History log of /linux-master/kernel/module/Kconfig
Revision Date Author Comments
# 203a6763 13-Mar-2024 Eric Biggers <ebiggers@google.com>

Revert "crypto: pkcs7 - remove sha1 support"

This reverts commit 16ab7cb5825fc3425c16ad2c6e53d827f382d7c6 because it
broke iwd. iwd uses the KEYCTL_PKEY_* UAPIs via its dependency libell,
and apparently it is relying on SHA-1 signature support. These UAPIs
are fairly obscure, and their documentation does not mention which
algorithms they support. iwd really should be using a properly
supported userspace crypto library instead. Regardless, since something
broke we have to revert the change.

It may be possible that some parts of this commit can be reinstated
without breaking iwd (e.g. probably the removal of MODULE_SIG_SHA1), but
for now this just does a full revert to get things working again.

Reported-by: Karel Balej <balejk@matfyz.cz>
Closes: https://lore.kernel.org/r/CZSHRUIJ4RKL.34T4EASV5DNJM@matfyz.cz
Cc: Dimitri John Ledkov <dimitri.ledkov@canonical.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Tested-by: Karel Balej <balejk@matfyz.cz>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>


# d2d5cba5 15-Feb-2024 Masahiro Yamada <masahiroy@kernel.org>

kbuild: remove EXPERT and !COMPILE_TEST guarding from TRIM_UNUSED_KSYMS

This reverts the following two commits:

- a555bdd0c58c ("Kbuild: enable TRIM_UNUSED_KSYMS again, with some guarding")
- 5cf0fd591f2e ("Kbuild: disable TRIM_UNUSED_KSYMS option")

Commit 5e9e95cc9148 ("kbuild: implement CONFIG_TRIM_UNUSED_KSYMS without
recursion") solved the build time issue.

Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>


# 446b1e0b 22-Oct-2023 Dimitri John Ledkov <dimitri.ledkov@canonical.com>

module: enable automatic module signing with FIPS 202 SHA-3

Add Kconfig options to use SHA-3 for kernel module signing. 256 size
for RSA only, and higher sizes for RSA and NIST P-384.

Signed-off-by: Dimitri John Ledkov <dimitri.ledkov@canonical.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>


# fc3225fd 10-Oct-2023 Dimitri John Ledkov <dimitri.ledkov@canonical.com>

module: Do not offer sha224 for built-in module signing

sha224 does not provide enough security against collision attacks
relative to the default keys used for signing (RSA 4k & P-384). Also
sha224 never became popular, as sha256 got widely adopter ahead of
sha224 being introduced.

Signed-off-by: Dimitri John Ledkov <dimitri.ledkov@canonical.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>


# 16ab7cb5 10-Oct-2023 Dimitri John Ledkov <dimitri.ledkov@canonical.com>

crypto: pkcs7 - remove sha1 support

Removes support for sha1 signed kernel modules, importing sha1 signed
x.509 certificates.

rsa-pkcs1pad keeps sha1 padding support, which seems to be used by
virtio driver.

sha1 remains available as there are many drivers and subsystems using
it. Note only hmac(sha1) with secret keys remains cryptographically
secure.

In the kernel there are filesystems, IMA, tpm/pcr that appear to be
using sha1. Maybe they can all start to be slowly upgraded to
something else i.e. blake3, ParallelHash, SHAKE256 as needed.

Signed-off-by: Dimitri John Ledkov <dimitri.ledkov@canonical.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>


# 8660484e 13-Apr-2023 Luis Chamberlain <mcgrof@kernel.org>

module: add debugging auto-load duplicate module support

The finit_module() system call can in the worst case use up to more than
twice of a module's size in virtual memory. Duplicate finit_module()
system calls are non fatal, however they unnecessarily strain virtual
memory during bootup and in the worst case can cause a system to fail
to boot. This is only known to currently be an issue on systems with
larger number of CPUs.

To help debug this situation we need to consider the different sources for
finit_module(). Requests from the kernel that rely on module auto-loading,
ie, the kernel's *request_module() API, are one source of calls. Although
modprobe checks to see if a module is already loaded prior to calling
finit_module() there is a small race possible allowing userspace to
trigger multiple modprobe calls racing against modprobe and this not
seeing the module yet loaded.

This adds debugging support to the kernel module auto-loader (*request_module()
calls) to easily detect duplicate module requests. To aid with possible bootup
failure issues incurred by this, it will converge duplicates requests to a
single request. This avoids any possible strain on virtual memory during
bootup which could be incurred by duplicate module autoloading requests.

Folks debugging virtual memory abuse on bootup can and should enable
this to see what pr_warn()s come on, to see if module auto-loading is to
blame for their wores. If they see duplicates they can further debug this
by enabling the module.enable_dups_trace kernel parameter or by enabling
CONFIG_MODULE_DEBUG_AUTOLOAD_DUPS_TRACE.

Current evidence seems to point to only a few duplicates for module
auto-loading. And so the source for other duplicates creating heavy
virtual memory pressure due to larger number of CPUs should becoming
from another place (likely udev).

Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>


# df3e764d 28-Mar-2023 Luis Chamberlain <mcgrof@kernel.org>

module: add debug stats to help identify memory pressure

Loading modules with finit_module() can end up using vmalloc(), vmap()
and vmalloc() again, for a total of up to 3 separate allocations in the
worst case for a single module. We always kernel_read*() the module,
that's a vmalloc(). Then vmap() is used for the module decompression,
and if so the last read buffer is freed as we use the now decompressed
module buffer to stuff data into our copy module. The last allocation is
specific to each architectures but pretty much that's generally a series
of vmalloc() calls or a variation of vmalloc to handle ELF sections with
special permissions.

Evaluation with new stress-ng module support [1] with just 100 ops
is proving that you can end up using GiBs of data easily even with all
care we have in the kernel and userspace today in trying to not load modules
which are already loaded. 100 ops seems to resemble the sort of pressure a
system with about 400 CPUs can create on module loading. Although issues
relating to duplicate module requests due to each CPU inucurring a new
module reuest is silly and some of these are being fixed, we currently lack
proper tooling to help diagnose easily what happened, when it happened
and who likely is to blame -- userspace or kernel module autoloading.

Provide an initial set of stats which use debugfs to let us easily scrape
post-boot information about failed loads. This sort of information can
be used on production worklaods to try to optimize *avoiding* redundant
memory pressure using finit_module().

There's a few examples that can be provided:

A 255 vCPU system without the next patch in this series applied:

Startup finished in 19.143s (kernel) + 7.078s (userspace) = 26.221s
graphical.target reached after 6.988s in userspace

And 13.58 GiB of virtual memory space lost due to failed module loading:

root@big ~ # cat /sys/kernel/debug/modules/stats
Mods ever loaded 67
Mods failed on kread 0
Mods failed on decompress 0
Mods failed on becoming 0
Mods failed on load 1411
Total module size 11464704
Total mod text size 4194304
Failed kread bytes 0
Failed decompress bytes 0
Failed becoming bytes 0
Failed kmod bytes 14588526272
Virtual mem wasted bytes 14588526272
Average mod size 171115
Average mod text size 62602
Average fail load bytes 10339140
Duplicate failed modules:
module-name How-many-times Reason
kvm_intel 249 Load
kvm 249 Load
irqbypass 8 Load
crct10dif_pclmul 128 Load
ghash_clmulni_intel 27 Load
sha512_ssse3 50 Load
sha512_generic 200 Load
aesni_intel 249 Load
crypto_simd 41 Load
cryptd 131 Load
evdev 2 Load
serio_raw 1 Load
virtio_pci 3 Load
nvme 3 Load
nvme_core 3 Load
virtio_pci_legacy_dev 3 Load
virtio_pci_modern_dev 3 Load
t10_pi 3 Load
virtio 3 Load
crc32_pclmul 6 Load
crc64_rocksoft 3 Load
crc32c_intel 40 Load
virtio_ring 3 Load
crc64 3 Load

The following screen shot, of a simple 8vcpu 8 GiB KVM guest with the
next patch in this series applied, shows 226.53 MiB are wasted in virtual
memory allocations which due to duplicate module requests during boot.
It also shows an average module memory size of 167.10 KiB and an an
average module .text + .init.text size of 61.13 KiB. The end shows all
modules which were detected as duplicate requests and whether or not
they failed early after just the first kernel_read*() call or late after
we've already allocated the private space for the module in
layout_and_allocate(). A system with module decompression would reveal
more wasted virtual memory space.

We should put effort now into identifying the source of these duplicate
module requests and trimming these down as much possible. Larger systems
will obviously show much more wasted virtual memory allocations.

root@kmod ~ # cat /sys/kernel/debug/modules/stats
Mods ever loaded 67
Mods failed on kread 0
Mods failed on decompress 0
Mods failed on becoming 83
Mods failed on load 16
Total module size 11464704
Total mod text size 4194304
Failed kread bytes 0
Failed decompress bytes 0
Failed becoming bytes 228959096
Failed kmod bytes 8578080
Virtual mem wasted bytes 237537176
Average mod size 171115
Average mod text size 62602
Avg fail becoming bytes 2758544
Average fail load bytes 536130
Duplicate failed modules:
module-name How-many-times Reason
kvm_intel 7 Becoming
kvm 7 Becoming
irqbypass 6 Becoming & Load
crct10dif_pclmul 7 Becoming & Load
ghash_clmulni_intel 7 Becoming & Load
sha512_ssse3 6 Becoming & Load
sha512_generic 7 Becoming & Load
aesni_intel 7 Becoming
crypto_simd 7 Becoming & Load
cryptd 3 Becoming & Load
evdev 1 Becoming
serio_raw 1 Becoming
nvme 3 Becoming
nvme_core 3 Becoming
t10_pi 3 Becoming
virtio_pci 3 Becoming
crc32_pclmul 6 Becoming & Load
crc64_rocksoft 3 Becoming
crc32c_intel 3 Becoming
virtio_pci_modern_dev 2 Becoming
virtio_pci_legacy_dev 1 Becoming
crc64 2 Becoming
virtio 2 Becoming
virtio_ring 2 Becoming

[0] https://github.com/ColinIanKing/stress-ng.git
[1] echo 0 > /proc/sys/vm/oom_dump_tasks
./stress-ng --module 100 --module-name xfs

Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>


# 169a58ad 06-Dec-2022 Stephen Boyd <swboyd@chromium.org>

module/decompress: Support zstd in-kernel decompression

Add support for zstd compressed modules to the in-kernel decompression
code. This allows zstd compressed modules to be decompressed by the
kernel, similar to the existing support for gzip and xz compressed
modules.

Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Cc: Piotr Gorski <lucjan.lucjanov@gmail.com>
Cc: Nick Terrell <terrelln@fb.com>
Signed-off-by: Stephen Boyd <swboyd@chromium.org>
Reviewed-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Reviewed-by: Piotr Gorski <lucjan.lucjanov@gmail.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>


# 73b4fc92 11-Jul-2022 Christophe Leroy <christophe.leroy@csgroup.eu>

module: Move module's Kconfig items in kernel/module/

In init/Kconfig, the part dedicated to modules is quite large.

Move it into a dedicated Kconfig in kernel/module/

MODULES_TREE_LOOKUP was outside of the 'if MODULES', but as it is
only used when MODULES are set, move it in with everything else to
avoid confusion.

MODULE_SIG_FORMAT is left in init/Kconfig because this configuration
item is not used in kernel/modules/ but in kernel/ and can be
selected independently from CONFIG_MODULES. It is for instance
selected from security/integrity/ima/Kconfig.

Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>