1/*
2 *	linux/arch/i386/kernel/irq.c
3 *
4 *	Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
5 *
6 * This file contains the code used by various IRQ handling routines:
7 * asking for different IRQ's should be done through these routines
8 * instead of just grabbing them. Thus setups with different IRQ numbers
9 * shouldn't result in any weird surprises, and installing new handlers
10 * should be easier.
11 */
12
13/*
14 * (mostly architecture independent, will move to kernel/irq.c in 2.5.)
15 *
16 * IRQs are in fact implemented a bit like signal handlers for the kernel.
17 * Naturally it's not a 1:1 relation, but there are similarities.
18 */
19
20#include <linux/config.h>
21#include <linux/ptrace.h>
22#include <linux/errno.h>
23#include <linux/signal.h>
24#include <linux/sched.h>
25#include <linux/ioport.h>
26#include <linux/interrupt.h>
27#include <linux/timex.h>
28#include <linux/slab.h>
29#include <linux/random.h>
30#include <linux/smp_lock.h>
31#include <linux/init.h>
32#include <linux/kernel_stat.h>
33#include <linux/irq.h>
34#include <linux/proc_fs.h>
35
36#include <asm/atomic.h>
37#include <asm/io.h>
38#include <asm/smp.h>
39#include <asm/system.h>
40#include <asm/bitops.h>
41#include <asm/uaccess.h>
42#include <asm/pgalloc.h>
43#include <asm/delay.h>
44#include <asm/desc.h>
45#include <asm/irq.h>
46
47
48
49/*
50 * Linux has a controller-independent x86 interrupt architecture.
51 * every controller has a 'controller-template', that is used
52 * by the main code to do the right thing. Each driver-visible
53 * interrupt source is transparently wired to the apropriate
54 * controller. Thus drivers need not be aware of the
55 * interrupt-controller.
56 *
57 * Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC,
58 * PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC.
59 * (IO-APICs assumed to be messaging to Pentium local-APICs)
60 *
61 * the code is designed to be easily extended with new/different
62 * interrupt controllers, without having to do assembly magic.
63 */
64
65/*
66 * Controller mappings for all interrupt sources:
67 */
68irq_desc_t irq_desc[NR_IRQS] __cacheline_aligned =
69	{ [0 ... NR_IRQS-1] = { 0, &no_irq_type, NULL, 0, SPIN_LOCK_UNLOCKED}};
70
71static void register_irq_proc (unsigned int irq);
72
73/*
74 * Special irq handlers.
75 */
76
77void no_action(int cpl, void *dev_id, struct pt_regs *regs) { }
78
79/*
80 * Generic no controller code
81 */
82
83static void enable_none(unsigned int irq) { }
84static unsigned int startup_none(unsigned int irq) { return 0; }
85static void disable_none(unsigned int irq) { }
86static void ack_none(unsigned int irq)
87{
88/*
89 * 'what should we do if we get a hw irq event on an illegal vector'.
90 * each architecture has to answer this themselves, it doesnt deserve
91 * a generic callback i think.
92 */
93#if CONFIG_X86
94	printk("unexpected IRQ trap at vector %02x\n", irq);
95#ifdef CONFIG_X86_LOCAL_APIC
96	/*
97	 * Currently unexpected vectors happen only on SMP and APIC.
98	 * We _must_ ack these because every local APIC has only N
99	 * irq slots per priority level, and a 'hanging, unacked' IRQ
100	 * holds up an irq slot - in excessive cases (when multiple
101	 * unexpected vectors occur) that might lock up the APIC
102	 * completely.
103	 */
104	ack_APIC_irq();
105#endif
106#endif
107}
108
109/* startup is the same as "enable", shutdown is same as "disable" */
110#define shutdown_none	disable_none
111#define end_none	enable_none
112
113struct hw_interrupt_type no_irq_type = {
114	"none",
115	startup_none,
116	shutdown_none,
117	enable_none,
118	disable_none,
119	ack_none,
120	end_none
121};
122
123atomic_t irq_err_count;
124#ifdef CONFIG_X86_IO_APIC
125#ifdef APIC_MISMATCH_DEBUG
126atomic_t irq_mis_count;
127#endif
128#endif
129
130/*
131 * Generic, controller-independent functions:
132 */
133
134int get_irq_list(char *buf)
135{
136	int i, j;
137	struct irqaction * action;
138	char *p = buf;
139
140	p += sprintf(p, "           ");
141	for (j=0; j<smp_num_cpus; j++)
142		p += sprintf(p, "CPU%d       ",j);
143	*p++ = '\n';
144
145	for (i = 0 ; i < NR_IRQS ; i++) {
146		action = irq_desc[i].action;
147		if (!action)
148			continue;
149		p += sprintf(p, "%3d: ",i);
150#ifndef CONFIG_SMP
151		p += sprintf(p, "%10u ", kstat_irqs(i));
152#else
153		for (j = 0; j < smp_num_cpus; j++)
154			p += sprintf(p, "%10u ",
155				kstat.irqs[cpu_logical_map(j)][i]);
156#endif
157		p += sprintf(p, " %14s", irq_desc[i].handler->typename);
158		p += sprintf(p, "  %s", action->name);
159
160		for (action=action->next; action; action = action->next)
161			p += sprintf(p, ", %s", action->name);
162		*p++ = '\n';
163	}
164	p += sprintf(p, "NMI: ");
165	for (j = 0; j < smp_num_cpus; j++)
166		p += sprintf(p, "%10u ",
167			nmi_count(cpu_logical_map(j)));
168	p += sprintf(p, "\n");
169#if CONFIG_X86_LOCAL_APIC
170	p += sprintf(p, "LOC: ");
171	for (j = 0; j < smp_num_cpus; j++)
172		p += sprintf(p, "%10u ",
173			apic_timer_irqs[cpu_logical_map(j)]);
174	p += sprintf(p, "\n");
175#endif
176	p += sprintf(p, "ERR: %10u\n", atomic_read(&irq_err_count));
177#ifdef CONFIG_X86_IO_APIC
178#ifdef APIC_MISMATCH_DEBUG
179	p += sprintf(p, "MIS: %10u\n", atomic_read(&irq_mis_count));
180#endif
181#endif
182	return p - buf;
183}
184
185
186/*
187 * Global interrupt locks for SMP. Allow interrupts to come in on any
188 * CPU, yet make cli/sti act globally to protect critical regions..
189 */
190
191#ifdef CONFIG_SMP
192unsigned char global_irq_holder = NO_PROC_ID;
193unsigned volatile long global_irq_lock; /* pendantic: long for set_bit --RR */
194
195extern void show_stack(unsigned long* esp);
196
197static void show(char * str)
198{
199	int i;
200	int cpu = smp_processor_id();
201
202	printk("\n%s, CPU %d:\n", str, cpu);
203	printk("irq:  %d [",irqs_running());
204	for(i=0;i < smp_num_cpus;i++)
205		printk(" %d",local_irq_count(i));
206	printk(" ]\nbh:   %d [",spin_is_locked(&global_bh_lock) ? 1 : 0);
207	for(i=0;i < smp_num_cpus;i++)
208		printk(" %d",local_bh_count(i));
209
210	printk(" ]\nStack dumps:");
211	for(i = 0; i < smp_num_cpus; i++) {
212		unsigned long esp;
213		if (i == cpu)
214			continue;
215		printk("\nCPU %d:",i);
216		esp = init_tss[i].esp0;
217		if (!esp) {
218			/* tss->esp0 is set to NULL in cpu_init(),
219			 * it's initialized when the cpu returns to user
220			 * space. -- manfreds
221			 */
222			printk(" <unknown> ");
223			continue;
224		}
225		esp &= ~(THREAD_SIZE-1);
226		esp += sizeof(struct task_struct);
227		show_stack((void*)esp);
228 	}
229	printk("\nCPU %d:",cpu);
230	show_stack(NULL);
231	printk("\n");
232}
233
234#define MAXCOUNT 100000000
235
236/*
237 * I had a lockup scenario where a tight loop doing
238 * spin_unlock()/spin_lock() on CPU#1 was racing with
239 * spin_lock() on CPU#0. CPU#0 should have noticed spin_unlock(), but
240 * apparently the spin_unlock() information did not make it
241 * through to CPU#0 ... nasty, is this by design, do we have to limit
242 * 'memory update oscillation frequency' artificially like here?
243 *
244 * Such 'high frequency update' races can be avoided by careful design, but
245 * some of our major constructs like spinlocks use similar techniques,
246 * it would be nice to clarify this issue. Set this define to 0 if you
247 * want to check whether your system freezes.  I suspect the delay done
248 * by SYNC_OTHER_CORES() is in correlation with 'snooping latency', but
249 * i thought that such things are guaranteed by design, since we use
250 * the 'LOCK' prefix.
251 */
252#define SUSPECTED_CPU_OR_CHIPSET_BUG_WORKAROUND 0
253
254#if SUSPECTED_CPU_OR_CHIPSET_BUG_WORKAROUND
255# define SYNC_OTHER_CORES(x) udelay(x+1)
256#else
257/*
258 * We have to allow irqs to arrive between __sti and __cli
259 */
260# define SYNC_OTHER_CORES(x) __asm__ __volatile__ ("nop")
261#endif
262
263static inline void wait_on_irq(int cpu)
264{
265	int count = MAXCOUNT;
266
267	for (;;) {
268
269		/*
270		 * Wait until all interrupts are gone. Wait
271		 * for bottom half handlers unless we're
272		 * already executing in one..
273		 */
274		if (!irqs_running())
275			if (local_bh_count(cpu) || !spin_is_locked(&global_bh_lock))
276				break;
277
278		/* Duh, we have to loop. Release the lock to avoid deadlocks */
279		clear_bit(0,&global_irq_lock);
280
281		for (;;) {
282			if (!--count) {
283				show("wait_on_irq");
284				count = ~0;
285			}
286			__sti();
287			SYNC_OTHER_CORES(cpu);
288			__cli();
289			if (irqs_running())
290				continue;
291			if (global_irq_lock)
292				continue;
293			if (!local_bh_count(cpu) && spin_is_locked(&global_bh_lock))
294				continue;
295			if (!test_and_set_bit(0,&global_irq_lock))
296				break;
297		}
298	}
299}
300
301/*
302 * This is called when we want to synchronize with
303 * interrupts. We may for example tell a device to
304 * stop sending interrupts: but to make sure there
305 * are no interrupts that are executing on another
306 * CPU we need to call this function.
307 */
308void synchronize_irq(void)
309{
310	if (irqs_running()) {
311		/* Stupid approach */
312		cli();
313		sti();
314	}
315}
316
317static inline void get_irqlock(int cpu)
318{
319	if (test_and_set_bit(0,&global_irq_lock)) {
320		/* do we already hold the lock? */
321		if ((unsigned char) cpu == global_irq_holder)
322			return;
323		/* Uhhuh.. Somebody else got it. Wait.. */
324		do {
325			do {
326				rep_nop();
327			} while (test_bit(0,&global_irq_lock));
328		} while (test_and_set_bit(0,&global_irq_lock));
329	}
330	/*
331	 * We also to make sure that nobody else is running
332	 * in an interrupt context.
333	 */
334	wait_on_irq(cpu);
335
336	/*
337	 * Ok, finally..
338	 */
339	global_irq_holder = cpu;
340}
341
342#define EFLAGS_IF_SHIFT 9
343
344/*
345 * A global "cli()" while in an interrupt context
346 * turns into just a local cli(). Interrupts
347 * should use spinlocks for the (very unlikely)
348 * case that they ever want to protect against
349 * each other.
350 *
351 * If we already have local interrupts disabled,
352 * this will not turn a local disable into a
353 * global one (problems with spinlocks: this makes
354 * save_flags+cli+sti usable inside a spinlock).
355 */
356void __global_cli(void)
357{
358	unsigned int flags;
359
360	__save_flags(flags);
361	if (flags & (1 << EFLAGS_IF_SHIFT)) {
362		int cpu = smp_processor_id();
363		__cli();
364		if (!local_irq_count(cpu))
365			get_irqlock(cpu);
366	}
367}
368
369void __global_sti(void)
370{
371	int cpu = smp_processor_id();
372
373	if (!local_irq_count(cpu))
374		release_irqlock(cpu);
375	__sti();
376}
377
378/*
379 * SMP flags value to restore to:
380 * 0 - global cli
381 * 1 - global sti
382 * 2 - local cli
383 * 3 - local sti
384 */
385unsigned long __global_save_flags(void)
386{
387	int retval;
388	int local_enabled;
389	unsigned long flags;
390	int cpu = smp_processor_id();
391
392	__save_flags(flags);
393	local_enabled = (flags >> EFLAGS_IF_SHIFT) & 1;
394	/* default to local */
395	retval = 2 + local_enabled;
396
397	/* check for global flags if we're not in an interrupt */
398	if (!local_irq_count(cpu)) {
399		if (local_enabled)
400			retval = 1;
401		if (global_irq_holder == cpu)
402			retval = 0;
403	}
404	return retval;
405}
406
407void __global_restore_flags(unsigned long flags)
408{
409	switch (flags) {
410	case 0:
411		__global_cli();
412		break;
413	case 1:
414		__global_sti();
415		break;
416	case 2:
417		__cli();
418		break;
419	case 3:
420		__sti();
421		break;
422	default:
423		printk("global_restore_flags: %08lx (%08lx)\n",
424			flags, (&flags)[-1]);
425	}
426}
427
428#endif
429
430/*
431 * This should really return information about whether
432 * we should do bottom half handling etc. Right now we
433 * end up _always_ checking the bottom half, which is a
434 * waste of time and is not what some drivers would
435 * prefer.
436 */
437int handle_IRQ_event(unsigned int irq, struct pt_regs * regs, struct irqaction * action)
438{
439	int status;
440	int cpu = smp_processor_id();
441
442	irq_enter(cpu, irq);
443
444	status = 1;	/* Force the "do bottom halves" bit */
445
446	if (!(action->flags & SA_INTERRUPT))
447		__sti();
448
449	do {
450		status |= action->flags;
451		action->handler(irq, action->dev_id, regs);
452		action = action->next;
453	} while (action);
454	if (status & SA_SAMPLE_RANDOM)
455		add_interrupt_randomness(irq);
456	__cli();
457
458	irq_exit(cpu, irq);
459
460	return status;
461}
462
463/*
464 * Generic enable/disable code: this just calls
465 * down into the PIC-specific version for the actual
466 * hardware disable after having gotten the irq
467 * controller lock.
468 */
469
470/**
471 *	disable_irq_nosync - disable an irq without waiting
472 *	@irq: Interrupt to disable
473 *
474 *	Disable the selected interrupt line.  Disables and Enables are
475 *	nested.
476 *	Unlike disable_irq(), this function does not ensure existing
477 *	instances of the IRQ handler have completed before returning.
478 *
479 *	This function may be called from IRQ context.
480 */
481
482inline void disable_irq_nosync(unsigned int irq)
483{
484	irq_desc_t *desc = irq_desc + irq;
485	unsigned long flags;
486
487	spin_lock_irqsave(&desc->lock, flags);
488	if (!desc->depth++) {
489		desc->status |= IRQ_DISABLED;
490		desc->handler->disable(irq);
491	}
492	spin_unlock_irqrestore(&desc->lock, flags);
493}
494
495/**
496 *	disable_irq - disable an irq and wait for completion
497 *	@irq: Interrupt to disable
498 *
499 *	Disable the selected interrupt line.  Enables and Disables are
500 *	nested.
501 *	This function waits for any pending IRQ handlers for this interrupt
502 *	to complete before returning. If you use this function while
503 *	holding a resource the IRQ handler may need you will deadlock.
504 *
505 *	This function may be called - with care - from IRQ context.
506 */
507
508void disable_irq(unsigned int irq)
509{
510	disable_irq_nosync(irq);
511
512	if (!local_irq_count(smp_processor_id())) {
513		do {
514			barrier();
515			cpu_relax();
516		} while (irq_desc[irq].status & IRQ_INPROGRESS);
517	}
518}
519
520/**
521 *	enable_irq - enable handling of an irq
522 *	@irq: Interrupt to enable
523 *
524 *	Undoes the effect of one call to disable_irq().  If this
525 *	matches the last disable, processing of interrupts on this
526 *	IRQ line is re-enabled.
527 *
528 *	This function may be called from IRQ context.
529 */
530
531void enable_irq(unsigned int irq)
532{
533	irq_desc_t *desc = irq_desc + irq;
534	unsigned long flags;
535
536	spin_lock_irqsave(&desc->lock, flags);
537	switch (desc->depth) {
538	case 1: {
539		unsigned int status = desc->status & ~IRQ_DISABLED;
540		desc->status = status;
541		if ((status & (IRQ_PENDING | IRQ_REPLAY)) == IRQ_PENDING) {
542			desc->status = status | IRQ_REPLAY;
543			hw_resend_irq(desc->handler,irq);
544		}
545		desc->handler->enable(irq);
546		/* fall-through */
547	}
548	default:
549		desc->depth--;
550		break;
551	case 0:
552		printk("enable_irq(%u) unbalanced from %p\n", irq,
553		       __builtin_return_address(0));
554	}
555	spin_unlock_irqrestore(&desc->lock, flags);
556}
557
558/*
559 * do_IRQ handles all normal device IRQ's (the special
560 * SMP cross-CPU interrupts have their own specific
561 * handlers).
562 */
563asmlinkage unsigned int do_IRQ(struct pt_regs regs)
564{
565	/*
566	 * We ack quickly, we don't want the irq controller
567	 * thinking we're snobs just because some other CPU has
568	 * disabled global interrupts (we have already done the
569	 * INT_ACK cycles, it's too late to try to pretend to the
570	 * controller that we aren't taking the interrupt).
571	 *
572	 * 0 return value means that this irq is already being
573	 * handled by some other CPU. (or is disabled)
574	 */
575	int irq = regs.orig_eax & 0xff; /* high bits used in ret_from_ code  */
576	int cpu = smp_processor_id();
577	irq_desc_t *desc = irq_desc + irq;
578	struct irqaction * action;
579	unsigned int status;
580#ifdef CONFIG_DEBUG_STACKOVERFLOW
581	long esp;
582
583	/* Debugging check for stack overflow: is there less than 1KB free? */
584	__asm__ __volatile__("andl %%esp,%0" : "=r" (esp) : "0" (8191));
585	if (unlikely(esp < (sizeof(struct task_struct) + 1024))) {
586		extern void show_stack(unsigned long *);
587
588		printk("do_IRQ: stack overflow: %ld\n",
589			esp - sizeof(struct task_struct));
590		__asm__ __volatile__("movl %%esp,%0" : "=r" (esp));
591		show_stack((void *)esp);
592	}
593#endif
594
595	kstat.irqs[cpu][irq]++;
596	spin_lock(&desc->lock);
597	desc->handler->ack(irq);
598	/*
599	   REPLAY is when Linux resends an IRQ that was dropped earlier
600	   WAITING is used by probe to mark irqs that are being tested
601	   */
602	status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
603	status |= IRQ_PENDING; /* we _want_ to handle it */
604
605	/*
606	 * If the IRQ is disabled for whatever reason, we cannot
607	 * use the action we have.
608	 */
609	action = NULL;
610	if (!(status & (IRQ_DISABLED | IRQ_INPROGRESS))) {
611		action = desc->action;
612		status &= ~IRQ_PENDING; /* we commit to handling */
613		status |= IRQ_INPROGRESS; /* we are handling it */
614	}
615	desc->status = status;
616
617	/*
618	 * If there is no IRQ handler or it was disabled, exit early.
619	   Since we set PENDING, if another processor is handling
620	   a different instance of this same irq, the other processor
621	   will take care of it.
622	 */
623	if (!action)
624		goto out;
625
626	/*
627	 * Edge triggered interrupts need to remember
628	 * pending events.
629	 * This applies to any hw interrupts that allow a second
630	 * instance of the same irq to arrive while we are in do_IRQ
631	 * or in the handler. But the code here only handles the _second_
632	 * instance of the irq, not the third or fourth. So it is mostly
633	 * useful for irq hardware that does not mask cleanly in an
634	 * SMP environment.
635	 */
636	for (;;) {
637		spin_unlock(&desc->lock);
638		handle_IRQ_event(irq, &regs, action);
639		spin_lock(&desc->lock);
640
641		if (!(desc->status & IRQ_PENDING))
642			break;
643		desc->status &= ~IRQ_PENDING;
644	}
645	desc->status &= ~IRQ_INPROGRESS;
646out:
647	/*
648	 * The ->end() handler has to deal with interrupts which got
649	 * disabled while the handler was running.
650	 */
651	desc->handler->end(irq);
652	spin_unlock(&desc->lock);
653
654	if (softirq_pending(cpu))
655		do_softirq();
656	return 1;
657}
658
659/**
660 *	request_irq - allocate an interrupt line
661 *	@irq: Interrupt line to allocate
662 *	@handler: Function to be called when the IRQ occurs
663 *	@irqflags: Interrupt type flags
664 *	@devname: An ascii name for the claiming device
665 *	@dev_id: A cookie passed back to the handler function
666 *
667 *	This call allocates interrupt resources and enables the
668 *	interrupt line and IRQ handling. From the point this
669 *	call is made your handler function may be invoked. Since
670 *	your handler function must clear any interrupt the board
671 *	raises, you must take care both to initialise your hardware
672 *	and to set up the interrupt handler in the right order.
673 *
674 *	Dev_id must be globally unique. Normally the address of the
675 *	device data structure is used as the cookie. Since the handler
676 *	receives this value it makes sense to use it.
677 *
678 *	If your interrupt is shared you must pass a non NULL dev_id
679 *	as this is required when freeing the interrupt.
680 *
681 *	Flags:
682 *
683 *	SA_SHIRQ		Interrupt is shared
684 *
685 *	SA_INTERRUPT		Disable local interrupts while processing
686 *
687 *	SA_SAMPLE_RANDOM	The interrupt can be used for entropy
688 *
689 */
690
691int request_irq(unsigned int irq,
692		void (*handler)(int, void *, struct pt_regs *),
693		unsigned long irqflags,
694		const char * devname,
695		void *dev_id)
696{
697	int retval;
698	struct irqaction * action;
699
700	/*
701	 * Sanity-check: shared interrupts should REALLY pass in
702	 * a real dev-ID, otherwise we'll have trouble later trying
703	 * to figure out which interrupt is which (messes up the
704	 * interrupt freeing logic etc).
705	 */
706	if (irqflags & SA_SHIRQ) {
707		if (!dev_id)
708			printk("Bad boy: %s (at 0x%x) called us without a dev_id!\n", devname, (&irq)[-1]);
709	}
710
711	if (irq >= NR_IRQS)
712		return -EINVAL;
713	if (!handler)
714		return -EINVAL;
715
716	action = (struct irqaction *)
717			kmalloc(sizeof(struct irqaction), GFP_KERNEL);
718	if (!action)
719		return -ENOMEM;
720
721	action->handler = handler;
722	action->flags = irqflags;
723	action->mask = 0;
724	action->name = devname;
725	action->next = NULL;
726	action->dev_id = dev_id;
727
728	retval = setup_irq(irq, action);
729	if (retval)
730		kfree(action);
731	return retval;
732}
733
734/**
735 *	free_irq - free an interrupt
736 *	@irq: Interrupt line to free
737 *	@dev_id: Device identity to free
738 *
739 *	Remove an interrupt handler. The handler is removed and if the
740 *	interrupt line is no longer in use by any driver it is disabled.
741 *	On a shared IRQ the caller must ensure the interrupt is disabled
742 *	on the card it drives before calling this function. The function
743 *	does not return until any executing interrupts for this IRQ
744 *	have completed.
745 *
746 *	This function may be called from interrupt context.
747 *
748 *	Bugs: Attempting to free an irq in a handler for the same irq hangs
749 *	      the machine.
750 */
751
752void free_irq(unsigned int irq, void *dev_id)
753{
754	irq_desc_t *desc;
755	struct irqaction **p;
756	unsigned long flags;
757
758	if (irq >= NR_IRQS)
759		return;
760
761	desc = irq_desc + irq;
762	spin_lock_irqsave(&desc->lock,flags);
763	p = &desc->action;
764	for (;;) {
765		struct irqaction * action = *p;
766		if (action) {
767			struct irqaction **pp = p;
768			p = &action->next;
769			if (action->dev_id != dev_id)
770				continue;
771
772			/* Found it - now remove it from the list of entries */
773			*pp = action->next;
774			if (!desc->action) {
775				desc->status |= IRQ_DISABLED;
776				desc->handler->shutdown(irq);
777			}
778			spin_unlock_irqrestore(&desc->lock,flags);
779
780#ifdef CONFIG_SMP
781			/* Wait to make sure it's not being used on another CPU */
782			while (desc->status & IRQ_INPROGRESS) {
783				barrier();
784				cpu_relax();
785			}
786#endif
787			kfree(action);
788			return;
789		}
790		printk("Trying to free free IRQ%d\n",irq);
791		spin_unlock_irqrestore(&desc->lock,flags);
792		return;
793	}
794}
795
796/*
797 * IRQ autodetection code..
798 *
799 * This depends on the fact that any interrupt that
800 * comes in on to an unassigned handler will get stuck
801 * with "IRQ_WAITING" cleared and the interrupt
802 * disabled.
803 */
804
805static DECLARE_MUTEX(probe_sem);
806
807/**
808 *	probe_irq_on	- begin an interrupt autodetect
809 *
810 *	Commence probing for an interrupt. The interrupts are scanned
811 *	and a mask of potential interrupt lines is returned.
812 *
813 */
814
815unsigned long probe_irq_on(void)
816{
817	unsigned int i;
818	irq_desc_t *desc;
819	unsigned long val;
820	unsigned long delay;
821
822	down(&probe_sem);
823	/*
824	 * something may have generated an irq long ago and we want to
825	 * flush such a longstanding irq before considering it as spurious.
826	 */
827	for (i = NR_IRQS-1; i > 0; i--)  {
828		desc = irq_desc + i;
829
830		spin_lock_irq(&desc->lock);
831		if (!irq_desc[i].action)
832			irq_desc[i].handler->startup(i);
833		spin_unlock_irq(&desc->lock);
834	}
835
836	/* Wait for longstanding interrupts to trigger. */
837	for (delay = jiffies + HZ/50; time_after(delay, jiffies); )
838		/* about 20ms delay */ synchronize_irq();
839
840	/*
841	 * enable any unassigned irqs
842	 * (we must startup again here because if a longstanding irq
843	 * happened in the previous stage, it may have masked itself)
844	 */
845	for (i = NR_IRQS-1; i > 0; i--) {
846		desc = irq_desc + i;
847
848		spin_lock_irq(&desc->lock);
849		if (!desc->action) {
850			desc->status |= IRQ_AUTODETECT | IRQ_WAITING;
851			if (desc->handler->startup(i))
852				desc->status |= IRQ_PENDING;
853		}
854		spin_unlock_irq(&desc->lock);
855	}
856
857	/*
858	 * Wait for spurious interrupts to trigger
859	 */
860	for (delay = jiffies + HZ/10; time_after(delay, jiffies); )
861		/* about 100ms delay */ synchronize_irq();
862
863	/*
864	 * Now filter out any obviously spurious interrupts
865	 */
866	val = 0;
867	for (i = 0; i < NR_IRQS; i++) {
868		irq_desc_t *desc = irq_desc + i;
869		unsigned int status;
870
871		spin_lock_irq(&desc->lock);
872		status = desc->status;
873
874		if (status & IRQ_AUTODETECT) {
875			/* It triggered already - consider it spurious. */
876			if (!(status & IRQ_WAITING)) {
877				desc->status = status & ~IRQ_AUTODETECT;
878				desc->handler->shutdown(i);
879			} else
880				if (i < 32)
881					val |= 1 << i;
882		}
883		spin_unlock_irq(&desc->lock);
884	}
885
886	return val;
887}
888
889/*
890 * Return a mask of triggered interrupts (this
891 * can handle only legacy ISA interrupts).
892 */
893
894/**
895 *	probe_irq_mask - scan a bitmap of interrupt lines
896 *	@val:	mask of interrupts to consider
897 *
898 *	Scan the ISA bus interrupt lines and return a bitmap of
899 *	active interrupts. The interrupt probe logic state is then
900 *	returned to its previous value.
901 *
902 *	Note: we need to scan all the irq's even though we will
903 *	only return ISA irq numbers - just so that we reset them
904 *	all to a known state.
905 */
906unsigned int probe_irq_mask(unsigned long val)
907{
908	int i;
909	unsigned int mask;
910
911	mask = 0;
912	for (i = 0; i < NR_IRQS; i++) {
913		irq_desc_t *desc = irq_desc + i;
914		unsigned int status;
915
916		spin_lock_irq(&desc->lock);
917		status = desc->status;
918
919		if (status & IRQ_AUTODETECT) {
920			if (i < 16 && !(status & IRQ_WAITING))
921				mask |= 1 << i;
922
923			desc->status = status & ~IRQ_AUTODETECT;
924			desc->handler->shutdown(i);
925		}
926		spin_unlock_irq(&desc->lock);
927	}
928	up(&probe_sem);
929
930	return mask & val;
931}
932
933/*
934 * Return the one interrupt that triggered (this can
935 * handle any interrupt source).
936 */
937
938/**
939 *	probe_irq_off	- end an interrupt autodetect
940 *	@val: mask of potential interrupts (unused)
941 *
942 *	Scans the unused interrupt lines and returns the line which
943 *	appears to have triggered the interrupt. If no interrupt was
944 *	found then zero is returned. If more than one interrupt is
945 *	found then minus the first candidate is returned to indicate
946 *	their is doubt.
947 *
948 *	The interrupt probe logic state is returned to its previous
949 *	value.
950 *
951 *	BUGS: When used in a module (which arguably shouldnt happen)
952 *	nothing prevents two IRQ probe callers from overlapping. The
953 *	results of this are non-optimal.
954 */
955
956int probe_irq_off(unsigned long val)
957{
958	int i, irq_found, nr_irqs;
959
960	nr_irqs = 0;
961	irq_found = 0;
962	for (i = 0; i < NR_IRQS; i++) {
963		irq_desc_t *desc = irq_desc + i;
964		unsigned int status;
965
966		spin_lock_irq(&desc->lock);
967		status = desc->status;
968
969		if (status & IRQ_AUTODETECT) {
970			if (!(status & IRQ_WAITING)) {
971				if (!nr_irqs)
972					irq_found = i;
973				nr_irqs++;
974			}
975			desc->status = status & ~IRQ_AUTODETECT;
976			desc->handler->shutdown(i);
977		}
978		spin_unlock_irq(&desc->lock);
979	}
980	up(&probe_sem);
981
982	if (nr_irqs > 1)
983		irq_found = -irq_found;
984	return irq_found;
985}
986
987/* this was setup_x86_irq but it seems pretty generic */
988int setup_irq(unsigned int irq, struct irqaction * new)
989{
990	int shared = 0;
991	unsigned long flags;
992	struct irqaction *old, **p;
993	irq_desc_t *desc = irq_desc + irq;
994
995	/*
996	 * Some drivers like serial.c use request_irq() heavily,
997	 * so we have to be careful not to interfere with a
998	 * running system.
999	 */
1000	if (new->flags & SA_SAMPLE_RANDOM) {
1001		/*
1002		 * This function might sleep, we want to call it first,
1003		 * outside of the atomic block.
1004		 * Yes, this might clear the entropy pool if the wrong
1005		 * driver is attempted to be loaded, without actually
1006		 * installing a new handler, but is this really a problem,
1007		 * only the sysadmin is able to do this.
1008		 */
1009		rand_initialize_irq(irq);
1010	}
1011
1012	/*
1013	 * The following block of code has to be executed atomically
1014	 */
1015	spin_lock_irqsave(&desc->lock,flags);
1016	p = &desc->action;
1017	if ((old = *p) != NULL) {
1018		/* Can't share interrupts unless both agree to */
1019		if (!(old->flags & new->flags & SA_SHIRQ)) {
1020			spin_unlock_irqrestore(&desc->lock,flags);
1021			return -EBUSY;
1022		}
1023
1024		/* add new interrupt at end of irq queue */
1025		do {
1026			p = &old->next;
1027			old = *p;
1028		} while (old);
1029		shared = 1;
1030	}
1031
1032	*p = new;
1033
1034	if (!shared) {
1035		desc->depth = 0;
1036		desc->status &= ~(IRQ_DISABLED | IRQ_AUTODETECT | IRQ_WAITING);
1037		desc->handler->startup(irq);
1038	}
1039	spin_unlock_irqrestore(&desc->lock,flags);
1040
1041	register_irq_proc(irq);
1042	return 0;
1043}
1044
1045static struct proc_dir_entry * root_irq_dir;
1046static struct proc_dir_entry * irq_dir [NR_IRQS];
1047
1048#define HEX_DIGITS 8
1049
1050static unsigned int parse_hex_value (const char *buffer,
1051		unsigned long count, unsigned long *ret)
1052{
1053	unsigned char hexnum [HEX_DIGITS];
1054	unsigned long value;
1055	int i;
1056
1057	if (!count)
1058		return -EINVAL;
1059	if (count > HEX_DIGITS)
1060		count = HEX_DIGITS;
1061	if (copy_from_user(hexnum, buffer, count))
1062		return -EFAULT;
1063
1064	/*
1065	 * Parse the first 8 characters as a hex string, any non-hex char
1066	 * is end-of-string. '00e1', 'e1', '00E1', 'E1' are all the same.
1067	 */
1068	value = 0;
1069
1070	for (i = 0; i < count; i++) {
1071		unsigned int c = hexnum[i];
1072
1073		switch (c) {
1074			case '0' ... '9': c -= '0'; break;
1075			case 'a' ... 'f': c -= 'a'-10; break;
1076			case 'A' ... 'F': c -= 'A'-10; break;
1077		default:
1078			goto out;
1079		}
1080		value = (value << 4) | c;
1081	}
1082out:
1083	*ret = value;
1084	return 0;
1085}
1086
1087#if CONFIG_SMP
1088
1089static struct proc_dir_entry * smp_affinity_entry [NR_IRQS];
1090
1091static unsigned long irq_affinity [NR_IRQS] = { [0 ... NR_IRQS-1] = ~0UL };
1092static int irq_affinity_read_proc (char *page, char **start, off_t off,
1093			int count, int *eof, void *data)
1094{
1095	if (count < HEX_DIGITS+1)
1096		return -EINVAL;
1097	return sprintf (page, "%08lx\n", irq_affinity[(long)data]);
1098}
1099
1100static int irq_affinity_write_proc (struct file *file, const char *buffer,
1101					unsigned long count, void *data)
1102{
1103	int irq = (long) data, full_count = count, err;
1104	unsigned long new_value;
1105
1106	if (!irq_desc[irq].handler->set_affinity)
1107		return -EIO;
1108
1109	err = parse_hex_value(buffer, count, &new_value);
1110
1111	/*
1112	 * Do not allow disabling IRQs completely - it's a too easy
1113	 * way to make the system unusable accidentally :-) At least
1114	 * one online CPU still has to be targeted.
1115	 */
1116	if (!(new_value & cpu_online_map))
1117		return -EINVAL;
1118
1119	irq_affinity[irq] = new_value;
1120	irq_desc[irq].handler->set_affinity(irq, new_value);
1121
1122	return full_count;
1123}
1124
1125#endif
1126
1127#define MAX_NAMELEN 10
1128
1129static void register_irq_proc (unsigned int irq)
1130{
1131	char name [MAX_NAMELEN];
1132
1133	if (!root_irq_dir || (irq_desc[irq].handler == &no_irq_type) ||
1134			irq_dir[irq])
1135		return;
1136
1137	memset(name, 0, MAX_NAMELEN);
1138	sprintf(name, "%d", irq);
1139
1140	/* create /proc/irq/1234 */
1141	irq_dir[irq] = proc_mkdir(name, root_irq_dir);
1142
1143#if CONFIG_SMP
1144	{
1145		struct proc_dir_entry *entry;
1146
1147		/* create /proc/irq/1234/smp_affinity */
1148		entry = create_proc_entry("smp_affinity", 0600, irq_dir[irq]);
1149
1150		if (entry) {
1151			entry->nlink = 1;
1152			entry->data = (void *)(long)irq;
1153			entry->read_proc = irq_affinity_read_proc;
1154			entry->write_proc = irq_affinity_write_proc;
1155		}
1156
1157		smp_affinity_entry[irq] = entry;
1158	}
1159#endif
1160}
1161
1162void init_irq_proc (void)
1163{
1164	int i;
1165
1166	/* create /proc/irq */
1167	root_irq_dir = proc_mkdir("irq", 0);
1168
1169	/*
1170	 * Create entries for all existing IRQs.
1171	 */
1172	for (i = 0; i < NR_IRQS; i++)
1173		register_irq_proc(i);
1174}
1175
1176