Searched +hist:2 +hist:f8b5444 (Results 1 - 15 of 15) sorted by relevance

/linux-master/fs/isofs/
H A Dcompress.cdiff 5bb6ce3a Mon Aug 01 06:27:09 MDT 2022 Fabio M. De Francesco <fmdefrancesco@gmail.com> fs/isofs: replace kmap() with kmap_local_page()

The use of kmap() is being deprecated in favor of kmap_local_page().

There are two main problems with kmap(): (1) It comes with an overhead as
mapping space is restricted and protected by a global lock for
synchronization and (2) it also requires global TLB invalidation when the
kmap's pool wraps and it might block when the mapping space is fully
utilized until a slot becomes available.

With kmap_local_page() the mappings are per thread, CPU local, can take
page faults, and can be called from any context (including interrupts).
Tasks can be preempted and, when scheduled to run again, the kernel
virtual addresses are restored and still valid. It is faster than kmap()
in kernels with HIGHMEM enabled.

Since kmap_local_page() can be safely used in compress.c, it should be
called everywhere instead of kmap().

Therefore, replace kmap() with kmap_local_page() in compress.c. Where it
is needed, use memzero_page() instead of open coding kmap_local_page()
plus memset() to fill the pages with zeros. Delete the redundant
flush_dcache_page() in the two call sites of memzero_page().

Tested with mkisofs on a QEMU/KVM x86_32 VM, 6GB RAM, booting a kernel
with HIGHMEM64GB enabled.

Link: https://lkml.kernel.org/r/20220801122709.8164-1-fmdefrancesco@gmail.com
Signed-off-by: Fabio M. De Francesco <fmdefrancesco@gmail.com>
Suggested-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Pali Rohár <pali@kernel.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
diff a94da204 Thu May 23 16:04:02 MDT 2019 Thomas Gleixner <tglx@linutronix.de> treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 142

Based on 1 normalized pattern(s):

this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation inc 675 mass ave cambridge ma 02139 usa
either version 2 of the license or at your option any later version
incorporated herein by reference

extracted by the scancode license scanner the SPDX license identifier

GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 4 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190524100844.465381181@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
diff 2f8b5444 Tue Nov 01 07:40:13 MDT 2016 Christoph Hellwig <hch@lst.de> block,fs: untangle fs.h and blk_types.h

Nothing in fs.h should require blk_types.h to be included.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
diff 2f8b5444 Tue Nov 01 07:40:13 MDT 2016 Christoph Hellwig <hch@lst.de> block,fs: untangle fs.h and blk_types.h

Nothing in fs.h should require blk_types.h to be included.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
diff d97b07c5 Fri Aug 08 15:23:14 MDT 2014 Yinghai Lu <yinghai@kernel.org> initramfs: support initramfs that is bigger than 2GiB

Now with 64bit bzImage and kexec tools, we support ramdisk that size is
bigger than 2g, as we could put it above 4G.

Found compressed initramfs image could not be decompressed properly. It
turns out that image length is int during decompress detection, and it
will become < 0 when length is more than 2G. Furthermore, during
decompressing len as int is used for inbuf count, that has problem too.

Change len to long, that should be ok as on 32 bit platform long is
32bits.

Tested with following compressed initramfs image as root with kexec.
gzip, bzip2, xz, lzma, lzop, lz4.
run time for populate_rootfs():
size name Nehalem-EX Westmere-EX Ivybridge-EX
9034400256 root_img : 26s 24s 30s
3561095057 root_img.lz4 : 28s 27s 27s
3459554629 root_img.lzo : 29s 29s 28s
3219399480 root_img.gz : 64s 62s 49s
2251594592 root_img.xz : 262s 260s 183s
2226366598 root_img.lzma: 386s 376s 277s
2901482513 root_img.bz2 : 635s 599s

Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Rashika Kheria <rashika.kheria@gmail.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Kyungsik Lee <kyungsik.lee@lge.com>
Cc: P J P <ppandit@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: "Daniel M. Weeks" <dan@danweeks.net>
Cc: Alexandre Courbot <acourbot@nvidia.com>
Cc: Jan Beulich <JBeulich@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
diff d97b07c5 Fri Aug 08 15:23:14 MDT 2014 Yinghai Lu <yinghai@kernel.org> initramfs: support initramfs that is bigger than 2GiB

Now with 64bit bzImage and kexec tools, we support ramdisk that size is
bigger than 2g, as we could put it above 4G.

Found compressed initramfs image could not be decompressed properly. It
turns out that image length is int during decompress detection, and it
will become < 0 when length is more than 2G. Furthermore, during
decompressing len as int is used for inbuf count, that has problem too.

Change len to long, that should be ok as on 32 bit platform long is
32bits.

Tested with following compressed initramfs image as root with kexec.
gzip, bzip2, xz, lzma, lzop, lz4.
run time for populate_rootfs():
size name Nehalem-EX Westmere-EX Ivybridge-EX
9034400256 root_img : 26s 24s 30s
3561095057 root_img.lz4 : 28s 27s 27s
3459554629 root_img.lzo : 29s 29s 28s
3219399480 root_img.gz : 64s 62s 49s
2251594592 root_img.xz : 262s 260s 183s
2226366598 root_img.lzma: 386s 376s 277s
2901482513 root_img.bz2 : 635s 599s

Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Rashika Kheria <rashika.kheria@gmail.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Kyungsik Lee <kyungsik.lee@lge.com>
Cc: P J P <ppandit@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: "Daniel M. Weeks" <dan@danweeks.net>
Cc: Alexandre Courbot <acourbot@nvidia.com>
Cc: Jan Beulich <JBeulich@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
diff d97b07c5 Fri Aug 08 15:23:14 MDT 2014 Yinghai Lu <yinghai@kernel.org> initramfs: support initramfs that is bigger than 2GiB

Now with 64bit bzImage and kexec tools, we support ramdisk that size is
bigger than 2g, as we could put it above 4G.

Found compressed initramfs image could not be decompressed properly. It
turns out that image length is int during decompress detection, and it
will become < 0 when length is more than 2G. Furthermore, during
decompressing len as int is used for inbuf count, that has problem too.

Change len to long, that should be ok as on 32 bit platform long is
32bits.

Tested with following compressed initramfs image as root with kexec.
gzip, bzip2, xz, lzma, lzop, lz4.
run time for populate_rootfs():
size name Nehalem-EX Westmere-EX Ivybridge-EX
9034400256 root_img : 26s 24s 30s
3561095057 root_img.lz4 : 28s 27s 27s
3459554629 root_img.lzo : 29s 29s 28s
3219399480 root_img.gz : 64s 62s 49s
2251594592 root_img.xz : 262s 260s 183s
2226366598 root_img.lzma: 386s 376s 277s
2901482513 root_img.bz2 : 635s 599s

Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Rashika Kheria <rashika.kheria@gmail.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Kyungsik Lee <kyungsik.lee@lge.com>
Cc: P J P <ppandit@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: "Daniel M. Weeks" <dan@danweeks.net>
Cc: Alexandre Courbot <acourbot@nvidia.com>
Cc: Jan Beulich <JBeulich@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
/linux-master/fs/udf/
H A Ddir.cdiff 5ce34554 Sun May 21 18:54:34 MDT 2023 Bagas Sanjaya <bagasdotme@gmail.com> fs: udf: Replace GPL 2.0 boilerplate license notice with SPDX identifier

The notice refers to full GPL 2.0 text on now defunct MIT FTP site [1].
Replace it with appropriate SPDX license identifier.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Pali Rohár <pali@kernel.org>
Link: https://web.archive.org/web/20020809115410/ftp://prep.ai.mit.edu/pub/gnu/GPL [1]
Signed-off-by: Bagas Sanjaya <bagasdotme@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Message-Id: <20230522005434.22133-2-bagasdotme@gmail.com>
diff a48fc69f Thu Nov 04 08:22:35 MDT 2021 Jan Kara <jack@suse.cz> udf: Fix crash after seekdir

udf_readdir() didn't validate the directory position it should start
reading from. Thus when user uses lseek(2) on directory file descriptor
it can trick udf_readdir() into reading from a position in the middle of
directory entry which then upsets directory parsing code resulting in
errors or even possible kernel crashes. Similarly when the directory is
modified between two readdir calls, the directory position need not be
valid anymore.

Add code to validate current offset in the directory. This is actually
rather expensive for UDF as we need to read from the beginning of the
directory and parse all directory entries. This is because in UDF a
directory is just a stream of data containing directory entries and
since file names are fully under user's control we cannot depend on
detecting magic numbers and checksums in the header of directory entry
as a malicious attacker could fake them. We skip this step if we detect
that nothing changed since the last readdir call.

Reported-by: Nathan Wilson <nate@chickenbrittle.com>
CC: stable@vger.kernel.org
Signed-off-by: Jan Kara <jack@suse.cz>
diff 2f8b5444 Tue Nov 01 07:40:13 MDT 2016 Christoph Hellwig <hch@lst.de> block,fs: untangle fs.h and blk_types.h

Nothing in fs.h should require blk_types.h to be included.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
diff 2f8b5444 Tue Nov 01 07:40:13 MDT 2016 Christoph Hellwig <hch@lst.de> block,fs: untangle fs.h and blk_types.h

Nothing in fs.h should require blk_types.h to be included.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
diff 2f07a88b Wed May 05 07:15:39 MDT 2010 John Kacur <jkacur@redhat.com> udf: BKL ioctl pushdown

Convert udf_ioctl to an unlocked_ioctl and push the BKL down into it.

Signed-off-by: John Kacur <jkacur@redhat.com
Signed-off-by: Jan Kara <jack@suse.cz>
diff 934c5e60 Fri Feb 08 05:20:47 MST 2008 Marcin Slusarz <marcin.slusarz@gmail.com> udf: remove wrong prototype of udf_readdir

sparse generated:
fs/udf/dir.c:78:5: warning: symbol 'udf_readdir' was not declared. Should it be static?
there are 2 different prototypes of udf_readdir - remove them and move
code around to make it still compile

Signed-off-by: Marcin Slusarz <marcin.slusarz@gmail.com>
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
diff 48d6d8ff Fri Feb 08 05:20:44 MST 2008 Marcin Slusarz <marcin.slusarz@gmail.com> udf: cache struct udf_inode_info

cache UDF_I(struct inode *) return values when there are
at least 2 uses in one function

Signed-off-by: Marcin Slusarz <marcin.slusarz@gmail.com>
Acked-by: Jan Kara <jack@suse.cz>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
H A Ddirectory.cdiff 5ce34554 Sun May 21 18:54:34 MDT 2023 Bagas Sanjaya <bagasdotme@gmail.com> fs: udf: Replace GPL 2.0 boilerplate license notice with SPDX identifier

The notice refers to full GPL 2.0 text on now defunct MIT FTP site [1].
Replace it with appropriate SPDX license identifier.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Pali Rohár <pali@kernel.org>
Link: https://web.archive.org/web/20020809115410/ftp://prep.ai.mit.edu/pub/gnu/GPL [1]
Signed-off-by: Bagas Sanjaya <bagasdotme@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Message-Id: <20230522005434.22133-2-bagasdotme@gmail.com>
diff fcbf7637 Thu Oct 12 07:48:41 MDT 2017 Steve Magnani <steve.magnani@digidescorp.com> udf: Fix signed/unsigned format specifiers

Fix problems noted in compilion with -Wformat=2 -Wformat-signedness.
In particular, a mismatch between the signedness of a value and the
signedness of its format specifier can result in unsigned values being
printed as negative numbers, e.g.:

Partition (0 type 1511) starts at physical 460, block length -1779968542

...which occurs when mounting a large (> 1 TiB) UDF partition.

Changes since V1:
* Fixed additional issues noted in udf_bitmap_free_blocks(),
udf_get_fileident(), udf_show_options()

Signed-off-by: Steven J. Magnani <steve@digidescorp.com>
Signed-off-by: Jan Kara <jack@suse.cz>
diff 2f8b5444 Tue Nov 01 07:40:13 MDT 2016 Christoph Hellwig <hch@lst.de> block,fs: untangle fs.h and blk_types.h

Nothing in fs.h should require blk_types.h to be included.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
diff 2f8b5444 Tue Nov 01 07:40:13 MDT 2016 Christoph Hellwig <hch@lst.de> block,fs: untangle fs.h and blk_types.h

Nothing in fs.h should require blk_types.h to be included.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
diff 48d6d8ff Fri Feb 08 05:20:44 MST 2008 Marcin Slusarz <marcin.slusarz@gmail.com> udf: cache struct udf_inode_info

cache UDF_I(struct inode *) return values when there are
at least 2 uses in one function

Signed-off-by: Marcin Slusarz <marcin.slusarz@gmail.com>
Acked-by: Jan Kara <jack@suse.cz>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
H A Dinode.cdiff 5ce34554 Sun May 21 18:54:34 MDT 2023 Bagas Sanjaya <bagasdotme@gmail.com> fs: udf: Replace GPL 2.0 boilerplate license notice with SPDX identifier

The notice refers to full GPL 2.0 text on now defunct MIT FTP site [1].
Replace it with appropriate SPDX license identifier.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Pali Rohár <pali@kernel.org>
Link: https://web.archive.org/web/20020809115410/ftp://prep.ai.mit.edu/pub/gnu/GPL [1]
Signed-off-by: Bagas Sanjaya <bagasdotme@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Message-Id: <20230522005434.22133-2-bagasdotme@gmail.com>
diff 2d532616 Wed Jan 18 16:37:04 MST 2023 Jan Kara <jack@suse.cz> udf: Push i_data_sem locking into udf_extend_file()

Push i_data_sem locking into udf_extend_file(). It somewhat simplifies
the code around it.

Signed-off-by: Jan Kara <jack@suse.cz>
diff 63c9e47a Thu Jan 07 16:41:16 MST 2021 Steven J. Magnani <magnani@ieee.org> udf: fix silent AED tagLocation corruption

When extending a file, udf_do_extend_file() may enter following empty
indirect extent. At the end of udf_do_extend_file() we revert prev_epos
to point to the last written extent. However if we end up not adding any
further extent in udf_do_extend_file(), the reverting points prev_epos
into the header area of the AED and following updates of the extents
(in udf_update_extents()) will corrupt the header.

Make sure that we do not follow indirect extent if we are not going to
add any more extents so that returning back to the last written extent
works correctly.

Link: https://lore.kernel.org/r/20210107234116.6190-2-magnani@ieee.org
Signed-off-by: Steven J. Magnani <magnani@ieee.org>
Signed-off-by: Jan Kara <jack@suse.cz>
diff fa33cdbf Sun Jun 30 20:39:35 MDT 2019 Steven J. Magnani <steve.magnani@digidescorp.com> udf: Fix incorrect final NOT_ALLOCATED (hole) extent length

In some cases, using the 'truncate' command to extend a UDF file results
in a mismatch between the length of the file's extents (specifically, due
to incorrect length of the final NOT_ALLOCATED extent) and the information
(file) length. The discrepancy can prevent other operating systems
(i.e., Windows 10) from opening the file.

Two particular errors have been observed when extending a file:

1. The final extent is larger than it should be, having been rounded up
to a multiple of the block size.

B. The final extent is not shorter than it should be, due to not having
been updated when the file's information length was increased.

[JK: simplified udf_do_extend_final_block(), fixed up some types]

Fixes: 2c948b3f86e5 ("udf: Avoid IO in udf_clear_inode")
CC: stable@vger.kernel.org
Signed-off-by: Steven J. Magnani <steve@digidescorp.com>
Link: https://lore.kernel.org/r/1561948775-5878-1-git-send-email-steve@digidescorp.com
Signed-off-by: Jan Kara <jack@suse.cz>
diff 2b42be5e Mon Mar 11 08:27:02 MDT 2019 Jan Kara <jack@suse.cz> udf: Propagate errors from udf_truncate_extents()

Make udf_truncate_extents() properly propagate errors to its callers and
let udf_setsize() handle the error properly as well. This lets userspace
know in case there's some error when truncating blocks.

Signed-off-by: Jan Kara <jack@suse.cz>
diff fcbf7637 Thu Oct 12 07:48:41 MDT 2017 Steve Magnani <steve.magnani@digidescorp.com> udf: Fix signed/unsigned format specifiers

Fix problems noted in compilion with -Wformat=2 -Wformat-signedness.
In particular, a mismatch between the signedness of a value and the
signedness of its format specifier can result in unsigned values being
printed as negative numbers, e.g.:

Partition (0 type 1511) starts at physical 460, block length -1779968542

...which occurs when mounting a large (> 1 TiB) UDF partition.

Changes since V1:
* Fixed additional issues noted in udf_bitmap_free_blocks(),
udf_get_fileident(), udf_show_options()

Signed-off-by: Steven J. Magnani <steve@digidescorp.com>
Signed-off-by: Jan Kara <jack@suse.cz>
diff ad4d0532 Mon Jan 02 06:30:31 MST 2017 Jan Kara <jack@suse.cz> udf: Make stat on symlink report symlink length as st_size

UDF encodes symlinks in a more complex fashion and thus i_size of a
symlink does not match the lenght of a string returned by readlink(2).
This confuses some applications (see bug 191241) and may be considered a
violation of POSIX. Fix the problem by reading the link into page cache
in response to stat(2) call and report the length of the decoded path.

Signed-off-by: Jan Kara <jack@suse.cz>
diff ad4d0532 Mon Jan 02 06:30:31 MST 2017 Jan Kara <jack@suse.cz> udf: Make stat on symlink report symlink length as st_size

UDF encodes symlinks in a more complex fashion and thus i_size of a
symlink does not match the lenght of a string returned by readlink(2).
This confuses some applications (see bug 191241) and may be considered a
violation of POSIX. Fix the problem by reading the link into page cache
in response to stat(2) call and report the length of the decoded path.

Signed-off-by: Jan Kara <jack@suse.cz>
diff 2f8b5444 Tue Nov 01 07:40:13 MDT 2016 Christoph Hellwig <hch@lst.de> block,fs: untangle fs.h and blk_types.h

Nothing in fs.h should require blk_types.h to be included.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
diff 2f8b5444 Tue Nov 01 07:40:13 MDT 2016 Christoph Hellwig <hch@lst.de> block,fs: untangle fs.h and blk_types.h

Nothing in fs.h should require blk_types.h to be included.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
/linux-master/fs/squashfs/
H A Dblock.cdiff e994f5b6 Wed May 17 08:18:19 MDT 2023 Vincent Whitchurch <vincent.whitchurch@axis.com> squashfs: cache partial compressed blocks

Before commit 93e72b3c612adcaca1 ("squashfs: migrate from ll_rw_block
usage to BIO"), compressed blocks read by squashfs were cached in the page
cache, but that is not the case after that commit. That has lead to
squashfs having to re-read a lot of sectors from disk/flash.

For example, the first sectors of every metadata block need to be read
twice from the disk. Once partially to read the length, and a second time
to read the block itself. Also, in linear reads of large files, the last
sectors of one data block are re-read from disk when reading the next data
block, since the compressed blocks are of variable sizes and not aligned
to device blocks. This extra I/O results in a degrade in read performance
of, for example, ~16% in one scenario on my ARM platform using squashfs
with dm-verity and NAND.

Since the decompressed data is cached in the page cache or squashfs'
internal metadata and fragment caches, caching _all_ compressed pages
would lead to a lot of double caching and is undesirable. But make the
code cache any disk blocks which were only partially requested, since
these are the ones likely to include data which is needed by other file
system blocks. This restores read performance in my test scenario.

The compressed block caching is only applied when the disk block size is
equal to the page size, to avoid having to deal with caching sub-page
reads.

[akpm@linux-foundation.org: fs/squashfs/block.c needs linux/pagemap.h]
[vincent.whitchurch@axis.com: fix page update race]
Link: https://lkml.kernel.org/r/20230526-squashfs-cache-fixup-v1-1-d54a7fa23e7b@axis.com
[vincent.whitchurch@axis.com: fix page indices]
Link: https://lkml.kernel.org/r/20230526-squashfs-cache-fixup-v1-2-d54a7fa23e7b@axis.com
[akpm@linux-foundation.org: fix layout, per hch]
Link: https://lkml.kernel.org/r/20230510-squashfs-cache-v4-1-3bd394e1ee71@axis.com
Signed-off-by: Vincent Whitchurch <vincent.whitchurch@axis.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Phillip Lougher <phillip@squashfs.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
diff 80f78409 Tue Oct 18 21:09:29 MDT 2022 Xiaoming Ni <nixiaoming@huawei.com> squashfs: add the mount parameter theads=<single|multi|percpu>

Patch series 'squashfs: Add the mount parameter "threads="'.

Currently, Squashfs supports multiple decompressor parallel modes.
However, this mode can be configured only during kernel building and does
not support flexible selection during runtime.

In the current patch set, the mount parameter "threads=" is added to allow
users to select the parallel decompressor mode and configure the number of
decompressors when mounting a file system.

"threads=<single|multi|percpu|1|2|3|...>"
The upper limit is num_online_cpus() * 2.


This patch (of 2):

Squashfs supports three decompression concurrency modes:
Single-thread mode: concurrent reads are blocked and the memory
overhead is small.
Multi-thread mode/percpu mode: reduces concurrent read blocking but
increases memory overhead.

The corresponding schema must be fixed at compile time. During mounting,
the concurrent decompression mode cannot be adjusted based on file read
blocking.

The mount parameter theads=<single|multi|percpu> is added to select
the concurrent decompression mode of a single SquashFS file system
image.

Link: https://lkml.kernel.org/r/20221019030930.130456-1-nixiaoming@huawei.com
Link: https://lkml.kernel.org/r/20221019030930.130456-2-nixiaoming@huawei.com
Signed-off-by: Xiaoming Ni <nixiaoming@huawei.com>
Reviewed-by: Phillip Lougher <phillip@squashfs.org.uk>
Cc: Jianguo Chen <chenjianguo3@huawei.com>
Cc: Jubin Zhong <zhongjubin@huawei.com>
Cc: Zhang Yi <yi.zhang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
diff 80f78409 Tue Oct 18 21:09:29 MDT 2022 Xiaoming Ni <nixiaoming@huawei.com> squashfs: add the mount parameter theads=<single|multi|percpu>

Patch series 'squashfs: Add the mount parameter "threads="'.

Currently, Squashfs supports multiple decompressor parallel modes.
However, this mode can be configured only during kernel building and does
not support flexible selection during runtime.

In the current patch set, the mount parameter "threads=" is added to allow
users to select the parallel decompressor mode and configure the number of
decompressors when mounting a file system.

"threads=<single|multi|percpu|1|2|3|...>"
The upper limit is num_online_cpus() * 2.


This patch (of 2):

Squashfs supports three decompression concurrency modes:
Single-thread mode: concurrent reads are blocked and the memory
overhead is small.
Multi-thread mode/percpu mode: reduces concurrent read blocking but
increases memory overhead.

The corresponding schema must be fixed at compile time. During mounting,
the concurrent decompression mode cannot be adjusted based on file read
blocking.

The mount parameter theads=<single|multi|percpu> is added to select
the concurrent decompression mode of a single SquashFS file system
image.

Link: https://lkml.kernel.org/r/20221019030930.130456-1-nixiaoming@huawei.com
Link: https://lkml.kernel.org/r/20221019030930.130456-2-nixiaoming@huawei.com
Signed-off-by: Xiaoming Ni <nixiaoming@huawei.com>
Reviewed-by: Phillip Lougher <phillip@squashfs.org.uk>
Cc: Jianguo Chen <chenjianguo3@huawei.com>
Cc: Jubin Zhong <zhongjubin@huawei.com>
Cc: Zhang Yi <yi.zhang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
diff 80f78409 Tue Oct 18 21:09:29 MDT 2022 Xiaoming Ni <nixiaoming@huawei.com> squashfs: add the mount parameter theads=<single|multi|percpu>

Patch series 'squashfs: Add the mount parameter "threads="'.

Currently, Squashfs supports multiple decompressor parallel modes.
However, this mode can be configured only during kernel building and does
not support flexible selection during runtime.

In the current patch set, the mount parameter "threads=" is added to allow
users to select the parallel decompressor mode and configure the number of
decompressors when mounting a file system.

"threads=<single|multi|percpu|1|2|3|...>"
The upper limit is num_online_cpus() * 2.


This patch (of 2):

Squashfs supports three decompression concurrency modes:
Single-thread mode: concurrent reads are blocked and the memory
overhead is small.
Multi-thread mode/percpu mode: reduces concurrent read blocking but
increases memory overhead.

The corresponding schema must be fixed at compile time. During mounting,
the concurrent decompression mode cannot be adjusted based on file read
blocking.

The mount parameter theads=<single|multi|percpu> is added to select
the concurrent decompression mode of a single SquashFS file system
image.

Link: https://lkml.kernel.org/r/20221019030930.130456-1-nixiaoming@huawei.com
Link: https://lkml.kernel.org/r/20221019030930.130456-2-nixiaoming@huawei.com
Signed-off-by: Xiaoming Ni <nixiaoming@huawei.com>
Reviewed-by: Phillip Lougher <phillip@squashfs.org.uk>
Cc: Jianguo Chen <chenjianguo3@huawei.com>
Cc: Jubin Zhong <zhongjubin@huawei.com>
Cc: Zhang Yi <yi.zhang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
diff 80f78409 Tue Oct 18 21:09:29 MDT 2022 Xiaoming Ni <nixiaoming@huawei.com> squashfs: add the mount parameter theads=<single|multi|percpu>

Patch series 'squashfs: Add the mount parameter "threads="'.

Currently, Squashfs supports multiple decompressor parallel modes.
However, this mode can be configured only during kernel building and does
not support flexible selection during runtime.

In the current patch set, the mount parameter "threads=" is added to allow
users to select the parallel decompressor mode and configure the number of
decompressors when mounting a file system.

"threads=<single|multi|percpu|1|2|3|...>"
The upper limit is num_online_cpus() * 2.


This patch (of 2):

Squashfs supports three decompression concurrency modes:
Single-thread mode: concurrent reads are blocked and the memory
overhead is small.
Multi-thread mode/percpu mode: reduces concurrent read blocking but
increases memory overhead.

The corresponding schema must be fixed at compile time. During mounting,
the concurrent decompression mode cannot be adjusted based on file read
blocking.

The mount parameter theads=<single|multi|percpu> is added to select
the concurrent decompression mode of a single SquashFS file system
image.

Link: https://lkml.kernel.org/r/20221019030930.130456-1-nixiaoming@huawei.com
Link: https://lkml.kernel.org/r/20221019030930.130456-2-nixiaoming@huawei.com
Signed-off-by: Xiaoming Ni <nixiaoming@huawei.com>
Reviewed-by: Phillip Lougher <phillip@squashfs.org.uk>
Cc: Jianguo Chen <chenjianguo3@huawei.com>
Cc: Jubin Zhong <zhongjubin@huawei.com>
Cc: Zhang Yi <yi.zhang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
diff f268eedd Fri Jun 10 21:21:32 MDT 2022 Phillip Lougher <phillip@squashfs.org.uk> squashfs: extend "page actor" to handle missing pages

Patch series "Squashfs: handle missing pages decompressing into page
cache".

This patchset enables Squashfs to handle missing pages when directly
decompressing datablocks into the page cache.

Previously if the full set of pages needed was not available, Squashfs
would have to fall back to using an intermediate buffer (the older
method), which is slower, involving a memcopy, and it introduces
contention on a shared buffer.

The first patch extends the "page actor" code to handle missing pages.

The second patch updates Squashfs_readpage_block() to use the new
functionality, and removes the code that falls back to using an
intermediate buffer.

This patchset is independent of the readahead work, and it is standalone.
It can be merged on its own.

But the readahead patch for efficiency also needs this patch-set.


This patch (of 2):

This patch extends the "page actor" code to handle missing pages.

Previously if the full set of pages needed to decompress a Squashfs
datablock was unavailable, this would cause decompression to fail on the
missing pages.

In this case direct decompression into the page cache could not be
achieved and the code would fall back to using the older intermediate
buffer method.

With this patch, direct decompression into the page cache can be achieved
with missing pages.

For "multi-shot" decompressors (zlib, xz, zstd), the page actor will
allocate a temporary buffer which is passed to the decompressor, and then
freed by the page actor.

For "single shot" decompressors (lz4, lzo) which decompress into a
contiguous "bounce buffer", and which is then copied into the page cache,
it would be pointless to allocate a temporary buffer, memcpy into it, and
then free it. For these decompressors -ENOMEM is returned, which
signifies that the memcpy for that page should be skipped.

This also happens if the data block is uncompressed.

Link: https://lkml.kernel.org/r/20220611032133.5743-1-phillip@squashfs.org.uk
Link: https://lkml.kernel.org/r/20220611032133.5743-2-phillip@squashfs.org.uk
Signed-off-by: Phillip Lougher <phillip@squashfs.org.uk>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Hsin-Yi Wang <hsinyi@chromium.org>
Cc: Xiongwei Song <Xiongwei.Song@windriver.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
diff f268eedd Fri Jun 10 21:21:32 MDT 2022 Phillip Lougher <phillip@squashfs.org.uk> squashfs: extend "page actor" to handle missing pages

Patch series "Squashfs: handle missing pages decompressing into page
cache".

This patchset enables Squashfs to handle missing pages when directly
decompressing datablocks into the page cache.

Previously if the full set of pages needed was not available, Squashfs
would have to fall back to using an intermediate buffer (the older
method), which is slower, involving a memcopy, and it introduces
contention on a shared buffer.

The first patch extends the "page actor" code to handle missing pages.

The second patch updates Squashfs_readpage_block() to use the new
functionality, and removes the code that falls back to using an
intermediate buffer.

This patchset is independent of the readahead work, and it is standalone.
It can be merged on its own.

But the readahead patch for efficiency also needs this patch-set.


This patch (of 2):

This patch extends the "page actor" code to handle missing pages.

Previously if the full set of pages needed to decompress a Squashfs
datablock was unavailable, this would cause decompression to fail on the
missing pages.

In this case direct decompression into the page cache could not be
achieved and the code would fall back to using the older intermediate
buffer method.

With this patch, direct decompression into the page cache can be achieved
with missing pages.

For "multi-shot" decompressors (zlib, xz, zstd), the page actor will
allocate a temporary buffer which is passed to the decompressor, and then
freed by the page actor.

For "single shot" decompressors (lz4, lzo) which decompress into a
contiguous "bounce buffer", and which is then copied into the page cache,
it would be pointless to allocate a temporary buffer, memcpy into it, and
then free it. For these decompressors -ENOMEM is returned, which
signifies that the memcpy for that page should be skipped.

This also happens if the data block is uncompressed.

Link: https://lkml.kernel.org/r/20220611032133.5743-1-phillip@squashfs.org.uk
Link: https://lkml.kernel.org/r/20220611032133.5743-2-phillip@squashfs.org.uk
Signed-off-by: Phillip Lougher <phillip@squashfs.org.uk>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Hsin-Yi Wang <hsinyi@chromium.org>
Cc: Xiongwei Song <Xiongwei.Song@windriver.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
diff a8affc03 Wed Mar 10 16:01:37 MST 2021 Christoph Hellwig <hch@lst.de> block: rename BIO_MAX_PAGES to BIO_MAX_VECS

Ever since the addition of multipage bio_vecs BIO_MAX_PAGES has been
horribly confusingly misnamed. Rename it to BIO_MAX_VECS to stop
confusing users of the bio API.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Link: https://lore.kernel.org/r/20210311110137.1132391-2-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
diff e812cbbb Tue Feb 09 14:41:50 MST 2021 Phillip Lougher <phillip@squashfs.org.uk> squashfs: avoid out of bounds writes in decompressors

Patch series "Squashfs: fix BIO migration regression and add sanity checks".

Patch [1/4] fixes a regression introduced by the "migrate from
ll_rw_block usage to BIO" patch, which has produced a number of
Sysbot/Syzkaller reports.

Patches [2/4], [3/4], and [4/4] fix a number of filesystem corruption
issues which have produced Sysbot reports in the id, inode and xattr
lookup code.

Each patch has been tested against the Sysbot reproducers using the
given kernel configuration. They have the appropriate "Reported-by:"
lines added.

Additionally, all of the reproducer filesystems are indirectly fixed by
patch [4/4] due to the fact they all have xattr corruption which is now
detected there.

Additional testing with other configurations and architectures (32bit,
big endian), and normal filesystems has also been done to trap any
inadvertent regressions caused by the additional sanity checks.

This patch (of 4):

This is a regression introduced by the patch "migrate from ll_rw_block
usage to BIO".

Sysbot/Syskaller has reported a number of "out of bounds writes" and
"unable to handle kernel paging request in squashfs_decompress" errors
which have been identified as a regression introduced by the above
patch.

Specifically, the patch removed the following sanity check

if (length < 0 || length > output->length ||
(index + length) > msblk->bytes_used)

This check did two things:

1. It ensured any reads were not beyond the end of the filesystem

2. It ensured that the "length" field read from the filesystem
was within the expected maximum length. Without this any
corrupted values can over-run allocated buffers.

Link: https://lkml.kernel.org/r/20210204130249.4495-1-phillip@squashfs.org.uk
Link: https://lkml.kernel.org/r/20210204130249.4495-2-phillip@squashfs.org.uk
Fixes: 93e72b3c612adc ("squashfs: migrate from ll_rw_block usage to BIO")
Reported-by: syzbot+6fba78f99b9afd4b5634@syzkaller.appspotmail.com
Signed-off-by: Phillip Lougher <phillip@squashfs.org.uk>
Cc: Philippe Liard <pliard@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
diff e812cbbb Tue Feb 09 14:41:50 MST 2021 Phillip Lougher <phillip@squashfs.org.uk> squashfs: avoid out of bounds writes in decompressors

Patch series "Squashfs: fix BIO migration regression and add sanity checks".

Patch [1/4] fixes a regression introduced by the "migrate from
ll_rw_block usage to BIO" patch, which has produced a number of
Sysbot/Syzkaller reports.

Patches [2/4], [3/4], and [4/4] fix a number of filesystem corruption
issues which have produced Sysbot reports in the id, inode and xattr
lookup code.

Each patch has been tested against the Sysbot reproducers using the
given kernel configuration. They have the appropriate "Reported-by:"
lines added.

Additionally, all of the reproducer filesystems are indirectly fixed by
patch [4/4] due to the fact they all have xattr corruption which is now
detected there.

Additional testing with other configurations and architectures (32bit,
big endian), and normal filesystems has also been done to trap any
inadvertent regressions caused by the additional sanity checks.

This patch (of 4):

This is a regression introduced by the patch "migrate from ll_rw_block
usage to BIO".

Sysbot/Syskaller has reported a number of "out of bounds writes" and
"unable to handle kernel paging request in squashfs_decompress" errors
which have been identified as a regression introduced by the above
patch.

Specifically, the patch removed the following sanity check

if (length < 0 || length > output->length ||
(index + length) > msblk->bytes_used)

This check did two things:

1. It ensured any reads were not beyond the end of the filesystem

2. It ensured that the "length" field read from the filesystem
was within the expected maximum length. Without this any
corrupted values can over-run allocated buffers.

Link: https://lkml.kernel.org/r/20210204130249.4495-1-phillip@squashfs.org.uk
Link: https://lkml.kernel.org/r/20210204130249.4495-2-phillip@squashfs.org.uk
Fixes: 93e72b3c612adc ("squashfs: migrate from ll_rw_block usage to BIO")
Reported-by: syzbot+6fba78f99b9afd4b5634@syzkaller.appspotmail.com
Signed-off-by: Phillip Lougher <phillip@squashfs.org.uk>
Cc: Philippe Liard <pliard@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
diff e812cbbb Tue Feb 09 14:41:50 MST 2021 Phillip Lougher <phillip@squashfs.org.uk> squashfs: avoid out of bounds writes in decompressors

Patch series "Squashfs: fix BIO migration regression and add sanity checks".

Patch [1/4] fixes a regression introduced by the "migrate from
ll_rw_block usage to BIO" patch, which has produced a number of
Sysbot/Syzkaller reports.

Patches [2/4], [3/4], and [4/4] fix a number of filesystem corruption
issues which have produced Sysbot reports in the id, inode and xattr
lookup code.

Each patch has been tested against the Sysbot reproducers using the
given kernel configuration. They have the appropriate "Reported-by:"
lines added.

Additionally, all of the reproducer filesystems are indirectly fixed by
patch [4/4] due to the fact they all have xattr corruption which is now
detected there.

Additional testing with other configurations and architectures (32bit,
big endian), and normal filesystems has also been done to trap any
inadvertent regressions caused by the additional sanity checks.

This patch (of 4):

This is a regression introduced by the patch "migrate from ll_rw_block
usage to BIO".

Sysbot/Syskaller has reported a number of "out of bounds writes" and
"unable to handle kernel paging request in squashfs_decompress" errors
which have been identified as a regression introduced by the above
patch.

Specifically, the patch removed the following sanity check

if (length < 0 || length > output->length ||
(index + length) > msblk->bytes_used)

This check did two things:

1. It ensured any reads were not beyond the end of the filesystem

2. It ensured that the "length" field read from the filesystem
was within the expected maximum length. Without this any
corrupted values can over-run allocated buffers.

Link: https://lkml.kernel.org/r/20210204130249.4495-1-phillip@squashfs.org.uk
Link: https://lkml.kernel.org/r/20210204130249.4495-2-phillip@squashfs.org.uk
Fixes: 93e72b3c612adc ("squashfs: migrate from ll_rw_block usage to BIO")
Reported-by: syzbot+6fba78f99b9afd4b5634@syzkaller.appspotmail.com
Signed-off-by: Phillip Lougher <phillip@squashfs.org.uk>
Cc: Philippe Liard <pliard@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
/linux-master/fs/ocfs2/
H A Dbuffer_head_io.cdiff 328970de Thu May 23 16:04:05 MDT 2019 Thomas Gleixner <tglx@linutronix.de> treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 145

Based on 1 normalized pattern(s):

this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version this program is distributed in the
hope that it will be useful but without any warranty without even
the implied warranty of merchantability or fitness for a particular
purpose see the gnu general public license for more details you
should have received a copy of the gnu general public license along
with this program if not write to the free software foundation inc
59 temple place suite 330 boston ma 021110 1307 usa

extracted by the scancode license scanner the SPDX license identifier

GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 84 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190524100844.756442981@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
diff 234b69e3 Thu Sep 20 01:22:51 MDT 2018 Junxiao Bi <junxiao.bi@oracle.com> ocfs2: fix ocfs2 read block panic

While reading block, it is possible that io error return due to underlying
storage issue, in this case, BH_NeedsValidate was left in the buffer head.
Then when reading the very block next time, if it was already linked into
journal, that will trigger the following panic.

[203748.702517] kernel BUG at fs/ocfs2/buffer_head_io.c:342!
[203748.702533] invalid opcode: 0000 [#1] SMP
[203748.702561] Modules linked in: ocfs2 ocfs2_dlmfs ocfs2_stack_o2cb ocfs2_dlm ocfs2_nodemanager ocfs2_stackglue configfs sunrpc dm_switch dm_queue_length dm_multipath bonding be2iscsi iscsi_boot_sysfs bnx2i cnic uio cxgb4i iw_cxgb4 cxgb4 cxgb3i libcxgbi iw_cxgb3 cxgb3 mdio ib_iser rdma_cm ib_cm iw_cm ib_sa ib_mad ib_core ib_addr ipv6 iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi ipmi_devintf iTCO_wdt iTCO_vendor_support dcdbas ipmi_ssif i2c_core ipmi_si ipmi_msghandler acpi_pad pcspkr sb_edac edac_core lpc_ich mfd_core shpchp sg tg3 ptp pps_core ext4 jbd2 mbcache2 sr_mod cdrom sd_mod ahci libahci megaraid_sas wmi dm_mirror dm_region_hash dm_log dm_mod
[203748.703024] CPU: 7 PID: 38369 Comm: touch Not tainted 4.1.12-124.18.6.el6uek.x86_64 #2
[203748.703045] Hardware name: Dell Inc. PowerEdge R620/0PXXHP, BIOS 2.5.2 01/28/2015
[203748.703067] task: ffff880768139c00 ti: ffff88006ff48000 task.ti: ffff88006ff48000
[203748.703088] RIP: 0010:[<ffffffffa05e9f09>] [<ffffffffa05e9f09>] ocfs2_read_blocks+0x669/0x7f0 [ocfs2]
[203748.703130] RSP: 0018:ffff88006ff4b818 EFLAGS: 00010206
[203748.703389] RAX: 0000000008620029 RBX: ffff88006ff4b910 RCX: 0000000000000000
[203748.703885] RDX: 0000000000000001 RSI: 0000000000000000 RDI: 00000000023079fe
[203748.704382] RBP: ffff88006ff4b8d8 R08: 0000000000000000 R09: ffff8807578c25b0
[203748.704877] R10: 000000000f637376 R11: 000000003030322e R12: 0000000000000000
[203748.705373] R13: ffff88006ff4b910 R14: ffff880732fe38f0 R15: 0000000000000000
[203748.705871] FS: 00007f401992c700(0000) GS:ffff880bfebc0000(0000) knlGS:0000000000000000
[203748.706370] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[203748.706627] CR2: 00007f4019252440 CR3: 00000000a621e000 CR4: 0000000000060670
[203748.707124] Stack:
[203748.707371] ffff88006ff4b828 ffffffffa0609f52 ffff88006ff4b838 0000000000000001
[203748.707885] 0000000000000000 0000000000000000 ffff880bf67c3800 ffffffffa05eca00
[203748.708399] 00000000023079ff ffffffff81c58b80 0000000000000000 0000000000000000
[203748.708915] Call Trace:
[203748.709175] [<ffffffffa0609f52>] ? ocfs2_inode_cache_io_unlock+0x12/0x20 [ocfs2]
[203748.709680] [<ffffffffa05eca00>] ? ocfs2_empty_dir_filldir+0x80/0x80 [ocfs2]
[203748.710185] [<ffffffffa05ec0cb>] ocfs2_read_dir_block_direct+0x3b/0x200 [ocfs2]
[203748.710691] [<ffffffffa05f0fbf>] ocfs2_prepare_dx_dir_for_insert.isra.57+0x19f/0xf60 [ocfs2]
[203748.711204] [<ffffffffa065660f>] ? ocfs2_metadata_cache_io_unlock+0x1f/0x30 [ocfs2]
[203748.711716] [<ffffffffa05f4f3a>] ocfs2_prepare_dir_for_insert+0x13a/0x890 [ocfs2]
[203748.712227] [<ffffffffa05f442e>] ? ocfs2_check_dir_for_entry+0x8e/0x140 [ocfs2]
[203748.712737] [<ffffffffa061b2f2>] ocfs2_mknod+0x4b2/0x1370 [ocfs2]
[203748.713003] [<ffffffffa061c385>] ocfs2_create+0x65/0x170 [ocfs2]
[203748.713263] [<ffffffff8121714b>] vfs_create+0xdb/0x150
[203748.713518] [<ffffffff8121b225>] do_last+0x815/0x1210
[203748.713772] [<ffffffff812192e9>] ? path_init+0xb9/0x450
[203748.714123] [<ffffffff8121bca0>] path_openat+0x80/0x600
[203748.714378] [<ffffffff811bcd45>] ? handle_pte_fault+0xd15/0x1620
[203748.714634] [<ffffffff8121d7ba>] do_filp_open+0x3a/0xb0
[203748.714888] [<ffffffff8122a767>] ? __alloc_fd+0xa7/0x130
[203748.715143] [<ffffffff81209ffc>] do_sys_open+0x12c/0x220
[203748.715403] [<ffffffff81026ddb>] ? syscall_trace_enter_phase1+0x11b/0x180
[203748.715668] [<ffffffff816f0c9f>] ? system_call_after_swapgs+0xe9/0x190
[203748.715928] [<ffffffff8120a10e>] SyS_open+0x1e/0x20
[203748.716184] [<ffffffff816f0d5e>] system_call_fastpath+0x18/0xd7
[203748.716440] Code: 00 00 48 8b 7b 08 48 83 c3 10 45 89 f8 44 89 e1 44 89 f2 4c 89 ee e8 07 06 11 e1 48 8b 03 48 85 c0 75 df 8b 5d c8 e9 4d fa ff ff <0f> 0b 48 8b 7d a0 e8 dc c6 06 00 48 b8 00 00 00 00 00 00 00 10
[203748.717505] RIP [<ffffffffa05e9f09>] ocfs2_read_blocks+0x669/0x7f0 [ocfs2]
[203748.717775] RSP <ffff88006ff4b818>

Joesph ever reported a similar panic.
Link: https://oss.oracle.com/pipermail/ocfs2-devel/2013-May/008931.html

Link: http://lkml.kernel.org/r/20180912063207.29484-1-junxiao.bi@oracle.com
Signed-off-by: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Joseph Qi <jiangqi903@gmail.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Changwei Ge <ge.changwei@h3c.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
diff 234b69e3 Thu Sep 20 01:22:51 MDT 2018 Junxiao Bi <junxiao.bi@oracle.com> ocfs2: fix ocfs2 read block panic

While reading block, it is possible that io error return due to underlying
storage issue, in this case, BH_NeedsValidate was left in the buffer head.
Then when reading the very block next time, if it was already linked into
journal, that will trigger the following panic.

[203748.702517] kernel BUG at fs/ocfs2/buffer_head_io.c:342!
[203748.702533] invalid opcode: 0000 [#1] SMP
[203748.702561] Modules linked in: ocfs2 ocfs2_dlmfs ocfs2_stack_o2cb ocfs2_dlm ocfs2_nodemanager ocfs2_stackglue configfs sunrpc dm_switch dm_queue_length dm_multipath bonding be2iscsi iscsi_boot_sysfs bnx2i cnic uio cxgb4i iw_cxgb4 cxgb4 cxgb3i libcxgbi iw_cxgb3 cxgb3 mdio ib_iser rdma_cm ib_cm iw_cm ib_sa ib_mad ib_core ib_addr ipv6 iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi ipmi_devintf iTCO_wdt iTCO_vendor_support dcdbas ipmi_ssif i2c_core ipmi_si ipmi_msghandler acpi_pad pcspkr sb_edac edac_core lpc_ich mfd_core shpchp sg tg3 ptp pps_core ext4 jbd2 mbcache2 sr_mod cdrom sd_mod ahci libahci megaraid_sas wmi dm_mirror dm_region_hash dm_log dm_mod
[203748.703024] CPU: 7 PID: 38369 Comm: touch Not tainted 4.1.12-124.18.6.el6uek.x86_64 #2
[203748.703045] Hardware name: Dell Inc. PowerEdge R620/0PXXHP, BIOS 2.5.2 01/28/2015
[203748.703067] task: ffff880768139c00 ti: ffff88006ff48000 task.ti: ffff88006ff48000
[203748.703088] RIP: 0010:[<ffffffffa05e9f09>] [<ffffffffa05e9f09>] ocfs2_read_blocks+0x669/0x7f0 [ocfs2]
[203748.703130] RSP: 0018:ffff88006ff4b818 EFLAGS: 00010206
[203748.703389] RAX: 0000000008620029 RBX: ffff88006ff4b910 RCX: 0000000000000000
[203748.703885] RDX: 0000000000000001 RSI: 0000000000000000 RDI: 00000000023079fe
[203748.704382] RBP: ffff88006ff4b8d8 R08: 0000000000000000 R09: ffff8807578c25b0
[203748.704877] R10: 000000000f637376 R11: 000000003030322e R12: 0000000000000000
[203748.705373] R13: ffff88006ff4b910 R14: ffff880732fe38f0 R15: 0000000000000000
[203748.705871] FS: 00007f401992c700(0000) GS:ffff880bfebc0000(0000) knlGS:0000000000000000
[203748.706370] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[203748.706627] CR2: 00007f4019252440 CR3: 00000000a621e000 CR4: 0000000000060670
[203748.707124] Stack:
[203748.707371] ffff88006ff4b828 ffffffffa0609f52 ffff88006ff4b838 0000000000000001
[203748.707885] 0000000000000000 0000000000000000 ffff880bf67c3800 ffffffffa05eca00
[203748.708399] 00000000023079ff ffffffff81c58b80 0000000000000000 0000000000000000
[203748.708915] Call Trace:
[203748.709175] [<ffffffffa0609f52>] ? ocfs2_inode_cache_io_unlock+0x12/0x20 [ocfs2]
[203748.709680] [<ffffffffa05eca00>] ? ocfs2_empty_dir_filldir+0x80/0x80 [ocfs2]
[203748.710185] [<ffffffffa05ec0cb>] ocfs2_read_dir_block_direct+0x3b/0x200 [ocfs2]
[203748.710691] [<ffffffffa05f0fbf>] ocfs2_prepare_dx_dir_for_insert.isra.57+0x19f/0xf60 [ocfs2]
[203748.711204] [<ffffffffa065660f>] ? ocfs2_metadata_cache_io_unlock+0x1f/0x30 [ocfs2]
[203748.711716] [<ffffffffa05f4f3a>] ocfs2_prepare_dir_for_insert+0x13a/0x890 [ocfs2]
[203748.712227] [<ffffffffa05f442e>] ? ocfs2_check_dir_for_entry+0x8e/0x140 [ocfs2]
[203748.712737] [<ffffffffa061b2f2>] ocfs2_mknod+0x4b2/0x1370 [ocfs2]
[203748.713003] [<ffffffffa061c385>] ocfs2_create+0x65/0x170 [ocfs2]
[203748.713263] [<ffffffff8121714b>] vfs_create+0xdb/0x150
[203748.713518] [<ffffffff8121b225>] do_last+0x815/0x1210
[203748.713772] [<ffffffff812192e9>] ? path_init+0xb9/0x450
[203748.714123] [<ffffffff8121bca0>] path_openat+0x80/0x600
[203748.714378] [<ffffffff811bcd45>] ? handle_pte_fault+0xd15/0x1620
[203748.714634] [<ffffffff8121d7ba>] do_filp_open+0x3a/0xb0
[203748.714888] [<ffffffff8122a767>] ? __alloc_fd+0xa7/0x130
[203748.715143] [<ffffffff81209ffc>] do_sys_open+0x12c/0x220
[203748.715403] [<ffffffff81026ddb>] ? syscall_trace_enter_phase1+0x11b/0x180
[203748.715668] [<ffffffff816f0c9f>] ? system_call_after_swapgs+0xe9/0x190
[203748.715928] [<ffffffff8120a10e>] SyS_open+0x1e/0x20
[203748.716184] [<ffffffff816f0d5e>] system_call_fastpath+0x18/0xd7
[203748.716440] Code: 00 00 48 8b 7b 08 48 83 c3 10 45 89 f8 44 89 e1 44 89 f2 4c 89 ee e8 07 06 11 e1 48 8b 03 48 85 c0 75 df 8b 5d c8 e9 4d fa ff ff <0f> 0b 48 8b 7d a0 e8 dc c6 06 00 48 b8 00 00 00 00 00 00 00 10
[203748.717505] RIP [<ffffffffa05e9f09>] ocfs2_read_blocks+0x669/0x7f0 [ocfs2]
[203748.717775] RSP <ffff88006ff4b818>

Joesph ever reported a similar panic.
Link: https://oss.oracle.com/pipermail/ocfs2-devel/2013-May/008931.html

Link: http://lkml.kernel.org/r/20180912063207.29484-1-junxiao.bi@oracle.com
Signed-off-by: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Joseph Qi <jiangqi903@gmail.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Changwei Ge <ge.changwei@h3c.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
diff 2f8b5444 Tue Nov 01 07:40:13 MDT 2016 Christoph Hellwig <hch@lst.de> block,fs: untangle fs.h and blk_types.h

Nothing in fs.h should require blk_types.h to be included.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
diff 2f8b5444 Tue Nov 01 07:40:13 MDT 2016 Christoph Hellwig <hch@lst.de> block,fs: untangle fs.h and blk_types.h

Nothing in fs.h should require blk_types.h to be included.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
diff 7186ee06 Fri Jun 24 15:50:13 MDT 2016 Gang He <ghe@suse.com> ocfs2: disable BUG assertions in reading blocks

According to some high-load testing, these two BUG assertions were
encountered, this led system panic. Actually, there were some
discussions about removing these two BUG() assertions, it would not
bring any side effect.

Then, I did the the following changes,

1) use the existing macro CATCH_BH_JBD_RACES to wrap BUG() in the
ocfs2_read_blocks_sync function like before.

2) disable the macro CATCH_BH_JBD_RACES in Makefile by default.

Link: http://lkml.kernel.org/r/1466574294-26863-1-git-send-email-ghe@suse.com
Signed-off-by: Gang He <ghe@suse.com>
Cc: Mark Fasheh <mfasheh@suse.de>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Joseph Qi <joseph.qi@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
diff 2a222ca9 Sun Jun 05 13:31:43 MDT 2016 Mike Christie <mchristi@redhat.com> fs: have submit_bh users pass in op and flags separately

This has submit_bh users pass in the operation and flags separately,
so submit_bh_wbc can setup the bio op and bi_rw flags on the bio that
is submitted.

Signed-off-by: Mike Christie <mchristi@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
diff c1e8d35e Mon Mar 07 01:43:21 MST 2011 Tao Ma <boyu.mt@taobao.com> ocfs2: Remove EXIT from masklog.

mlog_exit is used to record the exit status of a function.
But because it is added in so many functions, if we enable it,
the system logs get filled up quickly and cause too much I/O.
So actually no one can open it for a production system or even
for a test.

This patch just try to remove it or change it. So:
1. if all the error paths already use mlog_errno, it is just removed.
Otherwise, it will be replaced by mlog_errno.
2. if it is used to print some return value, it is replaced with
mlog(0,...).
mlog_exit_ptr is changed to mlog(0.
All those mlog(0,...) will be replaced with trace events later.

Signed-off-by: Tao Ma <boyu.mt@taobao.com>
diff 5a0e3ad6 Wed Mar 24 02:04:11 MDT 2010 Tejun Heo <tj@kernel.org> include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h

percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.

2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).

* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
diff 5a0e3ad6 Wed Mar 24 02:04:11 MDT 2010 Tejun Heo <tj@kernel.org> include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h

percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.

2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).

* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
/linux-master/fs/ufs/
H A Dballoc.cdiff 1751e8a6 Mon Nov 27 14:05:09 MST 2017 Linus Torvalds <torvalds@linux-foundation.org> Rename superblock flags (MS_xyz -> SB_xyz)

This is a pure automated search-and-replace of the internal kernel
superblock flags.

The s_flags are now called SB_*, with the names and the values for the
moment mirroring the MS_* flags that they're equivalent to.

Note how the MS_xyz flags are the ones passed to the mount system call,
while the SB_xyz flags are what we then use in sb->s_flags.

The script to do this was:

# places to look in; re security/*: it generally should *not* be
# touched (that stuff parses mount(2) arguments directly), but
# there are two places where we really deal with superblock flags.
FILES="drivers/mtd drivers/staging/lustre fs ipc mm \
include/linux/fs.h include/uapi/linux/bfs_fs.h \
security/apparmor/apparmorfs.c security/apparmor/include/lib.h"
# the list of MS_... constants
SYMS="RDONLY NOSUID NODEV NOEXEC SYNCHRONOUS REMOUNT MANDLOCK \
DIRSYNC NOATIME NODIRATIME BIND MOVE REC VERBOSE SILENT \
POSIXACL UNBINDABLE PRIVATE SLAVE SHARED RELATIME KERNMOUNT \
I_VERSION STRICTATIME LAZYTIME SUBMOUNT NOREMOTELOCK NOSEC BORN \
ACTIVE NOUSER"

SED_PROG=
for i in $SYMS; do SED_PROG="$SED_PROG -e s/MS_$i/SB_$i/g"; done

# we want files that contain at least one of MS_...,
# with fs/namespace.c and fs/pnode.c excluded.
L=$(for i in $SYMS; do git grep -w -l MS_$i $FILES; done| sort|uniq|grep -v '^fs/namespace.c'|grep -v '^fs/pnode.c')

for f in $L; do sed -i $f $SED_PROG; done

Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
diff b2441318 Wed Nov 01 08:07:57 MDT 2017 Greg Kroah-Hartman <gregkh@linuxfoundation.org> License cleanup: add SPDX GPL-2.0 license identifier to files with no license

Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.

For non */uapi/* files that summary was:

SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139

and resulted in the first patch in this series.

If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:

SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930

and resulted in the second patch in this series.

- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:

SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1

and that resulted in the third patch in this series.

- when the two scanners agreed on the detected license(s), that became
the concluded license(s).

- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.

- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).

- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.

- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct

This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
diff b2441318 Wed Nov 01 08:07:57 MDT 2017 Greg Kroah-Hartman <gregkh@linuxfoundation.org> License cleanup: add SPDX GPL-2.0 license identifier to files with no license

Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.

For non */uapi/* files that summary was:

SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139

and resulted in the first patch in this series.

If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:

SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930

and resulted in the second patch in this series.

- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:

SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1

and that resulted in the third patch in this series.

- when the two scanners agreed on the detected license(s), that became
the concluded license(s).

- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.

- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).

- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.

- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct

This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
diff 2f8b5444 Tue Nov 01 07:40:13 MDT 2016 Christoph Hellwig <hch@lst.de> block,fs: untangle fs.h and blk_types.h

Nothing in fs.h should require blk_types.h to be included.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
diff 2f8b5444 Tue Nov 01 07:40:13 MDT 2016 Christoph Hellwig <hch@lst.de> block,fs: untangle fs.h and blk_types.h

Nothing in fs.h should require blk_types.h to be included.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
diff 0244756e Fri Jun 06 15:38:34 MDT 2014 Fabian Frederick <fabf@skynet.be> ufs: sb mutex merge + mutex_destroy

Commit 788257d6101d ("ufs: remove the BKL") replaced BKL with mutex
protection using functions lock_ufs, unlock_ufs and struct mutex 'mutex'
in sb_info.

Commit b6963327e052 ("ufs: drop lock/unlock super") removed lock/unlock
super and added struct mutex 's_lock' in sb_info.

Those 2 mutexes are generally locked/unlocked at the same time except in
allocation (balloc, ialloc).

This patch merges the 2 mutexes and propagates first commit solution.
It also adds mutex destruction before kfree during ufs_fill_super
failure and ufs_put_super.

[akpm@linux-foundation.org: avoid ifdefs, return -EROFS not -EINVAL]
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Cc: Evgeniy Dushistov <dushistov@mail.ru>
Cc: "Chen, Jet" <jet.chen@intel.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
diff 0244756e Fri Jun 06 15:38:34 MDT 2014 Fabian Frederick <fabf@skynet.be> ufs: sb mutex merge + mutex_destroy

Commit 788257d6101d ("ufs: remove the BKL") replaced BKL with mutex
protection using functions lock_ufs, unlock_ufs and struct mutex 'mutex'
in sb_info.

Commit b6963327e052 ("ufs: drop lock/unlock super") removed lock/unlock
super and added struct mutex 's_lock' in sb_info.

Those 2 mutexes are generally locked/unlocked at the same time except in
allocation (balloc, ialloc).

This patch merges the 2 mutexes and propagates first commit solution.
It also adds mutex destruction before kfree during ufs_fill_super
failure and ufs_put_super.

[akpm@linux-foundation.org: avoid ifdefs, return -EROFS not -EINVAL]
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Cc: Evgeniy Dushistov <dushistov@mail.ru>
Cc: "Chen, Jet" <jet.chen@intel.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
diff 9df13039 Wed Mar 19 18:01:05 MDT 2008 Andrew Morton <akpm@linux-foundation.org> fs/ufs/balloc.c: fix sparc64 printk warning

fs/ufs/balloc.c: In function `ufs_change_blocknr':
fs/ufs/balloc.c:317: warning: long long unsigned int format, long unsigned int arg (arg 2)
fs/ufs/balloc.c:317: warning: long long unsigned int format, long unsigned int arg (arg 3)

sector_t is u64 and we don't know what type the architecture uses to implement
u64.

Cc: Evgeniy Dushistov <dushistov@mail.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
diff d63b7090 Fri Jan 05 17:37:04 MST 2007 Evgeniy Dushistov <dushistov@mail.ru> [PATCH] fix garbage instead of zeroes in UFS

Looks like this is the problem, which point Al Viro some time ago:

ufs's get_block callback allocates 16k of disk at a time, and links that
entire 16k into the file's metadata. But because get_block is called for only
a single buffer_head (a 2k buffer_head in this case?) we are only able to tell
the VFS that this 2k is buffer_new().

So when ufs_getfrag_block() is later called to map some more data in the file,
and when that data resides within the remaining 14k of this fragment,
ufs_getfrag_block() will incorrectly return a !buffer_new() buffer_head.

I don't see _right_ way to do nullification of whole block, if use inode
page cache, some pages may be outside of inode limits (inode size), and
will be lost; if use blockdev page cache it is possible to zero real data,
if later inode page cache will be used.

The simpliest way, as can I see usage of block device page cache, but not only
mark dirty, but also sync it during "nullification". I use my simple tests
collection, which I used for check that create,open,write,read,close works on
ufs, and I see that this patch makes ufs code 18% slower then before.

Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
diff d63b7090 Fri Jan 05 17:37:04 MST 2007 Evgeniy Dushistov <dushistov@mail.ru> [PATCH] fix garbage instead of zeroes in UFS

Looks like this is the problem, which point Al Viro some time ago:

ufs's get_block callback allocates 16k of disk at a time, and links that
entire 16k into the file's metadata. But because get_block is called for only
a single buffer_head (a 2k buffer_head in this case?) we are only able to tell
the VFS that this 2k is buffer_new().

So when ufs_getfrag_block() is later called to map some more data in the file,
and when that data resides within the remaining 14k of this fragment,
ufs_getfrag_block() will incorrectly return a !buffer_new() buffer_head.

I don't see _right_ way to do nullification of whole block, if use inode
page cache, some pages may be outside of inode limits (inode size), and
will be lost; if use blockdev page cache it is possible to zero real data,
if later inode page cache will be used.

The simpliest way, as can I see usage of block device page cache, but not only
mark dirty, but also sync it during "nullification". I use my simple tests
collection, which I used for check that create,open,write,read,close works on
ufs, and I see that this patch makes ufs code 18% slower then before.

Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
/linux-master/fs/reiserfs/
H A Dstree.cdiff 2f8b5444 Tue Nov 01 07:40:13 MDT 2016 Christoph Hellwig <hch@lst.de> block,fs: untangle fs.h and blk_types.h

Nothing in fs.h should require blk_types.h to be included.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
diff 2f8b5444 Tue Nov 01 07:40:13 MDT 2016 Christoph Hellwig <hch@lst.de> block,fs: untangle fs.h and blk_types.h

Nothing in fs.h should require blk_types.h to be included.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
diff 2ac62695 Wed May 13 18:56:39 MDT 2009 Frederic Weisbecker <fweisbec@gmail.com> kill-the-bkl/reiserfs: unlock only when needed in search_by_key

search_by_key() is the site which most requires the lock.
This is mostly because it is a very central function and also
because it releases/reaqcuires the write lock at least once each
time it is called.

Such release/reacquire creates a lot of contention in this place and
also opens more the window which let another thread changing the tree.
When it happens, the current path searching over the tree must be
retried from the beggining (the root) which is a wasteful and
time consuming recovery.

This patch factorizes two release/reacquire sequences:

- reading leaf nodes blocks
- reading current block

The latter immediately follows the former.

The whole sequence is safe as a single unlocked section because
we check just after if the tree has changed during these operations.

Cc: Jeff Mahoney <jeffm@suse.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Alexander Beregalov <a.beregalov@gmail.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
diff c06a018f Wed Nov 14 17:59:54 MST 2007 Fengguang Wu <wfg@mail.ustc.edu.cn> reiserfs: don't drop PG_dirty when releasing sub-page-sized dirty file

This is not a new problem in 2.6.23-git17. 2.6.22/2.6.23 is buggy in the
same way.

Reiserfs could accumulate dirty sub-page-size files until umount time.
They cannot be synced to disk by pdflush routines or explicit `sync'
commands. Only `umount' can do the trick.

The direct cause is: the dirty page's PG_dirty is wrongly _cleared_.
Call trace:
[<ffffffff8027e920>] cancel_dirty_page+0xd0/0xf0
[<ffffffff8816d470>] :reiserfs:reiserfs_cut_from_item+0x660/0x710
[<ffffffff8816d791>] :reiserfs:reiserfs_do_truncate+0x271/0x530
[<ffffffff8815872d>] :reiserfs:reiserfs_truncate_file+0xfd/0x3b0
[<ffffffff8815d3d0>] :reiserfs:reiserfs_file_release+0x1e0/0x340
[<ffffffff802a187c>] __fput+0xcc/0x1b0
[<ffffffff802a1ba6>] fput+0x16/0x20
[<ffffffff8029e676>] filp_close+0x56/0x90
[<ffffffff8029fe0d>] sys_close+0xad/0x110
[<ffffffff8020c41e>] system_call+0x7e/0x83

Fix the bug by removing the cancel_dirty_page() call. Tests show that
it causes no bad behaviors on various write sizes.

=== for the patient ===
Here are more detailed demonstrations of the problem.

1) the page has both PG_dirty(D)/PAGECACHE_TAG_DIRTY(d) after being written to;
and then only PAGECACHE_TAG_DIRTY(d) remains after the file is closed.

------------------------------ screen 0 ------------------------------
[T0] root /home/wfg# cat > /test/tiny
[T1] hi
[T2] root /home/wfg#

------------------------------ screen 1 ------------------------------
[T1] root /home/wfg# echo /test/tiny > /proc/filecache
[T1] root /home/wfg# cat /proc/filecache
# file /test/tiny
# flags R:referenced A:active M:mmap U:uptodate D:dirty W:writeback O:owner B:buffer d:dirty w:writeback
# idx len state refcnt
0 1 ___UD__Bd_ 2
[T2] root /home/wfg# cat /proc/filecache
# file /test/tiny
# flags R:referenced A:active M:mmap U:uptodate D:dirty W:writeback O:owner B:buffer d:dirty w:writeback
# idx len state refcnt
0 1 ___U___Bd_ 2

2) note the non-zero 'cancelled_write_bytes' after /tmp/hi is copied.

------------------------------ screen 0 ------------------------------
[T0] root /home/wfg# echo hi > /tmp/hi
[T1] root /home/wfg# cp /tmp/hi /dev/stdin /test
[T2] hi
[T3] root /home/wfg#

------------------------------ screen 1 ------------------------------
[T1] root /proc/4397# cd /proc/`pidof cp`
[T1] root /proc/4713# cat io
rchar: 8396
wchar: 3
syscr: 20
syscw: 1
read_bytes: 0
write_bytes: 20480
cancelled_write_bytes: 4096
[T2] root /proc/4713# cat io
rchar: 8399
wchar: 6
syscr: 21
syscw: 2
read_bytes: 0
write_bytes: 24576
cancelled_write_bytes: 4096

//Question: the 'write_bytes' is a bit more than expected ;-)

Tested-by: Maxim Levitsky <maximlevitsky@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Reviewed-by: Chris Mason <chris.mason@oracle.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
diff c06a018f Wed Nov 14 17:59:54 MST 2007 Fengguang Wu <wfg@mail.ustc.edu.cn> reiserfs: don't drop PG_dirty when releasing sub-page-sized dirty file

This is not a new problem in 2.6.23-git17. 2.6.22/2.6.23 is buggy in the
same way.

Reiserfs could accumulate dirty sub-page-size files until umount time.
They cannot be synced to disk by pdflush routines or explicit `sync'
commands. Only `umount' can do the trick.

The direct cause is: the dirty page's PG_dirty is wrongly _cleared_.
Call trace:
[<ffffffff8027e920>] cancel_dirty_page+0xd0/0xf0
[<ffffffff8816d470>] :reiserfs:reiserfs_cut_from_item+0x660/0x710
[<ffffffff8816d791>] :reiserfs:reiserfs_do_truncate+0x271/0x530
[<ffffffff8815872d>] :reiserfs:reiserfs_truncate_file+0xfd/0x3b0
[<ffffffff8815d3d0>] :reiserfs:reiserfs_file_release+0x1e0/0x340
[<ffffffff802a187c>] __fput+0xcc/0x1b0
[<ffffffff802a1ba6>] fput+0x16/0x20
[<ffffffff8029e676>] filp_close+0x56/0x90
[<ffffffff8029fe0d>] sys_close+0xad/0x110
[<ffffffff8020c41e>] system_call+0x7e/0x83

Fix the bug by removing the cancel_dirty_page() call. Tests show that
it causes no bad behaviors on various write sizes.

=== for the patient ===
Here are more detailed demonstrations of the problem.

1) the page has both PG_dirty(D)/PAGECACHE_TAG_DIRTY(d) after being written to;
and then only PAGECACHE_TAG_DIRTY(d) remains after the file is closed.

------------------------------ screen 0 ------------------------------
[T0] root /home/wfg# cat > /test/tiny
[T1] hi
[T2] root /home/wfg#

------------------------------ screen 1 ------------------------------
[T1] root /home/wfg# echo /test/tiny > /proc/filecache
[T1] root /home/wfg# cat /proc/filecache
# file /test/tiny
# flags R:referenced A:active M:mmap U:uptodate D:dirty W:writeback O:owner B:buffer d:dirty w:writeback
# idx len state refcnt
0 1 ___UD__Bd_ 2
[T2] root /home/wfg# cat /proc/filecache
# file /test/tiny
# flags R:referenced A:active M:mmap U:uptodate D:dirty W:writeback O:owner B:buffer d:dirty w:writeback
# idx len state refcnt
0 1 ___U___Bd_ 2

2) note the non-zero 'cancelled_write_bytes' after /tmp/hi is copied.

------------------------------ screen 0 ------------------------------
[T0] root /home/wfg# echo hi > /tmp/hi
[T1] root /home/wfg# cp /tmp/hi /dev/stdin /test
[T2] hi
[T3] root /home/wfg#

------------------------------ screen 1 ------------------------------
[T1] root /proc/4397# cd /proc/`pidof cp`
[T1] root /proc/4713# cat io
rchar: 8396
wchar: 3
syscr: 20
syscw: 1
read_bytes: 0
write_bytes: 20480
cancelled_write_bytes: 4096
[T2] root /proc/4713# cat io
rchar: 8399
wchar: 6
syscr: 21
syscw: 2
read_bytes: 0
write_bytes: 24576
cancelled_write_bytes: 4096

//Question: the 'write_bytes' is a bit more than expected ;-)

Tested-by: Maxim Levitsky <maximlevitsky@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Reviewed-by: Chris Mason <chris.mason@oracle.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
diff c06a018f Wed Nov 14 17:59:54 MST 2007 Fengguang Wu <wfg@mail.ustc.edu.cn> reiserfs: don't drop PG_dirty when releasing sub-page-sized dirty file

This is not a new problem in 2.6.23-git17. 2.6.22/2.6.23 is buggy in the
same way.

Reiserfs could accumulate dirty sub-page-size files until umount time.
They cannot be synced to disk by pdflush routines or explicit `sync'
commands. Only `umount' can do the trick.

The direct cause is: the dirty page's PG_dirty is wrongly _cleared_.
Call trace:
[<ffffffff8027e920>] cancel_dirty_page+0xd0/0xf0
[<ffffffff8816d470>] :reiserfs:reiserfs_cut_from_item+0x660/0x710
[<ffffffff8816d791>] :reiserfs:reiserfs_do_truncate+0x271/0x530
[<ffffffff8815872d>] :reiserfs:reiserfs_truncate_file+0xfd/0x3b0
[<ffffffff8815d3d0>] :reiserfs:reiserfs_file_release+0x1e0/0x340
[<ffffffff802a187c>] __fput+0xcc/0x1b0
[<ffffffff802a1ba6>] fput+0x16/0x20
[<ffffffff8029e676>] filp_close+0x56/0x90
[<ffffffff8029fe0d>] sys_close+0xad/0x110
[<ffffffff8020c41e>] system_call+0x7e/0x83

Fix the bug by removing the cancel_dirty_page() call. Tests show that
it causes no bad behaviors on various write sizes.

=== for the patient ===
Here are more detailed demonstrations of the problem.

1) the page has both PG_dirty(D)/PAGECACHE_TAG_DIRTY(d) after being written to;
and then only PAGECACHE_TAG_DIRTY(d) remains after the file is closed.

------------------------------ screen 0 ------------------------------
[T0] root /home/wfg# cat > /test/tiny
[T1] hi
[T2] root /home/wfg#

------------------------------ screen 1 ------------------------------
[T1] root /home/wfg# echo /test/tiny > /proc/filecache
[T1] root /home/wfg# cat /proc/filecache
# file /test/tiny
# flags R:referenced A:active M:mmap U:uptodate D:dirty W:writeback O:owner B:buffer d:dirty w:writeback
# idx len state refcnt
0 1 ___UD__Bd_ 2
[T2] root /home/wfg# cat /proc/filecache
# file /test/tiny
# flags R:referenced A:active M:mmap U:uptodate D:dirty W:writeback O:owner B:buffer d:dirty w:writeback
# idx len state refcnt
0 1 ___U___Bd_ 2

2
) note the non-zero 'cancelled_write_bytes' after /tmp/hi is copied.

------------------------------ screen 0 ------------------------------
[T0] root /home/wfg# echo hi > /tmp/hi
[T1] root /home/wfg# cp /tmp/hi /dev/stdin /test
[T2] hi
[T3] root /home/wfg#

------------------------------ screen 1 ------------------------------
[T1] root /proc/4397# cd /proc/`pidof cp`
[T1] root /proc/4713# cat io
rchar: 8396
wchar: 3
syscr: 20
syscw: 1
read_bytes: 0
write_bytes: 20480
cancelled_write_bytes: 4096
[T2] root /proc/4713# cat io
rchar: 8399
wchar: 6
syscr: 21
syscw: 2
read_bytes: 0
write_bytes: 24576
cancelled_write_bytes: 4096

//Question: the 'write_bytes' is a bit more than expected ;-)

Tested-by: Maxim Levitsky <maximlevitsky@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Reviewed-by: Chris Mason <chris.mason@oracle.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
diff c06a018f Wed Nov 14 17:59:54 MST 2007 Fengguang Wu <wfg@mail.ustc.edu.cn> reiserfs: don't drop PG_dirty when releasing sub-page-sized dirty file

This is not a new problem in 2.6.23-git17. 2.6.22/2.6.23 is buggy in the
same way.

Reiserfs could accumulate dirty sub-page-size files until umount time.
They cannot be synced to disk by pdflush routines or explicit `sync'
commands. Only `umount' can do the trick.

The direct cause is: the dirty page's PG_dirty is wrongly _cleared_.
Call trace:
[<ffffffff8027e920>] cancel_dirty_page+0xd0/0xf0
[<ffffffff8816d470>] :reiserfs:reiserfs_cut_from_item+0x660/0x710
[<ffffffff8816d791>] :reiserfs:reiserfs_do_truncate+0x271/0x530
[<ffffffff8815872d>] :reiserfs:reiserfs_truncate_file+0xfd/0x3b0
[<ffffffff8815d3d0>] :reiserfs:reiserfs_file_release+0x1e0/0x340
[<ffffffff802a187c>] __fput+0xcc/0x1b0
[<ffffffff802a1ba6>] fput+0x16/0x20
[<ffffffff8029e676>] filp_close+0x56/0x90
[<ffffffff8029fe0d>] sys_close+0xad/0x110
[<ffffffff8020c41e>] system_call+0x7e/0x83

Fix the bug by removing the cancel_dirty_page() call. Tests show that
it causes no bad behaviors on various write sizes.

=== for the patient ===
Here are more detailed demonstrations of the problem.

1) the page has both PG_dirty(D)/PAGECACHE_TAG_DIRTY(d) after being written to;
and then only PAGECACHE_TAG_DIRTY(d) remains after the file is closed.

------------------------------ screen 0 ------------------------------
[T0] root /home/wfg# cat > /test/tiny
[T1] hi
[T2] root /home/wfg#

------------------------------ screen 1 ------------------------------
[T1] root /home/wfg# echo /test/tiny > /proc/filecache
[T1] root /home/wfg# cat /proc/filecache
# file /test/tiny
# flags R:referenced A:active M:mmap U:uptodate D:dirty W:writeback O:owner B:buffer d:dirty w:writeback
# idx len state refcnt
0 1 ___UD__Bd_ 2
[T2] root /home/wfg# cat /proc/filecache
# file /test/tiny
# flags R:referenced A:active M:mmap U:uptodate D:dirty W:writeback O:owner B:buffer d:dirty w:writeback
# idx len state refcnt
0 1 ___U___Bd_ 2

2) note the non-zero 'cancelled_write_bytes' after /tmp/hi is copied.

------------------------------ screen 0 ------------------------------
[T0] root /home/wfg# echo hi > /tmp/hi
[T1] root /home/wfg# cp /tmp/hi /dev/stdin /test
[T2] hi
[T3] root /home/wfg#

------------------------------ screen 1 ------------------------------
[T1] root /proc/4397# cd /proc/`pidof cp`
[T1] root /proc/4713# cat io
rchar: 8396
wchar: 3
syscr: 20
syscw: 1
read_bytes: 0
write_bytes: 20480
cancelled_write_bytes: 4096
[T2] root /proc/4713# cat io
rchar: 8399
wchar: 6
syscr: 21
syscw: 2
read_bytes: 0
write_bytes: 24576
cancelled_write_bytes: 4096

//Question: the 'write_bytes' is a bit more than expected ;-)

Tested-by: Maxim Levitsky <maximlevitsky@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn>
Reviewed-by: Chris Mason <chris.mason@oracle.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
/linux-master/fs/9p/
H A Dvfs_addr.cdiff 6c2c1e00 Tue Jan 02 17:08:46 MST 2024 David Howells <dhowells@redhat.com> 9p: Do a couple of cleanups

Do a couple of cleanups to 9p:

(1) Remove a couple of unused variables.

(2) Turn a BUG_ON() into a warning, consolidate with another warning and
make the warning message include the inode number rather than
whatever's in i_private (which will get hashed anyway).

Suggested-by: Dominique Martinet <asmadeus@codewreck.org>
Link: https://lore.kernel.org/r/ZZULNQAZ0n0WQv7p@codewreck.org/
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Dominique Martinet <asmadeus@codewreck.org>
cc: Eric Van Hensbergen <ericvh@kernel.org>
cc: Latchesar Ionkov <lucho@ionkov.net>
cc: Christian Schoenebeck <linux_oss@crudebyte.com>
cc: v9fs@lists.linux.dev
cc: linux-cachefs@redhat.com
cc: linux-fsdevel@vger.kernel.org
diff de4eda9d Thu Sep 15 18:25:47 MDT 2022 Al Viro <viro@zeniv.linux.org.uk> use less confusing names for iov_iter direction initializers

READ/WRITE proved to be actively confusing - the meanings are
"data destination, as used with read(2)" and "data source, as
used with write(2)", but people keep interpreting those as
"we read data from it" and "we write data to it", i.e. exactly
the wrong way.

Call them ITER_DEST and ITER_SOURCE - at least that is harder
to misinterpret...

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
diff de4eda9d Thu Sep 15 18:25:47 MDT 2022 Al Viro <viro@zeniv.linux.org.uk> use less confusing names for iov_iter direction initializers

READ/WRITE proved to be actively confusing - the meanings are
"data destination, as used with read(2)" and "data source, as
used with write(2)", but people keep interpreting those as
"we read data from it" and "we write data to it", i.e. exactly
the wrong way.

Call them ITER_DEST and ITER_SOURCE - at least that is harder
to misinterpret...

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
diff 874c8ca1 Thu Jun 09 14:46:04 MDT 2022 David Howells <dhowells@redhat.com> netfs: Fix gcc-12 warning by embedding vfs inode in netfs_i_context

While randstruct was satisfied with using an open-coded "void *" offset
cast for the netfs_i_context <-> inode casting, __builtin_object_size() as
used by FORTIFY_SOURCE was not as easily fooled. This was causing the
following complaint[1] from gcc v12:

In file included from include/linux/string.h:253,
from include/linux/ceph/ceph_debug.h:7,
from fs/ceph/inode.c:2:
In function 'fortify_memset_chk',
inlined from 'netfs_i_context_init' at include/linux/netfs.h:326:2,
inlined from 'ceph_alloc_inode' at fs/ceph/inode.c:463:2:
include/linux/fortify-string.h:242:25: warning: call to '__write_overflow_field' declared with attribute warning: detected write beyond size of field (1st parameter); maybe use struct_group()? [-Wattribute-warning]
242 | __write_overflow_field(p_size_field, size);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Fix this by embedding a struct inode into struct netfs_i_context (which
should perhaps be renamed to struct netfs_inode). The struct inode
vfs_inode fields are then removed from the 9p, afs, ceph and cifs inode
structs and vfs_inode is then simply changed to "netfs.inode" in those
filesystems.

Further, rename netfs_i_context to netfs_inode, get rid of the
netfs_inode() function that converted a netfs_i_context pointer to an
inode pointer (that can now be done with &ctx->inode) and rename the
netfs_i_context() function to netfs_inode() (which is now a wrapper
around container_of()).

Most of the changes were done with:

perl -p -i -e 's/vfs_inode/netfs.inode/'g \
`git grep -l 'vfs_inode' -- fs/{9p,afs,ceph,cifs}/*.[ch]`

Kees suggested doing it with a pair structure[2] and a special
declarator to insert that into the network filesystem's inode
wrapper[3], but I think it's cleaner to embed it - and then it doesn't
matter if struct randomisation reorders things.

Dave Chinner suggested using a filesystem-specific VFS_I() function in
each filesystem to convert that filesystem's own inode wrapper struct
into the VFS inode struct[4].

Version #2:
- Fix a couple of missed name changes due to a disabled cifs option.
- Rename nfs_i_context to nfs_inode
- Use "netfs" instead of "nic" as the member name in per-fs inode wrapper
structs.

[ This also undoes commit 507160f46c55 ("netfs: gcc-12: temporarily
disable '-Wattribute-warning' for now") that is no longer needed ]

Fixes: bc899ee1c898 ("netfs: Add a netfs inode context")
Reported-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Xiubo Li <xiubli@redhat.com>
cc: Jonathan Corbet <corbet@lwn.net>
cc: Eric Van Hensbergen <ericvh@gmail.com>
cc: Latchesar Ionkov <lucho@ionkov.net>
cc: Dominique Martinet <asmadeus@codewreck.org>
cc: Christian Schoenebeck <linux_oss@crudebyte.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: Ilya Dryomov <idryomov@gmail.com>
cc: Steve French <smfrench@gmail.com>
cc: William Kucharski <william.kucharski@oracle.com>
cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
cc: Dave Chinner <david@fromorbit.com>
cc: linux-doc@vger.kernel.org
cc: v9fs-developer@lists.sourceforge.net
cc: linux-afs@lists.infradead.org
cc: ceph-devel@vger.kernel.org
cc: linux-cifs@vger.kernel.org
cc: samba-technical@lists.samba.org
cc: linux-fsdevel@vger.kernel.org
cc: linux-hardening@vger.kernel.org
Link: https://lore.kernel.org/r/d2ad3a3d7bdd794c6efb562d2f2b655fb67756b9.camel@kernel.org/ [1]
Link: https://lore.kernel.org/r/20220517210230.864239-1-keescook@chromium.org/ [2]
Link: https://lore.kernel.org/r/20220518202212.2322058-1-keescook@chromium.org/ [3]
Link: https://lore.kernel.org/r/20220524101205.GI2306852@dread.disaster.area/ [4]
Link: https://lore.kernel.org/r/165296786831.3591209.12111293034669289733.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/165305805651.4094995.7763502506786714216.stgit@warthog.procyon.org.uk # v2
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
diff 874c8ca1 Thu Jun 09 14:46:04 MDT 2022 David Howells <dhowells@redhat.com> netfs: Fix gcc-12 warning by embedding vfs inode in netfs_i_context

While randstruct was satisfied with using an open-coded "void *" offset
cast for the netfs_i_context <-> inode casting, __builtin_object_size() as
used by FORTIFY_SOURCE was not as easily fooled. This was causing the
following complaint[1] from gcc v12:

In file included from include/linux/string.h:253,
from include/linux/ceph/ceph_debug.h:7,
from fs/ceph/inode.c:2:
In function 'fortify_memset_chk',
inlined from 'netfs_i_context_init' at include/linux/netfs.h:326:2,
inlined from 'ceph_alloc_inode' at fs/ceph/inode.c:463:2:
include/linux/fortify-string.h:242:25: warning: call to '__write_overflow_field' declared with attribute warning: detected write beyond size of field (1st parameter); maybe use struct_group()? [-Wattribute-warning]
242 | __write_overflow_field(p_size_field, size);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Fix this by embedding a struct inode into struct netfs_i_context (which
should perhaps be renamed to struct netfs_inode). The struct inode
vfs_inode fields are then removed from the 9p, afs, ceph and cifs inode
structs and vfs_inode is then simply changed to "netfs.inode" in those
filesystems.

Further, rename netfs_i_context to netfs_inode, get rid of the
netfs_inode() function that converted a netfs_i_context pointer to an
inode pointer (that can now be done with &ctx->inode) and rename the
netfs_i_context() function to netfs_inode() (which is now a wrapper
around container_of()).

Most of the changes were done with:

perl -p -i -e 's/vfs_inode/netfs.inode/'g \
`git grep -l 'vfs_inode' -- fs/{9p,afs,ceph,cifs}/*.[ch]`

Kees suggested doing it with a pair structure[2] and a special
declarator to insert that into the network filesystem's inode
wrapper[3], but I think it's cleaner to embed it - and then it doesn't
matter if struct randomisation reorders things.

Dave Chinner suggested using a filesystem-specific VFS_I() function in
each filesystem to convert that filesystem's own inode wrapper struct
into the VFS inode struct[4].

Version #2:
- Fix a couple of missed name changes due to a disabled cifs option.
- Rename nfs_i_context to nfs_inode
- Use "netfs" instead of "nic" as the member name in per-fs inode wrapper
structs.

[ This also undoes commit 507160f46c55 ("netfs: gcc-12: temporarily
disable '-Wattribute-warning' for now") that is no longer needed ]

Fixes: bc899ee1c898 ("netfs: Add a netfs inode context")
Reported-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Xiubo Li <xiubli@redhat.com>
cc: Jonathan Corbet <corbet@lwn.net>
cc: Eric Van Hensbergen <ericvh@gmail.com>
cc: Latchesar Ionkov <lucho@ionkov.net>
cc: Dominique Martinet <asmadeus@codewreck.org>
cc: Christian Schoenebeck <linux_oss@crudebyte.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: Ilya Dryomov <idryomov@gmail.com>
cc: Steve French <smfrench@gmail.com>
cc: William Kucharski <william.kucharski@oracle.com>
cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
cc: Dave Chinner <david@fromorbit.com>
cc: linux-doc@vger.kernel.org
cc: v9fs-developer@lists.sourceforge.net
cc: linux-afs@lists.infradead.org
cc: ceph-devel@vger.kernel.org
cc: linux-cifs@vger.kernel.org
cc: samba-technical@lists.samba.org
cc: linux-fsdevel@vger.kernel.org
cc: linux-hardening@vger.kernel.org
Link: https://lore.kernel.org/r/d2ad3a3d7bdd794c6efb562d2f2b655fb67756b9.camel@kernel.org/ [1]
Link: https://lore.kernel.org/r/20220517210230.864239-1-keescook@chromium.org/ [2]
Link: https://lore.kernel.org/r/20220518202212.2322058-1-keescook@chromium.org/ [3]
Link: https://lore.kernel.org/r/20220524101205.GI2306852@dread.disaster.area/ [4]
Link: https://lore.kernel.org/r/165296786831.3591209.12111293034669289733.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/165305805651.4094995.7763502506786714216.stgit@warthog.procyon.org.uk # v2
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
diff 874c8ca1 Thu Jun 09 14:46:04 MDT 2022 David Howells <dhowells@redhat.com> netfs: Fix gcc-12 warning by embedding vfs inode in netfs_i_context

While randstruct was satisfied with using an open-coded "void *" offset
cast for the netfs_i_context <-> inode casting, __builtin_object_size() as
used by FORTIFY_SOURCE was not as easily fooled. This was causing the
following complaint[1] from gcc v12:

In file included from include/linux/string.h:253,
from include/linux/ceph/ceph_debug.h:7,
from fs/ceph/inode.c:2:
In function 'fortify_memset_chk',
inlined from 'netfs_i_context_init' at include/linux/netfs.h:326:2,
inlined from 'ceph_alloc_inode' at fs/ceph/inode.c:463:2:
include/linux/fortify-string.h:242:25: warning: call to '__write_overflow_field' declared with attribute warning: detected write beyond size of field (1st parameter); maybe use struct_group()? [-Wattribute-warning]
242 | __write_overflow_field(p_size_field, size);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Fix this by embedding a struct inode into struct netfs_i_context (which
should perhaps be renamed to struct netfs_inode). The struct inode
vfs_inode fields are then removed from the 9p, afs, ceph and cifs inode
structs and vfs_inode is then simply changed to "netfs.inode" in those
filesystems.

Further, rename netfs_i_context to netfs_inode, get rid of the
netfs_inode() function that converted a netfs_i_context pointer to an
inode pointer (that can now be done with &ctx->inode) and rename the
netfs_i_context() function to netfs_inode() (which is now a wrapper
around container_of()).

Most of the changes were done with:

perl -p -i -e 's/vfs_inode/netfs.inode/'g \
`git grep -l 'vfs_inode' -- fs/{9p,afs,ceph,cifs}/*.[ch]`

Kees suggested doing it with a pair structure[2] and a special
declarator to insert that into the network filesystem's inode
wrapper[3], but I think it's cleaner to embed it - and then it doesn't
matter if struct randomisation reorders things.

Dave Chinner suggested using a filesystem-specific VFS_I() function in
each filesystem to convert that filesystem's own inode wrapper struct
into the VFS inode struct[4].

Version #2:
- Fix a couple of missed name changes due to a disabled cifs option.
- Rename nfs_i_context to nfs_inode
- Use "netfs" instead of "nic" as the member name in per-fs inode wrapper
structs.

[ This also undoes commit 507160f46c55 ("netfs: gcc-12: temporarily
disable '-Wattribute-warning' for now") that is no longer needed ]

Fixes: bc899ee1c898 ("netfs: Add a netfs inode context")
Reported-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Xiubo Li <xiubli@redhat.com>
cc: Jonathan Corbet <corbet@lwn.net>
cc: Eric Van Hensbergen <ericvh@gmail.com>
cc: Latchesar Ionkov <lucho@ionkov.net>
cc: Dominique Martinet <asmadeus@codewreck.org>
cc: Christian Schoenebeck <linux_oss@crudebyte.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: Ilya Dryomov <idryomov@gmail.com>
cc: Steve French <smfrench@gmail.com>
cc: William Kucharski <william.kucharski@oracle.com>
cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
cc: Dave Chinner <david@fromorbit.com>
cc: linux-doc@vger.kernel.org
cc: v9fs-developer@lists.sourceforge.net
cc: linux-afs@lists.infradead.org
cc: ceph-devel@vger.kernel.org
cc: linux-cifs@vger.kernel.org
cc: samba-technical@lists.samba.org
cc: linux-fsdevel@vger.kernel.org
cc: linux-hardening@vger.kernel.org
Link: https://lore.kernel.org/r/d2ad3a3d7bdd794c6efb562d2f2b655fb67756b9.camel@kernel.org/ [1]
Link: https://lore.kernel.org/r/20220517210230.864239-1-keescook@chromium.org/ [2]
Link: https://lore.kernel.org/r/20220518202212.2322058-1-keescook@chromium.org/ [3]
Link: https://lore.kernel.org/r/20220524101205.GI2306852@dread.disaster.area/ [4]
Link: https://lore.kernel.org/r/165296786831.3591209.12111293034669289733.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/165305805651.4094995.7763502506786714216.stgit@warthog.procyon.org.uk # v2
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
diff 874c8ca1 Thu Jun 09 14:46:04 MDT 2022 David Howells <dhowells@redhat.com> netfs: Fix gcc-12 warning by embedding vfs inode in netfs_i_context

While randstruct was satisfied with using an open-coded "void *" offset
cast for the netfs_i_context <-> inode casting, __builtin_object_size() as
used by FORTIFY_SOURCE was not as easily fooled. This was causing the
following complaint[1] from gcc v12:

In file included from include/linux/string.h:253,
from include/linux/ceph/ceph_debug.h:7,
from fs/ceph/inode.c:2:
In function 'fortify_memset_chk',
inlined from 'netfs_i_context_init' at include/linux/netfs.h:326:2,
inlined from 'ceph_alloc_inode' at fs/ceph/inode.c:463:2:
include/linux/fortify-string.h:242:25: warning: call to '__write_overflow_field' declared with attribute warning: detected write beyond size of field (1st parameter); maybe use struct_group()? [-Wattribute-warning]
242 | __write_overflow_field(p_size_field, size);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Fix this by embedding a struct inode into struct netfs_i_context (which
should perhaps be renamed to struct netfs_inode). The struct inode
vfs_inode fields are then removed from the 9p, afs, ceph and cifs inode
structs and vfs_inode is then simply changed to "netfs.inode" in those
filesystems.

Further, rename netfs_i_context to netfs_inode, get rid of the
netfs_inode() function that converted a netfs_i_context pointer to an
inode pointer (that can now be done with &ctx->inode) and rename the
netfs_i_context() function to netfs_inode() (which is now a wrapper
around container_of()).

Most of the changes were done with:

perl -p -i -e 's/vfs_inode/netfs.inode/'g \
`git grep -l 'vfs_inode' -- fs/{9p,afs,ceph,cifs}/*.[ch]`

Kees suggested doing it with a pair structure[2] and a special
declarator to insert that into the network filesystem's inode
wrapper[3], but I think it's cleaner to embed it - and then it doesn't
matter if struct randomisation reorders things.

Dave Chinner suggested using a filesystem-specific VFS_I() function in
each filesystem to convert that filesystem's own inode wrapper struct
into the VFS inode struct[4].

Version #2:
- Fix a couple of missed name changes due to a disabled cifs option.
- Rename nfs_i_context to nfs_inode
- Use "netfs" instead of "nic" as the member name in per-fs inode wrapper
structs.

[ This also undoes commit 507160f46c55 ("netfs: gcc-12: temporarily
disable '-Wattribute-warning' for now") that is no longer needed ]

Fixes: bc899ee1c898 ("netfs: Add a netfs inode context")
Reported-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Xiubo Li <xiubli@redhat.com>
cc: Jonathan Corbet <corbet@lwn.net>
cc: Eric Van Hensbergen <ericvh@gmail.com>
cc: Latchesar Ionkov <lucho@ionkov.net>
cc: Dominique Martinet <asmadeus@codewreck.org>
cc: Christian Schoenebeck <linux_oss@crudebyte.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: Ilya Dryomov <idryomov@gmail.com>
cc: Steve French <smfrench@gmail.com>
cc: William Kucharski <william.kucharski@oracle.com>
cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
cc: Dave Chinner <david@fromorbit.com>
cc: linux-doc@vger.kernel.org
cc: v9fs-developer@lists.sourceforge.net
cc: linux-afs@lists.infradead.org
cc: ceph-devel@vger.kernel.org
cc: linux-cifs@vger.kernel.org
cc: samba-technical@lists.samba.org
cc: linux-fsdevel@vger.kernel.org
cc: linux-hardening@vger.kernel.org
Link: https://lore.kernel.org/r/d2ad3a3d7bdd794c6efb562d2f2b655fb67756b9.camel@kernel.org/ [1]
Link: https://lore.kernel.org/r/20220517210230.864239-1-keescook@chromium.org/ [2]
Link: https://lore.kernel.org/r/20220518202212.2322058-1-keescook@chromium.org/ [3]
Link: https://lore.kernel.org/r/20220524101205.GI2306852@dread.disaster.area/ [4]
Link: https://lore.kernel.org/r/165296786831.3591209.12111293034669289733.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/165305805651.4094995.7763502506786714216.stgit@warthog.procyon.org.uk # v2
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
diff 874c8ca1 Thu Jun 09 14:46:04 MDT 2022 David Howells <dhowells@redhat.com> netfs: Fix gcc-12 warning by embedding vfs inode in netfs_i_context

While randstruct was satisfied with using an open-coded "void *" offset
cast for the netfs_i_context <-> inode casting, __builtin_object_size() as
used by FORTIFY_SOURCE was not as easily fooled. This was causing the
following complaint[1] from gcc v12:

In file included from include/linux/string.h:253,
from include/linux/ceph/ceph_debug.h:7,
from fs/ceph/inode.c:2:
In function 'fortify_memset_chk',
inlined from 'netfs_i_context_init' at include/linux/netfs.h:326:2,
inlined from 'ceph_alloc_inode' at fs/ceph/inode.c:463:2:
include/linux/fortify-string.h:242:25: warning: call to '__write_overflow_field' declared with attribute warning: detected write beyond size of field (1st parameter); maybe use struct_group()? [-Wattribute-warning]
242 | __write_overflow_field(p_size_field, size);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Fix this by embedding a struct inode into struct netfs_i_context (which
should perhaps be renamed to struct netfs_inode). The struct inode
vfs_inode fields are then removed from the 9p, afs, ceph and cifs inode
structs and vfs_inode is then simply changed to "netfs.inode" in those
filesystems.

Further, rename netfs_i_context to netfs_inode, get rid of the
netfs_inode() function that converted a netfs_i_context pointer to an
inode pointer (that can now be done with &ctx->inode) and rename the
netfs_i_context() function to netfs_inode() (which is now a wrapper
around container_of()).

Most of the changes were done with:

perl -p -i -e 's/vfs_inode/netfs.inode/'g \
`git grep -l 'vfs_inode' -- fs/{9p,afs,ceph,cifs}/*.[ch]`

Kees suggested doing it with a pair structure[2] and a special
declarator to insert that into the network filesystem's inode
wrapper[3], but I think it's cleaner to embed it - and then it doesn't
matter if struct randomisation reorders things.

Dave Chinner suggested using a filesystem-specific VFS_I() function in
each filesystem to convert that filesystem's own inode wrapper struct
into the VFS inode struct[4].

Version #2:
- Fix a couple of missed name changes due to a disabled cifs option.
- Rename nfs_i_context to nfs_inode
- Use "netfs" instead of "nic" as the member name in per-fs inode wrapper
structs.

[ This also undoes commit 507160f46c55 ("netfs: gcc-12: temporarily
disable '-Wattribute-warning' for now") that is no longer needed ]

Fixes: bc899ee1c898 ("netfs: Add a netfs inode context")
Reported-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Xiubo Li <xiubli@redhat.com>
cc: Jonathan Corbet <corbet@lwn.net>
cc: Eric Van Hensbergen <ericvh@gmail.com>
cc: Latchesar Ionkov <lucho@ionkov.net>
cc: Dominique Martinet <asmadeus@codewreck.org>
cc: Christian Schoenebeck <linux_oss@crudebyte.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: Ilya Dryomov <idryomov@gmail.com>
cc: Steve French <smfrench@gmail.com>
cc: William Kucharski <william.kucharski@oracle.com>
cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
cc: Dave Chinner <david@fromorbit.com>
cc: linux-doc@vger.kernel.org
cc: v9fs-developer@lists.sourceforge.net
cc: linux-afs@lists.infradead.org
cc: ceph-devel@vger.kernel.org
cc: linux-cifs@vger.kernel.org
cc: samba-technical@lists.samba.org
cc: linux-fsdevel@vger.kernel.org
cc: linux-hardening@vger.kernel.org
Link: https://lore.kernel.org/r/d2ad3a3d7bdd794c6efb562d2f2b655fb67756b9.camel@kernel.org/ [1]
Link: https://lore.kernel.org/r/20220517210230.864239-1-keescook@chromium.org/ [2]
Link: https://lore.kernel.org/r/20220518202212.2322058-1-keescook@chromium.org/ [3]
Link: https://lore.kernel.org/r/20220524101205.GI2306852@dread.disaster.area/ [4]
Link: https://lore.kernel.org/r/165296786831.3591209.12111293034669289733.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/165305805651.4094995.7763502506786714216.stgit@warthog.procyon.org.uk # v2
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
diff 874c8ca1 Thu Jun 09 14:46:04 MDT 2022 David Howells <dhowells@redhat.com> netfs: Fix gcc-12 warning by embedding vfs inode in netfs_i_context

While randstruct was satisfied with using an open-coded "void *" offset
cast for the netfs_i_context <-> inode casting, __builtin_object_size() as
used by FORTIFY_SOURCE was not as easily fooled. This was causing the
following complaint[1] from gcc v12:

In file included from include/linux/string.h:253,
from include/linux/ceph/ceph_debug.h:7,
from fs/ceph/inode.c:2:
In function 'fortify_memset_chk',
inlined from 'netfs_i_context_init' at include/linux/netfs.h:326:2,
inlined from 'ceph_alloc_inode' at fs/ceph/inode.c:463:2:
include/linux/fortify-string.h:242:25: warning: call to '__write_overflow_field' declared with attribute warning: detected write beyond size of field (1st parameter); maybe use struct_group()? [-Wattribute-warning]
242 | __write_overflow_field(p_size_field, size);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Fix this by embedding a struct inode into struct netfs_i_context (which
should perhaps be renamed to struct netfs_inode). The struct inode
vfs_inode fields are then removed from the 9p, afs, ceph and cifs inode
structs and vfs_inode is then simply changed to "netfs.inode" in those
filesystems.

Further, rename netfs_i_context to netfs_inode, get rid of the
netfs_inode() function that converted a netfs_i_context pointer to an
inode pointer (that can now be done with &ctx->inode) and rename the
netfs_i_context() function to netfs_inode() (which is now a wrapper
around container_of()).

Most of the changes were done with:

perl -p -i -e 's/vfs_inode/netfs.inode/'g \
`git grep -l 'vfs_inode' -- fs/{9p,afs,ceph,cifs}/*.[ch]`

Kees suggested doing it with a pair structure[2] and a special
declarator to insert that into the network filesystem's inode
wrapper[3], but I think it's cleaner to embed it - and then it doesn't
matter if struct randomisation reorders things.

Dave Chinner suggested using a filesystem-specific VFS_I() function in
each filesystem to convert that filesystem's own inode wrapper struct
into the VFS inode struct[4].

Version #2:
- Fix a couple of missed name changes due to a disabled cifs option.
- Rename nfs_i_context to nfs_inode
- Use "netfs" instead of "nic" as the member name in per-fs inode wrapper
structs.

[ This also undoes commit 507160f46c55 ("netfs: gcc-12: temporarily
disable '-Wattribute-warning' for now") that is no longer needed ]

Fixes: bc899ee1c898 ("netfs: Add a netfs inode context")
Reported-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Xiubo Li <xiubli@redhat.com>
cc: Jonathan Corbet <corbet@lwn.net>
cc: Eric Van Hensbergen <ericvh@gmail.com>
cc: Latchesar Ionkov <lucho@ionkov.net>
cc: Dominique Martinet <asmadeus@codewreck.org>
cc: Christian Schoenebeck <linux_oss@crudebyte.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: Ilya Dryomov <idryomov@gmail.com>
cc: Steve French <smfrench@gmail.com>
cc: William Kucharski <william.kucharski@oracle.com>
cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
cc: Dave Chinner <david@fromorbit.com>
cc: linux-doc@vger.kernel.org
cc: v9fs-developer@lists.sourceforge.net
cc: linux-afs@lists.infradead.org
cc: ceph-devel@vger.kernel.org
cc: linux-cifs@vger.kernel.org
cc: samba-technical@lists.samba.org
cc: linux-fsdevel@vger.kernel.org
cc: linux-hardening@vger.kernel.org
Link: https://lore.kernel.org/r/d2ad3a3d7bdd794c6efb562d2f2b655fb67756b9.camel@kernel.org/ [1]
Link: https://lore.kernel.org/r/20220517210230.864239-1-keescook@chromium.org/ [2]
Link: https://lore.kernel.org/r/20220518202212.2322058-1-keescook@chromium.org/ [3]
Link: https://lore.kernel.org/r/20220524101205.GI2306852@dread.disaster.area/ [4]
Link: https://lore.kernel.org/r/165296786831.3591209.12111293034669289733.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/165305805651.4094995.7763502506786714216.stgit@warthog.procyon.org.uk # v2
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
diff bc899ee1 Tue Jun 29 15:37:05 MDT 2021 David Howells <dhowells@redhat.com> netfs: Add a netfs inode context

Add a netfs_i_context struct that should be included in the network
filesystem's own inode struct wrapper, directly after the VFS's inode
struct, e.g.:

struct my_inode {
struct {
/* These must be contiguous */
struct inode vfs_inode;
struct netfs_i_context netfs_ctx;
};
};

The netfs_i_context struct so far contains a single field for the network
filesystem to use - the cache cookie:

struct netfs_i_context {
...
struct fscache_cookie *cache;
};

Three functions are provided to help with this:

(1) void netfs_i_context_init(struct inode *inode,
const struct netfs_request_ops *ops);

Initialise the netfs context and set the operations.

(2) struct netfs_i_context *netfs_i_context(struct inode *inode);

Find the netfs context from the VFS inode.

(3) struct inode *netfs_inode(struct netfs_i_context *ctx);

Find the VFS inode from the netfs context.

Changes
=======
ver #4)
- Fix netfs_is_cache_enabled() to check cookie->cache_priv to see if a
cache is present[3].
- Fix netfs_skip_folio_read() to zero out all of the page, not just some
of it[3].

ver #3)
- Split out the bit to move ceph cap-getting on readahead into
ceph_init_request()[1].
- Stick in a comment to the netfs inode structs indicating the contiguity
requirements[2].

ver #2)
- Adjust documentation to match.
- Use "#if IS_ENABLED()" in netfs_i_cookie(), not "#ifdef".
- Move the cap check from ceph_readahead() to ceph_init_request() to be
called from netfslib.
- Remove ceph_readahead() and use netfs_readahead() directly instead.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com

Link: https://lore.kernel.org/r/8af0d47f17d89c06bbf602496dd845f2b0bf25b3.camel@kernel.org/ [1]
Link: https://lore.kernel.org/r/beaf4f6a6c2575ed489adb14b257253c868f9a5c.camel@kernel.org/ [2]
Link: https://lore.kernel.org/r/3536452.1647421585@warthog.procyon.org.uk/ [3]
Link: https://lore.kernel.org/r/164622984545.3564931.15691742939278418580.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/164678213320.1200972.16807551936267647470.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/164692909854.2099075.9535537286264248057.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/306388.1647595110@warthog.procyon.org.uk/ # v4
diff bc899ee1 Tue Jun 29 15:37:05 MDT 2021 David Howells <dhowells@redhat.com> netfs: Add a netfs inode context

Add a netfs_i_context struct that should be included in the network
filesystem's own inode struct wrapper, directly after the VFS's inode
struct, e.g.:

struct my_inode {
struct {
/* These must be contiguous */
struct inode vfs_inode;
struct netfs_i_context netfs_ctx;
};
};

The netfs_i_context struct so far contains a single field for the network
filesystem to use - the cache cookie:

struct netfs_i_context {
...
struct fscache_cookie *cache;
};

Three functions are provided to help with this:

(1) void netfs_i_context_init(struct inode *inode,
const struct netfs_request_ops *ops);

Initialise the netfs context and set the operations.

(2) struct netfs_i_context *netfs_i_context(struct inode *inode);

Find the netfs context from the VFS inode.

(3) struct inode *netfs_inode(struct netfs_i_context *ctx);

Find the VFS inode from the netfs context.

Changes
=======
ver #4)
- Fix netfs_is_cache_enabled() to check cookie->cache_priv to see if a
cache is present[3].
- Fix netfs_skip_folio_read() to zero out all of the page, not just some
of it[3].

ver #3)
- Split out the bit to move ceph cap-getting on readahead into
ceph_init_request()[1].
- Stick in a comment to the netfs inode structs indicating the contiguity
requirements[2].

ver #2)
- Adjust documentation to match.
- Use "#if IS_ENABLED()" in netfs_i_cookie(), not "#ifdef".
- Move the cap check from ceph_readahead() to ceph_init_request() to be
called from netfslib.
- Remove ceph_readahead() and use netfs_readahead() directly instead.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com

Link: https://lore.kernel.org/r/8af0d47f17d89c06bbf602496dd845f2b0bf25b3.camel@kernel.org/ [1]
Link: https://lore.kernel.org/r/beaf4f6a6c2575ed489adb14b257253c868f9a5c.camel@kernel.org/ [2]
Link: https://lore.kernel.org/r/3536452.1647421585@warthog.procyon.org.uk/ [3]
Link: https://lore.kernel.org/r/164622984545.3564931.15691742939278418580.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/164678213320.1200972.16807551936267647470.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/164692909854.2099075.9535537286264248057.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/306388.1647595110@warthog.procyon.org.uk/ # v4
diff bc899ee1 Tue Jun 29 15:37:05 MDT 2021 David Howells <dhowells@redhat.com> netfs: Add a netfs inode context

Add a netfs_i_context struct that should be included in the network
filesystem's own inode struct wrapper, directly after the VFS's inode
struct, e.g.:

struct my_inode {
struct {
/* These must be contiguous */
struct inode vfs_inode;
struct netfs_i_context netfs_ctx;
};
};

The netfs_i_context struct so far contains a single field for the network
filesystem to use - the cache cookie:

struct netfs_i_context {
...
struct fscache_cookie *cache;
};

Three functions are provided to help with this:

(1) void netfs_i_context_init(struct inode *inode,
const struct netfs_request_ops *ops);

Initialise the netfs context and set the operations.

(2) struct netfs_i_context *netfs_i_context(struct inode *inode);

Find the netfs context from the VFS inode.

(3) struct inode *netfs_inode(struct netfs_i_context *ctx);

Find the VFS inode from the netfs context.

Changes
=======
ver #4)
- Fix netfs_is_cache_enabled() to check cookie->cache_priv to see if a
cache is present[3].
- Fix netfs_skip_folio_read() to zero out all of the page, not just some
of it[3].

ver #3)
- Split out the bit to move ceph cap-getting on readahead into
ceph_init_request()[1].
- Stick in a comment to the netfs inode structs indicating the contiguity
requirements[2].

ver #2)
- Adjust documentation to match.
- Use "#if IS_ENABLED()" in netfs_i_cookie(), not "#ifdef".
- Move the cap check from ceph_readahead() to ceph_init_request() to be
called from netfslib.
- Remove ceph_readahead() and use netfs_readahead() directly instead.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com

Link: https://lore.kernel.org/r/8af0d47f17d89c06bbf602496dd845f2b0bf25b3.camel@kernel.org/ [1]
Link: https://lore.kernel.org/r/beaf4f6a6c2575ed489adb14b257253c868f9a5c.camel@kernel.org/ [2]
Link: https://lore.kernel.org/r/3536452.1647421585@warthog.procyon.org.uk/ [3]
Link: https://lore.kernel.org/r/164622984545.3564931.15691742939278418580.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/164678213320.1200972.16807551936267647470.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/164692909854.2099075.9535537286264248057.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/306388.1647595110@warthog.procyon.org.uk/ # v4
diff bc899ee1 Tue Jun 29 15:37:05 MDT 2021 David Howells <dhowells@redhat.com> netfs: Add a netfs inode context

Add a netfs_i_context struct that should be included in the network
filesystem's own inode struct wrapper, directly after the VFS's inode
struct, e.g.:

struct my_inode {
struct {
/* These must be contiguous */
struct inode vfs_inode;
struct netfs_i_context netfs_ctx;
};
};

The netfs_i_context struct so far contains a single field for the network
filesystem to use - the cache cookie:

struct netfs_i_context {
...
struct fscache_cookie *cache;
};

Three functions are provided to help with this:

(1) void netfs_i_context_init(struct inode *inode,
const struct netfs_request_ops *ops);

Initialise the netfs context and set the operations.

(2) struct netfs_i_context *netfs_i_context(struct inode *inode);

Find the netfs context from the VFS inode.

(3) struct inode *netfs_inode(struct netfs_i_context *ctx);

Find the VFS inode from the netfs context.

Changes
=======
ver #4)
- Fix netfs_is_cache_enabled() to check cookie->cache_priv to see if a
cache is present[3].
- Fix netfs_skip_folio_read() to zero out all of the page, not just some
of it[3].

ver #3)
- Split out the bit to move ceph cap-getting on readahead into
ceph_init_request()[1].
- Stick in a comment to the netfs inode structs indicating the contiguity
requirements[2].

ver #2)
- Adjust documentation to match.
- Use "#if IS_ENABLED()" in netfs_i_cookie(), not "#ifdef".
- Move the cap check from ceph_readahead() to ceph_init_request() to be
called from netfslib.
- Remove ceph_readahead() and use netfs_readahead() directly instead.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com

Link: https://lore.kernel.org/r/8af0d47f17d89c06bbf602496dd845f2b0bf25b3.camel@kernel.org/ [1]
Link: https://lore.kernel.org/r/beaf4f6a6c2575ed489adb14b257253c868f9a5c.camel@kernel.org/ [2]
Link: https://lore.kernel.org/r/3536452.1647421585@warthog.procyon.org.uk/ [3]
Link: https://lore.kernel.org/r/164622984545.3564931.15691742939278418580.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/164678213320.1200972.16807551936267647470.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/164692909854.2099075.9535537286264248057.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/306388.1647595110@warthog.procyon.org.uk/ # v4
/linux-master/fs/orangefs/
H A Dinode.cdiff 0d72b928 Mon Aug 07 13:38:33 MDT 2023 Jeff Layton <jlayton@kernel.org> fs: pass the request_mask to generic_fillattr

generic_fillattr just fills in the entire stat struct indiscriminately
today, copying data from the inode. There is at least one attribute
(STATX_CHANGE_COOKIE) that can have side effects when it is reported,
and we're looking at adding more with the addition of multigrain
timestamps.

Add a request_mask argument to generic_fillattr and have most callers
just pass in the value that is passed to getattr. Have other callers
(e.g. ksmbd) just pass in STATX_BASIC_STATS. Also move the setting of
STATX_CHANGE_COOKIE into generic_fillattr.

Acked-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Reviewed-by: Xiubo Li <xiubli@redhat.com>
Reviewed-by: "Paulo Alcantara (SUSE)" <pc@manguebit.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Message-Id: <20230807-mgctime-v7-2-d1dec143a704@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
diff cd01049d Tue Apr 11 06:29:18 MDT 2023 Pankaj Raghav <p.raghav@samsung.com> orangefs: use folios in orangefs_readahead

Patch series "remove page_endio()", v3.

It was decided to remove the page_endio() as per the previous RFC
discussion[1] of this series and move that functionality into the caller
itself. One of the side benefit of doing that is the callers have been
modified to directly work on folios as page_endio() already worked on
folios.

As Christoph is doing ZRAM cleanups[4] which will get rid of page_endio()
function usage, I removed the final patch that removes page_endio()[5]. I
will send it separately after rc-1 once the zram cleanups are merged.

mpage changes were tested with a simple boot testing and running a fio
workload on ext2 filesystem. orangefs was tested by Mike Marshall (No
code changes since he tested).


This patch (of 3):

Convert orangefs_readahead() from using struct page to struct folio. This
conversion removes the call to page_endio() which is soon to be removed,
and simplifies the final page handling.

The page error flags is not required to be set in the error case as
orangefs doesn't depend on them.

Link: https://lkml.kernel.org/r/20230411122920.30134-1-p.raghav@samsung.com
Link: https://lkml.kernel.org/r/20230411122920.30134-2-p.raghav@samsung.com
Link: https://lore.kernel.org/linux-mm/ZBHcl8Pz2ULb4RGD@infradead.org/ [1]
Link: https://lore.kernel.org/linux-mm/20230322135013.197076-1-p.raghav@samsung.com/ [2]
Link: https://lore.kernel.org/linux-mm/8adb0770-6124-e11f-2551-6582db27ed32@samsung.com/ [3]
Link: https://lore.kernel.org/linux-block/20230404150536.2142108-1-hch@lst.de/T/#t [4]
Link: https://lore.kernel.org/lkml/20230403132221.94921-6-p.raghav@samsung.com/ [5]
Signed-off-by: Pankaj Raghav <p.raghav@samsung.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Tested-by: Mike Marshall <hubcap@omnibond.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Martin Brandenburg <martin@omnibond.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
diff cd01049d Tue Apr 11 06:29:18 MDT 2023 Pankaj Raghav <p.raghav@samsung.com> orangefs: use folios in orangefs_readahead

Patch series "remove page_endio()", v3.

It was decided to remove the page_endio() as per the previous RFC
discussion[1] of this series and move that functionality into the caller
itself. One of the side benefit of doing that is the callers have been
modified to directly work on folios as page_endio() already worked on
folios.

As Christoph is doing ZRAM cleanups[4] which will get rid of page_endio()
function usage, I removed the final patch that removes page_endio()[5]. I
will send it separately after rc-1 once the zram cleanups are merged.

mpage changes were tested with a simple boot testing and running a fio
workload on ext2 filesystem. orangefs was tested by Mike Marshall (No
code changes since he tested).


This patch (of 3):

Convert orangefs_readahead() from using struct page to struct folio. This
conversion removes the call to page_endio() which is soon to be removed,
and simplifies the final page handling.

The page error flags is not required to be set in the error case as
orangefs doesn't depend on them.

Link: https://lkml.kernel.org/r/20230411122920.30134-1-p.raghav@samsung.com
Link: https://lkml.kernel.org/r/20230411122920.30134-2-p.raghav@samsung.com
Link: https://lore.kernel.org/linux-mm/ZBHcl8Pz2ULb4RGD@infradead.org/ [1]
Link: https://lore.kernel.org/linux-mm/20230322135013.197076-1-p.raghav@samsung.com/ [2]
Link: https://lore.kernel.org/linux-mm/8adb0770-6124-e11f-2551-6582db27ed32@samsung.com/ [3]
Link: https://lore.kernel.org/linux-block/20230404150536.2142108-1-hch@lst.de/T/#t [4]
Link: https://lore.kernel.org/lkml/20230403132221.94921-6-p.raghav@samsung.com/ [5]
Signed-off-by: Pankaj Raghav <p.raghav@samsung.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Tested-by: Mike Marshall <hubcap@omnibond.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Martin Brandenburg <martin@omnibond.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
diff d585bdbe Thu Jan 26 13:12:54 MST 2023 Matthew Wilcox (Oracle) <willy@infradead.org> fs: convert writepage_t callback to pass a folio

Patch series "Convert writepage_t to use a folio".

More folioisation. I split out the mpage work from everything else
because it completely dominated the patch, but some implementations I just
converted outright.


This patch (of 2):

We always write back an entire folio, but that's currently passed as the
head page. Convert all filesystems that use write_cache_pages() to expect
a folio instead of a page.

Link: https://lkml.kernel.org/r/20230126201255.1681189-1-willy@infradead.org
Link: https://lkml.kernel.org/r/20230126201255.1681189-2-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
diff d585bdbe Thu Jan 26 13:12:54 MST 2023 Matthew Wilcox (Oracle) <willy@infradead.org> fs: convert writepage_t callback to pass a folio

Patch series "Convert writepage_t to use a folio".

More folioisation. I split out the mpage work from everything else
because it completely dominated the patch, but some implementations I just
converted outright.


This patch (of 2):

We always write back an entire folio, but that's currently passed as the
head page. Convert all filesystems that use write_cache_pages() to expect
a folio instead of a page.

Link: https://lkml.kernel.org/r/20230126201255.1681189-1-willy@infradead.org
Link: https://lkml.kernel.org/r/20230126201255.1681189-2-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
diff de4eda9d Thu Sep 15 18:25:47 MDT 2022 Al Viro <viro@zeniv.linux.org.uk> use less confusing names for iov_iter direction initializers

READ/WRITE proved to be actively confusing - the meanings are
"data destination, as used with read(2)" and "data source, as
used with write(2)", but people keep interpreting those as
"we read data from it" and "we write data to it", i.e. exactly
the wrong way.

Call them ITER_DEST and ITER_SOURCE - at least that is harder
to misinterpret...

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
diff de4eda9d Thu Sep 15 18:25:47 MDT 2022 Al Viro <viro@zeniv.linux.org.uk> use less confusing names for iov_iter direction initializers

READ/WRITE proved to be actively confusing - the meanings are
"data destination, as used with read(2)" and "data source, as
used with write(2)", but people keep interpreting those as
"we read data from it" and "we write data to it", i.e. exactly
the wrong way.

Call them ITER_DEST and ITER_SOURCE - at least that is harder
to misinterpret...

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
diff 2a40be81 Wed Feb 09 13:21:48 MST 2022 Matthew Wilcox (Oracle) <willy@infradead.org> orangefs: Convert from invalidatepage to invalidate_folio

This is a straightforward conversion.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Tested-by: Damien Le Moal <damien.lemoal@opensource.wdc.com>
Acked-by: Damien Le Moal <damien.lemoal@opensource.wdc.com>
Tested-by: Mike Marshall <hubcap@omnibond.com> # orangefs
Tested-by: David Howells <dhowells@redhat.com> # afs
diff 2f221d6f Thu Jan 21 06:19:26 MST 2021 Christian Brauner <christian.brauner@ubuntu.com> attr: handle idmapped mounts

When file attributes are changed most filesystems rely on the
setattr_prepare(), setattr_copy(), and notify_change() helpers for
initialization and permission checking. Let them handle idmapped mounts.
If the inode is accessed through an idmapped mount map it into the
mount's user namespace. Afterwards the checks are identical to
non-idmapped mounts. If the initial user namespace is passed nothing
changes so non-idmapped mounts will see identical behavior as before.

Helpers that perform checks on the ia_uid and ia_gid fields in struct
iattr assume that ia_uid and ia_gid are intended values and have already
been mapped correctly at the userspace-kernelspace boundary as we
already do today. If the initial user namespace is passed nothing
changes so non-idmapped mounts will see identical behavior as before.

Link: https://lore.kernel.org/r/20210121131959.646623-8-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
diff ec95f1de Wed Apr 08 06:52:40 MDT 2020 Mike Marshall <hubcap@omnibond.com> orangefs: get rid of knob code...

Christoph Hellwig sent in a reversion of "orangefs: remember count
when reading." because:

->read_iter calls can race with each other and one or
more ->flush calls. Remove the the scheme to store the read
count in the file private data as is is completely racy and
can cause use after free or double free conditions

Christoph's reversion caused Orangefs not to work or to compile. I
added a patch that fixed that, but intel's kbuild test robot pointed
out that sending Christoph's patch followed by my patch upstream, it
would break bisection because of the failure to compile. So I have
combined the reversion plus my patch... here's the commit message
that was in my patch:

Logically, optimal Orangefs "pages" are 4 megabytes. Reading
large Orangefs files 4096 bytes at a time is like trying to
kick a dead whale down the beach. Before Christoph's "Revert
orangefs: remember count when reading." I tried to give users
a knob whereby they could, for example, use "count" in
read(2) or bs with dd(1) to get whatever they considered an
appropriate amount of bytes at a time from Orangefs and fill
as many page cache pages as they could at once.

Without the racy code that Christoph reverted Orangefs won't
even compile, much less work. So this replaces the logic that
used the private file data that Christoph reverted with
a static number of bytes to read from Orangefs.

I ran tests like the following to determine what a
reasonable static number of bytes might be:

dd if=/pvfsmnt/asdf of=/dev/null count=128 bs=4194304
dd if=/pvfsmnt/asdf of=/dev/null count=256 bs=2097152
dd if=/pvfsmnt/asdf of=/dev/null count=512 bs=1048576
.
.
.
dd if=/pvfsmnt/asdf of=/dev/null count=4194304 bs=128

Reads seem faster using the static number, so my "knob code"
wasn't just racy, it wasn't even a good idea...

Signed-off-by: Mike Marshall <hubcap@omnibond.com>
Reported-by: kbuild test robot <lkp@intel.com>
/linux-master/lib/
H A Diov_iter.cdiff 6ac805d1 Mon Dec 04 10:47:49 MST 2023 Jens Axboe <axboe@kernel.dk> iov_iter: remove unused 'iov' argument from import_single_range()

It is entirely unused, just get rid of it.

Signed-off-by: Jens Axboe <axboe@kernel.dk>
Link: https://lore.kernel.org/r/20231204174827.1258875-2-axboe@kernel.dk
Signed-off-by: Christian Brauner <brauner@kernel.org>
diff fe2c34ba Fri Nov 17 14:38:46 MST 2023 Omar Sandoval <osandov@fb.com> iov_iter: fix copy_page_to_iter_nofault()

The recent conversion to inline functions made two mistakes:

1. It tries to copy the full amount requested (bytes), not just what's
available in the kmap'd page (n).
2. It's not applying the offset in the first page.

Note that copy_page_to_iter_nofault() is only used by /proc/kcore. This
was detected by drgn's test suite.

Fixes: f1982740f5e7 ("iov_iter: Convert iterate*() to inline funcs")
Signed-off-by: Omar Sandoval <osandov@fb.com>
Link: https://lore.kernel.org/r/c1616e06b5248013cbbb1881bb4fef85a7a69ccb.1700257019.git.osandov@fb.com
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: Christian Brauner <brauner@kernel.org>
diff 70e969eb Tue Aug 15 13:01:12 MDT 2023 Takashi Iwai <tiwai@suse.de> iov_iter: Export import_ubuf()

Export import_ubuf() to be used in sound subsystem for generic memory
handling as Linus suggested. It's used for constructing an iov_iter
of a single segment user-space copy for PCM data.

Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Link: https://lore.kernel.org/r/CAHk-=wh-mUL6mp4chAc6E_UjwpPLyCPRCJK+iB4ZMD2BqjwGHA@mail.gmail.com
Link: https://lore.kernel.org/r/20230815190136.8987-2-tiwai@suse.de
Signed-off-by: Takashi Iwai <tiwai@suse.de>
diff 7d58fe73 Fri Oct 28 14:50:30 MDT 2022 David Howells <dhowells@redhat.com> iov_iter: Add a function to extract a page list from an iterator

Add a function, iov_iter_extract_pages(), to extract a list of pages from
an iterator. The pages may be returned with a pin added or nothing,
depending on the type of iterator.

Add a second function, iov_iter_extract_will_pin(), to determine how the
cleanup should be done.

There are two cases:

(1) ITER_IOVEC or ITER_UBUF iterator.

Extracted pages will have pins (FOLL_PIN) obtained on them so that a
concurrent fork() will forcibly copy the page so that DMA is done
to/from the parent's buffer and is unavailable to/unaffected by the
child process.

iov_iter_extract_will_pin() will return true for this case. The
caller should use something like unpin_user_page() to dispose of the
page.

(2) Any other sort of iterator.

No refs or pins are obtained on the page, the assumption is made that
the caller will manage page retention.

iov_iter_extract_will_pin() will return false. The pages don't need
additional disposal.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jens Axboe <axboe@kernel.dk>
cc: Al Viro <viro@zeniv.linux.org.uk>
cc: John Hubbard <jhubbard@nvidia.com>
cc: David Hildenbrand <david@redhat.com>
cc: Matthew Wilcox <willy@infradead.org>
cc: linux-fsdevel@vger.kernel.org
cc: linux-mm@kvack.org
Signed-off-by: Steve French <stfrench@microsoft.com>
diff 2ad9bd83 Thu Jan 05 12:07:30 MST 2023 Jens Axboe <axboe@kernel.dk> iov: add import_ubuf()

Like import_single_range(), but for ITER_UBUF.

Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Keith Busch <kbusch@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
diff 10f525a8 Wed Jun 15 00:02:51 MDT 2022 Al Viro <viro@zeniv.linux.org.uk> ITER_PIPE: cache the type of last buffer

We often need to find whether the last buffer is anon or not, and
currently it's rather clumsy:
check if ->iov_offset is non-zero (i.e. that pipe is not empty)
if so, get the corresponding pipe_buffer and check its ->ops
if it's &default_pipe_buf_ops, we have an anon buffer.

Let's replace the use of ->iov_offset (which is nowhere near similar to
its role for other flavours) with signed field (->last_offset), with
the following rules:
empty, no buffers occupied: 0
anon, with bytes up to N-1 filled: N
zero-copy, with bytes up to N-1 filled: -N

That way abs(i->last_offset) is equal to what used to be in i->iov_offset
and empty vs. anon vs. zero-copy can be distinguished by the sign of
i->last_offset.

Checks for "should we extend the last buffer or should we start
a new one?" become easier to follow that way.

Note that most of the operations can only be done in a sane
state - i.e. when the pipe has nothing past the current position of
iterator. About the only thing that could be done outside of that
state is iov_iter_advance(), which transitions to the sane state by
truncating the pipe. There are only two cases where we leave the
sane state:
1) iov_iter_get_pages()/iov_iter_get_pages_alloc(). Will be
dealt with later, when we make get_pages advancing - the callers are
actually happier that way.
2) iov_iter copied, then something is put into the copy. Since
they share the underlying pipe, the original gets behind. When we
decide that we are done with the copy (original is not usable until then)
we advance the original. direct_io used to be done that way; nowadays
it operates on the original and we do iov_iter_revert() to discard
the excessive data. At the moment there's nothing in the kernel that
could do that to ITER_PIPE iterators, so this reason for insane state
is theoretical right now.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
diff 2c855de9 Wed Jun 15 14:03:25 MDT 2022 Al Viro <viro@zeniv.linux.org.uk> ITER_PIPE: clean pipe_advance() up

instead of setting ->iov_offset for new position and calling
pipe_truncate() to adjust ->len of the last buffer and discard
everything after it, adjust ->len at the same time we set ->iov_offset
and use pipe_discard_from() to deal with buffers past that.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
diff 47b7fcae Mon Jun 13 12:30:15 MDT 2022 Al Viro <viro@zeniv.linux.org.uk> ITER_PIPE: helpers for adding pipe buffers

There are only two kinds of pipe_buffer in the area used by ITER_PIPE.

1) anonymous - copy_to_iter() et.al. end up creating those and copying
data there. They have zero ->offset, and their ->ops points to
default_pipe_page_ops.

2) zero-copy ones - those come from copy_page_to_iter(), and page
comes from caller. ->offset is also caller-supplied - it might be
non-zero. ->ops points to page_cache_pipe_buf_ops.

Move creation and insertion of those into helpers - push_anon(pipe, size)
and push_page(pipe, page, offset, size) resp., separating them from
the "could we avoid creating a new buffer by merging with the current
head?" logics.

Acked-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
diff 2dcedb2a Tue Jun 14 08:24:37 MDT 2022 Al Viro <viro@zeniv.linux.org.uk> ITER_PIPE: helper for getting pipe buffer by index

pipe_buffer instances of a pipe are organized as a ring buffer,
with power-of-2 size. Indices are kept *not* reduced modulo ring
size, so the buffer refered to by index N is
pipe->bufs[N & (pipe->ring_size - 1)].

Ring size can change over the lifetime of a pipe, but not while
the pipe is locked. So for any iov_iter primitives it's a constant.
Original conversion of pipes to this layout went overboard trying
to microoptimize that - calculating pipe->ring_size - 1, storing
it in a local variable and using through the function. In some
cases it might be warranted, but most of the times it only
obfuscates what's going on in there.

Introduce a helper (pipe_buf(pipe, N)) that would encapsulate
that and use it in the obvious cases. More will follow...

Reviewed-by: Jeff Layton <jlayton@kernel.org>
Reviewed-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
diff 2dcedb2a Tue Jun 14 08:24:37 MDT 2022 Al Viro <viro@zeniv.linux.org.uk> ITER_PIPE: helper for getting pipe buffer by index

pipe_buffer instances of a pipe are organized as a ring buffer,
with power-of-2 size. Indices are kept *not* reduced modulo ring
size, so the buffer refered to by index N is
pipe->bufs[N & (pipe->ring_size - 1)].

Ring size can change over the lifetime of a pipe, but not while
the pipe is locked. So for any iov_iter primitives it's a constant.
Original conversion of pipes to this layout went overboard trying
to microoptimize that - calculating pipe->ring_size - 1, storing
it in a local variable and using through the function. In some
cases it might be warranted, but most of the times it only
obfuscates what's going on in there.

Introduce a helper (pipe_buf(pipe, N)) that would encapsulate
that and use it in the obvious cases. More will follow...

Reviewed-by: Jeff Layton <jlayton@kernel.org>
Reviewed-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
/linux-master/fs/gfs2/
H A Ddir.cdiff 7336d0e6 Fri May 31 02:09:56 MDT 2019 Thomas Gleixner <tglx@linutronix.de> treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 398

Based on 1 normalized pattern(s):

this copyrighted material is made available to anyone wishing to use
modify copy or redistribute it subject to the terms and conditions
of the gnu general public license version 2

extracted by the scancode license scanner the SPDX license identifier

GPL-2.0-only

has been chosen to replace the boilerplate/reference in 44 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190531081038.653000175@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
diff 6da2ec56 Tue Jun 12 14:55:00 MDT 2018 Kees Cook <keescook@chromium.org> treewide: kmalloc() -> kmalloc_array()

The kmalloc() function has a 2-factor argument form, kmalloc_array(). This
patch replaces cases of:

kmalloc(a * b, gfp)

with:
kmalloc_array(a * b, gfp)

as well as handling cases of:

kmalloc(a * b * c, gfp)

with:

kmalloc(array3_size(a, b, c), gfp)

as it's slightly less ugly than:

kmalloc_array(array_size(a, b), c, gfp)

This does, however, attempt to ignore constant size factors like:

kmalloc(4 * 1024, gfp)

though any constants defined via macros get caught up in the conversion.

Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.

The tools/ directory was manually excluded, since it has its own
implementation of kmalloc().

The Coccinelle script used for this was:

// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@

(
kmalloc(
- (sizeof(TYPE)) * E
+ sizeof(TYPE) * E
, ...)
|
kmalloc(
- (sizeof(THING)) * E
+ sizeof(THING) * E
, ...)
)

// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@

(
kmalloc(
- sizeof(u8) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(__u8) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(char) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(unsigned char) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(u8) * COUNT
+ COUNT
, ...)
|
kmalloc(
- sizeof(__u8) * COUNT
+ COUNT
, ...)
|
kmalloc(
- sizeof(char) * COUNT
+ COUNT
, ...)
|
kmalloc(
- sizeof(unsigned char) * COUNT
+ COUNT
, ...)
)

// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@

(
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * (COUNT_ID)
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * COUNT_ID
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * (COUNT_CONST)
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * COUNT_CONST
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * (COUNT_ID)
+ COUNT_ID, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * COUNT_ID
+ COUNT_ID, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * (COUNT_CONST)
+ COUNT_CONST, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * COUNT_CONST
+ COUNT_CONST, sizeof(THING)
, ...)
)

// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@

- kmalloc
+ kmalloc_array
(
- SIZE * COUNT
+ COUNT, SIZE
, ...)

// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@

(
kmalloc(
- sizeof(TYPE) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(TYPE) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(TYPE) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(TYPE) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(THING) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kmalloc(
- sizeof(THING) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kmalloc(
- sizeof(THING) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kmalloc(
- sizeof(THING) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
)

// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@

(
kmalloc(
- sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kmalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kmalloc(
- sizeof(THING1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kmalloc(
- sizeof(THING1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kmalloc(
- sizeof(TYPE1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
|
kmalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
)

// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@

(
kmalloc(
- (COUNT) * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- (COUNT) * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- (COUNT) * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- (COUNT) * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
)

// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@

(
kmalloc(C1 * C2 * C3, ...)
|
kmalloc(
- (E1) * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
|
kmalloc(
- (E1) * (E2) * E3
+ array3_size(E1, E2, E3)
, ...)
|
kmalloc(
- (E1) * (E2) * (E3)
+ array3_size(E1, E2, E3)
, ...)
|
kmalloc(
- E1 * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
)

// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@

(
kmalloc(sizeof(THING) * C2, ...)
|
kmalloc(sizeof(TYPE) * C2, ...)
|
kmalloc(C1 * C2 * C3, ...)
|
kmalloc(C1 * C2, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * (E2)
+ E2, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * E2
+ E2, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * (E2)
+ E2, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * E2
+ E2, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- (E1) * E2
+ E1, E2
, ...)
|
- kmalloc
+ kmalloc_array
(
- (E1) * (E2)
+ E1, E2
, ...)
|
- kmalloc
+ kmalloc_array
(
- E1 * E2
+ E1, E2
, ...)
)

Signed-off-by: Kees Cook <keescook@chromium.org>
diff 6da2ec56 Tue Jun 12 14:55:00 MDT 2018 Kees Cook <keescook@chromium.org> treewide: kmalloc() -> kmalloc_array()

The kmalloc() function has a 2-factor argument form, kmalloc_array(). This
patch replaces cases of:

kmalloc(a * b, gfp)

with:
kmalloc_array(a * b, gfp)

as well as handling cases of:

kmalloc(a * b * c, gfp)

with:

kmalloc(array3_size(a, b, c), gfp)

as it's slightly less ugly than:

kmalloc_array(array_size(a, b), c, gfp)

This does, however, attempt to ignore constant size factors like:

kmalloc(4 * 1024, gfp)

though any constants defined via macros get caught up in the conversion.

Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.

The tools/ directory was manually excluded, since it has its own
implementation of kmalloc().

The Coccinelle script used for this was:

// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@

(
kmalloc(
- (sizeof(TYPE)) * E
+ sizeof(TYPE) * E
, ...)
|
kmalloc(
- (sizeof(THING)) * E
+ sizeof(THING) * E
, ...)
)

// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@

(
kmalloc(
- sizeof(u8) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(__u8) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(char) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(unsigned char) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(u8) * COUNT
+ COUNT
, ...)
|
kmalloc(
- sizeof(__u8) * COUNT
+ COUNT
, ...)
|
kmalloc(
- sizeof(char) * COUNT
+ COUNT
, ...)
|
kmalloc(
- sizeof(unsigned char) * COUNT
+ COUNT
, ...)
)

// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@

(
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * (COUNT_ID)
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * COUNT_ID
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * (COUNT_CONST)
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * COUNT_CONST
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * (COUNT_ID)
+ COUNT_ID, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * COUNT_ID
+ COUNT_ID, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * (COUNT_CONST)
+ COUNT_CONST, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * COUNT_CONST
+ COUNT_CONST, sizeof(THING)
, ...)
)

// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@

- kmalloc
+ kmalloc_array
(
- SIZE * COUNT
+ COUNT, SIZE
, ...)

// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@

(
kmalloc(
- sizeof(TYPE) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(TYPE) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(TYPE) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(TYPE) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(THING) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kmalloc(
- sizeof(THING) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kmalloc(
- sizeof(THING) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kmalloc(
- sizeof(THING) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
)

// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@

(
kmalloc(
- sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kmalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kmalloc(
- sizeof(THING1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kmalloc(
- sizeof(THING1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kmalloc(
- sizeof(TYPE1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
|
kmalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
)

// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@

(
kmalloc(
- (COUNT) * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- (COUNT) * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- (COUNT) * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- (COUNT) * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
)

// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@

(
kmalloc(C1 * C2 * C3, ...)
|
kmalloc(
- (E1) * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
|
kmalloc(
- (E1) * (E2) * E3
+ array3_size(E1, E2, E3)
, ...)
|
kmalloc(
- (E1) * (E2) * (E3)
+ array3_size(E1, E2, E3)
, ...)
|
kmalloc(
- E1 * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
)

// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@

(
kmalloc(sizeof(THING) * C2, ...)
|
kmalloc(sizeof(TYPE) * C2, ...)
|
kmalloc(C1 * C2 * C3, ...)
|
kmalloc(C1 * C2, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * (E2)
+ E2, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * E2
+ E2, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * (E2)
+ E2, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * E2
+ E2, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- (E1) * E2
+ E1, E2
, ...)
|
- kmalloc
+ kmalloc_array
(
- (E1) * (E2)
+ E1, E2
, ...)
|
- kmalloc
+ kmalloc_array
(
- E1 * E2
+ E1, E2
, ...)
)

Signed-off-by: Kees Cook <keescook@chromium.org>
diff 6da2ec56 Tue Jun 12 14:55:00 MDT 2018 Kees Cook <keescook@chromium.org> treewide: kmalloc() -> kmalloc_array()

The kmalloc() function has a 2-factor argument form, kmalloc_array(). This
patch replaces cases of:

kmalloc(a * b, gfp)

with:
kmalloc_array(a * b, gfp)

as well as handling cases of:

kmalloc(a * b * c, gfp)

with:

kmalloc(array3_size(a, b, c), gfp)

as it's slightly less ugly than:

kmalloc_array(array_size(a, b), c, gfp)

This does, however, attempt to ignore constant size factors like:

kmalloc(4 * 1024, gfp)

though any constants defined via macros get caught up in the conversion.

Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.

The tools/ directory was manually excluded, since it has its own
implementation of kmalloc().

The Coccinelle script used for this was:

// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@

(
kmalloc(
- (sizeof(TYPE)) * E
+ sizeof(TYPE) * E
, ...)
|
kmalloc(
- (sizeof(THING)) * E
+ sizeof(THING) * E
, ...)
)

// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@

(
kmalloc(
- sizeof(u8) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(__u8) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(char) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(unsigned char) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(u8) * COUNT
+ COUNT
, ...)
|
kmalloc(
- sizeof(__u8) * COUNT
+ COUNT
, ...)
|
kmalloc(
- sizeof(char) * COUNT
+ COUNT
, ...)
|
kmalloc(
- sizeof(unsigned char) * COUNT
+ COUNT
, ...)
)

// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@

(
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * (COUNT_ID)
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * COUNT_ID
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * (COUNT_CONST)
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * COUNT_CONST
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * (COUNT_ID)
+ COUNT_ID, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * COUNT_ID
+ COUNT_ID, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * (COUNT_CONST)
+ COUNT_CONST, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * COUNT_CONST
+ COUNT_CONST, sizeof(THING)
, ...)
)

// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@

- kmalloc
+ kmalloc_array
(
- SIZE * COUNT
+ COUNT, SIZE
, ...)

// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@

(
kmalloc(
- sizeof(TYPE) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(TYPE) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(TYPE) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(TYPE) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(THING) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kmalloc(
- sizeof(THING) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kmalloc(
- sizeof(THING) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kmalloc(
- sizeof(THING) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
)

// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@

(
kmalloc(
- sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kmalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kmalloc(
- sizeof(THING1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kmalloc(
- sizeof(THING1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kmalloc(
- sizeof(TYPE1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
|
kmalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
)

// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@

(
kmalloc(
- (COUNT) * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- (COUNT) * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- (COUNT) * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- (COUNT) * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
)

// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@

(
kmalloc(C1 * C2 * C3, ...)
|
kmalloc(
- (E1) * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
|
kmalloc(
- (E1) * (E2) * E3
+ array3_size(E1, E2, E3)
, ...)
|
kmalloc(
- (E1) * (E2) * (E3)
+ array3_size(E1, E2, E3)
, ...)
|
kmalloc(
- E1 * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
)

// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@

(
kmalloc(sizeof(THING) * C2, ...)
|
kmalloc(sizeof(TYPE) * C2, ...)
|
kmalloc(C1 * C2 * C3, ...)
|
kmalloc(C1 * C2, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * (E2)
+ E2, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * E2
+ E2, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * (E2)
+ E2, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * E2
+ E2, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- (E1) * E2
+ E1, E2
, ...)
|
- kmalloc
+ kmalloc_array
(
- (E1) * (E2)
+ E1, E2
, ...)
|
- kmalloc
+ kmalloc_array
(
- E1 * E2
+ E1, E2
, ...)
)

Signed-off-by: Kees Cook <keescook@chromium.org>
diff 6da2ec56 Tue Jun 12 14:55:00 MDT 2018 Kees Cook <keescook@chromium.org> treewide: kmalloc() -> kmalloc_array()

The kmalloc() function has a 2-factor argument form, kmalloc_array(). This
patch replaces cases of:

kmalloc(a * b, gfp)

with:
kmalloc_array(a * b, gfp)

as well as handling cases of:

kmalloc(a * b * c, gfp)

with:

kmalloc(array3_size(a, b, c), gfp)

as it's slightly less ugly than:

kmalloc_array(array_size(a, b), c, gfp)

This does, however, attempt to ignore constant size factors like:

kmalloc(4 * 1024, gfp)

though any constants defined via macros get caught up in the conversion.

Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.

The tools/ directory was manually excluded, since it has its own
implementation of kmalloc().

The Coccinelle script used for this was:

// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@

(
kmalloc(
- (sizeof(TYPE)) * E
+ sizeof(TYPE) * E
, ...)
|
kmalloc(
- (sizeof(THING)) * E
+ sizeof(THING) * E
, ...)
)

// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@

(
kmalloc(
- sizeof(u8) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(__u8) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(char) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(unsigned char) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(u8) * COUNT
+ COUNT
, ...)
|
kmalloc(
- sizeof(__u8) * COUNT
+ COUNT
, ...)
|
kmalloc(
- sizeof(char) * COUNT
+ COUNT
, ...)
|
kmalloc(
- sizeof(unsigned char) * COUNT
+ COUNT
, ...)
)

// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@

(
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * (COUNT_ID)
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * COUNT_ID
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * (COUNT_CONST)
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * COUNT_CONST
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * (COUNT_ID)
+ COUNT_ID, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * COUNT_ID
+ COUNT_ID, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * (COUNT_CONST)
+ COUNT_CONST, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * COUNT_CONST
+ COUNT_CONST, sizeof(THING)
, ...)
)

// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@

- kmalloc
+ kmalloc_array
(
- SIZE * COUNT
+ COUNT, SIZE
, ...)

// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@

(
kmalloc(
- sizeof(TYPE) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(TYPE) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(TYPE) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(TYPE) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(THING) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kmalloc(
- sizeof(THING) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kmalloc(
- sizeof(THING) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kmalloc(
- sizeof(THING) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
)

// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@

(
kmalloc(
- sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kmalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kmalloc(
- sizeof(THING1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kmalloc(
- sizeof(THING1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kmalloc(
- sizeof(TYPE1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
|
kmalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
)

// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@

(
kmalloc(
- (COUNT) * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- (COUNT) * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- (COUNT) * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- (COUNT) * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
)

// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@

(
kmalloc(C1 * C2 * C3, ...)
|
kmalloc(
- (E1) * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
|
kmalloc(
- (E1) * (E2) * E3
+ array3_size(E1, E2, E3)
, ...)
|
kmalloc(
- (E1) * (E2) * (E3)
+ array3_size(E1, E2, E3)
, ...)
|
kmalloc(
- E1 * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
)

// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@

(
kmalloc(sizeof(THING) * C2, ...)
|
kmalloc(sizeof(TYPE) * C2, ...)
|
kmalloc(C1 * C2 * C3, ...)
|
kmalloc(C1 * C2, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * (E2)
+ E2, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * E2
+ E2, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * (E2)
+ E2, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * E2
+ E2, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- (E1) * E2
+ E1, E2
, ...)
|
- kmalloc
+ kmalloc_array
(
- (E1) * (E2)
+ E1, E2
, ...)
|
- kmalloc
+ kmalloc_array
(
- E1 * E2
+ E1, E2
, ...)
)

Signed-off-by: Kees Cook <keescook@chromium.org>
diff 6da2ec56 Tue Jun 12 14:55:00 MDT 2018 Kees Cook <keescook@chromium.org> treewide: kmalloc() -> kmalloc_array()

The kmalloc() function has a 2-factor argument form, kmalloc_array(). This
patch replaces cases of:

kmalloc(a * b, gfp)

with:
kmalloc_array(a * b, gfp)

as well as handling cases of:

kmalloc(a * b * c, gfp)

with:

kmalloc(array3_size(a, b, c), gfp)

as it's slightly less ugly than:

kmalloc_array(array_size(a, b), c, gfp)

This does, however, attempt to ignore constant size factors like:

kmalloc(4 * 1024, gfp)

though any constants defined via macros get caught up in the conversion.

Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.

The tools/ directory was manually excluded, since it has its own
implementation of kmalloc().

The Coccinelle script used for this was:

// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@

(
kmalloc(
- (sizeof(TYPE)) * E
+ sizeof(TYPE) * E
, ...)
|
kmalloc(
- (sizeof(THING)) * E
+ sizeof(THING) * E
, ...)
)

// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@

(
kmalloc(
- sizeof(u8) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(__u8) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(char) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(unsigned char) * (COUNT)
+ COUNT
, ...)
|
kmalloc(
- sizeof(u8) * COUNT
+ COUNT
, ...)
|
kmalloc(
- sizeof(__u8) * COUNT
+ COUNT
, ...)
|
kmalloc(
- sizeof(char) * COUNT
+ COUNT
, ...)
|
kmalloc(
- sizeof(unsigned char) * COUNT
+ COUNT
, ...)
)

// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@

(
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * (COUNT_ID)
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * COUNT_ID
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * (COUNT_CONST)
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * COUNT_CONST
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * (COUNT_ID)
+ COUNT_ID, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * COUNT_ID
+ COUNT_ID, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * (COUNT_CONST)
+ COUNT_CONST, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * COUNT_CONST
+ COUNT_CONST, sizeof(THING)
, ...)
)

// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@

- kmalloc
+ kmalloc_array
(
- SIZE * COUNT
+ COUNT, SIZE
, ...)

// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@

(
kmalloc(
- sizeof(TYPE) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(TYPE) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(TYPE) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(TYPE) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kmalloc(
- sizeof(THING) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kmalloc(
- sizeof(THING) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kmalloc(
- sizeof(THING) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kmalloc(
- sizeof(THING) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
)

// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@

(
kmalloc(
- sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kmalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kmalloc(
- sizeof(THING1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kmalloc(
- sizeof(THING1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kmalloc(
- sizeof(TYPE1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
|
kmalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
)

// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@

(
kmalloc(
- (COUNT) * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- (COUNT) * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- (COUNT) * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- (COUNT) * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kmalloc(
- COUNT * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
)

// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@

(
kmalloc(C1 * C2 * C3, ...)
|
kmalloc(
- (E1) * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
|
kmalloc(
- (E1) * (E2) * E3
+ array3_size(E1, E2, E3)
, ...)
|
kmalloc(
- (E1) * (E2) * (E3)
+ array3_size(E1, E2, E3)
, ...)
|
kmalloc(
- E1 * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
)

// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@

(
kmalloc(sizeof(THING) * C2, ...)
|
kmalloc(sizeof(TYPE) * C2, ...)
|
kmalloc(C1 * C2 * C3, ...)
|
kmalloc(C1 * C2, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * (E2)
+ E2, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(TYPE) * E2
+ E2, sizeof(TYPE)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * (E2)
+ E2, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- sizeof(THING) * E2
+ E2, sizeof(THING)
, ...)
|
- kmalloc
+ kmalloc_array
(
- (E1) * E2
+ E1, E2
, ...)
|
- kmalloc
+ kmalloc_array
(
- (E1) * (E2)
+ E1, E2
, ...)
|
- kmalloc
+ kmalloc_array
(
- E1 * E2
+ E1, E2
, ...)
)

Signed-off-by: Kees Cook <keescook@chromium.org>
diff 2f8b5444 Tue Nov 01 07:40:13 MDT 2016 Christoph Hellwig <hch@lst.de> block,fs: untangle fs.h and blk_types.h

Nothing in fs.h should require blk_types.h to be included.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
diff 2f8b5444 Tue Nov 01 07:40:13 MDT 2016 Christoph Hellwig <hch@lst.de> block,fs: untangle fs.h and blk_types.h

Nothing in fs.h should require blk_types.h to be included.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
diff 2a222ca9 Sun Jun 05 13:31:43 MDT 2016 Mike Christie <mchristi@redhat.com> fs: have submit_bh users pass in op and flags separately

This has submit_bh users pass in the operation and flags separately,
so submit_bh_wbc can setup the bio op and bi_rw flags on the bio that
is submitted.

Signed-off-by: Mike Christie <mchristi@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
diff 471f3db2 Tue Dec 01 07:46:55 MST 2015 Benjamin Marzinski <bmarzins@redhat.com> gfs2: change gfs2 readdir cookie

gfs2 currently returns 31 bits of filename hash as a cookie that readdir
uses for an offset into the directory. When there are a large number of
directory entries, the likelihood of a collision goes up way too
quickly. GFS2 will now return cookies that are guaranteed unique for a
while, and then fail back to using 30 bits of filename hash.
Specifically, the directory leaf blocks are divided up into chunks based
on the minimum size of a gfs2 directory entry (48 bytes). Each entry's
cookie is based off the chunk where it starts, in the linked list of
leaf blocks that it hashes to (there are 131072 hash buckets). Directory
entries will have unique names until they take reach chunk 8192.
Assuming the largest filenames possible, and the least efficient spacing
possible, this new method will still be able to return unique names when
the previous method has statistically more than a 99% chance of a
collision. The non-unique names it fails back to are guaranteed to not
collide with the unique names.

unique cookies will be in this format:
- 1 bit "0" to make sure the the returned cookie is positive
- 17 bits for the hash table index
- 1 bit for the mode "0"
- 13 bits for the offset

non-unique cookies will be in this format:
- 1 bit "0" to make sure the the returned cookie is positive
- 17 bits for the hash table index
- 1 bit for the mode "1"
- 13 more bits of the name hash

Another benefit of location based cookies, is that once a directory's
exhash table is fully extended (so that multiple hash table indexs do
not use the same leaf blocks), gfs2 can skip sorting the directory
entries until it reaches the non-unique ones, and then it only needs to
sort these. This provides a significant speed up for directory reads of
very large directories.

The only issue is that for these cookies to continue to point to the
correct entry as files are added and removed from the directory, gfs2
must keep the entries at the same offset in the leaf block when they are
split (see my previous patch). This means that until all the nodes in a
cluster are running with code that will split the directory leaf blocks
this way, none of the nodes can use the new cookie code. To deal with
this, gfs2 now has the mount option loccookie, which, if set, will make
it return these new location based cookies. This option must not be set
until all nodes in the cluster are at least running this version of the
kernel code, and you have guaranteed that there are no outstanding
cookies required by other software, such as NFS.

gfs2 uses some of the extra space at the end of the gfs2_dirent
structure to store the calculated readdir cookies. This keeps us from
needing to allocate a seperate array to hold these values. gfs2
recomputes the cookie stored in de_cookie for every readdir call. The
time it takes to do so is small, and if gfs2 expected this value to be
saved on disk, the new code wouldn't work correctly on filesystems
created with an earlier version of gfs2.

One issue with adding de_cookie to the union in the gfs2_dirent
structure is that it caused the union to align itself to a 4 byte
boundary, instead of its previous 2 byte boundary. This changed the
offset of de_rahead. To solve that, I pulled de_rahead out of the union,
since it does not need to be there.

Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com>
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
/linux-master/include/linux/
H A Dwriteback.hdiff 2a6e1a8f Wed Feb 14 23:36:37 MST 2024 Matthew Wilcox (Oracle) <willy@infradead.org> writeback: remove a duplicate prototype for tag_pages_for_writeback

[hch@lst.de: split from a larger patch]
Link: https://lkml.kernel.org/r/20240215063649.2164017-3-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Dave Chinner <dchinner@redhat.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
diff d585bdbe Thu Jan 26 13:12:54 MST 2023 Matthew Wilcox (Oracle) <willy@infradead.org> fs: convert writepage_t callback to pass a folio

Patch series "Convert writepage_t to use a folio".

More folioisation. I split out the mpage work from everything else
because it completely dominated the patch, but some implementations I just
converted outright.


This patch (of 2):

We always write back an entire folio, but that's currently passed as the
head page. Convert all filesystems that use write_cache_pages() to expect
a folio instead of a page.

Link: https://lkml.kernel.org/r/20230126201255.1681189-1-willy@infradead.org
Link: https://lkml.kernel.org/r/20230126201255.1681189-2-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
diff d585bdbe Thu Jan 26 13:12:54 MST 2023 Matthew Wilcox (Oracle) <willy@infradead.org> fs: convert writepage_t callback to pass a folio

Patch series "Convert writepage_t to use a folio".

More folioisation. I split out the mpage work from everything else
because it completely dominated the patch, but some implementations I just
converted outright.


This patch (of 2):

We always write back an entire folio, but that's currently passed as the
head page. Convert all filesystems that use write_cache_pages() to expect
a folio instead of a page.

Link: https://lkml.kernel.org/r/20230126201255.1681189-1-willy@infradead.org
Link: https://lkml.kernel.org/r/20230126201255.1681189-2-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
diff 9cfb816b Mon Jan 16 12:25:06 MST 2023 Matthew Wilcox (Oracle) <willy@infradead.org> mm/fs: convert inode_attach_wb() to take a folio

Patch series "Writeback folio conversions".

Remove more calls to compound_head() by passing folios around instead of
pages.


This patch (of 2):

The only caller of inode_attach_wb() which doesn't pass NULL already has a
folio, so convert the whole call-chain to take folios.

Link: https://lkml.kernel.org/r/20230116192507.2146150-1-willy@infradead.org
Link: https://lkml.kernel.org/r/20230116192507.2146150-2-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
diff 9cfb816b Mon Jan 16 12:25:06 MST 2023 Matthew Wilcox (Oracle) <willy@infradead.org> mm/fs: convert inode_attach_wb() to take a folio

Patch series "Writeback folio conversions".

Remove more calls to compound_head() by passing folios around instead of
pages.


This patch (of 2):

The only caller of inode_attach_wb() which doesn't pass NULL already has a
folio, so convert the whole call-chain to take folios.

Link: https://lkml.kernel.org/r/20230116192507.2146150-1-willy@infradead.org
Link: https://lkml.kernel.org/r/20230116192507.2146150-2-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
diff 08276bda Wed Oct 20 16:50:01 MDT 2021 David Howells <dhowells@redhat.com> vfs, fscache: Implement pinning of cache usage for writeback

Cachefiles has a problem in that it needs to keep the backing file for a
cookie open whilst there are local modifications pending that need to be
written to it. However, we don't want to keep the file open indefinitely,
as that causes EMFILE/ENFILE/ENOMEM problems.

Reopening the cache file, however, is a problem if this is being done due
to writeback triggered by exit(). Some filesystems will oops if we try to
open a file in that context because they want to access current->fs or
other resources that have already been dismantled.

To get around this, I added the following:

(1) An inode flag, I_PINNING_FSCACHE_WB, to be set on a network filesystem
inode to indicate that we have a usage count on the cookie caching
that inode.

(2) A flag in struct writeback_control, unpinned_fscache_wb, that is set
when __writeback_single_inode() clears the last dirty page from
i_pages - at which point it clears I_PINNING_FSCACHE_WB and sets this
flag.

This has to be done here so that clearing I_PINNING_FSCACHE_WB can be
done atomically with the check of PAGECACHE_TAG_DIRTY that clears
I_DIRTY_PAGES.

(3) A function, fscache_set_page_dirty(), which if it is not set, sets
I_PINNING_FSCACHE_WB and calls fscache_use_cookie() to pin the cache
resources.

(4) A function, fscache_unpin_writeback(), to be called by ->write_inode()
to unuse the cookie.

(5) A function, fscache_clear_inode_writeback(), to be called when the
inode is evicted, before clear_inode() is called. This cleans up any
lingering I_PINNING_FSCACHE_WB.

The network filesystem can then use these tools to make sure that
fscache_write_to_cache() can write locally modified data to the cache as
well as to the server.

For the future, I'm working on write helpers for netfs lib that should
allow this facility to be removed by keeping track of the dirty regions
separately - but that's incomplete at the moment and is also going to be
affected by folios, one way or another, since it deals with pages

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/163819615157.215744.17623791756928043114.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906917856.143852.8224898306177154573.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967124567.1823006.14188359004568060298.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021524705.640689.17824932021727663017.stgit@warthog.procyon.org.uk/ # v4
diff 348332e0 Mon Sep 20 06:33:12 MDT 2021 Christoph Hellwig <hch@lst.de> mm: don't include <linux/blk-cgroup.h> in <linux/writeback.h>

blk-cgroup.h pulls in blkdev.h and thus pretty much all the block
headers. Break this dependency chain by turning wbc_blkcg_css into a
macro and dropping the blk-cgroup.h include.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Link: https://lore.kernel.org/r/20210920123328.1399408-2-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
diff fee468fd Thu Sep 02 15:53:06 MDT 2021 Jan Kara <jack@suse.cz> writeback: reliably update bandwidth estimation

Currently we trigger writeback bandwidth estimation from
balance_dirty_pages() and from wb_writeback(). However neither of these
need to trigger when the system is relatively idle and writeback is
triggered e.g. from fsync(2). Make sure writeback estimates happen
reliably by triggering them from do_writepages().

Link: https://lkml.kernel.org/r/20210713104716.22868-2-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Cc: Michael Stapelberg <stapelberg+linux@google.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
diff fee468fd Thu Sep 02 15:53:06 MDT 2021 Jan Kara <jack@suse.cz> writeback: reliably update bandwidth estimation

Currently we trigger writeback bandwidth estimation from
balance_dirty_pages() and from wb_writeback(). However neither of these
need to trigger when the system is relatively idle and writeback is
triggered e.g. from fsync(2). Make sure writeback estimates happen
reliably by triggering them from do_writepages().

Link: https://lkml.kernel.org/r/20210713104716.22868-2-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Cc: Michael Stapelberg <stapelberg+linux@google.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
diff c22d70a1 Mon Jun 28 20:36:03 MDT 2021 Roman Gushchin <guro@fb.com> writeback, cgroup: release dying cgwbs by switching attached inodes

Asynchronously try to release dying cgwbs by switching attached inodes to
the nearest living ancestor wb. It helps to get rid of per-cgroup
writeback structures themselves and of pinned memory and block cgroups,
which are significantly larger structures (mostly due to large per-cpu
statistics data). This prevents memory waste and helps to avoid different
scalability problems caused by large piles of dying cgroups.

Reuse the existing mechanism of inode switching used for foreign inode
detection. To speed things up batch up to 115 inode switching in a single
operation (the maximum number is selected so that the resulting struct
inode_switch_wbs_context can fit into 1024 bytes). Because every
switching consists of two steps divided by an RCU grace period, it would
be too slow without batching. Please note that the whole batch counts as
a single operation (when increasing/decreasing isw_nr_in_flight). This
allows to keep umounting working (flush the switching queue), however
prevents cleanups from consuming the whole switching quota and effectively
blocking the frn switching.

A cgwb cleanup operation can fail due to different reasons (e.g. not
enough memory, the cgwb has an in-flight/pending io, an attached inode in
a wrong state, etc). In this case the next scheduled cleanup will make a
new attempt. An attempt is made each time a new cgwb is offlined (in
other words a memcg and/or a blkcg is deleted by a user). In the future
an additional attempt scheduled by a timer can be implemented.

[guro@fb.com: replace open-coded "115" with arithmetic]
Link: https://lkml.kernel.org/r/YMEcSBcq/VXMiPPO@carbon.dhcp.thefacebook.com
[guro@fb.com: add smp_mb() to inode_prepare_wbs_switch()]
Link: https://lkml.kernel.org/r/YMFa+guFw7OFjf3X@carbon.dhcp.thefacebook.com
[willy@infradead.org: fix documentation]
Link: https://lkml.kernel.org/r/20210615200242.1716568-2-willy@infradead.org

Link: https://lkml.kernel.org/r/20210608230225.2078447-9-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Dennis Zhou <dennis@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Jan Kara <jack@suse.com>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
H A Dswap.hdiff cfeed8ff Mon Aug 21 10:08:46 MDT 2023 David Hildenbrand <david@redhat.com> mm/swap: stop using page->private on tail pages for THP_SWAP

Patch series "mm/swap: stop using page->private on tail pages for THP_SWAP
+ cleanups".

This series stops using page->private on tail pages for THP_SWAP, replaces
folio->private by folio->swap for swapcache folios, and starts using
"new_folio" for tail pages that we are splitting to remove the usage of
page->private for swapcache handling completely.


This patch (of 4):

Let's stop using page->private on tail pages, making it possible to just
unconditionally reuse that field in the tail pages of large folios.

The remaining usage of the private field for THP_SWAP is in the THP
splitting code (mm/huge_memory.c), that we'll handle separately later.

Update the THP_SWAP documentation and sanity checks in mm_types.h and
__split_huge_page_tail().

[david@redhat.com: stop using page->private on tail pages for THP_SWAP]
Link: https://lkml.kernel.org/r/6f0a82a3-6948-20d9-580b-be1dbf415701@redhat.com
Link: https://lkml.kernel.org/r/20230821160849.531668-1-david@redhat.com
Link: https://lkml.kernel.org/r/20230821160849.531668-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com> [arm64]
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
diff ffcb5f52 Tue May 02 19:36:06 MDT 2023 Nhat Pham <nphamcs@gmail.com> workingset: refactor LRU refault to expose refault recency check

Patch series "cachestat: a new syscall for page cache state of files",
v13.

There is currently no good way to query the page cache statistics of large
files and directory trees. There is mincore(), but it scales poorly: the
kernel writes out a lot of bitmap data that userspace has to aggregate,
when the user really does not care about per-page information in that
case. The user also needs to mmap and unmap each file as it goes along,
which can be quite slow as well.

Some use cases where this information could come in handy:
* Allowing database to decide whether to perform an index scan or direct
table queries based on the in-memory cache state of the index.
* Visibility into the writeback algorithm, for performance issues
diagnostic.
* Workload-aware writeback pacing: estimating IO fulfilled by page cache
(and IO to be done) within a range of a file, allowing for more
frequent syncing when and where there is IO capacity, and batching
when there is not.
* Computing memory usage of large files/directory trees, analogous to
the du tool for disk usage.

More information about these use cases could be found in this thread:
https://lore.kernel.org/lkml/20230315170934.GA97793@cmpxchg.org/

This series of patches introduces a new system call, cachestat, that
summarizes the page cache statistics (number of cached pages, dirty pages,
pages marked for writeback, evicted pages etc.) of a file, in a specified
range of bytes. It also include a selftest suite that tests some typical
usage. Currently, the syscall is only wired in for x86 architecture.

This interface is inspired by past discussion and concerns with fincore,
which has a similar design (and as a result, issues) as mincore. Relevant
links:

https://lkml.indiana.edu/hypermail/linux/kernel/1302.1/04207.html
https://lkml.indiana.edu/hypermail/linux/kernel/1302.1/04209.html


I have also developed a small tool that computes the memory usage of files
and directories, analogous to the du utility. User can choose between
mincore or cachestat (with cachestat exporting more information than
mincore). To compare the performance of these two options, I benchmarked
the tool on the root directory of a Meta's server machine, each for five
runs:

Using cachestat
real -- Median: 33.377s, Average: 33.475s, Standard Deviation: 0.3602
user -- Median: 4.08s, Average: 4.1078s, Standard Deviation: 0.0742
sys -- Median: 28.823s, Average: 28.8866s, Standard Deviation: 0.2689

Using mincore:
real -- Median: 102.352s, Average: 102.3442s, Standard Deviation: 0.2059
user -- Median: 10.149s, Average: 10.1482s, Standard Deviation: 0.0162
sys -- Median: 91.186s, Average: 91.2084s, Standard Deviation: 0.2046

I also ran both syscalls on a 2TB sparse file:

Using cachestat:
real 0m0.009s
user 0m0.000s
sys 0m0.009s

Using mincore:
real 0m37.510s
user 0m2.934s
sys 0m34.558s

Very large files like this are the pathological case for mincore. In
fact, to compute the stats for a single 2TB file, mincore takes as long as
cachestat takes to compute the stats for the entire tree! This could
easily happen inadvertently when we run it on subdirectories. Mincore is
clearly not suitable for a general-purpose command line tool.

Regarding security concerns, cachestat() should not pose any additional
issues. The caller already has read permission to the file itself (since
they need an fd to that file to call cachestat). This means that the
caller can access the underlying data in its entirety, which is a much
greater source of information (and as a result, a much greater security
risk) than the cache status itself.

The latest API change (in v13 of the patch series) is suggested by Jens
Axboe. It allows for 64-bit length argument, even on 32-bit architecture
(which is previously not possible due to the limit on the number of
syscall arguments). Furthermore, it eliminates the need for compatibility
handling - every user can use the same ABI.


This patch (of 4):

In preparation for computing recently evicted pages in cachestat, refactor
workingset_refault and lru_gen_refault to expose a helper function that
would test if an evicted page is recently evicted.

[penguin-kernel@I-love.SAKURA.ne.jp: add missing rcu_read_unlock() in lru_gen_refault()]
Link: https://lkml.kernel.org/r/610781bc-cf11-fc89-a46f-87cb8235d439@I-love.SAKURA.ne.jp
Link: https://lkml.kernel.org/r/20230503013608.2431726-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20230503013608.2431726-2-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Brian Foster <bfoster@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
diff ffcb5f52 Tue May 02 19:36:06 MDT 2023 Nhat Pham <nphamcs@gmail.com> workingset: refactor LRU refault to expose refault recency check

Patch series "cachestat: a new syscall for page cache state of files",
v13.

There is currently no good way to query the page cache statistics of large
files and directory trees. There is mincore(), but it scales poorly: the
kernel writes out a lot of bitmap data that userspace has to aggregate,
when the user really does not care about per-page information in that
case. The user also needs to mmap and unmap each file as it goes along,
which can be quite slow as well.

Some use cases where this information could come in handy:
* Allowing database to decide whether to perform an index scan or direct
table queries based on the in-memory cache state of the index.
* Visibility into the writeback algorithm, for performance issues
diagnostic.
* Workload-aware writeback pacing: estimating IO fulfilled by page cache
(and IO to be done) within a range of a file, allowing for more
frequent syncing when and where there is IO capacity, and batching
when there is not.
* Computing memory usage of large files/directory trees, analogous to
the du tool for disk usage.

More information about these use cases could be found in this thread:
https://lore.kernel.org/lkml/20230315170934.GA97793@cmpxchg.org/

This series of patches introduces a new system call, cachestat, that
summarizes the page cache statistics (number of cached pages, dirty pages,
pages marked for writeback, evicted pages etc.) of a file, in a specified
range of bytes. It also include a selftest suite that tests some typical
usage. Currently, the syscall is only wired in for x86 architecture.

This interface is inspired by past discussion and concerns with fincore,
which has a similar design (and as a result, issues) as mincore. Relevant
links:

https://lkml.indiana.edu/hypermail/linux/kernel/1302.1/04207.html
https://lkml.indiana.edu/hypermail/linux/kernel/1302.1/04209.html


I have also developed a small tool that computes the memory usage of files
and directories, analogous to the du utility. User can choose between
mincore or cachestat (with cachestat exporting more information than
mincore). To compare the performance of these two options, I benchmarked
the tool on the root directory of a Meta's server machine, each for five
runs:

Using cachestat
real -- Median: 33.377s, Average: 33.475s, Standard Deviation: 0.3602
user -- Median: 4.08s, Average: 4.1078s, Standard Deviation: 0.0742
sys -- Median: 28.823s, Average: 28.8866s, Standard Deviation: 0.2689

Using mincore:
real -- Median: 102.352s, Average: 102.3442s, Standard Deviation: 0.2059
user -- Median: 10.149s, Average: 10.1482s, Standard Deviation: 0.0162
sys -- Median: 91.186s, Average: 91.2084s, Standard Deviation: 0.2046

I also ran both syscalls on a 2TB sparse file:

Using cachestat:
real 0m0.009s
user 0m0.000s
sys 0m0.009s

Using mincore:
real 0m37.510s
user 0m2.934s
sys 0m34.558s

Very large files like this are the pathological case for mincore. In
fact, to compute the stats for a single 2TB file, mincore takes as long as
cachestat takes to compute the stats for the entire tree! This could
easily happen inadvertently when we run it on subdirectories. Mincore is
clearly not suitable for a general-purpose command line tool.

Regarding security concerns, cachestat() should not pose any additional
issues. The caller already has read permission to the file itself (since
they need an fd to that file to call cachestat). This means that the
caller can access the underlying data in its entirety, which is a much
greater source of information (and as a result, a much greater security
risk) than the cache status itself.

The latest API change (in v13 of the patch series) is suggested by Jens
Axboe. It allows for 64-bit length argument, even on 32-bit architecture
(which is previously not possible due to the limit on the number of
syscall arguments). Furthermore, it eliminates the need for compatibility
handling - every user can use the same ABI.


This patch (of 4):

In preparation for computing recently evicted pages in cachestat, refactor
workingset_refault and lru_gen_refault to expose a helper function that
would test if an evicted page is recently evicted.

[penguin-kernel@I-love.SAKURA.ne.jp: add missing rcu_read_unlock() in lru_gen_refault()]
Link: https://lkml.kernel.org/r/610781bc-cf11-fc89-a46f-87cb8235d439@I-love.SAKURA.ne.jp
Link: https://lkml.kernel.org/r/20230503013608.2431726-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20230503013608.2431726-2-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Brian Foster <bfoster@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
diff ffcb5f52 Tue May 02 19:36:06 MDT 2023 Nhat Pham <nphamcs@gmail.com> workingset: refactor LRU refault to expose refault recency check

Patch series "cachestat: a new syscall for page cache state of files",
v13.

There is currently no good way to query the page cache statistics of large
files and directory trees. There is mincore(), but it scales poorly: the
kernel writes out a lot of bitmap data that userspace has to aggregate,
when the user really does not care about per-page information in that
case. The user also needs to mmap and unmap each file as it goes along,
which can be quite slow as well.

Some use cases where this information could come in handy:
* Allowing database to decide whether to perform an index scan or direct
table queries based on the in-memory cache state of the index.
* Visibility into the writeback algorithm, for performance issues
diagnostic.
* Workload-aware writeback pacing: estimating IO fulfilled by page cache
(and IO to be done) within a range of a file, allowing for more
frequent syncing when and where there is IO capacity, and batching
when there is not.
* Computing memory usage of large files/directory trees, analogous to
the du tool for disk usage.

More information about these use cases could be found in this thread:
https://lore.kernel.org/lkml/20230315170934.GA97793@cmpxchg.org/

This series of patches introduces a new system call, cachestat, that
summarizes the page cache statistics (number of cached pages, dirty pages,
pages marked for writeback, evicted pages etc.) of a file, in a specified
range of bytes. It also include a selftest suite that tests some typical
usage. Currently, the syscall is only wired in for x86 architecture.

This interface is inspired by past discussion and concerns with fincore,
which has a similar design (and as a result, issues) as mincore. Relevant
links:

https://lkml.indiana.edu/hypermail/linux/kernel/1302.1/04207.html
https://lkml.indiana.edu/hypermail/linux/kernel/1302.1/04209.html


I have also developed a small tool that computes the memory usage of files
and directories, analogous to the du utility. User can choose between
mincore or cachestat (with cachestat exporting more information than
mincore). To compare the performance of these two options, I benchmarked
the tool on the root directory of a Meta's server machine, each for five
runs:

Using cachestat
real -- Median: 33.377s, Average: 33.475s, Standard Deviation: 0.3602
user -- Median: 4.08s, Average: 4.1078s, Standard Deviation: 0.0742
sys -- Median: 28.823s, Average: 28.8866s, Standard Deviation: 0.2689

Using mincore:
real -- Median: 102.352s, Average: 102.3442s, Standard Deviation: 0.2059
user -- Median: 10.149s, Average: 10.1482s, Standard Deviation: 0.0162
sys -- Median: 91.186s, Average: 91.2084s, Standard Deviation: 0.2046

I also ran both syscalls on a 2TB sparse file:

Using cachestat:
real 0m0.009s
user 0m0.000s
sys 0m0.009s

Using mincore:
real 0m37.510s
user 0m2.934s
sys 0m34.558s

Very large files like this are the pathological case for mincore. In
fact, to compute the stats for a single 2TB file, mincore takes as long as
cachestat takes to compute the stats for the entire tree! This could
easily happen inadvertently when we run it on subdirectories. Mincore is
clearly not suitable for a general-purpose command line tool.

Regarding security concerns, cachestat() should not pose any additional
issues. The caller already has read permission to the file itself (since
they need an fd to that file to call cachestat). This means that the
caller can access the underlying data in its entirety, which is a much
greater source of information (and as a result, a much greater security
risk) than the cache status itself.

The latest API change (in v13 of the patch series) is suggested by Jens
Axboe. It allows for 64-bit length argument, even on 32-bit architecture
(which is previously not possible due to the limit on the number of
syscall arguments). Furthermore, it eliminates the need for compatibility
handling - every user can use the same ABI.


This patch (of 4):

In preparation for computing recently evicted pages in cachestat, refactor
workingset_refault and lru_gen_refault to expose a helper function that
would test if an evicted page is recently evicted.

[penguin-kernel@I-love.SAKURA.ne.jp: add missing rcu_read_unlock() in lru_gen_refault()]
Link: https://lkml.kernel.org/r/610781bc-cf11-fc89-a46f-87cb8235d439@I-love.SAKURA.ne.jp
Link: https://lkml.kernel.org/r/20230503013608.2431726-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20230503013608.2431726-2-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Brian Foster <bfoster@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
diff 55ab834a Fri Dec 16 02:46:33 MST 2022 Michal Hocko <mhocko@suse.com> Revert "mm: add nodes= arg to memory.reclaim"

This reverts commit 12a5d3955227b0d7e04fb793ccceeb2a1dd275c5.

Although it is recognized that a finer grained pro-active reclaim is
something we need and want the semantic of this implementation is really
ambiguous.

In a follow up discussion it became clear that there are two essential
usecases here. One is to use memory.reclaim to pro-actively reclaim
memory and expectation is that the requested and reported amount of memory
is uncharged from the memcg. Another usecase focuses on pro-active
demotion when the memory is merely shuffled around to demotion targets
while the overall charged memory stays unchanged.

The current implementation considers demoted pages as reclaimed and that
break both usecases. [1] has tried to address the reporting part but
there are more issues with that summarized in [2] and follow up emails.

Let's revert the nodemask based extension of the memcg pro-active
reclaim for now until we settle with a more robust semantic.

[1] http://lkml.kernel.org/r/http://lkml.kernel.org/r/20221206023406.3182800-1-almasrymina@google.com
[2] http://lkml.kernel.org/r/Y5bsmpCyeryu3Zz1@dhcp22.suse.cz

Link: https://lkml.kernel.org/r/Y5xASNe1x8cusiTx@dhcp22.suse.cz
Fixes: 12a5d3955227b0d ("mm: add nodes= arg to memory.reclaim")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Bagas Sanjaya <bagasdotme@gmail.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Wei Xu <weixugc@google.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: zefan li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
diff 55ab834a Fri Dec 16 02:46:33 MST 2022 Michal Hocko <mhocko@suse.com> Revert "mm: add nodes= arg to memory.reclaim"

This reverts commit 12a5d3955227b0d7e04fb793ccceeb2a1dd275c5.

Although it is recognized that a finer grained pro-active reclaim is
something we need and want the semantic of this implementation is really
ambiguous.

In a follow up discussion it became clear that there are two essential
usecases here. One is to use memory.reclaim to pro-actively reclaim
memory and expectation is that the requested and reported amount of memory
is uncharged from the memcg. Another usecase focuses on pro-active
demotion when the memory is merely shuffled around to demotion targets
while the overall charged memory stays unchanged.

The current implementation considers demoted pages as reclaimed and that
break both usecases. [1] has tried to address the reporting part but
there are more issues with that summarized in [2] and follow up emails.

Let's revert the nodemask based extension of the memcg pro-active
reclaim for now until we settle with a more robust semantic.

[1] http://lkml.kernel.org/r/http://lkml.kernel.org/r/20221206023406.3182800-1-almasrymina@google.com
[2] http://lkml.kernel.org/r/Y5bsmpCyeryu3Zz1@dhcp22.suse.cz

Link: https://lkml.kernel.org/r/Y5xASNe1x8cusiTx@dhcp22.suse.cz
Fixes: 12a5d3955227b0d ("mm: add nodes= arg to memory.reclaim")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Bagas Sanjaya <bagasdotme@gmail.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Wei Xu <weixugc@google.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: zefan li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
diff 12a5d395 Fri Dec 02 15:35:31 MST 2022 Mina Almasry <almasrymina@google.com> mm: add nodes= arg to memory.reclaim

The nodes= arg instructs the kernel to only scan the given nodes for
proactive reclaim. For example use cases, consider a 2 tier memory
system:

nodes 0,1 -> top tier
nodes 2,3 -> second tier

$ echo "1m nodes=0" > memory.reclaim

This instructs the kernel to attempt to reclaim 1m memory from node 0.
Since node 0 is a top tier node, demotion will be attempted first. This
is useful to direct proactive reclaim to specific nodes that are under
pressure.

$ echo "1m nodes=2,3" > memory.reclaim

This instructs the kernel to attempt to reclaim 1m memory in the second
tier, since this tier of memory has no demotion targets the memory will be
reclaimed.

$ echo "1m nodes=0,1" > memory.reclaim

Instructs the kernel to reclaim memory from the top tier nodes, which can
be desirable according to the userspace policy if there is pressure on the
top tiers. Since these nodes have demotion targets, the kernel will
attempt demotion first.

Since commit 3f1509c57b1b ("Revert "mm/vmscan: never demote for memcg
reclaim""), the proactive reclaim interface memory.reclaim does both
reclaim and demotion. Reclaim and demotion incur different latency costs
to the jobs in the cgroup. Demoted memory would still be addressable by
the userspace at a higher latency, but reclaimed memory would need to
incur a pagefault.

The 'nodes' arg is useful to allow the userspace to control demotion and
reclaim independently according to its policy: if the memory.reclaim is
called on a node with demotion targets, it will attempt demotion first; if
it is called on a node without demotion targets, it will only attempt
reclaim.

Link: https://lkml.kernel.org/r/20221202223533.1785418-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Muchun Song <songmuchun@bytedance.com>
Cc: Bagas Sanjaya <bagasdotme@gmail.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Tejun Heo <tj@kernel.org>
Cc: Wei Xu <weixugc@google.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: zefan li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
diff 12a5d395 Fri Dec 02 15:35:31 MST 2022 Mina Almasry <almasrymina@google.com> mm: add nodes= arg to memory.reclaim

The nodes= arg instructs the kernel to only scan the given nodes for
proactive reclaim. For example use cases, consider a 2 tier memory
system:

nodes 0,1 -> top tier
nodes 2,3 -> second tier

$ echo "1m nodes=0" > memory.reclaim

This instructs the kernel to attempt to reclaim 1m memory from node 0.
Since node 0 is a top tier node, demotion will be attempted first. This
is useful to direct proactive reclaim to specific nodes that are under
pressure.

$ echo "1m nodes=2,3" > memory.reclaim

This instructs the kernel to attempt to reclaim 1m memory in the second
tier, since this tier of memory has no demotion targets the memory will be
reclaimed.

$ echo "1m nodes=0,1" > memory.reclaim

Instructs the kernel to reclaim memory from the top tier nodes, which can
be desirable according to the userspace policy if there is pressure on the
top tiers. Since these nodes have demotion targets, the kernel will
attempt demotion first.

Since commit 3f1509c57b1b ("Revert "mm/vmscan: never demote for memcg
reclaim""), the proactive reclaim interface memory.reclaim does both
reclaim and demotion. Reclaim and demotion incur different latency costs
to the jobs in the cgroup. Demoted memory would still be addressable by
the userspace at a higher latency, but reclaimed memory would need to
incur a pagefault.

The 'nodes' arg is useful to allow the userspace to control demotion and
reclaim independently according to its policy: if the memory.reclaim is
called on a node with demotion targets, it will attempt demotion first; if
it is called on a node without demotion targets, it will only attempt
reclaim.

Link: https://lkml.kernel.org/r/20221202223533.1785418-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Muchun Song <songmuchun@bytedance.com>
Cc: Bagas Sanjaya <bagasdotme@gmail.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Tejun Heo <tj@kernel.org>
Cc: Wei Xu <weixugc@google.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: zefan li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
diff 12a5d395 Fri Dec 02 15:35:31 MST 2022 Mina Almasry <almasrymina@google.com> mm: add nodes= arg to memory.reclaim

The nodes= arg instructs the kernel to only scan the given nodes for
proactive reclaim. For example use cases, consider a 2 tier memory
system:

nodes 0,1 -> top tier
nodes 2,3 -> second tier

$ echo "1m nodes=0" > memory.reclaim

This instructs the kernel to attempt to reclaim 1m memory from node 0.
Since node 0 is a top tier node, demotion will be attempted first. This
is useful to direct proactive reclaim to specific nodes that are under
pressure.

$ echo "1m nodes=2,3" > memory.reclaim

This instructs the kernel to attempt to reclaim 1m memory in the second
tier, since this tier of memory has no demotion targets the memory will be
reclaimed.

$ echo "1m nodes=0,1" > memory.reclaim

Instructs the kernel to reclaim memory from the top tier nodes, which can
be desirable according to the userspace policy if there is pressure on the
top tiers. Since these nodes have demotion targets, the kernel will
attempt demotion first.

Since commit 3f1509c57b1b ("Revert "mm/vmscan: never demote for memcg
reclaim""), the proactive reclaim interface memory.reclaim does both
reclaim and demotion. Reclaim and demotion incur different latency costs
to the jobs in the cgroup. Demoted memory would still be addressable by
the userspace at a higher latency, but reclaimed memory would need to
incur a pagefault.

The 'nodes' arg is useful to allow the userspace to control demotion and
reclaim independently according to its policy: if the memory.reclaim is
called on a node with demotion targets, it will attempt demotion first; if
it is called on a node without demotion targets, it will only attempt
reclaim.

Link: https://lkml.kernel.org/r/20221202223533.1785418-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Muchun Song <songmuchun@bytedance.com>
Cc: Bagas Sanjaya <bagasdotme@gmail.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Tejun Heo <tj@kernel.org>
Cc: Wei Xu <weixugc@google.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: zefan li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
diff ca92ea3d Sun Oct 30 15:41:50 MDT 2022 Peter Xu <peterx@redhat.com> mm: always compile in pte markers

Patch series "mm: Use pte marker for swapin errors".

This series uses the pte marker to replace the swapin error swap entry,
then we save one more swap entry slot for swap devices. A new pte marker
bit is defined.


This patch (of 2):

The PTE markers code is tiny and now it's enabled for most of the
distributions. It's fine to keep it as-is, but to make a broader use of
it (e.g. replacing read error swap entry) it needs to be there always
otherwise we need special code path to take care of !PTE_MARKER case.

It'll be easier just make pte marker always exist. Use this chance to
extend its usage to anonymous too by simply touching up some of the old
comments, because it'll be used for anonymous pages in the follow up
patches.

Link: https://lkml.kernel.org/r/20221030214151.402274-1-peterx@redhat.com
Link: https://lkml.kernel.org/r/20221030214151.402274-2-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Huang Ying <ying.huang@intel.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
diff ca92ea3d Sun Oct 30 15:41:50 MDT 2022 Peter Xu <peterx@redhat.com> mm: always compile in pte markers

Patch series "mm: Use pte marker for swapin errors".

This series uses the pte marker to replace the swapin error swap entry,
then we save one more swap entry slot for swap devices. A new pte marker
bit is defined.


This patch (of 2):

The PTE markers code is tiny and now it's enabled for most of the
distributions. It's fine to keep it as-is, but to make a broader use of
it (e.g. replacing read error swap entry) it needs to be there always
otherwise we need special code path to take care of !PTE_MARKER case.

It'll be easier just make pte marker always exist. Use this chance to
extend its usage to anonymous too by simply touching up some of the old
comments, because it'll be used for anonymous pages in the follow up
patches.

Link: https://lkml.kernel.org/r/20221030214151.402274-1-peterx@redhat.com
Link: https://lkml.kernel.org/r/20221030214151.402274-2-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Huang Ying <ying.huang@intel.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
H A Dfs.hdiff 2824083d Tue Feb 20 22:14:03 MST 2024 Gabriel Krisman Bertazi <krisman@suse.de> ovl: Always reject mounting over case-insensitive directories

overlayfs relies on the filesystem setting DCACHE_OP_HASH or
DCACHE_OP_COMPARE to reject mounting over case-insensitive directories.

Since commit bb9cd9106b22 ("fscrypt: Have filesystems handle their
d_ops"), we set ->d_op through a hook in ->d_lookup, which
means the root dentry won't have them, causing the mount to accidentally
succeed.

In v6.7-rc7, the following sequence will succeed to mount, but any
dentry other than the root dentry will be a "weird" dentry to ovl and
fail with EREMOTE.

mkfs.ext4 -O casefold lower.img
mount -O loop lower.img lower
mount -t overlay -o lowerdir=lower,upperdir=upper,workdir=work ovl /mnt

Mounting on a subdirectory fails, as expected, because DCACHE_OP_HASH
and DCACHE_OP_COMPARE are properly set by ->lookup.

Fix by explicitly rejecting superblocks that allow case-insensitive
dentries. Yes, this will be solved when we move d_op configuration back
to ->s_d_op. Yet, we better have an explicit fix to avoid messing up
again.

While there, re-sort the entries to have more descriptive error messages
first.

Fixes: bb9cd9106b22 ("fscrypt: Have filesystems handle their d_ops")
Acked-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Link: https://lore.kernel.org/r/20240221171412.10710-2-krisman@suse.de
Signed-off-by: Gabriel Krisman Bertazi <krisman@suse.de>
diff a4af51ce Tue Feb 06 19:56:15 MST 2024 Kent Overstreet <kent.overstreet@linux.dev> fs: super_set_uuid()

Some weird old filesytems have UUID-like things that we wish to expose
as UUIDs, but are smaller; add a length field so that the new
FS_IOC_(GET|SET)UUID ioctls can handle them in generic code.

And add a helper super_set_uuid(), for setting nonstandard length uuids.

Helper is now required for the new FS_IOC_GETUUID ioctl; if
super_set_uuid() hasn't been called, the ioctl won't be supported.

Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Link: https://lore.kernel.org/r/20240207025624.1019754-2-kent.overstreet@linux.dev
Signed-off-by: Christian Brauner <brauner@kernel.org>
diff 3058fca1 Fri Feb 02 04:01:31 MST 2024 Amir Goldstein <amir73il@gmail.com> fs: make file_dentry() a simple accessor

file_dentry() is a relic from the days that overlayfs was using files with
a "fake" path, meaning, f_path on overlayfs and f_inode on underlying fs.

In those days, file_dentry() was needed to get the underlying fs dentry
that matches f_inode.

Files with "fake" path should not exist nowadays, so make file_dentry() a
simple accessor and use an assertion to make sure that file_dentry() was
not papering over filesystem bugs.

Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Link: https://lore.kernel.org/r/20240202110132.1584111-2-amir73il@gmail.com
Tested-by: Stefan Berger <stefanb@linux.ibm.com>
Signed-off-by: Christian Brauner <brauner@kernel.org>
diff d3b1a9a7 Fri Feb 02 01:33:04 MST 2024 JonasZhou <JonasZhou@zhaoxin.com> fs/address_space: move i_mmap_rwsem to mitigate a false sharing with i_mmap.

In the struct address_space, there is a 32-byte gap between i_mmap
and i_mmap_rwsem. Due to the alignment of struct address_space
variables to 8 bytes, in certain situations, i_mmap and i_mmap_rwsem
may end up in the same CACHE line.

While running Unixbench/execl, we observe high false sharing issues
when accessing i_mmap against i_mmap_rwsem. We move i_mmap_rwsem
after i_private_list, ensuring a 64-byte gap between i_mmap and
i_mmap_rwsem.

For Intel Silver machines (2 sockets) using kernel v6.8 rc-2, the score
of Unixbench/execl improves by ~3.94%, and the score of Unixbench/shell
improves by ~3.26%.

Baseline:
-------------------------------------------------------------
162 546 748 11374 21 0xffff92e266af90c0
-------------------------------------------------------------
46.89% 44.65% 0.00% 0.00% 0x0 1 1 0xffffffff86d5fb96 460 258 271 1069 32 [k] __handle_mm_fault [kernel.vmlinux] memory.c:2940 0 1
4.21% 4.41% 0.00% 0.00% 0x4 1 1 0xffffffff86d0ed54 473 311 288 95 28 [k] filemap_read [kernel.vmlinux] atomic.h:23 0 1
0.00% 0.00% 0.04% 4.76% 0x8 1 1 0xffffffff86d4bcf1 0 0 0 5 4 [k] vma_interval_tree_remove [kernel.vmlinux] rbtree_augmented.h:204 0 1
6.41% 6.02% 0.00% 0.00% 0x8 1 1 0xffffffff86d4ba85 411 271 339 210 32 [k] vma_interval_tree_insert [kernel.vmlinux] interval_tree.c:23 0 1
0.00% 0.00% 0.47% 95.24% 0x10 1 1 0xffffffff86d4bd34 0 0 0 74 32 [k] vma_interval_tree_remove [kernel.vmlinux] rbtree_augmented.h:339 0 1
0.37% 0.13% 0.00% 0.00% 0x10 1 1 0xffffffff86d4bb4f 328 212 380 7 5 [k] vma_interval_tree_remove [kernel.vmlinux] rbtree_augmented.h:338 0 1
5.13% 5.08% 0.00% 0.00% 0x10 1 1 0xffffffff86d4bb4b 416 255 357 197 32 [k] vma_interval_tree_remove [kernel.vmlinux] rbtree_augmented.h:338 0 1
1.10% 0.53% 0.00% 0.00% 0x28 1 1 0xffffffff86e06eb8 395 228 351 24 14 [k] do_dentry_open [kernel.vmlinux] open.c:966 0 1
1.10% 2.14% 57.07% 0.00% 0x38 1 1 0xffffffff878c9225 1364 792 462 7003 32 [k] down_write [kernel.vmlinux] atomic64_64.h:109 0 1
0.00% 0.00% 0.01% 0.00% 0x38 1 1 0xffffffff878c8e75 0 0 252 3 2 [k] rwsem_down_write_slowpath [kernel.vmlinux] atomic64_64.h:109 0 1
0.00% 0.13% 0.00% 0.00% 0x38 1 1 0xffffffff878c8e23 0 596 63 2 2 [k] rwsem_down_write_slowpath [kernel.vmlinux] atomic64_64.h:15 0 1
2.38% 2.94% 6.53% 0.00% 0x38 1 1 0xffffffff878c8ccb 1150 818 570 1197 32 [k] rwsem_down_write_slowpath [kernel.vmlinux] atomic64_64.h:109 0 1
30.59% 32.22% 0.00% 0.00% 0x38 1 1 0xffffffff878c8cb4 423 251 380 648 32 [k] rwsem_down_write_slowpath [kernel.vmlinux] atomic64_64.h:15 0 1
1.83% 1.74% 35.88% 0.00% 0x38 1 1 0xffffffff86b4f833 1217 1112 565 4586 32 [k] up_write [kernel.vmlinux] atomic64_64.h:91 0 1

with this change:
-------------------------------------------------------------
360 12 300 57 35 0xffff982cdae76400
-------------------------------------------------------------
50.00% 59.67% 0.00% 0.00% 0x0 1 1 0xffffffff8215fb86 352 200 191 558 32 [k] __handle_mm_fault [kernel.vmlinux] memory.c:2940 0 1
8.33% 5.00% 0.00% 0.00% 0x4 1 1 0xffffffff8210ed44 370 284 263 42 24 [k] filemap_read [kernel.vmlinux] atomic.h:23 0 1
0.00% 0.00% 5.26% 2.86% 0x8 1 1 0xffffffff8214bce1 0 0 0 4 4 [k] vma_interval_tree_remove [kernel.vmlinux] rbtree_augmented.h:204 0 1
33.33% 14.33% 0.00% 0.00% 0x8 1 1 0xffffffff8214ba75 344 186 219 140 32 [k] vma_interval_tree_insert [kernel.vmlinux] interval_tree.c:23 0 1
0.00% 0.00% 94.74% 97.14% 0x10 1 1 0xffffffff8214bd24 0 0 0 88 29 [k] vma_interval_tree_remove [kernel.vmlinux] rbtree_augmented.h:339 0 1
8.33% 20.00% 0.00% 0.00% 0x10 1 1 0xffffffff8214bb3b 296 209 226 167 31 [k] vma_interval_tree_remove [kernel.vmlinux] rbtree_augmented.h:338 0 1
0.00% 0.67% 0.00% 0.00% 0x28 1 1 0xffffffff82206f45 0 140 334 4 3 [k] do_dentry_open [kernel.vmlinux] open.c:966 0 1
0.00% 0.33% 0.00% 0.00% 0x38 1 1 0xffffffff8250a6c4 0 286 126 5 5 [k] errseq_sample [kernel.vmlinux] errseq.c:125 0

Signed-off-by: JonasZhou <JonasZhou@zhaoxin.com>
Link: https://lore.kernel.org/r/20240202083304.10995-1-JonasZhou-oc@zhaoxin.com
Signed-off-by: Christian Brauner <brauner@kernel.org>
diff d3b1a9a7 Fri Feb 02 01:33:04 MST 2024 JonasZhou <JonasZhou@zhaoxin.com> fs/address_space: move i_mmap_rwsem to mitigate a false sharing with i_mmap.

In the struct address_space, there is a 32-byte gap between i_mmap
and i_mmap_rwsem. Due to the alignment of struct address_space
variables to 8 bytes, in certain situations, i_mmap and i_mmap_rwsem
may end up in the same CACHE line.

While running Unixbench/execl, we observe high false sharing issues
when accessing i_mmap against i_mmap_rwsem. We move i_mmap_rwsem
after i_private_list, ensuring a 64-byte gap between i_mmap and
i_mmap_rwsem.

For Intel Silver machines (2 sockets) using kernel v6.8 rc-2, the score
of Unixbench/execl improves by ~3.94%, and the score of Unixbench/shell
improves by ~3.26%.

Baseline:
-------------------------------------------------------------
162 546 748 11374 21 0xffff92e266af90c0
-------------------------------------------------------------
46.89% 44.65% 0.00% 0.00% 0x0 1 1 0xffffffff86d5fb96 460 258 271 1069 32 [k] __handle_mm_fault [kernel.vmlinux] memory.c:2940 0 1
4.21% 4.41% 0.00% 0.00% 0x4 1 1 0xffffffff86d0ed54 473 311 288 95 28 [k] filemap_read [kernel.vmlinux] atomic.h:23 0 1
0.00% 0.00% 0.04% 4.76% 0x8 1 1 0xffffffff86d4bcf1 0 0 0 5 4 [k] vma_interval_tree_remove [kernel.vmlinux] rbtree_augmented.h:204 0 1
6.41% 6.02% 0.00% 0.00% 0x8 1 1 0xffffffff86d4ba85 411 271 339 210 32 [k] vma_interval_tree_insert [kernel.vmlinux] interval_tree.c:23 0 1
0.00% 0.00% 0.47% 95.24% 0x10 1 1 0xffffffff86d4bd34 0 0 0 74 32 [k] vma_interval_tree_remove [kernel.vmlinux] rbtree_augmented.h:339 0 1
0.37% 0.13% 0.00% 0.00% 0x10 1 1 0xffffffff86d4bb4f 328 212 380 7 5 [k] vma_interval_tree_remove [kernel.vmlinux] rbtree_augmented.h:338 0 1
5.13% 5.08% 0.00% 0.00% 0x10 1 1 0xffffffff86d4bb4b 416 255 357 197 32 [k] vma_interval_tree_remove [kernel.vmlinux] rbtree_augmented.h:338 0 1
1.10% 0.53% 0.00% 0.00% 0x28 1 1 0xffffffff86e06eb8 395 228 351 24 14 [k] do_dentry_open [kernel.vmlinux] open.c:966 0 1
1.10% 2.14% 57.07% 0.00% 0x38 1 1 0xffffffff878c9225 1364 792 462 7003 32 [k] down_write [kernel.vmlinux] atomic64_64.h:109 0 1
0.00% 0.00% 0.01% 0.00% 0x38 1 1 0xffffffff878c8e75 0 0 252 3 2 [k] rwsem_down_write_slowpath [kernel.vmlinux] atomic64_64.h:109 0 1
0.00% 0.13% 0.00% 0.00% 0x38 1 1 0xffffffff878c8e23 0 596 63 2 2 [k] rwsem_down_write_slowpath [kernel.vmlinux] atomic64_64.h:15 0 1
2.38% 2.94% 6.53% 0.00% 0x38 1 1 0xffffffff878c8ccb 1150 818 570 1197 32 [k] rwsem_down_write_slowpath [kernel.vmlinux] atomic64_64.h:109 0 1
30.59% 32.22% 0.00% 0.00% 0x38 1 1 0xffffffff878c8cb4 423 251 380 648 32 [k] rwsem_down_write_slowpath [kernel.vmlinux] atomic64_64.h:15 0 1
1.83% 1.74% 35.88% 0.00% 0x38 1 1 0xffffffff86b4f833 1217 1112 565 4586 32 [k] up_write [kernel.vmlinux] atomic64_64.h:91 0 1

with this change:
-------------------------------------------------------------
360 12 300 57 35 0xffff982cdae76400
-------------------------------------------------------------
50.00% 59.67% 0.00% 0.00% 0x0 1 1 0xffffffff8215fb86 352 200 191 558 32 [k] __handle_mm_fault [kernel.vmlinux] memory.c:2940 0 1
8.33% 5.00% 0.00% 0.00% 0x4 1 1 0xffffffff8210ed44 370 284 263 42 24 [k] filemap_read [kernel.vmlinux] atomic.h:23 0 1
0.00% 0.00% 5.26% 2.86% 0x8 1 1 0xffffffff8214bce1 0 0 0 4 4 [k] vma_interval_tree_remove [kernel.vmlinux] rbtree_augmented.h:204 0 1
33.33% 14.33% 0.00% 0.00% 0x8 1 1 0xffffffff8214ba75 344 186 219 140 32 [k] vma_interval_tree_insert [kernel.vmlinux] interval_tree.c:23 0 1
0.00% 0.00% 94.74% 97.14% 0x10 1 1 0xffffffff8214bd24 0 0 0 88 29 [k] vma_interval_tree_remove [kernel.vmlinux] rbtree_augmented.h:339 0 1
8.33% 20.00% 0.00% 0.00% 0x10 1 1 0xffffffff8214bb3b 296 209 226 167 31 [k] vma_interval_tree_remove [kernel.vmlinux] rbtree_augmented.h:338 0 1
0.00% 0.67% 0.00% 0.00% 0x28 1 1 0xffffffff82206f45 0 140 334 4 3 [k] do_dentry_open [kernel.vmlinux] open.c:966 0 1
0.00% 0.33% 0.00% 0.00% 0x38 1 1 0xffffffff8250a6c4 0 286 126 5 5 [k] errseq_sample [kernel.vmlinux] errseq.c:125 0

Signed-off-by: JonasZhou <JonasZhou@zhaoxin.com>
Link: https://lore.kernel.org/r/20240202083304.10995-1-JonasZhou-oc@zhaoxin.com
Signed-off-by: Christian Brauner <brauner@kernel.org>
diff d3b1a9a7 Fri Feb 02 01:33:04 MST 2024 JonasZhou <JonasZhou@zhaoxin.com> fs/address_space: move i_mmap_rwsem to mitigate a false sharing with i_mmap.

In the struct address_space, there is a 32-byte gap between i_mmap
and i_mmap_rwsem. Due to the alignment of struct address_space
variables to 8 bytes, in certain situations, i_mmap and i_mmap_rwsem
may end up in the same CACHE line.

While running Unixbench/execl, we observe high false sharing issues
when accessing i_mmap against i_mmap_rwsem. We move i_mmap_rwsem
after i_private_list, ensuring a 64-byte gap between i_mmap and
i_mmap_rwsem.

For Intel Silver machines (2 sockets) using kernel v6.8 rc-2, the score
of Unixbench/execl improves by ~3.94%, and the score of Unixbench/shell
improves by ~3.26%.

Baseline:
-------------------------------------------------------------
162 546 748 11374 21 0xffff92e266af90c0
-------------------------------------------------------------
46.89% 44.65% 0.00% 0.00% 0x0 1 1 0xffffffff86d5fb96 460 258 271 1069 32 [k] __handle_mm_fault [kernel.vmlinux] memory.c:2940 0 1
4.21% 4.41% 0.00% 0.00% 0x4 1 1 0xffffffff86d0ed54 473 311 288 95 28 [k] filemap_read [kernel.vmlinux] atomic.h:23 0 1
0.00% 0.00% 0.04% 4.76% 0x8 1 1 0xffffffff86d4bcf1 0 0 0 5 4 [k] vma_interval_tree_remove [kernel.vmlinux] rbtree_augmented.h:204 0 1
6.41% 6.02% 0.00% 0.00% 0x8 1 1 0xffffffff86d4ba85 411 271 339 210 32 [k] vma_interval_tree_insert [kernel.vmlinux] interval_tree.c:23 0 1
0.00% 0.00% 0.47% 95.24% 0x10 1 1 0xffffffff86d4bd34 0 0 0 74 32 [k] vma_interval_tree_remove [kernel.vmlinux] rbtree_augmented.h:339 0 1
0.37% 0.13% 0.00% 0.00% 0x10 1 1 0xffffffff86d4bb4f 328 212 380 7 5 [k] vma_interval_tree_remove [kernel.vmlinux] rbtree_augmented.h:338 0 1
5.13% 5.08% 0.00% 0.00% 0x10 1 1 0xffffffff86d4bb4b 416 255 357 197 32 [k] vma_interval_tree_remove [kernel.vmlinux] rbtree_augmented.h:338 0 1
1.10% 0.53% 0.00% 0.00% 0x28 1 1 0xffffffff86e06eb8 395 228 351 24 14 [k] do_dentry_open [kernel.vmlinux] open.c:966 0 1
1.10% 2.14% 57.07% 0.00% 0x38 1 1 0xffffffff878c9225 1364 792 462 7003 32 [k] down_write [kernel.vmlinux] atomic64_64.h:109 0 1
0.00% 0.00% 0.01% 0.00% 0x38 1 1 0xffffffff878c8e75 0 0 252 3 2 [k] rwsem_down_write_slowpath [kernel.vmlinux] atomic64_64.h:109 0 1
0.00% 0.13% 0.00% 0.00% 0x38 1 1 0xffffffff878c8e23 0 596 63 2 2 [k] rwsem_down_write_slowpath [kernel.vmlinux] atomic64_64.h:15 0 1
2.38% 2.94% 6.53% 0.00% 0x38 1 1 0xffffffff878c8ccb 1150 818 570 1197 32 [k] rwsem_down_write_slowpath [kernel.vmlinux] atomic64_64.h:109 0 1
30.59% 32.22% 0.00% 0.00% 0x38 1 1 0xffffffff878c8cb4 423 251 380 648 32 [k] rwsem_down_write_slowpath [kernel.vmlinux] atomic64_64.h:15 0 1
1.83% 1.74% 35.88% 0.00% 0x38 1 1 0xffffffff86b4f833 1217 1112 565 4586 32 [k] up_write [kernel.vmlinux] atomic64_64.h:91 0 1

with this change:
-------------------------------------------------------------
360 12 300 57 35 0xffff982cdae76400
-------------------------------------------------------------
50.00% 59.67% 0.00% 0.00% 0x0 1 1 0xffffffff8215fb86 352 200 191 558 32 [k] __handle_mm_fault [kernel.vmlinux] memory.c:2940 0 1
8.33% 5.00% 0.00% 0.00% 0x4 1 1 0xffffffff8210ed44 370 284 263 42 24 [k] filemap_read [kernel.vmlinux] atomic.h:23 0 1
0.00% 0.00% 5.26% 2.86% 0x8 1 1 0xffffffff8214bce1 0 0 0 4 4 [k] vma_interval_tree_remove [kernel.vmlinux] rbtree_augmented.h:204 0 1
33.33% 14.33% 0.00% 0.00% 0x8 1 1 0xffffffff8214ba75 344 186 219 140 32 [k] vma_interval_tree_insert [kernel.vmlinux] interval_tree.c:23 0 1
0.00% 0.00% 94.74% 97.14% 0x10 1 1 0xffffffff8214bd24 0 0 0 88 29 [k] vma_interval_tree_remove [kernel.vmlinux] rbtree_augmented.h:339 0 1
8.33% 20.00% 0.00% 0.00% 0x10 1 1 0xffffffff8214bb3b 296 209 226 167 31 [k] vma_interval_tree_remove [kernel.vmlinux] rbtree_augmented.h:338 0 1
0.00% 0.67% 0.00% 0.00% 0x28 1 1 0xffffffff82206f45 0 140 334 4 3 [k] do_dentry_open [kernel.vmlinux] open.c:966 0 1
0.00% 0.33% 0.00% 0.00% 0x38 1 1 0xffffffff8250a6c4 0 286 126 5 5 [k] errseq_sample [kernel.vmlinux] errseq.c:125 0

Signed-off-by: JonasZhou <JonasZhou@zhaoxin.com>
Link: https://lore.kernel.org/r/20240202083304.10995-1-JonasZhou-oc@zhaoxin.com
Signed-off-by: Christian Brauner <brauner@kernel.org>
diff d3b1a9a7 Fri Feb 02 01:33:04 MST 2024 JonasZhou <JonasZhou@zhaoxin.com> fs/address_space: move i_mmap_rwsem to mitigate a false sharing with i_mmap.

In the struct address_space, there is a 32-byte gap between i_mmap
and i_mmap_rwsem. Due to the alignment of struct address_space
variables to 8 bytes, in certain situations, i_mmap and i_mmap_rwsem
may end up in the same CACHE line.

While running Unixbench/execl, we observe high false sharing issues
when accessing i_mmap against i_mmap_rwsem. We move i_mmap_rwsem
after i_private_list, ensuring a 64-byte gap between i_mmap and
i_mmap_rwsem.

For Intel Silver machines (2 sockets) using kernel v6.8 rc-2, the score
of Unixbench/execl improves by ~3.94%, and the score of Unixbench/shell
improves by ~3.26%.

Baseline:
-------------------------------------------------------------
162 546 748 11374 21 0xffff92e266af90c0
-------------------------------------------------------------
46.89% 44.65% 0.00% 0.00% 0x0 1 1 0xffffffff86d5fb96 460 258 271 1069 32 [k] __handle_mm_fault [kernel.vmlinux] memory.c:2940 0 1
4.21% 4.41% 0.00% 0.00% 0x4 1 1 0xffffffff86d0ed54 473 311 288 95 28 [k] filemap_read [kernel.vmlinux] atomic.h:23 0 1
0.00% 0.00% 0.04% 4.76% 0x8 1 1 0xffffffff86d4bcf1 0 0 0 5 4 [k] vma_interval_tree_remove [kernel.vmlinux] rbtree_augmented.h:204 0 1
6.41% 6.02% 0.00% 0.00% 0x8 1 1 0xffffffff86d4ba85 411 271 339 210 32 [k] vma_interval_tree_insert [kernel.vmlinux] interval_tree.c:23 0 1
0.00% 0.00% 0.47% 95.24% 0x10 1 1 0xffffffff86d4bd34 0 0 0 74 32 [k] vma_interval_tree_remove [kernel.vmlinux] rbtree_augmented.h:339 0 1
0.37% 0.13% 0.00% 0.00% 0x10 1 1 0xffffffff86d4bb4f 328 212 380 7 5 [k] vma_interval_tree_remove [kernel.vmlinux] rbtree_augmented.h:338 0 1
5.13% 5.08% 0.00% 0.00% 0x10 1 1 0xffffffff86d4bb4b 416 255 357 197 32 [k] vma_interval_tree_remove [kernel.vmlinux] rbtree_augmented.h:338 0 1
1.10% 0.53% 0.00% 0.00% 0x28 1 1 0xffffffff86e06eb8 395 228 351 24 14 [k] do_dentry_open [kernel.vmlinux] open.c:966 0 1
1.10% 2.14% 57.07% 0.00% 0x38 1 1 0xffffffff878c9225 1364 792 462 7003 32 [k] down_write [kernel.vmlinux] atomic64_64.h:109 0 1
0.00% 0.00% 0.01% 0.00% 0x38 1 1 0xffffffff878c8e75 0 0 252 3 2 [k] rwsem_down_write_slowpath [kernel.vmlinux] atomic64_64.h:109 0 1
0.00% 0.13% 0.00% 0.00% 0x38 1 1 0xffffffff878c8e23 0 596 63 2 2 [k] rwsem_down_write_slowpath [kernel.vmlinux] atomic64_64.h:15 0 1
2.38% 2.94% 6.53% 0.00% 0x38 1 1 0xffffffff878c8ccb 1150 818 570 1197 32 [k] rwsem_down_write_slowpath [kernel.vmlinux] atomic64_64.h:109 0 1
30.59% 32.22% 0.00% 0.00% 0x38 1 1 0xffffffff878c8cb4 423 251 380 648 32 [k] rwsem_down_write_slowpath [kernel.vmlinux] atomic64_64.h:15 0 1
1.83% 1.74% 35.88% 0.00% 0x38 1 1 0xffffffff86b4f833 1217 1112 565 4586 32 [k] up_write [kernel.vmlinux] atomic64_64.h:91 0 1

with this change:
-------------------------------------------------------------
360 12 300 57 35 0xffff982cdae76400
-------------------------------------------------------------
50.00% 59.67% 0.00% 0.00% 0x0 1 1 0xffffffff8215fb86 352 200 191 558 32 [k] __handle_mm_fault [kernel.vmlinux] memory.c:2940 0 1
8.33% 5.00% 0.00% 0.00% 0x4 1 1 0xffffffff8210ed44 370 284 263 42 24 [k] filemap_read [kernel.vmlinux] atomic.h:23 0 1
0.00% 0.00% 5.26% 2.86% 0x8 1 1 0xffffffff8214bce1 0 0 0 4 4 [k] vma_interval_tree_remove [kernel.vmlinux] rbtree_augmented.h:204 0 1
33.33% 14.33% 0.00% 0.00% 0x8 1 1 0xffffffff8214ba75 344 186 219 140 32 [k] vma_interval_tree_insert [kernel.vmlinux] interval_tree.c:23 0 1
0.00% 0.00% 94.74% 97.14% 0x10 1 1 0xffffffff8214bd24 0 0 0 88 29 [k] vma_interval_tree_remove [kernel.vmlinux] rbtree_augmented.h:339 0 1
8.33% 20.00% 0.00% 0.00% 0x10 1 1 0xffffffff8214bb3b 296 209 226 167 31 [k] vma_interval_tree_remove [kernel.vmlinux] rbtree_augmented.h:338 0 1
0.00% 0.67% 0.00% 0.00% 0x28 1 1 0xffffffff82206f45 0 140 334 4 3 [k] do_dentry_open [kernel.vmlinux] open.c:966 0 1
0.00% 0.33% 0.00% 0.00% 0x38 1 1 0xffffffff8250a6c4 0 286 126 5 5 [k] errseq_sample [kernel.vmlinux] errseq.c:125 0

Signed-off-by: JonasZhou <JonasZhou@zhaoxin.com>
Link: https://lore.kernel.org/r/20240202083304.10995-1-JonasZhou-oc@zhaoxin.com
Signed-off-by: Christian Brauner <brauner@kernel.org>
diff d3b1a9a7 Fri Feb 02 01:33:04 MST 2024 JonasZhou <JonasZhou@zhaoxin.com> fs/address_space: move i_mmap_rwsem to mitigate a false sharing with i_mmap.

In the struct address_space, there is a 32-byte gap between i_mmap
and i_mmap_rwsem. Due to the alignment of struct address_space
variables to 8 bytes, in certain situations, i_mmap and i_mmap_rwsem
may end up in the same CACHE line.

While running Unixbench/execl, we observe high false sharing issues
when accessing i_mmap against i_mmap_rwsem. We move i_mmap_rwsem
after i_private_list, ensuring a 64-byte gap between i_mmap and
i_mmap_rwsem.

For Intel Silver machines (2 sockets) using kernel v6.8 rc-2, the score
of Unixbench/execl improves by ~3.94%, and the score of Unixbench/shell
improves by ~3.26%.

Baseline:
-------------------------------------------------------------
162 546 748 11374 21 0xffff92e266af90c0
-------------------------------------------------------------
46.89% 44.65% 0.00% 0.00% 0x0 1 1 0xffffffff86d5fb96 460 258 271 1069 32 [k] __handle_mm_fault [kernel.vmlinux] memory.c:2940 0 1
4.21% 4.41% 0.00% 0.00% 0x4 1 1 0xffffffff86d0ed54 473 311 288 95 28 [k] filemap_read [kernel.vmlinux] atomic.h:23 0 1
0.00% 0.00% 0.04% 4.76% 0x8 1 1 0xffffffff86d4bcf1 0 0 0 5 4 [k] vma_interval_tree_remove [kernel.vmlinux] rbtree_augmented.h:204 0 1
6.41% 6.02% 0.00% 0.00% 0x8 1 1 0xffffffff86d4ba85 411 271 339 210 32 [k] vma_interval_tree_insert [kernel.vmlinux] interval_tree.c:23 0 1
0.00% 0.00% 0.47% 95.24% 0x10 1 1 0xffffffff86d4bd34 0 0 0 74 32 [k] vma_interval_tree_remove [kernel.vmlinux] rbtree_augmented.h:339 0 1
0.37% 0.13% 0.00% 0.00% 0x10 1 1 0xffffffff86d4bb4f 328 212 380 7 5 [k] vma_interval_tree_remove [kernel.vmlinux] rbtree_augmented.h:338 0 1
5.13% 5.08% 0.00% 0.00% 0x10 1 1 0xffffffff86d4bb4b 416 255 357 197 32 [k] vma_interval_tree_remove [kernel.vmlinux] rbtree_augmented.h:338 0 1
1.10% 0.53% 0.00% 0.00% 0x28 1 1 0xffffffff86e06eb8 395 228 351 24 14 [k] do_dentry_open [kernel.vmlinux] open.c:966 0 1
1.10% 2.14% 57.07% 0.00% 0x38 1 1 0xffffffff878c9225 1364 792 462 7003 32 [k] down_write [kernel.vmlinux] atomic64_64.h:109 0 1
0.00% 0.00% 0.01% 0.00% 0x38 1 1 0xffffffff878c8e75 0 0 252 3 2 [k] rwsem_down_write_slowpath [kernel.vmlinux] atomic64_64.h:109 0 1
0.00% 0.13% 0.00% 0.00% 0x38 1 1 0xffffffff878c8e23 0 596 63 2 2 [k] rwsem_down_write_slowpath [kernel.vmlinux] atomic64_64.h:15 0 1
2.38% 2.94% 6.53% 0.00% 0x38 1 1 0xffffffff878c8ccb 1150 818 570 1197 32 [k] rwsem_down_write_slowpath [kernel.vmlinux] atomic64_64.h:109 0 1
30.59% 32.22% 0.00% 0.00% 0x38 1 1 0xffffffff878c8cb4 423 251 380 648 32 [k] rwsem_down_write_slowpath [kernel.vmlinux] atomic64_64.h:15 0 1
1.83% 1.74% 35.88% 0.00% 0x38 1 1 0xffffffff86b4f833 1217 1112 565 4586 32 [k] up_write [kernel.vmlinux] atomic64_64.h:91 0 1

with this change:
-------------------------------------------------------------
360 12 300 57 35 0xffff982cdae76400
-------------------------------------------------------------
50.00% 59.67% 0.00% 0.00% 0x0 1 1 0xffffffff8215fb86 352 200 191 558 32 [k] __handle_mm_fault [kernel.vmlinux] memory.c:2940 0 1
8.33% 5.00% 0.00% 0.00% 0x4 1 1 0xffffffff8210ed44 370 284 263 42 24 [k] filemap_read [kernel.vmlinux] atomic.h:23 0 1
0.00% 0.00% 5.26% 2.86% 0x8 1 1 0xffffffff8214bce1 0 0 0 4 4 [k] vma_interval_tree_remove [kernel.vmlinux] rbtree_augmented.h:204 0 1
33.33% 14.33% 0.00% 0.00% 0x8 1 1 0xffffffff8214ba75 344 186 219 140 32 [k] vma_interval_tree_insert [kernel.vmlinux] interval_tree.c:23 0 1
0.00% 0.00% 94.74% 97.14% 0x10 1 1 0xffffffff8214bd24 0 0 0 88 29 [k] vma_interval_tree_remove [kernel.vmlinux] rbtree_augmented.h:339 0 1
8.33% 20.00% 0.00% 0.00% 0x10 1 1 0xffffffff8214bb3b 296 209 226 167 31 [k] vma_interval_tree_remove [kernel.vmlinux] rbtree_augmented.h:338 0 1
0.00% 0.67% 0.00% 0.00% 0x28 1 1 0xffffffff82206f45 0 140 334 4 3 [k] do_dentry_open [kernel.vmlinux] open.c:966 0 1
0.00% 0.33% 0.00% 0.00% 0x38 1 1 0xffffffff8250a6c4 0 286 126 5 5 [k] errseq_sample [kernel.vmlinux] errseq.c:125 0

Signed-off-by: JonasZhou <JonasZhou@zhaoxin.com>
Link: https://lore.kernel.org/r/20240202083304.10995-1-JonasZhou-oc@zhaoxin.com
Signed-off-by: Christian Brauner <brauner@kernel.org>
diff d8f899d1 Wed Jan 24 07:28:55 MST 2024 Baokun Li <libaokun1@huawei.com> fs: make the i_size_read/write helpers be smp_load_acquire/store_release()

In [Link] Linus mentions that acquire/release makes it clear which
_particular_ memory accesses are the ordered ones, and it's unlikely
to make any performance difference, so it's much better to pair up
the release->acquire ordering than have a "wmb->rmb" ordering.

=========================================================
update pagecache
folio_mark_uptodate(folio)
smp_wmb()
set_bit PG_uptodate

=== ↑↑↑ STLR ↑↑↑ === smp_store_release(&inode->i_size, i_size)

folio_test_uptodate(folio)
test_bit PG_uptodate
smp_rmb()

=== ↓↓↓ LDAR ↓↓↓ === smp_load_acquire(&inode->i_size)

copy_page_to_iter()
=========================================================

Calling smp_store_release() in i_size_write() ensures that the data
in the page and the PG_uptodate bit are updated before the isize is
updated, and calling smp_load_acquire() in i_size_read ensures that
it will not read a newer isize than the data in the page. Therefore,
this avoids buffered read-write inconsistencies caused by Load-Load
reordering.

Link: https://lore.kernel.org/r/CAHk-=wifOnmeJq+sn+2s-P46zw0SFEbw9BSCGgp2c5fYPtRPGw@mail.gmail.com/
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Baokun Li <libaokun1@huawei.com>
Link: https://lore.kernel.org/r/20240124142857.4146716-2-libaokun1@huawei.com
Signed-off-by: Christian Brauner <brauner@kernel.org>
diff d8f899d1 Wed Jan 24 07:28:55 MST 2024 Baokun Li <libaokun1@huawei.com> fs: make the i_size_read/write helpers be smp_load_acquire/store_release()

In [Link] Linus mentions that acquire/release makes it clear which
_particular_ memory accesses are the ordered ones, and it's unlikely
to make any performance difference, so it's much better to pair up
the release->acquire ordering than have a "wmb->rmb" ordering.

=========================================================
update pagecache
folio_mark_uptodate(folio)
smp_wmb()
set_bit PG_uptodate

=== ↑↑↑ STLR ↑↑↑ === smp_store_release(&inode->i_size, i_size)

folio_test_uptodate(folio)
test_bit PG_uptodate
smp_rmb()

=== ↓↓↓ LDAR ↓↓↓ === smp_load_acquire(&inode->i_size)

copy_page_to_iter()
=========================================================

Calling smp_store_release() in i_size_write() ensures that the data
in the page and the PG_uptodate bit are updated before the isize is
updated, and calling smp_load_acquire() in i_size_read ensures that
it will not read a newer isize than the data in the page. Therefore,
this avoids buffered read-write inconsistencies caused by Load-Load
reordering.

Link: https://lore.kernel.org/r/CAHk-=wifOnmeJq+sn+2s-P46zw0SFEbw9BSCGgp2c5fYPtRPGw@mail.gmail.com/
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Baokun Li <libaokun1@huawei.com>
Link: https://lore.kernel.org/r/20240124142857.4146716-2-libaokun1@huawei.com
Signed-off-by: Christian Brauner <brauner@kernel.org>

Completed in 1292 milliseconds