb)) \
419	Dallp1(resulta)++
420
421#define Dbl_xortointp1(left,right,result)			\
422    result = Dallp1(left) XOR Dallp1(right)
423
424#define Dbl_xorfromintp1(left,right,result)			\
425    Dallp1(result) = left XOR Dallp1(right)
426
427#define Dbl_swap_lower(left,right)				\
428    Dallp2(left)  = Dallp2(left) XOR Dallp2(right);		\
429    Dallp2(right) = Dallp2(left) XOR Dallp2(right);		\
430    Dallp2(left)  = Dallp2(left) XOR Dallp2(right)
431
432/* Need to Initialize */
433#define Dbl_makequietnan(desta,destb)					\
434    Dallp1(desta) = ((DBL_EMAX+DBL_BIAS)+1)<< (32-(1+DBL_EXP_LENGTH))	\
435                 | (1<<(32-(1+DBL_EXP_LENGTH+2)));			\
436    Dallp2(destb) = 0
437#define Dbl_makesignalingnan(desta,destb)				\
438    Dallp1(desta) = ((DBL_EMAX+DBL_BIAS)+1)<< (32-(1+DBL_EXP_LENGTH))	\
439                 | (1<<(32-(1+DBL_EXP_LENGTH+1)));			\
440    Dallp2(destb) = 0
441
442#define Dbl_normalize(dbl_opndA,dbl_opndB,exponent)			\
443	while(Dbl_iszero_hiddenhigh7mantissa(dbl_opndA)) {		\
444		Dbl_leftshiftby8(dbl_opndA,dbl_opndB);			\
445		exponent -= 8;						\
446	}								\
447	if(Dbl_iszero_hiddenhigh3mantissa(dbl_opndA)) {			\
448		Dbl_leftshiftby4(dbl_opndA,dbl_opndB);			\
449		exponent -= 4;						\
450	}								\
451	while(Dbl_iszero_hidden(dbl_opndA)) {				\
452		Dbl_leftshiftby1(dbl_opndA,dbl_opndB);			\
453		exponent -= 1;						\
454	}
455
456#define Twoword_add(src1dstA,src1dstB,src2A,src2B)		\
457	/* 							\
458	 * want this macro to generate:				\
459	 *	ADD	src1dstB,src2B,src1dstB;		\
460	 *	ADDC	src1dstA,src2A,src1dstA;		\
461	 */							\
462	if ((src1dstB) + (src2B) < (src1dstB)) Dallp1(src1dstA)++; \
463	Dallp1(src1dstA) += (src2A);				\
464	Dallp2(src1dstB) += (src2B)
465
466#define Twoword_subtract(src1dstA,src1dstB,src2A,src2B)		\
467	/* 							\
468	 * want this macro to generate:				\
469	 *	SUB	src1dstB,src2B,src1dstB;		\
470	 *	SUBB	src1dstA,src2A,src1dstA;		\
471	 */							\
472	if ((src1dstB) < (src2B)) Dallp1(src1dstA)--;		\
473	Dallp1(src1dstA) -= (src2A);				\
474	Dallp2(src1dstB) -= (src2B)
475
476#define Dbl_setoverflow(resultA,resultB)				\
477	/* set result to infinity or largest number */			\
478	switch (Rounding_mode()) {					\
479		case ROUNDPLUS:						\
480			if (Dbl_isone_sign(resultA)) {			\
481				Dbl_setlargestnegative(resultA,resultB); \
482			}						\
483			else {						\
484				Dbl_setinfinitypositive(resultA,resultB); \
485			}						\
486			break;						\
487		case ROUNDMINUS:					\
488			if (Dbl_iszero_sign(resultA)) {			\
489				Dbl_setlargestpositive(resultA,resultB); \
490			}						\
491			else {						\
492				Dbl_setinfinitynegative(resultA,resultB); \
493			}						\
494			break;						\
495		case ROUNDNEAREST:					\
496			Dbl_setinfinity_exponentmantissa(resultA,resultB); \
497			break;						\
498		case ROUNDZERO:						\
499			Dbl_setlargest_exponentmantissa(resultA,resultB); \
500	}
501
502#define Dbl_denormalize(opndp1,opndp2,exponent,guard,sticky,inexact)	\
503    Dbl_clear_signexponent_set_hidden(opndp1);				\
504    if (exponent >= (1-DBL_P)) {					\
505	if (exponent >= -31) {						\
506	    guard = (Dallp2(opndp2) >> -exponent) & 1;			\
507	    if (exponent < 0) sticky |= Dallp2(opndp2) << (32+exponent); \
508	    if (exponent > -31) {					\
509		Variable_shift_double(opndp1,opndp2,1-exponent,opndp2);	\
510		Dallp1(opndp1) >>= 1-exponent;				\
511	    }								\
512	    else {							\
513		Dallp2(opndp2) = Dallp1(opndp1);			\
514		Dbl_setzerop1(opndp1);					\
515	    }								\
516	}								\
517	else {								\
518	    guard = (Dallp1(opndp1) >> -32-exponent) & 1;		\
519	    if (exponent == -32) sticky |= Dallp2(opndp2);		\
520	    else sticky |= (Dallp2(opndp2) | Dallp1(opndp1) << 64+exponent); \
521	    Dallp2(opndp2) = Dallp1(opndp1) >> -31-exponent;		\
522	    Dbl_setzerop1(opndp1);					\
523	}								\
524	inexact = guard | sticky;					\
525    }									\
526    else {								\
527	guard = 0;							\
528	sticky |= (Dallp1(opndp1) | Dallp2(opndp2));			\
529	Dbl_setzero(opndp1,opndp2);					\
530	inexact = sticky;						\
531    }
532
533/*
534 * The fused multiply add instructions requires a double extended format,
535 * with 106 bits of mantissa.
536 */
537#define DBLEXT_THRESHOLD 106
538
539#define Dblext_setzero(valA,valB,valC,valD)	\
540    Dextallp1(valA) = 0; Dextallp2(valB) = 0;	\
541    Dextallp3(valC) = 0; Dextallp4(valD) = 0
542
543
544#define Dblext_isnotzero_mantissap3(valC) (Dextallp3(valC)!=0)
545#define Dblext_isnotzero_mantissap4(valD) (Dextallp3(valD)!=0)
546#define Dblext_isone_lowp2(val) (Dextlowp2(val)!=0)
547#define Dblext_isone_highp3(val) (Dexthighp3(val)!=0)
548#define Dblext_isnotzero_low31p3(val) (Dextlow31p3(val)!=0)
549#define Dblext_iszero(valA,valB,valC,valD) (Dextallp1(valA)==0 && \
550    Dextallp2(valB)==0 && Dextallp3(valC)==0 && Dextallp4(valD)==0)
551
552#define Dblext_copy(srca,srcb,srcc,srcd,desta,destb,destc,destd) \
553    Dextallp1(desta) = Dextallp4(srca);	\
554    Dextallp2(destb) = Dextallp4(srcb);	\
555    Dextallp3(destc) = Dextallp4(srcc);	\
556    Dextallp4(destd) = Dextallp4(srcd)
557
558#define Dblext_swap_lower(leftp2,leftp3,leftp4,rightp2,rightp3,rightp4)  \
559    Dextallp2(leftp2)  = Dextallp2(leftp2) XOR Dextallp2(rightp2);  \
560    Dextallp2(rightp2) = Dextallp2(leftp2) XOR Dextallp2(rightp2);  \
561    Dextallp2(leftp2)  = Dextallp2(leftp2) XOR Dextallp2(rightp2);  \
562    Dextallp3(leftp3)  = Dextallp3(leftp3) XOR Dextallp3(rightp3);  \
563    Dextallp3(rightp3) = Dextallp3(leftp3) XOR Dextallp3(rightp3);  \
564    Dextallp3(leftp3)  = Dextallp3(leftp3) XOR Dextallp3(rightp3);  \
565    Dextallp4(leftp4)  = Dextallp4(leftp4) XOR Dextallp4(rightp4);  \
566    Dextallp4(rightp4) = Dextallp4(leftp4) XOR Dextallp4(rightp4);  \
567    Dextallp4(leftp4)  = Dextallp4(leftp4) XOR Dextallp4(rightp4)
568
569#define Dblext_setone_lowmantissap4(dbl_value) Deposit_dextlowp4(dbl_value,1)
570
571/* The high bit is always zero so arithmetic or logical shifts will work. */
572#define Dblext_right_align(srcdstA,srcdstB,srcdstC,srcdstD,shift) \
573  {int shiftamt, sticky;						\
574    shiftamt = shift % 32;						\
575    sticky = 0;								\
576    switch (shift/32) {							\
577     case 0: if (shiftamt > 0) {					\
578	        sticky = Dextallp4(srcdstD) << 32 - (shiftamt); 	\
579                Variable_shift_double(Dextallp3(srcdstC),		\
580		 Dextallp4(srcdstD),shiftamt,Dextallp4(srcdstD));	\
581                Variable_shift_double(Dextallp2(srcdstB),		\
582		 Dextallp3(srcdstC),shiftamt,Dextallp3(srcdstC));	\
583                Variable_shift_double(Dextallp1(srcdstA),		\
584		 Dextallp2(srcdstB),shiftamt,Dextallp2(srcdstB));	\
585	        Dextallp1(srcdstA) >>= shiftamt;			\
586	     }								\
587	     break;							\
588     case 1: if (shiftamt > 0) {					\
589                sticky = (Dextallp3(srcdstC) << 31 - shiftamt) |	\
590			 Dextallp4(srcdstD);				\
591                Variable_shift_double(Dextallp2(srcdstB),		\
592		 Dextallp3(srcdstC),shiftamt,Dextallp4(srcdstD));	\
593                Variable_shift_double(Dextallp1(srcdstA),		\
594		 Dextallp2(srcdstB),shiftamt,Dextallp3(srcdstC));	\
595	     }								\
596	     else {							\
597		sticky = Dextallp4(srcdstD);				\
598		Dextallp4(srcdstD) = Dextallp3(srcdstC);		\
599		Dextallp3(srcdstC) = Dextallp2(srcdstB);		\
600	     }								\
601	     Dextallp2(srcdstB) = Dextallp1(srcdstA) >> shiftamt;	\
602	     Dextallp1(srcdstA) = 0;					\
603	     break;							\
604     case 2: if (shiftamt > 0) {					\
605                sticky = (Dextallp2(srcdstB) << 31 - shiftamt) |	\
606			 Dextallp3(srcdstC) | Dextallp4(srcdstD);	\
607                Variable_shift_double(Dextallp1(srcdstA),		\
608		 Dextallp2(srcdstB),shiftamt,Dextallp4(srcdstD));	\
609	     }								\
610	     else {							\
611		sticky = Dextallp3(srcdstC) | Dextallp4(srcdstD);	\
612		Dextallp4(srcdstD) = Dextallp2(srcdstB);		\
613	     }								\
614	     Dextallp3(srcdstC) = Dextallp1(srcdstA) >> shiftamt;	\
615	     Dextallp1(srcdstA) = Dextallp2(srcdstB) = 0;		\
616	     break;							\
617     case 3: if (shiftamt > 0) {					\
618                sticky = (Dextallp1(srcdstA) << 31 - shiftamt) |	\
619			 Dextallp2(srcdstB) | Dextallp3(srcdstC) |	\
620			 Dextallp4(srcdstD);				\
621	     }								\
622	     else {							\
623		sticky = Dextallp2(srcdstB) | Dextallp3(srcdstC) |	\
624		    Dextallp4(srcdstD);					\
625	     }								\
626	     Dextallp4(srcdstD) = Dextallp1(srcdstA) >> shiftamt;	\
627	     Dextallp1(srcdstA) = Dextallp2(srcdstB) = 0;		\
628	     Dextallp3(srcdstC) = 0;					\
629	     break;							\
630    }									\
631    if (sticky) Dblext_setone_lowmantissap4(srcdstD);			\
632  }
633
634/* The left argument is never smaller than the right argument */
635#define Dblext_subtract(lefta,leftb,leftc,leftd,righta,rightb,rightc,rightd,resulta,resultb,resultc,resultd) \
636    if( Dextallp4(rightd) > Dextallp4(leftd) ) 			\
637	if( (Dextallp3(leftc)--) == 0)				\
638	    if( (Dextallp2(leftb)--) == 0) Dextallp1(lefta)--;	\
639    Dextallp4(resultd) = Dextallp4(leftd) - Dextallp4(rightd);	\
640    if( Dextallp3(rightc) > Dextallp3(leftc) ) 			\
641        if( (Dextallp2(leftb)--) == 0) Dextallp1(lefta)--;	\
642    Dextallp3(resultc) = Dextallp3(leftc) - Dextallp3(rightc);	\
643    if( Dextallp2(rightb) > Dextallp2(leftb) ) Dextallp1(lefta)--; \
644    Dextallp2(resultb) = Dextallp2(leftb) - Dextallp2(rightb);	\
645    Dextallp1(resulta) = Dextallp1(lefta) - Dextallp1(righta)
646
647#define Dblext_addition(lefta,leftb,leftc,leftd,righta,rightb,rightc,rightd,resulta,resultb,resultc,resultd) \
648    /* If the sum of the low words is less than either source, then \
649     * an overflow into the next word occurred. */ \
650    if ((Dextallp4(resultd) = Dextallp4(leftd)+Dextallp4(rightd)) < \
651	Dextallp4(rightd)) \
652	if((Dextallp3(resultc) = Dextallp3(leftc)+Dextallp3(rightc)+1) <= \
653	    Dextallp3(rightc)) \
654	    if((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)+1) \
655	        <= Dextallp2(rightb))  \
656		    Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
657	    else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \
658	else \
659	    if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)) < \
660	        Dextallp2(rightb)) \
661		    Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
662	    else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \
663    else \
664	if ((Dextallp3(resultc) = Dextallp3(leftc)+Dextallp3(rightc)) < \
665	    Dextallp3(rightc))  \
666	    if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)+1) \
667	        <= Dextallp2(rightb)) \
668		    Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
669	    else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \
670	else \
671	    if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)) < \
672	        Dextallp2(rightb)) \
673		    Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
674	    else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)
675
676
677#define Dblext_arithrightshiftby1(srcdstA,srcdstB,srcdstC,srcdstD)	\
678    Shiftdouble(Dextallp3(srcdstC),Dextallp4(srcdstD),1,Dextallp4(srcdstD)); \
679    Shiftdouble(Dextallp2(srcdstB),Dextallp3(srcdstC),1,Dextallp3(srcdstC)); \
680    Shiftdouble(Dextallp1(srcdstA),Dextallp2(srcdstB),1,Dextallp2(srcdstB)); \
681    Dextallp1(srcdstA) = (int)Dextallp1(srcdstA) >> 1
682
683#define Dblext_leftshiftby8(valA,valB,valC,valD) \
684    Shiftdouble(Dextallp1(valA),Dextallp2(valB),24,Dextallp1(valA)); \
685    Shiftdouble(Dextallp2(valB),Dextallp3(valC),24,Dextallp2(valB)); \
686    Shiftdouble(Dextallp3(valC),Dextallp4(valD),24,Dextallp3(valC)); \
687    Dextallp4(valD) <<= 8
688#define Dblext_leftshiftby4(valA,valB,valC,valD) \
689    Shiftdouble(Dextallp1(valA),Dextallp2(valB),28,Dextallp1(valA)); \
690    Shiftdouble(Dextallp2(valB),Dextallp3(valC),28,Dextallp2(valB)); \
691    Shiftdouble(Dextallp3(valC),Dextallp4(valD),28,Dextallp3(valC)); \
692    Dextallp4(valD) <<= 4
693#define Dblext_leftshiftby3(valA,valB,valC,valD) \
694    Shiftdouble(Dextallp1(valA),Dextallp2(valB),29,Dextallp1(valA)); \
695    Shiftdouble(Dextallp2(valB),Dextallp3(valC),29,Dextallp2(valB)); \
696    Shiftdouble(Dextallp3(valC),Dextallp4(valD),29,Dextallp3(valC)); \
697    Dextallp4(valD) <<= 3
698#define Dblext_leftshiftby2(valA,valB,valC,valD) \
699    Shiftdouble(Dextallp1(valA),Dextallp2(valB),30,Dextallp1(valA)); \
700    Shiftdouble(Dextallp2(valB),Dextallp3(valC),30,Dextallp2(valB)); \
701    Shiftdouble(Dextallp3(valC),Dextallp4(valD),30,Dextallp3(valC)); \
702    Dextallp4(valD) <<= 2
703#define Dblext_leftshiftby1(valA,valB,valC,valD) \
704    Shiftdouble(Dextallp1(valA),Dextallp2(valB),31,Dextallp1(valA)); \
705    Shiftdouble(Dextallp2(valB),Dextallp3(valC),31,Dextallp2(valB)); \
706    Shiftdouble(Dextallp3(valC),Dextallp4(valD),31,Dextallp3(valC)); \
707    Dextallp4(valD) <<= 1
708
709#define Dblext_rightshiftby4(valueA,valueB,valueC,valueD) \
710    Shiftdouble(Dextallp3(valueC),Dextallp4(valueD),4,Dextallp4(valueD)); \
711    Shiftdouble(Dextallp2(valueB),Dextallp3(valueC),4,Dextallp3(valueC)); \
712    Shiftdouble(Dextallp1(valueA),Dextallp2(valueB),4,Dextallp2(valueB)); \
713    Dextallp1(valueA) >>= 4
714#define Dblext_rightshiftby1(valueA,valueB,valueC,valueD) \
715    Shiftdouble(Dextallp3(valueC),Dextallp4(valueD),1,Dextallp4(valueD)); \
716    Shiftdouble(Dextallp2(valueB),Dextallp3(valueC),1,Dextallp3(valueC)); \
717    Shiftdouble(Dextallp1(valueA),Dextallp2(valueB),1,Dextallp2(valueB)); \
718    Dextallp1(valueA) >>= 1
719
720#define Dblext_xortointp1(left,right,result) Dbl_xortointp1(left,right,result)
721
722#define Dblext_xorfromintp1(left,right,result) \
723	Dbl_xorfromintp1(left,right,result)
724
725#define Dblext_copytoint_exponentmantissap1(src,dest) \
726	Dbl_copytoint_exponentmantissap1(src,dest)
727
728#define Dblext_ismagnitudeless(leftB,rightB,signlessleft,signlessright) \
729	Dbl_ismagnitudeless(leftB,rightB,signlessleft,signlessright)
730
731#define Dbl_copyto_dblext(src1,src2,dest1,dest2,dest3,dest4) \
732	Dextallp1(dest1) = Dallp1(src1); Dextallp2(dest2) = Dallp2(src2); \
733	Dextallp3(dest3) = 0; Dextallp4(dest4) = 0
734
735#define Dblext_set_sign(dbl_value,sign)  Dbl_set_sign(dbl_value,sign)
736#define Dblext_clear_signexponent_set_hidden(srcdst) \
737	Dbl_clear_signexponent_set_hidden(srcdst)
738#define Dblext_clear_signexponent(srcdst) Dbl_clear_signexponent(srcdst)
739#define Dblext_clear_sign(srcdst) Dbl_clear_sign(srcdst)
740#define Dblext_isone_hidden(dbl_value) Dbl_isone_hidden(dbl_value)
741
742/*
743 * The Fourword_add() macro assumes that integers are 4 bytes in size.
744 * It will break if this is not the case.
745 */
746
747#define Fourword_add(src1dstA,src1dstB,src1dstC,src1dstD,src2A,src2B,src2C,src2D) \
748	/* 								\
749	 * want this macro to generate:					\
750	 *	ADD	src1dstD,src2D,src1dstD;			\
751	 *	ADDC	src1dstC,src2C,src1dstC;			\
752	 *	ADDC	src1dstB,src2B,src1dstB;			\
753	 *	ADDC	src1dstA,src2A,src1dstA;			\
754	 */								\
755	if ((unsigned int)(src1dstD += (src2D)) < (unsigned int)(src2D)) { \
756	   if ((unsigned int)(src1dstC += (src2C) + 1) <=		\
757	       (unsigned int)(src2C)) {					\
758	     if ((unsigned int)(src1dstB += (src2B) + 1) <=		\
759		 (unsigned int)(src2B)) src1dstA++;			\
760	   }								\
761	   else if ((unsigned int)(src1dstB += (src2B)) < 		\
762		    (unsigned int)(src2B)) src1dstA++;			\
763	}								\
764	else {								\
765	   if ((unsigned int)(src1dstC += (src2C)) <			\
766	       (unsigned int)(src2C)) {					\
767	      if ((unsigned int)(src1dstB += (src2B) + 1) <=		\
768		  (unsigned int)(src2B)) src1dstA++;			\
769	   }								\
770	   else if ((unsigned int)(src1dstB += (src2B)) <		\
771		    (unsigned int)(src2B)) src1dstA++;			\
772	}								\
773	src1dstA += (src2A)
774
775#define Dblext_denormalize(opndp1,opndp2,opndp3,opndp4,exponent,is_tiny) \
776  {int shiftamt, sticky;						\
777    is_tiny = TRUE;							\
778    if (exponent == 0 && (Dextallp3(opndp3) || Dextallp4(opndp4))) {	\
779	switch (Rounding_mode()) {					\
780	case ROUNDPLUS:							\
781		if (Dbl_iszero_sign(opndp1)) {				\
782			Dbl_increment(opndp1,opndp2);			\
783			if (Dbl_isone_hiddenoverflow(opndp1))		\
784				is_tiny = FALSE;			\
785			Dbl_decrement(opndp1,opndp2);			\
786		}							\
787		break;							\
788	case ROUNDMINUS:						\
789		if (Dbl_isone_sign(opndp1)) {				\
790			Dbl_increment(opndp1,opndp2);			\
791			if (Dbl_isone_hiddenoverflow(opndp1))		\
792				is_tiny = FALSE;			\
793			Dbl_decrement(opndp1,opndp2);			\
794		}							\
795		break;							\
796	case ROUNDNEAREST:						\
797		if (Dblext_isone_highp3(opndp3) &&			\
798		    (Dblext_isone_lowp2(opndp2) || 			\
799		     Dblext_isnotzero_low31p3(opndp3)))	{		\
800			Dbl_increment(opndp1,opndp2);			\
801			if (Dbl_isone_hiddenoverflow(opndp1))		\
802				is_tiny = FALSE;			\
803			Dbl_decrement(opndp1,opndp2);			\
804		}							\
805		break;							\
806	}								\
807    }									\
808    Dblext_clear_signexponent_set_hidden(opndp1);			\
809    if (exponent >= (1-QUAD_P)) {					\
810	shiftamt = (1-exponent) % 32;					\
811	switch((1-exponent)/32) {					\
812	  case 0: sticky = Dextallp4(opndp4) << 32-(shiftamt);		\
813		  Variableshiftdouble(opndp3,opndp4,shiftamt,opndp4);	\
814		  Variableshiftdouble(opndp2,opndp3,shiftamt,opndp3);	\
815		  Variableshiftdouble(opndp1,opndp2,shiftamt,opndp2);	\
816		  Dextallp1(opndp1) >>= shiftamt;			\
817		  break;						\
818	  case 1: sticky = (Dextallp3(opndp3) << 32-(shiftamt)) | 	\
819			   Dextallp4(opndp4);				\
820		  Variableshiftdouble(opndp2,opndp3,shiftamt,opndp4);	\
821		  Variableshiftdouble(opndp1,opndp2,shiftamt,opndp3);	\
822		  Dextallp2(opndp2) = Dextallp1(opndp1) >> shiftamt;	\
823		  Dextallp1(opndp1) = 0;				\
824		  break;						\
825	  case 2: sticky = (Dextallp2(opndp2) << 32-(shiftamt)) |	\
826			    Dextallp3(opndp3) | Dextallp4(opndp4);	\
827		  Variableshiftdouble(opndp1,opndp2,shiftamt,opndp4);	\
828		  Dextallp3(opndp3) = Dextallp1(opndp1) >> shiftamt;	\
829		  Dextallp1(opndp1) = Dextallp2(opndp2) = 0;		\
830		  break;						\
831	  case 3: sticky = (Dextallp1(opndp1) << 32-(shiftamt)) |	\
832		  	Dextallp2(opndp2) | Dextallp3(opndp3) | 	\
833			Dextallp4(opndp4);				\
834		  Dextallp4(opndp4) = Dextallp1(opndp1) >> shiftamt;	\
835		  Dextallp1(opndp1) = Dextallp2(opndp2) = 0;		\
836		  Dextallp3(opndp3) = 0;				\
837		  break;						\
838	}								\
839    }									\
840    else {								\
841	sticky = Dextallp1(opndp1) | Dextallp2(opndp2) |		\
842		 Dextallp3(opndp3) | Dextallp4(opndp4);			\
843	Dblext_setzero(opndp1,opndp2,opndp3,opndp4);			\
844    }									\
845    if (sticky) Dblext_setone_lowmantissap4(opndp4);			\
846    exponent = 0;							\
847  }
848