Searched hist:14062 (Results 1 - 7 of 7) sorted by relevance

/freebsd-9.3-release/usr.sbin/rpc.yppasswdd/
H A Dyppasswd_private.x14062 Mon Feb 12 13:09:01 MST 1996 wpaul Import new rpc.yppasswdd. (Note: accompanying changes to passwd(1) and
chpass(1) are on the way too.) This version supports all the features
of the old one and adds several new ones:

- Supports real multi-domain operation (optional, can be turned
on with a command-line flag). This means you can actually have
several different domains all served from one NIS server and
allow users in any of the supported domains to change their passwords.
The old yppasswdd only allowed changing passwords in the domain
that was set as the system default domain name on the NIS master
server. The new one can change passwords in any domain by trying
to match the user information passed to it against all the passwd
maps it can find. This is something of a hack, but the yppasswd.x
protocol definiton does not allow for a domain to be passwd as an
argument to rpc.yppasswdd, so the server has no choice but to
grope around for a likely match. Since this method can fail if
the same user exists in two domains, this feature is off by default.
If the feature is turned on and the server becomes confused by
duplicate entries, it will abort the update.

- Does not require NIS client services to be available. NIS servers do
_NOT_ necessarily have to be configured as NIS clients in order to
function: the ypserv, ypxfr and yppush programs I've written recently
will operate fine even if the system domain name isn't set, ypbind isn't
running and there are no magic '+' entries in any of the /etc files.
Now rpc.yppasswdd is the same way. The old yppasswdd would not work
like this because it depended on getpwent(3) and friends to look up
users: this will obviously only work if the system where yppasswdd is
running is configured as an NIS client. The new rpc.yppasswdd doesn't
use getpwent(3) at all: instead it searches through the master.passwd
map databases directly. This also makes it easier for it to handle
multiple domains.

- Allows the superuser on the NIS master server to change any user's
password without requiring password authentication. rpc.yppasswdd
creates a UNIX domain socket (/var/run/ypsock) which it monitors
using the same svc_run() loop used to handle incoming RPC requests.
It also clears all the permission bits for /var/run/ypsock; since
this socket is owned by root, this prevents anyone except root from
successfully connect()ing to it. (Using a UNIX domain socket also
prevents IP spoofing attacks.) By building code into passwd(1) and
chpass(1) to take advantage of this 'trusted' channel, the superuser
can use them to send private requests to rpc.yppasswdd.

- Allows the superuser on the NIS master to use chpass(1) to update _all_
of a user's master.passwd information. The UNIX domain access point
accepts a full master.passwd style structure (along with a domain
name and other information), which allows the superuser to update all
of a user's master.passwd information in the NIS master.passwd maps.
Normal users on NIS clients are still only allowed to change their full
name and shell information with chpass.

- Allows the superuser on the NIS master to _add_ records to the NIS
master.passwd maps using chpass(1). This feature is also switchable
with a command-line flag and is off by default.
H A Dyppwupdate14062 Mon Feb 12 13:09:01 MST 1996 wpaul Import new rpc.yppasswdd. (Note: accompanying changes to passwd(1) and
chpass(1) are on the way too.) This version supports all the features
of the old one and adds several new ones:

- Supports real multi-domain operation (optional, can be turned
on with a command-line flag). This means you can actually have
several different domains all served from one NIS server and
allow users in any of the supported domains to change their passwords.
The old yppasswdd only allowed changing passwords in the domain
that was set as the system default domain name on the NIS master
server. The new one can change passwords in any domain by trying
to match the user information passed to it against all the passwd
maps it can find. This is something of a hack, but the yppasswd.x
protocol definiton does not allow for a domain to be passwd as an
argument to rpc.yppasswdd, so the server has no choice but to
grope around for a likely match. Since this method can fail if
the same user exists in two domains, this feature is off by default.
If the feature is turned on and the server becomes confused by
duplicate entries, it will abort the update.

- Does not require NIS client services to be available. NIS servers do
_NOT_ necessarily have to be configured as NIS clients in order to
function: the ypserv, ypxfr and yppush programs I've written recently
will operate fine even if the system domain name isn't set, ypbind isn't
running and there are no magic '+' entries in any of the /etc files.
Now rpc.yppasswdd is the same way. The old yppasswdd would not work
like this because it depended on getpwent(3) and friends to look up
users: this will obviously only work if the system where yppasswdd is
running is configured as an NIS client. The new rpc.yppasswdd doesn't
use getpwent(3) at all: instead it searches through the master.passwd
map databases directly. This also makes it easier for it to handle
multiple domains.

- Allows the superuser on the NIS master server to change any user's
password without requiring password authentication. rpc.yppasswdd
creates a UNIX domain socket (/var/run/ypsock) which it monitors
using the same svc_run() loop used to handle incoming RPC requests.
It also clears all the permission bits for /var/run/ypsock; since
this socket is owned by root, this prevents anyone except root from
successfully connect()ing to it. (Using a UNIX domain socket also
prevents IP spoofing attacks.) By building code into passwd(1) and
chpass(1) to take advantage of this 'trusted' channel, the superuser
can use them to send private requests to rpc.yppasswdd.

- Allows the superuser on the NIS master to use chpass(1) to update _all_
of a user's master.passwd information. The UNIX domain access point
accepts a full master.passwd style structure (along with a domain
name and other information), which allows the superuser to update all
of a user's master.passwd information in the NIS master.passwd maps.
Normal users on NIS clients are still only allowed to change their full
name and shell information with chpass.

- Allows the superuser on the NIS master to _add_ records to the NIS
master.passwd maps using chpass(1). This feature is also switchable
with a command-line flag and is off by default.
H A DMakefile14062 Mon Feb 12 13:09:01 MST 1996 wpaul Import new rpc.yppasswdd. (Note: accompanying changes to passwd(1) and
chpass(1) are on the way too.) This version supports all the features
of the old one and adds several new ones:

- Supports real multi-domain operation (optional, can be turned
on with a command-line flag). This means you can actually have
several different domains all served from one NIS server and
allow users in any of the supported domains to change their passwords.
The old yppasswdd only allowed changing passwords in the domain
that was set as the system default domain name on the NIS master
server. The new one can change passwords in any domain by trying
to match the user information passed to it against all the passwd
maps it can find. This is something of a hack, but the yppasswd.x
protocol definiton does not allow for a domain to be passwd as an
argument to rpc.yppasswdd, so the server has no choice but to
grope around for a likely match. Since this method can fail if
the same user exists in two domains, this feature is off by default.
If the feature is turned on and the server becomes confused by
duplicate entries, it will abort the update.

- Does not require NIS client services to be available. NIS servers do
_NOT_ necessarily have to be configured as NIS clients in order to
function: the ypserv, ypxfr and yppush programs I've written recently
will operate fine even if the system domain name isn't set, ypbind isn't
running and there are no magic '+' entries in any of the /etc files.
Now rpc.yppasswdd is the same way. The old yppasswdd would not work
like this because it depended on getpwent(3) and friends to look up
users: this will obviously only work if the system where yppasswdd is
running is configured as an NIS client. The new rpc.yppasswdd doesn't
use getpwent(3) at all: instead it searches through the master.passwd
map databases directly. This also makes it easier for it to handle
multiple domains.

- Allows the superuser on the NIS master server to change any user's
password without requiring password authentication. rpc.yppasswdd
creates a UNIX domain socket (/var/run/ypsock) which it monitors
using the same svc_run() loop used to handle incoming RPC requests.
It also clears all the permission bits for /var/run/ypsock; since
this socket is owned by root, this prevents anyone except root from
successfully connect()ing to it. (Using a UNIX domain socket also
prevents IP spoofing attacks.) By building code into passwd(1) and
chpass(1) to take advantage of this 'trusted' channel, the superuser
can use them to send private requests to rpc.yppasswdd.

- Allows the superuser on the NIS master to use chpass(1) to update _all_
of a user's master.passwd information. The UNIX domain access point
accepts a full master.passwd style structure (along with a domain
name and other information), which allows the superuser to update all
of a user's master.passwd information in the NIS master.passwd maps.
Normal users on NIS clients are still only allowed to change their full
name and shell information with chpass.

- Allows the superuser on the NIS master to _add_ records to the NIS
master.passwd maps using chpass(1). This feature is also switchable
with a command-line flag and is off by default.
H A Drpc.yppasswdd.814062 Mon Feb 12 13:09:01 MST 1996 wpaul Import new rpc.yppasswdd. (Note: accompanying changes to passwd(1) and
chpass(1) are on the way too.) This version supports all the features
of the old one and adds several new ones:

- Supports real multi-domain operation (optional, can be turned
on with a command-line flag). This means you can actually have
several different domains all served from one NIS server and
allow users in any of the supported domains to change their passwords.
The old yppasswdd only allowed changing passwords in the domain
that was set as the system default domain name on the NIS master
server. The new one can change passwords in any domain by trying
to match the user information passed to it against all the passwd
maps it can find. This is something of a hack, but the yppasswd.x
protocol definiton does not allow for a domain to be passwd as an
argument to rpc.yppasswdd, so the server has no choice but to
grope around for a likely match. Since this method can fail if
the same user exists in two domains, this feature is off by default.
If the feature is turned on and the server becomes confused by
duplicate entries, it will abort the update.

- Does not require NIS client services to be available. NIS servers do
_NOT_ necessarily have to be configured as NIS clients in order to
function: the ypserv, ypxfr and yppush programs I've written recently
will operate fine even if the system domain name isn't set, ypbind isn't
running and there are no magic '+' entries in any of the /etc files.
Now rpc.yppasswdd is the same way. The old yppasswdd would not work
like this because it depended on getpwent(3) and friends to look up
users: this will obviously only work if the system where yppasswdd is
running is configured as an NIS client. The new rpc.yppasswdd doesn't
use getpwent(3) at all: instead it searches through the master.passwd
map databases directly. This also makes it easier for it to handle
multiple domains.

- Allows the superuser on the NIS master server to change any user's
password without requiring password authentication. rpc.yppasswdd
creates a UNIX domain socket (/var/run/ypsock) which it monitors
using the same svc_run() loop used to handle incoming RPC requests.
It also clears all the permission bits for /var/run/ypsock; since
this socket is owned by root, this prevents anyone except root from
successfully connect()ing to it. (Using a UNIX domain socket also
prevents IP spoofing attacks.) By building code into passwd(1) and
chpass(1) to take advantage of this 'trusted' channel, the superuser
can use them to send private requests to rpc.yppasswdd.

- Allows the superuser on the NIS master to use chpass(1) to update _all_
of a user's master.passwd information. The UNIX domain access point
accepts a full master.passwd style structure (along with a domain
name and other information), which allows the superuser to update all
of a user's master.passwd information in the NIS master.passwd maps.
Normal users on NIS clients are still only allowed to change their full
name and shell information with chpass.

- Allows the superuser on the NIS master to _add_ records to the NIS
master.passwd maps using chpass(1). This feature is also switchable
with a command-line flag and is off by default.
H A Dyppasswdd_extern.h14062 Mon Feb 12 13:09:01 MST 1996 wpaul Import new rpc.yppasswdd. (Note: accompanying changes to passwd(1) and
chpass(1) are on the way too.) This version supports all the features
of the old one and adds several new ones:

- Supports real multi-domain operation (optional, can be turned
on with a command-line flag). This means you can actually have
several different domains all served from one NIS server and
allow users in any of the supported domains to change their passwords.
The old yppasswdd only allowed changing passwords in the domain
that was set as the system default domain name on the NIS master
server. The new one can change passwords in any domain by trying
to match the user information passed to it against all the passwd
maps it can find. This is something of a hack, but the yppasswd.x
protocol definiton does not allow for a domain to be passwd as an
argument to rpc.yppasswdd, so the server has no choice but to
grope around for a likely match. Since this method can fail if
the same user exists in two domains, this feature is off by default.
If the feature is turned on and the server becomes confused by
duplicate entries, it will abort the update.

- Does not require NIS client services to be available. NIS servers do
_NOT_ necessarily have to be configured as NIS clients in order to
function: the ypserv, ypxfr and yppush programs I've written recently
will operate fine even if the system domain name isn't set, ypbind isn't
running and there are no magic '+' entries in any of the /etc files.
Now rpc.yppasswdd is the same way. The old yppasswdd would not work
like this because it depended on getpwent(3) and friends to look up
users: this will obviously only work if the system where yppasswdd is
running is configured as an NIS client. The new rpc.yppasswdd doesn't
use getpwent(3) at all: instead it searches through the master.passwd
map databases directly. This also makes it easier for it to handle
multiple domains.

- Allows the superuser on the NIS master server to change any user's
password without requiring password authentication. rpc.yppasswdd
creates a UNIX domain socket (/var/run/ypsock) which it monitors
using the same svc_run() loop used to handle incoming RPC requests.
It also clears all the permission bits for /var/run/ypsock; since
this socket is owned by root, this prevents anyone except root from
successfully connect()ing to it. (Using a UNIX domain socket also
prevents IP spoofing attacks.) By building code into passwd(1) and
chpass(1) to take advantage of this 'trusted' channel, the superuser
can use them to send private requests to rpc.yppasswdd.

- Allows the superuser on the NIS master to use chpass(1) to update _all_
of a user's master.passwd information. The UNIX domain access point
accepts a full master.passwd style structure (along with a domain
name and other information), which allows the superuser to update all
of a user's master.passwd information in the NIS master.passwd maps.
Normal users on NIS clients are still only allowed to change their full
name and shell information with chpass.

- Allows the superuser on the NIS master to _add_ records to the NIS
master.passwd maps using chpass(1). This feature is also switchable
with a command-line flag and is off by default.
H A Dyppasswdd_main.c14062 Mon Feb 12 13:09:01 MST 1996 wpaul Import new rpc.yppasswdd. (Note: accompanying changes to passwd(1) and
chpass(1) are on the way too.) This version supports all the features
of the old one and adds several new ones:

- Supports real multi-domain operation (optional, can be turned
on with a command-line flag). This means you can actually have
several different domains all served from one NIS server and
allow users in any of the supported domains to change their passwords.
The old yppasswdd only allowed changing passwords in the domain
that was set as the system default domain name on the NIS master
server. The new one can change passwords in any domain by trying
to match the user information passed to it against all the passwd
maps it can find. This is something of a hack, but the yppasswd.x
protocol definiton does not allow for a domain to be passwd as an
argument to rpc.yppasswdd, so the server has no choice but to
grope around for a likely match. Since this method can fail if
the same user exists in two domains, this feature is off by default.
If the feature is turned on and the server becomes confused by
duplicate entries, it will abort the update.

- Does not require NIS client services to be available. NIS servers do
_NOT_ necessarily have to be configured as NIS clients in order to
function: the ypserv, ypxfr and yppush programs I've written recently
will operate fine even if the system domain name isn't set, ypbind isn't
running and there are no magic '+' entries in any of the /etc files.
Now rpc.yppasswdd is the same way. The old yppasswdd would not work
like this because it depended on getpwent(3) and friends to look up
users: this will obviously only work if the system where yppasswdd is
running is configured as an NIS client. The new rpc.yppasswdd doesn't
use getpwent(3) at all: instead it searches through the master.passwd
map databases directly. This also makes it easier for it to handle
multiple domains.

- Allows the superuser on the NIS master server to change any user's
password without requiring password authentication. rpc.yppasswdd
creates a UNIX domain socket (/var/run/ypsock) which it monitors
using the same svc_run() loop used to handle incoming RPC requests.
It also clears all the permission bits for /var/run/ypsock; since
this socket is owned by root, this prevents anyone except root from
successfully connect()ing to it. (Using a UNIX domain socket also
prevents IP spoofing attacks.) By building code into passwd(1) and
chpass(1) to take advantage of this 'trusted' channel, the superuser
can use them to send private requests to rpc.yppasswdd.

- Allows the superuser on the NIS master to use chpass(1) to update _all_
of a user's master.passwd information. The UNIX domain access point
accepts a full master.passwd style structure (along with a domain
name and other information), which allows the superuser to update all
of a user's master.passwd information in the NIS master.passwd maps.
Normal users on NIS clients are still only allowed to change their full
name and shell information with chpass.

- Allows the superuser on the NIS master to _add_ records to the NIS
master.passwd maps using chpass(1). This feature is also switchable
with a command-line flag and is off by default.
H A Dyppasswdd_server.c14062 Mon Feb 12 13:09:01 MST 1996 wpaul Import new rpc.yppasswdd. (Note: accompanying changes to passwd(1) and
chpass(1) are on the way too.) This version supports all the features
of the old one and adds several new ones:

- Supports real multi-domain operation (optional, can be turned
on with a command-line flag). This means you can actually have
several different domains all served from one NIS server and
allow users in any of the supported domains to change their passwords.
The old yppasswdd only allowed changing passwords in the domain
that was set as the system default domain name on the NIS master
server. The new one can change passwords in any domain by trying
to match the user information passed to it against all the passwd
maps it can find. This is something of a hack, but the yppasswd.x
protocol definiton does not allow for a domain to be passwd as an
argument to rpc.yppasswdd, so the server has no choice but to
grope around for a likely match. Since this method can fail if
the same user exists in two domains, this feature is off by default.
If the feature is turned on and the server becomes confused by
duplicate entries, it will abort the update.

- Does not require NIS client services to be available. NIS servers do
_NOT_ necessarily have to be configured as NIS clients in order to
function: the ypserv, ypxfr and yppush programs I've written recently
will operate fine even if the system domain name isn't set, ypbind isn't
running and there are no magic '+' entries in any of the /etc files.
Now rpc.yppasswdd is the same way. The old yppasswdd would not work
like this because it depended on getpwent(3) and friends to look up
users: this will obviously only work if the system where yppasswdd is
running is configured as an NIS client. The new rpc.yppasswdd doesn't
use getpwent(3) at all: instead it searches through the master.passwd
map databases directly. This also makes it easier for it to handle
multiple domains.

- Allows the superuser on the NIS master server to change any user's
password without requiring password authentication. rpc.yppasswdd
creates a UNIX domain socket (/var/run/ypsock) which it monitors
using the same svc_run() loop used to handle incoming RPC requests.
It also clears all the permission bits for /var/run/ypsock; since
this socket is owned by root, this prevents anyone except root from
successfully connect()ing to it. (Using a UNIX domain socket also
prevents IP spoofing attacks.) By building code into passwd(1) and
chpass(1) to take advantage of this 'trusted' channel, the superuser
can use them to send private requests to rpc.yppasswdd.

- Allows the superuser on the NIS master to use chpass(1) to update _all_
of a user's master.passwd information. The UNIX domain access point
accepts a full master.passwd style structure (along with a domain
name and other information), which allows the superuser to update all
of a user's master.passwd information in the NIS master.passwd maps.
Normal users on NIS clients are still only allowed to change their full
name and shell information with chpass.

- Allows the superuser on the NIS master to _add_ records to the NIS
master.passwd maps using chpass(1). This feature is also switchable
with a command-line flag and is off by default.

Completed in 93 milliseconds