History log of /linux-master/mm/damon/paddr.c
Revision Date Author Comments
# 2864f3d0 25-Feb-2024 Barry Song <v-songbaohua@oppo.com>

mm: madvise: pageout: ignore references rather than clearing young

While doing MADV_PAGEOUT, the current code will clear PTE young so that
vmscan won't read young flags to allow the reclamation of madvised folios
to go ahead. It seems we can do it by directly ignoring references, thus
we can remove tlb flush in madvise and rmap overhead in vmscan.

Regarding the side effect, in the original code, if a parallel thread runs
side by side to access the madvised memory with the thread doing madvise,
folios will get a chance to be re-activated by vmscan (though the time gap
is actually quite small since checking PTEs is done immediately after
clearing PTEs young). But with this patch, they will still be reclaimed.
But this behaviour doing PAGEOUT and doing access at the same time is
quite silly like DoS. So probably, we don't need to care. Or ignoring
the new access during the quite small time gap is even better.

For DAMON's DAMOS_PAGEOUT based on physical address region, we still keep
its behaviour as is since a physical address might be mapped by multiple
processes. MADV_PAGEOUT based on virtual address is actually much more
aggressive on reclamation. To untouch paddr's DAMOS_PAGEOUT, we simply
pass ignore_references as false in reclaim_pages().

A microbench as below has shown 6% decrement on the latency of
MADV_PAGEOUT,

#define PGSIZE 4096
main()
{
int i;
#define SIZE 512*1024*1024
volatile long *p = mmap(NULL, SIZE, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);

for (i = 0; i < SIZE/sizeof(long); i += PGSIZE / sizeof(long))
p[i] = 0x11;

madvise(p, SIZE, MADV_PAGEOUT);
}

w/o patch w/ patch
root@10:~# time ./a.out root@10:~# time ./a.out
real 0m49.634s real 0m46.334s
user 0m0.637s user 0m0.648s
sys 0m47.434s sys 0m44.265s

Link: https://lkml.kernel.org/r/20240226005739.24350-1-21cnbao@gmail.com
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: SeongJae Park <sj@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>


# ace30fb2 14-Sep-2023 SeongJae Park <sj@kernel.org>

mm/damon/core: use pseudo-moving sum for nr_accesses_bp

Let nr_accesses_bp be calculated as a pseudo-moving sum that updated for
every sampling interval, using damon_moving_sum(). This is assumed to be
useful for cases that the aggregation interval is set quite huge, but the
monivoting results need to be collected earlier than next aggregation
interval is passed.

Link: https://lkml.kernel.org/r/20230915025251.72816-7-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>


# 78fbfb15 14-Sep-2023 SeongJae Park <sj@kernel.org>

mm/damon/core: define and use a dedicated function for region access rate update

Patch series "mm/damon: provide pseudo-moving sum based access rate".

DAMON checks the access to each region for every sampling interval,
increase the access rate counter of the region, namely nr_accesses, if the
access was made. For every aggregation interval, the counter is reset.
The counter is exposed to users to be used as a metric showing the
relative access rate (frequency) of each region. In other words, DAMON
provides access rate of each region in every aggregation interval. The
aggregation avoids temporal access pattern changes making things
confusing. However, this also makes a few DAMON-related operations to
unnecessarily need to be aligned to the aggregation interval. This can
restrict the flexibility of DAMON applications, especially when the
aggregation interval is huge.

To provide the monitoring results in finer-grained timing while keeping
handling of temporal access pattern change, this patchset implements a
pseudo-moving sum based access rate metric. It is pseudo-moving sum
because strict moving sum implementation would need to keep all values for
last time window, and that could incur high overhead of there could be
arbitrary number of values in a time window. Especially in case of the
nr_accesses, since the sampling interval and aggregation interval can
arbitrarily set and the past values should be maintained for every region,
it could be risky. The pseudo-moving sum assumes there were no temporal
access pattern change in last discrete time window to remove the needs for
keeping the list of the last time window values. As a result, it beocmes
not strict moving sum implementation, but provides a reasonable accuracy.

Also, it keeps an important property of the moving sum. That is, the
moving sum becomes same to discrete-window based sum at the time that
aligns to the time window. This means using the pseudo moving sum based
nr_accesses makes no change to users who shows the value for every
aggregation interval.

Patches Sequence
----------------

The sequence of the patches is as follows. The first four patches are for
preparation of the change. The first two (patches 1 and 2) implements a
helper function for nr_accesses update and eliminate corner case that
skips use of the function, respectively. Following two (patches 3 and 4)
respectively implement the pseudo-moving sum function and its simple unit
test case.

Two patches for making DAMON to use the pseudo-moving sum follow. The
fifthe one (patch 5) introduces a new field for representing the
pseudo-moving sum-based access rate of each region, and the sixth one
makes the new representation to actually updated with the pseudo-moving
sum function.

Last two patches (patches 7 and 8) makes followup fixes for skipping
unnecessary updates and marking the moving sum function as static,
respectively.


This patch (of 8):

Each DAMON operarions set is updating nr_accesses field of each
damon_region for each of their access check results, from the
check_accesses() callback. Directly accessing the field could make things
complex to manage and change in future. Define and use a dedicated
function for the purpose.

Link: https://lkml.kernel.org/r/20230915025251.72816-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20230915025251.72816-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>


# e7ee3f97 27-Jul-2023 Levi Yun <ppbuk5246@gmail.com>

damon: use pmdp_get instead of drectly dereferencing pmd

As ptep_get, Use the pmdp_get wrapper when we accessing pmdval instead of
directly dereferencing pmd.

Link: https://lkml.kernel.org/r/20230727212157.2985025-1-ppbuk5246@gmail.com
Signed-off-by: Levi Yun <ppbuk5246@gmail.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>


# c33c7948 12-Jun-2023 Ryan Roberts <ryan.roberts@arm.com>

mm: ptep_get() conversion

Convert all instances of direct pte_t* dereferencing to instead use
ptep_get() helper. This means that by default, the accesses change from a
C dereference to a READ_ONCE(). This is technically the correct thing to
do since where pgtables are modified by HW (for access/dirty) they are
volatile and therefore we should always ensure READ_ONCE() semantics.

But more importantly, by always using the helper, it can be overridden by
the architecture to fully encapsulate the contents of the pte. Arch code
is deliberately not converted, as the arch code knows best. It is
intended that arch code (arm64) will override the default with its own
implementation that can (e.g.) hide certain bits from the core code, or
determine young/dirty status by mixing in state from another source.

Conversion was done using Coccinelle:

----

// $ make coccicheck \
// COCCI=ptepget.cocci \
// SPFLAGS="--include-headers" \
// MODE=patch

virtual patch

@ depends on patch @
pte_t *v;
@@

- *v
+ ptep_get(v)

----

Then reviewed and hand-edited to avoid multiple unnecessary calls to
ptep_get(), instead opting to store the result of a single call in a
variable, where it is correct to do so. This aims to negate any cost of
READ_ONCE() and will benefit arch-overrides that may be more complex.

Included is a fix for an issue in an earlier version of this patch that
was pointed out by kernel test robot. The issue arose because config
MMU=n elides definition of the ptep helper functions, including
ptep_get(). HUGETLB_PAGE=n configs still define a simple
huge_ptep_clear_flush() for linking purposes, which dereferences the ptep.
So when both configs are disabled, this caused a build error because
ptep_get() is not defined. Fix by continuing to do a direct dereference
when MMU=n. This is safe because for this config the arch code cannot be
trying to virtualize the ptes because none of the ptep helpers are
defined.

Link: https://lkml.kernel.org/r/20230612151545.3317766-4-ryan.roberts@arm.com
Reported-by: kernel test robot <lkp@intel.com>
Link: https://lore.kernel.org/oe-kbuild-all/202305120142.yXsNEo6H-lkp@intel.com/
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Dave Airlie <airlied@gmail.com>
Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: SeongJae Park <sj@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>


# c11d34fa 02-Jun-2023 Ryan Roberts <ryan.roberts@arm.com>

mm/damon/ops-common: atomically test and clear young on ptes and pmds

It is racy to non-atomically read a pte, then clear the young bit, then
write it back as this could discard dirty information. Further, it is bad
practice to directly set a pte entry within a table. Instead clearing
young must go through the arch-provided helper,
ptep_test_and_clear_young() to ensure it is modified atomically and to
give the arch code visibility and allow it to check (and potentially
modify) the operation.

Link: https://lkml.kernel.org/r/20230602092949.545577-3-ryan.roberts@arm.com
Fixes: 3f49584b262c ("mm/damon: implement primitives for the virtual memory address spaces").
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>


# 70307b0e 08-Mar-2023 Kefeng Wang <wangkefeng.wang@huawei.com>

mm/damon/paddr: fix missing folio_sz update in damon_pa_young()

The *folio_sz in damon_pa_young() will be used(as last_folio_sz) by
__damon_pa_check_access(), so it's need to be updated, fix missing branch.

Link: https://lkml.kernel.org/r/20230308083311.120951-4-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>


# b6993be2 08-Mar-2023 Kefeng Wang <wangkefeng.wang@huawei.com>

mm/damon/paddr: minor refactor of damon_pa_mark_accessed_or_deactivate()

Omit one line by unified folio_put(), and make code more clear.

Link: https://lkml.kernel.org/r/20230308083311.120951-3-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>


# dd411433 08-Mar-2023 Kefeng Wang <wangkefeng.wang@huawei.com>

mm/damon/paddr: minor refactor of damon_pa_pageout()

Patch series "mm/damon/paddr: minor code improvement", v3.

Unify folio_put() to make code more clear, and also fix minor issue in
damon_pa_young().


This patch (of 3):

Omit three lines by unified folio_put(), and make code more clear.

Link: https://lkml.kernel.org/r/20230308083311.120951-1-wangkefeng.wang@huawei.com
Link: https://lkml.kernel.org/r/20230308083311.120951-2-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>


# dd52a61d 04-Mar-2023 SeongJae Park <sj@kernel.org>

mm/damon/paddr: fix folio_nr_pages() after folio_put() in damon_pa_mark_accessed_or_deactivate()

damon_pa_mark_accessed_or_deactivate() is accessing a folio via
folio_nr_pages() after folio_put() for the folio has invoked. Fix it.

Link: https://lkml.kernel.org/r/20230304193949.296391-3-sj@kernel.org
Fixes: f70da5ee8fe1 ("mm/damon: convert damon_pa_mark_accessed_or_deactivate() to use folios")
Signed-off-by: SeongJae Park <sj@kernel.org>
Reviewed-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>


# 751688b8 04-Mar-2023 SeongJae Park <sj@kernel.org>

mm/damon/paddr: fix folio_size() call after folio_put() in damon_pa_young()

Patch series "mm/damon/paddr: Fix folio-use-after-put bugs".

There are two folio accesses after folio_put() in mm/damon/paddr.c file.
Fix those.


This patch (of 2):

damon_pa_young() is accessing a folio via folio_size() after folio_put()
for the folio has invoked. Fix it.

Link: https://lkml.kernel.org/r/20230304193949.296391-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20230304193949.296391-2-sj@kernel.org
Fixes: 397b0c3a584b ("mm/damon/paddr: remove folio_sz field from damon_pa_access_chk_result")
Signed-off-by: SeongJae Park <sj@kernel.org>
Reviewed-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: <stable@vger.kernel.org> [6.2.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>


# 3f98c9a6 21-Feb-2023 andrew.yang <andrew.yang@mediatek.com>

mm/damon/paddr: fix missing folio_put()

damon_get_folio() would always increase folio _refcount and
folio_isolate_lru() would increase folio _refcount if the folio's lru flag
is set.

If an unevictable folio isolated successfully, there will be two more
_refcount. The one from folio_isolate_lru() will be decreased in
folio_puback_lru(), but the other one from damon_get_folio() will be left
behind. This causes a pin page.

Whatever the case, the _refcount from damon_get_folio() should be
decreased.

Link: https://lkml.kernel.org/r/20230222064223.6735-1-andrew.yang@mediatek.com
Fixes: 57223ac29584 ("mm/damon/paddr: support the pageout scheme")
Signed-off-by: andrew.yang <andrew.yang@mediatek.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Cc: <stable@vger.kernel.org> [5.16.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>


# be2d5756 15-Feb-2023 Baolin Wang <baolin.wang@linux.alibaba.com>

mm: change to return bool for folio_isolate_lru()

Patch series "Change the return value for page isolation functions", v3.

Now the page isolation functions did not return a boolean to indicate
success or not, instead it will return a negative error when failed
to isolate a page. So below code used in most places seem a boolean
success/failure thing, which can confuse people whether the isolation
is successful.

if (folio_isolate_lru(folio))
continue;

Moreover the page isolation functions only return 0 or -EBUSY, and
most users did not care about the negative error except for few users,
thus we can convert all page isolation functions to return a boolean
value, which can remove the confusion to make code more clear.

No functional changes intended in this patch series.


This patch (of 4):

Now the folio_isolate_lru() did not return a boolean value to indicate
isolation success or not, however below code checking the return value can
make people think that it was a boolean success/failure thing, which makes
people easy to make mistakes (see the fix patch[1]).

if (folio_isolate_lru(folio))
continue;

Thus it's better to check the negative error value expilictly returned by
folio_isolate_lru(), which makes code more clear per Linus's
suggestion[2]. Moreover Matthew suggested we can convert the isolation
functions to return a boolean[3], since most users did not care about the
negative error value, and can also remove the confusing of checking return
value.

So this patch converts the folio_isolate_lru() to return a boolean value,
which means return 'true' to indicate the folio isolation is successful,
and 'false' means a failure to isolation. Meanwhile changing all users'
logic of checking the isolation state.

No functional changes intended.

[1] https://lore.kernel.org/all/20230131063206.28820-1-Kuan-Ying.Lee@mediatek.com/T/#u
[2] https://lore.kernel.org/all/CAHk-=wiBrY+O-4=2mrbVyxR+hOqfdJ=Do6xoucfJ9_5az01L4Q@mail.gmail.com/
[3] https://lore.kernel.org/all/Y+sTFqwMNAjDvxw3@casper.infradead.org/

Link: https://lkml.kernel.org/r/cover.1676424378.git.baolin.wang@linux.alibaba.com
Link: https://lkml.kernel.org/r/8a4e3679ed4196168efadf7ea36c038f2f7d5aa9.1676424378.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>

Signed-off-by: Andrew Morton <akpm@linux-foundation.org>


# b0c0e744 09-Jan-2023 SeongJae Park <sj@kernel.org>

mm/damon/paddr: remove damon_pa_access_chk_result struct

'damon_pa_access_chk_result' struct contains only one field. Use a
variable instead.

Link: https://lkml.kernel.org/r/20230109213335.62525-7-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>


# 397b0c3a 09-Jan-2023 SeongJae Park <sj@kernel.org>

mm/damon/paddr: remove folio_sz field from damon_pa_access_chk_result

DAMON physical address space monitoring operations set gets and saves size
of the folio for a given physical address inside rmap walks, but it can be
directly caluclated outside of the walks. Remove the 'folio_sz' field
from 'damon_pa_access_chk_result struct' and calculate the size directly
from outside of the walks.

Link: https://lkml.kernel.org/r/20230109213335.62525-6-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>


# af40e35a 09-Jan-2023 SeongJae Park <sj@kernel.org>

mm/damon/paddr: rename 'damon_pa_access_chk_result->page_sz' to 'folio_sz'

DAMON's physical address space monitoring operations set is using folio
now. Rename 'damon_pa_access_chk_result->page_sz' to reflect the fact.

Link: https://lkml.kernel.org/r/20230109213335.62525-5-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>


# 07bb1fba 30-Dec-2022 Kefeng Wang <wangkefeng.wang@huawei.com>

mm/damon/paddr: convert damon_pa_*() to use a folio

With damon_get_folio(), let's convert all the damon_pa_*() to use a folio.

Link: https://lkml.kernel.org/r/20221230070849.63358-6-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>


# 5a9e3474 21-Dec-2022 Vishal Moola (Oracle) <vishal.moola@gmail.com>

mm/swap: convert deactivate_page() to folio_deactivate()

Deactivate_page() has already been converted to use folios, this change
converts it to take in a folio argument instead of calling page_folio().
It also renames the function folio_deactivate() to be more consistent with
other folio functions.

[akpm@linux-foundation.org: fix left-over comments, per Yu Zhao]
Link: https://lkml.kernel.org/r/20221221180848.20774-5-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>


# f70da5ee 21-Dec-2022 Vishal Moola (Oracle) <vishal.moola@gmail.com>

mm/damon: convert damon_pa_mark_accessed_or_deactivate() to use folios

This change replaces 2 calls to compound_head() from put_page() and 1 call
from mark_page_accessed() with one from page_folio(). This is in
preparation for the conversion of deactivate_page() to folio_deactivate().

Link: https://lkml.kernel.org/r/20221221180848.20774-4-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>


# 18250e78 05-Dec-2022 SeongJae Park <sj@kernel.org>

mm/damon/paddr: support DAMOS filters

Implement support of the DAMOS filters in the physical address space
monitoring operations set, for all DAMOS actions that it supports
including 'pageout', 'lru_prio', and 'lru_deprio'.

Link: https://lkml.kernel.org/r/20221205230830.144349-3-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>


# e3e486e6 17-Sep-2022 Kaixu Xia <kaixuxia@tencent.com>

mm/damon: rename damon_pageout_score() to damon_cold_score()

In the beginning there is only one damos_action 'DAMOS_PAGEOUT' that need
to get the coldness score of a region for a scheme, which using
damon_pageout_score() to do that. But now there are also other
damos_action actions need the coldness score, so rename it to
damon_cold_score() to make more sense.

Link: https://lkml.kernel.org/r/1663423014-28907-1-git-send-email-kaixuxia@tencent.com
Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>


# 8ef4d5ca 13-Sep-2022 Kaixu Xia <kaixuxia@tencent.com>

mm/damon: simplify the parameter passing for 'prepare_access_checks'

Patch series "mm/damon: code simplifications and cleanups".

This patchset contains some code simplifications and cleanups for DAMON.


This patch (of 4):

The parameter 'struct damon_ctx *ctx' isn't used in the functions
__damon_{p,v}a_prepare_access_check(), so we can remove it and simplify
the parameter passing.

Link: https://lkml.kernel.org/r/1663060287-30201-1-git-send-email-kaixuxia@tencent.com
Link: https://lkml.kernel.org/r/1663060287-30201-2-git-send-email-kaixuxia@tencent.com
Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>


# 8193321a 13-Sep-2022 SeongJae Park <sj@kernel.org>

mm/damon/paddr: deduplicate damon_pa_{mark_accessed,deactivate_pages}()

The bodies of damon_pa_{mark_accessed,deactivate_pages}() contains
duplicates. This commit factors out the common part to a separate
function and removes the duplicates.

Link: https://lkml.kernel.org/r/20220913174449.50645-3-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>


# f82e70e2 13-Sep-2022 SeongJae Park <sj@kernel.org>

mm/damon/paddr: make supported DAMOS actions of paddr clear

Patch series "mm/damon: cleanup code".

DAMON code was not so clean from the beginning, but it has been too much
nowadays, especially due to the duplicates in DAMON_RECLAIM and
DAMON_LRU_SORT. This patchset cleans some of the mess.


This patch (of 22):

The 'switch-case' statement in 'damon_va_apply_scheme()' function provides
a 'case' for every supported DAMOS action while all not-yet-supported
DAMOS actions fall through the 'default' case, and comment it so that
people can easily know which actions are supported. Its counterpart in
'paddr', 'damon_pa_apply_scheme()', however, doesn't. This commit makes
the 'paddr' side function follows the pattern of 'vaddr' for better
readability and consistency.

Link: https://lkml.kernel.org/r/20220913174449.50645-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20220913174449.50645-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>


# 09876ae7 27-Aug-2022 Kaixu Xia <kaixuxia@tencent.com>

mm/damon: simplify the parameter passing for 'check_accesses'

Patch series "mm/damon: Simplify the damon regions access check", v2.

This patchset simplifies the operations when checking the damon regions
accesses.


This patch (of 2):

The parameter 'struct damon_ctx *ctx' isn't used in the functions
__damon_{p,v}a_check_access(), so we can remove it and simplify the
parameter passing.

Link: https://lkml.kernel.org/r/1661590971-20893-1-git-send-email-kaixuxia@tencent.com
Link: https://lkml.kernel.org/r/1661590971-20893-2-git-send-email-kaixuxia@tencent.com
Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>


# 99cdc2cd 13-Jun-2022 SeongJae Park <sj@kernel.org>

mm/damon/schemes: add 'LRU_DEPRIO' action

This commit adds a new DAMON-based operation scheme action called
'LRU_DEPRIO' for physical address space. The action deprioritizes pages
in the memory area of the target access pattern on their LRU lists. This
is hence supposed to be used for rarely accessed (cold) memory regions so
that cold pages could be more likely reclaimed first under memory
pressure. Internally, it simply calls 'lru_deactivate()'.

Using this with 'LRU_PRIO' action for hot pages, users can proactively
sort LRU lists based on the access pattern. That is, it can make the LRU
lists somewhat more trustworthy source of access temperature. As a
result, efficiency of LRU-lists based mechanisms including the reclamation
target selection could be improved.

Link: https://lkml.kernel.org/r/20220613192301.8817-7-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>


# 8cdcc532 13-Jun-2022 SeongJae Park <sj@kernel.org>

mm/damon/schemes: add 'LRU_PRIO' DAMOS action

This commit adds a new DAMOS action called 'LRU_PRIO' for the physical
address space. The action prioritizes pages in the memory regions of the
user-specified target access pattern on their LRU lists. This is hence
supposed to be used for frequently accessed (hot) memory regions so that
hot pages could be more likely protected under memory pressure.
Internally, it simply calls 'mark_page_accessed()'.

Link: https://lkml.kernel.org/r/20220613192301.8817-5-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>


# 0e93e8bf 13-Jun-2022 SeongJae Park <sj@kernel.org>

mm/damon/paddr: use a separate function for 'DAMOS_PAGEOUT' handling

This commit moves code for 'DAMOS_PAGEOUT' handling of the physical
address space monitoring operations set to a separate function so that its
caller, 'damon_pa_apply_scheme()', can be more easily extended for
additional DAMOS actions later.

Link: https://lkml.kernel.org/r/20220613192301.8817-4-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>


# 02e34fff 17-May-2022 Kefeng Wang <wangkefeng.wang@huawei.com>

mm: damon: use HPAGE_PMD_SIZE

Use HPAGE_PMD_SIZE instead of open coding.

Link: https://lkml.kernel.org/r/20220517145120.118523-1-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>


# 85104056 22-Mar-2022 SeongJae Park <sj@kernel.org>

mm/damon/paddr,vaddr: remove damon_{p,v}a_{target_valid,set_operations}()

Because DAMON debugfs interface and DAMON-based proactive reclaim are now
using monitoring operations via registration mechanism,
damon_{p,v}a_{target_valid,set_operations}() functions have no user. This
commit clean them up.

Link: https://lkml.kernel.org/r/20220215184603.1479-9-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Xin Hao <xhao@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>


# 7752925f 22-Mar-2022 SeongJae Park <sj@kernel.org>

mm/damon/paddr,vaddr: register themselves to DAMON in subsys_initcall

This commit makes the monitoring operations for the physical address space
and virtual address spaces register themselves to DAMON in the
subsys_initcall step. Later, in-kernel DAMON user code can use them via
damon_select_ops() without have to unnecessarily depend on all possible
monitoring operations implementations.

Link: https://lkml.kernel.org/r/20220215184603.1479-4-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Xin Hao <xhao@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>


# f7d911c3 22-Mar-2022 SeongJae Park <sj@kernel.org>

mm/damon: rename damon_primitives to damon_operations

Patch series "Allow DAMON user code independent of monitoring primitives".

In-kernel DAMON user code is required to configure the monitoring context
(struct damon_ctx) with proper monitoring primitives (struct
damon_primitive). This makes the user code dependent to all supporting
monitoring primitives. For example, DAMON debugfs interface depends on
both DAMON_VADDR and DAMON_PADDR, though some users have interest in only
one use case. As more monitoring primitives are introduced, the problem
will be bigger.

To minimize such unnecessary dependency, this patchset makes monitoring
primitives can be registered by the implemnting code and later dynamically
searched and selected by the user code.

In addition to that, this patchset renames monitoring primitives to
monitoring operations, which is more easy to intuitively understand what
it means and how it would be structed.

This patch (of 8):

DAMON has a set of callback functions called monitoring primitives and let
it can be configured with various implementations for easy extension for
different address spaces and usages. However, the word 'primitive' is not
so explicit. Meanwhile, many other structs resembles similar purpose
calls themselves 'operations'. To make the code easier to be understood,
this commit renames 'damon_primitives' to 'damon_operations' before it is
too late to rename.

Link: https://lkml.kernel.org/r/20220215184603.1479-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20220215184603.1479-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Xin Hao <xhao@linux.alibaba.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>


# 2a3c4bce 16-Mar-2022 Miaohe Lin <linmiaohe@huawei.com>

mm/damon: minor cleanup for damon_pa_young

if need_lock is true but folio_trylock fails, we should return false
instead of NULL to match the return value type exactly. No functional
change intended.

Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>


# 2f031c6f 29-Jan-2022 Matthew Wilcox (Oracle) <willy@infradead.org>

mm/rmap: Convert rmap_walk() to take a folio

This ripples all the way through to every calling and called function
from rmap.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>


# c8423186 29-Jan-2022 Matthew Wilcox (Oracle) <willy@infradead.org>

mm/damon: Convert damon_pa_young() to use a folio

Ensure that we're passing the entire folio to rmap_walk().

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>


# 6d42dba3 29-Jan-2022 Matthew Wilcox (Oracle) <willy@infradead.org>

mm/damon: Convert damon_pa_mkold() to use a folio

Ensure that we're passing the entire folio to rmap_walk().

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>


# eed05e54 03-Feb-2022 Matthew Wilcox (Oracle) <willy@infradead.org>

mm: Add DEFINE_PAGE_VMA_WALK and DEFINE_FOLIO_VMA_WALK

Instead of declaring a struct page_vma_mapped_walk directly,
use these helpers to allow us to transition to a PFN approach in the
following patches.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>


# 0e92c2ee 14-Jan-2022 SeongJae Park <sj@kernel.org>

mm/damon/schemes: account scheme actions that successfully applied

Patch series "mm/damon/schemes: Extend stats for better online analysis and tuning".

To help online access pattern analysis and tuning of DAMON-based
Operation Schemes (DAMOS), DAMOS provides simple statistics for each
scheme. Introduction of DAMOS time/space quota further made the tuning
easier by making the risk management easier. However, that also made
understanding of the working schemes a little bit more difficult.

For an example, progress of a given scheme can now be throttled by not
only the aggressiveness of the target access pattern, but also the
time/space quotas. So, when a scheme is showing unexpectedly slow
progress, it's difficult to know by what the progress of the scheme is
throttled, with currently provided statistics.

This patchset extends the statistics to contain some metrics that can be
helpful for such online schemes analysis and tuning (patches 1-2),
exports those to users (patches 3 and 5), and add documents (patches 4
and 6).

This patch (of 6):

DAMON-based operation schemes (DAMOS) stats provide only the number and
the amount of regions that the action of the scheme has tried to be
applied. Because the action could be failed for some reasons, the
currently provided information is sometimes not useful or convenient
enough for schemes profiling and tuning. To improve this situation,
this commit extends the DAMOS stats to provide the number and the amount
of regions that the action has successfully applied.

Link: https://lkml.kernel.org/r/20211210150016.35349-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20211210150016.35349-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>


# cdeed009 14-Jan-2022 Xin Hao <xhao@linux.alibaba.com>

mm/damon: remove some unneeded function definitions in damon.h

In damon.h some func definitions about VA & PA can only be used in its
own file, so there no need to define in the header file, and the header
file will look cleaner.

If other files later need these functions, the prototypes can be added
to damon.h at that time.

[sj@kernel.org: remove unnecessary function prototype position changes]
Link: https://lkml.kernel.org/r/20211118114827.20052-1-sj@kernel.org

Link: https://lkml.kernel.org/r/45fd5b3ef6cce8e28dbc1c92f9dc845ccfc949d7.1636989871.git.xhao@linux.alibaba.com
Signed-off-by: Xin Hao <xhao@linux.alibaba.com>
Signed-off-by: SeongJae Park <sj@kernel.org>
Reviewed-by: SeongJae Park <sj@kernel.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>


# 198f0f4c 05-Nov-2021 SeongJae Park <sj@kernel.org>

mm/damon/vaddr,paddr: support pageout prioritization

This makes the default monitoring primitives for virtual address spaces
and the physical address sapce to support memory regions prioritization
for 'PAGEOUT' DAMOS action. It calculates hotness of each region as
weighted sum of 'nr_accesses' and 'age' of the region and get the
priority score as reverse of the hotness, so that cold regions can be
paged out first.

Link: https://lkml.kernel.org/r/20211019150731.16699-9-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>


# 57223ac2 05-Nov-2021 SeongJae Park <sj@kernel.org>

mm/damon/paddr: support the pageout scheme

Introduction
============

This patchset 1) makes the engine for general data access
pattern-oriented memory management (DAMOS) be more useful for production
environments, and 2) implements a static kernel module for lightweight
proactive reclamation using the engine.

Proactive Reclamation
---------------------

On general memory over-committed systems, proactively reclaiming cold
pages helps saving memory and reducing latency spikes that incurred by
the direct reclaim or the CPU consumption of kswapd, while incurring
only minimal performance degradation[2].

A Free Pages Reporting[8] based memory over-commit virtualization system
would be one more specific use case. In the system, the guest VMs
reports their free memory to host, and the host reallocates the reported
memory to other guests. As a result, the system's memory utilization
can be maximized. However, the guests could be not so memory-frugal,
because some kernel subsystems and user-space applications are designed
to use as much memory as available. Then, guests would report only
small amount of free memory to host, results in poor memory utilization.
Running the proactive reclamation in such guests could help mitigating
this problem.

Google has also implemented this idea and using it in their data center.
They further proposed upstreaming it in LSFMM'19, and "the general
consensus was that, while this sort of proactive reclaim would be useful
for a number of users, the cost of this particular solution was too high
to consider merging it upstream"[3]. The cost mainly comes from the
coldness tracking. Roughly speaking, the implementation periodically
scans the 'Accessed' bit of each page. For the reason, the overhead
linearly increases as the size of the memory and the scanning frequency
grows. As a result, Google is known to dedicating one CPU for the work.
That's a reasonable option to someone like Google, but it wouldn't be so
to some others.

DAMON and DAMOS: An engine for data access pattern-oriented memory management
-----------------------------------------------------------------------------

DAMON[4] is a framework for general data access monitoring. Its
adaptive monitoring overhead control feature minimizes its monitoring
overhead. It also let the upper-bound of the overhead be configurable
by clients, regardless of the size of the monitoring target memory.
While monitoring 70 GiB memory of a production system every 5
milliseconds, it consumes less than 1% single CPU time. For this, it
could sacrify some of the quality of the monitoring results.
Nevertheless, the lower-bound of the quality is configurable, and it
uses a best-effort algorithm for better quality. Our test results[5]
show the quality is practical enough. From the production system
monitoring, we were able to find a 4 KiB region in the 70 GiB memory
that shows highest access frequency.

We normally don't monitor the data access pattern just for fun but to
improve something like memory management. Proactive reclamation is one
such usage. For such general cases, DAMON provides a feature called
DAMon-based Operation Schemes (DAMOS)[6]. It makes DAMON an engine for
general data access pattern oriented memory management. Using this,
clients can ask DAMON to find memory regions of specific data access
pattern and apply some memory management action (e.g., page out, move to
head of the LRU list, use huge page, ...). We call the request
'scheme'.

Proactive Reclamation on top of DAMON/DAMOS
-------------------------------------------

Therefore, by using DAMON for the cold pages detection, the proactive
reclamation's monitoring overhead issue can be solved. Actually, we
previously implemented a version of proactive reclamation using DAMOS
and achieved noticeable improvements with our evaluation setup[5].
Nevertheless, it more for a proof-of-concept, rather than production
uses. It supports only virtual address spaces of processes, and require
additional tuning efforts for given workloads and the hardware. For the
tuning, we introduced a simple auto-tuning user space tool[8]. Google
is also known to using a ML-based similar approach for their fleets[2].
But, making it just works with intuitive knobs in the kernel would be
helpful for general users.

To this end, this patchset improves DAMOS to be ready for such
production usages, and implements another version of the proactive
reclamation, namely DAMON_RECLAIM, on top of it.

DAMOS Improvements: Aggressiveness Control, Prioritization, and Watermarks
--------------------------------------------------------------------------

First of all, the current version of DAMOS supports only virtual address
spaces. This patchset makes it supports the physical address space for
the page out action.

Next major problem of the current version of DAMOS is the lack of the
aggressiveness control, which can results in arbitrary overhead. For
example, if huge memory regions having the data access pattern of
interest are found, applying the requested action to all of the regions
could incur significant overhead. It can be controlled by tuning the
target data access pattern with manual or automated approaches[2,7].
But, some people would prefer the kernel to just work with only
intuitive tuning or default values.

For such cases, this patchset implements a safeguard, namely time/size
quota. Using this, the clients can specify up to how much time can be
used for applying the action, and/or up to how much memory regions the
action can be applied within a user-specified time duration. A followup
question is, to which memory regions should the action applied within
the limits? We implement a simple regions prioritization mechanism for
each action and make DAMOS to apply the action to high priority regions
first. It also allows clients tune the prioritization mechanism to use
different weights for size, access frequency, and age of memory regions.
This means we could use not only LRU but also LFU or some fancy
algorithms like CAR[9] with lightweight overhead.

Though DAMON is lightweight, someone would want to remove even the cold
pages monitoring overhead when it is unnecessary. Currently, it should
manually turned on and off by clients, but some clients would simply
want to turn it on and off based on some metrics like free memory ratio
or memory fragmentation. For such cases, this patchset implements a
watermarks-based automatic activation feature. It allows the clients
configure the metric of their interest, and three watermarks of the
metric. If the metric is higher than the high watermark or lower than
the low watermark, the scheme is deactivated. If the metric is lower
than the mid watermark but higher than the low watermark, the scheme is
activated.

DAMON-based Reclaim
-------------------

Using the improved version of DAMOS, this patchset implements a static
kernel module called 'damon_reclaim'. It finds memory regions that
didn't accessed for specific time duration and page out. Consuming too
much CPU for the paging out operations, or doing pageout too frequently
can be critical for systems configuring their swap devices with
software-defined in-memory block devices like zram/zswap or total number
of writes limited devices like SSDs, respectively. To avoid the
problems, the time/size quotas can be configured. Under the quotas, it
pages out memory regions that didn't accessed longer first. Also, to
remove the monitoring overhead under peaceful situation, and to fall
back to the LRU-list based page granularity reclamation when it doesn't
make progress, the three watermarks based activation mechanism is used,
with the free memory ratio as the watermark metric.

For convenient configurations, it provides several module parameters.
Using these, sysadmins can enable/disable it, and tune its parameters
including the coldness identification time threshold, the time/size
quotas and the three watermarks.

Evaluation
==========

In short, DAMON_RECLAIM with 50ms/s time quota and regions
prioritization on v5.15-rc5 Linux kernel with ZRAM swap device achieves
38.58% memory saving with only 1.94% runtime overhead. For this,
DAMON_RECLAIM consumes only 4.97% of single CPU time.

Setup
-----

We evaluate DAMON_RECLAIM to show how each of the DAMOS improvements
make effect. For this, we measure DAMON_RECLAIM's CPU consumption,
entire system memory footprint, total number of major page faults, and
runtime of 24 realistic workloads in PARSEC3 and SPLASH-2X benchmark
suites on my QEMU/KVM based virtual machine. The virtual machine runs
on an i3.metal AWS instance, has 130GiB memory, and runs a linux kernel
built on latest -mm tree[1] plus this patchset. It also utilizes a 4
GiB ZRAM swap device. We repeats the measurement 5 times and use
averages.

[1] https://github.com/hnaz/linux-mm/tree/v5.15-rc5-mmots-2021-10-13-19-55

Detailed Results
----------------

The results are summarized in the below table.

With coldness identification threshold of 5 seconds, DAMON_RECLAIM
without the time quota-based speed limit achieves 47.21% memory saving,
but incur 4.59% runtime slowdown to the workloads on average. For this,
DAMON_RECLAIM consumes about 11.28% single CPU time.

Applying time quotas of 200ms/s, 50ms/s, and 10ms/s without the regions
prioritization reduces the slowdown to 4.89%, 2.65%, and 1.5%,
respectively. Time quota of 200ms/s (20%) makes no real change compared
to the quota unapplied version, because the quota unapplied version
consumes only 11.28% CPU time. DAMON_RECLAIM's CPU utilization also
similarly reduced: 11.24%, 5.51%, and 2.01% of single CPU time. That
is, the overhead is proportional to the speed limit. Nevertheless, it
also reduces the memory saving because it becomes less aggressive. In
detail, the three variants show 48.76%, 37.83%, and 7.85% memory saving,
respectively.

Applying the regions prioritization (page out regions that not accessed
longer first within the time quota) further reduces the performance
degradation. Runtime slowdowns and total number of major page faults
increase has been 4.89%/218,690% -> 4.39%/166,136% (200ms/s),
2.65%/111,886% -> 1.94%/59,053% (50ms/s), and 1.5%/34,973.40% ->
2.08%/8,781.75% (10ms/s). The runtime under 10ms/s time quota has
increased with prioritization, but apparently that's under the margin of
error.

time quota prioritization memory_saving cpu_util slowdown pgmajfaults overhead
N N 47.21% 11.28% 4.59% 194,802%
200ms/s N 48.76% 11.24% 4.89% 218,690%
50ms/s N 37.83% 5.51% 2.65% 111,886%
10ms/s N 7.85% 2.01% 1.5% 34,793.40%
200ms/s Y 50.08% 10.38% 4.39% 166,136%
50ms/s Y 38.58% 4.97% 1.94% 59,053%
10ms/s Y 3.63% 1.73% 2.08% 8,781.75%

Baseline and Complete Git Trees
===============================

The patches are based on the latest -mm tree
(v5.15-rc5-mmots-2021-10-13-19-55). You can also clone the complete git tree
from:

$ git clone git://github.com/sjp38/linux -b damon_reclaim/patches/v1

The web is also available:
https://git.kernel.org/pub/scm/linux/kernel/git/sj/linux.git/tag/?h=damon_reclaim/patches/v1

Sequence Of Patches
===================

The first patch makes DAMOS support the physical address space for the
page out action. Following five patches (patches 2-6) implement the
time/size quotas. Next four patches (patches 7-10) implement the memory
regions prioritization within the limit. Then, three following patches
(patches 11-13) implement the watermarks-based schemes activation.

Finally, the last two patches (patches 14-15) implement and document the
DAMON-based reclamation using the advanced DAMOS.

[1] https://www.kernel.org/doc/html/v5.15-rc1/vm/damon/index.html
[2] https://research.google/pubs/pub48551/
[3] https://lwn.net/Articles/787611/
[4] https://damonitor.github.io
[5] https://damonitor.github.io/doc/html/latest/vm/damon/eval.html
[6] https://lore.kernel.org/linux-mm/20211001125604.29660-1-sj@kernel.org/
[7] https://github.com/awslabs/damoos
[8] https://www.kernel.org/doc/html/latest/vm/free_page_reporting.html
[9] https://www.usenix.org/conference/fast-04/car-clock-adaptive-replacement

This patch (of 15):

This makes the DAMON primitives for physical address space support the
pageout action for DAMON-based Operation Schemes. With this commit,
hence, users can easily implement system-level data access-aware
reclamations using DAMOS.

[sj@kernel.org: fix missing-prototype build warning]
Link: https://lkml.kernel.org/r/20211025064220.13904-1-sj@kernel.org

Link: https://lkml.kernel.org/r/20211019150731.16699-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20211019150731.16699-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Marco Elver <elver@google.com>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Greg Thelen <gthelen@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>


# a28397be 05-Nov-2021 SeongJae Park <sj@kernel.org>

mm/damon: implement primitives for physical address space monitoring

This implements the monitoring primitives for the physical memory
address space. Internally, it uses the PTE Accessed bit, similar to
that of the virtual address spaces monitoring primitives. It supports
only user memory pages, as idle pages tracking does. If the monitoring
target physical memory address range contains non-user memory pages,
access check of the pages will do nothing but simply treat the pages as
not accessed.

Link: https://lkml.kernel.org/r/20211012205711.29216-6-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rienjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>