1// SPDX-License-Identifier: GPL-2.0-only
2#include <linux/export.h>
3#include <linux/bvec.h>
4#include <linux/fault-inject-usercopy.h>
5#include <linux/uio.h>
6#include <linux/pagemap.h>
7#include <linux/highmem.h>
8#include <linux/slab.h>
9#include <linux/vmalloc.h>
10#include <linux/splice.h>
11#include <linux/compat.h>
12#include <linux/scatterlist.h>
13#include <linux/instrumented.h>
14#include <linux/iov_iter.h>
15
16static __always_inline
17size_t copy_to_user_iter(void __user *iter_to, size_t progress,
18			 size_t len, void *from, void *priv2)
19{
20	if (should_fail_usercopy())
21		return len;
22	if (access_ok(iter_to, len)) {
23		from += progress;
24		instrument_copy_to_user(iter_to, from, len);
25		len = raw_copy_to_user(iter_to, from, len);
26	}
27	return len;
28}
29
30static __always_inline
31size_t copy_to_user_iter_nofault(void __user *iter_to, size_t progress,
32				 size_t len, void *from, void *priv2)
33{
34	ssize_t res;
35
36	if (should_fail_usercopy())
37		return len;
38
39	from += progress;
40	res = copy_to_user_nofault(iter_to, from, len);
41	return res < 0 ? len : res;
42}
43
44static __always_inline
45size_t copy_from_user_iter(void __user *iter_from, size_t progress,
46			   size_t len, void *to, void *priv2)
47{
48	size_t res = len;
49
50	if (should_fail_usercopy())
51		return len;
52	if (access_ok(iter_from, len)) {
53		to += progress;
54		instrument_copy_from_user_before(to, iter_from, len);
55		res = raw_copy_from_user(to, iter_from, len);
56		instrument_copy_from_user_after(to, iter_from, len, res);
57	}
58	return res;
59}
60
61static __always_inline
62size_t memcpy_to_iter(void *iter_to, size_t progress,
63		      size_t len, void *from, void *priv2)
64{
65	memcpy(iter_to, from + progress, len);
66	return 0;
67}
68
69static __always_inline
70size_t memcpy_from_iter(void *iter_from, size_t progress,
71			size_t len, void *to, void *priv2)
72{
73	memcpy(to + progress, iter_from, len);
74	return 0;
75}
76
77/*
78 * fault_in_iov_iter_readable - fault in iov iterator for reading
79 * @i: iterator
80 * @size: maximum length
81 *
82 * Fault in one or more iovecs of the given iov_iter, to a maximum length of
83 * @size.  For each iovec, fault in each page that constitutes the iovec.
84 *
85 * Returns the number of bytes not faulted in (like copy_to_user() and
86 * copy_from_user()).
87 *
88 * Always returns 0 for non-userspace iterators.
89 */
90size_t fault_in_iov_iter_readable(const struct iov_iter *i, size_t size)
91{
92	if (iter_is_ubuf(i)) {
93		size_t n = min(size, iov_iter_count(i));
94		n -= fault_in_readable(i->ubuf + i->iov_offset, n);
95		return size - n;
96	} else if (iter_is_iovec(i)) {
97		size_t count = min(size, iov_iter_count(i));
98		const struct iovec *p;
99		size_t skip;
100
101		size -= count;
102		for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
103			size_t len = min(count, p->iov_len - skip);
104			size_t ret;
105
106			if (unlikely(!len))
107				continue;
108			ret = fault_in_readable(p->iov_base + skip, len);
109			count -= len - ret;
110			if (ret)
111				break;
112		}
113		return count + size;
114	}
115	return 0;
116}
117EXPORT_SYMBOL(fault_in_iov_iter_readable);
118
119/*
120 * fault_in_iov_iter_writeable - fault in iov iterator for writing
121 * @i: iterator
122 * @size: maximum length
123 *
124 * Faults in the iterator using get_user_pages(), i.e., without triggering
125 * hardware page faults.  This is primarily useful when we already know that
126 * some or all of the pages in @i aren't in memory.
127 *
128 * Returns the number of bytes not faulted in, like copy_to_user() and
129 * copy_from_user().
130 *
131 * Always returns 0 for non-user-space iterators.
132 */
133size_t fault_in_iov_iter_writeable(const struct iov_iter *i, size_t size)
134{
135	if (iter_is_ubuf(i)) {
136		size_t n = min(size, iov_iter_count(i));
137		n -= fault_in_safe_writeable(i->ubuf + i->iov_offset, n);
138		return size - n;
139	} else if (iter_is_iovec(i)) {
140		size_t count = min(size, iov_iter_count(i));
141		const struct iovec *p;
142		size_t skip;
143
144		size -= count;
145		for (p = iter_iov(i), skip = i->iov_offset; count; p++, skip = 0) {
146			size_t len = min(count, p->iov_len - skip);
147			size_t ret;
148
149			if (unlikely(!len))
150				continue;
151			ret = fault_in_safe_writeable(p->iov_base + skip, len);
152			count -= len - ret;
153			if (ret)
154				break;
155		}
156		return count + size;
157	}
158	return 0;
159}
160EXPORT_SYMBOL(fault_in_iov_iter_writeable);
161
162void iov_iter_init(struct iov_iter *i, unsigned int direction,
163			const struct iovec *iov, unsigned long nr_segs,
164			size_t count)
165{
166	WARN_ON(direction & ~(READ | WRITE));
167	*i = (struct iov_iter) {
168		.iter_type = ITER_IOVEC,
169		.nofault = false,
170		.data_source = direction,
171		.__iov = iov,
172		.nr_segs = nr_segs,
173		.iov_offset = 0,
174		.count = count
175	};
176}
177EXPORT_SYMBOL(iov_iter_init);
178
179size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
180{
181	if (WARN_ON_ONCE(i->data_source))
182		return 0;
183	if (user_backed_iter(i))
184		might_fault();
185	return iterate_and_advance(i, bytes, (void *)addr,
186				   copy_to_user_iter, memcpy_to_iter);
187}
188EXPORT_SYMBOL(_copy_to_iter);
189
190#ifdef CONFIG_ARCH_HAS_COPY_MC
191static __always_inline
192size_t copy_to_user_iter_mc(void __user *iter_to, size_t progress,
193			    size_t len, void *from, void *priv2)
194{
195	if (access_ok(iter_to, len)) {
196		from += progress;
197		instrument_copy_to_user(iter_to, from, len);
198		len = copy_mc_to_user(iter_to, from, len);
199	}
200	return len;
201}
202
203static __always_inline
204size_t memcpy_to_iter_mc(void *iter_to, size_t progress,
205			 size_t len, void *from, void *priv2)
206{
207	return copy_mc_to_kernel(iter_to, from + progress, len);
208}
209
210/**
211 * _copy_mc_to_iter - copy to iter with source memory error exception handling
212 * @addr: source kernel address
213 * @bytes: total transfer length
214 * @i: destination iterator
215 *
216 * The pmem driver deploys this for the dax operation
217 * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
218 * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
219 * successfully copied.
220 *
221 * The main differences between this and typical _copy_to_iter().
222 *
223 * * Typical tail/residue handling after a fault retries the copy
224 *   byte-by-byte until the fault happens again. Re-triggering machine
225 *   checks is potentially fatal so the implementation uses source
226 *   alignment and poison alignment assumptions to avoid re-triggering
227 *   hardware exceptions.
228 *
229 * * ITER_KVEC and ITER_BVEC can return short copies.  Compare to
230 *   copy_to_iter() where only ITER_IOVEC attempts might return a short copy.
231 *
232 * Return: number of bytes copied (may be %0)
233 */
234size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
235{
236	if (WARN_ON_ONCE(i->data_source))
237		return 0;
238	if (user_backed_iter(i))
239		might_fault();
240	return iterate_and_advance(i, bytes, (void *)addr,
241				   copy_to_user_iter_mc, memcpy_to_iter_mc);
242}
243EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
244#endif /* CONFIG_ARCH_HAS_COPY_MC */
245
246static __always_inline
247size_t __copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
248{
249	return iterate_and_advance(i, bytes, addr,
250				   copy_from_user_iter, memcpy_from_iter);
251}
252
253size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
254{
255	if (WARN_ON_ONCE(!i->data_source))
256		return 0;
257
258	if (user_backed_iter(i))
259		might_fault();
260	return __copy_from_iter(addr, bytes, i);
261}
262EXPORT_SYMBOL(_copy_from_iter);
263
264static __always_inline
265size_t copy_from_user_iter_nocache(void __user *iter_from, size_t progress,
266				   size_t len, void *to, void *priv2)
267{
268	return __copy_from_user_inatomic_nocache(to + progress, iter_from, len);
269}
270
271size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
272{
273	if (WARN_ON_ONCE(!i->data_source))
274		return 0;
275
276	return iterate_and_advance(i, bytes, addr,
277				   copy_from_user_iter_nocache,
278				   memcpy_from_iter);
279}
280EXPORT_SYMBOL(_copy_from_iter_nocache);
281
282#ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
283static __always_inline
284size_t copy_from_user_iter_flushcache(void __user *iter_from, size_t progress,
285				      size_t len, void *to, void *priv2)
286{
287	return __copy_from_user_flushcache(to + progress, iter_from, len);
288}
289
290static __always_inline
291size_t memcpy_from_iter_flushcache(void *iter_from, size_t progress,
292				   size_t len, void *to, void *priv2)
293{
294	memcpy_flushcache(to + progress, iter_from, len);
295	return 0;
296}
297
298/**
299 * _copy_from_iter_flushcache - write destination through cpu cache
300 * @addr: destination kernel address
301 * @bytes: total transfer length
302 * @i: source iterator
303 *
304 * The pmem driver arranges for filesystem-dax to use this facility via
305 * dax_copy_from_iter() for ensuring that writes to persistent memory
306 * are flushed through the CPU cache. It is differentiated from
307 * _copy_from_iter_nocache() in that guarantees all data is flushed for
308 * all iterator types. The _copy_from_iter_nocache() only attempts to
309 * bypass the cache for the ITER_IOVEC case, and on some archs may use
310 * instructions that strand dirty-data in the cache.
311 *
312 * Return: number of bytes copied (may be %0)
313 */
314size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
315{
316	if (WARN_ON_ONCE(!i->data_source))
317		return 0;
318
319	return iterate_and_advance(i, bytes, addr,
320				   copy_from_user_iter_flushcache,
321				   memcpy_from_iter_flushcache);
322}
323EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
324#endif
325
326static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
327{
328	struct page *head;
329	size_t v = n + offset;
330
331	/*
332	 * The general case needs to access the page order in order
333	 * to compute the page size.
334	 * However, we mostly deal with order-0 pages and thus can
335	 * avoid a possible cache line miss for requests that fit all
336	 * page orders.
337	 */
338	if (n <= v && v <= PAGE_SIZE)
339		return true;
340
341	head = compound_head(page);
342	v += (page - head) << PAGE_SHIFT;
343
344	if (WARN_ON(n > v || v > page_size(head)))
345		return false;
346	return true;
347}
348
349size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
350			 struct iov_iter *i)
351{
352	size_t res = 0;
353	if (!page_copy_sane(page, offset, bytes))
354		return 0;
355	if (WARN_ON_ONCE(i->data_source))
356		return 0;
357	page += offset / PAGE_SIZE; // first subpage
358	offset %= PAGE_SIZE;
359	while (1) {
360		void *kaddr = kmap_local_page(page);
361		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
362		n = _copy_to_iter(kaddr + offset, n, i);
363		kunmap_local(kaddr);
364		res += n;
365		bytes -= n;
366		if (!bytes || !n)
367			break;
368		offset += n;
369		if (offset == PAGE_SIZE) {
370			page++;
371			offset = 0;
372		}
373	}
374	return res;
375}
376EXPORT_SYMBOL(copy_page_to_iter);
377
378size_t copy_page_to_iter_nofault(struct page *page, unsigned offset, size_t bytes,
379				 struct iov_iter *i)
380{
381	size_t res = 0;
382
383	if (!page_copy_sane(page, offset, bytes))
384		return 0;
385	if (WARN_ON_ONCE(i->data_source))
386		return 0;
387	page += offset / PAGE_SIZE; // first subpage
388	offset %= PAGE_SIZE;
389	while (1) {
390		void *kaddr = kmap_local_page(page);
391		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
392
393		n = iterate_and_advance(i, n, kaddr + offset,
394					copy_to_user_iter_nofault,
395					memcpy_to_iter);
396		kunmap_local(kaddr);
397		res += n;
398		bytes -= n;
399		if (!bytes || !n)
400			break;
401		offset += n;
402		if (offset == PAGE_SIZE) {
403			page++;
404			offset = 0;
405		}
406	}
407	return res;
408}
409EXPORT_SYMBOL(copy_page_to_iter_nofault);
410
411size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
412			 struct iov_iter *i)
413{
414	size_t res = 0;
415	if (!page_copy_sane(page, offset, bytes))
416		return 0;
417	page += offset / PAGE_SIZE; // first subpage
418	offset %= PAGE_SIZE;
419	while (1) {
420		void *kaddr = kmap_local_page(page);
421		size_t n = min(bytes, (size_t)PAGE_SIZE - offset);
422		n = _copy_from_iter(kaddr + offset, n, i);
423		kunmap_local(kaddr);
424		res += n;
425		bytes -= n;
426		if (!bytes || !n)
427			break;
428		offset += n;
429		if (offset == PAGE_SIZE) {
430			page++;
431			offset = 0;
432		}
433	}
434	return res;
435}
436EXPORT_SYMBOL(copy_page_from_iter);
437
438static __always_inline
439size_t zero_to_user_iter(void __user *iter_to, size_t progress,
440			 size_t len, void *priv, void *priv2)
441{
442	return clear_user(iter_to, len);
443}
444
445static __always_inline
446size_t zero_to_iter(void *iter_to, size_t progress,
447		    size_t len, void *priv, void *priv2)
448{
449	memset(iter_to, 0, len);
450	return 0;
451}
452
453size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
454{
455	return iterate_and_advance(i, bytes, NULL,
456				   zero_to_user_iter, zero_to_iter);
457}
458EXPORT_SYMBOL(iov_iter_zero);
459
460size_t copy_page_from_iter_atomic(struct page *page, size_t offset,
461		size_t bytes, struct iov_iter *i)
462{
463	size_t n, copied = 0;
464
465	if (!page_copy_sane(page, offset, bytes))
466		return 0;
467	if (WARN_ON_ONCE(!i->data_source))
468		return 0;
469
470	do {
471		char *p;
472
473		n = bytes - copied;
474		if (PageHighMem(page)) {
475			page += offset / PAGE_SIZE;
476			offset %= PAGE_SIZE;
477			n = min_t(size_t, n, PAGE_SIZE - offset);
478		}
479
480		p = kmap_atomic(page) + offset;
481		n = __copy_from_iter(p, n, i);
482		kunmap_atomic(p);
483		copied += n;
484		offset += n;
485	} while (PageHighMem(page) && copied != bytes && n > 0);
486
487	return copied;
488}
489EXPORT_SYMBOL(copy_page_from_iter_atomic);
490
491static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
492{
493	const struct bio_vec *bvec, *end;
494
495	if (!i->count)
496		return;
497	i->count -= size;
498
499	size += i->iov_offset;
500
501	for (bvec = i->bvec, end = bvec + i->nr_segs; bvec < end; bvec++) {
502		if (likely(size < bvec->bv_len))
503			break;
504		size -= bvec->bv_len;
505	}
506	i->iov_offset = size;
507	i->nr_segs -= bvec - i->bvec;
508	i->bvec = bvec;
509}
510
511static void iov_iter_iovec_advance(struct iov_iter *i, size_t size)
512{
513	const struct iovec *iov, *end;
514
515	if (!i->count)
516		return;
517	i->count -= size;
518
519	size += i->iov_offset; // from beginning of current segment
520	for (iov = iter_iov(i), end = iov + i->nr_segs; iov < end; iov++) {
521		if (likely(size < iov->iov_len))
522			break;
523		size -= iov->iov_len;
524	}
525	i->iov_offset = size;
526	i->nr_segs -= iov - iter_iov(i);
527	i->__iov = iov;
528}
529
530void iov_iter_advance(struct iov_iter *i, size_t size)
531{
532	if (unlikely(i->count < size))
533		size = i->count;
534	if (likely(iter_is_ubuf(i)) || unlikely(iov_iter_is_xarray(i))) {
535		i->iov_offset += size;
536		i->count -= size;
537	} else if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i))) {
538		/* iovec and kvec have identical layouts */
539		iov_iter_iovec_advance(i, size);
540	} else if (iov_iter_is_bvec(i)) {
541		iov_iter_bvec_advance(i, size);
542	} else if (iov_iter_is_discard(i)) {
543		i->count -= size;
544	}
545}
546EXPORT_SYMBOL(iov_iter_advance);
547
548void iov_iter_revert(struct iov_iter *i, size_t unroll)
549{
550	if (!unroll)
551		return;
552	if (WARN_ON(unroll > MAX_RW_COUNT))
553		return;
554	i->count += unroll;
555	if (unlikely(iov_iter_is_discard(i)))
556		return;
557	if (unroll <= i->iov_offset) {
558		i->iov_offset -= unroll;
559		return;
560	}
561	unroll -= i->iov_offset;
562	if (iov_iter_is_xarray(i) || iter_is_ubuf(i)) {
563		BUG(); /* We should never go beyond the start of the specified
564			* range since we might then be straying into pages that
565			* aren't pinned.
566			*/
567	} else if (iov_iter_is_bvec(i)) {
568		const struct bio_vec *bvec = i->bvec;
569		while (1) {
570			size_t n = (--bvec)->bv_len;
571			i->nr_segs++;
572			if (unroll <= n) {
573				i->bvec = bvec;
574				i->iov_offset = n - unroll;
575				return;
576			}
577			unroll -= n;
578		}
579	} else { /* same logics for iovec and kvec */
580		const struct iovec *iov = iter_iov(i);
581		while (1) {
582			size_t n = (--iov)->iov_len;
583			i->nr_segs++;
584			if (unroll <= n) {
585				i->__iov = iov;
586				i->iov_offset = n - unroll;
587				return;
588			}
589			unroll -= n;
590		}
591	}
592}
593EXPORT_SYMBOL(iov_iter_revert);
594
595/*
596 * Return the count of just the current iov_iter segment.
597 */
598size_t iov_iter_single_seg_count(const struct iov_iter *i)
599{
600	if (i->nr_segs > 1) {
601		if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
602			return min(i->count, iter_iov(i)->iov_len - i->iov_offset);
603		if (iov_iter_is_bvec(i))
604			return min(i->count, i->bvec->bv_len - i->iov_offset);
605	}
606	return i->count;
607}
608EXPORT_SYMBOL(iov_iter_single_seg_count);
609
610void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
611			const struct kvec *kvec, unsigned long nr_segs,
612			size_t count)
613{
614	WARN_ON(direction & ~(READ | WRITE));
615	*i = (struct iov_iter){
616		.iter_type = ITER_KVEC,
617		.data_source = direction,
618		.kvec = kvec,
619		.nr_segs = nr_segs,
620		.iov_offset = 0,
621		.count = count
622	};
623}
624EXPORT_SYMBOL(iov_iter_kvec);
625
626void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
627			const struct bio_vec *bvec, unsigned long nr_segs,
628			size_t count)
629{
630	WARN_ON(direction & ~(READ | WRITE));
631	*i = (struct iov_iter){
632		.iter_type = ITER_BVEC,
633		.data_source = direction,
634		.bvec = bvec,
635		.nr_segs = nr_segs,
636		.iov_offset = 0,
637		.count = count
638	};
639}
640EXPORT_SYMBOL(iov_iter_bvec);
641
642/**
643 * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
644 * @i: The iterator to initialise.
645 * @direction: The direction of the transfer.
646 * @xarray: The xarray to access.
647 * @start: The start file position.
648 * @count: The size of the I/O buffer in bytes.
649 *
650 * Set up an I/O iterator to either draw data out of the pages attached to an
651 * inode or to inject data into those pages.  The pages *must* be prevented
652 * from evaporation, either by taking a ref on them or locking them by the
653 * caller.
654 */
655void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
656		     struct xarray *xarray, loff_t start, size_t count)
657{
658	BUG_ON(direction & ~1);
659	*i = (struct iov_iter) {
660		.iter_type = ITER_XARRAY,
661		.data_source = direction,
662		.xarray = xarray,
663		.xarray_start = start,
664		.count = count,
665		.iov_offset = 0
666	};
667}
668EXPORT_SYMBOL(iov_iter_xarray);
669
670/**
671 * iov_iter_discard - Initialise an I/O iterator that discards data
672 * @i: The iterator to initialise.
673 * @direction: The direction of the transfer.
674 * @count: The size of the I/O buffer in bytes.
675 *
676 * Set up an I/O iterator that just discards everything that's written to it.
677 * It's only available as a READ iterator.
678 */
679void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
680{
681	BUG_ON(direction != READ);
682	*i = (struct iov_iter){
683		.iter_type = ITER_DISCARD,
684		.data_source = false,
685		.count = count,
686		.iov_offset = 0
687	};
688}
689EXPORT_SYMBOL(iov_iter_discard);
690
691static bool iov_iter_aligned_iovec(const struct iov_iter *i, unsigned addr_mask,
692				   unsigned len_mask)
693{
694	const struct iovec *iov = iter_iov(i);
695	size_t size = i->count;
696	size_t skip = i->iov_offset;
697
698	do {
699		size_t len = iov->iov_len - skip;
700
701		if (len > size)
702			len = size;
703		if (len & len_mask)
704			return false;
705		if ((unsigned long)(iov->iov_base + skip) & addr_mask)
706			return false;
707
708		iov++;
709		size -= len;
710		skip = 0;
711	} while (size);
712
713	return true;
714}
715
716static bool iov_iter_aligned_bvec(const struct iov_iter *i, unsigned addr_mask,
717				  unsigned len_mask)
718{
719	const struct bio_vec *bvec = i->bvec;
720	unsigned skip = i->iov_offset;
721	size_t size = i->count;
722
723	do {
724		size_t len = bvec->bv_len;
725
726		if (len > size)
727			len = size;
728		if (len & len_mask)
729			return false;
730		if ((unsigned long)(bvec->bv_offset + skip) & addr_mask)
731			return false;
732
733		bvec++;
734		size -= len;
735		skip = 0;
736	} while (size);
737
738	return true;
739}
740
741/**
742 * iov_iter_is_aligned() - Check if the addresses and lengths of each segments
743 * 	are aligned to the parameters.
744 *
745 * @i: &struct iov_iter to restore
746 * @addr_mask: bit mask to check against the iov element's addresses
747 * @len_mask: bit mask to check against the iov element's lengths
748 *
749 * Return: false if any addresses or lengths intersect with the provided masks
750 */
751bool iov_iter_is_aligned(const struct iov_iter *i, unsigned addr_mask,
752			 unsigned len_mask)
753{
754	if (likely(iter_is_ubuf(i))) {
755		if (i->count & len_mask)
756			return false;
757		if ((unsigned long)(i->ubuf + i->iov_offset) & addr_mask)
758			return false;
759		return true;
760	}
761
762	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
763		return iov_iter_aligned_iovec(i, addr_mask, len_mask);
764
765	if (iov_iter_is_bvec(i))
766		return iov_iter_aligned_bvec(i, addr_mask, len_mask);
767
768	if (iov_iter_is_xarray(i)) {
769		if (i->count & len_mask)
770			return false;
771		if ((i->xarray_start + i->iov_offset) & addr_mask)
772			return false;
773	}
774
775	return true;
776}
777EXPORT_SYMBOL_GPL(iov_iter_is_aligned);
778
779static unsigned long iov_iter_alignment_iovec(const struct iov_iter *i)
780{
781	const struct iovec *iov = iter_iov(i);
782	unsigned long res = 0;
783	size_t size = i->count;
784	size_t skip = i->iov_offset;
785
786	do {
787		size_t len = iov->iov_len - skip;
788		if (len) {
789			res |= (unsigned long)iov->iov_base + skip;
790			if (len > size)
791				len = size;
792			res |= len;
793			size -= len;
794		}
795		iov++;
796		skip = 0;
797	} while (size);
798	return res;
799}
800
801static unsigned long iov_iter_alignment_bvec(const struct iov_iter *i)
802{
803	const struct bio_vec *bvec = i->bvec;
804	unsigned res = 0;
805	size_t size = i->count;
806	unsigned skip = i->iov_offset;
807
808	do {
809		size_t len = bvec->bv_len - skip;
810		res |= (unsigned long)bvec->bv_offset + skip;
811		if (len > size)
812			len = size;
813		res |= len;
814		bvec++;
815		size -= len;
816		skip = 0;
817	} while (size);
818
819	return res;
820}
821
822unsigned long iov_iter_alignment(const struct iov_iter *i)
823{
824	if (likely(iter_is_ubuf(i))) {
825		size_t size = i->count;
826		if (size)
827			return ((unsigned long)i->ubuf + i->iov_offset) | size;
828		return 0;
829	}
830
831	/* iovec and kvec have identical layouts */
832	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
833		return iov_iter_alignment_iovec(i);
834
835	if (iov_iter_is_bvec(i))
836		return iov_iter_alignment_bvec(i);
837
838	if (iov_iter_is_xarray(i))
839		return (i->xarray_start + i->iov_offset) | i->count;
840
841	return 0;
842}
843EXPORT_SYMBOL(iov_iter_alignment);
844
845unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
846{
847	unsigned long res = 0;
848	unsigned long v = 0;
849	size_t size = i->count;
850	unsigned k;
851
852	if (iter_is_ubuf(i))
853		return 0;
854
855	if (WARN_ON(!iter_is_iovec(i)))
856		return ~0U;
857
858	for (k = 0; k < i->nr_segs; k++) {
859		const struct iovec *iov = iter_iov(i) + k;
860		if (iov->iov_len) {
861			unsigned long base = (unsigned long)iov->iov_base;
862			if (v) // if not the first one
863				res |= base | v; // this start | previous end
864			v = base + iov->iov_len;
865			if (size <= iov->iov_len)
866				break;
867			size -= iov->iov_len;
868		}
869	}
870	return res;
871}
872EXPORT_SYMBOL(iov_iter_gap_alignment);
873
874static int want_pages_array(struct page ***res, size_t size,
875			    size_t start, unsigned int maxpages)
876{
877	unsigned int count = DIV_ROUND_UP(size + start, PAGE_SIZE);
878
879	if (count > maxpages)
880		count = maxpages;
881	WARN_ON(!count);	// caller should've prevented that
882	if (!*res) {
883		*res = kvmalloc_array(count, sizeof(struct page *), GFP_KERNEL);
884		if (!*res)
885			return 0;
886	}
887	return count;
888}
889
890static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
891					  pgoff_t index, unsigned int nr_pages)
892{
893	XA_STATE(xas, xa, index);
894	struct page *page;
895	unsigned int ret = 0;
896
897	rcu_read_lock();
898	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
899		if (xas_retry(&xas, page))
900			continue;
901
902		/* Has the page moved or been split? */
903		if (unlikely(page != xas_reload(&xas))) {
904			xas_reset(&xas);
905			continue;
906		}
907
908		pages[ret] = find_subpage(page, xas.xa_index);
909		get_page(pages[ret]);
910		if (++ret == nr_pages)
911			break;
912	}
913	rcu_read_unlock();
914	return ret;
915}
916
917static ssize_t iter_xarray_get_pages(struct iov_iter *i,
918				     struct page ***pages, size_t maxsize,
919				     unsigned maxpages, size_t *_start_offset)
920{
921	unsigned nr, offset, count;
922	pgoff_t index;
923	loff_t pos;
924
925	pos = i->xarray_start + i->iov_offset;
926	index = pos >> PAGE_SHIFT;
927	offset = pos & ~PAGE_MASK;
928	*_start_offset = offset;
929
930	count = want_pages_array(pages, maxsize, offset, maxpages);
931	if (!count)
932		return -ENOMEM;
933	nr = iter_xarray_populate_pages(*pages, i->xarray, index, count);
934	if (nr == 0)
935		return 0;
936
937	maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
938	i->iov_offset += maxsize;
939	i->count -= maxsize;
940	return maxsize;
941}
942
943/* must be done on non-empty ITER_UBUF or ITER_IOVEC one */
944static unsigned long first_iovec_segment(const struct iov_iter *i, size_t *size)
945{
946	size_t skip;
947	long k;
948
949	if (iter_is_ubuf(i))
950		return (unsigned long)i->ubuf + i->iov_offset;
951
952	for (k = 0, skip = i->iov_offset; k < i->nr_segs; k++, skip = 0) {
953		const struct iovec *iov = iter_iov(i) + k;
954		size_t len = iov->iov_len - skip;
955
956		if (unlikely(!len))
957			continue;
958		if (*size > len)
959			*size = len;
960		return (unsigned long)iov->iov_base + skip;
961	}
962	BUG(); // if it had been empty, we wouldn't get called
963}
964
965/* must be done on non-empty ITER_BVEC one */
966static struct page *first_bvec_segment(const struct iov_iter *i,
967				       size_t *size, size_t *start)
968{
969	struct page *page;
970	size_t skip = i->iov_offset, len;
971
972	len = i->bvec->bv_len - skip;
973	if (*size > len)
974		*size = len;
975	skip += i->bvec->bv_offset;
976	page = i->bvec->bv_page + skip / PAGE_SIZE;
977	*start = skip % PAGE_SIZE;
978	return page;
979}
980
981static ssize_t __iov_iter_get_pages_alloc(struct iov_iter *i,
982		   struct page ***pages, size_t maxsize,
983		   unsigned int maxpages, size_t *start)
984{
985	unsigned int n, gup_flags = 0;
986
987	if (maxsize > i->count)
988		maxsize = i->count;
989	if (!maxsize)
990		return 0;
991	if (maxsize > MAX_RW_COUNT)
992		maxsize = MAX_RW_COUNT;
993
994	if (likely(user_backed_iter(i))) {
995		unsigned long addr;
996		int res;
997
998		if (iov_iter_rw(i) != WRITE)
999			gup_flags |= FOLL_WRITE;
1000		if (i->nofault)
1001			gup_flags |= FOLL_NOFAULT;
1002
1003		addr = first_iovec_segment(i, &maxsize);
1004		*start = addr % PAGE_SIZE;
1005		addr &= PAGE_MASK;
1006		n = want_pages_array(pages, maxsize, *start, maxpages);
1007		if (!n)
1008			return -ENOMEM;
1009		res = get_user_pages_fast(addr, n, gup_flags, *pages);
1010		if (unlikely(res <= 0))
1011			return res;
1012		maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - *start);
1013		iov_iter_advance(i, maxsize);
1014		return maxsize;
1015	}
1016	if (iov_iter_is_bvec(i)) {
1017		struct page **p;
1018		struct page *page;
1019
1020		page = first_bvec_segment(i, &maxsize, start);
1021		n = want_pages_array(pages, maxsize, *start, maxpages);
1022		if (!n)
1023			return -ENOMEM;
1024		p = *pages;
1025		for (int k = 0; k < n; k++)
1026			get_page(p[k] = page + k);
1027		maxsize = min_t(size_t, maxsize, n * PAGE_SIZE - *start);
1028		i->count -= maxsize;
1029		i->iov_offset += maxsize;
1030		if (i->iov_offset == i->bvec->bv_len) {
1031			i->iov_offset = 0;
1032			i->bvec++;
1033			i->nr_segs--;
1034		}
1035		return maxsize;
1036	}
1037	if (iov_iter_is_xarray(i))
1038		return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1039	return -EFAULT;
1040}
1041
1042ssize_t iov_iter_get_pages2(struct iov_iter *i, struct page **pages,
1043		size_t maxsize, unsigned maxpages, size_t *start)
1044{
1045	if (!maxpages)
1046		return 0;
1047	BUG_ON(!pages);
1048
1049	return __iov_iter_get_pages_alloc(i, &pages, maxsize, maxpages, start);
1050}
1051EXPORT_SYMBOL(iov_iter_get_pages2);
1052
1053ssize_t iov_iter_get_pages_alloc2(struct iov_iter *i,
1054		struct page ***pages, size_t maxsize, size_t *start)
1055{
1056	ssize_t len;
1057
1058	*pages = NULL;
1059
1060	len = __iov_iter_get_pages_alloc(i, pages, maxsize, ~0U, start);
1061	if (len <= 0) {
1062		kvfree(*pages);
1063		*pages = NULL;
1064	}
1065	return len;
1066}
1067EXPORT_SYMBOL(iov_iter_get_pages_alloc2);
1068
1069static int iov_npages(const struct iov_iter *i, int maxpages)
1070{
1071	size_t skip = i->iov_offset, size = i->count;
1072	const struct iovec *p;
1073	int npages = 0;
1074
1075	for (p = iter_iov(i); size; skip = 0, p++) {
1076		unsigned offs = offset_in_page(p->iov_base + skip);
1077		size_t len = min(p->iov_len - skip, size);
1078
1079		if (len) {
1080			size -= len;
1081			npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1082			if (unlikely(npages > maxpages))
1083				return maxpages;
1084		}
1085	}
1086	return npages;
1087}
1088
1089static int bvec_npages(const struct iov_iter *i, int maxpages)
1090{
1091	size_t skip = i->iov_offset, size = i->count;
1092	const struct bio_vec *p;
1093	int npages = 0;
1094
1095	for (p = i->bvec; size; skip = 0, p++) {
1096		unsigned offs = (p->bv_offset + skip) % PAGE_SIZE;
1097		size_t len = min(p->bv_len - skip, size);
1098
1099		size -= len;
1100		npages += DIV_ROUND_UP(offs + len, PAGE_SIZE);
1101		if (unlikely(npages > maxpages))
1102			return maxpages;
1103	}
1104	return npages;
1105}
1106
1107int iov_iter_npages(const struct iov_iter *i, int maxpages)
1108{
1109	if (unlikely(!i->count))
1110		return 0;
1111	if (likely(iter_is_ubuf(i))) {
1112		unsigned offs = offset_in_page(i->ubuf + i->iov_offset);
1113		int npages = DIV_ROUND_UP(offs + i->count, PAGE_SIZE);
1114		return min(npages, maxpages);
1115	}
1116	/* iovec and kvec have identical layouts */
1117	if (likely(iter_is_iovec(i) || iov_iter_is_kvec(i)))
1118		return iov_npages(i, maxpages);
1119	if (iov_iter_is_bvec(i))
1120		return bvec_npages(i, maxpages);
1121	if (iov_iter_is_xarray(i)) {
1122		unsigned offset = (i->xarray_start + i->iov_offset) % PAGE_SIZE;
1123		int npages = DIV_ROUND_UP(offset + i->count, PAGE_SIZE);
1124		return min(npages, maxpages);
1125	}
1126	return 0;
1127}
1128EXPORT_SYMBOL(iov_iter_npages);
1129
1130const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1131{
1132	*new = *old;
1133	if (iov_iter_is_bvec(new))
1134		return new->bvec = kmemdup(new->bvec,
1135				    new->nr_segs * sizeof(struct bio_vec),
1136				    flags);
1137	else if (iov_iter_is_kvec(new) || iter_is_iovec(new))
1138		/* iovec and kvec have identical layout */
1139		return new->__iov = kmemdup(new->__iov,
1140				   new->nr_segs * sizeof(struct iovec),
1141				   flags);
1142	return NULL;
1143}
1144EXPORT_SYMBOL(dup_iter);
1145
1146static __noclone int copy_compat_iovec_from_user(struct iovec *iov,
1147		const struct iovec __user *uvec, u32 nr_segs)
1148{
1149	const struct compat_iovec __user *uiov =
1150		(const struct compat_iovec __user *)uvec;
1151	int ret = -EFAULT;
1152	u32 i;
1153
1154	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1155		return -EFAULT;
1156
1157	for (i = 0; i < nr_segs; i++) {
1158		compat_uptr_t buf;
1159		compat_ssize_t len;
1160
1161		unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1162		unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1163
1164		/* check for compat_size_t not fitting in compat_ssize_t .. */
1165		if (len < 0) {
1166			ret = -EINVAL;
1167			goto uaccess_end;
1168		}
1169		iov[i].iov_base = compat_ptr(buf);
1170		iov[i].iov_len = len;
1171	}
1172
1173	ret = 0;
1174uaccess_end:
1175	user_access_end();
1176	return ret;
1177}
1178
1179static __noclone int copy_iovec_from_user(struct iovec *iov,
1180		const struct iovec __user *uiov, unsigned long nr_segs)
1181{
1182	int ret = -EFAULT;
1183
1184	if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1185		return -EFAULT;
1186
1187	do {
1188		void __user *buf;
1189		ssize_t len;
1190
1191		unsafe_get_user(len, &uiov->iov_len, uaccess_end);
1192		unsafe_get_user(buf, &uiov->iov_base, uaccess_end);
1193
1194		/* check for size_t not fitting in ssize_t .. */
1195		if (unlikely(len < 0)) {
1196			ret = -EINVAL;
1197			goto uaccess_end;
1198		}
1199		iov->iov_base = buf;
1200		iov->iov_len = len;
1201
1202		uiov++; iov++;
1203	} while (--nr_segs);
1204
1205	ret = 0;
1206uaccess_end:
1207	user_access_end();
1208	return ret;
1209}
1210
1211struct iovec *iovec_from_user(const struct iovec __user *uvec,
1212		unsigned long nr_segs, unsigned long fast_segs,
1213		struct iovec *fast_iov, bool compat)
1214{
1215	struct iovec *iov = fast_iov;
1216	int ret;
1217
1218	/*
1219	 * SuS says "The readv() function *may* fail if the iovcnt argument was
1220	 * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1221	 * traditionally returned zero for zero segments, so...
1222	 */
1223	if (nr_segs == 0)
1224		return iov;
1225	if (nr_segs > UIO_MAXIOV)
1226		return ERR_PTR(-EINVAL);
1227	if (nr_segs > fast_segs) {
1228		iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1229		if (!iov)
1230			return ERR_PTR(-ENOMEM);
1231	}
1232
1233	if (unlikely(compat))
1234		ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1235	else
1236		ret = copy_iovec_from_user(iov, uvec, nr_segs);
1237	if (ret) {
1238		if (iov != fast_iov)
1239			kfree(iov);
1240		return ERR_PTR(ret);
1241	}
1242
1243	return iov;
1244}
1245
1246/*
1247 * Single segment iovec supplied by the user, import it as ITER_UBUF.
1248 */
1249static ssize_t __import_iovec_ubuf(int type, const struct iovec __user *uvec,
1250				   struct iovec **iovp, struct iov_iter *i,
1251				   bool compat)
1252{
1253	struct iovec *iov = *iovp;
1254	ssize_t ret;
1255
1256	if (compat)
1257		ret = copy_compat_iovec_from_user(iov, uvec, 1);
1258	else
1259		ret = copy_iovec_from_user(iov, uvec, 1);
1260	if (unlikely(ret))
1261		return ret;
1262
1263	ret = import_ubuf(type, iov->iov_base, iov->iov_len, i);
1264	if (unlikely(ret))
1265		return ret;
1266	*iovp = NULL;
1267	return i->count;
1268}
1269
1270ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1271		 unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1272		 struct iov_iter *i, bool compat)
1273{
1274	ssize_t total_len = 0;
1275	unsigned long seg;
1276	struct iovec *iov;
1277
1278	if (nr_segs == 1)
1279		return __import_iovec_ubuf(type, uvec, iovp, i, compat);
1280
1281	iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1282	if (IS_ERR(iov)) {
1283		*iovp = NULL;
1284		return PTR_ERR(iov);
1285	}
1286
1287	/*
1288	 * According to the Single Unix Specification we should return EINVAL if
1289	 * an element length is < 0 when cast to ssize_t or if the total length
1290	 * would overflow the ssize_t return value of the system call.
1291	 *
1292	 * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1293	 * overflow case.
1294	 */
1295	for (seg = 0; seg < nr_segs; seg++) {
1296		ssize_t len = (ssize_t)iov[seg].iov_len;
1297
1298		if (!access_ok(iov[seg].iov_base, len)) {
1299			if (iov != *iovp)
1300				kfree(iov);
1301			*iovp = NULL;
1302			return -EFAULT;
1303		}
1304
1305		if (len > MAX_RW_COUNT - total_len) {
1306			len = MAX_RW_COUNT - total_len;
1307			iov[seg].iov_len = len;
1308		}
1309		total_len += len;
1310	}
1311
1312	iov_iter_init(i, type, iov, nr_segs, total_len);
1313	if (iov == *iovp)
1314		*iovp = NULL;
1315	else
1316		*iovp = iov;
1317	return total_len;
1318}
1319
1320/**
1321 * import_iovec() - Copy an array of &struct iovec from userspace
1322 *     into the kernel, check that it is valid, and initialize a new
1323 *     &struct iov_iter iterator to access it.
1324 *
1325 * @type: One of %READ or %WRITE.
1326 * @uvec: Pointer to the userspace array.
1327 * @nr_segs: Number of elements in userspace array.
1328 * @fast_segs: Number of elements in @iov.
1329 * @iovp: (input and output parameter) Pointer to pointer to (usually small
1330 *     on-stack) kernel array.
1331 * @i: Pointer to iterator that will be initialized on success.
1332 *
1333 * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1334 * then this function places %NULL in *@iov on return. Otherwise, a new
1335 * array will be allocated and the result placed in *@iov. This means that
1336 * the caller may call kfree() on *@iov regardless of whether the small
1337 * on-stack array was used or not (and regardless of whether this function
1338 * returns an error or not).
1339 *
1340 * Return: Negative error code on error, bytes imported on success
1341 */
1342ssize_t import_iovec(int type, const struct iovec __user *uvec,
1343		 unsigned nr_segs, unsigned fast_segs,
1344		 struct iovec **iovp, struct iov_iter *i)
1345{
1346	return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1347			      in_compat_syscall());
1348}
1349EXPORT_SYMBOL(import_iovec);
1350
1351int import_ubuf(int rw, void __user *buf, size_t len, struct iov_iter *i)
1352{
1353	if (len > MAX_RW_COUNT)
1354		len = MAX_RW_COUNT;
1355	if (unlikely(!access_ok(buf, len)))
1356		return -EFAULT;
1357
1358	iov_iter_ubuf(i, rw, buf, len);
1359	return 0;
1360}
1361EXPORT_SYMBOL_GPL(import_ubuf);
1362
1363/**
1364 * iov_iter_restore() - Restore a &struct iov_iter to the same state as when
1365 *     iov_iter_save_state() was called.
1366 *
1367 * @i: &struct iov_iter to restore
1368 * @state: state to restore from
1369 *
1370 * Used after iov_iter_save_state() to bring restore @i, if operations may
1371 * have advanced it.
1372 *
1373 * Note: only works on ITER_IOVEC, ITER_BVEC, and ITER_KVEC
1374 */
1375void iov_iter_restore(struct iov_iter *i, struct iov_iter_state *state)
1376{
1377	if (WARN_ON_ONCE(!iov_iter_is_bvec(i) && !iter_is_iovec(i) &&
1378			 !iter_is_ubuf(i)) && !iov_iter_is_kvec(i))
1379		return;
1380	i->iov_offset = state->iov_offset;
1381	i->count = state->count;
1382	if (iter_is_ubuf(i))
1383		return;
1384	/*
1385	 * For the *vec iters, nr_segs + iov is constant - if we increment
1386	 * the vec, then we also decrement the nr_segs count. Hence we don't
1387	 * need to track both of these, just one is enough and we can deduct
1388	 * the other from that. ITER_KVEC and ITER_IOVEC are the same struct
1389	 * size, so we can just increment the iov pointer as they are unionzed.
1390	 * ITER_BVEC _may_ be the same size on some archs, but on others it is
1391	 * not. Be safe and handle it separately.
1392	 */
1393	BUILD_BUG_ON(sizeof(struct iovec) != sizeof(struct kvec));
1394	if (iov_iter_is_bvec(i))
1395		i->bvec -= state->nr_segs - i->nr_segs;
1396	else
1397		i->__iov -= state->nr_segs - i->nr_segs;
1398	i->nr_segs = state->nr_segs;
1399}
1400
1401/*
1402 * Extract a list of contiguous pages from an ITER_XARRAY iterator.  This does not
1403 * get references on the pages, nor does it get a pin on them.
1404 */
1405static ssize_t iov_iter_extract_xarray_pages(struct iov_iter *i,
1406					     struct page ***pages, size_t maxsize,
1407					     unsigned int maxpages,
1408					     iov_iter_extraction_t extraction_flags,
1409					     size_t *offset0)
1410{
1411	struct page *page, **p;
1412	unsigned int nr = 0, offset;
1413	loff_t pos = i->xarray_start + i->iov_offset;
1414	pgoff_t index = pos >> PAGE_SHIFT;
1415	XA_STATE(xas, i->xarray, index);
1416
1417	offset = pos & ~PAGE_MASK;
1418	*offset0 = offset;
1419
1420	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1421	if (!maxpages)
1422		return -ENOMEM;
1423	p = *pages;
1424
1425	rcu_read_lock();
1426	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1427		if (xas_retry(&xas, page))
1428			continue;
1429
1430		/* Has the page moved or been split? */
1431		if (unlikely(page != xas_reload(&xas))) {
1432			xas_reset(&xas);
1433			continue;
1434		}
1435
1436		p[nr++] = find_subpage(page, xas.xa_index);
1437		if (nr == maxpages)
1438			break;
1439	}
1440	rcu_read_unlock();
1441
1442	maxsize = min_t(size_t, nr * PAGE_SIZE - offset, maxsize);
1443	iov_iter_advance(i, maxsize);
1444	return maxsize;
1445}
1446
1447/*
1448 * Extract a list of contiguous pages from an ITER_BVEC iterator.  This does
1449 * not get references on the pages, nor does it get a pin on them.
1450 */
1451static ssize_t iov_iter_extract_bvec_pages(struct iov_iter *i,
1452					   struct page ***pages, size_t maxsize,
1453					   unsigned int maxpages,
1454					   iov_iter_extraction_t extraction_flags,
1455					   size_t *offset0)
1456{
1457	struct page **p, *page;
1458	size_t skip = i->iov_offset, offset, size;
1459	int k;
1460
1461	for (;;) {
1462		if (i->nr_segs == 0)
1463			return 0;
1464		size = min(maxsize, i->bvec->bv_len - skip);
1465		if (size)
1466			break;
1467		i->iov_offset = 0;
1468		i->nr_segs--;
1469		i->bvec++;
1470		skip = 0;
1471	}
1472
1473	skip += i->bvec->bv_offset;
1474	page = i->bvec->bv_page + skip / PAGE_SIZE;
1475	offset = skip % PAGE_SIZE;
1476	*offset0 = offset;
1477
1478	maxpages = want_pages_array(pages, size, offset, maxpages);
1479	if (!maxpages)
1480		return -ENOMEM;
1481	p = *pages;
1482	for (k = 0; k < maxpages; k++)
1483		p[k] = page + k;
1484
1485	size = min_t(size_t, size, maxpages * PAGE_SIZE - offset);
1486	iov_iter_advance(i, size);
1487	return size;
1488}
1489
1490/*
1491 * Extract a list of virtually contiguous pages from an ITER_KVEC iterator.
1492 * This does not get references on the pages, nor does it get a pin on them.
1493 */
1494static ssize_t iov_iter_extract_kvec_pages(struct iov_iter *i,
1495					   struct page ***pages, size_t maxsize,
1496					   unsigned int maxpages,
1497					   iov_iter_extraction_t extraction_flags,
1498					   size_t *offset0)
1499{
1500	struct page **p, *page;
1501	const void *kaddr;
1502	size_t skip = i->iov_offset, offset, len, size;
1503	int k;
1504
1505	for (;;) {
1506		if (i->nr_segs == 0)
1507			return 0;
1508		size = min(maxsize, i->kvec->iov_len - skip);
1509		if (size)
1510			break;
1511		i->iov_offset = 0;
1512		i->nr_segs--;
1513		i->kvec++;
1514		skip = 0;
1515	}
1516
1517	kaddr = i->kvec->iov_base + skip;
1518	offset = (unsigned long)kaddr & ~PAGE_MASK;
1519	*offset0 = offset;
1520
1521	maxpages = want_pages_array(pages, size, offset, maxpages);
1522	if (!maxpages)
1523		return -ENOMEM;
1524	p = *pages;
1525
1526	kaddr -= offset;
1527	len = offset + size;
1528	for (k = 0; k < maxpages; k++) {
1529		size_t seg = min_t(size_t, len, PAGE_SIZE);
1530
1531		if (is_vmalloc_or_module_addr(kaddr))
1532			page = vmalloc_to_page(kaddr);
1533		else
1534			page = virt_to_page(kaddr);
1535
1536		p[k] = page;
1537		len -= seg;
1538		kaddr += PAGE_SIZE;
1539	}
1540
1541	size = min_t(size_t, size, maxpages * PAGE_SIZE - offset);
1542	iov_iter_advance(i, size);
1543	return size;
1544}
1545
1546/*
1547 * Extract a list of contiguous pages from a user iterator and get a pin on
1548 * each of them.  This should only be used if the iterator is user-backed
1549 * (IOBUF/UBUF).
1550 *
1551 * It does not get refs on the pages, but the pages must be unpinned by the
1552 * caller once the transfer is complete.
1553 *
1554 * This is safe to be used where background IO/DMA *is* going to be modifying
1555 * the buffer; using a pin rather than a ref makes forces fork() to give the
1556 * child a copy of the page.
1557 */
1558static ssize_t iov_iter_extract_user_pages(struct iov_iter *i,
1559					   struct page ***pages,
1560					   size_t maxsize,
1561					   unsigned int maxpages,
1562					   iov_iter_extraction_t extraction_flags,
1563					   size_t *offset0)
1564{
1565	unsigned long addr;
1566	unsigned int gup_flags = 0;
1567	size_t offset;
1568	int res;
1569
1570	if (i->data_source == ITER_DEST)
1571		gup_flags |= FOLL_WRITE;
1572	if (extraction_flags & ITER_ALLOW_P2PDMA)
1573		gup_flags |= FOLL_PCI_P2PDMA;
1574	if (i->nofault)
1575		gup_flags |= FOLL_NOFAULT;
1576
1577	addr = first_iovec_segment(i, &maxsize);
1578	*offset0 = offset = addr % PAGE_SIZE;
1579	addr &= PAGE_MASK;
1580	maxpages = want_pages_array(pages, maxsize, offset, maxpages);
1581	if (!maxpages)
1582		return -ENOMEM;
1583	res = pin_user_pages_fast(addr, maxpages, gup_flags, *pages);
1584	if (unlikely(res <= 0))
1585		return res;
1586	maxsize = min_t(size_t, maxsize, res * PAGE_SIZE - offset);
1587	iov_iter_advance(i, maxsize);
1588	return maxsize;
1589}
1590
1591/**
1592 * iov_iter_extract_pages - Extract a list of contiguous pages from an iterator
1593 * @i: The iterator to extract from
1594 * @pages: Where to return the list of pages
1595 * @maxsize: The maximum amount of iterator to extract
1596 * @maxpages: The maximum size of the list of pages
1597 * @extraction_flags: Flags to qualify request
1598 * @offset0: Where to return the starting offset into (*@pages)[0]
1599 *
1600 * Extract a list of contiguous pages from the current point of the iterator,
1601 * advancing the iterator.  The maximum number of pages and the maximum amount
1602 * of page contents can be set.
1603 *
1604 * If *@pages is NULL, a page list will be allocated to the required size and
1605 * *@pages will be set to its base.  If *@pages is not NULL, it will be assumed
1606 * that the caller allocated a page list at least @maxpages in size and this
1607 * will be filled in.
1608 *
1609 * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA
1610 * be allowed on the pages extracted.
1611 *
1612 * The iov_iter_extract_will_pin() function can be used to query how cleanup
1613 * should be performed.
1614 *
1615 * Extra refs or pins on the pages may be obtained as follows:
1616 *
1617 *  (*) If the iterator is user-backed (ITER_IOVEC/ITER_UBUF), pins will be
1618 *      added to the pages, but refs will not be taken.
1619 *      iov_iter_extract_will_pin() will return true.
1620 *
1621 *  (*) If the iterator is ITER_KVEC, ITER_BVEC or ITER_XARRAY, the pages are
1622 *      merely listed; no extra refs or pins are obtained.
1623 *      iov_iter_extract_will_pin() will return 0.
1624 *
1625 * Note also:
1626 *
1627 *  (*) Use with ITER_DISCARD is not supported as that has no content.
1628 *
1629 * On success, the function sets *@pages to the new pagelist, if allocated, and
1630 * sets *offset0 to the offset into the first page.
1631 *
1632 * It may also return -ENOMEM and -EFAULT.
1633 */
1634ssize_t iov_iter_extract_pages(struct iov_iter *i,
1635			       struct page ***pages,
1636			       size_t maxsize,
1637			       unsigned int maxpages,
1638			       iov_iter_extraction_t extraction_flags,
1639			       size_t *offset0)
1640{
1641	maxsize = min_t(size_t, min_t(size_t, maxsize, i->count), MAX_RW_COUNT);
1642	if (!maxsize)
1643		return 0;
1644
1645	if (likely(user_backed_iter(i)))
1646		return iov_iter_extract_user_pages(i, pages, maxsize,
1647						   maxpages, extraction_flags,
1648						   offset0);
1649	if (iov_iter_is_kvec(i))
1650		return iov_iter_extract_kvec_pages(i, pages, maxsize,
1651						   maxpages, extraction_flags,
1652						   offset0);
1653	if (iov_iter_is_bvec(i))
1654		return iov_iter_extract_bvec_pages(i, pages, maxsize,
1655						   maxpages, extraction_flags,
1656						   offset0);
1657	if (iov_iter_is_xarray(i))
1658		return iov_iter_extract_xarray_pages(i, pages, maxsize,
1659						     maxpages, extraction_flags,
1660						     offset0);
1661	return -EFAULT;
1662}
1663EXPORT_SYMBOL_GPL(iov_iter_extract_pages);
1664