History log of /linux-master/kernel/bpf/verifier.c
Revision Date Author Comments
# 6dae957c 29-Mar-2024 Anton Protopopov <aspsk@isovalent.com>

bpf: fix possible file descriptor leaks in verifier

The resolve_pseudo_ldimm64() function might have leaked file
descriptors when BPF_MAP_TYPE_ARENA was used in a program (some
error paths missed a corresponding fdput). Add missing fdputs.

v2:
remove unrelated changes from the fix

Fixes: 6082b6c328b5 ("bpf: Recognize addr_space_cast instruction in the verifier.")
Signed-off-by: Anton Protopopov <aspsk@isovalent.com>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Link: https://lore.kernel.org/r/20240329071106.67968-1-aspsk@isovalent.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# ecc6a210 26-Mar-2024 Andrei Matei <andreimatei1@gmail.com>

bpf: Protect against int overflow for stack access size

This patch re-introduces protection against the size of access to stack
memory being negative; the access size can appear negative as a result
of overflowing its signed int representation. This should not actually
happen, as there are other protections along the way, but we should
protect against it anyway. One code path was missing such protections
(fixed in the previous patch in the series), causing out-of-bounds array
accesses in check_stack_range_initialized(). This patch causes the
verification of a program with such a non-sensical access size to fail.

This check used to exist in a more indirect way, but was inadvertendly
removed in a833a17aeac7.

Fixes: a833a17aeac7 ("bpf: Fix verification of indirect var-off stack access")
Reported-by: syzbot+33f4297b5f927648741a@syzkaller.appspotmail.com
Reported-by: syzbot+aafd0513053a1cbf52ef@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/bpf/CAADnVQLORV5PT0iTAhRER+iLBTkByCYNBYyvBSgjN1T31K+gOw@mail.gmail.com/
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Andrei Matei <andreimatei1@gmail.com>
Link: https://lore.kernel.org/r/20240327024245.318299-3-andreimatei1@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 122fdbd2 22-Mar-2024 Puranjay Mohan <puranjay12@gmail.com>

bpf: verifier: reject addr_space_cast insn without arena

The verifier allows using the addr_space_cast instruction in a program
that doesn't have an associated arena. This was caught in the form an
invalid memory access in do_misc_fixups() when while converting
addr_space_cast to a normal 32-bit mov, env->prog->aux->arena was
dereferenced to check for BPF_F_NO_USER_CONV flag.

Reject programs that include the addr_space_cast instruction but don't
have an associated arena.

root@rv-tester:~# ./reproducer
Unable to handle kernel access to user memory without uaccess routines at virtual address 0000000000000030
Oops [#1]
[<ffffffff8017eeaa>] do_misc_fixups+0x43c/0x1168
[<ffffffff801936d6>] bpf_check+0xda8/0x22b6
[<ffffffff80174b32>] bpf_prog_load+0x486/0x8dc
[<ffffffff80176566>] __sys_bpf+0xbd8/0x214e
[<ffffffff80177d14>] __riscv_sys_bpf+0x22/0x2a
[<ffffffff80d2493a>] do_trap_ecall_u+0x102/0x17c
[<ffffffff80d3048c>] ret_from_exception+0x0/0x64

Fixes: 6082b6c328b5 ("bpf: Recognize addr_space_cast instruction in the verifier.")
Reported-by: xingwei lee <xrivendell7@gmail.com>
Reported-by: yue sun <samsun1006219@gmail.com>
Closes: https://lore.kernel.org/bpf/CABOYnLz09O1+2gGVJuCxd_24a-7UueXzV-Ff+Fr+h5EKFDiYCQ@mail.gmail.com/
Signed-off-by: Puranjay Mohan <puranjay12@gmail.com>
Link: https://lore.kernel.org/r/20240322153518.11555-1-puranjay12@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# f7f5d180 21-Mar-2024 Puranjay Mohan <puranjay12@gmail.com>

bpf: verifier: fix addr_space_cast from as(1) to as(0)

The verifier currently converts addr_space_cast from as(1) to as(0) that
is: BPF_ALU64 | BPF_MOV | BPF_X with off=1 and imm=1
to
BPF_ALU | BPF_MOV | BPF_X with imm=1 (32-bit mov)

Because of this imm=1, the JITs that have bpf_jit_needs_zext() == true,
interpret the converted instruction as BPF_ZEXT_REG(DST) which is a
special form of mov32, used for doing explicit zero extension on dst.
These JITs will just zero extend the dst reg and will not move the src to
dst before the zext.

Fix do_misc_fixups() to set imm=0 when converting addr_space_cast to a
normal mov32.

The JITs that have bpf_jit_needs_zext() == true rely on the verifier to
emit zext instructions. Mark dst_reg as subreg when doing cast from
as(1) to as(0) so the verifier emits a zext instruction after the mov.

Fixes: 6082b6c328b5 ("bpf: Recognize addr_space_cast instruction in the verifier.")
Signed-off-by: Puranjay Mohan <puranjay12@gmail.com>
Link: https://lore.kernel.org/r/20240321153939.113996-1-puranjay12@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 44d79142 14-Mar-2024 Puranjay Mohan <puranjay12@gmail.com>

bpf: Temporarily disable atomic operations in BPF arena

Currently, the x86 JIT handling PROBE_MEM32 tagged accesses is not
equipped to handle atomic accesses into PTR_TO_ARENA, as no PROBE_MEM32
tagging is performed and no handling is enabled for them.

This will lead to unsafety as the offset into arena will dereferenced
directly without turning it into a base + offset access into the arena
region.

Since the changes to the x86 JIT will be fairly involved, for now,
temporarily disallow use of PTR_TO_ARENA as the destination operand for
atomics until support is added to the JIT backend.

Fixes: 2fe99eb0ccf2 ("bpf: Add x86-64 JIT support for PROBE_MEM32 pseudo instructions.")
Reported-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Puranjay Mohan <puranjay12@gmail.com>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Message-ID: <20240314174931.98702-1-puranjay12@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 66c84731 08-Mar-2024 Andrii Nakryiko <andrii@kernel.org>

bpf: move sleepable flag from bpf_prog_aux to bpf_prog

prog->aux->sleepable is checked very frequently as part of (some) BPF
program run hot paths. So this extra aux indirection seems wasteful and
on busy systems might cause unnecessary memory cache misses.

Let's move sleepable flag into prog itself to eliminate unnecessary
pointer dereference.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Message-ID: <20240309004739.2961431-1-andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 2edc3de6 07-Mar-2024 Alexei Starovoitov <ast@kernel.org>

bpf: Recognize btf_decl_tag("arg: Arena") as PTR_TO_ARENA.

In global bpf functions recognize btf_decl_tag("arg:arena") as PTR_TO_ARENA.

Note, when the verifier sees:

__weak void foo(struct bar *p)

it recognizes 'p' as PTR_TO_MEM and 'struct bar' has to be a struct with scalars.
Hence the only way to use arena pointers in global functions is to tag them with "arg:arena".

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-7-alexei.starovoitov@gmail.com


# 6082b6c3 07-Mar-2024 Alexei Starovoitov <ast@kernel.org>

bpf: Recognize addr_space_cast instruction in the verifier.

rY = addr_space_cast(rX, 0, 1) tells the verifier that rY->type = PTR_TO_ARENA.
Any further operations on PTR_TO_ARENA register have to be in 32-bit domain.

The verifier will mark load/store through PTR_TO_ARENA with PROBE_MEM32.
JIT will generate them as kern_vm_start + 32bit_addr memory accesses.

rY = addr_space_cast(rX, 1, 0) tells the verifier that rY->type = unknown scalar.
If arena->map_flags has BPF_F_NO_USER_CONV set then convert cast_user to mov32 as well.
Otherwise JIT will convert it to:
rY = (u32)rX;
if (rY)
rY |= arena->user_vm_start & ~(u64)~0U;

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20240308010812.89848-6-alexei.starovoitov@gmail.com


# 31746031 07-Mar-2024 Alexei Starovoitov <ast@kernel.org>

bpf: Introduce bpf_arena.

Introduce bpf_arena, which is a sparse shared memory region between the bpf
program and user space.

Use cases:
1. User space mmap-s bpf_arena and uses it as a traditional mmap-ed
anonymous region, like memcached or any key/value storage. The bpf
program implements an in-kernel accelerator. XDP prog can search for
a key in bpf_arena and return a value without going to user space.
2. The bpf program builds arbitrary data structures in bpf_arena (hash
tables, rb-trees, sparse arrays), while user space consumes it.
3. bpf_arena is a "heap" of memory from the bpf program's point of view.
The user space may mmap it, but bpf program will not convert pointers
to user base at run-time to improve bpf program speed.

Initially, the kernel vm_area and user vma are not populated. User space
can fault in pages within the range. While servicing a page fault,
bpf_arena logic will insert a new page into the kernel and user vmas. The
bpf program can allocate pages from that region via
bpf_arena_alloc_pages(). This kernel function will insert pages into the
kernel vm_area. The subsequent fault-in from user space will populate that
page into the user vma. The BPF_F_SEGV_ON_FAULT flag at arena creation time
can be used to prevent fault-in from user space. In such a case, if a page
is not allocated by the bpf program and not present in the kernel vm_area,
the user process will segfault. This is useful for use cases 2 and 3 above.

bpf_arena_alloc_pages() is similar to user space mmap(). It allocates pages
either at a specific address within the arena or allocates a range with the
maple tree. bpf_arena_free_pages() is analogous to munmap(), which frees
pages and removes the range from the kernel vm_area and from user process
vmas.

bpf_arena can be used as a bpf program "heap" of up to 4GB. The speed of
bpf program is more important than ease of sharing with user space. This is
use case 3. In such a case, the BPF_F_NO_USER_CONV flag is recommended.
It will tell the verifier to treat the rX = bpf_arena_cast_user(rY)
instruction as a 32-bit move wX = wY, which will improve bpf prog
performance. Otherwise, bpf_arena_cast_user is translated by JIT to
conditionally add the upper 32 bits of user vm_start (if the pointer is not
NULL) to arena pointers before they are stored into memory. This way, user
space sees them as valid 64-bit pointers.

Diff https://github.com/llvm/llvm-project/pull/84410 enables LLVM BPF
backend generate the bpf_addr_space_cast() instruction to cast pointers
between address_space(1) which is reserved for bpf_arena pointers and
default address space zero. All arena pointers in a bpf program written in
C language are tagged as __attribute__((address_space(1))). Hence, clang
provides helpful diagnostics when pointers cross address space. Libbpf and
the kernel support only address_space == 1. All other address space
identifiers are reserved.

rX = bpf_addr_space_cast(rY, /* dst_as */ 1, /* src_as */ 0) tells the
verifier that rX->type = PTR_TO_ARENA. Any further operations on
PTR_TO_ARENA register have to be in the 32-bit domain. The verifier will
mark load/store through PTR_TO_ARENA with PROBE_MEM32. JIT will generate
them as kern_vm_start + 32bit_addr memory accesses. The behavior is similar
to copy_from_kernel_nofault() except that no address checks are necessary.
The address is guaranteed to be in the 4GB range. If the page is not
present, the destination register is zeroed on read, and the operation is
ignored on write.

rX = bpf_addr_space_cast(rY, 0, 1) tells the verifier that rX->type =
unknown scalar. If arena->map_flags has BPF_F_NO_USER_CONV set, then the
verifier converts such cast instructions to mov32. Otherwise, JIT will emit
native code equivalent to:
rX = (u32)rY;
if (rY)
rX |= clear_lo32_bits(arena->user_vm_start); /* replace hi32 bits in rX */

After such conversion, the pointer becomes a valid user pointer within
bpf_arena range. The user process can access data structures created in
bpf_arena without any additional computations. For example, a linked list
built by a bpf program can be walked natively by user space.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Barret Rhoden <brho@google.com>
Link: https://lore.kernel.org/bpf/20240308010812.89848-2-alexei.starovoitov@gmail.com


# 8d94f135 06-Mar-2024 Alexei Starovoitov <ast@kernel.org>

bpf: Recognize '__map' suffix in kfunc arguments

Recognize 'void *p__map' kfunc argument as 'struct bpf_map *p__map'.
It allows kfunc to have 'void *' argument for maps, since bpf progs
will call them as:
struct {
__uint(type, BPF_MAP_TYPE_ARENA);
...
} arena SEC(".maps");

bpf_kfunc_with_map(... &arena ...);

Underneath libbpf will load CONST_PTR_TO_MAP into the register via ld_imm64
insn. If kfunc was defined with 'struct bpf_map *' it would pass the
verifier as well, but bpf prog would need to type cast the argument
(void *)&arena, which is not clean.

Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20240307031228.42896-3-alexei.starovoitov@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>


# 88d1d4a7 06-Mar-2024 Alexei Starovoitov <ast@kernel.org>

bpf: Allow kfuncs return 'void *'

Recognize return of 'void *' from kfunc as returning unknown scalar.

Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20240307031228.42896-2-alexei.starovoitov@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>


# 4f81c16f 05-Mar-2024 Alexei Starovoitov <ast@kernel.org>

bpf: Recognize that two registers are safe when their ranges match

When open code iterators, bpf_loop or may_goto are used the following two
states are equivalent and safe to prune the search:

cur state: fp-8_w=scalar(id=3,smin=umin=smin32=umin32=2,smax=umax=smax32=umax32=11,var_off=(0x0; 0xf))
old state: fp-8_rw=scalar(id=2,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=11,var_off=(0x0; 0xf))

In other words "exact" state match should ignore liveness and precision
marks, since open coded iterator logic didn't complete their propagation,
reg_old->type == NOT_INIT && reg_cur->type != NOT_INIT is also not safe to
prune while looping, but range_within logic that applies to scalars,
ptr_to_mem, map_value, pkt_ptr is safe to rely on.

Avoid doing such comparison when regular infinite loop detection logic is
used, otherwise bounded loop logic will declare such "infinite loop" as
false positive. Such example is in progs/verifier_loops1.c
not_an_inifinite_loop().

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Tested-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20240306031929.42666-3-alexei.starovoitov@gmail.com


# 011832b9 05-Mar-2024 Alexei Starovoitov <ast@kernel.org>

bpf: Introduce may_goto instruction

Introduce may_goto instruction that from the verifier pov is similar to
open coded iterators bpf_for()/bpf_repeat() and bpf_loop() helper, but it
doesn't iterate any objects.
In assembly 'may_goto' is a nop most of the time until bpf runtime has to
terminate the program for whatever reason. In the current implementation
may_goto has a hidden counter, but other mechanisms can be used.
For programs written in C the later patch introduces 'cond_break' macro
that combines 'may_goto' with 'break' statement and has similar semantics:
cond_break is a nop until bpf runtime has to break out of this loop.
It can be used in any normal "for" or "while" loop, like

for (i = zero; i < cnt; cond_break, i++) {

The verifier recognizes that may_goto is used in the program, reserves
additional 8 bytes of stack, initializes them in subprog prologue, and
replaces may_goto instruction with:
aux_reg = *(u64 *)(fp - 40)
if aux_reg == 0 goto pc+off
aux_reg -= 1
*(u64 *)(fp - 40) = aux_reg

may_goto instruction can be used by LLVM to implement __builtin_memcpy,
__builtin_strcmp.

may_goto is not a full substitute for bpf_for() macro.
bpf_for() doesn't have induction variable that verifiers sees,
so 'i' in bpf_for(i, 0, 100) is seen as imprecise and bounded.

But when the code is written as:
for (i = 0; i < 100; cond_break, i++)
the verifier see 'i' as precise constant zero,
hence cond_break (aka may_goto) doesn't help to converge the loop.
A static or global variable can be used as a workaround:
static int zero = 0;
for (i = zero; i < 100; cond_break, i++) // works!

may_goto works well with arena pointers that don't need to be bounds
checked on access. Load/store from arena returns imprecise unbounded
scalar and loops with may_goto pass the verifier.

Reserve new opcode BPF_JMP | BPF_JCOND for may_goto insn.
JCOND stands for conditional pseudo jump.
Since goto_or_nop insn was proposed, it may use the same opcode.
may_goto vs goto_or_nop can be distinguished by src_reg:
code = BPF_JMP | BPF_JCOND
src_reg = 0 - may_goto
src_reg = 1 - goto_or_nop

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Tested-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20240306031929.42666-2-alexei.starovoitov@gmail.com


# 2ab256e9 21-Feb-2024 Benjamin Tissoires <bentiss@kernel.org>

bpf: add is_async_callback_calling_insn() helper

Currently we have a special case for BPF_FUNC_timer_set_callback,
let's introduce a helper we can extend for the kfunc that will come in
a later patch

Signed-off-by: Benjamin Tissoires <bentiss@kernel.org>
Link: https://lore.kernel.org/r/20240221-hid-bpf-sleepable-v3-3-1fb378ca6301@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# dfe6625d 21-Feb-2024 Benjamin Tissoires <bentiss@kernel.org>

bpf: introduce in_sleepable() helper

No code change, but it'll allow to have only one place to change
everything when we add in_sleepable in cur_state.

Signed-off-by: Benjamin Tissoires <bentiss@kernel.org>
Link: https://lore.kernel.org/r/20240221-hid-bpf-sleepable-v3-2-1fb378ca6301@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 55bad79e 21-Feb-2024 Benjamin Tissoires <bentiss@kernel.org>

bpf: allow more maps in sleepable bpf programs

These 2 maps types are required for HID-BPF when a user wants to do
IO with a device from a sleepable tracing point.

Allowing BPF_MAP_TYPE_QUEUE (and therefore BPF_MAP_TYPE_STACK) allows
for a BPF program to prepare from an IRQ the list of HID commands to send
back to the device and then these commands can be retrieved from the
sleepable trace point.

Signed-off-by: Benjamin Tissoires <bentiss@kernel.org>
Link: https://lore.kernel.org/r/20240221-hid-bpf-sleepable-v3-1-1fb378ca6301@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 682158ab 14-Feb-2024 Yonghong Song <yonghong.song@linux.dev>

bpf: Fix test verif_scale_strobemeta_subprogs failure due to llvm19

With latest llvm19, I hit the following selftest failures with

$ ./test_progs -j
libbpf: prog 'on_event': BPF program load failed: Permission denied
libbpf: prog 'on_event': -- BEGIN PROG LOAD LOG --
combined stack size of 4 calls is 544. Too large
verification time 1344153 usec
stack depth 24+440+0+32
processed 51008 insns (limit 1000000) max_states_per_insn 19 total_states 1467 peak_states 303 mark_read 146
-- END PROG LOAD LOG --
libbpf: prog 'on_event': failed to load: -13
libbpf: failed to load object 'strobemeta_subprogs.bpf.o'
scale_test:FAIL:expect_success unexpected error: -13 (errno 13)
#498 verif_scale_strobemeta_subprogs:FAIL

The verifier complains too big of the combined stack size (544 bytes) which
exceeds the maximum stack limit 512. This is a regression from llvm19 ([1]).

In the above error log, the original stack depth is 24+440+0+32.
To satisfy interpreter's need, in verifier the stack depth is adjusted to
32+448+32+32=544 which exceeds 512, hence the error. The same adjusted
stack size is also used for jit case.

But the jitted codes could use smaller stack size.

$ egrep -r stack_depth | grep round_up
arm64/net/bpf_jit_comp.c: ctx->stack_size = round_up(prog->aux->stack_depth, 16);
loongarch/net/bpf_jit.c: bpf_stack_adjust = round_up(ctx->prog->aux->stack_depth, 16);
powerpc/net/bpf_jit_comp.c: cgctx.stack_size = round_up(fp->aux->stack_depth, 16);
riscv/net/bpf_jit_comp32.c: round_up(ctx->prog->aux->stack_depth, STACK_ALIGN);
riscv/net/bpf_jit_comp64.c: bpf_stack_adjust = round_up(ctx->prog->aux->stack_depth, 16);
s390/net/bpf_jit_comp.c: u32 stack_depth = round_up(fp->aux->stack_depth, 8);
sparc/net/bpf_jit_comp_64.c: stack_needed += round_up(stack_depth, 16);
x86/net/bpf_jit_comp.c: EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
x86/net/bpf_jit_comp.c: int tcc_off = -4 - round_up(stack_depth, 8);
x86/net/bpf_jit_comp.c: round_up(stack_depth, 8));
x86/net/bpf_jit_comp.c: int tcc_off = -4 - round_up(stack_depth, 8);
x86/net/bpf_jit_comp.c: EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8));

In the above, STACK_ALIGN in riscv/net/bpf_jit_comp32.c is defined as 16.
So stack is aligned in either 8 or 16, x86/s390 having 8-byte stack alignment and
the rest having 16-byte alignment.

This patch calculates total stack depth based on 16-byte alignment if jit is requested.
For the above failing case, the new stack size will be 32+448+0+32=512 and no verification
failure. llvm19 regression will be discussed separately in llvm upstream.

The verifier change caused three test failures as these tests compared messages
with stack size. More specifically,
- test_global_funcs/global_func1: fail with interpreter mode and success with jit mode.
Adjusted stack sizes so both jit and interpreter modes will fail.
- async_stack_depth/{pseudo_call_check, async_call_root_check}: since jit and interpreter
will calculate different stack sizes, the failure msg is adjusted to omit those
specific stack size numbers.

[1] https://lore.kernel.org/bpf/32bde0f0-1881-46c9-931a-673be566c61d@linux.dev/

Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20240214232951.4113094-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# fb5b86cf 12-Feb-2024 Andrii Nakryiko <andrii@kernel.org>

bpf: simplify btf_get_prog_ctx_type() into btf_is_prog_ctx_type()

Return result of btf_get_prog_ctx_type() is never used and callers only
check NULL vs non-NULL case to determine if given type matches expected
PTR_TO_CTX type. So rename function to `btf_is_prog_ctx_type()` and
return a simple true/false. We'll use this simpler interface to handle
kprobe program type's special typedef case in the next patch.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240212233221.2575350-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 16116035 08-Feb-2024 Kui-Feng Lee <thinker.li@gmail.com>

bpf: Create argument information for nullable arguments.

Collect argument information from the type information of stub functions to
mark arguments of BPF struct_ops programs with PTR_MAYBE_NULL if they are
nullable. A nullable argument is annotated by suffixing "__nullable" at
the argument name of stub function.

For nullable arguments, this patch sets a struct bpf_ctx_arg_aux to label
their reg_type with PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL. This
makes the verifier to check programs and ensure that they properly check
the pointer. The programs should check if the pointer is null before
accessing the pointed memory.

The implementer of a struct_ops type should annotate the arguments that can
be null. The implementer should define a stub function (empty) as a
placeholder for each defined operator. The name of a stub function should
be in the pattern "<st_op_type>__<operator name>". For example, for
test_maybe_null of struct bpf_testmod_ops, it's stub function name should
be "bpf_testmod_ops__test_maybe_null". You mark an argument nullable by
suffixing the argument name with "__nullable" at the stub function.

Since we already has stub functions for kCFI, we just reuse these stub
functions with the naming convention mentioned earlier. These stub
functions with the naming convention is only required if there are nullable
arguments to annotate. For functions having not nullable arguments, stub
functions are not necessary for the purpose of this patch.

This patch will prepare a list of struct bpf_ctx_arg_aux, aka arg_info, for
each member field of a struct_ops type. "arg_info" will be assigned to
"prog->aux->ctx_arg_info" of BPF struct_ops programs in
check_struct_ops_btf_id() so that it can be used by btf_ctx_access() later
to set reg_type properly for the verifier.

Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240209023750.1153905-4-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>


# 6115a0ae 08-Feb-2024 Kui-Feng Lee <thinker.li@gmail.com>

bpf: Move __kfunc_param_match_suffix() to btf.c.

Move __kfunc_param_match_suffix() to btf.c and rename it as
btf_param_match_suffix(). It can be reused by bpf_struct_ops later.

Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240209023750.1153905-3-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>


# 6fceea0f 04-Feb-2024 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Transfer RCU lock state between subprog calls

Allow transferring an imbalanced RCU lock state between subprog calls
during verification. This allows patterns where a subprog call returns
with an RCU lock held, or a subprog call releases an RCU lock held by
the caller. Currently, the verifier would end up complaining if the RCU
lock is not released when processing an exit from a subprog, which is
non-ideal if its execution is supposed to be enclosed in an RCU read
section of the caller.

Instead, simply only check whether we are processing exit for frame#0
and do not complain on an active RCU lock otherwise. We only need to
update the check when processing BPF_EXIT insn, as copy_verifier_state
is already set up to do the right thing.

Suggested-by: David Vernet <void@manifault.com>
Tested-by: Yafang Shao <laoar.shao@gmail.com>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20240205055646.1112186-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# a44b1334 04-Feb-2024 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Allow calling static subprogs while holding a bpf_spin_lock

Currently, calling any helpers, kfuncs, or subprogs except the graph
data structure (lists, rbtrees) API kfuncs while holding a bpf_spin_lock
is not allowed. One of the original motivations of this decision was to
force the BPF programmer's hand into keeping the bpf_spin_lock critical
section small, and to ensure the execution time of the program does not
increase due to lock waiting times. In addition to this, some of the
helpers and kfuncs may be unsafe to call while holding a bpf_spin_lock.

However, when it comes to subprog calls, atleast for static subprogs,
the verifier is able to explore their instructions during verification.
Therefore, it is similar in effect to having the same code inlined into
the critical section. Hence, not allowing static subprog calls in the
bpf_spin_lock critical section is mostly an annoyance that needs to be
worked around, without providing any tangible benefit.

Unlike static subprog calls, global subprog calls are not safe to permit
within the critical section, as the verifier does not explore them
during verification, therefore whether the same lock will be taken
again, or unlocked, cannot be ascertained.

Therefore, allow calling static subprogs within a bpf_spin_lock critical
section, and only reject it in case the subprog linkage is global.

Acked-by: Yonghong Song <yonghong.song@linux.dev>
Acked-by: David Vernet <void@manifault.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20240204222349.938118-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 8f13c340 02-Feb-2024 Andrii Nakryiko <andrii@kernel.org>

bpf: handle trusted PTR_TO_BTF_ID_OR_NULL in argument check logic

Add PTR_TRUSTED | PTR_MAYBE_NULL modifiers for PTR_TO_BTF_ID to
check_reg_type() to support passing trusted nullable PTR_TO_BTF_ID
registers into global functions accepting `__arg_trusted __arg_nullable`
arguments. This hasn't been caught earlier because tests were either
passing known non-NULL PTR_TO_BTF_ID registers or known NULL (SCALAR)
registers.

When utilizing this functionality in complicated real-world BPF
application that passes around PTR_TO_BTF_ID_OR_NULL, it became apparent
that verifier rejects valid case because check_reg_type() doesn't handle
this case explicitly. Existing check_reg_type() logic is already
anticipating this combination, so we just need to explicitly list this
combo in the switch statement.

Fixes: e2b3c4ff5d18 ("bpf: add __arg_trusted global func arg tag")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240202190529.2374377-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 6efbde20 27-Jan-2024 Eduard Zingerman <eddyz87@gmail.com>

bpf: Handle scalar spill vs all MISC in stacksafe()

When check_stack_read_fixed_off() reads value from an spi
all stack slots of which are set to STACK_{MISC,INVALID},
the destination register is set to unbound SCALAR_VALUE.

Exploit this fact by allowing stacksafe() to use a fake
unbound scalar register to compare 'mmmm mmmm' stack value
in old state vs spilled 64-bit scalar in current state
and vice versa.

Veristat results after this patch show some gains:

./veristat -C -e file,prog,states -f 'states_pct>10' not-opt after
File Program States (DIFF)
----------------------- --------------------- ---------------
bpf_overlay.o tail_rev_nodeport_lb4 -45 (-15.85%)
bpf_xdp.o tail_lb_ipv4 -541 (-19.57%)
pyperf100.bpf.o on_event -680 (-10.42%)
pyperf180.bpf.o on_event -2164 (-19.62%)
pyperf600.bpf.o on_event -9799 (-24.84%)
strobemeta.bpf.o on_event -9157 (-65.28%)
xdp_synproxy_kern.bpf.o syncookie_tc -54 (-19.29%)
xdp_synproxy_kern.bpf.o syncookie_xdp -74 (-24.50%)

Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20240127175237.526726-6-maxtram95@gmail.com


# c1e6148c 27-Jan-2024 Maxim Mikityanskiy <maxim@isovalent.com>

bpf: Preserve boundaries and track scalars on narrowing fill

When the width of a fill is smaller than the width of the preceding
spill, the information about scalar boundaries can still be preserved,
as long as it's coerced to the right width (done by coerce_reg_to_size).
Even further, if the actual value fits into the fill width, the ID can
be preserved as well for further tracking of equal scalars.

Implement the above improvements, which makes narrowing fills behave the
same as narrowing spills and MOVs between registers.

Two tests are adjusted to accommodate for endianness differences and to
take into account that it's now allowed to do a narrowing fill from the
least significant bits.

reg_bounds_sync is added to coerce_reg_to_size to correctly adjust
umin/umax boundaries after the var_off truncation, for example, a 64-bit
value 0xXXXXXXXX00000000, when read as a 32-bit, gets umin = 0, umax =
0xFFFFFFFF, var_off = (0x0; 0xffffffff00000000), which needs to be
synced down to umax = 0, otherwise reg_bounds_sanity_check doesn't pass.

Signed-off-by: Maxim Mikityanskiy <maxim@isovalent.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20240127175237.526726-4-maxtram95@gmail.com


# e67ddd9b 27-Jan-2024 Maxim Mikityanskiy <maxim@isovalent.com>

bpf: Track spilled unbounded scalars

Support the pattern where an unbounded scalar is spilled to the stack,
then boundary checks are performed on the src register, after which the
stack frame slot is refilled into a register.

Before this commit, the verifier didn't treat the src register and the
stack slot as related if the src register was an unbounded scalar. The
register state wasn't copied, the id wasn't preserved, and the stack
slot was marked as STACK_MISC. Subsequent boundary checks on the src
register wouldn't result in updating the boundaries of the spilled
variable on the stack.

After this commit, the verifier will preserve the bond between src and
dst even if src is unbounded, which permits to do boundary checks on src
and refill dst later, still remembering its boundaries. Such a pattern
is sometimes generated by clang when compiling complex long functions.

One test is adjusted to reflect that now unbounded scalars are tracked.

Signed-off-by: Maxim Mikityanskiy <maxim@isovalent.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/bpf/20240127175237.526726-2-maxtram95@gmail.com


# e2b3c4ff 29-Jan-2024 Andrii Nakryiko <andrii@kernel.org>

bpf: add __arg_trusted global func arg tag

Add support for passing PTR_TO_BTF_ID registers to global subprogs.
Currently only PTR_TRUSTED flavor of PTR_TO_BTF_ID is supported.
Non-NULL semantics is assumed, so caller will be forced to prove
PTR_TO_BTF_ID can't be NULL.

Note, we disallow global subprogs to destroy passed in PTR_TO_BTF_ID
arguments, even the trusted one. We achieve that by not setting
ref_obj_id when validating subprog code. This basically enforces (in
Rust terms) borrowing semantics vs move semantics. Borrowing semantics
seems to be a better fit for isolated global subprog validation
approach.

Implementation-wise, we utilize existing logic for matching
user-provided BTF type to kernel-side BTF type, used by BPF CO-RE logic
and following same matching rules. We enforce a unique match for types.

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240130000648.2144827-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# e6be8cd5 25-Jan-2024 Kui-Feng Lee <thinker.li@gmail.com>

bpf: Fix error checks against bpf_get_btf_vmlinux().

In bpf_struct_ops_map_alloc, it needs to check for NULL in the returned
pointer of bpf_get_btf_vmlinux() when CONFIG_DEBUG_INFO_BTF is not set.
ENOTSUPP is used to preserve the same behavior before the
struct_ops kmod support.

In the function check_struct_ops_btf_id(), instead of redoing the
bpf_get_btf_vmlinux() that has already been done in syscall.c, the fix
here is to check for prog->aux->attach_btf_id.
BPF_PROG_TYPE_STRUCT_OPS must require attach_btf_id and syscall.c
guarantees a valid attach_btf as long as attach_btf_id is set.
When attach_btf_id is not set, this patch returns -ENOTSUPP
because it is what the selftest in test_libbpf_probe_prog_types()
and libbpf_probes.c are expecting for feature probing purpose.

Changes from v1:

- Remove an unnecessary NULL check in check_struct_ops_btf_id()

Reported-by: syzbot+88f0aafe5f950d7489d7@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/bpf/00000000000040d68a060fc8db8c@google.com/
Reported-by: syzbot+1336f3d4b10bcda75b89@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/bpf/00000000000026353b060fc21c07@google.com/
Fixes: fcc2c1fb0651 ("bpf: pass attached BTF to the bpf_struct_ops subsystem")
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240126023113.1379504-1-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>


# d79a3549 23-Jan-2024 Andrii Nakryiko <andrii@kernel.org>

bpf: Consistently use BPF token throughout BPF verifier logic

Remove remaining direct queries to perfmon_capable() and bpf_capable()
in BPF verifier logic and instead use BPF token (if available) to make
decisions about privileges.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20240124022127.2379740-9-andrii@kernel.org


# e3f87fdf 19-Jan-2024 Kui-Feng Lee <thinker.li@gmail.com>

bpf: hold module refcnt in bpf_struct_ops map creation and prog verification.

To ensure that a module remains accessible whenever a struct_ops object of
a struct_ops type provided by the module is still in use.

struct bpf_struct_ops_map doesn't hold a refcnt to btf anymore since a
module will hold a refcnt to it's btf already. But, struct_ops programs are
different. They hold their associated btf, not the module since they need
only btf to assure their types (signatures).

However, verifier holds the refcnt of the associated module of a struct_ops
type temporarily when verify a struct_ops prog. Verifier needs the help
from the verifier operators (struct bpf_verifier_ops) provided by the owner
module to verify data access of a prog, provide information, and generate
code.

This patch also add a count of links (links_cnt) to bpf_struct_ops_map. It
avoids bpf_struct_ops_map_put_progs() from accessing btf after calling
module_put() in bpf_struct_ops_map_free().

Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240119225005.668602-10-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>


# fcc2c1fb 19-Jan-2024 Kui-Feng Lee <thinker.li@gmail.com>

bpf: pass attached BTF to the bpf_struct_ops subsystem

Pass the fd of a btf from the userspace to the bpf() syscall, and then
convert the fd into a btf. The btf is generated from the module that
defines the target BPF struct_ops type.

In order to inform the kernel about the module that defines the target
struct_ops type, the userspace program needs to provide a btf fd for the
respective module's btf. This btf contains essential information on the
types defined within the module, including the target struct_ops type.

A btf fd must be provided to the kernel for struct_ops maps and for the bpf
programs attached to those maps.

In the case of the bpf programs, the attach_btf_obj_fd parameter is passed
as part of the bpf_attr and is converted into a btf. This btf is then
stored in the prog->aux->attach_btf field. Here, it just let the verifier
access attach_btf directly.

In the case of struct_ops maps, a btf fd is passed as value_type_btf_obj_fd
of bpf_attr. The bpf_struct_ops_map_alloc() function converts the fd to a
btf and stores it as st_map->btf. A flag BPF_F_VTYPE_BTF_OBJ_FD is added
for map_flags to indicate that the value of value_type_btf_obj_fd is set.

Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240119225005.668602-9-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>


# 689423db 19-Jan-2024 Kui-Feng Lee <thinker.li@gmail.com>

bpf: lookup struct_ops types from a given module BTF.

This is a preparation for searching for struct_ops types from a specified
module. BTF is always btf_vmlinux now. This patch passes a pointer of BTF
to bpf_struct_ops_find_value() and bpf_struct_ops_find(). Once the new
registration API of struct_ops types is used, other BTFs besides
btf_vmlinux can also be passed to them.

Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240119225005.668602-8-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>


# 4c5763ed 19-Jan-2024 Kui-Feng Lee <thinker.li@gmail.com>

bpf, net: introduce bpf_struct_ops_desc.

Move some of members of bpf_struct_ops to bpf_struct_ops_desc. type_id is
unavailabe in bpf_struct_ops anymore. Modules should get it from the btf
received by kmod's init function.

Cc: netdev@vger.kernel.org
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240119225005.668602-4-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>


# 2ce793eb 17-Jan-2024 Hao Sun <sunhao.th@gmail.com>

bpf: Refactor ptr alu checking rules to allow alu explicitly

Current checking rules are structured to disallow alu on particular ptr
types explicitly, so default cases are allowed implicitly. This may lead
to newly added ptr types being allowed unexpectedly. So restruture it to
allow alu explicitly. The tradeoff is mainly a bit more cases added in
the switch. The following table from Eduard summarizes the rules:

| Pointer type | Arithmetics allowed |
|---------------------+---------------------|
| PTR_TO_CTX | yes |
| CONST_PTR_TO_MAP | conditionally |
| PTR_TO_MAP_VALUE | yes |
| PTR_TO_MAP_KEY | yes |
| PTR_TO_STACK | yes |
| PTR_TO_PACKET_META | yes |
| PTR_TO_PACKET | yes |
| PTR_TO_PACKET_END | no |
| PTR_TO_FLOW_KEYS | conditionally |
| PTR_TO_SOCKET | no |
| PTR_TO_SOCK_COMMON | no |
| PTR_TO_TCP_SOCK | no |
| PTR_TO_TP_BUFFER | yes |
| PTR_TO_XDP_SOCK | no |
| PTR_TO_BTF_ID | yes |
| PTR_TO_MEM | yes |
| PTR_TO_BUF | yes |
| PTR_TO_FUNC | yes |
| CONST_PTR_TO_DYNPTR | yes |

The refactored rules are equivalent to the original one. Note that
PTR_TO_FUNC and CONST_PTR_TO_DYNPTR are not reject here because: (1)
check_mem_access() rejects load/store on those ptrs, and those ptrs
with offset passing to calls are rejected check_func_arg_reg_off();
(2) someone may rely on the verifier not rejecting programs earily.

Signed-off-by: Hao Sun <sunhao.th@gmail.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20240117094012.36798-1-sunhao.th@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 9a4c57f5 09-Jan-2024 Yonghong Song <yonghong.song@linux.dev>

bpf: Track aligned st store as imprecise spilled registers

With patch set [1], precision backtracing supports register spill/fill
to/from the stack. The patch [2] allows initial imprecise register spill
with content 0. This is a common case for cpuv3 and lower for
initializing the stack variables with pattern
r1 = 0
*(u64 *)(r10 - 8) = r1
and the [2] has demonstrated good verification improvement.

For cpuv4, the initialization could be
*(u64 *)(r10 - 8) = 0
The current verifier marks the r10-8 contents with STACK_ZERO.
Similar to [2], let us permit the above insn to behave like
imprecise register spill which can reduce number of verified states.
The change is in function check_stack_write_fixed_off().

Before this patch, spilled zero will be marked as STACK_ZERO
which can provide precise values. In check_stack_write_var_off(),
STACK_ZERO will be maintained if writing a const zero
so later it can provide precise values if needed.

The above handling of '*(u64 *)(r10 - 8) = 0' as a spill
will have issues in check_stack_write_var_off() as the spill
will be converted to STACK_MISC and the precise value 0
is lost. To fix this issue, if the spill slots with const
zero and the BPF_ST write also with const zero, the spill slots
are preserved, which can later provide precise values
if needed. Without the change in check_stack_write_var_off(),
the test_verifier subtest 'BPF_ST_MEM stack imm zero, variable offset'
will fail.

I checked cpuv3 and cpuv4 with and without this patch with veristat.
There is no state change for cpuv3 since '*(u64 *)(r10 - 8) = 0'
is only generated with cpuv4.

For cpuv4:
$ ../veristat -C old.cpuv4.csv new.cpuv4.csv -e file,prog,insns,states -f 'insns_diff!=0'
File Program Insns (A) Insns (B) Insns (DIFF) States (A) States (B) States (DIFF)
------------------------------------------ ------------------- --------- --------- --------------- ---------- ---------- -------------
local_storage_bench.bpf.linked3.o get_local 228 168 -60 (-26.32%) 17 14 -3 (-17.65%)
pyperf600_bpf_loop.bpf.linked3.o on_event 6066 4889 -1177 (-19.40%) 403 321 -82 (-20.35%)
test_cls_redirect.bpf.linked3.o cls_redirect 35483 35387 -96 (-0.27%) 2179 2177 -2 (-0.09%)
test_l4lb_noinline.bpf.linked3.o balancer_ingress 4494 4522 +28 (+0.62%) 217 219 +2 (+0.92%)
test_l4lb_noinline_dynptr.bpf.linked3.o balancer_ingress 1432 1455 +23 (+1.61%) 92 94 +2 (+2.17%)
test_xdp_noinline.bpf.linked3.o balancer_ingress_v6 3462 3458 -4 (-0.12%) 216 216 +0 (+0.00%)
verifier_iterating_callbacks.bpf.linked3.o widening 52 41 -11 (-21.15%) 4 3 -1 (-25.00%)
xdp_synproxy_kern.bpf.linked3.o syncookie_tc 12412 11719 -693 (-5.58%) 345 330 -15 (-4.35%)
xdp_synproxy_kern.bpf.linked3.o syncookie_xdp 12478 11794 -684 (-5.48%) 346 331 -15 (-4.34%)

test_l4lb_noinline and test_l4lb_noinline_dynptr has minor regression, but
pyperf600_bpf_loop and local_storage_bench gets pretty good improvement.

[1] https://lore.kernel.org/all/20231205184248.1502704-1-andrii@kernel.org/
[2] https://lore.kernel.org/all/20231205184248.1502704-9-andrii@kernel.org/

Cc: Kuniyuki Iwashima <kuniyu@amazon.com>
Cc: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Tested-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240110051348.2737007-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 8ecfc371 08-Jan-2024 Maxim Mikityanskiy <maxim@isovalent.com>

bpf: Assign ID to scalars on spill

Currently, when a scalar bounded register is spilled to the stack, its
ID is preserved, but only if was already assigned, i.e. if this register
was MOVed before.

Assign an ID on spill if none is set, so that equal scalars could be
tracked if a register is spilled to the stack and filled into another
register.

One test is adjusted to reflect the change in register IDs.

Signed-off-by: Maxim Mikityanskiy <maxim@isovalent.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20240108205209.838365-9-maxtram95@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 87e51ac6 08-Jan-2024 Maxim Mikityanskiy <maxim@isovalent.com>

bpf: Add the get_reg_width function

Put calculation of the register value width into a dedicated function.
This function will also be used in a following commit.

Signed-off-by: Maxim Mikityanskiy <maxim@isovalent.com>
Link: https://lore.kernel.org/r/20240108205209.838365-8-maxtram95@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 8e0e074a 08-Jan-2024 Maxim Mikityanskiy <maxim@isovalent.com>

bpf: Add the assign_scalar_id_before_mov function

Extract the common code that generates a register ID for src_reg before
MOV if needed into a new function. This function will also be used in
a following commit.

Signed-off-by: Maxim Mikityanskiy <maxim@isovalent.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20240108205209.838365-7-maxtram95@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# d5b892fd 08-Jan-2024 Eduard Zingerman <eddyz87@gmail.com>

bpf: make infinite loop detection in is_state_visited() exact

Current infinite loops detection mechanism is speculative:
- first, states_maybe_looping() check is done which simply does memcmp
for R1-R10 in current frame;
- second, states_equal(..., exact=false) is called. With exact=false
states_equal() would compare scalars for equality only if in old
state scalar has precision mark.

Such logic might be problematic if compiler makes some unlucky stack
spill/fill decisions. An artificial example of a false positive looks
as follows:

r0 = ... unknown scalar ...
r0 &= 0xff;
*(u64 *)(r10 - 8) = r0;
r0 = 0;
loop:
r0 = *(u64 *)(r10 - 8);
if r0 > 10 goto exit_;
r0 += 1;
*(u64 *)(r10 - 8) = r0;
r0 = 0;
goto loop;

This commit updates call to states_equal to use exact=true, forcing
all scalar comparisons to be exact.

Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20240108205209.838365-3-maxtram95@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 54c11ec4 04-Jan-2024 Andrii Nakryiko <andrii@kernel.org>

bpf: prepare btf_prepare_func_args() for multiple tags per argument

Add btf_arg_tag flags enum to be able to record multiple tags per
argument. Also streamline pointer argument processing some more.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20240105000909.2818934-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 7c05e7f3 05-Jan-2024 Hou Tao <houtao1@huawei.com>

bpf: Support inlining bpf_kptr_xchg() helper

The motivation of inlining bpf_kptr_xchg() comes from the performance
profiling of bpf memory allocator benchmark. The benchmark uses
bpf_kptr_xchg() to stash the allocated objects and to pop the stashed
objects for free. After inling bpf_kptr_xchg(), the performance for
object free on 8-CPUs VM increases about 2%~10%. The inline also has
downside: both the kasan and kcsan checks on the pointer will be
unavailable.

bpf_kptr_xchg() can be inlined by converting the calling of
bpf_kptr_xchg() into an atomic_xchg() instruction. But the conversion
depends on two conditions:
1) JIT backend supports atomic_xchg() on pointer-sized word
2) For the specific arch, the implementation of xchg is the same as
atomic_xchg() on pointer-sized words.

It seems most 64-bit JIT backends satisfies these two conditions. But
as a precaution, defining a weak function bpf_jit_supports_ptr_xchg()
to state whether such conversion is safe and only supporting inline for
64-bit host.

For x86-64, it supports BPF_XCHG atomic operation and both xchg() and
atomic_xchg() use arch_xchg() to implement the exchange, so enabling the
inline of bpf_kptr_xchg() on x86-64 first.

Reviewed-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20240105104819.3916743-2-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# e9a8e5a5 22-Feb-2024 Eduard Zingerman <eddyz87@gmail.com>

bpf: check bpf_func_state->callback_depth when pruning states

When comparing current and cached states verifier should consider
bpf_func_state->callback_depth. Current state cannot be pruned against
cached state, when current states has more iterations left compared to
cached state. Current state has more iterations left when it's
callback_depth is smaller.

Below is an example illustrating this bug, minimized from mailing list
discussion [0] (assume that BPF_F_TEST_STATE_FREQ is set).
The example is not a safe program: if loop_cb point (1) is followed by
loop_cb point (2), then division by zero is possible at point (4).

struct ctx {
__u64 a;
__u64 b;
__u64 c;
};

static void loop_cb(int i, struct ctx *ctx)
{
/* assume that generated code is "fallthrough-first":
* if ... == 1 goto
* if ... == 2 goto
* <default>
*/
switch (bpf_get_prandom_u32()) {
case 1: /* 1 */ ctx->a = 42; return 0; break;
case 2: /* 2 */ ctx->b = 42; return 0; break;
default: /* 3 */ ctx->c = 42; return 0; break;
}
}

SEC("tc")
__failure
__flag(BPF_F_TEST_STATE_FREQ)
int test(struct __sk_buff *skb)
{
struct ctx ctx = { 7, 7, 7 };

bpf_loop(2, loop_cb, &ctx, 0); /* 0 */
/* assume generated checks are in-order: .a first */
if (ctx.a == 42 && ctx.b == 42 && ctx.c == 7)
asm volatile("r0 /= 0;":::"r0"); /* 4 */
return 0;
}

Prior to this commit verifier built the following checkpoint tree for
this example:

.------------------------------------- Checkpoint / State name
| .-------------------------------- Code point number
| | .---------------------------- Stack state {ctx.a,ctx.b,ctx.c}
| | | .------------------- Callback depth in frame #0
v v v v
- (0) {7P,7P,7},depth=0
- (3) {7P,7P,7},depth=1
- (0) {7P,7P,42},depth=1
- (3) {7P,7,42},depth=2
- (0) {7P,7,42},depth=2 loop terminates because of depth limit
- (4) {7P,7,42},depth=0 predicted false, ctx.a marked precise
- (6) exit
(a) - (2) {7P,7,42},depth=2
- (0) {7P,42,42},depth=2 loop terminates because of depth limit
- (4) {7P,42,42},depth=0 predicted false, ctx.a marked precise
- (6) exit
(b) - (1) {7P,7P,42},depth=2
- (0) {42P,7P,42},depth=2 loop terminates because of depth limit
- (4) {42P,7P,42},depth=0 predicted false, ctx.{a,b} marked precise
- (6) exit
- (2) {7P,7,7},depth=1 considered safe, pruned using checkpoint (a)
(c) - (1) {7P,7P,7},depth=1 considered safe, pruned using checkpoint (b)

Here checkpoint (b) has callback_depth of 2, meaning that it would
never reach state {42,42,7}.
While checkpoint (c) has callback_depth of 1, and thus
could yet explore the state {42,42,7} if not pruned prematurely.
This commit makes forbids such premature pruning,
allowing verifier to explore states sub-tree starting at (c):

(c) - (1) {7,7,7P},depth=1
- (0) {42P,7,7P},depth=1
...
- (2) {42,7,7},depth=2
- (0) {42,42,7},depth=2 loop terminates because of depth limit
- (4) {42,42,7},depth=0 predicted true, ctx.{a,b,c} marked precise
- (5) division by zero

[0] https://lore.kernel.org/bpf/9b251840-7cb8-4d17-bd23-1fc8071d8eef@linux.dev/

Fixes: bb124da69c47 ("bpf: keep track of max number of bpf_loop callback iterations")
Suggested-by: Yonghong Song <yonghong.song@linux.dev>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20240222154121.6991-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 11f52225 08-Feb-2024 Hari Bathini <hbathini@linux.ibm.com>

bpf: Fix warning for bpf_cpumask in verifier

Compiling with CONFIG_BPF_SYSCALL & !CONFIG_BPF_JIT throws the below
warning:

"WARN: resolve_btfids: unresolved symbol bpf_cpumask"

Fix it by adding the appropriate #ifdef.

Signed-off-by: Hari Bathini <hbathini@linux.ibm.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Stanislav Fomichev <sdf@google.com>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/bpf/20240208100115.602172-1-hbathini@linux.ibm.com


# 22c7fa17 15-Jan-2024 Hao Sun <sunhao.th@gmail.com>

bpf: Reject variable offset alu on PTR_TO_FLOW_KEYS

For PTR_TO_FLOW_KEYS, check_flow_keys_access() only uses fixed off
for validation. However, variable offset ptr alu is not prohibited
for this ptr kind. So the variable offset is not checked.

The following prog is accepted:

func#0 @0
0: R1=ctx() R10=fp0
0: (bf) r6 = r1 ; R1=ctx() R6_w=ctx()
1: (79) r7 = *(u64 *)(r6 +144) ; R6_w=ctx() R7_w=flow_keys()
2: (b7) r8 = 1024 ; R8_w=1024
3: (37) r8 /= 1 ; R8_w=scalar()
4: (57) r8 &= 1024 ; R8_w=scalar(smin=smin32=0,
smax=umax=smax32=umax32=1024,var_off=(0x0; 0x400))
5: (0f) r7 += r8
mark_precise: frame0: last_idx 5 first_idx 0 subseq_idx -1
mark_precise: frame0: regs=r8 stack= before 4: (57) r8 &= 1024
mark_precise: frame0: regs=r8 stack= before 3: (37) r8 /= 1
mark_precise: frame0: regs=r8 stack= before 2: (b7) r8 = 1024
6: R7_w=flow_keys(smin=smin32=0,smax=umax=smax32=umax32=1024,var_off
=(0x0; 0x400)) R8_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=1024,
var_off=(0x0; 0x400))
6: (79) r0 = *(u64 *)(r7 +0) ; R0_w=scalar()
7: (95) exit

This prog loads flow_keys to r7, and adds the variable offset r8
to r7, and finally causes out-of-bounds access:

BUG: unable to handle page fault for address: ffffc90014c80038
[...]
Call Trace:
<TASK>
bpf_dispatcher_nop_func include/linux/bpf.h:1231 [inline]
__bpf_prog_run include/linux/filter.h:651 [inline]
bpf_prog_run include/linux/filter.h:658 [inline]
bpf_prog_run_pin_on_cpu include/linux/filter.h:675 [inline]
bpf_flow_dissect+0x15f/0x350 net/core/flow_dissector.c:991
bpf_prog_test_run_flow_dissector+0x39d/0x620 net/bpf/test_run.c:1359
bpf_prog_test_run kernel/bpf/syscall.c:4107 [inline]
__sys_bpf+0xf8f/0x4560 kernel/bpf/syscall.c:5475
__do_sys_bpf kernel/bpf/syscall.c:5561 [inline]
__se_sys_bpf kernel/bpf/syscall.c:5559 [inline]
__x64_sys_bpf+0x73/0xb0 kernel/bpf/syscall.c:5559
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0x3f/0x110 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x63/0x6b

Fix this by rejecting ptr alu with variable offset on flow_keys.
Applying the patch rejects the program with "R7 pointer arithmetic
on flow_keys prohibited".

Fixes: d58e468b1112 ("flow_dissector: implements flow dissector BPF hook")
Signed-off-by: Hao Sun <sunhao.th@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/bpf/20240115082028.9992-1-sunhao.th@gmail.com


# 19bfcdf9 03-Jan-2024 Dmitrii Dolgov <9erthalion6@gmail.com>

bpf: Relax tracing prog recursive attach rules

Currently, it's not allowed to attach an fentry/fexit prog to another
one fentry/fexit. At the same time it's not uncommon to see a tracing
program with lots of logic in use, and the attachment limitation
prevents usage of fentry/fexit for performance analysis (e.g. with
"bpftool prog profile" command) in this case. An example could be
falcosecurity libs project that uses tp_btf tracing programs.

Following the corresponding discussion [1], the reason for that is to
avoid tracing progs call cycles without introducing more complex
solutions. But currently it seems impossible to load and attach tracing
programs in a way that will form such a cycle. The limitation is coming
from the fact that attach_prog_fd is specified at the prog load (thus
making it impossible to attach to a program loaded after it in this
way), as well as tracing progs not implementing link_detach.

Replace "no same type" requirement with verification that no more than
one level of attachment nesting is allowed. In this way only one
fentry/fexit program could be attached to another fentry/fexit to cover
profiling use case, and still no cycle could be formed. To implement,
add a new field into bpf_prog_aux to track nested attachment for tracing
programs.

[1]: https://lore.kernel.org/bpf/20191108064039.2041889-16-ast@kernel.org/

Acked-by: Jiri Olsa <olsajiri@gmail.com>
Acked-by: Song Liu <song@kernel.org>
Signed-off-by: Dmitrii Dolgov <9erthalion6@gmail.com>
Link: https://lore.kernel.org/r/20240103190559.14750-2-9erthalion6@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 5c1a3765 21-Dec-2023 Yonghong Song <yonghong.song@linux.dev>

bpf: Limit up to 512 bytes for bpf_global_percpu_ma allocation

For percpu data structure allocation with bpf_global_percpu_ma,
the maximum data size is 4K. But for a system with large
number of cpus, bigger data size (e.g., 2K, 4K) might consume
a lot of memory. For example, the percpu memory consumption
with unit size 2K and 1024 cpus will be 2K * 1K * 1k = 2GB
memory.

We should discourage such usage. Let us limit the maximum data
size to be 512 for bpf_global_percpu_ma allocation.

Acked-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20231222031801.1290841-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# c39aa3b2 21-Dec-2023 Yonghong Song <yonghong.song@linux.dev>

bpf: Allow per unit prefill for non-fix-size percpu memory allocator

Commit 41a5db8d8161 ("Add support for non-fix-size percpu mem allocation")
added support for non-fix-size percpu memory allocation.
Such allocation will allocate percpu memory for all buckets on all
cpus and the memory consumption is in the order to quadratic.
For example, let us say, 4 cpus, unit size 16 bytes, so each
cpu has 16 * 4 = 64 bytes, with 4 cpus, total will be 64 * 4 = 256 bytes.
Then let us say, 8 cpus with the same unit size, each cpu
has 16 * 8 = 128 bytes, with 8 cpus, total will be 128 * 8 = 1024 bytes.
So if the number of cpus doubles, the number of memory consumption
will be 4 times. So for a system with large number of cpus, the
memory consumption goes up quickly with quadratic order.
For example, for 4KB percpu allocation, 128 cpus. The total memory
consumption will 4KB * 128 * 128 = 64MB. Things will become
worse if the number of cpus is bigger (e.g., 512, 1024, etc.)

In Commit 41a5db8d8161, the non-fix-size percpu memory allocation is
done in boot time, so for system with large number of cpus, the initial
percpu memory consumption is very visible. For example, for 128 cpu
system, the total percpu memory allocation will be at least
(16 + 32 + 64 + 96 + 128 + 196 + 256 + 512 + 1024 + 2048 + 4096)
* 128 * 128 = ~138MB.
which is pretty big. It will be even bigger for larger number of cpus.

Note that the current prefill also allocates 4 entries if the unit size
is less than 256. So on top of 138MB memory consumption, this will
add more consumption with
3 * (16 + 32 + 64 + 96 + 128 + 196 + 256) * 128 * 128 = ~38MB.
Next patch will try to reduce this memory consumption.

Later on, Commit 1fda5bb66ad8 ("bpf: Do not allocate percpu memory
at init stage") moved the non-fix-size percpu memory allocation
to bpf verificaiton stage. Once a particular bpf_percpu_obj_new()
is called by bpf program, the memory allocator will try to fill in
the cache with all sizes, causing the same amount of percpu memory
consumption as in the boot stage.

To reduce the initial percpu memory consumption for non-fix-size
percpu memory allocation, instead of filling the cache with all
supported allocation sizes, this patch intends to fill the cache
only for the requested size. As typically users will not use large
percpu data structure, this can save memory significantly.
For example, the allocation size is 64 bytes with 128 cpus.
Then total percpu memory amount will be 64 * 128 * 128 = 1MB,
much less than previous 138MB.

Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Acked-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231222031745.1289082-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 8a021e7f 21-Dec-2023 Andrei Matei <andreimatei1@gmail.com>

bpf: Simplify checking size of helper accesses

This patch simplifies the verification of size arguments associated to
pointer arguments to helpers and kfuncs. Many helpers take a pointer
argument followed by the size of the memory access performed to be
performed through that pointer. Before this patch, the handling of the
size argument in check_mem_size_reg() was confusing and wasteful: if the
size register's lower bound was 0, then the verification was done twice:
once considering the size of the access to be the lower-bound of the
respective argument, and once considering the upper bound (even if the
two are the same). The upper bound checking is a super-set of the
lower-bound checking(*), except: the only point of the lower-bound check
is to handle the case where zero-sized-accesses are explicitly not
allowed and the lower-bound is zero. This static condition is now
checked explicitly, replacing a much more complex, expensive and
confusing verification call to check_helper_mem_access().

Error messages change in this patch. Before, messages about illegal
zero-size accesses depended on the type of the pointer and on other
conditions, and sometimes the message was plain wrong: in some tests
that changed you'll see that the old message was something like "R1 min
value is outside of the allowed memory range", where R1 is the pointer
register; the error was wrongly claiming that the pointer was bad
instead of the size being bad. Other times the information that the size
came for a register with a possible range of values was wrong, and the
error presented the size as a fixed zero. Now the errors refer to the
right register. However, the old error messages did contain useful
information about the pointer register which is now lost; recovering
this information was deemed not important enough.

(*) Besides standing to reason that the checks for a bigger size access
are a super-set of the checks for a smaller size access, I have also
mechanically verified this by reading the code for all types of
pointers. I could convince myself that it's true for all but
PTR_TO_BTF_ID (check_ptr_to_btf_access). There, simply looking
line-by-line does not immediately prove what we want. If anyone has any
qualms, let me know.

Signed-off-by: Andrei Matei <andreimatei1@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231221232225.568730-2-andreimatei1@gmail.com


# 5abde624 21-Dec-2023 Simon Horman <horms@kernel.org>

bpf: Avoid unnecessary use of comma operator in verifier

Although it does not seem to have any untoward side-effects, the use
of ';' to separate to assignments seems more appropriate than ','.

Flagged by clang-17 -Wcomma

No functional change intended. Compile tested only.

Signed-off-by: Simon Horman <horms@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/bpf/20231221-bpf-verifier-comma-v1-1-cde2530912e9@kernel.org


# a64bfe61 14-Dec-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: add support for passing dynptr pointer to global subprog

Add ability to pass a pointer to dynptr into global functions.
This allows to have global subprogs that accept and work with generic
dynptrs that are created by caller. Dynptr argument is detected based on
the name of a struct type, if it's "bpf_dynptr", it's assumed to be
a proper dynptr pointer. Both actual struct and forward struct
declaration types are supported.

This is conceptually exactly the same semantics as
bpf_user_ringbuf_drain()'s use of dynptr to pass a variable-sized
pointer to ringbuf record. So we heavily rely on CONST_PTR_TO_DYNPTR
bits of already existing logic in the verifier.

During global subprog validation, we mark such CONST_PTR_TO_DYNPTR as
having LOCAL type, as that's the most unassuming type of dynptr and it
doesn't have any special helpers that can try to free or acquire extra
references (unlike skb, xdp, or ringbuf dynptr). So that seems like a safe
"choice" to make from correctness standpoint. It's still possible to
pass any type of dynptr to such subprog, though, because generic dynptr
helpers, like getting data/slice pointers, read/write memory copying
routines, dynptr adjustment and getter routines all work correctly with
any type of dynptr.

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231215011334.2307144-8-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 94e1c70a 14-Dec-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: support 'arg:xxx' btf_decl_tag-based hints for global subprog args

Add support for annotating global BPF subprog arguments to provide more
information about expected semantics of the argument. Currently,
verifier relies purely on argument's BTF type information, and supports
three general use cases: scalar, pointer-to-context, and
pointer-to-fixed-size-memory.

Scalar and pointer-to-fixed-mem work well in practice and are quite
natural to use. But pointer-to-context is a bit problematic, as typical
BPF users don't realize that they need to use a special type name to
signal to verifier that argument is not just some pointer, but actually
a PTR_TO_CTX. Further, even if users do know which type to use, it is
limiting in situations where the same BPF program logic is used across
few different program types. Common case is kprobes, tracepoints, and
perf_event programs having a helper to send some data over BPF perf
buffer. bpf_perf_event_output() requires `ctx` argument, and so it's
quite cumbersome to share such global subprog across few BPF programs of
different types, necessitating extra static subprog that is context
type-agnostic.

Long story short, there is a need to go beyond types and allow users to
add hints to global subprog arguments to define expectations.

This patch adds such support for two initial special tags:
- pointer to context;
- non-null qualifier for generic pointer arguments.

All of the above came up in practice already and seem generally useful
additions. Non-null qualifier is an often requested feature, which
currently has to be worked around by having unnecessary NULL checks
inside subprogs even if we know that arguments are never NULL. Pointer
to context was discussed earlier.

As for implementation, we utilize btf_decl_tag attribute and set up an
"arg:xxx" convention to specify argument hint. As such:
- btf_decl_tag("arg:ctx") is a PTR_TO_CTX hint;
- btf_decl_tag("arg:nonnull") marks pointer argument as not allowed to
be NULL, making NULL check inside global subprog unnecessary.

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231215011334.2307144-7-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# f18c3d88 14-Dec-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: reuse subprog argument parsing logic for subprog call checks

Remove duplicated BTF parsing logic when it comes to subprog call check.
Instead, use (potentially cached) results of btf_prepare_func_args() to
abstract away expectations of each subprog argument in generic terms
(e.g., "this is pointer to context", or "this is a pointer to memory of
size X"), and then use those simple high-level argument type
expectations to validate actual register states to check if they match
expectations.

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231215011334.2307144-6-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# c5a72447 14-Dec-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: move subprog call logic back to verifier.c

Subprog call logic in btf_check_subprog_call() currently has both a lot
of BTF parsing logic (which is, presumably, what justified putting it
into btf.c), but also a bunch of register state checks, some of each
utilize deep verifier logic helpers, necessarily exported from
verifier.c: check_ptr_off_reg(), check_func_arg_reg_off(),
and check_mem_reg().

Going forward, btf_check_subprog_call() will have a minimum of
BTF-related logic, but will get more internal verifier logic related to
register state manipulation. So move it into verifier.c to minimize
amount of verifier-specific logic exposed to btf.c.

We do this move before refactoring btf_check_func_arg_match() to
preserve as much history post-refactoring as possible.

No functional changes.

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231215011334.2307144-5-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# e26080d0 14-Dec-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: prepare btf_prepare_func_args() for handling static subprogs

Generalize btf_prepare_func_args() to support both global and static
subprogs. We are going to utilize this property in the next patch,
reusing btf_prepare_func_args() for subprog call logic instead of
reparsing BTF information in a completely separate implementation.

btf_prepare_func_args() now detects whether subprog is global or static
makes slight logic adjustments for static func cases, like not failing
fatally (-EFAULT) for conditions that are allowable for static subprogs.

Somewhat subtle (but major!) difference is the handling of pointer arguments.
Both global and static functions need to handle special context
arguments (which are pointers to predefined type names), but static
subprogs give up on any other pointers, falling back to marking subprog
as "unreliable", disabling the use of BTF type information altogether.

For global functions, though, we are assuming that such pointers to
unrecognized types are just pointers to fixed-sized memory region (or
error out if size cannot be established, like for `void *` pointers).

This patch accommodates these small differences and sets up a stage for
refactoring in the next patch, eliminating a separate BTF-based parsing
logic in btf_check_func_arg_match().

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231215011334.2307144-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 5eccd2db 14-Dec-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: reuse btf_prepare_func_args() check for main program BTF validation

Instead of btf_check_subprog_arg_match(), use btf_prepare_func_args()
logic to validate "trustworthiness" of main BPF program's BTF information,
if it is present.

We ignored results of original BTF check anyway, often times producing
confusing and ominously-sounding "reg type unsupported for arg#0
function" message, which has no apparent effect on program correctness
and verification process.

All the -EFAULT returning sanity checks are already performed in
check_btf_info_early(), so there is zero reason to have this duplication
of logic between btf_check_subprog_call() and btf_check_subprog_arg_match().
Dropping btf_check_subprog_arg_match() simplifies
btf_check_func_arg_match() further removing `bool processing_call` flag.

One subtle bit that was done by btf_check_subprog_arg_match() was
potentially marking main program's BTF as unreliable. We do this
explicitly now with a dedicated simple check, preserving the original
behavior, but now based on well factored btf_prepare_func_args() logic.

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231215011334.2307144-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 4ba1d0f2 14-Dec-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: abstract away global subprog arg preparation logic from reg state setup

btf_prepare_func_args() is used to understand expectations and
restrictions on global subprog arguments. But current implementation is
hard to extend, as it intermixes BTF-based func prototype parsing and
interpretation logic with setting up register state at subprog entry.

Worse still, those registers are not completely set up inside
btf_prepare_func_args(), requiring some more logic later in
do_check_common(). Like calling mark_reg_unknown() and similar
initialization operations.

This intermixing of BTF interpretation and register state setup is
problematic. First, it causes duplication of BTF parsing logic for global
subprog verification (to set up initial state of global subprog) and
global subprog call sites analysis (when we need to check that whatever
is being passed into global subprog matches expectations), performed in
btf_check_subprog_call().

Given we want to extend global func argument with tags later, this
duplication is problematic. So refactor btf_prepare_func_args() to do
only BTF-based func proto and args parsing, returning high-level
argument "expectations" only, with no regard to specifics of register
state. I.e., if it's a context argument, instead of setting register
state to PTR_TO_CTX, we return ARG_PTR_TO_CTX enum for that argument as
"an argument specification" for further processing inside
do_check_common(). Similarly for SCALAR arguments, PTR_TO_MEM, etc.

This allows to reuse btf_prepare_func_args() in following patches at
global subprog call site analysis time. It also keeps register setup
code consistently in one place, do_check_common().

Besides all this, we cache this argument specs information inside
env->subprog_info, eliminating the need to redo these potentially
expensive BTF traversals, especially if BPF program's BTF is big and/or
there are lots of global subprog calls.

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231215011334.2307144-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# d028f875 19-Dec-2023 Menglong Dong <menglong8.dong@gmail.com>

bpf: make the verifier tracks the "not equal" for regs

We can derive some new information for BPF_JNE in regs_refine_cond_op().
Take following code for example:

/* The type of "a" is u32 */
if (a > 0 && a < 100) {
/* the range of the register for a is [0, 99], not [1, 99],
* and will cause the following error:
*
* invalid zero-sized read
*
* as a can be 0.
*/
bpf_skb_store_bytes(skb, xx, xx, a, 0);
}

In the code above, "a > 0" will be compiled to "jmp xxx if a == 0". In the
TRUE branch, the dst_reg will be marked as known to 0. However, in the
fallthrough(FALSE) branch, the dst_reg will not be handled, which makes
the [min, max] for a is [0, 99], not [1, 99].

For BPF_JNE, we can reduce the range of the dst reg if the src reg is a
const and is exactly the edge of the dst reg.

Signed-off-by: Menglong Dong <menglong8.dong@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Link: https://lore.kernel.org/r/20231219134800.1550388-2-menglong8.dong@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# d17aff80 19-Dec-2023 Andrii Nakryiko <andrii@kernel.org>

Revert BPF token-related functionality

This patch includes the following revert (one conflicting BPF FS
patch and three token patch sets, represented by merge commits):
- revert 0f5d5454c723 "Merge branch 'bpf-fs-mount-options-parsing-follow-ups'";
- revert 750e785796bb "bpf: Support uid and gid when mounting bpffs";
- revert 733763285acf "Merge branch 'bpf-token-support-in-libbpf-s-bpf-object'";
- revert c35919dcce28 "Merge branch 'bpf-token-and-bpf-fs-based-delegation'".

Link: https://lore.kernel.org/bpf/CAHk-=wg7JuFYwGy=GOMbRCtOL+jwSQsdUaBsRWkDVYbxipbM5A@mail.gmail.com
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>


# 8e432e61 18-Dec-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: Ensure precise is reset to false in __mark_reg_const_zero()

It is safe to always start with imprecise SCALAR_VALUE register.
Previously __mark_reg_const_zero() relied on caller to reset precise
mark, but it's very error prone and we already missed it in a few
places. So instead make __mark_reg_const_zero() reset precision always,
as it's a safe default for SCALAR_VALUE. Explanation is basically the
same as for why we are resetting (or rather not setting) precision in
current state. If necessary, precision propagation will set it to
precise correctly.

As such, also remove a big comment about forward precision propagation
in mark_reg_stack_read() and avoid unnecessarily setting precision to
true after reading from STACK_ZERO stack. Again, precision propagation
will correctly handle this, if that SCALAR_VALUE register will ever be
needed to be precise.

Reported-by: Maxim Mikityanskiy <maxtram95@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Acked-by: Maxim Mikityanskiy <maxtram95@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20231218173601.53047-1-andrii@kernel.org


# 745e0311 10-Dec-2023 Andrei Matei <andreimatei1@gmail.com>

bpf: Comment on check_mem_size_reg

This patch adds a comment to check_mem_size_reg -- a function whose
meaning is not very transparent. The function implicitly deals with two
registers connected by convention, which is not obvious.

Signed-off-by: Andrei Matei <andreimatei1@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231210225149.67639-1-andreimatei1@gmail.com


# 56c26d5a 11-Dec-2023 Yang Li <yang.lee@linux.alibaba.com>

bpf: Remove unused backtrack_state helper functions

The function are defined in the verifier.c file, but not called
elsewhere, so delete the unused function.

kernel/bpf/verifier.c:3448:20: warning: unused function 'bt_set_slot'
kernel/bpf/verifier.c:3453:20: warning: unused function 'bt_clear_slot'
kernel/bpf/verifier.c:3488:20: warning: unused function 'bt_is_slot_set'

Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Signed-off-by: Yang Li <yang.lee@linux.alibaba.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/bpf/20231212005436.103829-1-yang.lee@linux.alibaba.com

Closes: https://bugzilla.openanolis.cn/show_bug.cgi?id=7714


# 1a1ad782 04-Dec-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: tidy up exception callback management a bit

Use the fact that we are passing subprog index around and have
a corresponding struct bpf_subprog_info in bpf_verifier_env for each
subprogram. We don't need to separately pass around a flag whether
subprog is exception callback or not, each relevant verifier function
can determine this using provided subprog index if we maintain
bpf_subprog_info properly.

Also move out exception callback-specific logic from
btf_prepare_func_args(), keeping it generic. We can enforce all these
restriction right before exception callback verification pass. We add
out parameter, arg_cnt, for now, but this will be unnecessary with
subsequent refactoring and will be removed.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231204233931.49758-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 482d548d 08-Dec-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: handle fake register spill to stack with BPF_ST_MEM instruction

When verifier validates BPF_ST_MEM instruction that stores known
constant to stack (e.g., *(u64 *)(r10 - 8) = 123), it effectively spills
a fake register with a constant (but initially imprecise) value to
a stack slot. Because read-side logic treats it as a proper register
fill from stack slot, we need to mark such stack slot initialization as
INSN_F_STACK_ACCESS instruction to stop precision backtracking from
missing it.

Fixes: 41f6f64e6999 ("bpf: support non-r10 register spill/fill to/from stack in precision tracking")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231209010958.66758-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 2929bfac 07-Dec-2023 Andrei Matei <andreimatei1@gmail.com>

bpf: Minor cleanup around stack bounds

Push the rounding up of stack offsets into the function responsible for
growing the stack, rather than relying on all the callers to do it.
Uncertainty about whether the callers did it or not tripped up people in
a previous review.

Signed-off-by: Andrei Matei <andreimatei1@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/bpf/20231208032519.260451-4-andreimatei1@gmail.com


# 6b4a64ba 07-Dec-2023 Andrei Matei <andreimatei1@gmail.com>

bpf: Fix accesses to uninit stack slots

Privileged programs are supposed to be able to read uninitialized stack
memory (ever since 6715df8d5) but, before this patch, these accesses
were permitted inconsistently. In particular, accesses were permitted
above state->allocated_stack, but not below it. In other words, if the
stack was already "large enough", the access was permitted, but
otherwise the access was rejected instead of being allowed to "grow the
stack". This undesired rejection was happening in two places:
- in check_stack_slot_within_bounds()
- in check_stack_range_initialized()
This patch arranges for these accesses to be permitted. A bunch of tests
that were relying on the old rejection had to change; all of them were
changed to add also run unprivileged, in which case the old behavior
persists. One tests couldn't be updated - global_func16 - because it
can't run unprivileged for other reasons.

This patch also fixes the tracking of the stack size for variable-offset
reads. This second fix is bundled in the same commit as the first one
because they're inter-related. Before this patch, writes to the stack
using registers containing a variable offset (as opposed to registers
with fixed, known values) were not properly contributing to the
function's needed stack size. As a result, it was possible for a program
to verify, but then to attempt to read out-of-bounds data at runtime
because a too small stack had been allocated for it.

Each function tracks the size of the stack it needs in
bpf_subprog_info.stack_depth, which is maintained by
update_stack_depth(). For regular memory accesses, check_mem_access()
was calling update_state_depth() but it was passing in only the fixed
part of the offset register, ignoring the variable offset. This was
incorrect; the minimum possible value of that register should be used
instead.

This tracking is now fixed by centralizing the tracking of stack size in
grow_stack_state(), and by lifting the calls to grow_stack_state() to
check_stack_access_within_bounds() as suggested by Andrii. The code is
now simpler and more convincingly tracks the correct maximum stack size.
check_stack_range_initialized() can now rely on enough stack having been
allocated for the access; this helps with the fix for the first issue.

A few tests were changed to also check the stack depth computation. The
one that fails without this patch is verifier_var_off:stack_write_priv_vs_unpriv.

Fixes: 01f810ace9ed3 ("bpf: Allow variable-offset stack access")
Reported-by: Hao Sun <sunhao.th@gmail.com>
Signed-off-by: Andrei Matei <andreimatei1@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231208032519.260451-3-andreimatei1@gmail.com

Closes: https://lore.kernel.org/bpf/CABWLsev9g8UP_c3a=1qbuZUi20tGoUXoU07FPf-5FLvhOKOY+Q@mail.gmail.com/


# 1d38a9ee 06-Dec-2023 Andrei Matei <andreimatei1@gmail.com>

bpf: Guard stack limits against 32bit overflow

This patch promotes the arithmetic around checking stack bounds to be
done in the 64-bit domain, instead of the current 32bit. The arithmetic
implies adding together a 64-bit register with a int offset. The
register was checked to be below 1<<29 when it was variable, but not
when it was fixed. The offset either comes from an instruction (in which
case it is 16 bit), from another register (in which case the caller
checked it to be below 1<<29 [1]), or from the size of an argument to a
kfunc (in which case it can be a u32 [2]). Between the register being
inconsistently checked to be below 1<<29, and the offset being up to an
u32, it appears that we were open to overflowing the `int`s which were
currently used for arithmetic.

[1] https://github.com/torvalds/linux/blob/815fb87b753055df2d9e50f6cd80eb10235fe3e9/kernel/bpf/verifier.c#L7494-L7498
[2] https://github.com/torvalds/linux/blob/815fb87b753055df2d9e50f6cd80eb10235fe3e9/kernel/bpf/verifier.c#L11904

Reported-by: Andrii Nakryiko <andrii.nakryiko@gmail.com>
Signed-off-by: Andrei Matei <andreimatei1@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231207041150.229139-4-andreimatei1@gmail.com


# a833a17a 06-Dec-2023 Andrei Matei <andreimatei1@gmail.com>

bpf: Fix verification of indirect var-off stack access

This patch fixes a bug around the verification of possibly-zero-sized
stack accesses. When the access was done through a var-offset stack
pointer, check_stack_access_within_bounds was incorrectly computing the
maximum-offset of a zero-sized read to be the same as the register's min
offset. Instead, we have to take in account the register's maximum
possible value. The patch also simplifies how the max offset is checked;
the check is now simpler than for min offset.

The bug was allowing accesses to erroneously pass the
check_stack_access_within_bounds() checks, only to later crash in
check_stack_range_initialized() when all the possibly-affected stack
slots are iterated (this time with a correct max offset).
check_stack_range_initialized() is relying on
check_stack_access_within_bounds() for its accesses to the
stack-tracking vector to be within bounds; in the case of zero-sized
accesses, we were essentially only verifying that the lowest possible
slot was within bounds. We would crash when the max-offset of the stack
pointer was >= 0 (which shouldn't pass verification, and hopefully is
not something anyone's code attempts to do in practice).

Thanks Hao for reporting!

Fixes: 01f810ace9ed3 ("bpf: Allow variable-offset stack access")
Reported-by: Hao Sun <sunhao.th@gmail.com>
Signed-off-by: Andrei Matei <andreimatei1@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231207041150.229139-2-andreimatei1@gmail.com

Closes: https://lore.kernel.org/bpf/CACkBjsZGEUaRCHsmaX=h-efVogsRfK1FPxmkgb0Os_frnHiNdw@mail.gmail.com/


# 8062fb12 30-Nov-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: consistently use BPF token throughout BPF verifier logic

Remove remaining direct queries to perfmon_capable() and bpf_capable()
in BPF verifier logic and instead use BPF token (if available) to make
decisions about privileges.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231130185229.2688956-9-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 18a433b6 05-Dec-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: track aligned STACK_ZERO cases as imprecise spilled registers

Now that precision backtracing is supporting register spill/fill to/from
stack, there is another oportunity to be exploited here: minimizing
precise STACK_ZERO cases. With a simple code change we can rely on
initially imprecise register spill tracking for cases when register
spilled to stack was a known zero.

This is a very common case for initializing on the stack variables,
including rather large structures. Often times zero has no special
meaning for the subsequent BPF program logic and is often overwritten
with non-zero values soon afterwards. But due to STACK_ZERO vs
STACK_MISC tracking, such initial zero initialization actually causes
duplication of verifier states as STACK_ZERO is clearly different than
STACK_MISC or spilled SCALAR_VALUE register.

The effect of this (now) trivial change is huge, as can be seen below.
These are differences between BPF selftests, Cilium, and Meta-internal
BPF object files relative to previous patch in this series. You can see
improvements ranging from single-digit percentage improvement for
instructions and states, all the way to 50-60% reduction for some of
Meta-internal host agent programs, and even some Cilium programs.

For Meta-internal ones I left only the differences for largest BPF
object files by states/instructions, as there were too many differences
in the overall output. All the differences were improvements, reducting
number of states and thus instructions validated.

Note, Meta-internal BPF object file names are not printed below.
Many copies of balancer_ingress are actually many different
configurations of Katran, so they are different BPF programs, which
explains state reduction going from -16% all the way to 31%, depending
on BPF program logic complexity.

I also tooked a closer look at a few small-ish BPF programs to validate
the behavior. Let's take bpf_iter_netrlink.bpf.o (first row below).
While it's just 8 vs 5 states, verifier log is still pretty long to
include it here. But the reduction in states is due to the following
piece of C code:

unsigned long ino;

...

sk = s->sk_socket;
if (!sk) {
ino = 0;
} else {
inode = SOCK_INODE(sk);
bpf_probe_read_kernel(&ino, sizeof(ino), &inode->i_ino);
}
BPF_SEQ_PRINTF(seq, "%-8u %-8lu\n", s->sk_drops.counter, ino);
return 0;

You can see that in some situations `ino` is zero-initialized, while in
others it's unknown value filled out by bpf_probe_read_kernel(). Before
this change code after if/else branches have to be validated twice. Once
with (precise) ino == 0, due to eager STACK_ZERO logic, and then again
for when ino is just STACK_MISC. But BPF_SEQ_PRINTF() doesn't care about
precise value of ino, so with the change in this patch verifier is able
to prune states from after one of the branches, reducing number of total
states (and instructions) required for successful validation.

Similar principle applies to bigger real-world applications, just at
a much larger scale.

SELFTESTS
=========
File Program Insns (A) Insns (B) Insns (DIFF) States (A) States (B) States (DIFF)
--------------------------------------- ----------------------- --------- --------- --------------- ---------- ---------- -------------
bpf_iter_netlink.bpf.linked3.o dump_netlink 148 104 -44 (-29.73%) 8 5 -3 (-37.50%)
bpf_iter_unix.bpf.linked3.o dump_unix 8474 8404 -70 (-0.83%) 151 147 -4 (-2.65%)
bpf_loop.bpf.linked3.o stack_check 560 324 -236 (-42.14%) 42 24 -18 (-42.86%)
local_storage_bench.bpf.linked3.o get_local 120 77 -43 (-35.83%) 9 6 -3 (-33.33%)
loop6.bpf.linked3.o trace_virtqueue_add_sgs 10167 9868 -299 (-2.94%) 226 206 -20 (-8.85%)
pyperf600_bpf_loop.bpf.linked3.o on_event 4872 3423 -1449 (-29.74%) 322 229 -93 (-28.88%)
strobemeta.bpf.linked3.o on_event 180697 176036 -4661 (-2.58%) 4780 4734 -46 (-0.96%)
test_cls_redirect.bpf.linked3.o cls_redirect 65594 65401 -193 (-0.29%) 4230 4212 -18 (-0.43%)
test_global_func_args.bpf.linked3.o test_cls 145 136 -9 (-6.21%) 10 9 -1 (-10.00%)
test_l4lb.bpf.linked3.o balancer_ingress 4760 2612 -2148 (-45.13%) 113 102 -11 (-9.73%)
test_l4lb_noinline.bpf.linked3.o balancer_ingress 4845 4877 +32 (+0.66%) 219 221 +2 (+0.91%)
test_l4lb_noinline_dynptr.bpf.linked3.o balancer_ingress 2072 2087 +15 (+0.72%) 97 98 +1 (+1.03%)
test_seg6_loop.bpf.linked3.o __add_egr_x 12440 9975 -2465 (-19.82%) 364 353 -11 (-3.02%)
test_tcp_hdr_options.bpf.linked3.o estab 2558 2572 +14 (+0.55%) 179 180 +1 (+0.56%)
test_xdp_dynptr.bpf.linked3.o _xdp_tx_iptunnel 645 596 -49 (-7.60%) 26 24 -2 (-7.69%)
test_xdp_noinline.bpf.linked3.o balancer_ingress_v6 3520 3516 -4 (-0.11%) 216 216 +0 (+0.00%)
xdp_synproxy_kern.bpf.linked3.o syncookie_tc 82661 81241 -1420 (-1.72%) 5073 5155 +82 (+1.62%)
xdp_synproxy_kern.bpf.linked3.o syncookie_xdp 84964 82297 -2667 (-3.14%) 5130 5157 +27 (+0.53%)

META-INTERNAL
=============
Program Insns (A) Insns (B) Insns (DIFF) States (A) States (B) States (DIFF)
-------------------------------------- --------- --------- ----------------- ---------- ---------- ---------------
balancer_ingress 27925 23608 -4317 (-15.46%) 1488 1482 -6 (-0.40%)
balancer_ingress 31824 27546 -4278 (-13.44%) 1658 1652 -6 (-0.36%)
balancer_ingress 32213 27935 -4278 (-13.28%) 1689 1683 -6 (-0.36%)
balancer_ingress 32213 27935 -4278 (-13.28%) 1689 1683 -6 (-0.36%)
balancer_ingress 31824 27546 -4278 (-13.44%) 1658 1652 -6 (-0.36%)
balancer_ingress 38647 29562 -9085 (-23.51%) 2069 1835 -234 (-11.31%)
balancer_ingress 38647 29562 -9085 (-23.51%) 2069 1835 -234 (-11.31%)
balancer_ingress 40339 30792 -9547 (-23.67%) 2193 1934 -259 (-11.81%)
balancer_ingress 37321 29055 -8266 (-22.15%) 1972 1795 -177 (-8.98%)
balancer_ingress 38176 29753 -8423 (-22.06%) 2008 1831 -177 (-8.81%)
balancer_ingress 29193 20910 -8283 (-28.37%) 1599 1422 -177 (-11.07%)
balancer_ingress 30013 21452 -8561 (-28.52%) 1645 1447 -198 (-12.04%)
balancer_ingress 28691 24290 -4401 (-15.34%) 1545 1531 -14 (-0.91%)
balancer_ingress 34223 28965 -5258 (-15.36%) 1984 1875 -109 (-5.49%)
balancer_ingress 35481 26158 -9323 (-26.28%) 2095 1806 -289 (-13.79%)
balancer_ingress 35481 26158 -9323 (-26.28%) 2095 1806 -289 (-13.79%)
balancer_ingress 35868 26455 -9413 (-26.24%) 2140 1827 -313 (-14.63%)
balancer_ingress 35868 26455 -9413 (-26.24%) 2140 1827 -313 (-14.63%)
balancer_ingress 35481 26158 -9323 (-26.28%) 2095 1806 -289 (-13.79%)
balancer_ingress 35481 26158 -9323 (-26.28%) 2095 1806 -289 (-13.79%)
balancer_ingress 34844 29485 -5359 (-15.38%) 2036 1918 -118 (-5.80%)
fbflow_egress 3256 2652 -604 (-18.55%) 218 192 -26 (-11.93%)
fbflow_ingress 1026 944 -82 (-7.99%) 70 63 -7 (-10.00%)
sslwall_tc_egress 8424 7360 -1064 (-12.63%) 498 458 -40 (-8.03%)
syar_accept_protect 15040 9539 -5501 (-36.58%) 364 220 -144 (-39.56%)
syar_connect_tcp_v6 15036 9535 -5501 (-36.59%) 360 216 -144 (-40.00%)
syar_connect_udp_v4 15039 9538 -5501 (-36.58%) 361 217 -144 (-39.89%)
syar_connect_connect4_protect4 24805 15833 -8972 (-36.17%) 756 480 -276 (-36.51%)
syar_lsm_file_open 167772 151813 -15959 (-9.51%) 1836 1667 -169 (-9.20%)
syar_namespace_create_new 14805 9304 -5501 (-37.16%) 353 209 -144 (-40.79%)
syar_python3_detect 17531 12030 -5501 (-31.38%) 391 247 -144 (-36.83%)
syar_ssh_post_fork 16412 10911 -5501 (-33.52%) 405 261 -144 (-35.56%)
syar_enter_execve 14728 9227 -5501 (-37.35%) 345 201 -144 (-41.74%)
syar_enter_execveat 14728 9227 -5501 (-37.35%) 345 201 -144 (-41.74%)
syar_exit_execve 16622 11121 -5501 (-33.09%) 376 232 -144 (-38.30%)
syar_exit_execveat 16622 11121 -5501 (-33.09%) 376 232 -144 (-38.30%)
syar_syscalls_kill 15288 9787 -5501 (-35.98%) 398 254 -144 (-36.18%)
syar_task_enter_pivot_root 14898 9397 -5501 (-36.92%) 357 213 -144 (-40.34%)
syar_syscalls_setreuid 16678 11177 -5501 (-32.98%) 429 285 -144 (-33.57%)
syar_syscalls_setuid 16678 11177 -5501 (-32.98%) 429 285 -144 (-33.57%)
syar_syscalls_process_vm_readv 14959 9458 -5501 (-36.77%) 364 220 -144 (-39.56%)
syar_syscalls_process_vm_writev 15757 10256 -5501 (-34.91%) 390 246 -144 (-36.92%)
do_uprobe 15519 10018 -5501 (-35.45%) 373 229 -144 (-38.61%)
edgewall 179715 55783 -123932 (-68.96%) 12607 3999 -8608 (-68.28%)
bictcp_state 7570 4131 -3439 (-45.43%) 496 269 -227 (-45.77%)
cubictcp_state 7570 4131 -3439 (-45.43%) 496 269 -227 (-45.77%)
tcp_rate_skb_delivered 447 272 -175 (-39.15%) 29 18 -11 (-37.93%)
kprobe__bbr_set_state 4566 2615 -1951 (-42.73%) 209 124 -85 (-40.67%)
kprobe__bictcp_state 4566 2615 -1951 (-42.73%) 209 124 -85 (-40.67%)
inet_sock_set_state 1501 1337 -164 (-10.93%) 93 85 -8 (-8.60%)
tcp_retransmit_skb 1145 981 -164 (-14.32%) 67 59 -8 (-11.94%)
tcp_retransmit_synack 1183 951 -232 (-19.61%) 67 55 -12 (-17.91%)
bpf_tcptuner 1459 1187 -272 (-18.64%) 99 80 -19 (-19.19%)
tw_egress 801 776 -25 (-3.12%) 69 66 -3 (-4.35%)
tw_ingress 795 770 -25 (-3.14%) 69 66 -3 (-4.35%)
ttls_tc_ingress 19025 19383 +358 (+1.88%) 470 465 -5 (-1.06%)
ttls_nat_egress 490 299 -191 (-38.98%) 33 20 -13 (-39.39%)
ttls_nat_ingress 448 285 -163 (-36.38%) 32 21 -11 (-34.38%)
tw_twfw_egress 511127 212071 -299056 (-58.51%) 16733 8504 -8229 (-49.18%)
tw_twfw_ingress 500095 212069 -288026 (-57.59%) 16223 8504 -7719 (-47.58%)
tw_twfw_tc_eg 511113 212064 -299049 (-58.51%) 16732 8504 -8228 (-49.18%)
tw_twfw_tc_in 500095 212069 -288026 (-57.59%) 16223 8504 -7719 (-47.58%)
tw_twfw_egress 12632 12435 -197 (-1.56%) 276 260 -16 (-5.80%)
tw_twfw_ingress 12631 12454 -177 (-1.40%) 278 261 -17 (-6.12%)
tw_twfw_tc_eg 12595 12435 -160 (-1.27%) 274 259 -15 (-5.47%)
tw_twfw_tc_in 12631 12454 -177 (-1.40%) 278 261 -17 (-6.12%)
tw_xdp_dump 266 209 -57 (-21.43%) 9 8 -1 (-11.11%)

CILIUM
=========
File Program Insns (A) Insns (B) Insns (DIFF) States (A) States (B) States (DIFF)
------------- -------------------------------- --------- --------- ---------------- ---------- ---------- --------------
bpf_host.o cil_to_netdev 6047 4578 -1469 (-24.29%) 362 249 -113 (-31.22%)
bpf_host.o handle_lxc_traffic 2227 1585 -642 (-28.83%) 156 103 -53 (-33.97%)
bpf_host.o tail_handle_ipv4_from_netdev 2244 1458 -786 (-35.03%) 163 106 -57 (-34.97%)
bpf_host.o tail_handle_nat_fwd_ipv4 21022 10479 -10543 (-50.15%) 1289 670 -619 (-48.02%)
bpf_host.o tail_handle_nat_fwd_ipv6 15433 11375 -4058 (-26.29%) 905 643 -262 (-28.95%)
bpf_host.o tail_ipv4_host_policy_ingress 2219 1367 -852 (-38.40%) 161 96 -65 (-40.37%)
bpf_host.o tail_nodeport_nat_egress_ipv4 22460 19862 -2598 (-11.57%) 1469 1293 -176 (-11.98%)
bpf_host.o tail_nodeport_nat_ingress_ipv4 5526 3534 -1992 (-36.05%) 366 243 -123 (-33.61%)
bpf_host.o tail_nodeport_nat_ingress_ipv6 5132 4256 -876 (-17.07%) 241 219 -22 (-9.13%)
bpf_host.o tail_nodeport_nat_ipv6_egress 3702 3542 -160 (-4.32%) 215 205 -10 (-4.65%)
bpf_lxc.o tail_handle_nat_fwd_ipv4 21022 10479 -10543 (-50.15%) 1289 670 -619 (-48.02%)
bpf_lxc.o tail_handle_nat_fwd_ipv6 15433 11375 -4058 (-26.29%) 905 643 -262 (-28.95%)
bpf_lxc.o tail_ipv4_ct_egress 5073 3374 -1699 (-33.49%) 262 172 -90 (-34.35%)
bpf_lxc.o tail_ipv4_ct_ingress 5093 3385 -1708 (-33.54%) 262 172 -90 (-34.35%)
bpf_lxc.o tail_ipv4_ct_ingress_policy_only 5093 3385 -1708 (-33.54%) 262 172 -90 (-34.35%)
bpf_lxc.o tail_ipv6_ct_egress 4593 3878 -715 (-15.57%) 194 151 -43 (-22.16%)
bpf_lxc.o tail_ipv6_ct_ingress 4606 3891 -715 (-15.52%) 194 151 -43 (-22.16%)
bpf_lxc.o tail_ipv6_ct_ingress_policy_only 4606 3891 -715 (-15.52%) 194 151 -43 (-22.16%)
bpf_lxc.o tail_nodeport_nat_ingress_ipv4 5526 3534 -1992 (-36.05%) 366 243 -123 (-33.61%)
bpf_lxc.o tail_nodeport_nat_ingress_ipv6 5132 4256 -876 (-17.07%) 241 219 -22 (-9.13%)
bpf_overlay.o tail_handle_nat_fwd_ipv4 20524 10114 -10410 (-50.72%) 1271 638 -633 (-49.80%)
bpf_overlay.o tail_nodeport_nat_egress_ipv4 22718 19490 -3228 (-14.21%) 1475 1275 -200 (-13.56%)
bpf_overlay.o tail_nodeport_nat_ingress_ipv4 5526 3534 -1992 (-36.05%) 366 243 -123 (-33.61%)
bpf_overlay.o tail_nodeport_nat_ingress_ipv6 5132 4256 -876 (-17.07%) 241 219 -22 (-9.13%)
bpf_overlay.o tail_nodeport_nat_ipv6_egress 3638 3548 -90 (-2.47%) 209 203 -6 (-2.87%)
bpf_overlay.o tail_rev_nodeport_lb4 4368 3820 -548 (-12.55%) 248 215 -33 (-13.31%)
bpf_overlay.o tail_rev_nodeport_lb6 2867 2428 -439 (-15.31%) 167 140 -27 (-16.17%)
bpf_sock.o cil_sock6_connect 1718 1703 -15 (-0.87%) 100 99 -1 (-1.00%)
bpf_xdp.o tail_handle_nat_fwd_ipv4 12917 12443 -474 (-3.67%) 875 849 -26 (-2.97%)
bpf_xdp.o tail_handle_nat_fwd_ipv6 13515 13264 -251 (-1.86%) 715 702 -13 (-1.82%)
bpf_xdp.o tail_lb_ipv4 39492 36367 -3125 (-7.91%) 2430 2251 -179 (-7.37%)
bpf_xdp.o tail_lb_ipv6 80441 78058 -2383 (-2.96%) 3647 3523 -124 (-3.40%)
bpf_xdp.o tail_nodeport_ipv6_dsr 1038 901 -137 (-13.20%) 61 55 -6 (-9.84%)
bpf_xdp.o tail_nodeport_nat_egress_ipv4 13027 12096 -931 (-7.15%) 868 809 -59 (-6.80%)
bpf_xdp.o tail_nodeport_nat_ingress_ipv4 7617 5900 -1717 (-22.54%) 522 413 -109 (-20.88%)
bpf_xdp.o tail_nodeport_nat_ingress_ipv6 7575 7395 -180 (-2.38%) 383 374 -9 (-2.35%)
bpf_xdp.o tail_rev_nodeport_lb4 6808 6739 -69 (-1.01%) 403 396 -7 (-1.74%)
bpf_xdp.o tail_rev_nodeport_lb6 16173 15847 -326 (-2.02%) 1010 990 -20 (-1.98%)

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231205184248.1502704-9-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# e322f0bc 05-Dec-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: preserve constant zero when doing partial register restore

Similar to special handling of STACK_ZERO, when reading 1/2/4 bytes from
stack from slot that has register spilled into it and that register has
a constant value zero, preserve that zero and mark spilled register as
precise for that. This makes spilled const zero register and STACK_ZERO
cases equivalent in their behavior.

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231205184248.1502704-7-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# eaf18feb 05-Dec-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: preserve STACK_ZERO slots on partial reg spills

Instead of always forcing STACK_ZERO slots to STACK_MISC, preserve it in
situations where this is possible. E.g., when spilling register as
1/2/4-byte subslots on the stack, all the remaining bytes in the stack
slot do not automatically become unknown. If we knew they contained
zeroes, we can preserve those STACK_ZERO markers.

Add a helper mark_stack_slot_misc(), similar to scrub_spilled_slot(),
but that doesn't overwrite either STACK_INVALID nor STACK_ZERO. Note
that we need to take into account possibility of being in unprivileged
mode, in which case STACK_INVALID is forced to STACK_MISC for correctness,
as treating STACK_INVALID as equivalent STACK_MISC is only enabled in
privileged mode.

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231205184248.1502704-5-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# ab125ed3 05-Dec-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: fix check for attempt to corrupt spilled pointer

When register is spilled onto a stack as a 1/2/4-byte register, we set
slot_type[BPF_REG_SIZE - 1] (plus potentially few more below it,
depending on actual spill size). So to check if some stack slot has
spilled register we need to consult slot_type[7], not slot_type[0].

To avoid the need to remember and double-check this in the future, just
use is_spilled_reg() helper.

Fixes: 27113c59b6d0 ("bpf: Check the other end of slot_type for STACK_SPILL")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231205184248.1502704-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 41f6f64e 05-Dec-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: support non-r10 register spill/fill to/from stack in precision tracking

Use instruction (jump) history to record instructions that performed
register spill/fill to/from stack, regardless if this was done through
read-only r10 register, or any other register after copying r10 into it
*and* potentially adjusting offset.

To make this work reliably, we push extra per-instruction flags into
instruction history, encoding stack slot index (spi) and stack frame
number in extra 10 bit flags we take away from prev_idx in instruction
history. We don't touch idx field for maximum performance, as it's
checked most frequently during backtracking.

This change removes basically the last remaining practical limitation of
precision backtracking logic in BPF verifier. It fixes known
deficiencies, but also opens up new opportunities to reduce number of
verified states, explored in the subsequent patches.

There are only three differences in selftests' BPF object files
according to veristat, all in the positive direction (less states).

File Program Insns (A) Insns (B) Insns (DIFF) States (A) States (B) States (DIFF)
-------------------------------------- ------------- --------- --------- ------------- ---------- ---------- -------------
test_cls_redirect_dynptr.bpf.linked3.o cls_redirect 2987 2864 -123 (-4.12%) 240 231 -9 (-3.75%)
xdp_synproxy_kern.bpf.linked3.o syncookie_tc 82848 82661 -187 (-0.23%) 5107 5073 -34 (-0.67%)
xdp_synproxy_kern.bpf.linked3.o syncookie_xdp 85116 84964 -152 (-0.18%) 5162 5130 -32 (-0.62%)

Note, I avoided renaming jmp_history to more generic insn_hist to
minimize number of lines changed and potential merge conflicts between
bpf and bpf-next trees.

Notice also cur_hist_entry pointer reset to NULL at the beginning of
instruction verification loop. This pointer avoids the problem of
relying on last jump history entry's insn_idx to determine whether we
already have entry for current instruction or not. It can happen that we
added jump history entry because current instruction is_jmp_point(), but
also we need to add instruction flags for stack access. In this case, we
don't want to entries, so we need to reuse last added entry, if it is
present.

Relying on insn_idx comparison has the same ambiguity problem as the one
that was fixed recently in [0], so we avoid that.

[0] https://patchwork.kernel.org/project/netdevbpf/patch/20231110002638.4168352-3-andrii@kernel.org/

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Reported-by: Tao Lyu <tao.lyu@epfl.ch>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231205184248.1502704-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# af66bfd3 04-Dec-2023 Hou Tao <houtao1@huawei.com>

bpf: Optimize the free of inner map

When removing the inner map from the outer map, the inner map will be
freed after one RCU grace period and one RCU tasks trace grace
period, so it is certain that the bpf program, which may access the
inner map, has exited before the inner map is freed.

However there is no need to wait for one RCU tasks trace grace period if
the outer map is only accessed by non-sleepable program. So adding
sleepable_refcnt in bpf_map and increasing sleepable_refcnt when adding
the outer map into env->used_maps for sleepable program. Although the
max number of bpf program is INT_MAX - 1, the number of bpf programs
which are being loaded may be greater than INT_MAX, so using atomic64_t
instead of atomic_t for sleepable_refcnt. When removing the inner map
from the outer map, using sleepable_refcnt to decide whether or not a
RCU tasks trace grace period is needed before freeing the inner map.

Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231204140425.1480317-6-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 5bd90cdc 03-Dec-2023 Andrei Matei <andreimatei1@gmail.com>

bpf: Minor logging improvement

One place where we were logging a register was only logging the variable
part, not also the fixed part.

Signed-off-by: Andrei Matei <andreimatei1@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20231204011248.2040084-1-andreimatei1@gmail.com


# eabe518d 02-Dec-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: enforce precision of R0 on program/async callback return

Given we enforce a valid range for program and async callback return
value, we must mark R0 as precise to avoid incorrect state pruning.

Fixes: b5dc0163d8fd ("bpf: precise scalar_value tracking")
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231202175705.885270-9-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 0ef24c8d 02-Dec-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: unify async callback and program retval checks

Use common logic to verify program return values and async callback
return values. This allows to avoid duplication of any extra steps
necessary, like precision marking, which will be added in the next
patch.

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231202175705.885270-8-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# c871d0e0 02-Dec-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: enforce precise retval range on program exit

Similarly to subprog/callback logic, enforce return value of BPF program
using more precise smin/smax range.

We need to adjust a bunch of tests due to a changed format of an error
message.

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231202175705.885270-7-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 8fa4ecd4 02-Dec-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: enforce exact retval range on subprog/callback exit

Instead of relying on potentially imprecise tnum representation of
expected return value range for callbacks and subprogs, validate that
smin/smax range satisfy exact expected range of return values.

E.g., if callback would need to return [0, 2] range, tnum can't
represent this precisely and instead will allow [0, 3] range. By
checking smin/smax range, we can make sure that subprog/callback indeed
returns only valid [0, 2] range.

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231202175705.885270-5-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 0acd03a5 02-Dec-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: enforce precision of R0 on callback return

Given verifier checks actual value, r0 has to be precise, so we need to
propagate precision properly. r0 also has to be marked as read,
otherwise subsequent state comparisons will ignore such register as
unimportant and precision won't really help here.

Fixes: 69c087ba6225 ("bpf: Add bpf_for_each_map_elem() helper")
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231202175705.885270-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 5fad52be 02-Dec-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: provide correct register name for exception callback retval check

bpf_throw() is checking R1, so let's report R1 in the log.

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231202175705.885270-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 2afae08c 23-Nov-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: Validate global subprogs lazily

Slightly change BPF verifier logic around eagerness and order of global
subprog validation. Instead of going over every global subprog eagerly
and validating it before main (entry) BPF program is verified, turn it
around. Validate main program first, mark subprogs that were called from
main program for later verification, but otherwise assume it is valid.
Afterwards, go over marked global subprogs and validate those,
potentially marking some more global functions as being called. Continue
this process until all (transitively) callable global subprogs are
validated. It's a BFS traversal at its heart and will always converge.

This is an important change because it allows to feature-gate some
subprograms that might not be verifiable on some older kernel, depending
on supported set of features.

E.g., at some point, global functions were allowed to accept a pointer
to memory, which size is identified by user-provided type.
Unfortunately, older kernels don't support this feature. With BPF CO-RE
approach, the natural way would be to still compile BPF object file once
and guard calls to this global subprog with some CO-RE check or using
.rodata variables. That's what people do to guard usage of new helpers
or kfuncs, and any other new BPF-side feature that might be missing on
old kernels.

That's currently impossible to do with global subprogs, unfortunately,
because they are eagerly and unconditionally validated. This patch set
aims to change this, so that in the future when global funcs gain new
features, those can be guarded using BPF CO-RE techniques in the same
fashion as any other new kernel feature.

Two selftests had to be adjusted in sync with these changes.

test_global_func12 relied on eager global subprog validation failing
before main program failure is detected (unknown return value). Fix by
making sure that main program is always valid.

verifier_subprog_precision's parent_stack_slot_precise subtest relied on
verifier checkpointing heuristic to do a checkpoint at instruction #5,
but that's no longer true because we don't have enough jumps validated
before reaching insn #5 due to global subprogs being validated later.

Other than that, no changes, as one would expect.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20231124035937.403208-3-andrii@kernel.org


# 491dd8ed 23-Nov-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: Emit global subprog name in verifier logs

We have the name, instead of emitting just func#N to identify global
subprog, augment verifier log messages with actual function name to make
it more user-friendly.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20231124035937.403208-2-andrii@kernel.org


# 42feb662 17-Nov-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: move verifier state printing code to kernel/bpf/log.c

Move a good chunk of code from verifier.c to log.c: verifier state
verbose printing logic. This is an important and very much
logging/debugging oriented code. It fits the overlall log.c's focus on
verifier logging, and moving it allows to keep growing it without
unnecessarily adding to verifier.c code that otherwise contains a core
verification logic.

There are not many shared dependencies between this code and the rest of
verifier.c code, except a few single-line helpers for various register
type checks and a bit of state "scratching" helpers. We move all such
trivial helpers into include/bpf/bpf_verifier.h as static inlines.

No functional changes in this patch.

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231118034623.3320920-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# db840d38 17-Nov-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: move verbose_linfo() into kernel/bpf/log.c

verifier.c is huge. Let's try to move out parts that are logging-related
into log.c, as we previously did with bpf_log() and other related stuff.
This patch moves line info verbose output routines: it's pretty
self-contained and isolated code, so there is no problem with this.

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231118034623.3320920-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# ff8867af 17-Nov-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: rename BPF_F_TEST_SANITY_STRICT to BPF_F_TEST_REG_INVARIANTS

Rename verifier internal flag BPF_F_TEST_SANITY_STRICT to more neutral
BPF_F_TEST_REG_INVARIANTS. This is a follow up to [0].

A few selftests and veristat need to be adjusted in the same patch as
well.

[0] https://patchwork.kernel.org/project/netdevbpf/patch/20231112010609.848406-5-andrii@kernel.org/

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231117171404.225508-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# cf5fe3c7 11-Nov-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: make __reg{32,64}_deduce_bounds logic more robust

This change doesn't seem to have any effect on selftests and production
BPF object files, but we preemptively try to make it more robust.

First, "learn sign from signed bounds" comment is misleading, as we are
learning not just sign, but also values.

Second, we simplify the check for determining whether entire range is
positive or negative similarly to other checks added earlier, using
appropriate u32/u64 cast and single comparisons. As explain in comments
in __reg64_deduce_bounds(), the checks are equivalent.

Last but not least, smin/smax and s32_min/s32_max reassignment based on
min/max of both umin/umax and smin/smax (and 32-bit equivalents) is hard
to explain and justify. We are updating unsigned bounds from signed
bounds, why would we update signed bounds at the same time? This might
be correct, but it's far from obvious why and the code or comments don't
try to justify this. Given we've added a separate deduction of signed
bounds from unsigned bounds earlier, this seems at least redundant, if
not just wrong.

In short, we remove doubtful pieces, and streamline the rest to follow
the logic and approach of the rest of reg_bounds_sync() checks.

Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231112010609.848406-7-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 3cf98cf5 11-Nov-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: remove redundant s{32,64} -> u{32,64} deduction logic

Equivalent checks were recently added in more succinct and, arguably,
safer form in:
- f188765f23a5 ("bpf: derive smin32/smax32 from umin32/umax32 bounds");
- 2e74aef782d3 ("bpf: derive smin/smax from umin/max bounds").

The checks we are removing in this patch set do similar checks to detect
if entire u32/u64 range has signed bit set or not set, but does it with
two separate checks.

Further, we forcefully overwrite either smin or smax (and 32-bit equvalents)
without applying normal min/max intersection logic. It's not clear why
that would be correct in all cases and seems to work by accident. This
logic is also "gated" by previous signed -> unsigned derivation, which
returns early.

All this is quite confusing and seems error-prone, while we already have
at least equivalent checks happening earlier. So remove this duplicate
and error-prone logic to simplify things a bit.

Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231112010609.848406-6-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 5f99f312 11-Nov-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: add register bounds sanity checks and sanitization

Add simple sanity checks that validate well-formed ranges (min <= max)
across u64, s64, u32, and s32 ranges. Also for cases when the value is
constant (either 64-bit or 32-bit), we validate that ranges and tnums
are in agreement.

These bounds checks are performed at the end of BPF_ALU/BPF_ALU64
operations, on conditional jumps, and for LDX instructions (where subreg
zero/sign extension is probably the most important to check). This
covers most of the interesting cases.

Also, we validate the sanity of the return register when manually
adjusting it for some special helpers.

By default, sanity violation will trigger a warning in verifier log and
resetting register bounds to "unbounded" ones. But to aid development
and debugging, BPF_F_TEST_SANITY_STRICT flag is added, which will
trigger hard failure of verification with -EFAULT on register bounds
violations. This allows selftests to catch such issues. veristat will
also gain a CLI option to enable this behavior.

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Link: https://lore.kernel.org/r/20231112010609.848406-5-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# be41a203 11-Nov-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: enhance BPF_JEQ/BPF_JNE is_branch_taken logic

Use 32-bit subranges to prune some 64-bit BPF_JEQ/BPF_JNE conditions
that otherwise would be "inconclusive" (i.e., is_branch_taken() would
return -1). This can happen, for example, when registers are initialized
as 64-bit u64/s64, then compared for inequality as 32-bit subregisters,
and then followed by 64-bit equality/inequality check. That 32-bit
inequality can establish some pattern for lower 32 bits of a register
(e.g., s< 0 condition determines whether the bit #31 is zero or not),
while overall 64-bit value could be anything (according to a value range
representation).

This is not a fancy quirky special case, but actually a handling that's
necessary to prevent correctness issue with BPF verifier's range
tracking: set_range_min_max() assumes that register ranges are
non-overlapping, and if that condition is not guaranteed by
is_branch_taken() we can end up with invalid ranges, where min > max.

[0] https://lore.kernel.org/bpf/CACkBjsY2q1_fUohD7hRmKGqv1MV=eP2f6XK8kjkYNw7BaiF8iQ@mail.gmail.com/

Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231112010609.848406-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 96381879 11-Nov-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: generalize is_scalar_branch_taken() logic

Generalize is_branch_taken logic for SCALAR_VALUE register to handle
cases when both registers are not constants. Previously supported
<range> vs <scalar> cases are a natural subset of more generic <range>
vs <range> set of cases.

Generalized logic relies on straightforward segment intersection checks.

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Link: https://lore.kernel.org/r/20231112010609.848406-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 67420501 11-Nov-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: generalize reg_set_min_max() to handle non-const register comparisons

Generalize bounds adjustment logic of reg_set_min_max() to handle not
just register vs constant case, but in general any register vs any
register cases. For most of the operations it's trivial extension based
on range vs range comparison logic, we just need to properly pick
min/max of a range to compare against min/max of the other range.

For BPF_JSET we keep the original capabilities, just make sure JSET is
integrated in the common framework. This is manifested in the
internal-only BPF_JSET + BPF_X "opcode" to allow for simpler and more
uniform rev_opcode() handling. See the code for details. This allows to
reuse the same code exactly both for TRUE and FALSE branches without
explicitly handling both conditions with custom code.

Note also that now we don't need a special handling of BPF_JEQ/BPF_JNE
case none of the registers are constants. This is now just a normal
generic case handled by reg_set_min_max().

To make tnum handling cleaner, tnum_with_subreg() helper is added, as
that's a common operator when dealing with 32-bit subregister bounds.
This keeps the overall logic much less noisy when it comes to tnums.

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Link: https://lore.kernel.org/r/20231112010609.848406-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 82ce364c 08-Nov-2023 Shung-Hsi Yu <shung-hsi.yu@suse.com>

bpf: replace register_is_const() with is_reg_const()

The addition of is_reg_const() in commit 171de12646d2 ("bpf: generalize
is_branch_taken to handle all conditional jumps in one place") has made the
register_is_const() redundant. Give the former has more feature, plus the
fact the latter is only used in one place, replace register_is_const() with
is_reg_const(), and remove the definition of register_is_const.

This requires moving the definition of is_reg_const() further up. And since
the comment of reg_const_value() reference is_reg_const(), move it up as
well.

Signed-off-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231108140043.12282-1-shung-hsi.yu@suse.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 1b121715 07-Nov-2023 Dave Marchevsky <davemarchevsky@fb.com>

bpf: Mark direct ld of stashed bpf_{rb,list}_node as non-owning ref

This patch enables the following pattern:

/* mapval contains a __kptr pointing to refcounted local kptr */
mapval = bpf_map_lookup_elem(&map, &idx);
if (!mapval || !mapval->some_kptr) { /* omitted */ }

p = bpf_refcount_acquire(&mapval->some_kptr);

Currently this doesn't work because bpf_refcount_acquire expects an
owning or non-owning ref. The verifier defines non-owning ref as a type:

PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF

while mapval->some_kptr is PTR_TO_BTF_ID | PTR_UNTRUSTED. It's possible
to do the refcount_acquire by first bpf_kptr_xchg'ing mapval->some_kptr
into a temp kptr, refcount_acquiring that, and xchg'ing back into
mapval, but this is unwieldy and shouldn't be necessary.

This patch modifies btf_ld_kptr_type such that user-allocated types are
marked MEM_ALLOC and if those types have a bpf_{rb,list}_node they're
marked NON_OWN_REF as well. Additionally, due to changes to
bpf_obj_drop_impl earlier in this series, rcu_protected_object now
returns true for all user-allocated types, resulting in
mapval->some_kptr being marked MEM_RCU.

After this patch's changes, mapval->some_kptr is now:

PTR_TO_BTF_ID | MEM_ALLOC | NON_OWN_REF | MEM_RCU

which results in it passing the non-owning ref test, and the motivating
example passing verification.

Future work will likely get rid of special non-owning ref lifetime logic
in the verifier, at which point we'll be able to delete the NON_OWN_REF
flag entirely.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20231107085639.3016113-6-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 045edee1 06-Nov-2023 Song Liu <song@kernel.org>

bpf: Introduce KF_ARG_PTR_TO_CONST_STR

Similar to ARG_PTR_TO_CONST_STR for BPF helpers, KF_ARG_PTR_TO_CONST_STR
specifies kfunc args that point to const strings. Annotation "__str" is
used to specify kfunc arg of type KF_ARG_PTR_TO_CONST_STR. Also, add
documentation for the "__str" annotation.

bpf_get_file_xattr() will be the first kfunc that uses this type.

Signed-off-by: Song Liu <song@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Vadim Fedorenko <vadim.fedorenko@linux.dev>
Link: https://lore.kernel.org/bpf/20231107045725.2278852-4-song@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 0b519407 06-Nov-2023 Song Liu <song@kernel.org>

bpf: Factor out helper check_reg_const_str()

ARG_PTR_TO_CONST_STR is used to specify constant string args for BPF
helpers. The logic that verifies a reg is ARG_PTR_TO_CONST_STR is
implemented in check_func_arg().

As we introduce kfuncs with constant string args, it is necessary to
do the same check for kfuncs (in check_kfunc_args). Factor out the logic
for ARG_PTR_TO_CONST_STR to a new check_reg_const_str() so that it can be
reused.

check_func_arg() ensures check_reg_const_str() is only called with reg of
type PTR_TO_MAP_VALUE. Add a redundent type check in check_reg_const_str()
to avoid misuse in the future. Other than this redundent check, there is
no change in behavior.

Signed-off-by: Song Liu <song@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Vadim Fedorenko <vadim.fedorenko@linux.dev>
Link: https://lore.kernel.org/bpf/20231107045725.2278852-3-song@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 4621202a 01-Nov-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: generalize reg_set_min_max() to handle two sets of two registers

Change reg_set_min_max() to take FALSE/TRUE sets of two registers each,
instead of assuming that we are always comparing to a constant. For now
we still assume that right-hand side registers are constants (and make
sure that's the case by swapping src/dst regs, if necessary), but
subsequent patches will remove this limitation.

reg_set_min_max() is now called unconditionally for any register
comparison, so that might include pointer vs pointer. This makes it
consistent with is_branch_taken() generality. But we currently only
support adjustments based on SCALAR vs SCALAR comparisons, so
reg_set_min_max() has to guard itself againts pointers.

Taking two by two registers allows to further unify and simplify
check_cond_jmp_op() logic. We utilize fake register for BPF_K
conditional jump case, just like with is_branch_taken() part.

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231102033759.2541186-18-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 811476e9 01-Nov-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: prepare reg_set_min_max for second set of registers

Similarly to is_branch_taken()-related refactorings, start preparing
reg_set_min_max() to handle more generic case of two non-const
registers. Start with renaming arguments to accommodate later addition
of second register as an input argument.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231102033759.2541186-17-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 4d345887 01-Nov-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: unify 32-bit and 64-bit is_branch_taken logic

Combine 32-bit and 64-bit is_branch_taken logic for SCALAR_VALUE
registers. It makes it easier to see parallels between two domains
(32-bit and 64-bit), and makes subsequent refactoring more
straightforward.

No functional changes.

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231102033759.2541186-16-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# b74c2a84 01-Nov-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: generalize is_branch_taken to handle all conditional jumps in one place

Make is_branch_taken() a single entry point for branch pruning decision
making, handling both pointer vs pointer, pointer vs scalar, and scalar
vs scalar cases in one place. This also nicely cleans up check_cond_jmp_op().

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231102033759.2541186-15-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# c697289e 01-Nov-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: move is_branch_taken() down

Move is_branch_taken() slightly down. In subsequent patched we'll need
both flip_opcode() and is_pkt_ptr_branch_taken() for is_branch_taken(),
but instead of sprinkling forward declarations around, it makes more
sense to move is_branch_taken() lower below is_pkt_ptr_branch_taken(),
and also keep it closer to very tightly related reg_set_min_max(), as
they are two critical parts of the same SCALAR range tracking logic.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231102033759.2541186-14-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# c3153426 01-Nov-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: generalize is_branch_taken() to work with two registers

While still assuming that second register is a constant, generalize
is_branch_taken-related code to accept two registers instead of register
plus explicit constant value. This also, as a side effect, allows to
simplify check_cond_jmp_op() by unifying BPF_K case with BPF_X case, for
which we use a fake register to represent BPF_K's imm constant as
a register.

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Link: https://lore.kernel.org/r/20231102033759.2541186-13-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# c2a3ab09 01-Nov-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: rename is_branch_taken reg arguments to prepare for the second one

Just taking mundane refactoring bits out into a separate patch. No
functional changes.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Link: https://lore.kernel.org/r/20231102033759.2541186-12-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 9e314f5d 01-Nov-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: drop knowledge-losing __reg_combine_{32,64}_into_{64,32} logic

When performing 32-bit conditional operation operating on lower 32 bits
of a full 64-bit register, register full value isn't changed. We just
potentially gain new knowledge about that register's lower 32 bits.

Unfortunately, __reg_combine_{32,64}_into_{64,32} logic that
reg_set_min_max() performs as a last step, can lose information in some
cases due to __mark_reg64_unbounded() and __reg_assign_32_into_64().
That's bad and completely unnecessary. Especially __reg_assign_32_into_64()
looks completely out of place here, because we are not performing
zero-extending subregister assignment during conditional jump.

So this patch replaced __reg_combine_* with just a normal
reg_bounds_sync() which will do a proper job of deriving u64/s64 bounds
from u32/s32, and vice versa (among all other combinations).

__reg_combine_64_into_32() is also used in one more place,
coerce_reg_to_size(), while handling 1- and 2-byte register loads.
Looking into this, it seems like besides marking subregister as
unbounded before performing reg_bounds_sync(), we were also performing
deduction of smin32/smax32 and umin32/umax32 bounds from respective
smin/smax and umin/umax bounds. It's now redundant as reg_bounds_sync()
performs all the same logic more generically (e.g., without unnecessary
assumption that upper 32 bits of full register should be zero).

Long story short, we remove __reg_combine_64_into_32() completely, and
coerce_reg_to_size() now only does resetting subreg to unbounded and then
performing reg_bounds_sync() to recover as much information as possible
from 64-bit umin/umax and smin/smax bounds, set explicitly in
coerce_reg_to_size() earlier.

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Link: https://lore.kernel.org/r/20231102033759.2541186-10-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# d7f00873 01-Nov-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: try harder to deduce register bounds from different numeric domains

There are cases (caught by subsequent reg_bounds tests in selftests/bpf)
where performing one round of __reg_deduce_bounds() doesn't propagate
all the information from, say, s32 to u32 bounds and than from newly
learned u32 bounds back to u64 and s64. So perform __reg_deduce_bounds()
twice to make sure such derivations are propagated fully after
reg_bounds_sync().

One such example is test `(s64)[0xffffffff00000001; 0] (u64)<
0xffffffff00000000` from selftest patch from this patch set. It demonstrates an
intricate dance of u64 -> s64 -> u64 -> u32 bounds adjustments, which requires
two rounds of __reg_deduce_bounds(). Here are corresponding refinement log from
selftest, showing evolution of knowledge.

REFINING (FALSE R1) (u64)SRC=[0xffffffff00000000; U64_MAX] (u64)DST_OLD=[0; U64_MAX] (u64)DST_NEW=[0xffffffff00000000; U64_MAX]
REFINING (FALSE R1) (u64)SRC=[0xffffffff00000000; U64_MAX] (s64)DST_OLD=[0xffffffff00000001; 0] (s64)DST_NEW=[0xffffffff00000001; -1]
REFINING (FALSE R1) (s64)SRC=[0xffffffff00000001; -1] (u64)DST_OLD=[0xffffffff00000000; U64_MAX] (u64)DST_NEW=[0xffffffff00000001; U64_MAX]
REFINING (FALSE R1) (u64)SRC=[0xffffffff00000001; U64_MAX] (u32)DST_OLD=[0; U32_MAX] (u32)DST_NEW=[1; U32_MAX]

R1 initially has smin/smax set to [0xffffffff00000001; -1], while umin/umax is
unknown. After (u64)< comparison, in FALSE branch we gain knowledge that
umin/umax is [0xffffffff00000000; U64_MAX]. That causes smin/smax to learn that
zero can't happen and upper bound is -1. Then smin/smax is adjusted from
umin/umax improving lower bound from 0xffffffff00000000 to 0xffffffff00000001.
And then eventually umin32/umax32 bounds are drived from umin/umax and become
[1; U32_MAX].

Selftest in the last patch is actually implementing a multi-round fixed-point
convergence logic, but so far all the tests are handled by two rounds of
reg_bounds_sync() on the verifier state, so we keep it simple for now.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231102033759.2541186-9-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# c51d5ad6 01-Nov-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: improve deduction of 64-bit bounds from 32-bit bounds

Add a few interesting cases in which we can tighten 64-bit bounds based
on newly learnt information about 32-bit bounds. E.g., when full u64/s64
registers are used in BPF program, and then eventually compared as
u32/s32. The latter comparison doesn't change the value of full
register, but it does impose new restrictions on possible lower 32 bits
of such full registers. And we can use that to derive additional full
register bounds information.

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Link: https://lore.kernel.org/r/20231102033759.2541186-8-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 6593f2e6 01-Nov-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: add special smin32/smax32 derivation from 64-bit bounds

Add a special case where we can derive valid s32 bounds from umin/umax
or smin/smax by stitching together negative s32 subrange and
non-negative s32 subrange. That requires upper 32 bits to form a [N, N+1]
range in u32 domain (taking into account wrap around, so 0xffffffff
to 0x00000000 is a valid [N, N+1] range in this sense). See code comment
for concrete examples.

Eduard Zingerman also provided an alternative explanation ([0]) for more
mathematically inclined readers:

Suppose:
. there are numbers a, b, c
. 2**31 <= b < 2**32
. 0 <= c < 2**31
. umin = 2**32 * a + b
. umax = 2**32 * (a + 1) + c

The number of values in the range represented by [umin; umax] is:
. N = umax - umin + 1 = 2**32 + c - b + 1
. min(N) = 2**32 + 0 - (2**32-1) + 1 = 2, with b = 2**32-1, c = 0
. max(N) = 2**32 + (2**31 - 1) - 2**31 + 1 = 2**32, with b = 2**31, c = 2**31-1

Hence [(s32)b; (s32)c] forms a valid range.

[0] https://lore.kernel.org/bpf/d7af631802f0cfae20df77fe70068702d24bbd31.camel@gmail.com/

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231102033759.2541186-7-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# c1efab64 01-Nov-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: derive subreg bounds from full bounds when upper 32 bits are constant

Comments in code try to explain the idea behind why this is correct.
Please check the code and comments.

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231102033759.2541186-6-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# d5405179 01-Nov-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: derive smin32/smax32 from umin32/umax32 bounds

All the logic that applies to u64 vs s64, equally applies for u32 vs s32
relationships (just taken in a smaller 32-bit numeric space). So do the
same deduction of smin32/smax32 from umin32/umax32, if we can.

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231102033759.2541186-5-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 93f73787 01-Nov-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: derive smin/smax from umin/max bounds

Add smin/smax derivation from appropriate umin/umax values. Previously the
logic was surprisingly asymmetric, trying to derive umin/umax from smin/smax
(if possible), but not trying to do the same in the other direction. A simple
addition to __reg64_deduce_bounds() fixes this.

Added also generic comment about u64/s64 ranges and their relationship.
Hopefully that helps readers to understand all the bounds deductions
a bit better.

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231102033759.2541186-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# bb124da6 20-Nov-2023 Eduard Zingerman <eddyz87@gmail.com>

bpf: keep track of max number of bpf_loop callback iterations

In some cases verifier can't infer convergence of the bpf_loop()
iteration. E.g. for the following program:

static int cb(__u32 idx, struct num_context* ctx)
{
ctx->i++;
return 0;
}

SEC("?raw_tp")
int prog(void *_)
{
struct num_context ctx = { .i = 0 };
__u8 choice_arr[2] = { 0, 1 };

bpf_loop(2, cb, &ctx, 0);
return choice_arr[ctx.i];
}

Each 'cb' simulation would eventually return to 'prog' and reach
'return choice_arr[ctx.i]' statement. At which point ctx.i would be
marked precise, thus forcing verifier to track multitude of separate
states with {.i=0}, {.i=1}, ... at bpf_loop() callback entry.

This commit allows "brute force" handling for such cases by limiting
number of callback body simulations using 'umax' value of the first
bpf_loop() parameter.

For this, extend bpf_func_state with 'callback_depth' field.
Increment this field when callback visiting state is pushed to states
traversal stack. For frame #N it's 'callback_depth' field counts how
many times callback with frame depth N+1 had been executed.
Use bpf_func_state specifically to allow independent tracking of
callback depths when multiple nested bpf_loop() calls are present.

Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231121020701.26440-11-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# cafe2c21 20-Nov-2023 Eduard Zingerman <eddyz87@gmail.com>

bpf: widening for callback iterators

Callbacks are similar to open coded iterators, so add imprecise
widening logic for callback body processing. This makes callback based
loops behave identically to open coded iterators, e.g. allowing to
verify programs like below:

struct ctx { u32 i; };
int cb(u32 idx, struct ctx* ctx)
{
++ctx->i;
return 0;
}
...
struct ctx ctx = { .i = 0 };
bpf_loop(100, cb, &ctx, 0);
...

Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231121020701.26440-9-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# ab5cfac1 20-Nov-2023 Eduard Zingerman <eddyz87@gmail.com>

bpf: verify callbacks as if they are called unknown number of times

Prior to this patch callbacks were handled as regular function calls,
execution of callback body was modeled exactly once.
This patch updates callbacks handling logic as follows:
- introduces a function push_callback_call() that schedules callback
body verification in env->head stack;
- updates prepare_func_exit() to reschedule callback body verification
upon BPF_EXIT;
- as calls to bpf_*_iter_next(), calls to callback invoking functions
are marked as checkpoints;
- is_state_visited() is updated to stop callback based iteration when
some identical parent state is found.

Paths with callback function invoked zero times are now verified first,
which leads to necessity to modify some selftests:
- the following negative tests required adding release/unlock/drop
calls to avoid previously masked unrelated error reports:
- cb_refs.c:underflow_prog
- exceptions_fail.c:reject_rbtree_add_throw
- exceptions_fail.c:reject_with_cp_reference
- the following precision tracking selftests needed change in expected
log trace:
- verifier_subprog_precision.c:callback_result_precise
(note: r0 precision is no longer propagated inside callback and
I think this is a correct behavior)
- verifier_subprog_precision.c:parent_callee_saved_reg_precise_with_callback
- verifier_subprog_precision.c:parent_stack_slot_precise_with_callback

Reported-by: Andrew Werner <awerner32@gmail.com>
Closes: https://lore.kernel.org/bpf/CA+vRuzPChFNXmouzGG+wsy=6eMcfr1mFG0F3g7rbg-sedGKW3w@mail.gmail.com/
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231121020701.26440-7-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 58124a98 20-Nov-2023 Eduard Zingerman <eddyz87@gmail.com>

bpf: extract setup_func_entry() utility function

Move code for simulated stack frame creation to a separate utility
function. This function would be used in the follow-up change for
callbacks handling.

Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231121020701.26440-6-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 683b96f9 20-Nov-2023 Eduard Zingerman <eddyz87@gmail.com>

bpf: extract __check_reg_arg() utility function

Split check_reg_arg() into two utility functions:
- check_reg_arg() operating on registers from current verifier state;
- __check_reg_arg() operating on a specific set of registers passed as
a parameter;

The __check_reg_arg() function would be used by a follow-up change for
callbacks handling.

Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231121020701.26440-5-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 1fda5bb6 10-Nov-2023 Yonghong Song <yonghong.song@linux.dev>

bpf: Do not allocate percpu memory at init stage

Kirill Shutemov reported significant percpu memory consumption increase after
booting in 288-cpu VM ([1]) due to commit 41a5db8d8161 ("bpf: Add support for
non-fix-size percpu mem allocation"). The percpu memory consumption is
increased from 111MB to 969MB. The number is from /proc/meminfo.

I tried to reproduce the issue with my local VM which at most supports upto
255 cpus. With 252 cpus, without the above commit, the percpu memory
consumption immediately after boot is 57MB while with the above commit the
percpu memory consumption is 231MB.

This is not good since so far percpu memory from bpf memory allocator is not
widely used yet. Let us change pre-allocation in init stage to on-demand
allocation when verifier detects there is a need of percpu memory for bpf
program. With this change, percpu memory consumption after boot can be reduced
signicantly.

[1] https://lore.kernel.org/lkml/20231109154934.4saimljtqx625l3v@box.shutemov.name/

Fixes: 41a5db8d8161 ("bpf: Add support for non-fix-size percpu mem allocation")
Reported-and-tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Acked-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231111013928.948838-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 10e14e96 09-Nov-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: fix control-flow graph checking in privileged mode

When BPF program is verified in privileged mode, BPF verifier allows
bounded loops. This means that from CFG point of view there are
definitely some back-edges. Original commit adjusted check_cfg() logic
to not detect back-edges in control flow graph if they are resulting
from conditional jumps, which the idea that subsequent full BPF
verification process will determine whether such loops are bounded or
not, and either accept or reject the BPF program. At least that's my
reading of the intent.

Unfortunately, the implementation of this idea doesn't work correctly in
all possible situations. Conditional jump might not result in immediate
back-edge, but just a few unconditional instructions later we can arrive
at back-edge. In such situations check_cfg() would reject BPF program
even in privileged mode, despite it might be bounded loop. Next patch
adds one simple program demonstrating such scenario.

To keep things simple, instead of trying to detect back edges in
privileged mode, just assume every back edge is valid and let subsequent
BPF verification prove or reject bounded loops.

Note a few test changes. For unknown reason, we have a few tests that
are specified to detect a back-edge in a privileged mode, but looking at
their code it seems like the right outcome is passing check_cfg() and
letting subsequent verification to make a decision about bounded or not
bounded looping.

Bounded recursion case is also interesting. The example should pass, as
recursion is limited to just a few levels and so we never reach maximum
number of nested frames and never exhaust maximum stack depth. But the
way that max stack depth logic works today it falsely detects this as
exceeding max nested frame count. This patch series doesn't attempt to
fix this orthogonal problem, so we just adjust expected verifier failure.

Suggested-by: Alexei Starovoitov <ast@kernel.org>
Fixes: 2589726d12a1 ("bpf: introduce bounded loops")
Reported-by: Hao Sun <sunhao.th@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231110061412.2995786-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 4bb7ea94 09-Nov-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: fix precision backtracking instruction iteration

Fix an edge case in __mark_chain_precision() which prematurely stops
backtracking instructions in a state if it happens that state's first
and last instruction indexes are the same. This situations doesn't
necessarily mean that there were no instructions simulated in a state,
but rather that we starting from the instruction, jumped around a bit,
and then ended up at the same instruction before checkpointing or
marking precision.

To distinguish between these two possible situations, we need to consult
jump history. If it's empty or contain a single record "bridging" parent
state and first instruction of processed state, then we indeed
backtracked all instructions in this state. But if history is not empty,
we are definitely not done yet.

Move this logic inside get_prev_insn_idx() to contain it more nicely.
Use -ENOENT return code to denote "we are out of instructions"
situation.

This bug was exposed by verifier_loop1.c's bounded_recursion subtest, once
the next fix in this patch set is applied.

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Fixes: b5dc0163d8fd ("bpf: precise scalar_value tracking")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231110002638.4168352-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 3feb263b 09-Nov-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: handle ldimm64 properly in check_cfg()

ldimm64 instructions are 16-byte long, and so have to be handled
appropriately in check_cfg(), just like the rest of BPF verifier does.

This has implications in three places:
- when determining next instruction for non-jump instructions;
- when determining next instruction for callback address ldimm64
instructions (in visit_func_call_insn());
- when checking for unreachable instructions, where second half of
ldimm64 is expected to be unreachable;

We take this also as an opportunity to report jump into the middle of
ldimm64. And adjust few test_verifier tests accordingly.

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Reported-by: Hao Sun <sunhao.th@gmail.com>
Fixes: 475fb78fbf48 ("bpf: verifier (add branch/goto checks)")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231110002638.4168352-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 291d044f 01-Nov-2023 Shung-Hsi Yu <shung-hsi.yu@suse.com>

bpf: Fix precision tracking for BPF_ALU | BPF_TO_BE | BPF_END

BPF_END and BPF_NEG has a different specification for the source bit in
the opcode compared to other ALU/ALU64 instructions, and is either
reserved or use to specify the byte swap endianness. In both cases the
source bit does not encode source operand location, and src_reg is a
reserved field.

backtrack_insn() currently does not differentiate BPF_END and BPF_NEG
from other ALU/ALU64 instructions, which leads to r0 being incorrectly
marked as precise when processing BPF_ALU | BPF_TO_BE | BPF_END
instructions. This commit teaches backtrack_insn() to correctly mark
precision for such case.

While precise tracking of BPF_NEG and other BPF_END instructions are
correct and does not need fixing, this commit opt to process all BPF_NEG
and BPF_END instructions within the same if-clause to better align with
current convention used in the verifier (e.g. check_alu_op).

Fixes: b5dc0163d8fd ("bpf: precise scalar_value tracking")
Cc: stable@vger.kernel.org
Reported-by: Mohamed Mahmoud <mmahmoud@redhat.com>
Closes: https://lore.kernel.org/r/87jzrrwptf.fsf@toke.dk
Tested-by: Toke Høiland-Jørgensen <toke@redhat.com>
Tested-by: Tao Lyu <tao.lyu@epfl.ch>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Link: https://lore.kernel.org/r/20231102053913.12004-2-shung-hsi.yu@suse.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 3091b667 30-Oct-2023 Chuyi Zhou <zhouchuyi@bytedance.com>

bpf: Relax allowlist for css_task iter

The newly added open-coded css_task iter would try to hold the global
css_set_lock in bpf_iter_css_task_new, so the bpf side has to be careful in
where it allows to use this iter. The mainly concern is dead locking on
css_set_lock. check_css_task_iter_allowlist() in verifier enforced css_task
can only be used in bpf_lsm hooks and sleepable bpf_iter.

This patch relax the allowlist for css_task iter. Any lsm and any iter
(even non-sleepable) and any sleepable are safe since they would not hold
the css_set_lock before entering BPF progs context.

This patch also fixes the misused BPF_TRACE_ITER in
check_css_task_iter_allowlist which compared bpf_prog_type with
bpf_attach_type.

Fixes: 9c66dc94b62ae ("bpf: Introduce css_task open-coded iterator kfuncs")
Signed-off-by: Chuyi Zhou <zhouchuyi@bytedance.com>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20231031050438.93297-2-zhouchuyi@bytedance.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 811c3636 01-Nov-2023 Hao Sun <sunhao.th@gmail.com>

bpf: Fix check_stack_write_fixed_off() to correctly spill imm

In check_stack_write_fixed_off(), imm value is cast to u32 before being
spilled to the stack. Therefore, the sign information is lost, and the
range information is incorrect when load from the stack again.

For the following prog:
0: r2 = r10
1: *(u64*)(r2 -40) = -44
2: r0 = *(u64*)(r2 - 40)
3: if r0 s<= 0xa goto +2
4: r0 = 1
5: exit
6: r0 = 0
7: exit

The verifier gives:
func#0 @0
0: R1=ctx(off=0,imm=0) R10=fp0
0: (bf) r2 = r10 ; R2_w=fp0 R10=fp0
1: (7a) *(u64 *)(r2 -40) = -44 ; R2_w=fp0 fp-40_w=4294967252
2: (79) r0 = *(u64 *)(r2 -40) ; R0_w=4294967252 R2_w=fp0
fp-40_w=4294967252
3: (c5) if r0 s< 0xa goto pc+2
mark_precise: frame0: last_idx 3 first_idx 0 subseq_idx -1
mark_precise: frame0: regs=r0 stack= before 2: (79) r0 = *(u64 *)(r2 -40)
3: R0_w=4294967252
4: (b7) r0 = 1 ; R0_w=1
5: (95) exit
verification time 7971 usec
stack depth 40
processed 6 insns (limit 1000000) max_states_per_insn 0 total_states 0
peak_states 0 mark_read 0

So remove the incorrect cast, since imm field is declared as s32, and
__mark_reg_known() takes u64, so imm would be correctly sign extended
by compiler.

Fixes: ecdf985d7615 ("bpf: track immediate values written to stack by BPF_ST instruction")
Cc: stable@vger.kernel.org
Signed-off-by: Hao Sun <sunhao.th@gmail.com>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231101-fix-check-stack-write-v3-1-f05c2b1473d5@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 05670f81 01-Nov-2023 Matthieu Baerts <matttbe@kernel.org>

bpf: fix compilation error without CGROUPS

Our MPTCP CI complained [1] -- and KBuild too -- that it was no longer
possible to build the kernel without CONFIG_CGROUPS:

kernel/bpf/task_iter.c: In function 'bpf_iter_css_task_new':
kernel/bpf/task_iter.c:919:14: error: 'CSS_TASK_ITER_PROCS' undeclared (first use in this function)
919 | case CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED:
| ^~~~~~~~~~~~~~~~~~~
kernel/bpf/task_iter.c:919:14: note: each undeclared identifier is reported only once for each function it appears in
kernel/bpf/task_iter.c:919:36: error: 'CSS_TASK_ITER_THREADED' undeclared (first use in this function)
919 | case CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED:
| ^~~~~~~~~~~~~~~~~~~~~~
kernel/bpf/task_iter.c:927:60: error: invalid application of 'sizeof' to incomplete type 'struct css_task_iter'
927 | kit->css_it = bpf_mem_alloc(&bpf_global_ma, sizeof(struct css_task_iter));
| ^~~~~~
kernel/bpf/task_iter.c:930:9: error: implicit declaration of function 'css_task_iter_start'; did you mean 'task_seq_start'? [-Werror=implicit-function-declaration]
930 | css_task_iter_start(css, flags, kit->css_it);
| ^~~~~~~~~~~~~~~~~~~
| task_seq_start
kernel/bpf/task_iter.c: In function 'bpf_iter_css_task_next':
kernel/bpf/task_iter.c:940:16: error: implicit declaration of function 'css_task_iter_next'; did you mean 'class_dev_iter_next'? [-Werror=implicit-function-declaration]
940 | return css_task_iter_next(kit->css_it);
| ^~~~~~~~~~~~~~~~~~
| class_dev_iter_next
kernel/bpf/task_iter.c:940:16: error: returning 'int' from a function with return type 'struct task_struct *' makes pointer from integer without a cast [-Werror=int-conversion]
940 | return css_task_iter_next(kit->css_it);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
kernel/bpf/task_iter.c: In function 'bpf_iter_css_task_destroy':
kernel/bpf/task_iter.c:949:9: error: implicit declaration of function 'css_task_iter_end' [-Werror=implicit-function-declaration]
949 | css_task_iter_end(kit->css_it);
| ^~~~~~~~~~~~~~~~~

This patch simply surrounds with a #ifdef the new code requiring CGroups
support. It seems enough for the compiler and this is similar to
bpf_iter_css_{new,next,destroy}() functions where no other #ifdef have
been added in kernel/bpf/helpers.c and in the selftests.

Fixes: 9c66dc94b62a ("bpf: Introduce css_task open-coded iterator kfuncs")
Link: https://github.com/multipath-tcp/mptcp_net-next/actions/runs/6665206927
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202310260528.aHWgVFqq-lkp@intel.com/
Signed-off-by: Matthieu Baerts <matttbe@kernel.org>
[ added missing ifdefs for BTF_ID cgroup definitions ]
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20231101181601.1493271-1-jolsa@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 42d31dd6 22-Oct-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: Improve JEQ/JNE branch taken logic

When determining if an if/else branch will always or never be taken, use
signed range knowledge in addition to currently used unsigned range knowledge.
If either signed or unsigned range suggests that condition is always/never
taken, return corresponding branch_taken verdict.

Current use of unsigned range for this seems arbitrary and unnecessarily
incomplete. It is possible for *signed* operations to be performed on
register, which could "invalidate" unsigned range for that register. In such
case branch_taken will be artificially useless, even if we can still tell
that some constant is outside of register value range based on its signed
bounds.

veristat-based validation shows zero differences across selftests, Cilium,
and Meta-internal BPF object files.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Link: https://lore.kernel.org/bpf/20231022205743.72352-2-andrii@kernel.org


# b4d82395 23-Oct-2023 Eduard Zingerman <eddyz87@gmail.com>

bpf: print full verifier states on infinite loop detection

Additional logging in is_state_visited(): if infinite loop is detected
print full verifier state for both current and equivalent states.

Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231024000917.12153-8-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 2a099282 23-Oct-2023 Eduard Zingerman <eddyz87@gmail.com>

bpf: correct loop detection for iterators convergence

It turns out that .branches > 0 in is_state_visited() is not a
sufficient condition to identify if two verifier states form a loop
when iterators convergence is computed. This commit adds logic to
distinguish situations like below:

(I) initial (II) initial
| |
V V
.---------> hdr ..
| | |
| V V
| .------... .------..
| | | | |
| V V V V
| ... ... .-> hdr ..
| | | | | |
| V V | V V
| succ <- cur | succ <- cur
| | | |
| V | V
| ... | ...
| | | |
'----' '----'

For both (I) and (II) successor 'succ' of the current state 'cur' was
previously explored and has branches count at 0. However, loop entry
'hdr' corresponding to 'succ' might be a part of current DFS path.
If that is the case 'succ' and 'cur' are members of the same loop
and have to be compared exactly.

Co-developed-by: Andrii Nakryiko <andrii.nakryiko@gmail.com>
Co-developed-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Reviewed-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231024000917.12153-6-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 2793a8b0 23-Oct-2023 Eduard Zingerman <eddyz87@gmail.com>

bpf: exact states comparison for iterator convergence checks

Convergence for open coded iterators is computed in is_state_visited()
by examining states with branches count > 1 and using states_equal().
states_equal() computes sub-state relation using read and precision marks.
Read and precision marks are propagated from children states,
thus are not guaranteed to be complete inside a loop when branches
count > 1. This could be demonstrated using the following unsafe program:

1. r7 = -16
2. r6 = bpf_get_prandom_u32()
3. while (bpf_iter_num_next(&fp[-8])) {
4. if (r6 != 42) {
5. r7 = -32
6. r6 = bpf_get_prandom_u32()
7. continue
8. }
9. r0 = r10
10. r0 += r7
11. r8 = *(u64 *)(r0 + 0)
12. r6 = bpf_get_prandom_u32()
13. }

Here verifier would first visit path 1-3, create a checkpoint at 3
with r7=-16, continue to 4-7,3 with r7=-32.

Because instructions at 9-12 had not been visitied yet existing
checkpoint at 3 does not have read or precision mark for r7.
Thus states_equal() would return true and verifier would discard
current state, thus unsafe memory access at 11 would not be caught.

This commit fixes this loophole by introducing exact state comparisons
for iterator convergence logic:
- registers are compared using regs_exact() regardless of read or
precision marks;
- stack slots have to have identical type.

Unfortunately, this is too strict even for simple programs like below:

i = 0;
while(iter_next(&it))
i++;

At each iteration step i++ would produce a new distinct state and
eventually instruction processing limit would be reached.

To avoid such behavior speculatively forget (widen) range for
imprecise scalar registers, if those registers were not precise at the
end of the previous iteration and do not match exactly.

This a conservative heuristic that allows to verify wide range of
programs, however it precludes verification of programs that conjure
an imprecise value on the first loop iteration and use it as precise
on the second.

Test case iter_task_vma_for_each() presents one of such cases:

unsigned int seen = 0;
...
bpf_for_each(task_vma, vma, task, 0) {
if (seen >= 1000)
break;
...
seen++;
}

Here clang generates the following code:

<LBB0_4>:
24: r8 = r6 ; stash current value of
... body ... 'seen'
29: r1 = r10
30: r1 += -0x8
31: call bpf_iter_task_vma_next
32: r6 += 0x1 ; seen++;
33: if r0 == 0x0 goto +0x2 <LBB0_6> ; exit on next() == NULL
34: r7 += 0x10
35: if r8 < 0x3e7 goto -0xc <LBB0_4> ; loop on seen < 1000

<LBB0_6>:
... exit ...

Note that counter in r6 is copied to r8 and then incremented,
conditional jump is done using r8. Because of this precision mark for
r6 lags one state behind of precision mark on r8 and widening logic
kicks in.

Adding barrier_var(seen) after conditional is sufficient to force
clang use the same register for both counting and conditional jump.

This issue was discussed in the thread [1] which was started by
Andrew Werner <awerner32@gmail.com> demonstrating a similar bug
in callback functions handling. The callbacks would be addressed
in a followup patch.

[1] https://lore.kernel.org/bpf/97a90da09404c65c8e810cf83c94ac703705dc0e.camel@gmail.com/

Co-developed-by: Andrii Nakryiko <andrii.nakryiko@gmail.com>
Co-developed-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231024000917.12153-4-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 4c97259a 23-Oct-2023 Eduard Zingerman <eddyz87@gmail.com>

bpf: extract same_callsites() as utility function

Extract same_callsites() from clean_live_states() as a utility function.
This function would be used by the next patch in the set.

Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231024000917.12153-3-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 3c4e420c 23-Oct-2023 Eduard Zingerman <eddyz87@gmail.com>

bpf: move explored_state() closer to the beginning of verifier.c

Subsequent patches would make use of explored_state() function.
Move it up to avoid adding unnecessary prototype.

Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20231024000917.12153-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# cb3ecf79 18-Oct-2023 Chuyi Zhou <zhouchuyi@bytedance.com>

bpf: Let bpf_iter_task_new accept null task ptr

When using task_iter to iterate all threads of a specific task, we enforce
that the user must pass a valid task pointer to ensure safety. However,
when iterating all threads/process in the system, BPF verifier still
require a valid ptr instead of "nullable" pointer, even though it's
pointless, which is a kind of surprising from usability standpoint. It
would be nice if we could let that kfunc accept a explicit null pointer
when we are using BPF_TASK_ITER_ALL_{PROCS, THREADS} and a valid pointer
when using BPF_TASK_ITER_THREAD.

Given a trival kfunc:
__bpf_kfunc void FN(struct TYPE_A *obj);

BPF Prog would reject a nullptr for obj. The error info is:
"arg#x pointer type xx xx must point to scalar, or struct with scalar"
reported by get_kfunc_ptr_arg_type(). The reg->type is SCALAR_VALUE and
the btf type of ref_t is not scalar or scalar_struct which leads to the
rejection of get_kfunc_ptr_arg_type.

This patch add "__nullable" annotation:
__bpf_kfunc void FN(struct TYPE_A *obj__nullable);
Here __nullable indicates obj can be optional, user can pass a explicit
nullptr or a normal TYPE_A pointer. In get_kfunc_ptr_arg_type(), we will
detect whether the current arg is optional and register is null, If so,
return a new kfunc_ptr_arg_type KF_ARG_PTR_TO_NULL and skip to the next
arg in check_kfunc_args().

Signed-off-by: Chuyi Zhou <zhouchuyi@bytedance.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231018061746.111364-7-zhouchuyi@bytedance.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# dfab99df 18-Oct-2023 Chuyi Zhou <zhouchuyi@bytedance.com>

bpf: teach the verifier to enforce css_iter and task_iter in RCU CS

css_iter and task_iter should be used in rcu section. Specifically, in
sleepable progs explicit bpf_rcu_read_lock() is needed before use these
iters. In normal bpf progs that have implicit rcu_read_lock(), it's OK to
use them directly.

This patch adds a new a KF flag KF_RCU_PROTECTED for bpf_iter_task_new and
bpf_iter_css_new. It means the kfunc should be used in RCU CS. We check
whether we are in rcu cs before we want to invoke this kfunc. If the rcu
protection is guaranteed, we would let st->type = PTR_TO_STACK | MEM_RCU.
Once user do rcu_unlock during the iteration, state MEM_RCU of regs would
be cleared. is_iter_reg_valid_init() will reject if reg->type is UNTRUSTED.

It is worth noting that currently, bpf_rcu_read_unlock does not
clear the state of the STACK_ITER reg, since bpf_for_each_spilled_reg
only considers STACK_SPILL. This patch also let bpf_for_each_spilled_reg
search STACK_ITER.

Signed-off-by: Chuyi Zhou <zhouchuyi@bytedance.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231018061746.111364-6-zhouchuyi@bytedance.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 9c66dc94 18-Oct-2023 Chuyi Zhou <zhouchuyi@bytedance.com>

bpf: Introduce css_task open-coded iterator kfuncs

This patch adds kfuncs bpf_iter_css_task_{new,next,destroy} which allow
creation and manipulation of struct bpf_iter_css_task in open-coded
iterator style. These kfuncs actually wrapps css_task_iter_{start,next,
end}. BPF programs can use these kfuncs through bpf_for_each macro for
iteration of all tasks under a css.

css_task_iter_*() would try to get the global spin-lock *css_set_lock*, so
the bpf side has to be careful in where it allows to use this iter.
Currently we only allow it in bpf_lsm and bpf iter-s.

Signed-off-by: Chuyi Zhou <zhouchuyi@bytedance.com>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/r/20231018061746.111364-3-zhouchuyi@bytedance.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 1a8a315f 11-Oct-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: Ensure proper register state printing for cond jumps

Verifier emits relevant register state involved in any given instruction
next to it after `;` to the right, if possible. Or, worst case, on the
separate line repeating instruction index.

E.g., a nice and simple case would be:

2: (d5) if r0 s<= 0x0 goto pc+1 ; R0_w=0

But if there is some intervening extra output (e.g., precision
backtracking log) involved, we are supposed to see the state after the
precision backtrack log:

4: (75) if r0 s>= 0x0 goto pc+1
mark_precise: frame0: last_idx 4 first_idx 0 subseq_idx -1
mark_precise: frame0: regs=r0 stack= before 2: (d5) if r0 s<= 0x0 goto pc+1
mark_precise: frame0: regs=r0 stack= before 1: (b7) r0 = 0
6: R0_w=0

First off, note that in `6: R0_w=0` instruction index corresponds to the
next instruction, not to the conditional jump instruction itself, which
is wrong and we'll get to that.

But besides that, the above is a happy case that does work today. Yet,
if it so happens that precision backtracking had to traverse some of the
parent states, this `6: R0_w=0` state output would be missing.

This is due to a quirk of print_verifier_state() routine, which performs
mark_verifier_state_clean(env) at the end. This marks all registers as
"non-scratched", which means that subsequent logic to print *relevant*
registers (that is, "scratched ones") fails and doesn't see anything
relevant to print and skips the output altogether.

print_verifier_state() is used both to print instruction context, but
also to print an **entire** verifier state indiscriminately, e.g.,
during precision backtracking (and in a few other situations, like
during entering or exiting subprogram). Which means if we have to print
entire parent state before getting to printing instruction context
state, instruction context is marked as clean and is omitted.

Long story short, this is definitely not intentional. So we fix this
behavior in this patch by teaching print_verifier_state() to clear
scratch state only if it was used to print instruction state, not the
parent/callback state. This is determined by print_all option, so if
it's not set, we don't clear scratch state. This fixes missing
instruction state for these cases.

As for the mismatched instruction index, we fix that by making sure we
call print_insn_state() early inside check_cond_jmp_op() before we
adjusted insn_idx based on jump branch taken logic. And with that we get
desired correct information:

9: (16) if w4 == 0x1 goto pc+9
mark_precise: frame0: last_idx 9 first_idx 9 subseq_idx -1
mark_precise: frame0: parent state regs=r4 stack=: R2_w=1944 R4_rw=P1 R10=fp0
mark_precise: frame0: last_idx 8 first_idx 0 subseq_idx 9
mark_precise: frame0: regs=r4 stack= before 8: (66) if w4 s> 0x3 goto pc+5
mark_precise: frame0: regs=r4 stack= before 7: (b7) r4 = 1
9: R4=1

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/bpf/20231011223728.3188086-6-andrii@kernel.org


# 72f8a1de 11-Oct-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: Disambiguate SCALAR register state output in verifier logs

Currently the way that verifier prints SCALAR_VALUE register state (and
PTR_TO_PACKET, which can have var_off and ranges info as well) is very
ambiguous.

In the name of brevity we are trying to eliminate "unnecessary" output
of umin/umax, smin/smax, u32_min/u32_max, and s32_min/s32_max values, if
possible. Current rules are that if any of those have their default
value (which for mins is the minimal value of its respective types: 0,
S32_MIN, or S64_MIN, while for maxs it's U32_MAX, S32_MAX, S64_MAX, or
U64_MAX) *OR* if there is another min/max value that as matching value.
E.g., if smin=100 and umin=100, we'll emit only umin=10, omitting smin
altogether. This approach has a few problems, being both ambiguous and
sort-of incorrect in some cases.

Ambiguity is due to missing value could be either default value or value
of umin/umax or smin/smax. This is especially confusing when we mix
signed and unsigned ranges. Quite often, umin=0 and smin=0, and so we'll
have only `umin=0` leaving anyone reading verifier log to guess whether
smin is actually 0 or it's actually -9223372036854775808 (S64_MIN). And
often times it's important to know, especially when debugging tricky
issues.

"Sort-of incorrectness" comes from mixing negative and positive values.
E.g., if umin is some large positive number, it can be equal to smin
which is, interpreted as signed value, is actually some negative value.
Currently, that smin will be omitted and only umin will be emitted with
a large positive value, giving an impression that smin is also positive.

Anyway, ambiguity is the biggest issue making it impossible to have an
exact understanding of register state, preventing any sort of automated
testing of verifier state based on verifier log. This patch is
attempting to rectify the situation by removing ambiguity, while
minimizing the verboseness of register state output.

The rules are straightforward:
- if some of the values are missing, then it definitely has a default
value. I.e., `umin=0` means that umin is zero, but smin is actually
S64_MIN;
- all the various boundaries that happen to have the same value are
emitted in one equality separated sequence. E.g., if umin and smin are
both 100, we'll emit `smin=umin=100`, making this explicit;
- we do not mix negative and positive values together, and even if
they happen to have the same bit-level value, they will be emitted
separately with proper sign. I.e., if both umax and smax happen to be
0xffffffffffffffff, we'll emit them both separately as
`smax=-1,umax=18446744073709551615`;
- in the name of a bit more uniformity and consistency,
{u32,s32}_{min,max} are renamed to {s,u}{min,max}32, which seems to
improve readability.

The above means that in case of all 4 ranges being, say, [50, 100] range,
we'd previously see hugely ambiguous:

R1=scalar(umin=50,umax=100)

Now, we'll be more explicit:

R1=scalar(smin=umin=smin32=umin32=50,smax=umax=smax32=umax32=100)

This is slightly more verbose, but distinct from the case when we don't
know anything about signed boundaries and 32-bit boundaries, which under
new rules will match the old case:

R1=scalar(umin=50,umax=100)

Also, in the name of simplicity of implementation and consistency, order
for {s,u}32_{min,max} are emitted *before* var_off. Previously they were
emitted afterwards, for unclear reasons.

This patch also includes a few fixes to selftests that expect exact
register state to accommodate slight changes to verifier format. You can
see that the changes are pretty minimal in common cases.

Note, the special case when SCALAR_VALUE register is a known constant
isn't changed, we'll emit constant value once, interpreted as signed
value.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/bpf/20231011223728.3188086-5-andrii@kernel.org


# 859051dd 11-Oct-2023 Daan De Meyer <daan.j.demeyer@gmail.com>

bpf: Implement cgroup sockaddr hooks for unix sockets

These hooks allows intercepting connect(), getsockname(),
getpeername(), sendmsg() and recvmsg() for unix sockets. The unix
socket hooks get write access to the address length because the
address length is not fixed when dealing with unix sockets and
needs to be modified when a unix socket address is modified by
the hook. Because abstract socket unix addresses start with a
NUL byte, we cannot recalculate the socket address in kernelspace
after running the hook by calculating the length of the unix socket
path using strlen().

These hooks can be used when users want to multiplex syscall to a
single unix socket to multiple different processes behind the scenes
by redirecting the connect() and other syscalls to process specific
sockets.

We do not implement support for intercepting bind() because when
using bind() with unix sockets with a pathname address, this creates
an inode in the filesystem which must be cleaned up. If we rewrite
the address, the user might try to clean up the wrong file, leaking
the socket in the filesystem where it is never cleaned up. Until we
figure out a solution for this (and a use case for intercepting bind()),
we opt to not allow rewriting the sockaddr in bind() calls.

We also implement recvmsg() support for connected streams so that
after a connect() that is modified by a sockaddr hook, any corresponding
recmvsg() on the connected socket can also be modified to make the
connected program think it is connected to the "intended" remote.

Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: Daan De Meyer <daan.j.demeyer@gmail.com>
Link: https://lore.kernel.org/r/20231011185113.140426-5-daan.j.demeyer@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>


# 577c06af 18-Sep-2023 Ilya Leoshkevich <iii@linux.ibm.com>

bpf: Disable zero-extension for BPF_MEMSX

On the architectures that use bpf_jit_needs_zext(), e.g., s390x, the
verifier incorrectly inserts a zero-extension after BPF_MEMSX, leading
to miscompilations like the one below:

24: 89 1a ff fe 00 00 00 00 "r1 = *(s16 *)(r10 - 2);" # zext_dst set
0x3ff7fdb910e: lgh %r2,-2(%r13,%r0) # load halfword
0x3ff7fdb9114: llgfr %r2,%r2 # wrong!
25: 65 10 00 03 00 00 7f ff if r1 s> 32767 goto +3 <l0_1> # check_cond_jmp_op()

Disable such zero-extensions. The JITs need to insert sign-extension
themselves, if necessary.

Suggested-by: Puranjay Mohan <puranjay12@gmail.com>
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Reviewed-by: Puranjay Mohan <puranjay12@gmail.com>
Link: https://lore.kernel.org/r/20230919101336.2223655-2-iii@linux.ibm.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# aec42f36 19-Sep-2023 Alexei Starovoitov <ast@kernel.org>

bpf: Remove unused variables.

Remove unused prev_offset, min_size, krec_size variables.

Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202309190634.fL17FWoT-lkp@intel.com/
Fixes: aaa619ebccb2 ("bpf: Refactor check_btf_func and split into two phases")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 06d686f7 12-Sep-2023 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Fix kfunc callback register type handling

The kfunc code to handle KF_ARG_PTR_TO_CALLBACK does not check the reg
type before using reg->subprogno. This can accidently permit invalid
pointers from being passed into callback helpers (e.g. silently from
different paths). Likewise, reg->subprogno from the per-register type
union may not be meaningful either. We need to reject any other type
except PTR_TO_FUNC.

Acked-by: Dave Marchevsky <davemarchevsky@fb.com>
Fixes: 5d92ddc3de1b ("bpf: Add callback validation to kfunc verifier logic")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230912233214.1518551-14-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# fd548e1a 12-Sep-2023 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Disallow fentry/fexit/freplace for exception callbacks

During testing, it was discovered that extensions to exception callbacks
had no checks, upon running a testcase, the kernel ended up running off
the end of a program having final call as bpf_throw, and hitting int3
instructions.

The reason is that while the default exception callback would have reset
the stack frame to return back to the main program's caller, the
replacing extension program will simply return back to bpf_throw, which
will instead return back to the program and the program will continue
execution, now in an undefined state where anything could happen.

The way to support extensions to an exception callback would be to mark
the BPF_PROG_TYPE_EXT main subprog as an exception_cb, and prevent it
from calling bpf_throw. This would make the JIT produce a prologue that
restores saved registers and reset the stack frame. But let's not do
that until there is a concrete use case for this, and simply disallow
this for now.

Similar issues will exist for fentry and fexit cases, where trampoline
saves data on the stack when invoking exception callback, which however
will then end up resetting the stack frame, and on return, the fexit
program will never will invoked as the return address points to the main
program's caller in the kernel. Instead of additional complexity and
back and forth between the two stacks to enable such a use case, simply
forbid it.

One key point here to note is that currently X86_TAIL_CALL_OFFSET didn't
require any modifications, even though we emit instructions before the
corresponding endbr64 instruction. This is because we ensure that a main
subprog never serves as an exception callback, and therefore the
exception callback (which will be a global subprog) can never serve as
the tail call target, eliminating any discrepancies. However, once we
support a BPF_PROG_TYPE_EXT to also act as an exception callback, it
will end up requiring change to the tail call offset to account for the
extra instructions. For simplicitly, tail calls could be disabled for
such targets.

Noting the above, it appears better to wait for a concrete use case
before choosing to permit extension programs to replace exception
callbacks.

As a precaution, we disable fentry and fexit for exception callbacks as
well.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230912233214.1518551-13-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# a923819f 12-Sep-2023 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Treat first argument as return value for bpf_throw

In case of the default exception callback, change the behavior of
bpf_throw, where the passed cookie value is no longer ignored, but
is instead the return value of the default exception callback. As
such, we need to place restrictions on the value being passed into
bpf_throw in such a case, only allowing those permitted by the
check_return_code function.

Thus, bpf_throw can now control the return value of the program from
each call site without having the user install a custom exception
callback just to override the return value when an exception is thrown.

We also modify the hidden subprog instructions to now move BPF_REG_1 to
BPF_REG_0, so as to set the return value before exit in the default
callback.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230912233214.1518551-9-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# b62bf8a5 12-Sep-2023 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Perform CFG walk for exception callback

Since exception callbacks are not referenced using bpf_pseudo_func and
bpf_pseudo_call instructions, check_cfg traversal will never explore
instructions of the exception callback. Even after adding the subprog,
the program will then fail with a 'unreachable insn' error.

We thus need to begin walking from the start of the exception callback
again in check_cfg after a complete CFG traversal finishes, so as to
explore the CFG rooted at the exception callback.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230912233214.1518551-8-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# b9ae0c9d 12-Sep-2023 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Add support for custom exception callbacks

By default, the subprog generated by the verifier to handle a thrown
exception hardcodes a return value of 0. To allow user-defined logic
and modification of the return value when an exception is thrown,
introduce the 'exception_callback:' declaration tag, which marks a
callback as the default exception handler for the program.

The format of the declaration tag is 'exception_callback:<value>', where
<value> is the name of the exception callback. Each main program can be
tagged using this BTF declaratiion tag to associate it with an exception
callback. In case the tag is absent, the default callback is used.

As such, the exception callback cannot be modified at runtime, only set
during verification.

Allowing modification of the callback for the current program execution
at runtime leads to issues when the programs begin to nest, as any
per-CPU state maintaing this information will have to be saved and
restored. We don't want it to stay in bpf_prog_aux as this takes a
global effect for all programs. An alternative solution is spilling
the callback pointer at a known location on the program stack on entry,
and then passing this location to bpf_throw as a parameter.

However, since exceptions are geared more towards a use case where they
are ideally never invoked, optimizing for this use case and adding to
the complexity has diminishing returns.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230912233214.1518551-7-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# aaa619eb 12-Sep-2023 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Refactor check_btf_func and split into two phases

This patch splits the check_btf_info's check_btf_func check into two
separate phases. The first phase sets up the BTF and prepares
func_info, but does not perform any validation of required invariants
for subprogs just yet. This is left to the second phase, which happens
where check_btf_info executes currently, and performs the line_info and
CO-RE relocation.

The reason to perform this split is to obtain the userspace supplied
func_info information before we perform the add_subprog call, where we
would now require finding and adding subprogs that may not have a
bpf_pseudo_call or bpf_pseudo_func instruction in the program.

We require this as we want to enable userspace to supply exception
callbacks that can override the default hidden subprogram generated by
the verifier (which performs a hardcoded action). In such a case, the
exception callback may never be referenced in an instruction, but will
still be suitably annotated (by way of BTF declaration tags). For
finding this exception callback, we would require the program's BTF
information, and the supplied func_info information which maps BTF type
IDs to subprograms.

Since the exception callback won't actually be referenced through
instructions, later checks in check_cfg and do_check_subprogs will not
verify the subprog. This means that add_subprog needs to add them in the
add_subprog_and_kfunc phase before we move forward, which is why the BTF
and func_info are required at that point.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230912233214.1518551-6-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# f18b03fa 12-Sep-2023 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Implement BPF exceptions

This patch implements BPF exceptions, and introduces a bpf_throw kfunc
to allow programs to throw exceptions during their execution at runtime.
A bpf_throw invocation is treated as an immediate termination of the
program, returning back to its caller within the kernel, unwinding all
stack frames.

This allows the program to simplify its implementation, by testing for
runtime conditions which the verifier has no visibility into, and assert
that they are true. In case they are not, the program can simply throw
an exception from the other branch.

BPF exceptions are explicitly *NOT* an unlikely slowpath error handling
primitive, and this objective has guided design choices of the
implementation of the them within the kernel (with the bulk of the cost
for unwinding the stack offloaded to the bpf_throw kfunc).

The implementation of this mechanism requires use of add_hidden_subprog
mechanism introduced in the previous patch, which generates a couple of
instructions to move R1 to R0 and exit. The JIT then rewrites the
prologue of this subprog to take the stack pointer and frame pointer as
inputs and reset the stack frame, popping all callee-saved registers
saved by the main subprog. The bpf_throw function then walks the stack
at runtime, and invokes this exception subprog with the stack and frame
pointers as parameters.

Reviewers must take note that currently the main program is made to save
all callee-saved registers on x86_64 during entry into the program. This
is because we must do an equivalent of a lightweight context switch when
unwinding the stack, therefore we need the callee-saved registers of the
caller of the BPF program to be able to return with a sane state.

Note that we have to additionally handle r12, even though it is not used
by the program, because when throwing the exception the program makes an
entry into the kernel which could clobber r12 after saving it on the
stack. To be able to preserve the value we received on program entry, we
push r12 and restore it from the generated subprogram when unwinding the
stack.

For now, bpf_throw invocation fails when lingering resources or locks
exist in that path of the program. In a future followup, bpf_throw will
be extended to perform frame-by-frame unwinding to release lingering
resources for each stack frame, removing this limitation.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230912233214.1518551-5-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 335d1c5b 12-Sep-2023 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Implement support for adding hidden subprogs

Introduce support in the verifier for generating a subprogram and
include it as part of a BPF program dynamically after the do_check phase
is complete. The first user will be the next patch which generates
default exception callbacks if none are set for the program. The phase
of invocation will be do_misc_fixups. Note that this is an internal
verifier function, and should be used with instruction blocks which
uphold the invariants stated in check_subprogs.

Since these subprogs are always appended to the end of the instruction
sequence of the program, it becomes relatively inexpensive to do the
related adjustments to the subprog_info of the program. Only the fake
exit subprogram is shifted forward, making room for our new subprog.

This is useful to insert a new subprogram, get it JITed, and obtain its
function pointer. The next patch will use this functionality to insert a
default exception callback which will be invoked after unwinding the
stack.

Note that these added subprograms are invisible to userspace, and never
reported in BPF_OBJ_GET_INFO_BY_ID etc. For now, only a single
subprogram is supported, but more can be easily supported in the future.

To this end, two function counts are introduced now, the existing
func_cnt, and real_func_cnt, the latter including hidden programs. This
allows us to conver the JIT code to use the real_func_cnt for management
of resources while syscall path continues working with existing
func_cnt.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230912233214.1518551-4-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 2b5dcb31 12-Sep-2023 Leon Hwang <hffilwlqm@gmail.com>

bpf, x64: Fix tailcall infinite loop

From commit ebf7d1f508a73871 ("bpf, x64: rework pro/epilogue and tailcall
handling in JIT"), the tailcall on x64 works better than before.

From commit e411901c0b775a3a ("bpf: allow for tailcalls in BPF subprograms
for x64 JIT"), tailcall is able to run in BPF subprograms on x64.

From commit 5b92a28aae4dd0f8 ("bpf: Support attaching tracing BPF program
to other BPF programs"), BPF program is able to trace other BPF programs.

How about combining them all together?

1. FENTRY/FEXIT on a BPF subprogram.
2. A tailcall runs in the BPF subprogram.
3. The tailcall calls the subprogram's caller.

As a result, a tailcall infinite loop comes up. And the loop would halt
the machine.

As we know, in tail call context, the tail_call_cnt propagates by stack
and rax register between BPF subprograms. So do in trampolines.

Fixes: ebf7d1f508a7 ("bpf, x64: rework pro/epilogue and tailcall handling in JIT")
Fixes: e411901c0b77 ("bpf: allow for tailcalls in BPF subprograms for x64 JIT")
Reviewed-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com>
Signed-off-by: Leon Hwang <hffilwlqm@gmail.com>
Link: https://lore.kernel.org/r/20230912150442.2009-3-hffilwlqm@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 5b221ecb 27-Aug-2023 Yonghong Song <yonghong.song@linux.dev>

bpf: Mark OBJ_RELEASE argument as MEM_RCU when possible

In previous selftests/bpf patch, we have
p = bpf_percpu_obj_new(struct val_t);
if (!p)
goto out;

p1 = bpf_kptr_xchg(&e->pc, p);
if (p1) {
/* race condition */
bpf_percpu_obj_drop(p1);
}

p = e->pc;
if (!p)
goto out;

After bpf_kptr_xchg(), we need to re-read e->pc into 'p'.
This is due to that the second argument of bpf_kptr_xchg() is marked
OBJ_RELEASE and it will be marked as invalid after the call.
So after bpf_kptr_xchg(), 'p' is an unknown scalar,
and the bpf program needs to reread from the map value.

This patch checks if the 'p' has type MEM_ALLOC and MEM_PERCPU,
and if 'p' is RCU protected. If this is the case, 'p' can be marked
as MEM_RCU. MEM_ALLOC needs to be removed since 'p' is not
an owning reference any more. Such a change makes re-read
from the map value unnecessary.

Note that re-reading 'e->pc' after bpf_kptr_xchg() might get
a different value from 'p' if immediately before 'p = e->pc',
another cpu may do another bpf_kptr_xchg() and swap in another value
into 'e->pc'. If this is the case, then 'p = e->pc' may
get either 'p' or another value, and race condition already exists.
So removing direct re-reading seems fine too.

Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230827152816.2000760-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 01cc55af 27-Aug-2023 Yonghong Song <yonghong.song@linux.dev>

bpf: Add bpf_this_cpu_ptr/bpf_per_cpu_ptr support for allocated percpu obj

The bpf helpers bpf_this_cpu_ptr() and bpf_per_cpu_ptr() are re-purposed
for allocated percpu objects. For an allocated percpu obj,
the reg type is 'PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU'.

The return type for these two re-purposed helpera is
'PTR_TO_MEM | MEM_RCU | MEM_ALLOC'.
The MEM_ALLOC allows that the per-cpu data can be read and written.

Since the memory allocator bpf_mem_alloc() returns
a ptr to a percpu ptr for percpu data, the first argument
of bpf_this_cpu_ptr() and bpf_per_cpu_ptr() is patched
with a dereference before passing to the helper func.

Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230827152749.1997202-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 36d8bdf7 27-Aug-2023 Yonghong Song <yonghong.song@linux.dev>

bpf: Add alloc/xchg/direct_access support for local percpu kptr

Add two new kfunc's, bpf_percpu_obj_new_impl() and
bpf_percpu_obj_drop_impl(), to allocate a percpu obj.
Two functions are very similar to bpf_obj_new_impl()
and bpf_obj_drop_impl(). The major difference is related
to percpu handling.

bpf_rcu_read_lock()
struct val_t __percpu_kptr *v = map_val->percpu_data;
...
bpf_rcu_read_unlock()

For a percpu data map_val like above 'v', the reg->type
is set as
PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU
if inside rcu critical section.

MEM_RCU marking here is similar to NON_OWN_REF as 'v'
is not a owning reference. But NON_OWN_REF is
trusted and typically inside the spinlock while
MEM_RCU is under rcu read lock. RCU is preferred here
since percpu data structures mean potential concurrent
access into its contents.

Also, bpf_percpu_obj_new_impl() is restricted such that
no pointers or special fields are allowed. Therefore,
the bpf_list_head and bpf_rb_root will not be supported
in this patch set to avoid potential memory leak issue
due to racing between bpf_obj_free_fields() and another
bpf_kptr_xchg() moving an allocated object to
bpf_list_head and bpf_rb_root.

Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230827152744.1996739-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 82995598 09-Oct-2023 David Vernet <void@manifault.com>

bpf: Fix verifier log for async callback return values

The verifier, as part of check_return_code(), verifies that async
callbacks such as from e.g. timers, will return 0. It does this by
correctly checking that R0->var_off is in tnum_const(0), which
effectively checks that it's in a range of 0. If this condition fails,
however, it prints an error message which says that the value should
have been in (0x0; 0x1). This results in possibly confusing output such
as the following in which an async callback returns 1:

At async callback the register R0 has value (0x1; 0x0) should have been in (0x0; 0x1)

The fix is easy -- we should just pass the tnum_const(0) as the correct
range to verbose_invalid_scalar(), which will then print the following:

At async callback the register R0 has value (0x1; 0x0) should have been in (0x0; 0x0)

Fixes: bfc6bb74e4f1 ("bpf: Implement verifier support for validation of async callbacks.")
Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20231009161414.235829-1-void@manifault.com


# 81335f90 18-Sep-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: unconditionally reset backtrack_state masks on global func exit

In mark_chain_precision() logic, when we reach the entry to a global
func, it is expected that R1-R5 might be still requested to be marked
precise. This would correspond to some integer input arguments being
tracked as precise. This is all expected and handled as a special case.

What's not expected is that we'll leave backtrack_state structure with
some register bits set. This is because for subsequent precision
propagations backtrack_state is reused without clearing masks, as all
code paths are carefully written in a way to leave empty backtrack_state
with zeroed out masks, for speed.

The fix is trivial, we always clear register bit in the register mask, and
then, optionally, set reg->precise if register is SCALAR_VALUE type.

Reported-by: Chris Mason <clm@meta.com>
Fixes: be2ef8161572 ("bpf: allow precision tracking for programs with subprogs")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230918210110.2241458-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 5861d1e8 21-Aug-2023 Dave Marchevsky <davemarchevsky@fb.com>

bpf: Allow bpf_spin_{lock,unlock} in sleepable progs

Commit 9e7a4d9831e8 ("bpf: Allow LSM programs to use bpf spin locks")
disabled bpf_spin_lock usage in sleepable progs, stating:

Sleepable LSM programs can be preempted which means that allowng spin
locks will need more work (disabling preemption and the verifier
ensuring that no sleepable helpers are called when a spin lock is
held).

This patch disables preemption before grabbing bpf_spin_lock. The second
requirement above "no sleepable helpers are called when a spin lock is
held" is implicitly enforced by current verifier logic due to helper
calls in spin_lock CS being disabled except for a few exceptions, none
of which sleep.

Due to above preemption changes, bpf_spin_lock CS can also be considered
a RCU CS, so verifier's in_rcu_cs check is modified to account for this.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230821193311.3290257-7-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 0816b8c6 21-Aug-2023 Dave Marchevsky <davemarchevsky@fb.com>

bpf: Consider non-owning refs to refcounted nodes RCU protected

An earlier patch in the series ensures that the underlying memory of
nodes with bpf_refcount - which can have multiple owners - is not reused
until RCU grace period has elapsed. This prevents
use-after-free with non-owning references that may point to
recently-freed memory. While RCU read lock is held, it's safe to
dereference such a non-owning ref, as by definition RCU GP couldn't have
elapsed and therefore underlying memory couldn't have been reused.

From the perspective of verifier "trustedness" non-owning refs to
refcounted nodes are now trusted only in RCU CS and therefore should no
longer pass is_trusted_reg, but rather is_rcu_reg. Let's mark them
MEM_RCU in order to reflect this new state.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230821193311.3290257-6-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# ba2464c8 21-Aug-2023 Dave Marchevsky <davemarchevsky@fb.com>

bpf: Reenable bpf_refcount_acquire

Now that all reported issues are fixed, bpf_refcount_acquire can be
turned back on. Also reenable all bpf_refcount-related tests which were
disabled.

This a revert of:
* commit f3514a5d6740 ("selftests/bpf: Disable newly-added 'owner' field test until refcount re-enabled")
* commit 7deca5eae833 ("bpf: Disable bpf_refcount_acquire kfunc calls until race conditions are fixed")

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230821193311.3290257-5-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# f0d991a0 21-Aug-2023 Dave Marchevsky <davemarchevsky@fb.com>

bpf: Ensure kptr_struct_meta is non-NULL for collection insert and refcount_acquire

It's straightforward to prove that kptr_struct_meta must be non-NULL for
any valid call to these kfuncs:

* btf_parse_struct_metas in btf.c creates a btf_struct_meta for any
struct in user BTF with a special field (e.g. bpf_refcount,
{rb,list}_node). These are stored in that BTF's struct_meta_tab.

* __process_kf_arg_ptr_to_graph_node in verifier.c ensures that nodes
have {rb,list}_node field and that it's at the correct offset.
Similarly, check_kfunc_args ensures bpf_refcount field existence for
node param to bpf_refcount_acquire.

* So a btf_struct_meta must have been created for the struct type of
node param to these kfuncs

* That BTF and its struct_meta_tab are guaranteed to still be around.
Any arbitrary {rb,list} node the BPF program interacts with either:
came from bpf_obj_new or a collection removal kfunc in the same
program, in which case the BTF is associated with the program and
still around; or came from bpf_kptr_xchg, in which case the BTF was
associated with the map and is still around

Instead of silently continuing with NULL struct_meta, which caused
confusing bugs such as those addressed by commit 2140a6e3422d ("bpf: Set
kptr_struct_meta for node param to list and rbtree insert funcs"), let's
error out. Then, at runtime, we can confidently say that the
implementations of these kfuncs were given a non-NULL kptr_struct_meta,
meaning that special-field-specific functionality like
bpf_obj_free_fields and the bpf_obj_drop change introduced later in this
series are guaranteed to execute.

This patch doesn't change functionality, just makes it easier to reason
about existing functionality.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230821193311.3290257-2-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# d75e30dd 22-Aug-2023 Yafang Shao <laoar.shao@gmail.com>

bpf: Fix issue in verifying allow_ptr_leaks

After we converted the capabilities of our networking-bpf program from
cap_sys_admin to cap_net_admin+cap_bpf, our networking-bpf program
failed to start. Because it failed the bpf verifier, and the error log
is "R3 pointer comparison prohibited".

A simple reproducer as follows,

SEC("cls-ingress")
int ingress(struct __sk_buff *skb)
{
struct iphdr *iph = (void *)(long)skb->data + sizeof(struct ethhdr);

if ((long)(iph + 1) > (long)skb->data_end)
return TC_ACT_STOLEN;
return TC_ACT_OK;
}

Per discussion with Yonghong and Alexei [1], comparison of two packet
pointers is not a pointer leak. This patch fixes it.

Our local kernel is 6.1.y and we expect this fix to be backported to
6.1.y, so stable is CCed.

[1]. https://lore.kernel.org/bpf/CAADnVQ+Nmspr7Si+pxWn8zkE7hX-7s93ugwC+94aXSy4uQ9vBg@mail.gmail.com/

Suggested-by: Yonghong Song <yonghong.song@linux.dev>
Suggested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230823020703.3790-2-laoar.shao@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 6785b2ed 22-Aug-2023 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Fix check_func_arg_reg_off bug for graph root/node

The commit being fixed introduced a hunk into check_func_arg_reg_off
that bypasses reg->off == 0 enforcement when offset points to a graph
node or root. This might possibly be done for treating bpf_rbtree_remove
and others as KF_RELEASE and then later check correct reg->off in helper
argument checks.

But this is not the case, those helpers are already not KF_RELEASE and
permit non-zero reg->off and verify it later to match the subobject in
BTF type.

However, this logic leads to bpf_obj_drop permitting free of register
arguments with non-zero offset when they point to a graph root or node
within them, which is not ok.

For instance:

struct foo {
int i;
int j;
struct bpf_rb_node node;
};

struct foo *f = bpf_obj_new(typeof(*f));
if (!f) ...
bpf_obj_drop(f); // OK
bpf_obj_drop(&f->i); // still ok from verifier PoV
bpf_obj_drop(&f->node); // Not OK, but permitted right now

Fix this by dropping the whole part of code altogether.

Fixes: 6a3cd3318ff6 ("bpf: Migrate release_on_unlock logic to non-owning ref semantics")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230822175140.1317749-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# ab6c637a 21-Aug-2023 Yonghong Song <yonghong.song@linux.dev>

bpf: Fix a bpf_kptr_xchg() issue with local kptr

When reviewing local percpu kptr support, Alexei discovered a bug
wherea bpf_kptr_xchg() may succeed even if the map value kptr type and
locally allocated obj type do not match ([1]). Missed struct btf_id
comparison is the reason for the bug. This patch added such struct btf_id
comparison and will flag verification failure if types do not match.

[1] https://lore.kernel.org/bpf/20230819002907.io3iphmnuk43xblu@macbook-pro-8.dhcp.thefacebook.com/#t

Reported-by: Alexei Starovoitov <ast@kernel.org>
Fixes: 738c96d5e2e3 ("bpf: Allow local kptrs to be exchanged via bpf_kptr_xchg")
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230822050053.2886960-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# db2baf82 07-Aug-2023 Yonghong Song <yonghong.song@linux.dev>

bpf: Fix an incorrect verification success with movsx insn

syzbot reports a verifier bug which triggers a runtime panic.
The test bpf program is:
0: (62) *(u32 *)(r10 -8) = 553656332
1: (bf) r1 = (s16)r10
2: (07) r1 += -8
3: (b7) r2 = 3
4: (bd) if r2 <= r1 goto pc+0
5: (85) call bpf_trace_printk#-138320
6: (b7) r0 = 0
7: (95) exit

At insn 1, the current implementation keeps 'r1' as a frame pointer,
which caused later bpf_trace_printk helper call crash since frame
pointer address is not valid any more. Note that at insn 4,
the 'pointer vs. scalar' comparison is allowed for privileged
prog run.

To fix the problem with above insn 1, the fix in the patch adopts
similar pattern to existing 'R1 = (u32) R2' handling. For unprivileged
prog run, verification will fail with 'R<num> sign-extension part of pointer'.
For privileged prog run, the dst_reg 'r1' will be marked as
an unknown scalar, so later 'bpf_trace_pointk' helper will complain
since it expected certain pointers.

Reported-by: syzbot+d61b595e9205573133b3@syzkaller.appspotmail.com
Fixes: 8100928c8814 ("bpf: Support new sign-extension mov insns")
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20230807175721.671696-1-yonghong.song@linux.dev
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>


# 680ee045 02-Aug-2023 Jakub Kicinski <kuba@kernel.org>

net: invert the netdevice.h vs xdp.h dependency

xdp.h is far more specific and is included in only 67 other
files vs netdevice.h's 1538 include sites.
Make xdp.h include netdevice.h, instead of the other way around.
This decreases the incremental allmodconfig builds size when
xdp.h is touched from 5947 to 662 objects.

Move bpf_prog_run_xdp() to xdp.h, seems appropriate and filter.h
is a mega-header in its own right so it's nice to avoid xdp.h
getting included there as well.

The only unfortunate part is that the typedef for xdp_features_t
has to move to netdevice.h, since its embedded in struct netdevice.

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Acked-by: Jesper Dangaard Brouer <hawk@kernel.org>
Link: https://lore.kernel.org/r/20230803010230.1755386-4-kuba@kernel.org
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>


# 09fedc73 27-Jul-2023 Yonghong Song <yonghong.song@linux.dev>

bpf: Fix compilation warning with -Wparentheses

The kernel test robot reported compilation warnings when -Wparentheses is
added to KBUILD_CFLAGS with gcc compiler. The following is the error message:

.../bpf-next/kernel/bpf/verifier.c: In function ‘coerce_reg_to_size_sx’:
.../bpf-next/kernel/bpf/verifier.c:5901:14:
error: suggest parentheses around comparison in operand of ‘==’ [-Werror=parentheses]
if (s64_max >= 0 == s64_min >= 0) {
~~~~~~~~^~~~
.../bpf-next/kernel/bpf/verifier.c: In function ‘coerce_subreg_to_size_sx’:
.../bpf-next/kernel/bpf/verifier.c:5965:14:
error: suggest parentheses around comparison in operand of ‘==’ [-Werror=parentheses]
if (s32_min >= 0 == s32_max >= 0) {
~~~~~~~~^~~~

To fix the issue, add proper parentheses for the above '>=' condition
to silence the warning/error.

I tried a few clang compilers like clang16 and clang18 and they do not emit
such warnings with -Wparentheses.

Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202307281133.wi0c4SqG-lkp@intel.com/
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20230728055740.2284534-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 4cd58e9a 27-Jul-2023 Yonghong Song <yonghong.song@linux.dev>

bpf: Support new 32bit offset jmp instruction

Add interpreter/jit/verifier support for 32bit offset jmp instruction.
If a conditional jmp instruction needs more than 16bit offset,
it can be simulated with a conditional jmp + a 32bit jmp insn.

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230728011231.3716103-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# ec0e2da9 27-Jul-2023 Yonghong Song <yonghong.song@linux.dev>

bpf: Support new signed div/mod instructions.

Add interpreter/jit support for new signed div/mod insns.
The new signed div/mod instructions are encoded with
unsigned div/mod instructions plus insn->off == 1.
Also add basic verifier support to ensure new insns get
accepted.

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230728011219.3714605-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 0845c3db 27-Jul-2023 Yonghong Song <yonghong.song@linux.dev>

bpf: Support new unconditional bswap instruction

The existing 'be' and 'le' insns will do conditional bswap
depends on host endianness. This patch implements
unconditional bswap insns.

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230728011213.3712808-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 1f1e864b 27-Jul-2023 Yonghong Song <yonghong.song@linux.dev>

bpf: Handle sign-extenstin ctx member accesses

Currently, if user accesses a ctx member with signed types,
the compiler will generate an unsigned load followed by
necessary left and right shifts.

With the introduction of sign-extension load, compiler may
just emit a ldsx insn instead. Let us do a final movsx sign
extension to the final unsigned ctx load result to
satisfy original sign extension requirement.

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230728011207.3712528-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 8100928c 27-Jul-2023 Yonghong Song <yonghong.song@linux.dev>

bpf: Support new sign-extension mov insns

Add interpreter/jit support for new sign-extension mov insns.
The original 'MOV' insn is extended to support reg-to-reg
signed version for both ALU and ALU64 operations. For ALU mode,
the insn->off value of 8 or 16 indicates sign-extension
from 8- or 16-bit value to 32-bit value. For ALU64 mode,
the insn->off value of 8/16/32 indicates sign-extension
from 8-, 16- or 32-bit value to 64-bit value.

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230728011202.3712300-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 1f9a1ea8 27-Jul-2023 Yonghong Song <yonghong.song@linux.dev>

bpf: Support new sign-extension load insns

Add interpreter/jit support for new sign-extension load insns
which adds a new mode (BPF_MEMSX).
Also add verifier support to recognize these insns and to
do proper verification with new insns. In verifier, besides
to deduce proper bounds for the dst_reg, probed memory access
is also properly handled.

Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230728011156.3711870-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 5ba190c2 19-Jul-2023 Anton Protopopov <aspsk@isovalent.com>

bpf: consider CONST_PTR_TO_MAP as trusted pointer to struct bpf_map

Add the BTF id of struct bpf_map to the reg2btf_ids array. This makes the
values of the CONST_PTR_TO_MAP type to be considered as trusted by kfuncs.
This, in turn, allows users to execute trusted kfuncs which accept `struct
bpf_map *` arguments from non-tracing programs.

While exporting the btf_bpf_map_id variable, save some bytes by defining
it as BTF_ID_LIST_GLOBAL_SINGLE (which is u32[1]) and not as BTF_ID_LIST
(which is u32[64]).

Signed-off-by: Anton Protopopov <aspsk@isovalent.com>
Link: https://lore.kernel.org/r/20230719092952.41202-3-aspsk@isovalent.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 831deb29 19-Jul-2023 Anton Protopopov <aspsk@isovalent.com>

bpf: consider types listed in reg2btf_ids as trusted

The reg2btf_ids array contains a list of types for which we can (and need)
to find a corresponding static BTF id. All the types in the list can be
considered as trusted for purposes of kfuncs.

Signed-off-by: Anton Protopopov <aspsk@isovalent.com>
Link: https://lore.kernel.org/r/20230719092952.41202-2-aspsk@isovalent.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 7ce4dc3e 12-Jul-2023 Yafang Shao <laoar.shao@gmail.com>

bpf: Fix an error around PTR_UNTRUSTED

Per discussion with Alexei, the PTR_UNTRUSTED flag should not been
cleared when we start to walk a new struct, because the struct in
question may be a struct nested in a union. We should also check and set
this flag before we walk its each member, in case itself is a union.
We will clear this flag if the field is BTF_TYPE_SAFE_RCU_OR_NULL.

Fixes: 6fcd486b3a0a ("bpf: Refactor RCU enforcement in the verifier.")
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Link: https://lore.kernel.org/r/20230713025642.27477-2-laoar.shao@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# f42bcd16 11-Jul-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: teach verifier actual bounds of bpf_get_smp_processor_id() result

bpf_get_smp_processor_id() helper returns current CPU on which BPF
program runs. It can't return value that is bigger than maximum allowed
number of CPUs (minus one, due to zero indexing). Teach BPF verifier to
recognize that. This makes it possible to use bpf_get_smp_processor_id()
result to index into arrays without extra checks, as demonstrated in
subsequent selftests/bpf patch.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230711232400.1658562-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# b5e9ad52 17-Jul-2023 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Repeat check_max_stack_depth for async callbacks

While the check_max_stack_depth function explores call chains emanating
from the main prog, which is typically enough to cover all possible call
chains, it doesn't explore those rooted at async callbacks unless the
async callback will have been directly called, since unlike non-async
callbacks it skips their instruction exploration as they don't
contribute to stack depth.

It could be the case that the async callback leads to a callchain which
exceeds the stack depth, but this is never reachable while only
exploring the entry point from main subprog. Hence, repeat the check for
the main subprog *and* all async callbacks marked by the symbolic
execution pass of the verifier, as execution of the program may begin at
any of them.

Consider functions with following stack depths:
main: 256
async: 256
foo: 256

main:
rX = async
bpf_timer_set_callback(...)

async:
foo()

Here, async is not descended as it does not contribute to stack depth of
main (since it is referenced using bpf_pseudo_func and not
bpf_pseudo_call). However, when async is invoked asynchronously, it will
end up breaching the MAX_BPF_STACK limit by calling foo.

Hence, in addition to main, we also need to explore call chains
beginning at all async callback subprogs in a program.

Fixes: 7ddc80a476c2 ("bpf: Teach stack depth check about async callbacks.")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230717161530.1238-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# ba7b3e7d 17-Jul-2023 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Fix subprog idx logic in check_max_stack_depth

The assignment to idx in check_max_stack_depth happens once we see a
bpf_pseudo_call or bpf_pseudo_func. This is not an issue as the rest of
the code performs a few checks and then pushes the frame to the frame
stack, except the case of async callbacks. If the async callback case
causes the loop iteration to be skipped, the idx assignment will be
incorrect on the next iteration of the loop. The value stored in the
frame stack (as the subprogno of the current subprog) will be incorrect.

This leads to incorrect checks and incorrect tail_call_reachable
marking. Save the target subprog in a new variable and only assign to
idx once we are done with the is_async_cb check which may skip pushing
of frame to the frame stack and subsequent stack depth checks and tail
call markings.

Fixes: 7ddc80a476c2 ("bpf: Teach stack depth check about async callbacks.")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230717161530.1238-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 5415ccd5 05-Jul-2023 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Fix max stack depth check for async callbacks

The check_max_stack_depth pass happens after the verifier's symbolic
execution, and attempts to walk the call graph of the BPF program,
ensuring that the stack usage stays within bounds for all possible call
chains. There are two cases to consider: bpf_pseudo_func and
bpf_pseudo_call. In the former case, the callback pointer is loaded into
a register, and is assumed that it is passed to some helper later which
calls it (however there is no way to be sure), but the check remains
conservative and accounts the stack usage anyway. For this particular
case, asynchronous callbacks are skipped as they execute asynchronously
when their corresponding event fires.

The case of bpf_pseudo_call is simpler and we know that the call is
definitely made, hence the stack depth of the subprog is accounted for.

However, the current check still skips an asynchronous callback even if
a bpf_pseudo_call was made for it. This is erroneous, as it will miss
accounting for the stack usage of the asynchronous callback, which can
be used to breach the maximum stack depth limit.

Fix this by only skipping asynchronous callbacks when the instruction is
not a pseudo call to the subprog.

Fixes: 7ddc80a476c2 ("bpf: Teach stack depth check about async callbacks.")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230705144730.235802-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 1ffc85d9 13-Jun-2023 Eduard Zingerman <eddyz87@gmail.com>

bpf: Verify scalar ids mapping in regsafe() using check_ids()

Make sure that the following unsafe example is rejected by verifier:

1: r9 = ... some pointer with range X ...
2: r6 = ... unbound scalar ID=a ...
3: r7 = ... unbound scalar ID=b ...
4: if (r6 > r7) goto +1
5: r6 = r7
6: if (r6 > X) goto ...
--- checkpoint ---
7: r9 += r7
8: *(u64 *)r9 = Y

This example is unsafe because not all execution paths verify r7 range.
Because of the jump at (4) the verifier would arrive at (6) in two states:
I. r6{.id=b}, r7{.id=b} via path 1-6;
II. r6{.id=a}, r7{.id=b} via path 1-4, 6.

Currently regsafe() does not call check_ids() for scalar registers,
thus from POV of regsafe() states (I) and (II) are identical. If the
path 1-6 is taken by verifier first, and checkpoint is created at (6)
the path [1-4, 6] would be considered safe.

Changes in this commit:
- check_ids() is modified to disallow mapping multiple old_id to the
same cur_id.
- check_scalar_ids() is added, unlike check_ids() it treats ID zero as
a unique scalar ID.
- check_scalar_ids() needs to generate temporary unique IDs, field
'tmp_id_gen' is added to bpf_verifier_env::idmap_scratch to
facilitate this.
- regsafe() is updated to:
- use check_scalar_ids() for precise scalar registers.
- compare scalar registers using memcmp only for explore_alu_limits
branch. This simplifies control flow for scalar case, and has no
measurable performance impact.
- check_alu_op() is updated to avoid generating bpf_reg_state::id for
constant scalar values when processing BPF_MOV. ID is needed to
propagate range information for identical values, but there is
nothing to propagate for constants.

Fixes: 75748837b7e5 ("bpf: Propagate scalar ranges through register assignments.")
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20230613153824.3324830-4-eddyz87@gmail.com


# 904e6ddf 13-Jun-2023 Eduard Zingerman <eddyz87@gmail.com>

bpf: Use scalar ids in mark_chain_precision()

Change mark_chain_precision() to track precision in situations
like below:

r2 = unknown value
...
--- state #0 ---
...
r1 = r2 // r1 and r2 now share the same ID
...
--- state #1 {r1.id = A, r2.id = A} ---
...
if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1
...
--- state #2 {r1.id = A, r2.id = A} ---
r3 = r10
r3 += r1 // need to mark both r1 and r2

At the beginning of the processing of each state, ensure that if a
register with a scalar ID is marked as precise, all registers sharing
this ID are also marked as precise.

This property would be used by a follow-up change in regsafe().

Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20230613153824.3324830-2-eddyz87@gmail.com


# 0108a4e9 12-Jun-2023 Krister Johansen <kjlx@templeofstupid.com>

bpf: ensure main program has an extable

When subprograms are in use, the main program is not jit'd after the
subprograms because jit_subprogs sets a value for prog->bpf_func upon
success. Subsequent calls to the JIT are bypassed when this value is
non-NULL. This leads to a situation where the main program and its
func[0] counterpart are both in the bpf kallsyms tree, but only func[0]
has an extable. Extables are only created during JIT. Now there are
two nearly identical program ksym entries in the tree, but only one has
an extable. Depending upon how the entries are placed, there's a chance
that a fault will call search_extable on the aux with the NULL entry.

Since jit_subprogs already copies state from func[0] to the main
program, include the extable pointer in this state duplication.
Additionally, ensure that the copy of the main program in func[0] is not
added to the bpf_prog_kallsyms table. Instead, let the main program get
added later in bpf_prog_load(). This ensures there is only a single
copy of the main program in the kallsyms table, and that its tag matches
the tag observed by tooling like bpftool.

Cc: stable@vger.kernel.org
Fixes: 1c2a088a6626 ("bpf: x64: add JIT support for multi-function programs")
Signed-off-by: Krister Johansen <kjlx@templeofstupid.com>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Ilya Leoshkevich <iii@linux.ibm.com>
Tested-by: Ilya Leoshkevich <iii@linux.ibm.com>
Link: https://lore.kernel.org/r/6de9b2f4b4724ef56efbb0339daaa66c8b68b1e7.1686616663.git.kjlx@templeofstupid.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 713274f1 07-Jun-2023 Maxim Mikityanskiy <maxim@isovalent.com>

bpf: Fix verifier id tracking of scalars on spill

The following scenario describes a bug in the verifier where it
incorrectly concludes about equivalent scalar IDs which could lead to
verifier bypass in privileged mode:

1. Prepare a 32-bit rogue number.
2. Put the rogue number into the upper half of a 64-bit register, and
roll a random (unknown to the verifier) bit in the lower half. The
rest of the bits should be zero (although variations are possible).
3. Assign an ID to the register by MOVing it to another arbitrary
register.
4. Perform a 32-bit spill of the register, then perform a 32-bit fill to
another register. Due to a bug in the verifier, the ID will be
preserved, although the new register will contain only the lower 32
bits, i.e. all zeros except one random bit.

At this point there are two registers with different values but the same
ID, which means the integrity of the verifier state has been corrupted.

5. Compare the new 32-bit register with 0. In the branch where it's
equal to 0, the verifier will believe that the original 64-bit
register is also 0, because it has the same ID, but its actual value
still contains the rogue number in the upper half.
Some optimizations of the verifier prevent the actual bypass, so
extra care is needed: the comparison must be between two registers,
and both branches must be reachable (this is why one random bit is
needed). Both branches are still suitable for the bypass.
6. Right shift the original register by 32 bits to pop the rogue number.
7. Use the rogue number as an offset with any pointer. The verifier will
believe that the offset is 0, while in reality it's the given number.

The fix is similar to the 32-bit BPF_MOV handling in check_alu_op for
SCALAR_VALUE. If the spill is narrowing the actual register value, don't
keep the ID, make sure it's reset to 0.

Fixes: 354e8f1970f8 ("bpf: Support <8-byte scalar spill and refill")
Signed-off-by: Maxim Mikityanskiy <maxim@isovalent.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Andrii Nakryiko <andrii@kernel.org> # Checked veristat delta
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20230607123951.558971-2-maxtram95@gmail.com


# 51302c95 02-Jun-2023 David Vernet <void@manifault.com>

bpf: Teach verifier that trusted PTR_TO_BTF_ID pointers are non-NULL

In reg_type_not_null(), we currently assume that a pointer may be NULL
if it has the PTR_MAYBE_NULL modifier, or if it doesn't belong to one of
several base type of pointers that are never NULL-able. For example,
PTR_TO_CTX, PTR_TO_MAP_VALUE, etc.

It turns out that in some cases, PTR_TO_BTF_ID can never be NULL as
well, though we currently don't specify it. For example, if you had the
following program:

SEC("tc")
long example_refcnt_fail(void *ctx)
{
struct bpf_cpumask *mask1, *mask2;

mask1 = bpf_cpumask_create();
mask2 = bpf_cpumask_create();

if (!mask1 || !mask2)
goto error_release;

bpf_cpumask_test_cpu(0, (const struct cpumask *)mask1);
bpf_cpumask_test_cpu(0, (const struct cpumask *)mask2);

error_release:
if (mask1)
bpf_cpumask_release(mask1);
if (mask2)
bpf_cpumask_release(mask2);
return ret;
}

The verifier will incorrectly fail to load the program, thinking
(unintuitively) that we have a possibly-unreleased reference if the mask
is NULL, because we (correctly) don't issue a bpf_cpumask_release() on
the NULL path.

The reason the verifier gets confused is due to the fact that we don't
explicitly tell the verifier that trusted PTR_TO_BTF_ID pointers can
never be NULL. Basically, if we successfully get past the if check
(meaning both pointers go from ptr_or_null_bpf_cpumask to
ptr_bpf_cpumask), the verifier will correctly assume that the references
need to be dropped on any possible branch that leads to program exit.
However, it will _incorrectly_ think that the ptr == NULL branch is
possible, and will erroneously detect it as a branch on which we failed
to drop the reference.

The solution is of course to teach the verifier that trusted
PTR_TO_BTF_ID pointers can never be NULL, so that it doesn't incorrectly
think it's possible for the reference to be present on the ptr == NULL
branch.

A follow-on patch will add a selftest that verifies this behavior.

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230602150112.1494194-1-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 503e4def 27-May-2023 Daniel T. Lee <danieltimlee@gmail.com>

bpf: Replace open code with for allocated object check

>From commit 282de143ead9 ("bpf: Introduce allocated objects support"),
With this allocated object with BPF program, (PTR_TO_BTF_ID | MEM_ALLOC)
has been a way of indicating to check the type is the allocated object.

commit d8939cb0a03c ("bpf: Loosen alloc obj test in verifier's
reg_btf_record")
>From the commit, there has been helper function for checking this, named
type_is_ptr_alloc_obj(). But still, some of the code use open code to
retrieve this info. This commit replaces the open code with the
type_is_alloc(), and the type_is_ptr_alloc_obj() function.

Signed-off-by: Daniel T. Lee <danieltimlee@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20230527122706.59315-1-danieltimlee@gmail.com


# 7793fc3b 01-Jun-2023 Dave Marchevsky <davemarchevsky@fb.com>

bpf: Make bpf_refcount_acquire fallible for non-owning refs

This patch fixes an incorrect assumption made in the original
bpf_refcount series [0], specifically that the BPF program calling
bpf_refcount_acquire on some node can always guarantee that the node is
alive. In that series, the patch adding failure behavior to rbtree_add
and list_push_{front, back} breaks this assumption for non-owning
references.

Consider the following program:

n = bpf_kptr_xchg(&mapval, NULL);
/* skip error checking */

bpf_spin_lock(&l);
if(bpf_rbtree_add(&t, &n->rb, less)) {
bpf_refcount_acquire(n);
/* Failed to add, do something else with the node */
}
bpf_spin_unlock(&l);

It's incorrect to assume that bpf_refcount_acquire will always succeed in this
scenario. bpf_refcount_acquire is being called in a critical section
here, but the lock being held is associated with rbtree t, which isn't
necessarily the lock associated with the tree that the node is already
in. So after bpf_rbtree_add fails to add the node and calls bpf_obj_drop
in it, the program has no ownership of the node's lifetime. Therefore
the node's refcount can be decr'd to 0 at any time after the failing
rbtree_add. If this happens before the refcount_acquire above, the node
might be free'd, and regardless refcount_acquire will be incrementing a
0 refcount.

Later patches in the series exercise this scenario, resulting in the
expected complaint from the kernel (without this patch's changes):

refcount_t: addition on 0; use-after-free.
WARNING: CPU: 1 PID: 207 at lib/refcount.c:25 refcount_warn_saturate+0xbc/0x110
Modules linked in: bpf_testmod(O)
CPU: 1 PID: 207 Comm: test_progs Tainted: G O 6.3.0-rc7-02231-g723de1a718a2-dirty #371
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.15.0-0-g2dd4b9b3f840-prebuilt.qemu.org 04/01/2014
RIP: 0010:refcount_warn_saturate+0xbc/0x110
Code: 6f 64 f6 02 01 e8 84 a3 5c ff 0f 0b eb 9d 80 3d 5e 64 f6 02 00 75 94 48 c7 c7 e0 13 d2 82 c6 05 4e 64 f6 02 01 e8 64 a3 5c ff <0f> 0b e9 7a ff ff ff 80 3d 38 64 f6 02 00 0f 85 6d ff ff ff 48 c7
RSP: 0018:ffff88810b9179b0 EFLAGS: 00010082
RAX: 0000000000000000 RBX: 0000000000000002 RCX: 0000000000000000
RDX: 0000000000000202 RSI: 0000000000000008 RDI: ffffffff857c3680
RBP: ffff88810027d3c0 R08: ffffffff8125f2a4 R09: ffff88810b9176e7
R10: ffffed1021722edc R11: 746e756f63666572 R12: ffff88810027d388
R13: ffff88810027d3c0 R14: ffffc900005fe030 R15: ffffc900005fe048
FS: 00007fee0584a700(0000) GS:ffff88811b280000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005634a96f6c58 CR3: 0000000108ce9002 CR4: 0000000000770ee0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<TASK>
bpf_refcount_acquire_impl+0xb5/0xc0

(rest of output snipped)

The patch addresses this by changing bpf_refcount_acquire_impl to use
refcount_inc_not_zero instead of refcount_inc and marking
bpf_refcount_acquire KF_RET_NULL.

For owning references, though, we know the above scenario is not possible
and thus that bpf_refcount_acquire will always succeed. Some verifier
bookkeeping is added to track "is input owning ref?" for bpf_refcount_acquire
calls and return false from is_kfunc_ret_null for bpf_refcount_acquire on
owning refs despite it being marked KF_RET_NULL.

Existing selftests using bpf_refcount_acquire are modified where
necessary to NULL-check its return value.

[0]: https://lore.kernel.org/bpf/20230415201811.343116-1-davemarchevsky@fb.com/

Fixes: d2dcc67df910 ("bpf: Migrate bpf_rbtree_add and bpf_list_push_{front,back} to possibly fail")
Reported-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230602022647.1571784-5-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 2140a6e3 01-Jun-2023 Dave Marchevsky <davemarchevsky@fb.com>

bpf: Set kptr_struct_meta for node param to list and rbtree insert funcs

In verifier.c, fixup_kfunc_call uses struct bpf_insn_aux_data's
kptr_struct_meta field to pass information about local kptr types to
various helpers and kfuncs at runtime. The recent bpf_refcount series
added a few functions to the set that need this information:

* bpf_refcount_acquire
* Needs to know where the refcount field is in order to increment
* Graph collection insert kfuncs: bpf_rbtree_add, bpf_list_push_{front,back}
* Were migrated to possibly fail by the bpf_refcount series. If
insert fails, the input node is bpf_obj_drop'd. bpf_obj_drop needs
the kptr_struct_meta in order to decr refcount and properly free
special fields.

Unfortunately the verifier handling of collection insert kfuncs was not
modified to actually populate kptr_struct_meta. Accordingly, when the
node input to those kfuncs is passed to bpf_obj_drop, it is done so
without the information necessary to decr refcount.

This patch fixes the issue by populating kptr_struct_meta for those
kfuncs.

Fixes: d2dcc67df910 ("bpf: Migrate bpf_rbtree_add and bpf_list_push_{front,back} to possibly fail")
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230602022647.1571784-3-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# e924e80e 19-May-2023 Aditi Ghag <aditi.ghag@isovalent.com>

bpf: Add kfunc filter function to 'struct btf_kfunc_id_set'

This commit adds the ability to filter kfuncs to certain BPF program
types. This is required to limit bpf_sock_destroy kfunc implemented in
follow-up commits to programs with attach type 'BPF_TRACE_ITER'.

The commit adds a callback filter to 'struct btf_kfunc_id_set'. The
filter has access to the `bpf_prog` construct including its properties
such as `expected_attached_type`.

Signed-off-by: Aditi Ghag <aditi.ghag@isovalent.com>
Link: https://lore.kernel.org/r/20230519225157.760788-7-aditi.ghag@isovalent.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>


# 0613d8ca 18-May-2023 Will Deacon <will@kernel.org>

bpf: Fix mask generation for 32-bit narrow loads of 64-bit fields

A narrow load from a 64-bit context field results in a 64-bit load
followed potentially by a 64-bit right-shift and then a bitwise AND
operation to extract the relevant data.

In the case of a 32-bit access, an immediate mask of 0xffffffff is used
to construct a 64-bit BPP_AND operation which then sign-extends the mask
value and effectively acts as a glorified no-op. For example:

0: 61 10 00 00 00 00 00 00 r0 = *(u32 *)(r1 + 0)

results in the following code generation for a 64-bit field:

ldr x7, [x7] // 64-bit load
mov x10, #0xffffffffffffffff
and x7, x7, x10

Fix the mask generation so that narrow loads always perform a 32-bit AND
operation:

ldr x7, [x7] // 64-bit load
mov w10, #0xffffffff
and w7, w7, w10

Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: John Fastabend <john.fastabend@gmail.com>
Cc: Krzesimir Nowak <krzesimir@kinvolk.io>
Cc: Andrey Ignatov <rdna@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Fixes: 31fd85816dbe ("bpf: permits narrower load from bpf program context fields")
Signed-off-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20230518102528.1341-1-will@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# d84b1a67 15-May-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: fix calculation of subseq_idx during precision backtracking

Subsequent instruction index (subseq_idx) is an index of an instruction
that was verified/executed by verifier after the currently processed
instruction. It is maintained during precision backtracking processing
and is used to detect various subprog calling conditions.

This patch fixes the bug with incorrectly resetting subseq_idx to -1
when going from child state to parent state during backtracking. If we
don't maintain correct subseq_idx we can misidentify subprog calls
leading to precision tracking bugs.

One such case was triggered by test_global_funcs/global_func9 test where
global subprog call happened to be the very last instruction in parent
state, leading to subseq_idx==-1, triggering WARN_ONCE:

[ 36.045754] verifier backtracking bug
[ 36.045764] WARNING: CPU: 13 PID: 2073 at kernel/bpf/verifier.c:3503 __mark_chain_precision+0xcc6/0xde0
[ 36.046819] Modules linked in: aesni_intel(E) crypto_simd(E) cryptd(E) kvm_intel(E) kvm(E) irqbypass(E) i2c_piix4(E) serio_raw(E) i2c_core(E) crc32c_intel)
[ 36.048040] CPU: 13 PID: 2073 Comm: test_progs Tainted: G W OE 6.3.0-07976-g4d585f48ee6b-dirty #972
[ 36.048783] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
[ 36.049648] RIP: 0010:__mark_chain_precision+0xcc6/0xde0
[ 36.050038] Code: 3d 82 c6 05 bb 35 32 02 01 e8 66 21 ec ff 0f 0b b8 f2 ff ff ff e9 30 f5 ff ff 48 c7 c7 f3 61 3d 82 4c 89 0c 24 e8 4a 21 ec ff <0f> 0b 4c0

With the fix precision tracking across multiple states works correctly now:

mark_precise: frame0: last_idx 45 first_idx 38 subseq_idx -1
mark_precise: frame0: regs=r8 stack= before 44: (61) r7 = *(u32 *)(r10 -4)
mark_precise: frame0: regs=r8 stack= before 43: (85) call pc+41
mark_precise: frame0: regs=r8 stack= before 42: (07) r1 += -48
mark_precise: frame0: regs=r8 stack= before 41: (bf) r1 = r10
mark_precise: frame0: regs=r8 stack= before 40: (63) *(u32 *)(r10 -48) = r1
mark_precise: frame0: regs=r8 stack= before 39: (b4) w1 = 0
mark_precise: frame0: regs=r8 stack= before 38: (85) call pc+38
mark_precise: frame0: parent state regs=r8 stack=: R0_w=scalar() R1_w=map_value(off=4,ks=4,vs=8,imm=0) R6=1 R7_w=scalar() R8_r=P0 R10=fpm
mark_precise: frame0: last_idx 36 first_idx 28 subseq_idx 38
mark_precise: frame0: regs=r8 stack= before 36: (18) r1 = 0xffff888104f2ed14
mark_precise: frame0: regs=r8 stack= before 35: (85) call pc+33
mark_precise: frame0: regs=r8 stack= before 33: (18) r1 = 0xffff888104f2ed10
mark_precise: frame0: regs=r8 stack= before 32: (85) call pc+36
mark_precise: frame0: regs=r8 stack= before 31: (07) r1 += -4
mark_precise: frame0: regs=r8 stack= before 30: (bf) r1 = r10
mark_precise: frame0: regs=r8 stack= before 29: (63) *(u32 *)(r10 -4) = r7
mark_precise: frame0: regs=r8 stack= before 28: (4c) w7 |= w0
mark_precise: frame0: parent state regs=r8 stack=: R0_rw=scalar() R6=1 R7_rw=scalar() R8_rw=P0 R10=fp0 fp-48_r=mmmmmmmm
mark_precise: frame0: last_idx 27 first_idx 16 subseq_idx 28
mark_precise: frame0: regs=r8 stack= before 27: (85) call pc+31
mark_precise: frame0: regs=r8 stack= before 26: (b7) r1 = 0
mark_precise: frame0: regs=r8 stack= before 25: (b7) r8 = 0

Note how subseq_idx starts out as -1, then is preserved as 38 and then 28 as we
go up the parent state chain.

Reported-by: Alexei Starovoitov <ast@kernel.org>
Fixes: fde2a3882bd0 ("bpf: support precision propagation in the presence of subprogs")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230515180710.1535018-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 4d585f48 10-May-2023 Dave Marchevsky <davemarchevsky@fb.com>

bpf: Remove anonymous union in bpf_kfunc_call_arg_meta

For kfuncs like bpf_obj_drop and bpf_refcount_acquire - which take
user-defined types as input - the verifier needs to track the specific
type passed in when checking a particular kfunc call. This requires
tracking (btf, btf_id) tuple. In commit 7c50b1cb76ac
("bpf: Add bpf_refcount_acquire kfunc") I added an anonymous union with
inner structs named after the specific kfuncs tracking this information,
with the goal of making it more obvious which kfunc this data was being
tracked / expected to be tracked on behalf of.

In a recent series adding a new user of this tuple, Alexei mentioned
that he didn't like this union usage as it doesn't really help with
readability or bug-proofing ([0]). In an offline convo we agreed to
have the tuple be fields (arg_btf, arg_btf_id), with comments in
bpf_kfunc_call_arg_meta definition enumerating the uses of the fields by
kfunc-specific handling logic. Such a pattern is used by struct
bpf_reg_state without trouble.

Accordingly, this patch removes the anonymous union in favor of arg_btf
and arg_btf_id fields and comment enumerating their current uses. The
patch also removes struct btf_and_id, which was only being used by the
removed union's inner structs.

This is a mechanical change, existing linked_list and rbtree tests will
validate that correct (btf, btf_id) are being passed.

[0]: https://lore.kernel.org/bpf/20230505021707.vlyiwy57vwxglbka@dhcp-172-26-102-232.dhcp.thefacebook.com

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230510213047.1633612-1-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 2012c867 05-May-2023 Daniel Rosenberg <drosen@google.com>

bpf: verifier: Accept dynptr mem as mem in helpers

This allows using memory retrieved from dynptrs with helper functions
that accept ARG_PTR_TO_MEM. For instance, results from bpf_dynptr_data
can be passed along to bpf_strncmp.

Signed-off-by: Daniel Rosenberg <drosen@google.com>
Link: https://lore.kernel.org/r/20230506013134.2492210-5-drosen@google.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 3bda08b6 05-May-2023 Daniel Rosenberg <drosen@google.com>

bpf: Allow NULL buffers in bpf_dynptr_slice(_rw)

bpf_dynptr_slice(_rw) uses a user provided buffer if it can not provide
a pointer to a block of contiguous memory. This buffer is unused in the
case of local dynptrs, and may be unused in other cases as well. There
is no need to require the buffer, as the kfunc can just return NULL if
it was needed and not provided.

This adds another kfunc annotation, __opt, which combines with __sz and
__szk to allow the buffer associated with the size to be NULL. If the
buffer is NULL, the verifier does not check that the buffer is of
sufficient size.

Signed-off-by: Daniel Rosenberg <drosen@google.com>
Link: https://lore.kernel.org/r/20230506013134.2492210-2-drosen@google.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# fde2a388 04-May-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: support precision propagation in the presence of subprogs

Add support precision backtracking in the presence of subprogram frames in
jump history.

This means supporting a few different kinds of subprogram invocation
situations, all requiring a slightly different handling in precision
backtracking handling logic:
- static subprogram calls;
- global subprogram calls;
- callback-calling helpers/kfuncs.

For each of those we need to handle a few precision propagation cases:
- what to do with precision of subprog returns (r0);
- what to do with precision of input arguments;
- for all of them callee-saved registers in caller function should be
propagated ignoring subprog/callback part of jump history.

N.B. Async callback-calling helpers (currently only
bpf_timer_set_callback()) are transparent to all this because they set
a separate async callback environment and thus callback's history is not
shared with main program's history. So as far as all the changes in this
commit goes, such helper is just a regular helper.

Let's look at all these situation in more details. Let's start with
static subprogram being called, using an exxerpt of a simple main
program and its static subprog, indenting subprog's frame slightly to
make everything clear.

frame 0 frame 1 precision set
======= ======= =============

9: r6 = 456;
10: r1 = 123; fr0: r6
11: call pc+10; fr0: r1, r6
22: r0 = r1; fr0: r6; fr1: r1
23: exit fr0: r6; fr1: r0
12: r1 = <map_pointer> fr0: r0, r6
13: r1 += r0; fr0: r0, r6
14: r1 += r6; fr0: r6
15: exit

As can be seen above main function is passing 123 as single argument to
an identity (`return x;`) subprog. Returned value is used to adjust map
pointer offset, which forces r0 to be marked as precise. Then
instruction #14 does the same for callee-saved r6, which will have to be
backtracked all the way to instruction #9. For brevity, precision sets
for instruction #13 and #14 are combined in the diagram above.

First, for subprog calls, r0 returned from subprog (in frame 0) has to
go into subprog's frame 1, and should be cleared from frame 0. So we go
back into subprog's frame knowing we need to mark r0 precise. We then
see that insn #22 sets r0 from r1, so now we care about marking r1
precise. When we pop up from subprog's frame back into caller at
insn #11 we keep r1, as it's an argument-passing register, so we eventually
find `10: r1 = 123;` and satify precision propagation chain for insn #13.

This example demonstrates two sets of rules:
- r0 returned after subprog call has to be moved into subprog's r0 set;
- *static* subprog arguments (r1-r5) are moved back to caller precision set.

Let's look at what happens with callee-saved precision propagation. Insn #14
mark r6 as precise. When we get into subprog's frame, we keep r6 in
frame 0's precision set *only*. Subprog itself has its own set of
independent r6-r10 registers and is not affected. When we eventually
made our way out of subprog frame we keep r6 in precision set until we
reach `9: r6 = 456;`, satisfying propagation. r6-r10 propagation is
perhaps the simplest aspect, it always stays in its original frame.

That's pretty much all we have to do to support precision propagation
across *static subprog* invocation.

Let's look at what happens when we have global subprog invocation.

frame 0 frame 1 precision set
======= ======= =============

9: r6 = 456;
10: r1 = 123; fr0: r6
11: call pc+10; # global subprog fr0: r6
12: r1 = <map_pointer> fr0: r0, r6
13: r1 += r0; fr0: r0, r6
14: r1 += r6; fr0: r6;
15: exit

Starting from insn #13, r0 has to be precise. We backtrack all the way
to insn #11 (call pc+10) and see that subprog is global, so was already
validated in isolation. As opposed to static subprog, global subprog
always returns unknown scalar r0, so that satisfies precision
propagation and we drop r0 from precision set. We are done for insns #13.

Now for insn #14. r6 is in precision set, we backtrack to `call pc+10;`.
Here we need to recognize that this is effectively both exit and entry
to global subprog, which means we stay in caller's frame. So we carry on
with r6 still in precision set, until we satisfy it at insn #9. The only
hard part with global subprogs is just knowing when it's a global func.

Lastly, callback-calling helpers and kfuncs do simulate subprog calls,
so jump history will have subprog instructions in between caller
program's instructions, but the rules of propagating r0 and r1-r5
differ, because we don't actually directly call callback. We actually
call helper/kfunc, which at runtime will call subprog, so the only
difference between normal helper/kfunc handling is that we need to make
sure to skip callback simulatinog part of jump history.
Let's look at an example to make this clearer.

frame 0 frame 1 precision set
======= ======= =============

8: r6 = 456;
9: r1 = 123; fr0: r6
10: r2 = &callback; fr0: r6
11: call bpf_loop; fr0: r6
22: r0 = r1; fr0: r6 fr1:
23: exit fr0: r6 fr1:
12: r1 = <map_pointer> fr0: r0, r6
13: r1 += r0; fr0: r0, r6
14: r1 += r6; fr0: r6;
15: exit

Again, insn #13 forces r0 to be precise. As soon as we get to `23: exit`
we see that this isn't actually a static subprog call (it's `call
bpf_loop;` helper call instead). So we clear r0 from precision set.

For callee-saved register, there is no difference: it stays in frame 0's
precision set, we go through insn #22 and #23, ignoring them until we
get back to caller frame 0, eventually satisfying precision backtrack
logic at insn #8 (`r6 = 456;`).

Assuming callback needed to set r0 as precise at insn #23, we'd
backtrack to insn #22, switching from r0 to r1, and then at the point
when we pop back to frame 0 at insn #11, we'll clear r1-r5 from
precision set, as we don't really do a subprog call directly, so there
is no input argument precision propagation.

That's pretty much it. With these changes, it seems like the only still
unsupported situation for precision backpropagation is the case when
program is accessing stack through registers other than r10. This is
still left as unsupported (though rare) case for now.

As for results. For selftests, few positive changes for bigger programs,
cls_redirect in dynptr variant benefitting the most:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results.csv ~/subprog-precise-after-results.csv -f @veristat.cfg -e file,prog,insns -f 'insns_diff!=0'
File Program Insns (A) Insns (B) Insns (DIFF)
---------------------------------------- ------------- --------- --------- ----------------
pyperf600_bpf_loop.bpf.linked1.o on_event 2060 2002 -58 (-2.82%)
test_cls_redirect_dynptr.bpf.linked1.o cls_redirect 15660 2914 -12746 (-81.39%)
test_cls_redirect_subprogs.bpf.linked1.o cls_redirect 61620 59088 -2532 (-4.11%)
xdp_synproxy_kern.bpf.linked1.o syncookie_tc 109980 86278 -23702 (-21.55%)
xdp_synproxy_kern.bpf.linked1.o syncookie_xdp 97716 85147 -12569 (-12.86%)

Cilium progress don't really regress. They don't use subprogs and are
mostly unaffected, but some other fixes and improvements could have
changed something. This doesn't appear to be the case:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-cilium.csv ~/subprog-precise-after-results-cilium.csv -e file,prog,insns -f 'insns_diff!=0'
File Program Insns (A) Insns (B) Insns (DIFF)
------------- ------------------------------ --------- --------- ------------
bpf_host.o tail_nodeport_nat_ingress_ipv6 4983 5003 +20 (+0.40%)
bpf_lxc.o tail_nodeport_nat_ingress_ipv6 4983 5003 +20 (+0.40%)
bpf_overlay.o tail_nodeport_nat_ingress_ipv6 4983 5003 +20 (+0.40%)
bpf_xdp.o tail_handle_nat_fwd_ipv6 12475 12504 +29 (+0.23%)
bpf_xdp.o tail_nodeport_nat_ingress_ipv6 6363 6371 +8 (+0.13%)

Looking at (somewhat anonymized) Meta production programs, we see mostly
insignificant variation in number of instructions, with one program
(syar_bind6_protect6) benefitting the most at -17%.

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-fbcode.csv ~/subprog-precise-after-results-fbcode.csv -e prog,insns -f 'insns_diff!=0'
Program Insns (A) Insns (B) Insns (DIFF)
------------------------ --------- --------- ----------------
on_request_context_event 597 585 -12 (-2.01%)
read_async_py_stack 43789 43657 -132 (-0.30%)
read_sync_py_stack 35041 37599 +2558 (+7.30%)
rrm_usdt 946 940 -6 (-0.63%)
sysarmor_inet6_bind 28863 28249 -614 (-2.13%)
sysarmor_inet_bind 28845 28240 -605 (-2.10%)
syar_bind4_protect4 154145 147640 -6505 (-4.22%)
syar_bind6_protect6 165242 137088 -28154 (-17.04%)
syar_task_exit_setgid 21289 19720 -1569 (-7.37%)
syar_task_exit_setuid 21290 19721 -1569 (-7.37%)
do_uprobe 19967 19413 -554 (-2.77%)
tw_twfw_ingress 215877 204833 -11044 (-5.12%)
tw_twfw_tc_in 215877 204833 -11044 (-5.12%)

But checking duration (wall clock) differences, that is the actual time taken
by verifier to validate programs, we see a sometimes dramatic improvements, all
the way to about 16x improvements:

[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-meta.csv ~/subprog-precise-after-results-meta.csv -e prog,duration -s duration_diff^ | head -n20
Program Duration (us) (A) Duration (us) (B) Duration (us) (DIFF)
---------------------------------------- ----------------- ----------------- --------------------
tw_twfw_ingress 4488374 272836 -4215538 (-93.92%)
tw_twfw_tc_in 4339111 268175 -4070936 (-93.82%)
tw_twfw_egress 3521816 270751 -3251065 (-92.31%)
tw_twfw_tc_eg 3472878 284294 -3188584 (-91.81%)
balancer_ingress 343119 291391 -51728 (-15.08%)
syar_bind6_protect6 78992 64782 -14210 (-17.99%)
ttls_tc_ingress 11739 8176 -3563 (-30.35%)
kprobe__security_inode_link 13864 11341 -2523 (-18.20%)
read_sync_py_stack 21927 19442 -2485 (-11.33%)
read_async_py_stack 30444 28136 -2308 (-7.58%)
syar_task_exit_setuid 10256 8440 -1816 (-17.71%)

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230505043317.3629845-9-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# c50c0b57 04-May-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: fix mark_all_scalars_precise use in mark_chain_precision

When precision backtracking bails out due to some unsupported sequence
of instructions (e.g., stack access through register other than r10), we
need to mark all SCALAR registers as precise to be safe. Currently,
though, we mark SCALARs precise only starting from the state we detected
unsupported condition, which could be one of the parent states of the
actual current state. This will leave some registers potentially not
marked as precise, even though they should. So make sure we start
marking scalars as precise from current state (env->cur_state).

Further, we don't currently detect a situation when we end up with some
stack slots marked as needing precision, but we ran out of available
states to find the instructions that populate those stack slots. This is
akin the `i >= func->allocated_stack / BPF_REG_SIZE` check and should be
handled similarly by falling back to marking all SCALARs precise. Add
this check when we run out of states.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230505043317.3629845-8-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# f655badf 04-May-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: fix propagate_precision() logic for inner frames

Fix propagate_precision() logic to perform propagation of all necessary
registers and stack slots across all active frames *in one batch step*.

Doing this for each register/slot in each individual frame is wasteful,
but the main problem is that backtracking of instruction in any frame
except the deepest one just doesn't work. This is due to backtracking
logic relying on jump history, and available jump history always starts
(or ends, depending how you view it) in current frame. So, if
prog A (frame #0) called subprog B (frame #1) and we need to propagate
precision of, say, register R6 (callee-saved) within frame #0, we
actually don't even know where jump history that corresponds to prog
A even starts. We'd need to skip subprog part of jump history first to
be able to do this.

Luckily, with struct backtrack_state and __mark_chain_precision()
handling bitmasks tracking/propagation across all active frames at the
same time (added in previous patch), propagate_precision() can be both
fixed and sped up by setting all the necessary bits across all frames
and then performing one __mark_chain_precision() pass. This makes it
unnecessary to skip subprog parts of jump history.

We also improve logging along the way, to clearly specify which
registers' and slots' precision markings are propagated within which
frame. Each frame will have dedicated line and all registers and stack
slots from that frame will be reported in format similar to precision
backtrack regs/stack logging. E.g.:

frame 1: propagating r1,r2,r3,fp-8,fp-16
frame 0: propagating r3,r9,fp-120

Fixes: 529409ea92d5 ("bpf: propagate precision across all frames, not just the last one")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230505043317.3629845-7-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 1ef22b68 04-May-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: maintain bitmasks across all active frames in __mark_chain_precision

Teach __mark_chain_precision logic to maintain register/stack masks
across all active frames when going from child state to parent state.
Currently this should be mostly no-op, as precision backtracking usually
bails out when encountering subprog entry/exit.

It's not very apparent from the diff due to increased indentation, but
the logic remains the same, except everything is done on specific `fr`
frame index. Calls to bt_clear_reg() and bt_clear_slot() are replaced
with frame-specific bt_clear_frame_reg() and bt_clear_frame_slot(),
where frame index is passed explicitly, instead of using current frame
number.

We also adjust logging to emit affected frame number. And we also add
better logging of human-readable register and stack slot masks, similar
to previous patch.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230505043317.3629845-6-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# d9439c21 04-May-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: improve precision backtrack logging

Add helper to format register and stack masks in more human-readable
format. Adjust logging a bit during backtrack propagation and especially
during forcing precision fallback logic to make it clearer what's going
on (with log_level=2, of course), and also start reporting affected
frame depth. This is in preparation for having more than one active
frame later when precision propagation between subprog calls is added.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230505043317.3629845-5-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 407958a0 04-May-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: encapsulate precision backtracking bookkeeping

Add struct backtrack_state and straightforward API around it to keep
track of register and stack masks used and maintained during precision
backtracking process. Having this logic separately allow to keep
high-level backtracking algorithm cleaner, but also it sets us up to
cleanly keep track of register and stack masks per frame, allowing (with
some further logic adjustments) to perform precision backpropagation
across multiple frames (i.e., subprog calls).

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230505043317.3629845-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# e0bf4622 04-May-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: mark relevant stack slots scratched for register read instructions

When handling instructions that read register slots, mark relevant stack
slots as scratched so that verifier log would contain those slots' states, in
addition to currently emitted registers with stack slot offsets.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230505043317.3629845-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 361f129f 20-Apr-2023 Joanne Koong <joannelkoong@gmail.com>

bpf: Add bpf_dynptr_clone

The cloned dynptr will point to the same data as its parent dynptr,
with the same type, offset, size and read-only properties.

Any writes to a dynptr will be reflected across all instances
(by 'instance', this means any dynptrs that point to the same
underlying data).

Please note that data slice and dynptr invalidations will affect all
instances as well. For example, if bpf_dynptr_write() is called on an
skb-type dynptr, all data slices of dynptr instances to that skb
will be invalidated as well (eg data slices of any clones, parents,
grandparents, ...). Another example is if a ringbuf dynptr is submitted,
any instance of that dynptr will be invalidated.

Changing the view of the dynptr (eg advancing the offset or
trimming the size) will only affect that dynptr and not affect any
other instances.

One example use case where cloning may be helpful is for hashing or
iterating through dynptr data. Cloning will allow the user to maintain
the original view of the dynptr for future use, while also allowing
views to smaller subsets of the data after the offset is advanced or the
size is trimmed.

Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20230420071414.570108-5-joannelkoong@gmail.com


# a0c109dc 24-Apr-2023 Yafang Shao <laoar.shao@gmail.com>

bpf: Add __rcu_read_{lock,unlock} into btf id deny list

The tracing recursion prevention mechanism must be protected by rcu, that
leaves __rcu_read_{lock,unlock} unprotected by this mechanism. If we trace
them, the recursion will happen. Let's add them into the btf id deny list.

When CONFIG_PREEMPT_RCU is enabled, it can be reproduced with a simple bpf
program as such:
SEC("fentry/__rcu_read_lock")
int fentry_run()
{
return 0;
}

Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Link: https://lore.kernel.org/r/20230424161104.3737-2-laoar.shao@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 7deca5ea 24-Apr-2023 Dave Marchevsky <davemarchevsky@fb.com>

bpf: Disable bpf_refcount_acquire kfunc calls until race conditions are fixed

As reported by Kumar in [0], the shared ownership implementation for BPF
programs has some race conditions which need to be addressed before it
can safely be used. This patch does so in a minimal way instead of
ripping out shared ownership entirely, as proper fixes for the issues
raised will follow ASAP, at which point this patch's commit can be
reverted to re-enable shared ownership.

The patch removes the ability to call bpf_refcount_acquire_impl from BPF
programs. Programs can only bump refcount and obtain a new owning
reference using this kfunc, so removing the ability to call it
effectively disables shared ownership.

Instead of changing success / failure expectations for
bpf_refcount-related selftests, this patch just disables them from
running for now.

[0]: https://lore.kernel.org/bpf/d7hyspcow5wtjcmw4fugdgyp3fwhljwuscp3xyut5qnwivyeru@ysdq543otzv2/

Reported-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230424204321.2680232-1-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# fd9c663b 21-Apr-2023 Florian Westphal <fw@strlen.de>

bpf: minimal support for programs hooked into netfilter framework

This adds minimal support for BPF_PROG_TYPE_NETFILTER bpf programs
that will be invoked via the NF_HOOK() points in the ip stack.

Invocation incurs an indirect call. This is not a necessity: Its
possible to add 'DEFINE_BPF_DISPATCHER(nf_progs)' and handle the
program invocation with the same method already done for xdp progs.

This isn't done here to keep the size of this chunk down.

Verifier restricts verdicts to either DROP or ACCEPT.

Signed-off-by: Florian Westphal <fw@strlen.de>
Link: https://lore.kernel.org/r/20230421170300.24115-3-fw@strlen.de
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 3be49f79 17-Apr-2023 Yonghong Song <yhs@fb.com>

bpf: Improve verifier u32 scalar equality checking

In [1], I tried to remove bpf-specific codes to prevent certain
llvm optimizations, and add llvm TTI (target transform info) hooks
to prevent those optimizations. During this process, I found
if I enable llvm SimplifyCFG:shouldFoldTwoEntryPHINode
transformation, I will hit the following verification failure with selftests:

...
8: (18) r1 = 0xffffc900001b2230 ; R1_w=map_value(off=560,ks=4,vs=564,imm=0)
10: (61) r1 = *(u32 *)(r1 +0) ; R1_w=scalar(umax=4294967295,var_off=(0x0; 0xffffffff))
; if (skb->tstamp == EGRESS_ENDHOST_MAGIC)
11: (79) r2 = *(u64 *)(r6 +152) ; R2_w=scalar() R6=ctx(off=0,imm=0)
; if (skb->tstamp == EGRESS_ENDHOST_MAGIC)
12: (55) if r2 != 0xb9fbeef goto pc+10 ; R2_w=195018479
13: (bc) w2 = w1 ; R1_w=scalar(umax=4294967295,var_off=(0x0; 0xffffffff)) R2_w=scalar(umax=4294967295,var_off=(0x0; 0xffffffff))
; if (test < __NR_TESTS)
14: (a6) if w1 < 0x9 goto pc+1 16: R0=2 R1_w=scalar(umax=8,var_off=(0x0; 0xf)) R2_w=scalar(umax=4294967295,var_off=(0x0; 0xffffffff)) R6=ctx(off=0,imm=0) R10=fp0
;
16: (27) r2 *= 28 ; R2_w=scalar(umax=120259084260,var_off=(0x0; 0x1ffffffffc),s32_max=2147483644,u32_max=-4)
17: (18) r3 = 0xffffc900001b2118 ; R3_w=map_value(off=280,ks=4,vs=564,imm=0)
19: (0f) r3 += r2 ; R2_w=scalar(umax=120259084260,var_off=(0x0; 0x1ffffffffc),s32_max=2147483644,u32_max=-4) R3_w=map_value(off=280,ks=4,vs=564,umax=120259084260,var_off=(0x0; 0x1ffffffffc),s32_max=2147483644,u32_max=-4)
20: (61) r2 = *(u32 *)(r3 +0)
R3 unbounded memory access, make sure to bounds check any such access
processed 97 insns (limit 1000000) max_states_per_insn 1 total_states 10 peak_states 10 mark_read 6
-- END PROG LOAD LOG --
libbpf: prog 'ingress_fwdns_prio100': failed to load: -13
libbpf: failed to load object 'test_tc_dtime'
libbpf: failed to load BPF skeleton 'test_tc_dtime': -13
...

At insn 14, with condition 'w1 < 9', register r1 is changed from an arbitrary
u32 value to `scalar(umax=8,var_off=(0x0; 0xf))`. Register r2, however, remains
as an arbitrary u32 value. Current verifier won't claim r1/r2 equality if
the previous mov is alu32 ('w2 = w1').

If r1 upper 32bit value is not 0, we indeed cannot clamin r1/r2 equality
after 'w2 = w1'. But in this particular case, we know r1 upper 32bit value
is 0, so it is safe to claim r1/r2 equality. This patch exactly did this.
For a 32bit subreg mov, if the src register upper 32bit is 0,
it is okay to claim equality between src and dst registers.

With this patch, the above verification sequence becomes

...
8: (18) r1 = 0xffffc9000048e230 ; R1_w=map_value(off=560,ks=4,vs=564,imm=0)
10: (61) r1 = *(u32 *)(r1 +0) ; R1_w=scalar(umax=4294967295,var_off=(0x0; 0xffffffff))
; if (skb->tstamp == EGRESS_ENDHOST_MAGIC)
11: (79) r2 = *(u64 *)(r6 +152) ; R2_w=scalar() R6=ctx(off=0,imm=0)
; if (skb->tstamp == EGRESS_ENDHOST_MAGIC)
12: (55) if r2 != 0xb9fbeef goto pc+10 ; R2_w=195018479
13: (bc) w2 = w1 ; R1_w=scalar(id=6,umax=4294967295,var_off=(0x0; 0xffffffff)) R2_w=scalar(id=6,umax=4294967295,var_off=(0x0; 0xffffffff))
; if (test < __NR_TESTS)
14: (a6) if w1 < 0x9 goto pc+1 ; R1_w=scalar(id=6,umin=9,umax=4294967295,var_off=(0x0; 0xffffffff))
...
from 14 to 16: R0=2 R1_w=scalar(id=6,umax=8,var_off=(0x0; 0xf)) R2_w=scalar(id=6,umax=8,var_off=(0x0; 0xf)) R6=ctx(off=0,imm=0) R10=fp0
16: (27) r2 *= 28 ; R2_w=scalar(umax=224,var_off=(0x0; 0xfc))
17: (18) r3 = 0xffffc9000048e118 ; R3_w=map_value(off=280,ks=4,vs=564,imm=0)
19: (0f) r3 += r2
20: (61) r2 = *(u32 *)(r3 +0) ; R2_w=scalar(umax=4294967295,var_off=(0x0; 0xffffffff)) R3_w=map_value(off=280,ks=4,vs=564,umax=224,var_off=(0x0; 0xfc),s32_max=252,u32_max=252)
...

and eventually the bpf program can be verified successfully.

[1] https://reviews.llvm.org/D147968

Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20230417222134.359714-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 7b4ddf39 16-Apr-2023 David Vernet <void@manifault.com>

bpf: Remove KF_KPTR_GET kfunc flag

We've managed to improve the UX for kptrs significantly over the last 9
months. All of the existing use cases which previously had KF_KPTR_GET
kfuncs (struct bpf_cpumask *, struct task_struct *, and struct cgroup *)
have all been updated to be synchronized using RCU. In other words,
their KF_KPTR_GET kfuncs have been removed in favor of KF_RCU |
KF_ACQUIRE kfuncs, with the pointers themselves also being readable from
maps in an RCU read region thanks to the types being RCU safe.

While KF_KPTR_GET was a logical starting point for kptrs, it's become
clear that they're not the correct abstraction. KF_KPTR_GET is a flag
that essentially does nothing other than enforcing that the argument to
a function is a pointer to a referenced kptr map value. At first glance,
that's a useful thing to guarantee to a kfunc. It gives kfuncs the
ability to try and acquire a reference on that kptr without requiring
the BPF prog to do something like this:

struct kptr_type *in_map, *new = NULL;

in_map = bpf_kptr_xchg(&map->value, NULL);
if (in_map) {
new = bpf_kptr_type_acquire(in_map);
in_map = bpf_kptr_xchg(&map->value, in_map);
if (in_map)
bpf_kptr_type_release(in_map);
}

That's clearly a pretty ugly (and racy) UX, and if using KF_KPTR_GET is
the only alternative, it's better than nothing. However, the problem
with any KF_KPTR_GET kfunc lies in the fact that it always requires some
kind of synchronization in order to safely do an opportunistic acquire
of the kptr in the map. This is because a BPF program running on another
CPU could do a bpf_kptr_xchg() on that map value, and free the kptr
after it's been read by the KF_KPTR_GET kfunc. For example, the
now-removed bpf_task_kptr_get() kfunc did the following:

struct task_struct *bpf_task_kptr_get(struct task_struct **pp)
{
struct task_struct *p;

rcu_read_lock();
p = READ_ONCE(*pp);
/* If p is non-NULL, it could still be freed by another CPU,
* so we have to do an opportunistic refcount_inc_not_zero()
* and return NULL if the task will be freed after the
* current RCU read region.
*/
|f (p && !refcount_inc_not_zero(&p->rcu_users))
p = NULL;
rcu_read_unlock();

return p;
}

In other words, the kfunc uses RCU to ensure that the task remains valid
after it's been peeked from the map. However, this is completely
redundant with just defining a KF_RCU kfunc that itself does a
refcount_inc_not_zero(), which is exactly what bpf_task_acquire() now
does.

So, the question of whether KF_KPTR_GET is useful is actually, "Are
there any synchronization mechanisms / safety flags that are required by
certain kptrs, but which are not provided by the verifier to kfuncs?"
The answer to that question today is "No", because every kptr we
currently care about is RCU protected.

Even if the answer ever became "yes", the proper way to support that
referenced kptr type would be to add support for whatever
synchronization mechanism it requires in the verifier, rather than
giving kfuncs a flag that says, "Here's a pointer to a referenced kptr
in a map, do whatever you need to do."

With all that said -- so as to allow us to consolidate the kfunc API,
and simplify the verifier a bit, this patch removes KF_KPTR_GET, and all
relevant logic from the verifier.

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230416084928.326135-3-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 404ad75a 15-Apr-2023 Dave Marchevsky <davemarchevsky@fb.com>

bpf: Migrate bpf_rbtree_remove to possibly fail

This patch modifies bpf_rbtree_remove to account for possible failure
due to the input rb_node already not being in any collection.
The function can now return NULL, and does when the aforementioned
scenario occurs. As before, on successful removal an owning reference to
the removed node is returned.

Adding KF_RET_NULL to bpf_rbtree_remove's kfunc flags - now KF_RET_NULL |
KF_ACQUIRE - provides the desired verifier semantics:

* retval must be checked for NULL before use
* if NULL, retval's ref_obj_id is released
* retval is a "maybe acquired" owning ref, not a non-owning ref,
so it will live past end of critical section (bpf_spin_unlock), and
thus can be checked for NULL after the end of the CS

BPF programs must add checks
============================

This does change bpf_rbtree_remove's verifier behavior. BPF program
writers will need to add NULL checks to their programs, but the
resulting UX looks natural:

bpf_spin_lock(&glock);

n = bpf_rbtree_first(&ghead);
if (!n) { /* ... */}
res = bpf_rbtree_remove(&ghead, &n->node);

bpf_spin_unlock(&glock);

if (!res) /* Newly-added check after this patch */
return 1;

n = container_of(res, /* ... */);
/* Do something else with n */
bpf_obj_drop(n);
return 0;

The "if (!res)" check above is the only addition necessary for the above
program to pass verification after this patch.

bpf_rbtree_remove no longer clobbers non-owning refs
====================================================

An issue arises when bpf_rbtree_remove fails, though. Consider this
example:

struct node_data {
long key;
struct bpf_list_node l;
struct bpf_rb_node r;
struct bpf_refcount ref;
};

long failed_sum;

void bpf_prog()
{
struct node_data *n = bpf_obj_new(/* ... */);
struct bpf_rb_node *res;
n->key = 10;

bpf_spin_lock(&glock);

bpf_list_push_back(&some_list, &n->l); /* n is now a non-owning ref */
res = bpf_rbtree_remove(&some_tree, &n->r, /* ... */);
if (!res)
failed_sum += n->key; /* not possible */

bpf_spin_unlock(&glock);
/* if (res) { do something useful and drop } ... */
}

The bpf_rbtree_remove in this example will always fail. Similarly to
bpf_spin_unlock, bpf_rbtree_remove is a non-owning reference
invalidation point. The verifier clobbers all non-owning refs after a
bpf_rbtree_remove call, so the "failed_sum += n->key" line will fail
verification, and in fact there's no good way to get information about
the node which failed to add after the invalidation. This patch removes
non-owning reference invalidation from bpf_rbtree_remove to allow the
above usecase to pass verification. The logic for why this is now
possible is as follows:

Before this series, bpf_rbtree_add couldn't fail and thus assumed that
its input, a non-owning reference, was in the tree. But it's easy to
construct an example where two non-owning references pointing to the same
underlying memory are acquired and passed to rbtree_remove one after
another (see rbtree_api_release_aliasing in
selftests/bpf/progs/rbtree_fail.c).

So it was necessary to clobber non-owning refs to prevent this
case and, more generally, to enforce "non-owning ref is definitely
in some collection" invariant. This series removes that invariant and
the failure / runtime checking added in this patch provide a clean way
to deal with the aliasing issue - just fail to remove.

Because the aliasing issue prevented by clobbering non-owning refs is no
longer an issue, this patch removes the invalidate_non_owning_refs
call from verifier handling of bpf_rbtree_remove. Note that
bpf_spin_unlock - the other caller of invalidate_non_owning_refs -
clobbers non-owning refs for a different reason, so its clobbering
behavior remains unchanged.

No BPF program changes are necessary for programs to remain valid as a
result of this clobbering change. A valid program before this patch
passed verification with its non-owning refs having shorter (or equal)
lifetimes due to more aggressive clobbering.

Also, update existing tests to check bpf_rbtree_remove retval for NULL
where necessary, and move rbtree_api_release_aliasing from
progs/rbtree_fail.c to progs/rbtree.c since it's now expected to pass
verification.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230415201811.343116-8-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# d2dcc67d 15-Apr-2023 Dave Marchevsky <davemarchevsky@fb.com>

bpf: Migrate bpf_rbtree_add and bpf_list_push_{front,back} to possibly fail

Consider this code snippet:

struct node {
long key;
bpf_list_node l;
bpf_rb_node r;
bpf_refcount ref;
}

int some_bpf_prog(void *ctx)
{
struct node *n = bpf_obj_new(/*...*/), *m;

bpf_spin_lock(&glock);

bpf_rbtree_add(&some_tree, &n->r, /* ... */);
m = bpf_refcount_acquire(n);
bpf_rbtree_add(&other_tree, &m->r, /* ... */);

bpf_spin_unlock(&glock);

/* ... */
}

After bpf_refcount_acquire, n and m point to the same underlying memory,
and that node's bpf_rb_node field is being used by the some_tree insert,
so overwriting it as a result of the second insert is an error. In order
to properly support refcounted nodes, the rbtree and list insert
functions must be allowed to fail. This patch adds such support.

The kfuncs bpf_rbtree_add, bpf_list_push_{front,back} are modified to
return an int indicating success/failure, with 0 -> success, nonzero ->
failure.

bpf_obj_drop on failure
=======================

Currently the only reason an insert can fail is the example above: the
bpf_{list,rb}_node is already in use. When such a failure occurs, the
insert kfuncs will bpf_obj_drop the input node. This allows the insert
operations to logically fail without changing their verifier owning ref
behavior, namely the unconditional release_reference of the input
owning ref.

With insert that always succeeds, ownership of the node is always passed
to the collection, since the node always ends up in the collection.

With a possibly-failed insert w/ bpf_obj_drop, ownership of the node
is always passed either to the collection (success), or to bpf_obj_drop
(failure). Regardless, it's correct to continue unconditionally
releasing the input owning ref, as something is always taking ownership
from the calling program on insert.

Keeping owning ref behavior unchanged results in a nice default UX for
insert functions that can fail. If the program's reaction to a failed
insert is "fine, just get rid of this owning ref for me and let me go
on with my business", then there's no reason to check for failure since
that's default behavior. e.g.:

long important_failures = 0;

int some_bpf_prog(void *ctx)
{
struct node *n, *m, *o; /* all bpf_obj_new'd */

bpf_spin_lock(&glock);
bpf_rbtree_add(&some_tree, &n->node, /* ... */);
bpf_rbtree_add(&some_tree, &m->node, /* ... */);
if (bpf_rbtree_add(&some_tree, &o->node, /* ... */)) {
important_failures++;
}
bpf_spin_unlock(&glock);
}

If we instead chose to pass ownership back to the program on failed
insert - by returning NULL on success or an owning ref on failure -
programs would always have to do something with the returned ref on
failure. The most likely action is probably "I'll just get rid of this
owning ref and go about my business", which ideally would look like:

if (n = bpf_rbtree_add(&some_tree, &n->node, /* ... */))
bpf_obj_drop(n);

But bpf_obj_drop isn't allowed in a critical section and inserts must
occur within one, so in reality error handling would become a
hard-to-parse mess.

For refcounted nodes, we can replicate the "pass ownership back to
program on failure" logic with this patch's semantics, albeit in an ugly
way:

struct node *n = bpf_obj_new(/* ... */), *m;

bpf_spin_lock(&glock);

m = bpf_refcount_acquire(n);
if (bpf_rbtree_add(&some_tree, &n->node, /* ... */)) {
/* Do something with m */
}

bpf_spin_unlock(&glock);
bpf_obj_drop(m);

bpf_refcount_acquire is used to simulate "return owning ref on failure".
This should be an uncommon occurrence, though.

Addition of two verifier-fixup'd args to collection inserts
===========================================================

The actual bpf_obj_drop kfunc is
bpf_obj_drop_impl(void *, struct btf_struct_meta *), with bpf_obj_drop
macro populating the second arg with 0 and the verifier later filling in
the arg during insn fixup.

Because bpf_rbtree_add and bpf_list_push_{front,back} now might do
bpf_obj_drop, these kfuncs need a btf_struct_meta parameter that can be
passed to bpf_obj_drop_impl.

Similarly, because the 'node' param to those insert functions is the
bpf_{list,rb}_node within the node type, and bpf_obj_drop expects a
pointer to the beginning of the node, the insert functions need to be
able to find the beginning of the node struct. A second
verifier-populated param is necessary: the offset of {list,rb}_node within the
node type.

These two new params allow the insert kfuncs to correctly call
__bpf_obj_drop_impl:

beginning_of_node = bpf_rb_node_ptr - offset
if (already_inserted)
__bpf_obj_drop_impl(beginning_of_node, btf_struct_meta->record);

Similarly to other kfuncs with "hidden" verifier-populated params, the
insert functions are renamed with _impl prefix and a macro is provided
for common usage. For example, bpf_rbtree_add kfunc is now
bpf_rbtree_add_impl and bpf_rbtree_add is now a macro which sets
"hidden" args to 0.

Due to the two new args BPF progs will need to be recompiled to work
with the new _impl kfuncs.

This patch also rewrites the "hidden argument" explanation to more
directly say why the BPF program writer doesn't need to populate the
arguments with anything meaningful.

How does this new logic affect non-owning references?
=====================================================

Currently, non-owning refs are valid until the end of the critical
section in which they're created. We can make this guarantee because, if
a non-owning ref exists, the referent was added to some collection. The
collection will drop() its nodes when it goes away, but it can't go away
while our program is accessing it, so that's not a problem. If the
referent is removed from the collection in the same CS that it was added
in, it can't be bpf_obj_drop'd until after CS end. Those are the only
two ways to free the referent's memory and neither can happen until
after the non-owning ref's lifetime ends.

On first glance, having these collection insert functions potentially
bpf_obj_drop their input seems like it breaks the "can't be
bpf_obj_drop'd until after CS end" line of reasoning. But we care about
the memory not being _freed_ until end of CS end, and a previous patch
in the series modified bpf_obj_drop such that it doesn't free refcounted
nodes until refcount == 0. So the statement can be more accurately
rewritten as "can't be free'd until after CS end".

We can prove that this rewritten statement holds for any non-owning
reference produced by collection insert functions:

* If the input to the insert function is _not_ refcounted
* We have an owning reference to the input, and can conclude it isn't
in any collection
* Inserting a node in a collection turns owning refs into
non-owning, and since our input type isn't refcounted, there's no
way to obtain additional owning refs to the same underlying
memory
* Because our node isn't in any collection, the insert operation
cannot fail, so bpf_obj_drop will not execute
* If bpf_obj_drop is guaranteed not to execute, there's no risk of
memory being free'd

* Otherwise, the input to the insert function is refcounted
* If the insert operation fails due to the node's list_head or rb_root
already being in some collection, there was some previous successful
insert which passed refcount to the collection
* We have an owning reference to the input, it must have been
acquired via bpf_refcount_acquire, which bumped the refcount
* refcount must be >= 2 since there's a valid owning reference and the
node is already in a collection
* Insert triggering bpf_obj_drop will decr refcount to >= 1, never
resulting in a free

So although we may do bpf_obj_drop during the critical section, this
will never result in memory being free'd, and no changes to non-owning
ref logic are needed in this patch.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230415201811.343116-6-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 7c50b1cb 15-Apr-2023 Dave Marchevsky <davemarchevsky@fb.com>

bpf: Add bpf_refcount_acquire kfunc

Currently, BPF programs can interact with the lifetime of refcounted
local kptrs in the following ways:

bpf_obj_new - Initialize refcount to 1 as part of new object creation
bpf_obj_drop - Decrement refcount and free object if it's 0
collection add - Pass ownership to the collection. No change to
refcount but collection is responsible for
bpf_obj_dropping it

In order to be able to add a refcounted local kptr to multiple
collections we need to be able to increment the refcount and acquire a
new owning reference. This patch adds a kfunc, bpf_refcount_acquire,
implementing such an operation.

bpf_refcount_acquire takes a refcounted local kptr and returns a new
owning reference to the same underlying memory as the input. The input
can be either owning or non-owning. To reinforce why this is safe,
consider the following code snippets:

struct node *n = bpf_obj_new(typeof(*n)); // A
struct node *m = bpf_refcount_acquire(n); // B

In the above snippet, n will be alive with refcount=1 after (A), and
since nothing changes that state before (B), it's obviously safe. If
n is instead added to some rbtree, we can still safely refcount_acquire
it:

struct node *n = bpf_obj_new(typeof(*n));
struct node *m;

bpf_spin_lock(&glock);
bpf_rbtree_add(&groot, &n->node, less); // A
m = bpf_refcount_acquire(n); // B
bpf_spin_unlock(&glock);

In the above snippet, after (A) n is a non-owning reference, and after
(B) m is an owning reference pointing to the same memory as n. Although
n has no ownership of that memory's lifetime, it's guaranteed to be
alive until the end of the critical section, and n would be clobbered if
we were past the end of the critical section, so it's safe to bump
refcount.

Implementation details:

* From verifier's perspective, bpf_refcount_acquire handling is similar
to bpf_obj_new and bpf_obj_drop. Like the former, it returns a new
owning reference matching input type, although like the latter, type
can be inferred from concrete kptr input. Verifier changes in
{check,fixup}_kfunc_call and check_kfunc_args are largely copied from
aforementioned functions' verifier changes.

* An exception to the above is the new KF_ARG_PTR_TO_REFCOUNTED_KPTR
arg, indicated by new "__refcounted_kptr" kfunc arg suffix. This is
necessary in order to handle both owning and non-owning input without
adding special-casing to "__alloc" arg handling. Also a convenient
place to confirm that input type has bpf_refcount field.

* The implemented kfunc is actually bpf_refcount_acquire_impl, with
'hidden' second arg that the verifier sets to the type's struct_meta
in fixup_kfunc_call.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230415201811.343116-5-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 1cf3bfc6 12-Apr-2023 Ilya Leoshkevich <iii@linux.ibm.com>

bpf: Support 64-bit pointers to kfuncs

test_ksyms_module fails to emit a kfunc call targeting a module on
s390x, because the verifier stores the difference between kfunc
address and __bpf_call_base in bpf_insn.imm, which is s32, and modules
are roughly (1 << 42) bytes away from the kernel on s390x.

Fix by keeping BTF id in bpf_insn.imm for BPF_PSEUDO_KFUNC_CALLs,
and storing the absolute address in bpf_kfunc_desc.

Introduce bpf_jit_supports_far_kfunc_call() in order to limit this new
behavior to the s390x JIT. Otherwise other JITs need to be modified,
which is not desired.

Introduce bpf_get_kfunc_addr() instead of exposing both
find_kfunc_desc() and struct bpf_kfunc_desc.

In addition to sorting kfuncs by imm, also sort them by offset, in
order to handle conflicting imms from different modules. Do this on
all architectures in order to simplify code.

Factor out resolving specialized kfuncs (XPD and dynptr) from
fixup_kfunc_call(). This was required in the first place, because
fixup_kfunc_call() uses find_kfunc_desc(), which returns a const
pointer, so it's not possible to modify kfunc addr without stripping
const, which is not nice. It also removes repetition of code like:

if (bpf_jit_supports_far_kfunc_call())
desc->addr = func;
else
insn->imm = BPF_CALL_IMM(func);

and separates kfunc_desc_tab fixups from kfunc_call fixups.

Suggested-by: Jiri Olsa <olsajiri@gmail.com>
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20230412230632.885985-1-iii@linux.ibm.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# c11bd046 12-Apr-2023 Yafang <laoar.shao@gmail.com>

bpf: Add preempt_count_{sub,add} into btf id deny list

The recursion check in __bpf_prog_enter* and __bpf_prog_exit*
leave preempt_count_{sub,add} unprotected. When attaching trampoline to
them we get panic as follows,

[ 867.843050] BUG: TASK stack guard page was hit at 0000000009d325cf (stack is 0000000046a46a15..00000000537e7b28)
[ 867.843064] stack guard page: 0000 [#1] PREEMPT SMP NOPTI
[ 867.843067] CPU: 8 PID: 11009 Comm: trace Kdump: loaded Not tainted 6.2.0+ #4
[ 867.843100] Call Trace:
[ 867.843101] <TASK>
[ 867.843104] asm_exc_int3+0x3a/0x40
[ 867.843108] RIP: 0010:preempt_count_sub+0x1/0xa0
[ 867.843135] __bpf_prog_enter_recur+0x17/0x90
[ 867.843148] bpf_trampoline_6442468108_0+0x2e/0x1000
[ 867.843154] ? preempt_count_sub+0x1/0xa0
[ 867.843157] preempt_count_sub+0x5/0xa0
[ 867.843159] ? migrate_enable+0xac/0xf0
[ 867.843164] __bpf_prog_exit_recur+0x2d/0x40
[ 867.843168] bpf_trampoline_6442468108_0+0x55/0x1000
...
[ 867.843788] preempt_count_sub+0x5/0xa0
[ 867.843793] ? migrate_enable+0xac/0xf0
[ 867.843829] __bpf_prog_exit_recur+0x2d/0x40
[ 867.843837] BUG: IRQ stack guard page was hit at 0000000099bd8228 (stack is 00000000b23e2bc4..000000006d95af35)
[ 867.843841] BUG: IRQ stack guard page was hit at 000000005ae07924 (stack is 00000000ffd69623..0000000014eb594c)
[ 867.843843] BUG: IRQ stack guard page was hit at 00000000028320f0 (stack is 00000000034b6438..0000000078d1bcec)
[ 867.843842] bpf_trampoline_6442468108_0+0x55/0x1000
...

That is because in __bpf_prog_exit_recur, the preempt_count_{sub,add} are
called after prog->active is decreased.

Fixing this by adding these two functions into btf ids deny list.

Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Yafang <laoar.shao@gmail.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Jiri Olsa <olsajiri@gmail.com>
Acked-by: Hao Luo <haoluo@google.com>
Link: https://lore.kernel.org/r/20230413025248.79764-1-laoar.shao@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# bdcab414 06-Apr-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: Simplify internal verifier log interface

Simplify internal verifier log API down to bpf_vlog_init() and
bpf_vlog_finalize(). The former handles input arguments validation in
one place and makes it easier to change it. The latter subsumes -ENOSPC
(truncation) and -EFAULT handling and simplifies both caller's code
(bpf_check() and btf_parse()).

For btf_parse(), this patch also makes sure that verifier log
finalization happens even if there is some error condition during BTF
verification process prior to normal finalization step.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/bpf/20230406234205.323208-14-andrii@kernel.org


# 47a71c1f 06-Apr-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: Add log_true_size output field to return necessary log buffer size

Add output-only log_true_size and btf_log_true_size field to
BPF_PROG_LOAD and BPF_BTF_LOAD commands, respectively. It will return
the size of log buffer necessary to fit in all the log contents at
specified log_level. This is very useful for BPF loader libraries like
libbpf to be able to size log buffer correctly, but could be used by
users directly, if necessary, as well.

This patch plumbs all this through the code, taking into account actual
bpf_attr size provided by user to determine if these new fields are
expected by users. And if they are, set them from kernel on return.

We refactory btf_parse() function to accommodate this, moving attr and
uattr handling inside it. The rest is very straightforward code, which
is split from the logging accounting changes in the previous patch to
make it simpler to review logic vs UAPI changes.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/bpf/20230406234205.323208-13-andrii@kernel.org


# 8a6ca6bc 06-Apr-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: Simplify logging-related error conditions handling

Move log->level == 0 check into bpf_vlog_truncated() instead of doing it
explicitly. Also remove unnecessary goto in kernel/bpf/verifier.c.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/bpf/20230406234205.323208-11-andrii@kernel.org


# cbedb42a 06-Apr-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: Avoid incorrect -EFAULT error in BPF_LOG_KERNEL mode

If verifier log is in BPF_LOG_KERNEL mode, no log->ubuf is expected and
it stays NULL throughout entire verification process. Don't erroneously
return -EFAULT in such case.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/bpf/20230406234205.323208-10-andrii@kernel.org


# 12166409 06-Apr-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: Switch BPF verifier log to be a rotating log by default

Currently, if user-supplied log buffer to collect BPF verifier log turns
out to be too small to contain full log, bpf() syscall returns -ENOSPC,
fails BPF program verification/load, and preserves first N-1 bytes of
the verifier log (where N is the size of user-supplied buffer).

This is problematic in a bunch of common scenarios, especially when
working with real-world BPF programs that tend to be pretty complex as
far as verification goes and require big log buffers. Typically, it's
when debugging tricky cases at log level 2 (verbose). Also, when BPF program
is successfully validated, log level 2 is the only way to actually see
verifier state progression and all the important details.

Even with log level 1, it's possible to get -ENOSPC even if the final
verifier log fits in log buffer, if there is a code path that's deep
enough to fill up entire log, even if normally it would be reset later
on (there is a logic to chop off successfully validated portions of BPF
verifier log).

In short, it's not always possible to pre-size log buffer. Also, what's
worse, in practice, the end of the log most often is way more important
than the beginning, but verifier stops emitting log as soon as initial
log buffer is filled up.

This patch switches BPF verifier log behavior to effectively behave as
rotating log. That is, if user-supplied log buffer turns out to be too
short, verifier will keep overwriting previously written log,
effectively treating user's log buffer as a ring buffer. -ENOSPC is
still going to be returned at the end, to notify user that log contents
was truncated, but the important last N bytes of the log would be
returned, which might be all that user really needs. This consistent
-ENOSPC behavior, regardless of rotating or fixed log behavior, allows
to prevent backwards compatibility breakage. The only user-visible
change is which portion of verifier log user ends up seeing *if buffer
is too small*. Given contents of verifier log itself is not an ABI,
there is no breakage due to this behavior change. Specialized tools that
rely on specific contents of verifier log in -ENOSPC scenario are
expected to be easily adapted to accommodate old and new behaviors.

Importantly, though, to preserve good user experience and not require
every user-space application to adopt to this new behavior, before
exiting to user-space verifier will rotate log (in place) to make it
start at the very beginning of user buffer as a continuous
zero-terminated string. The contents will be a chopped off N-1 last
bytes of full verifier log, of course.

Given beginning of log is sometimes important as well, we add
BPF_LOG_FIXED (which equals 8) flag to force old behavior, which allows
tools like veristat to request first part of verifier log, if necessary.
BPF_LOG_FIXED flag is also a simple and straightforward way to check if
BPF verifier supports rotating behavior.

On the implementation side, conceptually, it's all simple. We maintain
64-bit logical start and end positions. If we need to truncate the log,
start position will be adjusted accordingly to lag end position by
N bytes. We then use those logical positions to calculate their matching
actual positions in user buffer and handle wrap around the end of the
buffer properly. Finally, right before returning from bpf_check(), we
rotate user log buffer contents in-place as necessary, to make log
contents contiguous. See comments in relevant functions for details.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/bpf/20230406234205.323208-4-andrii@kernel.org


# 4294a0a7 06-Apr-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: Split off basic BPF verifier log into separate file

kernel/bpf/verifier.c file is large and growing larger all the time. So
it's good to start splitting off more or less self-contained parts into
separate files to keep source code size (somewhat) somewhat under
control.

This patch is a one step in this direction, moving some of BPF verifier log
routines into a separate kernel/bpf/log.c. Right now it's most low-level
and isolated routines to append data to log, reset log to previous
position, etc. Eventually we could probably move verifier state
printing logic here as well, but this patch doesn't attempt to do that
yet.

Subsequent patches will add more logic to verifier log management, so
having basics in a separate file will make sure verifier.c doesn't grow
more with new changes.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/bpf/20230406234205.323208-2-andrii@kernel.org


# 953d9f5b 06-Apr-2023 Yonghong Song <yhs@fb.com>

bpf: Improve handling of pattern '<const> <cond_op> <non_const>' in verifier

Currently, the verifier does not handle '<const> <cond_op> <non_const>' well.
For example,
...
10: (79) r1 = *(u64 *)(r10 -16) ; R1_w=scalar() R10=fp0
11: (b7) r2 = 0 ; R2_w=0
12: (2d) if r2 > r1 goto pc+2
13: (b7) r0 = 0
14: (95) exit
15: (65) if r1 s> 0x1 goto pc+3
16: (0f) r0 += r1
...
At insn 12, verifier decides both true and false branch are possible, but
actually only false branch is possible.

Currently, the verifier already supports patterns '<non_const> <cond_op> <const>.
Add support for patterns '<const> <cond_op> <non_const>' in a similar way.

Also fix selftest 'verifier_bounds_mix_sign_unsign/bounds checks mixing signed and unsigned, variant 10'
due to this change.

Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Dave Marchevsky <davemarchevsky@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230406164505.1046801-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 13fbcee5 06-Apr-2023 Yonghong Song <yhs@fb.com>

bpf: Improve verifier JEQ/JNE insn branch taken checking

Currently, for BPF_JEQ/BPF_JNE insn, verifier determines
whether the branch is taken or not only if both operands
are constants. Therefore, for the following code snippet,
0: (85) call bpf_ktime_get_ns#5 ; R0_w=scalar()
1: (a5) if r0 < 0x3 goto pc+2 ; R0_w=scalar(umin=3)
2: (b7) r2 = 2 ; R2_w=2
3: (1d) if r0 == r2 goto pc+2 6

At insn 3, since r0 is not a constant, verifier assumes both branch
can be taken which may lead inproper verification failure.

Add comparing umin/umax value and the constant. If the umin value
is greater than the constant, or umax value is smaller than the constant,
for JEQ the branch must be not-taken, and for JNE the branch must be taken.
The jmp32 mode JEQ/JNE branch taken checking is also handled similarly.

The following lists the veristat result w.r.t. changed number
of processes insns during verification:

File Program Insns (A) Insns (B) Insns (DIFF)
----------------------------------------------------- ---------------------------------------------------- --------- --------- ---------------
test_cls_redirect.bpf.linked3.o cls_redirect 64980 73472 +8492 (+13.07%)
test_seg6_loop.bpf.linked3.o __add_egr_x 12425 12423 -2 (-0.02%)
test_tcp_hdr_options.bpf.linked3.o estab 2634 2558 -76 (-2.89%)
test_parse_tcp_hdr_opt.bpf.linked3.o xdp_ingress_v6 1421 1420 -1 (-0.07%)
test_parse_tcp_hdr_opt_dynptr.bpf.linked3.o xdp_ingress_v6 1238 1237 -1 (-0.08%)
test_tc_dtime.bpf.linked3.o egress_fwdns_prio100 414 411 -3 (-0.72%)

Mostly a small improvement but test_cls_redirect.bpf.linked3.o has a 13% regression.
I checked with verifier log and found it this is due to pruning.
For some JEQ/JNE branches impacted by this patch,
one branch is explored and the other has state equivalence and
pruned.

Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Dave Marchevsky <davemarchevsky@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230406164455.1045294-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# afeebf9f 03-Apr-2023 Alexei Starovoitov <ast@kernel.org>

bpf: Undo strict enforcement for walking untagged fields.

The commit 6fcd486b3a0a ("bpf: Refactor RCU enforcement in the verifier.")
broke several tracing bpf programs. Even in clang compiled kernels there are
many fields that are not marked with __rcu that are safe to read and pass into
helpers, but the verifier doesn't know that they're safe. Aggressively marking
them as PTR_UNTRUSTED was premature.

Fixes: 6fcd486b3a0a ("bpf: Refactor RCU enforcement in the verifier.")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/bpf/20230404045029.82870-8-alexei.starovoitov@gmail.com


# 30ee9821 03-Apr-2023 Alexei Starovoitov <ast@kernel.org>

bpf: Allowlist few fields similar to __rcu tag.

Allow bpf program access cgrp->kn, mm->exe_file, skb->sk, req->sk.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/bpf/20230404045029.82870-7-alexei.starovoitov@gmail.com


# add68b84 03-Apr-2023 Alexei Starovoitov <ast@kernel.org>

bpf: Refactor NULL-ness check in check_reg_type().

check_reg_type() unconditionally disallows PTR_TO_BTF_ID | PTR_MAYBE_NULL.
It's problematic for helpers that allow ARG_PTR_TO_BTF_ID_OR_NULL like
bpf_sk_storage_get(). Allow passing PTR_TO_BTF_ID | PTR_MAYBE_NULL into such
helpers. That technically includes bpf_kptr_xchg() helper, but in practice:
bpf_kptr_xchg(..., bpf_cpumask_create());
is still disallowed because bpf_cpumask_create() returns ref counted pointer
with ref_obj_id > 0.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/bpf/20230404045029.82870-6-alexei.starovoitov@gmail.com


# 63260df1 03-Apr-2023 Alexei Starovoitov <ast@kernel.org>

bpf: Refactor btf_nested_type_is_trusted().

btf_nested_type_is_trusted() tries to find a struct member at corresponding offset.
It works for flat structures and falls apart in more complex structs with nested structs.
The offset->member search is already performed by btf_struct_walk() including nested structs.
Reuse this work and pass {field name, field btf id} into btf_nested_type_is_trusted()
instead of offset to make BTF_TYPE_SAFE*() logic more robust.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/bpf/20230404045029.82870-4-alexei.starovoitov@gmail.com


# b7e852a9 03-Apr-2023 Alexei Starovoitov <ast@kernel.org>

bpf: Remove unused arguments from btf_struct_access().

Remove unused arguments from btf_struct_access() callback.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/bpf/20230404045029.82870-3-alexei.starovoitov@gmail.com


# 7d64c513 03-Apr-2023 Alexei Starovoitov <ast@kernel.org>

bpf: Invoke btf_struct_access() callback only for writes.

Remove duplicated if (atype == BPF_READ) btf_struct_access() from
btf_struct_access() callback and invoke it only for writes. This is
possible to do because currently btf_struct_access() custom callback
always delegates to generic btf_struct_access() helper for BPF_READ
accesses.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/bpf/20230404045029.82870-2-alexei.starovoitov@gmail.com


# f6a6a5a9 03-Apr-2023 Dave Marchevsky <davemarchevsky@fb.com>

bpf: Fix struct_meta lookup for bpf_obj_free_fields kfunc call

bpf_obj_drop_impl has a void return type. In check_kfunc_call, the "else
if" which sets insn_aux->kptr_struct_meta for bpf_obj_drop_impl is
surrounded by a larger if statement which checks btf_type_is_ptr. As a
result:

* The bpf_obj_drop_impl-specific code will never execute
* The btf_struct_meta input to bpf_obj_drop is always NULL
* __bpf_obj_drop_impl will always see a NULL btf_record when called
from BPF program, and won't call bpf_obj_free_fields
* program-allocated kptrs which have fields that should be cleaned up
by bpf_obj_free_fields may instead leak resources

This patch adds a btf_type_is_void branch to the larger if and moves
special handling for bpf_obj_drop_impl there, fixing the issue.

Fixes: ac9f06050a35 ("bpf: Introduce bpf_obj_drop")
Cc: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230403200027.2271029-1-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# d02c48fa 31-Mar-2023 David Vernet <void@manifault.com>

bpf: Make struct task_struct an RCU-safe type

struct task_struct objects are a bit interesting in terms of how their
lifetime is protected by refcounts. task structs have two refcount
fields:

1. refcount_t usage: Protects the memory backing the task struct. When
this refcount drops to 0, the task is immediately freed, without
waiting for an RCU grace period to elapse. This is the field that
most callers in the kernel currently use to ensure that a task
remains valid while it's being referenced, and is what's currently
tracked with bpf_task_acquire() and bpf_task_release().

2. refcount_t rcu_users: A refcount field which, when it drops to 0,
schedules an RCU callback that drops a reference held on the 'usage'
field above (which is acquired when the task is first created). This
field therefore provides a form of RCU protection on the task by
ensuring that at least one 'usage' refcount will be held until an RCU
grace period has elapsed. The qualifier "a form of" is important
here, as a task can remain valid after task->rcu_users has dropped to
0 and the subsequent RCU gp has elapsed.

In terms of BPF, we want to use task->rcu_users to protect tasks that
function as referenced kptrs, and to allow tasks stored as referenced
kptrs in maps to be accessed with RCU protection.

Let's first determine whether we can safely use task->rcu_users to
protect tasks stored in maps. All of the bpf_task* kfuncs can only be
called from tracepoint, struct_ops, or BPF_PROG_TYPE_SCHED_CLS, program
types. For tracepoint and struct_ops programs, the struct task_struct
passed to a program handler will always be trusted, so it will always be
safe to call bpf_task_acquire() with any task passed to a program.
Note, however, that we must update bpf_task_acquire() to be KF_RET_NULL,
as it is possible that the task has exited by the time the program is
invoked, even if the pointer is still currently valid because the main
kernel holds a task->usage refcount. For BPF_PROG_TYPE_SCHED_CLS, tasks
should never be passed as an argument to the any program handlers, so it
should not be relevant.

The second question is whether it's safe to use RCU to access a task
that was acquired with bpf_task_acquire(), and stored in a map. Because
bpf_task_acquire() now uses task->rcu_users, it follows that if the task
is present in the map, that it must have had at least one
task->rcu_users refcount by the time the current RCU cs was started.
Therefore, it's safe to access that task until the end of the current
RCU cs.

With all that said, this patch makes struct task_struct is an
RCU-protected object. In doing so, we also change bpf_task_acquire() to
be KF_ACQUIRE | KF_RCU | KF_RET_NULL, and adjust any selftests as
necessary. A subsequent patch will remove bpf_task_kptr_get(), and
bpf_task_acquire_not_zero() respectively.

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230331195733.699708-2-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# e4c2acab 30-Mar-2023 David Vernet <void@manifault.com>

bpf: Handle PTR_MAYBE_NULL case in PTR_TO_BTF_ID helper call arg

When validating a helper function argument, we use check_reg_type() to
ensure that the register containing the argument is of the correct type.
When the register's base type is PTR_TO_BTF_ID, there is some
supplemental logic where we do extra checks for various combinations of
PTR_TO_BTF_ID type modifiers. For example, for PTR_TO_BTF_ID,
PTR_TO_BTF_ID | PTR_TRUSTED, and PTR_TO_BTF_ID | MEM_RCU, we call
map_kptr_match_type() for bpf_kptr_xchg() calls, and
btf_struct_ids_match() for other helper calls.

When an unhandled PTR_TO_BTF_ID type modifier combination is passed to
check_reg_type(), the verifier fails with an internal verifier error
message. This can currently be triggered by passing a PTR_MAYBE_NULL
pointer to helper functions (currently just bpf_kptr_xchg()) with an
ARG_PTR_TO_BTF_ID_OR_NULL arg type. For example, by callin
bpf_kptr_xchg(&v->kptr, bpf_cpumask_create()).

Whether or not passing a PTR_MAYBE_NULL arg to an
ARG_PTR_TO_BTF_ID_OR_NULL argument is valid is an interesting question.
In a vacuum, it seems fine. A helper function with an
ARG_PTR_TO_BTF_ID_OR_NULL arg would seem to be implying that it can
handle either a NULL or non-NULL arg, and has logic in place to detect
and gracefully handle each. This is the case for bpf_kptr_xchg(), which
of course simply does an xchg(). On the other hand, bpf_kptr_xchg() also
specifies OBJ_RELEASE, and refcounting semantics for a PTR_MAYBE_NULL
pointer is different than handling it for a NULL _OR_ non-NULL pointer.
For example, with a non-NULL arg, we should always fail if there was not
a nonzero refcount for the value in the register being passed to the
helper. For PTR_MAYBE_NULL on the other hand, it's unclear. If the
pointer is NULL it would be fine, but if it's not NULL, it would be
incorrect to load the program.

The current solution to this is to just fail if PTR_MAYBE_NULL is
passed, and to instead require programs to have a NULL check to
explicitly handle the NULL and non-NULL cases. This seems reasonable.
Not only would it possibly be quite complicated to correctly handle
PTR_MAYBE_NULL refcounting in the verifier, but it's also an arguably
odd programming pattern in general to not explicitly handle the NULL
case anyways. For example, it seems odd to not care about whether a
pointer you're passing to bpf_kptr_xchg() was successfully allocated in
a program such as the following:

private(MASK) static struct bpf_cpumask __kptr * global_mask;

SEC("tp_btf/task_newtask")
int BPF_PROG(example, struct task_struct *task, u64 clone_flags)
{
struct bpf_cpumask *prev;

/* bpf_cpumask_create() returns PTR_MAYBE_NULL */
prev = bpf_kptr_xchg(&global_mask, bpf_cpumask_create());
if (prev)
bpf_cpumask_release(prev);

return 0;
}

This patch therefore updates the verifier to explicitly check for
PTR_MAYBE_NULL in check_reg_type(), and fail gracefully if it's
observed. This isn't really "fixing" anything unsafe or incorrect. We're
just updating the verifier to fail gracefully, and explicitly handle
this pattern rather than unintentionally falling back to an internal
verifier error path. A subsequent patch will update selftests.

Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20230330145203.80506-1-void@manifault.com


# 6c831c46 25-Mar-2023 David Vernet <void@manifault.com>

bpf: Treat KF_RELEASE kfuncs as KF_TRUSTED_ARGS

KF_RELEASE kfuncs are not currently treated as having KF_TRUSTED_ARGS,
even though they have a superset of the requirements of KF_TRUSTED_ARGS.
Like KF_TRUSTED_ARGS, KF_RELEASE kfuncs require a 0-offset argument, and
don't allow NULL-able arguments. Unlike KF_TRUSTED_ARGS which require
_either_ an argument with ref_obj_id > 0, _or_ (ref->type &
BPF_REG_TRUSTED_MODIFIERS) (and no unsafe modifiers allowed), KF_RELEASE
only allows for ref_obj_id > 0. Because KF_RELEASE today doesn't
automatically imply KF_TRUSTED_ARGS, some of these requirements are
enforced in different ways that can make the behavior of the verifier
feel unpredictable. For example, a KF_RELEASE kfunc with a NULL-able
argument will currently fail in the verifier with a message like, "arg#0
is ptr_or_null_ expected ptr_ or socket" rather than "Possibly NULL
pointer passed to trusted arg0". Our intention is the same, but the
semantics are different due to implemenetation details that kfunc authors
and BPF program writers should not need to care about.

Let's make the behavior of the verifier more consistent and intuitive by
having KF_RELEASE kfuncs imply the presence of KF_TRUSTED_ARGS. Our
eventual goal is to have all kfuncs assume KF_TRUSTED_ARGS by default
anyways, so this takes us a step in that direction.

Note that it does not make sense to assume KF_TRUSTED_ARGS for all
KF_ACQUIRE kfuncs. KF_ACQUIRE kfuncs can have looser semantics than
KF_RELEASE, with e.g. KF_RCU | KF_RET_NULL. We may want to have
KF_ACQUIRE imply KF_TRUSTED_ARGS _unless_ KF_RCU is specified, but that
can be left to another patch set, and there are no such subtleties to
address for KF_RELEASE.

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230325213144.486885-4-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# b63cbc49 22-Mar-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: remember meta->iter info only for initialized iters

For iter_new() functions iterator state's slot might not be yet
initialized, in which case iter_get_spi() will return -ERANGE. This is
expected and is handled properly. But for iter_next() and iter_destroy()
cases iter slot is supposed to be initialized and correct, so -ERANGE is
not possible.

Move meta->iter.{spi,frameno} initialization into iter_next/iter_destroy
handling branch to make it more explicit that valid information will be
remembered in meta->iter block for subsequent use in process_iter_next_call(),
avoiding confusingly looking -ERANGE assignment for meta->iter.spi.

Reported-by: Dan Carpenter <error27@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230322232502.836171-1-andrii@kernel.org
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>


# 7be14c1c 22-Mar-2023 Daniel Borkmann <daniel@iogearbox.net>

bpf: Fix __reg_bound_offset 64->32 var_off subreg propagation

Xu reports that after commit 3f50f132d840 ("bpf: Verifier, do explicit ALU32
bounds tracking"), the following BPF program is rejected by the verifier:

0: (61) r2 = *(u32 *)(r1 +0) ; R2_w=pkt(off=0,r=0,imm=0)
1: (61) r3 = *(u32 *)(r1 +4) ; R3_w=pkt_end(off=0,imm=0)
2: (bf) r1 = r2
3: (07) r1 += 1
4: (2d) if r1 > r3 goto pc+8
5: (71) r1 = *(u8 *)(r2 +0) ; R1_w=scalar(umax=255,var_off=(0x0; 0xff))
6: (18) r0 = 0x7fffffffffffff10
8: (0f) r1 += r0 ; R1_w=scalar(umin=0x7fffffffffffff10,umax=0x800000000000000f)
9: (18) r0 = 0x8000000000000000
11: (07) r0 += 1
12: (ad) if r0 < r1 goto pc-2
13: (b7) r0 = 0
14: (95) exit

And the verifier log says:

func#0 @0
0: R1=ctx(off=0,imm=0) R10=fp0
0: (61) r2 = *(u32 *)(r1 +0) ; R1=ctx(off=0,imm=0) R2_w=pkt(off=0,r=0,imm=0)
1: (61) r3 = *(u32 *)(r1 +4) ; R1=ctx(off=0,imm=0) R3_w=pkt_end(off=0,imm=0)
2: (bf) r1 = r2 ; R1_w=pkt(off=0,r=0,imm=0) R2_w=pkt(off=0,r=0,imm=0)
3: (07) r1 += 1 ; R1_w=pkt(off=1,r=0,imm=0)
4: (2d) if r1 > r3 goto pc+8 ; R1_w=pkt(off=1,r=1,imm=0) R3_w=pkt_end(off=0,imm=0)
5: (71) r1 = *(u8 *)(r2 +0) ; R1_w=scalar(umax=255,var_off=(0x0; 0xff)) R2_w=pkt(off=0,r=1,imm=0)
6: (18) r0 = 0x7fffffffffffff10 ; R0_w=9223372036854775568
8: (0f) r1 += r0 ; R0_w=9223372036854775568 R1_w=scalar(umin=9223372036854775568,umax=9223372036854775823,s32_min=-240,s32_max=15)
9: (18) r0 = 0x8000000000000000 ; R0_w=-9223372036854775808
11: (07) r0 += 1 ; R0_w=-9223372036854775807
12: (ad) if r0 < r1 goto pc-2 ; R0_w=-9223372036854775807 R1_w=scalar(umin=9223372036854775568,umax=9223372036854775809)
13: (b7) r0 = 0 ; R0_w=0
14: (95) exit

from 12 to 11: R0_w=-9223372036854775807 R1_w=scalar(umin=9223372036854775810,umax=9223372036854775823,var_off=(0x8000000000000000; 0xffffffff)) R2_w=pkt(off=0,r=1,imm=0) R3_w=pkt_end(off=0,imm=0) R10=fp0
11: (07) r0 += 1 ; R0_w=-9223372036854775806
12: (ad) if r0 < r1 goto pc-2 ; R0_w=-9223372036854775806 R1_w=scalar(umin=9223372036854775810,umax=9223372036854775810,var_off=(0x8000000000000000; 0xffffffff))
13: safe

[...]

from 12 to 11: R0_w=-9223372036854775795 R1=scalar(umin=9223372036854775822,umax=9223372036854775823,var_off=(0x8000000000000000; 0xffffffff)) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
11: (07) r0 += 1 ; R0_w=-9223372036854775794
12: (ad) if r0 < r1 goto pc-2 ; R0_w=-9223372036854775794 R1=scalar(umin=9223372036854775822,umax=9223372036854775822,var_off=(0x8000000000000000; 0xffffffff))
13: safe

from 12 to 11: R0_w=-9223372036854775794 R1=scalar(umin=9223372036854775823,umax=9223372036854775823,var_off=(0x8000000000000000; 0xffffffff)) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
11: (07) r0 += 1 ; R0_w=-9223372036854775793
12: (ad) if r0 < r1 goto pc-2 ; R0_w=-9223372036854775793 R1=scalar(umin=9223372036854775823,umax=9223372036854775823,var_off=(0x8000000000000000; 0xffffffff))
13: safe

from 12 to 11: R0_w=-9223372036854775793 R1=scalar(umin=9223372036854775824,umax=9223372036854775823,var_off=(0x8000000000000000; 0xffffffff)) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
11: (07) r0 += 1 ; R0_w=-9223372036854775792
12: (ad) if r0 < r1 goto pc-2 ; R0_w=-9223372036854775792 R1=scalar(umin=9223372036854775824,umax=9223372036854775823,var_off=(0x8000000000000000; 0xffffffff))
13: safe

[...]

The 64bit umin=9223372036854775810 bound continuously bumps by +1 while
umax=9223372036854775823 stays as-is until the verifier complexity limit
is reached and the program gets finally rejected. During this simulation,
the umin also eventually surpasses umax. Looking at the first 'from 12
to 11' output line from the loop, R1 has the following state:

R1_w=scalar(umin=0x8000000000000002 (9223372036854775810),
umax=0x800000000000000f (9223372036854775823),
var_off=(0x8000000000000000;
0xffffffff))

The var_off has technically not an inconsistent state but it's very
imprecise and far off surpassing 64bit umax bounds whereas the expected
output with refined known bits in var_off should have been like:

R1_w=scalar(umin=0x8000000000000002 (9223372036854775810),
umax=0x800000000000000f (9223372036854775823),
var_off=(0x8000000000000000;
0xf))

In the above log, var_off stays as var_off=(0x8000000000000000; 0xffffffff)
and does not converge into a narrower mask where more bits become known,
eventually transforming R1 into a constant upon umin=9223372036854775823,
umax=9223372036854775823 case where the verifier would have terminated and
let the program pass.

The __reg_combine_64_into_32() marks the subregister unknown and propagates
64bit {s,u}min/{s,u}max bounds to their 32bit equivalents iff they are within
the 32bit universe. The question came up whether __reg_combine_64_into_32()
should special case the situation that when 64bit {s,u}min bounds have
the same value as 64bit {s,u}max bounds to then assign the latter as
well to the 32bit reg->{s,u}32_{min,max}_value. As can be seen from the
above example however, that is just /one/ special case and not a /generic/
solution given above example would still not be addressed this way and
remain at an imprecise var_off=(0x8000000000000000; 0xffffffff).

The improvement is needed in __reg_bound_offset() to refine var32_off with
the updated var64_off instead of the prior reg->var_off. The reg_bounds_sync()
code first refines information about the register's min/max bounds via
__update_reg_bounds() from the current var_off, then in __reg_deduce_bounds()
from sign bit and with the potentially learned bits from bounds it'll
update the var_off tnum in __reg_bound_offset(). For example, intersecting
with the old var_off might have improved bounds slightly, e.g. if umax
was 0x7f...f and var_off was (0; 0xf...fc), then new var_off will then
result in (0; 0x7f...fc). The intersected var64_off holds then the
universe which is a superset of var32_off. The point for the latter is
not to broaden, but to further refine known bits based on the intersection
of var_off with 32 bit bounds, so that we later construct the final var_off
from upper and lower 32 bits. The final __update_reg_bounds() can then
potentially still slightly refine bounds if more bits became known from the
new var_off.

After the improvement, we can see R1 converging successively:

func#0 @0
0: R1=ctx(off=0,imm=0) R10=fp0
0: (61) r2 = *(u32 *)(r1 +0) ; R1=ctx(off=0,imm=0) R2_w=pkt(off=0,r=0,imm=0)
1: (61) r3 = *(u32 *)(r1 +4) ; R1=ctx(off=0,imm=0) R3_w=pkt_end(off=0,imm=0)
2: (bf) r1 = r2 ; R1_w=pkt(off=0,r=0,imm=0) R2_w=pkt(off=0,r=0,imm=0)
3: (07) r1 += 1 ; R1_w=pkt(off=1,r=0,imm=0)
4: (2d) if r1 > r3 goto pc+8 ; R1_w=pkt(off=1,r=1,imm=0) R3_w=pkt_end(off=0,imm=0)
5: (71) r1 = *(u8 *)(r2 +0) ; R1_w=scalar(umax=255,var_off=(0x0; 0xff)) R2_w=pkt(off=0,r=1,imm=0)
6: (18) r0 = 0x7fffffffffffff10 ; R0_w=9223372036854775568
8: (0f) r1 += r0 ; R0_w=9223372036854775568 R1_w=scalar(umin=9223372036854775568,umax=9223372036854775823,s32_min=-240,s32_max=15)
9: (18) r0 = 0x8000000000000000 ; R0_w=-9223372036854775808
11: (07) r0 += 1 ; R0_w=-9223372036854775807
12: (ad) if r0 < r1 goto pc-2 ; R0_w=-9223372036854775807 R1_w=scalar(umin=9223372036854775568,umax=9223372036854775809)
13: (b7) r0 = 0 ; R0_w=0
14: (95) exit

from 12 to 11: R0_w=-9223372036854775807 R1_w=scalar(umin=9223372036854775810,umax=9223372036854775823,var_off=(0x8000000000000000; 0xf),s32_min=0,s32_max=15,u32_max=15) R2_w=pkt(off=0,r=1,imm=0) R3_w=pkt_end(off=0,imm=0) R10=fp0
11: (07) r0 += 1 ; R0_w=-9223372036854775806
12: (ad) if r0 < r1 goto pc-2 ; R0_w=-9223372036854775806 R1_w=-9223372036854775806
13: safe

from 12 to 11: R0_w=-9223372036854775806 R1_w=scalar(umin=9223372036854775811,umax=9223372036854775823,var_off=(0x8000000000000000; 0xf),s32_min=0,s32_max=15,u32_max=15) R2_w=pkt(off=0,r=1,imm=0) R3_w=pkt_end(off=0,imm=0) R10=fp0
11: (07) r0 += 1 ; R0_w=-9223372036854775805
12: (ad) if r0 < r1 goto pc-2 ; R0_w=-9223372036854775805 R1_w=-9223372036854775805
13: safe

[...]

from 12 to 11: R0_w=-9223372036854775798 R1=scalar(umin=9223372036854775819,umax=9223372036854775823,var_off=(0x8000000000000008; 0x7),s32_min=8,s32_max=15,u32_min=8,u32_max=15) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
11: (07) r0 += 1 ; R0_w=-9223372036854775797
12: (ad) if r0 < r1 goto pc-2 ; R0_w=-9223372036854775797 R1=-9223372036854775797
13: safe

from 12 to 11: R0_w=-9223372036854775797 R1=scalar(umin=9223372036854775820,umax=9223372036854775823,var_off=(0x800000000000000c; 0x3),s32_min=12,s32_max=15,u32_min=12,u32_max=15) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
11: (07) r0 += 1 ; R0_w=-9223372036854775796
12: (ad) if r0 < r1 goto pc-2 ; R0_w=-9223372036854775796 R1=-9223372036854775796
13: safe

from 12 to 11: R0_w=-9223372036854775796 R1=scalar(umin=9223372036854775821,umax=9223372036854775823,var_off=(0x800000000000000c; 0x3),s32_min=12,s32_max=15,u32_min=12,u32_max=15) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
11: (07) r0 += 1 ; R0_w=-9223372036854775795
12: (ad) if r0 < r1 goto pc-2 ; R0_w=-9223372036854775795 R1=-9223372036854775795
13: safe

from 12 to 11: R0_w=-9223372036854775795 R1=scalar(umin=9223372036854775822,umax=9223372036854775823,var_off=(0x800000000000000e; 0x1),s32_min=14,s32_max=15,u32_min=14,u32_max=15) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
11: (07) r0 += 1 ; R0_w=-9223372036854775794
12: (ad) if r0 < r1 goto pc-2 ; R0_w=-9223372036854775794 R1=-9223372036854775794
13: safe

from 12 to 11: R0_w=-9223372036854775794 R1=-9223372036854775793 R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
11: (07) r0 += 1 ; R0_w=-9223372036854775793
12: (ad) if r0 < r1 goto pc-2
last_idx 12 first_idx 12
parent didn't have regs=1 stack=0 marks: R0_rw=P-9223372036854775801 R1_r=scalar(umin=9223372036854775815,umax=9223372036854775823,var_off=(0x8000000000000000; 0xf),s32_min=0,s32_max=15,u32_max=15) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
last_idx 11 first_idx 11
regs=1 stack=0 before 11: (07) r0 += 1
parent didn't have regs=1 stack=0 marks: R0_rw=P-9223372036854775805 R1_rw=scalar(umin=9223372036854775812,umax=9223372036854775823,var_off=(0x8000000000000000; 0xf),s32_min=0,s32_max=15,u32_max=15) R2_w=pkt(off=0,r=1,imm=0) R3_w=pkt_end(off=0,imm=0) R10=fp0
last_idx 12 first_idx 0
regs=1 stack=0 before 12: (ad) if r0 < r1 goto pc-2
regs=1 stack=0 before 11: (07) r0 += 1
regs=1 stack=0 before 12: (ad) if r0 < r1 goto pc-2
regs=1 stack=0 before 11: (07) r0 += 1
regs=1 stack=0 before 12: (ad) if r0 < r1 goto pc-2
regs=1 stack=0 before 11: (07) r0 += 1
regs=1 stack=0 before 9: (18) r0 = 0x8000000000000000
last_idx 12 first_idx 12
parent didn't have regs=2 stack=0 marks: R0_rw=P-9223372036854775801 R1_r=Pscalar(umin=9223372036854775815,umax=9223372036854775823,var_off=(0x8000000000000000; 0xf),s32_min=0,s32_max=15,u32_max=15) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
last_idx 11 first_idx 11
regs=2 stack=0 before 11: (07) r0 += 1
parent didn't have regs=2 stack=0 marks: R0_rw=P-9223372036854775805 R1_rw=Pscalar(umin=9223372036854775812,umax=9223372036854775823,var_off=(0x8000000000000000; 0xf),s32_min=0,s32_max=15,u32_max=15) R2_w=pkt(off=0,r=1,imm=0) R3_w=pkt_end(off=0,imm=0) R10=fp0
last_idx 12 first_idx 0
regs=2 stack=0 before 12: (ad) if r0 < r1 goto pc-2
regs=2 stack=0 before 11: (07) r0 += 1
regs=2 stack=0 before 12: (ad) if r0 < r1 goto pc-2
regs=2 stack=0 before 11: (07) r0 += 1
regs=2 stack=0 before 12: (ad) if r0 < r1 goto pc-2
regs=2 stack=0 before 11: (07) r0 += 1
regs=2 stack=0 before 9: (18) r0 = 0x8000000000000000
regs=2 stack=0 before 8: (0f) r1 += r0
regs=3 stack=0 before 6: (18) r0 = 0x7fffffffffffff10
regs=2 stack=0 before 5: (71) r1 = *(u8 *)(r2 +0)
13: safe

from 4 to 13: safe
verification time 322 usec
stack depth 0
processed 56 insns (limit 1000000) max_states_per_insn 1 total_states 3 peak_states 3 mark_read 1

This also fixes up a test case along with this improvement where we match
on the verifier log. The updated log now has a refined var_off, too.

Fixes: 3f50f132d840 ("bpf: Verifier, do explicit ALU32 bounds tracking")
Reported-by: Xu Kuohai <xukuohai@huaweicloud.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20230314203424.4015351-2-xukuohai@huaweicloud.com
Link: https://lore.kernel.org/bpf/20230322213056.2470-1-daniel@iogearbox.net


# d7ba4cc9 22-Mar-2023 JP Kobryn <inwardvessel@gmail.com>

bpf: return long from bpf_map_ops funcs

This patch changes the return types of bpf_map_ops functions to long, where
previously int was returned. Using long allows for bpf programs to maintain
the sign bit in the absence of sign extension during situations where
inlined bpf helper funcs make calls to the bpf_map_ops funcs and a negative
error is returned.

The definitions of the helper funcs are generated from comments in the bpf
uapi header at `include/uapi/linux/bpf.h`. The return type of these
helpers was previously changed from int to long in commit bdb7b79b4ce8. For
any case where one of the map helpers call the bpf_map_ops funcs that are
still returning 32-bit int, a compiler might not include sign extension
instructions to properly convert the 32-bit negative value a 64-bit
negative value.

For example:
bpf assembly excerpt of an inlined helper calling a kernel function and
checking for a specific error:

; err = bpf_map_update_elem(&mymap, &key, &val, BPF_NOEXIST);
...
46: call 0xffffffffe103291c ; htab_map_update_elem
; if (err && err != -EEXIST) {
4b: cmp $0xffffffffffffffef,%rax ; cmp -EEXIST,%rax

kernel function assembly excerpt of return value from
`htab_map_update_elem` returning 32-bit int:

movl $0xffffffef, %r9d
...
movl %r9d, %eax

...results in the comparison:
cmp $0xffffffffffffffef, $0x00000000ffffffef

Fixes: bdb7b79b4ce8 ("bpf: Switch most helper return values from 32-bit int to 64-bit long")
Tested-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: JP Kobryn <inwardvessel@gmail.com>
Link: https://lore.kernel.org/r/20230322194754.185781-3-inwardvessel@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 1057d299 21-Mar-2023 Alexei Starovoitov <ast@kernel.org>

bpf: Teach the verifier to recognize rdonly_mem as not null.

Teach the verifier to recognize PTR_TO_MEM | MEM_RDONLY as not NULL
otherwise if (!bpf_ksym_exists(known_kfunc)) doesn't go through
dead code elimination.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/bpf/20230321203854.3035-3-alexei.starovoitov@gmail.com


# 58aa2afb 17-Mar-2023 Alexei Starovoitov <ast@kernel.org>

bpf: Allow ld_imm64 instruction to point to kfunc.

Allow ld_imm64 insn with BPF_PSEUDO_BTF_ID to hold the address of kfunc. The
ld_imm64 pointing to a valid kfunc will be seen as non-null PTR_TO_MEM by
is_branch_taken() logic of the verifier, while libbpf will resolve address to
unknown kfunc as ld_imm64 reg, 0 which will also be recognized by
is_branch_taken() and the verifier will proceed dead code elimination. BPF
programs can use this logic to detect at load time whether kfunc is present in
the kernel with bpf_ksym_exists() macro that is introduced in the next patches.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Martin KaFai Lau <martin.lau@kernel.org>
Reviewed-by: Toke Høiland-Jørgensen <toke@redhat.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20230317201920.62030-2-alexei.starovoitov@gmail.com


# bd5314f8 17-Mar-2023 Viktor Malik <vmalik@redhat.com>

kallsyms, bpf: Move find_kallsyms_symbol_value out of internal header

Moving find_kallsyms_symbol_value from kernel/module/internal.h to
include/linux/module.h. The reason is that internal.h is not prepared to
be included when CONFIG_MODULES=n. find_kallsyms_symbol_value is used by
kernel/bpf/verifier.c and including internal.h from it (without modules)
leads into a compilation error:

In file included from ../include/linux/container_of.h:5,
from ../include/linux/list.h:5,
from ../include/linux/timer.h:5,
from ../include/linux/workqueue.h:9,
from ../include/linux/bpf.h:10,
from ../include/linux/bpf-cgroup.h:5,
from ../kernel/bpf/verifier.c:7:
../kernel/bpf/../module/internal.h: In function 'mod_find':
../include/linux/container_of.h:20:54: error: invalid use of undefined type 'struct module'
20 | static_assert(__same_type(*(ptr), ((type *)0)->member) || \
| ^~
[...]

This patch fixes the above error.

Fixes: 31bf1dbccfb0 ("bpf: Fix attaching fentry/fexit/fmod_ret/lsm to modules")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Viktor Malik <vmalik@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/oe-kbuild-all/202303161404.OrmfCy09-lkp@intel.com/
Link: https://lore.kernel.org/bpf/20230317095601.386738-1-vmalik@redhat.com


# 082cdc69 15-Mar-2023 Luis Gerhorst <gerhorst@cs.fau.de>

bpf: Remove misleading spec_v1 check on var-offset stack read

For every BPF_ADD/SUB involving a pointer, adjust_ptr_min_max_vals()
ensures that the resulting pointer has a constant offset if
bypass_spec_v1 is false. This is ensured by calling sanitize_check_bounds()
which in turn calls check_stack_access_for_ptr_arithmetic(). There,
-EACCESS is returned if the register's offset is not constant, thereby
rejecting the program.

In summary, an unprivileged user must never be able to create stack
pointers with a variable offset. That is also the case, because a
respective check in check_stack_write() is missing. If they were able
to create a variable-offset pointer, users could still use it in a
stack-write operation to trigger unsafe speculative behavior [1].

Because unprivileged users must already be prevented from creating
variable-offset stack pointers, viable options are to either remove
this check (replacing it with a clarifying comment), or to turn it
into a "verifier BUG"-message, also adding a similar check in
check_stack_write() (for consistency, as a second-level defense).
This patch implements the first option to reduce verifier bloat.

This check was introduced by commit 01f810ace9ed ("bpf: Allow
variable-offset stack access") which correctly notes that
"variable-offset reads and writes are disallowed (they were already
disallowed for the indirect access case) because the speculative
execution checking code doesn't support them". However, it does not
further discuss why the check in check_stack_read() is necessary.
The code which made this check obsolete was also introduced in this
commit.

I have compiled ~650 programs from the Linux selftests, Linux samples,
Cilium, and libbpf/examples projects and confirmed that none of these
trigger the check in check_stack_read() [2]. Instead, all of these
programs are, as expected, already rejected when constructing the
variable-offset pointers. Note that the check in
check_stack_access_for_ptr_arithmetic() also prints "off=%d" while the
code removed by this patch does not (the error removed does not appear
in the "verification_error" values). For reproducibility, the
repository linked includes the raw data and scripts used to create
the plot.

[1] https://arxiv.org/pdf/1807.03757.pdf
[2] https://gitlab.cs.fau.de/un65esoq/bpf-spectre/-/raw/53dc19fcf459c186613b1156a81504b39c8d49db/data/plots/23-02-26_23-56_bpftool/bpftool/0004-errors.pdf?inline=false

Fixes: 01f810ace9ed ("bpf: Allow variable-offset stack access")
Signed-off-by: Luis Gerhorst <gerhorst@cs.fau.de>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20230315165358.23701-1-gerhorst@cs.fau.de


# 63d2d83d 15-Mar-2023 David Vernet <void@manifault.com>

bpf: Mark struct bpf_cpumask as rcu protected

struct bpf_cpumask is a BPF-wrapper around the struct cpumask type which
can be instantiated by a BPF program, and then queried as a cpumask in
similar fashion to normal kernel code. The previous patch in this series
makes the type fully RCU safe, so the type can be included in the
rcu_protected_type BTF ID list.

A subsequent patch will remove bpf_cpumask_kptr_get(), as it's no longer
useful now that we can just treat the type as RCU safe by default and do
our own if check.

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230316054028.88924-3-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 31bf1dbc 10-Mar-2023 Viktor Malik <vmalik@redhat.com>

bpf: Fix attaching fentry/fexit/fmod_ret/lsm to modules

This resolves two problems with attachment of fentry/fexit/fmod_ret/lsm
to functions located in modules:

1. The verifier tries to find the address to attach to in kallsyms. This
is always done by searching the entire kallsyms, not respecting the
module in which the function is located. Such approach causes an
incorrect attachment address to be computed if the function to attach
to is shadowed by a function of the same name located earlier in
kallsyms.

2. If the address to attach to is located in a module, the module
reference is only acquired in register_fentry. If the module is
unloaded between the place where the address is found
(bpf_check_attach_target in the verifier) and register_fentry, it is
possible that another module is loaded to the same address which may
lead to potential errors.

Since the attachment must contain the BTF of the program to attach to,
we extract the module from it and search for the function address in the
correct module (resolving problem no. 1). Then, the module reference is
taken directly in bpf_check_attach_target and stored in the bpf program
(in bpf_prog_aux). The reference is only released when the program is
unloaded (resolving problem no. 2).

Signed-off-by: Viktor Malik <vmalik@redhat.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Link: https://lore.kernel.org/r/3f6a9d8ae850532b5ef864ef16327b0f7a669063.1678432753.git.vmalik@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 3e30be42 13-Mar-2023 Alexei Starovoitov <ast@kernel.org>

bpf: Allow helpers access trusted PTR_TO_BTF_ID.

The verifier rejects the code:
bpf_strncmp(task->comm, 16, "my_task");
with the message:
16: (85) call bpf_strncmp#182
R1 type=trusted_ptr_ expected=fp, pkt, pkt_meta, map_key, map_value, mem, ringbuf_mem, buf

Teach the verifier that such access pattern is safe.
Do not allow untrusted and legacy ptr_to_btf_id to be passed into helpers.

Reported-by: David Vernet <void@manifault.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230313235845.61029-3-alexei.starovoitov@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>


# 34f0677e 13-Mar-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: fix precision propagation verbose logging

Fix wrong order of frame index vs register/slot index in precision
propagation verbose (level 2) output. It's wrong and very confusing as is.

Fixes: 529409ea92d5 ("bpf: propagate precision across all frames, not just the last one")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230313184017.4083374-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 738c96d5 10-Mar-2023 Dave Marchevsky <davemarchevsky@fb.com>

bpf: Allow local kptrs to be exchanged via bpf_kptr_xchg

The previous patch added necessary plumbing for verifier and runtime to
know what to do with non-kernel PTR_TO_BTF_IDs in map values, but didn't
provide any way to get such local kptrs into a map value. This patch
modifies verifier handling of bpf_kptr_xchg to allow MEM_ALLOC kptr
types.

check_reg_type is modified accept MEM_ALLOC-flagged input to
bpf_kptr_xchg despite such types not being in btf_ptr_types. This could
have been done with a MAYBE_MEM_ALLOC equivalent to MAYBE_NULL, but
bpf_kptr_xchg is the only helper that I can forsee using
MAYBE_MEM_ALLOC, so keep it special-cased for now.

The verifier tags bpf_kptr_xchg retval MEM_ALLOC if and only if the BTF
associated with the retval is not kernel BTF.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230310230743.2320707-3-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# b32a5dae 09-Mar-2023 Dave Marchevsky <davemarchevsky@fb.com>

bpf: verifier: Rename kernel_type_name helper to btf_type_name

kernel_type_name was introduced in commit 9e15db66136a ("bpf: Implement accurate raw_tp context access via BTF")
with type signature:

const char *kernel_type_name(u32 id)

At that time the function used global btf_vmlinux BTF for all id lookups. Later,
in commit 22dc4a0f5ed1 ("bpf: Remove hard-coded btf_vmlinux assumption from BPF verifier"),
the type signature was changed to:

static const char *kernel_type_name(const struct btf* btf, u32 id)

With the btf parameter used for lookups instead of global btf_vmlinux.

The helper will function as expected for type name lookup using non-kernel BTFs,
and will be used for such in further patches in the series. Let's rename it to
avoid incorrect assumptions that might arise when seeing the current name.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230309180111.1618459-2-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 52c2b005 09-Mar-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: take into account liveness when propagating precision

When doing state comparison, if old state has register that is not
marked as REG_LIVE_READ, then we just skip comparison, regardless what's
the state of corresponing register in current state. This is because not
REG_LIVE_READ register is irrelevant for further program execution and
correctness. All good here.

But when we get to precision propagation, after two states were declared
equivalent, we don't take into account old register's liveness, and thus
attempt to propagate precision for register in current state even if
that register in old state was not REG_LIVE_READ anymore. This is bad,
because register in current state could be anything at all and this
could cause -EFAULT due to internal logic bugs.

Fix by taking into account REG_LIVE_READ liveness mark to keep the logic
in state comparison in sync with precision propagation.

Fixes: a3ce685dd01a ("bpf: fix precision tracking")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230309224131.57449-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 4b5ce570 09-Mar-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: ensure state checkpointing at iter_next() call sites

State equivalence check and checkpointing performed in is_state_visited()
employs certain heuristics to try to save memory by avoiding state checkpoints
if not enough jumps and instructions happened since last checkpoint. This leads
to unpredictability of whether a particular instruction will be checkpointed
and how regularly. While normally this is not causing much problems (except
inconveniences for predictable verifier tests, which we overcome with
BPF_F_TEST_STATE_FREQ flag), turns out it's not the case for open-coded
iterators.

Checking and saving state checkpoints at iter_next() call is crucial for fast
convergence of open-coded iterator loop logic, so we need to force it. If we
don't do that, is_state_visited() might skip saving a checkpoint, causing
unnecessarily long sequence of not checkpointed instructions and jumps, leading
to exhaustion of jump history buffer, and potentially other undesired outcomes.
It is expected that with correct open-coded iterators convergence will happen
quickly, so we don't run a risk of exhausting memory.

This patch adds, in addition to prune and jump instruction marks, also a
"forced checkpoint" mark, and makes sure that any iter_next() call instruction
is marked as such.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230310060149.625887-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 06accc87 08-Mar-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: add support for open-coded iterator loops

Teach verifier about the concept of the open-coded (or inline) iterators.

This patch adds generic iterator loop verification logic, new STACK_ITER
stack slot type to contain iterator state, and necessary kfunc plumbing
for iterator's constructor, destructor and next methods. Next patch
implements first specific iterator (numbers iterator for implementing
for() loop logic). Such split allows to have more focused commits for
verifier logic and separate commit that we could point later to
demonstrating what does it take to add a new kind of iterator.

Each kind of iterator has its own associated struct bpf_iter_<type>,
where <type> denotes a specific type of iterator. struct bpf_iter_<type>
state is supposed to live on BPF program stack, so there will be no way
to change its size later on without breaking backwards compatibility, so
choose wisely! But given this struct is specific to a given <type> of
iterator, this allows a lot of flexibility: simple iterators could be
fine with just one stack slot (8 bytes), like numbers iterator in the
next patch, while some other more complicated iterators might need way
more to keep their iterator state. Either way, such design allows to
avoid runtime memory allocations, which otherwise would be necessary if
we fixed on-the-stack size and it turned out to be too small for a given
iterator implementation.

The way BPF verifier logic is implemented, there are no artificial
restrictions on a number of active iterators, it should work correctly
using multiple active iterators at the same time. This also means you
can have multiple nested iteration loops. struct bpf_iter_<type>
reference can be safely passed to subprograms as well.

General flow is easiest to demonstrate with a simple example using
number iterator implemented in next patch. Here's the simplest possible
loop:

struct bpf_iter_num it;
int *v;

bpf_iter_num_new(&it, 2, 5);
while ((v = bpf_iter_num_next(&it))) {
bpf_printk("X = %d", *v);
}
bpf_iter_num_destroy(&it);

Above snippet should output "X = 2", "X = 3", "X = 4". Note that 5 is
exclusive and is not returned. This matches similar APIs (e.g., slices
in Go or Rust) that implement a range of elements, where end index is
non-inclusive.

In the above example, we see a trio of function:
- constructor, bpf_iter_num_new(), which initializes iterator state
(struct bpf_iter_num it) on the stack. If any of the input arguments
are invalid, constructor should make sure to still initialize it such
that subsequent bpf_iter_num_next() calls will return NULL. I.e., on
error, return error and construct empty iterator.
- next method, bpf_iter_num_next(), which accepts pointer to iterator
state and produces an element. Next method should always return
a pointer. The contract between BPF verifier is that next method will
always eventually return NULL when elements are exhausted. Once NULL is
returned, subsequent next calls should keep returning NULL. In the
case of numbers iterator, bpf_iter_num_next() returns a pointer to an int
(storage for this integer is inside the iterator state itself),
which can be dereferenced after corresponding NULL check.
- once done with the iterator, it's mandated that user cleans up its
state with the call to destructor, bpf_iter_num_destroy() in this
case. Destructor frees up any resources and marks stack space used by
struct bpf_iter_num as usable for something else.

Any other iterator implementation will have to implement at least these
three methods. It is enforced that for any given type of iterator only
applicable constructor/destructor/next are callable. I.e., verifier
ensures you can't pass number iterator state into, say, cgroup
iterator's next method.

It is important to keep the naming pattern consistent to be able to
create generic macros to help with BPF iter usability. E.g., one
of the follow up patches adds generic bpf_for_each() macro to bpf_misc.h
in selftests, which allows to utilize iterator "trio" nicely without
having to code the above somewhat tedious loop explicitly every time.
This is enforced at kfunc registration point by one of the previous
patches in this series.

At the implementation level, iterator state tracking for verification
purposes is very similar to dynptr. We add STACK_ITER stack slot type,
reserve necessary number of slots, depending on
sizeof(struct bpf_iter_<type>), and keep track of necessary extra state
in the "main" slot, which is marked with non-zero ref_obj_id. Other
slots are also marked as STACK_ITER, but have zero ref_obj_id. This is
simpler than having a separate "is_first_slot" flag.

Another big distinction is that STACK_ITER is *always refcounted*, which
simplifies implementation without sacrificing usability. So no need for
extra "iter_id", no need to anticipate reuse of STACK_ITER slots for new
constructors, etc. Keeping it simple here.

As far as the verification logic goes, there are two extensive comments:
in process_iter_next_call() and iter_active_depths_differ() explaining
some important and sometimes subtle aspects. Please refer to them for
details.

But from 10,000-foot point of view, next methods are the points of
forking a verification state, which are conceptually similar to what
verifier is doing when validating conditional jump. We branch out at
a `call bpf_iter_<type>_next` instruction and simulate two outcomes:
NULL (iteration is done) and non-NULL (new element is returned). NULL is
simulated first and is supposed to reach exit without looping. After
that non-NULL case is validated and it either reaches exit (for trivial
examples with no real loop), or reaches another `call bpf_iter_<type>_next`
instruction with the state equivalent to already (partially) validated
one. State equivalency at that point means we technically are going to
be looping forever without "breaking out" out of established "state
envelope" (i.e., subsequent iterations don't add any new knowledge or
constraints to the verifier state, so running 1, 2, 10, or a million of
them doesn't matter). But taking into account the contract stating that
iterator next method *has to* return NULL eventually, we can conclude
that loop body is safe and will eventually terminate. Given we validated
logic outside of the loop (NULL case), and concluded that loop body is
safe (though potentially looping many times), verifier can claim safety
of the overall program logic.

The rest of the patch is necessary plumbing for state tracking, marking,
validation, and necessary further kfunc plumbing to allow implementing
iterator constructor, destructor, and next methods.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230308184121.1165081-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 07236eab 08-Mar-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: factor out fetching basic kfunc metadata

Factor out logic to fetch basic kfunc metadata based on struct bpf_insn.
This is not exactly short or trivial code to just copy/paste and this
information is sometimes necessary in other parts of the verifier logic.
Subsequent patches will rely on this to determine if an instruction is
a kfunc call to iterator next method.

No functional changes intended, including that verbose() warning
behavior when kfunc is not allowed for a particular program type.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230308184121.1165081-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# f4b4eee6 02-Mar-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: add support for fixed-size memory pointer returns for kfuncs

Support direct fixed-size (and for now, read-only) memory access when
kfunc's return type is a pointer to non-struct type. Calculate type size
and let BPF program access that many bytes directly. This is crucial for
numbers iterator.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230302235015.2044271-13-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# a461f5ad 02-Mar-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: generalize dynptr_get_spi to be usable for iters

Generalize the logic of fetching special stack slot object state using
spi (stack slot index). This will be used by STACK_ITER logic next.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230302235015.2044271-12-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# d5271c5b 02-Mar-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: mark PTR_TO_MEM as non-null register type

PTR_TO_MEM register without PTR_MAYBE_NULL is indeed non-null. This is
important for BPF verifier to be able to prune guaranteed not to be
taken branches. This is always the case with open-coded iterators.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230302235015.2044271-11-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# d0e1ac22 02-Mar-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: move kfunc_call_arg_meta higher in the file

Move struct bpf_kfunc_call_arg_meta higher in the file and put it next
to struct bpf_call_arg_meta, so it can be used from more functions.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230302235015.2044271-10-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 553a64a8 02-Mar-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: ensure that r0 is marked scratched after any function call

r0 is important (unless called function is void-returning, but that's
taken care of by print_verifier_state() anyways) in verifier logs.
Currently for helpers we seem to print it in verifier log, but for
kfuncs we don't.

Instead of figuring out where in the maze of code we accidentally set r0
as scratched for helpers and why we don't do that for kfuncs, just
enforce that after any function call r0 is marked as scratched.

Also, perhaps, we should reconsider "scratched" terminology, as it's
mightily confusing. "Touched" would seem more appropriate. But I left
that for follow ups for now.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230302235015.2044271-9-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# c1ee85a9 02-Mar-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: fix visit_insn()'s detection of BPF_FUNC_timer_set_callback helper

It's not correct to assume that any BPF_CALL instruction is a helper
call. Fix visit_insn()'s detection of bpf_timer_set_callback() helper by
also checking insn->code == 0. For kfuncs insn->code would be set to
BPF_PSEUDO_KFUNC_CALL, and for subprog calls it will be BPF_PSEUDO_CALL.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230302235015.2044271-8-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 653ae3a8 02-Mar-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: clean up visit_insn()'s instruction processing

Instead of referencing processed instruction repeatedly as insns[t]
throughout entire visit_insn() function, take a local insn pointer and
work with it in a cleaner way.

It makes enhancing this function further a bit easier as well.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230302235015.2044271-7-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 98ddcf38 02-Mar-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: honor env->test_state_freq flag in is_state_visited()

env->test_state_freq flag can be set by user by passing
BPF_F_TEST_STATE_FREQ program flag. This is used in a bunch of selftests
to have predictable state checkpoints at every jump and so on.

Currently, bounded loop handling heuristic ignores this flag if number
of processed jumps and/or number of processed instructions is below some
thresholds, which throws off that reliable state checkpointing.

Honor this flag in all circumstances by disabling heuristic if
env->test_state_freq is set.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230302235015.2044271-5-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 567da5d2 02-Mar-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: improve regsafe() checks for PTR_TO_{MEM,BUF,TP_BUFFER}

Teach regsafe() logic to handle PTR_TO_MEM, PTR_TO_BUF, and
PTR_TO_TP_BUFFER similarly to PTR_TO_MAP_{KEY,VALUE}. That is, instead of
exact match for var_off and range, use tnum_in() and range_within()
checks, allowing more general verified state to subsume more specific
current state. This allows to match wider range of valid and safe
states, speeding up verification and detecting wider range of equivalent
states for upcoming open-coded iteration looping logic.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230302235015.2044271-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# d54e0f6c 02-Mar-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: improve stack slot state printing

Improve stack slot state printing to provide more useful and relevant
information, especially for dynptrs. While previously we'd see something
like:

8: (85) call bpf_ringbuf_reserve_dynptr#198 ; R0_w=scalar() fp-8_w=dddddddd fp-16_w=dddddddd refs=2

Now we'll see way more useful:

8: (85) call bpf_ringbuf_reserve_dynptr#198 ; R0_w=scalar() fp-16_w=dynptr_ringbuf(ref_id=2) refs=2

I experimented with printing the range of slots taken by dynptr,
something like:

fp-16..8_w=dynptr_ringbuf(ref_id=2)

But it felt very awkward and pretty useless. So we print the lowest
address (most negative offset) only.

The general structure of this code is now also set up for easier
extension and will accommodate ITER slots naturally.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230302235015.2044271-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 0d80a619 03-Mar-2023 Eduard Zingerman <eddyz87@gmail.com>

bpf: allow ctx writes using BPF_ST_MEM instruction

Lift verifier restriction to use BPF_ST_MEM instructions to write to
context data structures. This requires the following changes:
- verifier.c:do_check() for BPF_ST updated to:
- no longer forbid writes to registers of type PTR_TO_CTX;
- track dst_reg type in the env->insn_aux_data[...].ptr_type field
(same way it is done for BPF_STX and BPF_LDX instructions).
- verifier.c:convert_ctx_access() and various callbacks invoked by
it are updated to handled BPF_ST instruction alongside BPF_STX.

Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20230304011247.566040-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 6fcd486b 02-Mar-2023 Alexei Starovoitov <ast@kernel.org>

bpf: Refactor RCU enforcement in the verifier.

bpf_rcu_read_lock/unlock() are only available in clang compiled kernels. Lack
of such key mechanism makes it impossible for sleepable bpf programs to use RCU
pointers.

Allow bpf_rcu_read_lock/unlock() in GCC compiled kernels (though GCC doesn't
support btf_type_tag yet) and allowlist certain field dereferences in important
data structures like tast_struct, cgroup, socket that are used by sleepable
programs either as RCU pointer or full trusted pointer (which is valid outside
of RCU CS). Use BTF_TYPE_SAFE_RCU and BTF_TYPE_SAFE_TRUSTED macros for such
tagging. They will be removed once GCC supports btf_type_tag.

With that refactor check_ptr_to_btf_access(). Make it strict in enforcing
PTR_TRUSTED and PTR_UNTRUSTED while deprecating old PTR_TO_BTF_ID without
modifier flags. There is a chance that this strict enforcement might break
existing programs (especially on GCC compiled kernels), but this cleanup has to
start sooner than later. Note PTR_TO_CTX access still yields old deprecated
PTR_TO_BTF_ID. Once it's converted to strict PTR_TRUSTED or PTR_UNTRUSTED the
kfuncs and helpers will be able to default to KF_TRUSTED_ARGS. KF_RCU will
remain as a weaker version of KF_TRUSTED_ARGS where obj refcnt could be 0.

Adjust rcu_read_lock selftest to run on gcc and clang compiled kernels.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/bpf/20230303041446.3630-7-alexei.starovoitov@gmail.com


# 20c09d92 02-Mar-2023 Alexei Starovoitov <ast@kernel.org>

bpf: Introduce kptr_rcu.

The life time of certain kernel structures like 'struct cgroup' is protected by RCU.
Hence it's safe to dereference them directly from __kptr tagged pointers in bpf maps.
The resulting pointer is MEM_RCU and can be passed to kfuncs that expect KF_RCU.
Derefrence of other kptr-s returns PTR_UNTRUSTED.

For example:
struct map_value {
struct cgroup __kptr *cgrp;
};

SEC("tp_btf/cgroup_mkdir")
int BPF_PROG(test_cgrp_get_ancestors, struct cgroup *cgrp_arg, const char *path)
{
struct cgroup *cg, *cg2;

cg = bpf_cgroup_acquire(cgrp_arg); // cg is PTR_TRUSTED and ref_obj_id > 0
bpf_kptr_xchg(&v->cgrp, cg);

cg2 = v->cgrp; // This is new feature introduced by this patch.
// cg2 is PTR_MAYBE_NULL | MEM_RCU.
// When cg2 != NULL, it's a valid cgroup, but its percpu_ref could be zero

if (cg2)
bpf_cgroup_ancestor(cg2, level); // safe to do.
}

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/bpf/20230303041446.3630-4-alexei.starovoitov@gmail.com


# 8d093b4e 02-Mar-2023 Alexei Starovoitov <ast@kernel.org>

bpf: Mark cgroups and dfl_cgrp fields as trusted.

bpf programs sometimes do:
bpf_cgrp_storage_get(&map, task->cgroups->dfl_cgrp, ...);
It is safe to do, because cgroups->dfl_cgrp pointer is set diring init and
never changes. The task->cgroups is also never NULL. It is also set during init
and will change when task switches cgroups. For any trusted task pointer
dereference of cgroups and dfl_cgrp should yield trusted pointers. The verifier
wasn't aware of this. Hence in gcc compiled kernels task->cgroups dereference
was producing PTR_TO_BTF_ID without modifiers while in clang compiled kernels
the verifier recognizes __rcu tag in cgroups field and produces
PTR_TO_BTF_ID | MEM_RCU | MAYBE_NULL.
Tag cgroups and dfl_cgrp as trusted to equalize clang and gcc behavior.
When GCC supports btf_type_tag such tagging will done directly in the type.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: David Vernet <void@manifault.com>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/bpf/20230303041446.3630-3-alexei.starovoitov@gmail.com


# 9db44fdd 25-Feb-2023 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Support kptrs in local storage maps

Enable support for kptrs in local storage maps by wiring up the freeing
of these kptrs from map value. Freeing of bpf_local_storage_map is only
delayed in case there are special fields, therefore bpf_selem_free_*
path can also only dereference smap safely in that case. This is
recorded using a bool utilizing a hole in bpF_local_storage_elem. It
could have been tagged in the pointer value smap using the lowest bit
(since alignment > 1), but since there was already a hole I went with
the simpler option. Only the map structure freeing is delayed using RCU
barriers, as the buckets aren't used when selem is being freed, so they
can be freed once all readers of the bucket lists can no longer access
it.

Cc: Martin KaFai Lau <martin.lau@kernel.org>
Cc: KP Singh <kpsingh@kernel.org>
Cc: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230225154010.391965-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 66e3a13e 01-Mar-2023 Joanne Koong <joannelkoong@gmail.com>

bpf: Add bpf_dynptr_slice and bpf_dynptr_slice_rdwr

Two new kfuncs are added, bpf_dynptr_slice and bpf_dynptr_slice_rdwr.
The user must pass in a buffer to store the contents of the data slice
if a direct pointer to the data cannot be obtained.

For skb and xdp type dynptrs, these two APIs are the only way to obtain
a data slice. However, for other types of dynptrs, there is no
difference between bpf_dynptr_slice(_rdwr) and bpf_dynptr_data.

For skb type dynptrs, the data is copied into the user provided buffer
if any of the data is not in the linear portion of the skb. For xdp type
dynptrs, the data is copied into the user provided buffer if the data is
between xdp frags.

If the skb is cloned and a call to bpf_dynptr_data_rdwr is made, then
the skb will be uncloned (see bpf_unclone_prologue()).

Please note that any bpf_dynptr_write() automatically invalidates any prior
data slices of the skb dynptr. This is because the skb may be cloned or
may need to pull its paged buffer into the head. As such, any
bpf_dynptr_write() will automatically have its prior data slices
invalidated, even if the write is to data in the skb head of an uncloned
skb. Please note as well that any other helper calls that change the
underlying packet buffer (eg bpf_skb_pull_data()) invalidates any data
slices of the skb dynptr as well, for the same reasons.

Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Link: https://lore.kernel.org/r/20230301154953.641654-10-joannelkoong@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 05421aec 01-Mar-2023 Joanne Koong <joannelkoong@gmail.com>

bpf: Add xdp dynptrs

Add xdp dynptrs, which are dynptrs whose underlying pointer points
to a xdp_buff. The dynptr acts on xdp data. xdp dynptrs have two main
benefits. One is that they allow operations on sizes that are not
statically known at compile-time (eg variable-sized accesses).
Another is that parsing the packet data through dynptrs (instead of
through direct access of xdp->data and xdp->data_end) can be more
ergonomic and less brittle (eg does not need manual if checking for
being within bounds of data_end).

For reads and writes on the dynptr, this includes reading/writing
from/to and across fragments. Data slices through the bpf_dynptr_data
API are not supported; instead bpf_dynptr_slice() and
bpf_dynptr_slice_rdwr() should be used.

For examples of how xdp dynptrs can be used, please see the attached
selftests.

Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Link: https://lore.kernel.org/r/20230301154953.641654-9-joannelkoong@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# b5964b96 01-Mar-2023 Joanne Koong <joannelkoong@gmail.com>

bpf: Add skb dynptrs

Add skb dynptrs, which are dynptrs whose underlying pointer points
to a skb. The dynptr acts on skb data. skb dynptrs have two main
benefits. One is that they allow operations on sizes that are not
statically known at compile-time (eg variable-sized accesses).
Another is that parsing the packet data through dynptrs (instead of
through direct access of skb->data and skb->data_end) can be more
ergonomic and less brittle (eg does not need manual if checking for
being within bounds of data_end).

For bpf prog types that don't support writes on skb data, the dynptr is
read-only (bpf_dynptr_write() will return an error)

For reads and writes through the bpf_dynptr_read() and bpf_dynptr_write()
interfaces, reading and writing from/to data in the head as well as from/to
non-linear paged buffers is supported. Data slices through the
bpf_dynptr_data API are not supported; instead bpf_dynptr_slice() and
bpf_dynptr_slice_rdwr() (added in subsequent commit) should be used.

For examples of how skb dynptrs can be used, please see the attached
selftests.

Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Link: https://lore.kernel.org/r/20230301154953.641654-8-joannelkoong@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# d96d937d 01-Mar-2023 Joanne Koong <joannelkoong@gmail.com>

bpf: Add __uninit kfunc annotation

This patch adds __uninit as a kfunc annotation.

This will be useful for scenarios such as for example in dynptrs,
indicating whether the dynptr should be checked by the verifier as an
initialized or an uninitialized dynptr.

Without this annotation, the alternative would be needing to hard-code
in the verifier the specific kfunc to indicate that arg should be
treated as an uninitialized arg.

Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Link: https://lore.kernel.org/r/20230301154953.641654-7-joannelkoong@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 485ec51e 01-Mar-2023 Joanne Koong <joannelkoong@gmail.com>

bpf: Refactor verifier dynptr into get_dynptr_arg_reg

This commit refactors the logic for determining which register in a
function is the dynptr into "get_dynptr_arg_reg". This will be used
in the future when the dynptr reg for BPF_FUNC_dynptr_write will need
to be obtained in order to support writes for skb dynptrs.

Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Link: https://lore.kernel.org/r/20230301154953.641654-6-joannelkoong@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 1d18feb2 01-Mar-2023 Joanne Koong <joannelkoong@gmail.com>

bpf: Allow initializing dynptrs in kfuncs

This change allows kfuncs to take in an uninitialized dynptr as a
parameter. Before this change, only helper functions could successfully
use uninitialized dynptrs. This change moves the memory access check
(including stack state growing and slot marking) into
process_dynptr_func(), which both helpers and kfuncs call into.

Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Link: https://lore.kernel.org/r/20230301154953.641654-4-joannelkoong@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 7e0dac28 01-Mar-2023 Joanne Koong <joannelkoong@gmail.com>

bpf: Refactor process_dynptr_func

This change cleans up process_dynptr_func's flow to be more intuitive
and updates some comments with more context.

Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Link: https://lore.kernel.org/r/20230301154953.641654-3-joannelkoong@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# df2ccc18 20-Feb-2023 Ilya Leoshkevich <iii@linux.ibm.com>

bpf: Check for helper calls in check_subprogs()

The condition src_reg != BPF_PSEUDO_CALL && imm == BPF_FUNC_tail_call
may be satisfied by a kfunc call. This would lead to unnecessarily
setting has_tail_call. Use src_reg == 0 instead.

Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Acked-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20230220163756.753713-1-iii@linux.ibm.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# dbd8d228 21-Feb-2023 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Wrap register invalidation with a helper

Typically, verifier should use env->allow_ptr_leaks when invaliding
registers for users that don't have CAP_PERFMON or CAP_SYS_ADMIN to
avoid leaking the pointer value. This is similar in spirit to
c67cae551f0d ("bpf: Tighten ptr_to_btf_id checks."). In a lot of the
existing checks, we know the capabilities are present, hence we don't do
the check.

Instead of being inconsistent in the application of the check, wrap the
action of invalidating a register into a helper named 'mark_invalid_reg'
and use it in a uniform fashion to replace open coded invalidation
operations, so that the check is always made regardless of the call site
and we don't have to remember whether it needs to be done or not for
each case.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230221200646.2500777-7-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# da03e43a 21-Feb-2023 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Fix check_reg_type for PTR_TO_BTF_ID

The current code does type matching for the case where reg->type is
PTR_TO_BTF_ID or has the PTR_TRUSTED flag. However, this only needs to
occur for non-MEM_ALLOC and non-MEM_PERCPU cases, but will include both
as per the current code.

The MEM_ALLOC case with or without PTR_TRUSTED needs to be handled
specially by the code for type_is_alloc case, while MEM_PERCPU case must
be ignored. Hence, to restore correct behavior and for clarity,
explicitly list out the handled PTR_TO_BTF_ID types which should be
handled for each case using a switch statement.

Helpers currently only take:
PTR_TO_BTF_ID
PTR_TO_BTF_ID | PTR_TRUSTED
PTR_TO_BTF_ID | MEM_RCU
PTR_TO_BTF_ID | MEM_ALLOC
PTR_TO_BTF_ID | MEM_PERCPU
PTR_TO_BTF_ID | MEM_PERCPU | PTR_TRUSTED

This fix was also described (for the MEM_ALLOC case) in [0].

[0]: https://lore.kernel.org/bpf/20221121160657.h6z7xuvedybp5y7s@apollo

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230221200646.2500777-6-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 521d3c0a 21-Feb-2023 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Remove unused MEM_ALLOC | PTR_TRUSTED checks

The plan is to supposedly tag everything with PTR_TRUSTED eventually,
however those changes should bring in their respective code, instead
of leaving it around right now. It is arguable whether PTR_TRUSTED is
required for all types, when it's only use case is making PTR_TO_BTF_ID
a bit stronger, while all other types are trusted by default.

Hence, just drop the two instances which do not occur in the verifier
for now to avoid reader confusion.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230221200646.2500777-5-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 71b547f5 11-Apr-2023 Daniel Borkmann <daniel@iogearbox.net>

bpf: Fix incorrect verifier pruning due to missing register precision taints

Juan Jose et al reported an issue found via fuzzing where the verifier's
pruning logic prematurely marks a program path as safe.

Consider the following program:

0: (b7) r6 = 1024
1: (b7) r7 = 0
2: (b7) r8 = 0
3: (b7) r9 = -2147483648
4: (97) r6 %= 1025
5: (05) goto pc+0
6: (bd) if r6 <= r9 goto pc+2
7: (97) r6 %= 1
8: (b7) r9 = 0
9: (bd) if r6 <= r9 goto pc+1
10: (b7) r6 = 0
11: (b7) r0 = 0
12: (63) *(u32 *)(r10 -4) = r0
13: (18) r4 = 0xffff888103693400 // map_ptr(ks=4,vs=48)
15: (bf) r1 = r4
16: (bf) r2 = r10
17: (07) r2 += -4
18: (85) call bpf_map_lookup_elem#1
19: (55) if r0 != 0x0 goto pc+1
20: (95) exit
21: (77) r6 >>= 10
22: (27) r6 *= 8192
23: (bf) r1 = r0
24: (0f) r0 += r6
25: (79) r3 = *(u64 *)(r0 +0)
26: (7b) *(u64 *)(r1 +0) = r3
27: (95) exit

The verifier treats this as safe, leading to oob read/write access due
to an incorrect verifier conclusion:

func#0 @0
0: R1=ctx(off=0,imm=0) R10=fp0
0: (b7) r6 = 1024 ; R6_w=1024
1: (b7) r7 = 0 ; R7_w=0
2: (b7) r8 = 0 ; R8_w=0
3: (b7) r9 = -2147483648 ; R9_w=-2147483648
4: (97) r6 %= 1025 ; R6_w=scalar()
5: (05) goto pc+0
6: (bd) if r6 <= r9 goto pc+2 ; R6_w=scalar(umin=18446744071562067969,var_off=(0xffffffff00000000; 0xffffffff)) R9_w=-2147483648
7: (97) r6 %= 1 ; R6_w=scalar()
8: (b7) r9 = 0 ; R9=0
9: (bd) if r6 <= r9 goto pc+1 ; R6=scalar(umin=1) R9=0
10: (b7) r6 = 0 ; R6_w=0
11: (b7) r0 = 0 ; R0_w=0
12: (63) *(u32 *)(r10 -4) = r0
last_idx 12 first_idx 9
regs=1 stack=0 before 11: (b7) r0 = 0
13: R0_w=0 R10=fp0 fp-8=0000????
13: (18) r4 = 0xffff8ad3886c2a00 ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
15: (bf) r1 = r4 ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
16: (bf) r2 = r10 ; R2_w=fp0 R10=fp0
17: (07) r2 += -4 ; R2_w=fp-4
18: (85) call bpf_map_lookup_elem#1 ; R0=map_value_or_null(id=1,off=0,ks=4,vs=48,imm=0)
19: (55) if r0 != 0x0 goto pc+1 ; R0=0
20: (95) exit

from 19 to 21: R0=map_value(off=0,ks=4,vs=48,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0 fp-8=mmmm????
21: (77) r6 >>= 10 ; R6_w=0
22: (27) r6 *= 8192 ; R6_w=0
23: (bf) r1 = r0 ; R0=map_value(off=0,ks=4,vs=48,imm=0) R1_w=map_value(off=0,ks=4,vs=48,imm=0)
24: (0f) r0 += r6
last_idx 24 first_idx 19
regs=40 stack=0 before 23: (bf) r1 = r0
regs=40 stack=0 before 22: (27) r6 *= 8192
regs=40 stack=0 before 21: (77) r6 >>= 10
regs=40 stack=0 before 19: (55) if r0 != 0x0 goto pc+1
parent didn't have regs=40 stack=0 marks: R0_rw=map_value_or_null(id=1,off=0,ks=4,vs=48,imm=0) R6_rw=P0 R7=0 R8=0 R9=0 R10=fp0 fp-8=mmmm????
last_idx 18 first_idx 9
regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1
regs=40 stack=0 before 17: (07) r2 += -4
regs=40 stack=0 before 16: (bf) r2 = r10
regs=40 stack=0 before 15: (bf) r1 = r4
regs=40 stack=0 before 13: (18) r4 = 0xffff8ad3886c2a00
regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0
regs=40 stack=0 before 11: (b7) r0 = 0
regs=40 stack=0 before 10: (b7) r6 = 0
25: (79) r3 = *(u64 *)(r0 +0) ; R0_w=map_value(off=0,ks=4,vs=48,imm=0) R3_w=scalar()
26: (7b) *(u64 *)(r1 +0) = r3 ; R1_w=map_value(off=0,ks=4,vs=48,imm=0) R3_w=scalar()
27: (95) exit

from 9 to 11: R1=ctx(off=0,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0
11: (b7) r0 = 0 ; R0_w=0
12: (63) *(u32 *)(r10 -4) = r0
last_idx 12 first_idx 11
regs=1 stack=0 before 11: (b7) r0 = 0
13: R0_w=0 R10=fp0 fp-8=0000????
13: (18) r4 = 0xffff8ad3886c2a00 ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
15: (bf) r1 = r4 ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
16: (bf) r2 = r10 ; R2_w=fp0 R10=fp0
17: (07) r2 += -4 ; R2_w=fp-4
18: (85) call bpf_map_lookup_elem#1
frame 0: propagating r6
last_idx 19 first_idx 11
regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1
regs=40 stack=0 before 17: (07) r2 += -4
regs=40 stack=0 before 16: (bf) r2 = r10
regs=40 stack=0 before 15: (bf) r1 = r4
regs=40 stack=0 before 13: (18) r4 = 0xffff8ad3886c2a00
regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0
regs=40 stack=0 before 11: (b7) r0 = 0
parent didn't have regs=40 stack=0 marks: R1=ctx(off=0,imm=0) R6_r=P0 R7=0 R8=0 R9=0 R10=fp0
last_idx 9 first_idx 9
regs=40 stack=0 before 9: (bd) if r6 <= r9 goto pc+1
parent didn't have regs=40 stack=0 marks: R1=ctx(off=0,imm=0) R6_rw=Pscalar() R7_w=0 R8_w=0 R9_rw=0 R10=fp0
last_idx 8 first_idx 0
regs=40 stack=0 before 8: (b7) r9 = 0
regs=40 stack=0 before 7: (97) r6 %= 1
regs=40 stack=0 before 6: (bd) if r6 <= r9 goto pc+2
regs=40 stack=0 before 5: (05) goto pc+0
regs=40 stack=0 before 4: (97) r6 %= 1025
regs=40 stack=0 before 3: (b7) r9 = -2147483648
regs=40 stack=0 before 2: (b7) r8 = 0
regs=40 stack=0 before 1: (b7) r7 = 0
regs=40 stack=0 before 0: (b7) r6 = 1024
19: safe
frame 0: propagating r6
last_idx 9 first_idx 0
regs=40 stack=0 before 6: (bd) if r6 <= r9 goto pc+2
regs=40 stack=0 before 5: (05) goto pc+0
regs=40 stack=0 before 4: (97) r6 %= 1025
regs=40 stack=0 before 3: (b7) r9 = -2147483648
regs=40 stack=0 before 2: (b7) r8 = 0
regs=40 stack=0 before 1: (b7) r7 = 0
regs=40 stack=0 before 0: (b7) r6 = 1024

from 6 to 9: safe
verification time 110 usec
stack depth 4
processed 36 insns (limit 1000000) max_states_per_insn 0 total_states 3 peak_states 3 mark_read 2

The verifier considers this program as safe by mistakenly pruning unsafe
code paths. In the above func#0, code lines 0-10 are of interest. In line
0-3 registers r6 to r9 are initialized with known scalar values. In line 4
the register r6 is reset to an unknown scalar given the verifier does not
track modulo operations. Due to this, the verifier can also not determine
precisely which branches in line 6 and 9 are taken, therefore it needs to
explore them both.

As can be seen, the verifier starts with exploring the false/fall-through
paths first. The 'from 19 to 21' path has both r6=0 and r9=0 and the pointer
arithmetic on r0 += r6 is therefore considered safe. Given the arithmetic,
r6 is correctly marked for precision tracking where backtracking kicks in
where it walks back the current path all the way where r6 was set to 0 in
the fall-through branch.

Next, the pruning logics pops the path 'from 9 to 11' from the stack. Also
here, the state of the registers is the same, that is, r6=0 and r9=0, so
that at line 19 the path can be pruned as it is considered safe. It is
interesting to note that the conditional in line 9 turned r6 into a more
precise state, that is, in the fall-through path at the beginning of line
10, it is R6=scalar(umin=1), and in the branch-taken path (which is analyzed
here) at the beginning of line 11, r6 turned into a known const r6=0 as
r9=0 prior to that and therefore (unsigned) r6 <= 0 concludes that r6 must
be 0 (**):

[...] ; R6_w=scalar()
9: (bd) if r6 <= r9 goto pc+1 ; R6=scalar(umin=1) R9=0
[...]

from 9 to 11: R1=ctx(off=0,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0
[...]

The next path is 'from 6 to 9'. The verifier considers the old and current
state equivalent, and therefore prunes the search incorrectly. Looking into
the two states which are being compared by the pruning logic at line 9, the
old state consists of R6_rwD=Pscalar() R9_rwD=0 R10=fp0 and the new state
consists of R1=ctx(off=0,imm=0) R6_w=scalar(umax=18446744071562067968)
R7_w=0 R8_w=0 R9_w=-2147483648 R10=fp0. While r6 had the reg->precise flag
correctly set in the old state, r9 did not. Both r6'es are considered as
equivalent given the old one is a superset of the current, more precise one,
however, r9's actual values (0 vs 0x80000000) mismatch. Given the old r9
did not have reg->precise flag set, the verifier does not consider the
register as contributing to the precision state of r6, and therefore it
considered both r9 states as equivalent. However, for this specific pruned
path (which is also the actual path taken at runtime), register r6 will be
0x400 and r9 0x80000000 when reaching line 21, thus oob-accessing the map.

The purpose of precision tracking is to initially mark registers (including
spilled ones) as imprecise to help verifier's pruning logic finding equivalent
states it can then prune if they don't contribute to the program's safety
aspects. For example, if registers are used for pointer arithmetic or to pass
constant length to a helper, then the verifier sets reg->precise flag and
backtracks the BPF program instruction sequence and chain of verifier states
to ensure that the given register or stack slot including their dependencies
are marked as precisely tracked scalar. This also includes any other registers
and slots that contribute to a tracked state of given registers/stack slot.
This backtracking relies on recorded jmp_history and is able to traverse
entire chain of parent states. This process ends only when all the necessary
registers/slots and their transitive dependencies are marked as precise.

The backtrack_insn() is called from the current instruction up to the first
instruction, and its purpose is to compute a bitmask of registers and stack
slots that need precision tracking in the parent's verifier state. For example,
if a current instruction is r6 = r7, then r6 needs precision after this
instruction and r7 needs precision before this instruction, that is, in the
parent state. Hence for the latter r7 is marked and r6 unmarked.

For the class of jmp/jmp32 instructions, backtrack_insn() today only looks
at call and exit instructions and for all other conditionals the masks
remain as-is. However, in the given situation register r6 has a dependency
on r9 (as described above in **), so also that one needs to be marked for
precision tracking. In other words, if an imprecise register influences a
precise one, then the imprecise register should also be marked precise.
Meaning, in the parent state both dest and src register need to be tracked
for precision and therefore the marking must be more conservative by setting
reg->precise flag for both. The precision propagation needs to cover both
for the conditional: if the src reg was marked but not the dst reg and vice
versa.

After the fix the program is correctly rejected:

func#0 @0
0: R1=ctx(off=0,imm=0) R10=fp0
0: (b7) r6 = 1024 ; R6_w=1024
1: (b7) r7 = 0 ; R7_w=0
2: (b7) r8 = 0 ; R8_w=0
3: (b7) r9 = -2147483648 ; R9_w=-2147483648
4: (97) r6 %= 1025 ; R6_w=scalar()
5: (05) goto pc+0
6: (bd) if r6 <= r9 goto pc+2 ; R6_w=scalar(umin=18446744071562067969,var_off=(0xffffffff80000000; 0x7fffffff),u32_min=-2147483648) R9_w=-2147483648
7: (97) r6 %= 1 ; R6_w=scalar()
8: (b7) r9 = 0 ; R9=0
9: (bd) if r6 <= r9 goto pc+1 ; R6=scalar(umin=1) R9=0
10: (b7) r6 = 0 ; R6_w=0
11: (b7) r0 = 0 ; R0_w=0
12: (63) *(u32 *)(r10 -4) = r0
last_idx 12 first_idx 9
regs=1 stack=0 before 11: (b7) r0 = 0
13: R0_w=0 R10=fp0 fp-8=0000????
13: (18) r4 = 0xffff9290dc5bfe00 ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
15: (bf) r1 = r4 ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
16: (bf) r2 = r10 ; R2_w=fp0 R10=fp0
17: (07) r2 += -4 ; R2_w=fp-4
18: (85) call bpf_map_lookup_elem#1 ; R0=map_value_or_null(id=1,off=0,ks=4,vs=48,imm=0)
19: (55) if r0 != 0x0 goto pc+1 ; R0=0
20: (95) exit

from 19 to 21: R0=map_value(off=0,ks=4,vs=48,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0 fp-8=mmmm????
21: (77) r6 >>= 10 ; R6_w=0
22: (27) r6 *= 8192 ; R6_w=0
23: (bf) r1 = r0 ; R0=map_value(off=0,ks=4,vs=48,imm=0) R1_w=map_value(off=0,ks=4,vs=48,imm=0)
24: (0f) r0 += r6
last_idx 24 first_idx 19
regs=40 stack=0 before 23: (bf) r1 = r0
regs=40 stack=0 before 22: (27) r6 *= 8192
regs=40 stack=0 before 21: (77) r6 >>= 10
regs=40 stack=0 before 19: (55) if r0 != 0x0 goto pc+1
parent didn't have regs=40 stack=0 marks: R0_rw=map_value_or_null(id=1,off=0,ks=4,vs=48,imm=0) R6_rw=P0 R7=0 R8=0 R9=0 R10=fp0 fp-8=mmmm????
last_idx 18 first_idx 9
regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1
regs=40 stack=0 before 17: (07) r2 += -4
regs=40 stack=0 before 16: (bf) r2 = r10
regs=40 stack=0 before 15: (bf) r1 = r4
regs=40 stack=0 before 13: (18) r4 = 0xffff9290dc5bfe00
regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0
regs=40 stack=0 before 11: (b7) r0 = 0
regs=40 stack=0 before 10: (b7) r6 = 0
25: (79) r3 = *(u64 *)(r0 +0) ; R0_w=map_value(off=0,ks=4,vs=48,imm=0) R3_w=scalar()
26: (7b) *(u64 *)(r1 +0) = r3 ; R1_w=map_value(off=0,ks=4,vs=48,imm=0) R3_w=scalar()
27: (95) exit

from 9 to 11: R1=ctx(off=0,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0
11: (b7) r0 = 0 ; R0_w=0
12: (63) *(u32 *)(r10 -4) = r0
last_idx 12 first_idx 11
regs=1 stack=0 before 11: (b7) r0 = 0
13: R0_w=0 R10=fp0 fp-8=0000????
13: (18) r4 = 0xffff9290dc5bfe00 ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
15: (bf) r1 = r4 ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
16: (bf) r2 = r10 ; R2_w=fp0 R10=fp0
17: (07) r2 += -4 ; R2_w=fp-4
18: (85) call bpf_map_lookup_elem#1
frame 0: propagating r6
last_idx 19 first_idx 11
regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1
regs=40 stack=0 before 17: (07) r2 += -4
regs=40 stack=0 before 16: (bf) r2 = r10
regs=40 stack=0 before 15: (bf) r1 = r4
regs=40 stack=0 before 13: (18) r4 = 0xffff9290dc5bfe00
regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0
regs=40 stack=0 before 11: (b7) r0 = 0
parent didn't have regs=40 stack=0 marks: R1=ctx(off=0,imm=0) R6_r=P0 R7=0 R8=0 R9=0 R10=fp0
last_idx 9 first_idx 9
regs=40 stack=0 before 9: (bd) if r6 <= r9 goto pc+1
parent didn't have regs=240 stack=0 marks: R1=ctx(off=0,imm=0) R6_rw=Pscalar() R7_w=0 R8_w=0 R9_rw=P0 R10=fp0
last_idx 8 first_idx 0
regs=240 stack=0 before 8: (b7) r9 = 0
regs=40 stack=0 before 7: (97) r6 %= 1
regs=40 stack=0 before 6: (bd) if r6 <= r9 goto pc+2
regs=240 stack=0 before 5: (05) goto pc+0
regs=240 stack=0 before 4: (97) r6 %= 1025
regs=240 stack=0 before 3: (b7) r9 = -2147483648
regs=40 stack=0 before 2: (b7) r8 = 0
regs=40 stack=0 before 1: (b7) r7 = 0
regs=40 stack=0 before 0: (b7) r6 = 1024
19: safe

from 6 to 9: R1=ctx(off=0,imm=0) R6_w=scalar(umax=18446744071562067968) R7_w=0 R8_w=0 R9_w=-2147483648 R10=fp0
9: (bd) if r6 <= r9 goto pc+1
last_idx 9 first_idx 0
regs=40 stack=0 before 6: (bd) if r6 <= r9 goto pc+2
regs=240 stack=0 before 5: (05) goto pc+0
regs=240 stack=0 before 4: (97) r6 %= 1025
regs=240 stack=0 before 3: (b7) r9 = -2147483648
regs=40 stack=0 before 2: (b7) r8 = 0
regs=40 stack=0 before 1: (b7) r7 = 0
regs=40 stack=0 before 0: (b7) r6 = 1024
last_idx 9 first_idx 0
regs=200 stack=0 before 6: (bd) if r6 <= r9 goto pc+2
regs=240 stack=0 before 5: (05) goto pc+0
regs=240 stack=0 before 4: (97) r6 %= 1025
regs=240 stack=0 before 3: (b7) r9 = -2147483648
regs=40 stack=0 before 2: (b7) r8 = 0
regs=40 stack=0 before 1: (b7) r7 = 0
regs=40 stack=0 before 0: (b7) r6 = 1024
11: R6=scalar(umax=18446744071562067968) R9=-2147483648
11: (b7) r0 = 0 ; R0_w=0
12: (63) *(u32 *)(r10 -4) = r0
last_idx 12 first_idx 11
regs=1 stack=0 before 11: (b7) r0 = 0
13: R0_w=0 R10=fp0 fp-8=0000????
13: (18) r4 = 0xffff9290dc5bfe00 ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
15: (bf) r1 = r4 ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
16: (bf) r2 = r10 ; R2_w=fp0 R10=fp0
17: (07) r2 += -4 ; R2_w=fp-4
18: (85) call bpf_map_lookup_elem#1 ; R0_w=map_value_or_null(id=3,off=0,ks=4,vs=48,imm=0)
19: (55) if r0 != 0x0 goto pc+1 ; R0_w=0
20: (95) exit

from 19 to 21: R0=map_value(off=0,ks=4,vs=48,imm=0) R6=scalar(umax=18446744071562067968) R7=0 R8=0 R9=-2147483648 R10=fp0 fp-8=mmmm????
21: (77) r6 >>= 10 ; R6_w=scalar(umax=18014398507384832,var_off=(0x0; 0x3fffffffffffff))
22: (27) r6 *= 8192 ; R6_w=scalar(smax=9223372036854767616,umax=18446744073709543424,var_off=(0x0; 0xffffffffffffe000),s32_max=2147475456,u32_max=-8192)
23: (bf) r1 = r0 ; R0=map_value(off=0,ks=4,vs=48,imm=0) R1_w=map_value(off=0,ks=4,vs=48,imm=0)
24: (0f) r0 += r6
last_idx 24 first_idx 21
regs=40 stack=0 before 23: (bf) r1 = r0
regs=40 stack=0 before 22: (27) r6 *= 8192
regs=40 stack=0 before 21: (77) r6 >>= 10
parent didn't have regs=40 stack=0 marks: R0_rw=map_value(off=0,ks=4,vs=48,imm=0) R6_r=Pscalar(umax=18446744071562067968) R7=0 R8=0 R9=-2147483648 R10=fp0 fp-8=mmmm????
last_idx 19 first_idx 11
regs=40 stack=0 before 19: (55) if r0 != 0x0 goto pc+1
regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1
regs=40 stack=0 before 17: (07) r2 += -4
regs=40 stack=0 before 16: (bf) r2 = r10
regs=40 stack=0 before 15: (bf) r1 = r4
regs=40 stack=0 before 13: (18) r4 = 0xffff9290dc5bfe00
regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0
regs=40 stack=0 before 11: (b7) r0 = 0
parent didn't have regs=40 stack=0 marks: R1=ctx(off=0,imm=0) R6_rw=Pscalar(umax=18446744071562067968) R7_w=0 R8_w=0 R9_w=-2147483648 R10=fp0
last_idx 9 first_idx 0
regs=40 stack=0 before 9: (bd) if r6 <= r9 goto pc+1
regs=240 stack=0 before 6: (bd) if r6 <= r9 goto pc+2
regs=240 stack=0 before 5: (05) goto pc+0
regs=240 stack=0 before 4: (97) r6 %= 1025
regs=240 stack=0 before 3: (b7) r9 = -2147483648
regs=40 stack=0 before 2: (b7) r8 = 0
regs=40 stack=0 before 1: (b7) r7 = 0
regs=40 stack=0 before 0: (b7) r6 = 1024
math between map_value pointer and register with unbounded min value is not allowed
verification time 886 usec
stack depth 4
processed 49 insns (limit 1000000) max_states_per_insn 1 total_states 5 peak_states 5 mark_read 2

Fixes: b5dc0163d8fd ("bpf: precise scalar_value tracking")
Reported-by: Juan Jose Lopez Jaimez <jjlopezjaimez@google.com>
Reported-by: Meador Inge <meadori@google.com>
Reported-by: Simon Scannell <simonscannell@google.com>
Reported-by: Nenad Stojanovski <thenenadx@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Co-developed-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Reviewed-by: Juan Jose Lopez Jaimez <jjlopezjaimez@google.com>
Reviewed-by: Meador Inge <meadori@google.com>
Reviewed-by: Simon Scannell <simonscannell@google.com>


# 6715df8d 19-Feb-2023 Eduard Zingerman <eddyz87@gmail.com>

bpf: Allow reads from uninit stack

This commits updates the following functions to allow reads from
uninitialized stack locations when env->allow_uninit_stack option is
enabled:
- check_stack_read_fixed_off()
- check_stack_range_initialized(), called from:
- check_stack_read_var_off()
- check_helper_mem_access()

Such change allows to relax logic in stacksafe() to treat STACK_MISC
and STACK_INVALID in a same way and make the following stack slot
configurations equivalent:

| Cached state | Current state |
| stack slot | stack slot |
|------------------+------------------|
| STACK_INVALID or | STACK_INVALID or |
| STACK_MISC | STACK_SPILL or |
| | STACK_MISC or |
| | STACK_ZERO or |
| | STACK_DYNPTR |

This leads to significant verification speed gains (see below).

The idea was suggested by Andrii Nakryiko [1] and initial patch was
created by Alexei Starovoitov [2].

Currently the env->allow_uninit_stack is allowed for programs loaded
by users with CAP_PERFMON or CAP_SYS_ADMIN capabilities.

A number of test cases from verifier/*.c were expecting uninitialized
stack access to be an error. These test cases were updated to execute
in unprivileged mode (thus preserving the tests).

The test progs/test_global_func10.c expected "invalid indirect read
from stack" error message because of the access to uninitialized
memory region. This error is no longer possible in privileged mode.
The test is updated to provoke an error "invalid indirect access to
stack" because of access to invalid stack address (such error is not
verified by progs/test_global_func*.c series of tests).

The following tests had to be removed because these can't be made
unprivileged:
- verifier/sock.c:
- "sk_storage_get(map, skb->sk, &stack_value, 1): partially init
stack_value"
BPF_PROG_TYPE_SCHED_CLS programs are not executed in unprivileged mode.
- verifier/var_off.c:
- "indirect variable-offset stack access, max_off+size > max_initialized"
- "indirect variable-offset stack access, uninitialized"
These tests verify that access to uninitialized stack values is
detected when stack offset is not a constant. However, variable
stack access is prohibited in unprivileged mode, thus these tests
are no longer valid.

* * *

Here is veristat log comparing this patch with current master on a
set of selftest binaries listed in tools/testing/selftests/bpf/veristat.cfg
and cilium BPF binaries (see [3]):

$ ./veristat -e file,prog,states -C -f 'states_pct<-30' master.log current.log
File Program States (A) States (B) States (DIFF)
-------------------------- -------------------------- ---------- ---------- ----------------
bpf_host.o tail_handle_ipv6_from_host 349 244 -105 (-30.09%)
bpf_host.o tail_handle_nat_fwd_ipv4 1320 895 -425 (-32.20%)
bpf_lxc.o tail_handle_nat_fwd_ipv4 1320 895 -425 (-32.20%)
bpf_sock.o cil_sock4_connect 70 48 -22 (-31.43%)
bpf_sock.o cil_sock4_sendmsg 68 46 -22 (-32.35%)
bpf_xdp.o tail_handle_nat_fwd_ipv4 1554 803 -751 (-48.33%)
bpf_xdp.o tail_lb_ipv4 6457 2473 -3984 (-61.70%)
bpf_xdp.o tail_lb_ipv6 7249 3908 -3341 (-46.09%)
pyperf600_bpf_loop.bpf.o on_event 287 145 -142 (-49.48%)
strobemeta.bpf.o on_event 15915 4772 -11143 (-70.02%)
strobemeta_nounroll2.bpf.o on_event 17087 3820 -13267 (-77.64%)
xdp_synproxy_kern.bpf.o syncookie_tc 21271 6635 -14636 (-68.81%)
xdp_synproxy_kern.bpf.o syncookie_xdp 23122 6024 -17098 (-73.95%)
-------------------------- -------------------------- ---------- ---------- ----------------

Note: I limited selection by states_pct<-30%.

Inspection of differences in pyperf600_bpf_loop behavior shows that
the following patch for the test removes almost all differences:

- a/tools/testing/selftests/bpf/progs/pyperf.h
+ b/tools/testing/selftests/bpf/progs/pyperf.h
@ -266,8 +266,8 @ int __on_event(struct bpf_raw_tracepoint_args *ctx)
}

if (event->pthread_match || !pidData->use_tls) {
- void* frame_ptr;
- FrameData frame;
+ void* frame_ptr = 0;
+ FrameData frame = {};
Symbol sym = {};
int cur_cpu = bpf_get_smp_processor_id();

W/o this patch the difference comes from the following pattern
(for different variables):

static bool get_frame_data(... FrameData *frame ...)
{
...
bpf_probe_read_user(&frame->f_code, ...);
if (!frame->f_code)
return false;
...
bpf_probe_read_user(&frame->co_name, ...);
if (frame->co_name)
...;
}

int __on_event(struct bpf_raw_tracepoint_args *ctx)
{
FrameData frame;
...
get_frame_data(... &frame ...) // indirectly via a bpf_loop & callback
...
}

SEC("raw_tracepoint/kfree_skb")
int on_event(struct bpf_raw_tracepoint_args* ctx)
{
...
ret |= __on_event(ctx);
ret |= __on_event(ctx);
...
}

With regards to value `frame->co_name` the following is important:
- Because of the conditional `if (!frame->f_code)` each call to
__on_event() produces two states, one with `frame->co_name` marked
as STACK_MISC, another with it as is (and marked STACK_INVALID on a
first call).
- The call to bpf_probe_read_user() does not mark stack slots
corresponding to `&frame->co_name` as REG_LIVE_WRITTEN but it marks
these slots as BPF_MISC, this happens because of the following loop
in the check_helper_call():

for (i = 0; i < meta.access_size; i++) {
err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
BPF_WRITE, -1, false);
if (err)
return err;
}

Note the size of the write, it is a one byte write for each byte
touched by a helper. The BPF_B write does not lead to write marks
for the target stack slot.
- Which means that w/o this patch when second __on_event() call is
verified `if (frame->co_name)` will propagate read marks first to a
stack slot with STACK_MISC marks and second to a stack slot with
STACK_INVALID marks and these states would be considered different.

[1] https://lore.kernel.org/bpf/CAEf4BzY3e+ZuC6HUa8dCiUovQRg2SzEk7M-dSkqNZyn=xEmnPA@mail.gmail.com/
[2] https://lore.kernel.org/bpf/CAADnVQKs2i1iuZ5SUGuJtxWVfGYR9kDgYKhq3rNV+kBLQCu7rA@mail.gmail.com/
[3] git@github.com:anakryiko/cilium.git

Suggested-by: Andrii Nakryiko <andrii@kernel.org>
Co-developed-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230219200427.606541-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 31ff2135 14-Feb-2023 Eduard Zingerman <eddyz87@gmail.com>

bpf: BPF_ST with variable offset should preserve STACK_ZERO marks

BPF_STX instruction preserves STACK_ZERO marks for variable offset
writes in situations like below:

*(u64*)(r10 - 8) = 0 ; STACK_ZERO marks for fp[-8]
r0 = random(-7, -1) ; some random number in range of [-7, -1]
r0 += r10 ; r0 is now a variable offset pointer to stack
r1 = 0
*(u8*)(r0) = r1 ; BPF_STX writing zero, STACK_ZERO mark for
; fp[-8] is preserved

This commit updates verifier.c:check_stack_write_var_off() to process
BPF_ST in a similar manner, e.g. the following example:

*(u64*)(r10 - 8) = 0 ; STACK_ZERO marks for fp[-8]
r0 = random(-7, -1) ; some random number in range of [-7, -1]
r0 += r10 ; r0 is now variable offset pointer to stack
*(u8*)(r0) = 0 ; BPF_ST writing zero, STACK_ZERO mark for
; fp[-8] is preserved

Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20230214232030.1502829-4-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# ecdf985d 14-Feb-2023 Eduard Zingerman <eddyz87@gmail.com>

bpf: track immediate values written to stack by BPF_ST instruction

For aligned stack writes using BPF_ST instruction track stored values
in a same way BPF_STX is handled, e.g. make sure that the following
commands produce similar verifier knowledge:

fp[-8] = 42; r1 = 42;
fp[-8] = r1;

This covers two cases:
- non-null values written to stack are stored as spill of fake
registers;
- null values written to stack are stored as STACK_ZERO marks.

Previously both cases above used STACK_MISC marks instead.

Some verifier test cases relied on the old logic to obtain STACK_MISC
marks for some stack values. These test cases are updated in the same
commit to avoid failures during bisect.

Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20230214232030.1502829-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# a40d3632 13-Feb-2023 Dave Marchevsky <davemarchevsky@fb.com>

bpf: Special verifier handling for bpf_rbtree_{remove, first}

Newly-added bpf_rbtree_{remove,first} kfuncs have some special properties
that require handling in the verifier:

* both bpf_rbtree_remove and bpf_rbtree_first return the type containing
the bpf_rb_node field, with the offset set to that field's offset,
instead of a struct bpf_rb_node *
* mark_reg_graph_node helper added in previous patch generalizes
this logic, use it

* bpf_rbtree_remove's node input is a node that's been inserted
in the tree - a non-owning reference.

* bpf_rbtree_remove must invalidate non-owning references in order to
avoid aliasing issue. Use previously-added
invalidate_non_owning_refs helper to mark this function as a
non-owning ref invalidation point.

* Unlike other functions, which convert one of their input arg regs to
non-owning reference, bpf_rbtree_first takes no arguments and just
returns a non-owning reference (possibly null)
* For now verifier logic for this is special-cased instead of
adding new kfunc flag.

This patch, along with the previous one, complete special verifier
handling for all rbtree API functions added in this series.

With functional verifier handling of rbtree_remove, under current
non-owning reference scheme, a node type with both bpf_{list,rb}_node
fields could cause the verifier to accept programs which remove such
nodes from collections they haven't been added to.

In order to prevent this, this patch adds a check to btf_parse_fields
which rejects structs with both bpf_{list,rb}_node fields. This is a
temporary measure that can be removed after "collection identity"
followup. See comment added in btf_parse_fields. A linked_list BTF test
exercising the new check is added in this patch as well.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230214004017.2534011-6-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 5d92ddc3 13-Feb-2023 Dave Marchevsky <davemarchevsky@fb.com>

bpf: Add callback validation to kfunc verifier logic

Some BPF helpers take a callback function which the helper calls. For
each helper that takes such a callback, there's a special call to
__check_func_call with a callback-state-setting callback that sets up
verifier bpf_func_state for the callback's frame.

kfuncs don't have any of this infrastructure yet, so let's add it in
this patch, following existing helper pattern as much as possible. To
validate functionality of this added plumbing, this patch adds
callback handling for the bpf_rbtree_add kfunc and hopes to lay
groundwork for future graph datastructure callbacks.

In the "general plumbing" category we have:

* check_kfunc_call doing callback verification right before clearing
CALLER_SAVED_REGS, exactly like check_helper_call
* recognition of func_ptr BTF types in kfunc args as
KF_ARG_PTR_TO_CALLBACK + propagation of subprogno for this arg type

In the "rbtree_add / graph datastructure-specific plumbing" category:

* Since bpf_rbtree_add must be called while the spin_lock associated
with the tree is held, don't complain when callback's func_state
doesn't unlock it by frame exit
* Mark rbtree_add callback's args with ref_set_non_owning
to prevent rbtree api functions from being called in the callback.
Semantically this makes sense, as less() takes no ownership of its
args when determining which comes first.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230214004017.2534011-5-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# cd6791b4 13-Feb-2023 Dave Marchevsky <davemarchevsky@fb.com>

bpf: Add support for bpf_rb_root and bpf_rb_node in kfunc args

Now that we find bpf_rb_root and bpf_rb_node in structs, let's give args
that contain those types special classification and properly handle
these types when checking kfunc args.

"Properly handling" these types largely requires generalizing similar
handling for bpf_list_{head,node}, with little new logic added in this
patch.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230214004017.2534011-4-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# bd1279ae 13-Feb-2023 Dave Marchevsky <davemarchevsky@fb.com>

bpf: Add bpf_rbtree_{add,remove,first} kfuncs

This patch adds implementations of bpf_rbtree_{add,remove,first}
and teaches verifier about their BTF_IDs as well as those of
bpf_rb_{root,node}.

All three kfuncs have some nonstandard component to their verification
that needs to be addressed in future patches before programs can
properly use them:

* bpf_rbtree_add: Takes 'less' callback, need to verify it

* bpf_rbtree_first: Returns ptr_to_node_type(off=rb_node_off) instead
of ptr_to_rb_node(off=0). Return value ref is
non-owning.

* bpf_rbtree_remove: Returns ptr_to_node_type(off=rb_node_off) instead
of ptr_to_rb_node(off=0). 2nd arg (node) is a
non-owning reference.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230214004017.2534011-3-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 9c395c1b 13-Feb-2023 Dave Marchevsky <davemarchevsky@fb.com>

bpf: Add basic bpf_rb_{root,node} support

This patch adds special BPF_RB_{ROOT,NODE} btf_field_types similar to
BPF_LIST_{HEAD,NODE}, adds the necessary plumbing to detect the new
types, and adds bpf_rb_root_free function for freeing bpf_rb_root in
map_values.

structs bpf_rb_root and bpf_rb_node are opaque types meant to
obscure structs rb_root_cached rb_node, respectively.

btf_struct_access will prevent BPF programs from touching these special
fields automatically now that they're recognized.

btf_check_and_fixup_fields now groups list_head and rb_root together as
"graph root" fields and {list,rb}_node as "graph node", and does same
ownership cycle checking as before. Note that this function does _not_
prevent ownership type mixups (e.g. rb_root owning list_node) - that's
handled by btf_parse_graph_root.

After this patch, a bpf program can have a struct bpf_rb_root in a
map_value, but not add anything to nor do anything useful with it.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230214004017.2534011-2-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 6a3cd331 12-Feb-2023 Dave Marchevsky <davemarchevsky@fb.com>

bpf: Migrate release_on_unlock logic to non-owning ref semantics

This patch introduces non-owning reference semantics to the verifier,
specifically linked_list API kfunc handling. release_on_unlock logic for
refs is refactored - with small functional changes - to implement these
semantics, and bpf_list_push_{front,back} are migrated to use them.

When a list node is pushed to a list, the program still has a pointer to
the node:

n = bpf_obj_new(typeof(*n));

bpf_spin_lock(&l);
bpf_list_push_back(&l, n);
/* n still points to the just-added node */
bpf_spin_unlock(&l);

What the verifier considers n to be after the push, and thus what can be
done with n, are changed by this patch.

Common properties both before/after this patch:
* After push, n is only a valid reference to the node until end of
critical section
* After push, n cannot be pushed to any list
* After push, the program can read the node's fields using n

Before:
* After push, n retains the ref_obj_id which it received on
bpf_obj_new, but the associated bpf_reference_state's
release_on_unlock field is set to true
* release_on_unlock field and associated logic is used to implement
"n is only a valid ref until end of critical section"
* After push, n cannot be written to, the node must be removed from
the list before writing to its fields
* After push, n is marked PTR_UNTRUSTED

After:
* After push, n's ref is released and ref_obj_id set to 0. NON_OWN_REF
type flag is added to reg's type, indicating that it's a non-owning
reference.
* NON_OWN_REF flag and logic is used to implement "n is only a
valid ref until end of critical section"
* n can be written to (except for special fields e.g. bpf_list_node,
timer, ...)

Summary of specific implementation changes to achieve the above:

* release_on_unlock field, ref_set_release_on_unlock helper, and logic
to "release on unlock" based on that field are removed

* The anonymous active_lock struct used by bpf_verifier_state is
pulled out into a named struct bpf_active_lock.

* NON_OWN_REF type flag is introduced along with verifier logic
changes to handle non-owning refs

* Helpers are added to use NON_OWN_REF flag to implement non-owning
ref semantics as described above
* invalidate_non_owning_refs - helper to clobber all non-owning refs
matching a particular bpf_active_lock identity. Replaces
release_on_unlock logic in process_spin_lock.
* ref_set_non_owning - set NON_OWN_REF type flag after doing some
sanity checking
* ref_convert_owning_non_owning - convert owning reference w/
specified ref_obj_id to non-owning references. Set NON_OWN_REF
flag for each reg with that ref_obj_id and 0-out its ref_obj_id

* Update linked_list selftests to account for minor semantic
differences introduced by this patch
* Writes to a release_on_unlock node ref are not allowed, while
writes to non-owning reference pointees are. As a result the
linked_list "write after push" failure tests are no longer scenarios
that should fail.
* The test##missing_lock##op and test##incorrect_lock##op
macro-generated failure tests need to have a valid node argument in
order to have the same error output as before. Otherwise
verification will fail early and the expected error output won't be seen.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230212092715.1422619-2-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 51a52a29 25-Jan-2023 David Vernet <void@manifault.com>

bpf: Pass const struct bpf_prog * to .check_member

The .check_member field of struct bpf_struct_ops is currently passed the
member's btf_type via const struct btf_type *t, and a const struct
btf_member *member. This allows the struct_ops implementation to check
whether e.g. an ops is supported, but it would be useful to also enforce
that the struct_ops prog being loaded for that member has other
qualities, like being sleepable (or not). This patch therefore updates
the .check_member() callback to also take a const struct bpf_prog *prog
argument.

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230125164735.785732-4-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 1e12d3ef 25-Jan-2023 David Vernet <void@manifault.com>

bpf: Allow BPF_PROG_TYPE_STRUCT_OPS programs to be sleepable

BPF struct_ops programs currently cannot be marked as sleepable. This
need not be the case -- struct_ops programs can be sleepable, and e.g.
invoke kfuncs that export the KF_SLEEPABLE flag. So as to allow future
struct_ops programs to invoke such kfuncs, this patch updates the
verifier to allow struct_ops programs to be sleepable. A follow-on patch
will add support to libbpf for specifying struct_ops.s as a sleepable
struct_ops program, and then another patch will add testcases to the
dummy_st_ops selftest suite which test sleepable struct_ops behavior.

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230125164735.785732-2-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# caf713c3 25-Jan-2023 David Vernet <void@manifault.com>

bpf: Disallow NULLable pointers for trusted kfuncs

KF_TRUSTED_ARGS kfuncs currently have a subtle and insidious bug in
validating pointers to scalars. Say that you have a kfunc like the
following, which takes an array as the first argument:

bool bpf_cpumask_empty(const struct cpumask *cpumask)
{
return cpumask_empty(cpumask);
}

...
BTF_ID_FLAGS(func, bpf_cpumask_empty, KF_TRUSTED_ARGS)
...

If a BPF program were to invoke the kfunc with a NULL argument, it would
crash the kernel. The reason is that struct cpumask is defined as a
bitmap, which is itself defined as an array, and is accessed as a memory
address by bitmap operations. So when the verifier analyzes the
register, it interprets it as a pointer to a scalar struct, which is an
array of size 8. check_mem_reg() then sees that the register is NULL and
returns 0, and the kfunc crashes when it passes it down to the cpumask
wrappers.

To fix this, this patch adds a check for KF_ARG_PTR_TO_MEM which
verifies that the register doesn't contain a possibly-NULL pointer if
the kfunc is KF_TRUSTED_ARGS.

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230125143816.721952-2-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# b613d335 20-Jan-2023 David Vernet <void@manifault.com>

bpf: Allow trusted args to walk struct when checking BTF IDs

When validating BTF types for KF_TRUSTED_ARGS kfuncs, the verifier
currently enforces that the top-level type must match when calling
the kfunc. In other words, the verifier does not allow the BPF program
to pass a bitwise equivalent struct, despite it being allowed according
to the C standard.

For example, if you have the following type:

struct nf_conn___init {
struct nf_conn ct;
};

The C standard stipulates that it would be safe to pass a struct
nf_conn___init to a kfunc expecting a struct nf_conn. The verifier
currently disallows this, however, as semantically kfuncs may want to
enforce that structs that have equivalent types according to the C
standard, but have different BTF IDs, are not able to be passed to
kfuncs expecting one or the other. For example, struct nf_conn___init
may not be queried / looked up, as it is allocated but may not yet be
fully initialized.

On the other hand, being able to pass types that are equivalent
according to the C standard will be useful for other types of kfunc /
kptrs enabled by BPF. For example, in a follow-on patch, a series of
kfuncs will be added which allow programs to do bitwise queries on
cpumasks that are either allocated by the program (in which case they'll
be a 'struct bpf_cpumask' type that wraps a cpumask_t as its first
element), or a cpumask that was allocated by the main kernel (in which
case it will just be a straight cpumask_t, as in task->cpus_ptr).

Having the two types of cpumasks allows us to distinguish between the
two for when a cpumask is read-only vs. mutatable. A struct bpf_cpumask
can be mutated by e.g. bpf_cpumask_clear(), whereas a regular cpumask_t
cannot be. On the other hand, a struct bpf_cpumask can of course be
queried in the exact same manner as a cpumask_t, with e.g.
bpf_cpumask_test_cpu().

If we were to enforce that top level types match, then a user that's
passing a struct bpf_cpumask to a read-only cpumask_t argument would
have to cast with something like bpf_cast_to_kern_ctx() (which itself
would need to be updated to expect the alias, and currently it only
accommodates a single alias per prog type). Additionally, not specifying
KF_TRUSTED_ARGS is not an option, as some kfuncs take one argument as a
struct bpf_cpumask *, and another as a struct cpumask *
(i.e. cpumask_t).

In order to enable this, this patch relaxes the constraint that a
KF_TRUSTED_ARGS kfunc must have strict type matching, and instead only
enforces strict type matching if a type is observed to be a "no-cast
alias" (i.e., that the type names are equivalent, but one is suffixed
with ___init).

Additionally, in order to try and be conservative and match existing
behavior / expectations, this patch also enforces strict type checking
for acquire kfuncs. We were already enforcing it for release kfuncs, so
this should also improve the consistency of the semantics for kfuncs.

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230120192523.3650503-3-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 57539b1c 20-Jan-2023 David Vernet <void@manifault.com>

bpf: Enable annotating trusted nested pointers

In kfuncs, a "trusted" pointer is a pointer that the kfunc can assume is
safe, and which the verifier will allow to be passed to a
KF_TRUSTED_ARGS kfunc. Currently, a KF_TRUSTED_ARGS kfunc disallows any
pointer to be passed at a nonzero offset, but sometimes this is in fact
safe if the "nested" pointer's lifetime is inherited from its parent.
For example, the const cpumask_t *cpus_ptr field in a struct task_struct
will remain valid until the task itself is destroyed, and thus would
also be safe to pass to a KF_TRUSTED_ARGS kfunc.

While it would be conceptually simple to enable this by using BTF tags,
gcc unfortunately does not yet support this. In the interim, this patch
enables support for this by using a type-naming convention. A new
BTF_TYPE_SAFE_NESTED macro is defined in verifier.c which allows a
developer to specify the nested fields of a type which are considered
trusted if its parent is also trusted. The verifier is also updated to
account for this. A patch with selftests will be added in a follow-on
change, along with documentation for this feature.

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230120192523.3650503-2-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# fd7c211d 19-Jan-2023 Toke Høiland-Jørgensen <toke@redhat.com>

bpf: Support consuming XDP HW metadata from fext programs

Instead of rejecting the attaching of PROG_TYPE_EXT programs to XDP
programs that consume HW metadata, implement support for propagating the
offload information. The extension program doesn't need to set a flag or
ifindex, these will just be propagated from the target by the verifier.
We need to create a separate offload object for the extension program,
though, since it can be reattached to a different program later (which
means we can't just inherit the offload information from the target).

An additional check is added on attach that the new target is compatible
with the offload information in the extension prog.

Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20230119221536.3349901-9-sdf@google.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>


# 3d76a4d3 19-Jan-2023 Stanislav Fomichev <sdf@google.com>

bpf: XDP metadata RX kfuncs

Define a new kfunc set (xdp_metadata_kfunc_ids) which implements all possible
XDP metatada kfuncs. Not all devices have to implement them. If kfunc is not
supported by the target device, the default implementation is called instead.
The verifier, at load time, replaces a call to the generic kfunc with a call
to the per-device one. Per-device kfunc pointers are stored in separate
struct xdp_metadata_ops.

Cc: John Fastabend <john.fastabend@gmail.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Martin KaFai Lau <martin.lau@linux.dev>
Cc: Jakub Kicinski <kuba@kernel.org>
Cc: Willem de Bruijn <willemb@google.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Anatoly Burakov <anatoly.burakov@intel.com>
Cc: Alexander Lobakin <alexandr.lobakin@intel.com>
Cc: Magnus Karlsson <magnus.karlsson@gmail.com>
Cc: Maryam Tahhan <mtahhan@redhat.com>
Cc: xdp-hints@xdp-project.net
Cc: netdev@vger.kernel.org
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20230119221536.3349901-8-sdf@google.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>


# 9d03ebc7 19-Jan-2023 Stanislav Fomichev <sdf@google.com>

bpf: Rename bpf_{prog,map}_is_dev_bound to is_offloaded

BPF offloading infra will be reused to implement
bound-but-not-offloaded bpf programs. Rename existing
helpers for clarity. No functional changes.

Cc: John Fastabend <john.fastabend@gmail.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Martin KaFai Lau <martin.lau@linux.dev>
Cc: Willem de Bruijn <willemb@google.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Anatoly Burakov <anatoly.burakov@intel.com>
Cc: Alexander Lobakin <alexandr.lobakin@intel.com>
Cc: Magnus Karlsson <magnus.karlsson@gmail.com>
Cc: Maryam Tahhan <mtahhan@redhat.com>
Cc: xdp-hints@xdp-project.net
Cc: netdev@vger.kernel.org
Reviewed-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20230119221536.3349901-3-sdf@google.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>


# 1ee72bcb 20-Jan-2023 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Avoid recomputing spi in process_dynptr_func

Currently, process_dynptr_func first calls dynptr_get_spi and then
is_dynptr_reg_valid_init and is_dynptr_reg_valid_uninit have to call it
again to obtain the spi value. Instead of doing this twice, reuse the
already obtained value (which is by default 0, and is only set for
PTR_TO_STACK, and only used in that case in aforementioned functions).
The input value for these two functions will either be -ERANGE or >= 1,
and can either be permitted or rejected based on the respective check.

Suggested-by: Joanne Koong <joannelkoong@gmail.com>
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230121002241.2113993-8-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# f5b625e5 20-Jan-2023 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Combine dynptr_get_spi and is_spi_bounds_valid

Currently, a check on spi resides in dynptr_get_spi, while others
checking its validity for being within the allocated stack slots happens
in is_spi_bounds_valid. Almost always barring a couple of cases (where
being beyond allocated stack slots is not an error as stack slots need
to be populated), both are used together to make checks. Hence, subsume
the is_spi_bounds_valid check in dynptr_get_spi, and return -ERANGE to
specially distinguish the case where spi is valid but not within
allocated slots in the stack state.

The is_spi_bounds_valid function is still kept around as it is a generic
helper that will be useful for other objects on stack similar to dynptr
in the future.

Suggested-by: Joanne Koong <joannelkoong@gmail.com>
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230121002241.2113993-7-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 379d4ba8 20-Jan-2023 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Allow reinitializing unreferenced dynptr stack slots

Consider a program like below:

void prog(void)
{
{
struct bpf_dynptr ptr;
bpf_dynptr_from_mem(...);
}
...
{
struct bpf_dynptr ptr;
bpf_dynptr_from_mem(...);
}
}

Here, the C compiler based on lifetime rules in the C standard would be
well within in its rights to share stack storage for dynptr 'ptr' as
their lifetimes do not overlap in the two distinct scopes. Currently,
such an example would be rejected by the verifier, but this is too
strict. Instead, we should allow reinitializing over dynptr stack slots
and forget information about the old dynptr object.

The destroy_if_dynptr_stack_slot function already makes necessary checks
to avoid overwriting referenced dynptr slots. This is done to present a
better error message instead of forgetting dynptr information on stack
and preserving reference state, leading to an inevitable but
undecipherable error at the end about an unreleased reference which has
to be associated back to its allocating call instruction to make any
sense to the user.

Acked-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230121002241.2113993-6-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# f8064ab9 20-Jan-2023 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Invalidate slices on destruction of dynptrs on stack

The previous commit implemented destroy_if_dynptr_stack_slot. It
destroys the dynptr which given spi belongs to, but still doesn't
invalidate the slices that belong to such a dynptr. While for the case
of referenced dynptr, we don't allow their overwrite and return an error
early, we still allow it and destroy the dynptr for unreferenced dynptr.

To be able to enable precise and scoped invalidation of dynptr slices in
this case, we must be able to associate the source dynptr of slices that
have been obtained using bpf_dynptr_data. When doing destruction, only
slices belonging to the dynptr being destructed should be invalidated,
and nothing else. Currently, dynptr slices belonging to different
dynptrs are indistinguishible.

Hence, allocate a unique id to each dynptr (CONST_PTR_TO_DYNPTR and
those on stack). This will be stored as part of reg->id. Whenever using
bpf_dynptr_data, transfer this unique dynptr id to the returned
PTR_TO_MEM_OR_NULL slice pointer, and store it in a new per-PTR_TO_MEM
dynptr_id register state member.

Finally, after establishing such a relationship between dynptrs and
their slices, implement precise invalidation logic that only invalidates
slices belong to the destroyed dynptr in destroy_if_dynptr_stack_slot.

Acked-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230121002241.2113993-5-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# ef8fc7a0 20-Jan-2023 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Fix partial dynptr stack slot reads/writes

Currently, while reads are disallowed for dynptr stack slots, writes are
not. Reads don't work from both direct access and helpers, while writes
do work in both cases, but have the effect of overwriting the slot_type.

While this is fine, handling for a few edge cases is missing. Firstly,
a user can overwrite the stack slots of dynptr partially.

Consider the following layout:
spi: [d][d][?]
2 1 0

First slot is at spi 2, second at spi 1.
Now, do a write of 1 to 8 bytes for spi 1.

This will essentially either write STACK_MISC for all slot_types or
STACK_MISC and STACK_ZERO (in case of size < BPF_REG_SIZE partial write
of zeroes). The end result is that slot is scrubbed.

Now, the layout is:
spi: [d][m][?]
2 1 0

Suppose if user initializes spi = 1 as dynptr.
We get:
spi: [d][d][d]
2 1 0

But this time, both spi 2 and spi 1 have first_slot = true.

Now, when passing spi 2 to dynptr helper, it will consider it as
initialized as it does not check whether second slot has first_slot ==
false. And spi 1 should already work as normal.

This effectively replaced size + offset of first dynptr, hence allowing
invalid OOB reads and writes.

Make a few changes to protect against this:
When writing to PTR_TO_STACK using BPF insns, when we touch spi of a
STACK_DYNPTR type, mark both first and second slot (regardless of which
slot we touch) as STACK_INVALID. Reads are already prevented.

Second, prevent writing to stack memory from helpers if the range may
contain any STACK_DYNPTR slots. Reads are already prevented.

For helpers, we cannot allow it to destroy dynptrs from the writes as
depending on arguments, helper may take uninit_mem and dynptr both at
the same time. This would mean that helper may write to uninit_mem
before it reads the dynptr, which would be bad.

PTR_TO_MEM: [?????dd]

Depending on the code inside the helper, it may end up overwriting the
dynptr contents first and then read those as the dynptr argument.

Verifier would only simulate destruction when it does byte by byte
access simulation in check_helper_call for meta.access_size, and
fail to catch this case, as it happens after argument checks.

The same would need to be done for any other non-trivial objects created
on the stack in the future, such as bpf_list_head on stack, or
bpf_rb_root on stack.

A common misunderstanding in the current code is that MEM_UNINIT means
writes, but note that writes may also be performed even without
MEM_UNINIT in case of helpers, in that case the code after handling meta
&& meta->raw_mode will complain when it sees STACK_DYNPTR. So that
invalid read case also covers writes to potential STACK_DYNPTR slots.
The only loophole was in case of meta->raw_mode which simulated writes
through instructions which could overwrite them.

A future series sequenced after this will focus on the clean up of
helper access checks and bugs around that.

Fixes: 97e03f521050 ("bpf: Add verifier support for dynptrs")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230121002241.2113993-4-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 79168a66 20-Jan-2023 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Fix missing var_off check for ARG_PTR_TO_DYNPTR

Currently, the dynptr function is not checking the variable offset part
of PTR_TO_STACK that it needs to check. The fixed offset is considered
when computing the stack pointer index, but if the variable offset was
not a constant (such that it could not be accumulated in reg->off), we
will end up a discrepency where runtime pointer does not point to the
actual stack slot we mark as STACK_DYNPTR.

It is impossible to precisely track dynptr state when variable offset is
not constant, hence, just like bpf_timer, kptr, bpf_spin_lock, etc.
simply reject the case where reg->var_off is not constant. Then,
consider both reg->off and reg->var_off.value when computing the stack
pointer index.

A new helper dynptr_get_spi is introduced to hide over these details
since the dynptr needs to be located in multiple places outside the
process_dynptr_func checks, hence once we know it's a PTR_TO_STACK, we
need to enforce these checks in all places.

Note that it is disallowed for unprivileged users to have a non-constant
var_off, so this problem should only be possible to trigger from
programs having CAP_PERFMON. However, its effects can vary.

Without the fix, it is possible to replace the contents of the dynptr
arbitrarily by making verifier mark different stack slots than actual
location and then doing writes to the actual stack address of dynptr at
runtime.

Fixes: 97e03f521050 ("bpf: Add verifier support for dynptrs")
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230121002241.2113993-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# d6fefa11 20-Jan-2023 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Fix state pruning for STACK_DYNPTR stack slots

The root of the problem is missing liveness marking for STACK_DYNPTR
slots. This leads to all kinds of problems inside stacksafe.

The verifier by default inside stacksafe ignores spilled_ptr in stack
slots which do not have REG_LIVE_READ marks. Since this is being checked
in the 'old' explored state, it must have already done clean_live_states
for this old bpf_func_state. Hence, it won't be receiving any more
liveness marks from to be explored insns (it has received REG_LIVE_DONE
marking from liveness point of view).

What this means is that verifier considers that it's safe to not compare
the stack slot if was never read by children states. While liveness
marks are usually propagated correctly following the parentage chain for
spilled registers (SCALAR_VALUE and PTR_* types), the same is not the
case for STACK_DYNPTR.

clean_live_states hence simply rewrites these stack slots to the type
STACK_INVALID since it sees no REG_LIVE_READ marks.

The end result is that we will never see STACK_DYNPTR slots in explored
state. Even if verifier was conservatively matching !REG_LIVE_READ
slots, very next check continuing the stacksafe loop on seeing
STACK_INVALID would again prevent further checks.

Now as long as verifier stores an explored state which we can compare to
when reaching a pruning point, we can abuse this bug to make verifier
prune search for obviously unsafe paths using STACK_DYNPTR slots
thinking they are never used hence safe.

Doing this in unprivileged mode is a bit challenging. add_new_state is
only set when seeing BPF_F_TEST_STATE_FREQ (which requires privileges)
or when jmps_processed difference is >= 2 and insn_processed difference
is >= 8. So coming up with the unprivileged case requires a little more
work, but it is still totally possible. The test case being discussed
below triggers the heuristic even in unprivileged mode.

However, it no longer works since commit
8addbfc7b308 ("bpf: Gate dynptr API behind CAP_BPF").

Let's try to study the test step by step.

Consider the following program (C style BPF ASM):

0 r0 = 0;
1 r6 = &ringbuf_map;
3 r1 = r6;
4 r2 = 8;
5 r3 = 0;
6 r4 = r10;
7 r4 -= -16;
8 call bpf_ringbuf_reserve_dynptr;
9 if r0 == 0 goto pc+1;
10 goto pc+1;
11 *(r10 - 16) = 0xeB9F;
12 r1 = r10;
13 r1 -= -16;
14 r2 = 0;
15 call bpf_ringbuf_discard_dynptr;
16 r0 = 0;
17 exit;

We know that insn 12 will be a pruning point, hence if we force
add_new_state for it, it will first verify the following path as
safe in straight line exploration:
0 1 3 4 5 6 7 8 9 -> 10 -> (12) 13 14 15 16 17

Then, when we arrive at insn 12 from the following path:
0 1 3 4 5 6 7 8 9 -> 11 (12)

We will find a state that has been verified as safe already at insn 12.
Since register state is same at this point, regsafe will pass. Next, in
stacksafe, for spi = 0 and spi = 1 (location of our dynptr) is skipped
seeing !REG_LIVE_READ. The rest matches, so stacksafe returns true.
Next, refsafe is also true as reference state is unchanged in both
states.

The states are considered equivalent and search is pruned.

Hence, we are able to construct a dynptr with arbitrary contents and use
the dynptr API to operate on this arbitrary pointer and arbitrary size +
offset.

To fix this, first define a mark_dynptr_read function that propagates
liveness marks whenever a valid initialized dynptr is accessed by dynptr
helpers. REG_LIVE_WRITTEN is marked whenever we initialize an
uninitialized dynptr. This is done in mark_stack_slots_dynptr. It allows
screening off mark_reg_read and not propagating marks upwards from that
point.

This ensures that we either set REG_LIVE_READ64 on both dynptr slots, or
none, so clean_live_states either sets both slots to STACK_INVALID or
none of them. This is the invariant the checks inside stacksafe rely on.

Next, do a complete comparison of both stack slots whenever they have
STACK_DYNPTR. Compare the dynptr type stored in the spilled_ptr, and
also whether both form the same first_slot. Only then is the later path
safe.

Fixes: 97e03f521050 ("bpf: Add verifier support for dynptrs")
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230121002241.2113993-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 700e6f85 17-Jan-2023 Jiri Olsa <jolsa@kernel.org>

bpf: Do not allow to load sleepable BPF_TRACE_RAW_TP program

Currently we allow to load any tracing program as sleepable,
but BPF_TRACE_RAW_TP can't sleep. Making the check explicit
for tracing programs attach types, so sleepable BPF_TRACE_RAW_TP
will fail to load.

Updating the verifier error to mention iter programs as well.

Acked-by: Song Liu <song@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20230117223705.440975-1-jolsa@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 30465003 17-Dec-2022 Dave Marchevsky <davemarchevsky@fb.com>

bpf: rename list_head -> graph_root in field info types

Many of the structs recently added to track field info for linked-list
head are useful as-is for rbtree root. So let's do a mechanical renaming
of list_head-related types and fields:

include/linux/bpf.h:
struct btf_field_list_head -> struct btf_field_graph_root
list_head -> graph_root in struct btf_field union
kernel/bpf/btf.c:
list_head -> graph_root in struct btf_field_info

This is a nonfunctional change, functionality to actually use these
fields for rbtree will be added in further patches.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20221217082506.1570898-5-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 4633a006 22-Dec-2022 Andrii Nakryiko <andrii@kernel.org>

bpf: fix regs_exact() logic in regsafe() to remap IDs correctly

Comparing IDs exactly between two separate states is not just
suboptimal, but also incorrect in some cases. So update regs_exact()
check to do byte-by-byte memcmp() only up to id/ref_obj_id. For id and
ref_obj_id perform proper check_ids() checks, taking into account idmap.

This change makes more states equivalent improving insns and states
stats across a bunch of selftest BPF programs:

File Program Insns (A) Insns (B) Insns (DIFF) States (A) States (B) States (DIFF)
------------------------------------------- -------------------------------- --------- --------- -------------- ---------- ---------- -------------
cgrp_kfunc_success.bpf.linked1.o test_cgrp_get_release 141 137 -4 (-2.84%) 13 13 +0 (+0.00%)
cgrp_kfunc_success.bpf.linked1.o test_cgrp_xchg_release 142 139 -3 (-2.11%) 14 13 -1 (-7.14%)
connect6_prog.bpf.linked1.o connect_v6_prog 139 102 -37 (-26.62%) 9 6 -3 (-33.33%)
ima.bpf.linked1.o bprm_creds_for_exec 68 61 -7 (-10.29%) 6 5 -1 (-16.67%)
linked_list.bpf.linked1.o global_list_in_list 569 499 -70 (-12.30%) 60 52 -8 (-13.33%)
linked_list.bpf.linked1.o global_list_push_pop 167 150 -17 (-10.18%) 18 16 -2 (-11.11%)
linked_list.bpf.linked1.o global_list_push_pop_multiple 881 815 -66 (-7.49%) 74 63 -11 (-14.86%)
linked_list.bpf.linked1.o inner_map_list_in_list 579 534 -45 (-7.77%) 61 55 -6 (-9.84%)
linked_list.bpf.linked1.o inner_map_list_push_pop 190 181 -9 (-4.74%) 19 18 -1 (-5.26%)
linked_list.bpf.linked1.o inner_map_list_push_pop_multiple 916 850 -66 (-7.21%) 75 64 -11 (-14.67%)
linked_list.bpf.linked1.o map_list_in_list 588 525 -63 (-10.71%) 62 55 -7 (-11.29%)
linked_list.bpf.linked1.o map_list_push_pop 183 174 -9 (-4.92%) 18 17 -1 (-5.56%)
linked_list.bpf.linked1.o map_list_push_pop_multiple 909 843 -66 (-7.26%) 75 64 -11 (-14.67%)
map_kptr.bpf.linked1.o test_map_kptr 264 256 -8 (-3.03%) 26 26 +0 (+0.00%)
map_kptr.bpf.linked1.o test_map_kptr_ref 95 91 -4 (-4.21%) 9 8 -1 (-11.11%)
task_kfunc_success.bpf.linked1.o test_task_xchg_release 139 136 -3 (-2.16%) 14 13 -1 (-7.14%)
test_bpf_nf.bpf.linked1.o nf_skb_ct_test 815 509 -306 (-37.55%) 57 30 -27 (-47.37%)
test_bpf_nf.bpf.linked1.o nf_xdp_ct_test 815 509 -306 (-37.55%) 57 30 -27 (-47.37%)
test_cls_redirect.bpf.linked1.o cls_redirect 78925 78390 -535 (-0.68%) 4782 4704 -78 (-1.63%)
test_cls_redirect_subprogs.bpf.linked1.o cls_redirect 64901 63897 -1004 (-1.55%) 4612 4470 -142 (-3.08%)
test_sk_lookup.bpf.linked1.o access_ctx_sk 181 95 -86 (-47.51%) 19 10 -9 (-47.37%)
test_sk_lookup.bpf.linked1.o ctx_narrow_access 447 437 -10 (-2.24%) 38 37 -1 (-2.63%)
test_sk_lookup_kern.bpf.linked1.o sk_lookup_success 148 133 -15 (-10.14%) 14 12 -2 (-14.29%)
test_tcp_check_syncookie_kern.bpf.linked1.o check_syncookie_clsact 304 300 -4 (-1.32%) 23 22 -1 (-4.35%)
test_tcp_check_syncookie_kern.bpf.linked1.o check_syncookie_xdp 304 300 -4 (-1.32%) 23 22 -1 (-4.35%)
test_verify_pkcs7_sig.bpf.linked1.o bpf 87 76 -11 (-12.64%) 7 6 -1 (-14.29%)
------------------------------------------- -------------------------------- --------- --------- -------------- ---------- ---------- -------------

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221223054921.958283-7-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 4a95c85c 22-Dec-2022 Andrii Nakryiko <andrii@kernel.org>

bpf: perform byte-by-byte comparison only when necessary in regsafe()

Extract byte-by-byte comparison of bpf_reg_state in regsafe() into
a helper function, which makes it more convenient to use it "on demand"
only for registers that benefit from such checks, instead of doing it
all the time, even if result of such comparison is ignored.

Also, remove WARN_ON_ONCE(1)+return false dead code. There is no risk of
missing some case as compiler will warn about non-void function not
returning value in some branches (and that under assumption that default
case is removed in the future).

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221223054921.958283-6-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 910f6999 22-Dec-2022 Andrii Nakryiko <andrii@kernel.org>

bpf: reject non-exact register type matches in regsafe()

Generalize the (somewhat implicit) rule of regsafe(), which states that
if register types in old and current states do not match *exactly*, they
can't be safely considered equivalent.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221223054921.958283-5-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 7f4ce97c 22-Dec-2022 Andrii Nakryiko <andrii@kernel.org>

bpf: generalize MAYBE_NULL vs non-MAYBE_NULL rule

Make generic check to prevent XXX_OR_NULL and XXX register types to be
intermixed. While technically in some situations it could be safe, it's
impossible to enforce due to the loss of an ID when converting
XXX_OR_NULL to its non-NULL variant. So prevent this in general, not
just for PTR_TO_MAP_KEY and PTR_TO_MAP_VALUE.

PTR_TO_MAP_KEY_OR_NULL and PTR_TO_MAP_VALUE_OR_NULL checks, which were
previously special-cased, are simplified to generic check that takes
into account range_within() and tnum_in(). This is correct as BPF
verifier doesn't allow arithmetic on XXX_OR_NULL register types, so
var_off and ranges should stay zero. But even if in the future this
restriction is lifted, it's even more important to enforce that var_off
and ranges are compatible, otherwise it's possible to construct case
where this can be exploited to bypass verifier's memory range safety
checks.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221223054921.958283-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# a73bf9f2 22-Dec-2022 Andrii Nakryiko <andrii@kernel.org>

bpf: reorganize struct bpf_reg_state fields

Move id and ref_obj_id fields after scalar data section (var_off and
ranges). This is necessary to simplify next patch which will change
regsafe()'s logic to be safer, as it makes the contents that has to be
an exact match (type-specific parts, off, type, and var_off+ranges)
a single sequential block of memory, while id and ref_obj_id should
always be remapped and thus can't be memcp()'ed.

There are few places that assume that var_off is after id/ref_obj_id to
clear out id/ref_obj_id with the single memset(0). These are changed to
explicitly zero-out id/ref_obj_id fields. Other places are adjusted to
preserve exact byte-by-byte comparison behavior.

No functional changes.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221223054921.958283-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# e8f55fcf 22-Dec-2022 Andrii Nakryiko <andrii@kernel.org>

bpf: teach refsafe() to take into account ID remapping

states_equal() check performs ID mapping between old and new states to
establish a 1-to-1 correspondence between IDs, even if their absolute
numberic values across two equivalent states differ. This is important
both for correctness and to avoid unnecessary work when two states are
equivalent.

With recent changes we partially fixed this logic by maintaining ID map
across all function frames. This patch also makes refsafe() check take
into account (and maintain) ID map, making states_equal() behavior more
optimal and correct.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221223054921.958283-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 78aa1cc9 15-Dec-2022 Jiri Olsa <jolsa@kernel.org>

bpf: Add struct for bin_args arg in bpf_bprintf_prepare

Adding struct bpf_bprintf_data to hold bin_args argument for
bpf_bprintf_prepare function.

We will add another return argument to bpf_bprintf_prepare and
pass the struct to bpf_bprintf_cleanup for proper cleanup in
following changes.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20221215214430.1336195-2-jolsa@kernel.org


# 71f656a5 06-Jan-2023 Eduard Zingerman <eddyz87@gmail.com>

bpf: Fix to preserve reg parent/live fields when copying range info

Register range information is copied in several places. The intent is
to transfer range/id information from one register/stack spill to
another. Currently this is done using direct register assignment, e.g.:

static void find_equal_scalars(..., struct bpf_reg_state *known_reg)
{
...
struct bpf_reg_state *reg;
...
*reg = *known_reg;
...
}

However, such assignments also copy the following bpf_reg_state fields:

struct bpf_reg_state {
...
struct bpf_reg_state *parent;
...
enum bpf_reg_liveness live;
...
};

Copying of these fields is accidental and incorrect, as could be
demonstrated by the following example:

0: call ktime_get_ns()
1: r6 = r0
2: call ktime_get_ns()
3: r7 = r0
4: if r0 > r6 goto +1 ; r0 & r6 are unbound thus generated
; branch states are identical
5: *(u64 *)(r10 - 8) = 0xdeadbeef ; 64-bit write to fp[-8]
--- checkpoint ---
6: r1 = 42 ; r1 marked as written
7: *(u8 *)(r10 - 8) = r1 ; 8-bit write, fp[-8] parent & live
; overwritten
8: r2 = *(u64 *)(r10 - 8)
9: r0 = 0
10: exit

This example is unsafe because 64-bit write to fp[-8] at (5) is
conditional, thus not all bytes of fp[-8] are guaranteed to be set
when it is read at (8). However, currently the example passes
verification.

First, the execution path 1-10 is examined by verifier.
Suppose that a new checkpoint is created by is_state_visited() at (6).
After checkpoint creation:
- r1.parent points to checkpoint.r1,
- fp[-8].parent points to checkpoint.fp[-8].
At (6) the r1.live is set to REG_LIVE_WRITTEN.
At (7) the fp[-8].parent is set to r1.parent and fp[-8].live is set to
REG_LIVE_WRITTEN, because of the following code called in
check_stack_write_fixed_off():

static void save_register_state(struct bpf_func_state *state,
int spi, struct bpf_reg_state *reg,
int size)
{
...
state->stack[spi].spilled_ptr = *reg; // <--- parent & live copied
if (size == BPF_REG_SIZE)
state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
...
}

Note the intent to mark stack spill as written only if 8 bytes are
spilled to a slot, however this intent is spoiled by a 'live' field copy.
At (8) the checkpoint.fp[-8] should be marked as REG_LIVE_READ but
this does not happen:
- fp[-8] in a current state is already marked as REG_LIVE_WRITTEN;
- fp[-8].parent points to checkpoint.r1, parentage chain is used by
mark_reg_read() to mark checkpoint states.
At (10) the verification is finished for path 1-10 and jump 4-6 is
examined. The checkpoint.fp[-8] never gets REG_LIVE_READ mark and this
spill is pruned from the cached states by clean_live_states(). Hence
verifier state obtained via path 1-4,6 is deemed identical to one
obtained via path 1-6 and program marked as safe.

Note: the example should be executed with BPF_F_TEST_STATE_FREQ flag
set to force creation of intermediate verifier states.

This commit revisits the locations where bpf_reg_state instances are
copied and replaces the direct copies with a call to a function
copy_register_state(dst, src) that preserves 'parent' and 'live'
fields of the 'dst'.

Fixes: 679c782de14b ("bpf/verifier: per-register parent pointers")
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20230106142214.1040390-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# e4f4db47 09-Jan-2023 Luis Gerhorst <gerhorst@cs.fau.de>

bpf: Fix pointer-leak due to insufficient speculative store bypass mitigation

To mitigate Spectre v4, 2039f26f3aca ("bpf: Fix leakage due to
insufficient speculative store bypass mitigation") inserts lfence
instructions after 1) initializing a stack slot and 2) spilling a
pointer to the stack.

However, this does not cover cases where a stack slot is first
initialized with a pointer (subject to sanitization) but then
overwritten with a scalar (not subject to sanitization because
the slot was already initialized). In this case, the second write
may be subject to speculative store bypass (SSB) creating a
speculative pointer-as-scalar type confusion. This allows the
program to subsequently leak the numerical pointer value using,
for example, a branch-based cache side channel.

To fix this, also sanitize scalars if they write a stack slot
that previously contained a pointer. Assuming that pointer-spills
are only generated by LLVM on register-pressure, the performance
impact on most real-world BPF programs should be small.

The following unprivileged BPF bytecode drafts a minimal exploit
and the mitigation:

[...]
// r6 = 0 or 1 (skalar, unknown user input)
// r7 = accessible ptr for side channel
// r10 = frame pointer (fp), to be leaked
//
r9 = r10 # fp alias to encourage ssb
*(u64 *)(r9 - 8) = r10 // fp[-8] = ptr, to be leaked
// lfence added here because of pointer spill to stack.
//
// Ommitted: Dummy bpf_ringbuf_output() here to train alias predictor
// for no r9-r10 dependency.
//
*(u64 *)(r10 - 8) = r6 // fp[-8] = scalar, overwrites ptr
// 2039f26f3aca: no lfence added because stack slot was not STACK_INVALID,
// store may be subject to SSB
//
// fix: also add an lfence when the slot contained a ptr
//
r8 = *(u64 *)(r9 - 8)
// r8 = architecturally a scalar, speculatively a ptr
//
// leak ptr using branch-based cache side channel:
r8 &= 1 // choose bit to leak
if r8 == 0 goto SLOW // no mispredict
// architecturally dead code if input r6 is 0,
// only executes speculatively iff ptr bit is 1
r8 = *(u64 *)(r7 + 0) # encode bit in cache (0: slow, 1: fast)
SLOW:
[...]

After running this, the program can time the access to *(r7 + 0) to
determine whether the chosen pointer bit was 0 or 1. Repeat this 64
times to recover the whole address on amd64.

In summary, sanitization can only be skipped if one scalar is
overwritten with another scalar. Scalar-confusion due to speculative
store bypass can not lead to invalid accesses because the pointer
bounds deducted during verification are enforced using branchless
logic. See 979d63d50c0c ("bpf: prevent out of bounds speculation on
pointer arithmetic") for details.

Do not make the mitigation depend on !env->allow_{uninit_stack,ptr_leaks}
because speculative leaks are likely unexpected if these were enabled.
For example, leaking the address to a protected log file may be acceptable
while disabling the mitigation might unintentionally leak the address
into the cached-state of a map that is accessible to unprivileged
processes.

Fixes: 2039f26f3aca ("bpf: Fix leakage due to insufficient speculative store bypass mitigation")
Signed-off-by: Luis Gerhorst <gerhorst@cs.fau.de>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Henriette Hofmeier <henriette.hofmeier@rub.de>
Link: https://lore.kernel.org/bpf/edc95bad-aada-9cfc-ffe2-fa9bb206583c@cs.fau.de
Link: https://lore.kernel.org/bpf/20230109150544.41465-1-gerhorst@cs.fau.de


# d3178e8a 03-Jan-2023 Hao Sun <sunhao.th@gmail.com>

bpf: Skip invalid kfunc call in backtrack_insn

The verifier skips invalid kfunc call in check_kfunc_call(), which
would be captured in fixup_kfunc_call() if such insn is not eliminated
by dead code elimination. However, this can lead to the following
warning in backtrack_insn(), also see [1]:

------------[ cut here ]------------
verifier backtracking bug
WARNING: CPU: 6 PID: 8646 at kernel/bpf/verifier.c:2756 backtrack_insn
kernel/bpf/verifier.c:2756
__mark_chain_precision kernel/bpf/verifier.c:3065
mark_chain_precision kernel/bpf/verifier.c:3165
adjust_reg_min_max_vals kernel/bpf/verifier.c:10715
check_alu_op kernel/bpf/verifier.c:10928
do_check kernel/bpf/verifier.c:13821 [inline]
do_check_common kernel/bpf/verifier.c:16289
[...]

So make backtracking conservative with this by returning ENOTSUPP.

[1] https://lore.kernel.org/bpf/CACkBjsaXNceR8ZjkLG=dT3P=4A8SBsg0Z5h5PWLryF5=ghKq=g@mail.gmail.com/

Reported-by: syzbot+4da3ff23081bafe74fc2@syzkaller.appspotmail.com
Signed-off-by: Hao Sun <sunhao.th@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20230104014709.9375-1-sunhao.th@gmail.com


# 45435d8d 23-Dec-2022 Kees Cook <keescook@chromium.org>

bpf: Always use maximal size for copy_array()

Instead of counting on prior allocations to have sized allocations to
the next kmalloc bucket size, always perform a krealloc that is at least
ksize(dst) in size (which is a no-op), so the size can be correctly
tracked by all the various allocation size trackers (KASAN,
__alloc_size, etc).

Reported-by: Hyunwoo Kim <v4bel@theori.io>
Link: https://lore.kernel.org/bpf/20221223094551.GA1439509@ubuntu
Fixes: ceb35b666d42 ("bpf/verifier: Use kmalloc_size_roundup() to match ksize() usage")
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: John Fastabend <john.fastabend@gmail.com>
Cc: Andrii Nakryiko <andrii@kernel.org>
Cc: Martin KaFai Lau <martin.lau@linux.dev>
Cc: Song Liu <song@kernel.org>
Cc: Yonghong Song <yhs@fb.com>
Cc: KP Singh <kpsingh@kernel.org>
Cc: Stanislav Fomichev <sdf@google.com>
Cc: Hao Luo <haoluo@google.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: bpf@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20221223182836.never.866-kees@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 8374bfd5 21-Dec-2022 Hao Sun <sunhao.th@gmail.com>

bpf: fix nullness propagation for reg to reg comparisons

After befae75856ab, the verifier would propagate null information after
JEQ/JNE, e.g., if two pointers, one is maybe_null and the other is not,
the former would be marked as non-null in eq path. However, as comment
"PTR_TO_BTF_ID points to a kernel struct that does not need to be null
checked by the BPF program ... The verifier must keep this in mind and
can make no assumptions about null or non-null when doing branch ...".
If one pointer is maybe_null and the other is PTR_TO_BTF, the former is
incorrectly marked non-null. The following BPF prog can trigger a
null-ptr-deref, also see this report for more details[1]:

0: (18) r1 = map_fd ; R1_w=map_ptr(ks=4, vs=4)
2: (79) r6 = *(u64 *)(r1 +8) ; R6_w=bpf_map->inner_map_data
; R6 is PTR_TO_BTF_ID
; equals to null at runtime
3: (bf) r2 = r10
4: (07) r2 += -4
5: (62) *(u32 *)(r2 +0) = 0
6: (85) call bpf_map_lookup_elem#1 ; R0_w=map_value_or_null
7: (1d) if r6 == r0 goto pc+1
8: (95) exit
; from 7 to 9: R0=map_value R6=ptr_bpf_map
9: (61) r0 = *(u32 *)(r0 +0) ; null-ptr-deref
10: (95) exit

So, make the verifier propagate nullness information for reg to reg
comparisons only if neither reg is PTR_TO_BTF_ID.

[1] https://lore.kernel.org/bpf/CACkBjsaFJwjC5oiw-1KXvcazywodwXo4zGYsRHwbr2gSG9WcSw@mail.gmail.com/T/#u

Fixes: befae75856ab ("bpf: propagate nullness information for reg to reg comparisons")
Signed-off-by: Hao Sun <sunhao.th@gmail.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221222024414.29539-1-sunhao.th@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>


# 4ea2bb15 09-Dec-2022 Eduard Zingerman <eddyz87@gmail.com>

bpf: use check_ids() for active_lock comparison

An update for verifier.c:states_equal()/regsafe() to use check_ids()
for active spin lock comparisons. This fixes the issue reported by
Kumar Kartikeya Dwivedi in [1] using technique suggested by Edward Cree.

W/o this commit the verifier might be tricked to accept the following
program working with a map containing spin locks:

0: r9 = map_lookup_elem(...) ; Returns PTR_TO_MAP_VALUE_OR_NULL id=1.
1: r8 = map_lookup_elem(...) ; Returns PTR_TO_MAP_VALUE_OR_NULL id=2.
2: if r9 == 0 goto exit ; r9 -> PTR_TO_MAP_VALUE.
3: if r8 == 0 goto exit ; r8 -> PTR_TO_MAP_VALUE.
4: r7 = ktime_get_ns() ; Unbound SCALAR_VALUE.
5: r6 = ktime_get_ns() ; Unbound SCALAR_VALUE.
6: bpf_spin_lock(r8) ; active_lock.id == 2.
7: if r6 > r7 goto +1 ; No new information about the state
; is derived from this check, thus
; produced verifier states differ only
; in 'insn_idx'.
8: r9 = r8 ; Optionally make r9.id == r8.id.
--- checkpoint --- ; Assume is_state_visisted() creates a
; checkpoint here.
9: bpf_spin_unlock(r9) ; (a,b) active_lock.id == 2.
; (a) r9.id == 2, (b) r9.id == 1.
10: exit(0)

Consider two verification paths:
(a) 0-10
(b) 0-7,9-10

The path (a) is verified first. If checkpoint is created at (8)
the (b) would assume that (8) is safe because regsafe() does not
compare register ids for registers of type PTR_TO_MAP_VALUE.

[1] https://lore.kernel.org/bpf/20221111202719.982118-1-memxor@gmail.com/

Reported-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Suggested-by: Edward Cree <ecree.xilinx@gmail.com>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20221209135733.28851-6-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 5dd9cdbc 09-Dec-2022 Eduard Zingerman <eddyz87@gmail.com>

bpf: states_equal() must build idmap for all function frames

verifier.c:states_equal() must maintain register ID mapping across all
function frames. Otherwise the following example might be erroneously
marked as safe:

main:
fp[-24] = map_lookup_elem(...) ; frame[0].fp[-24].id == 1
fp[-32] = map_lookup_elem(...) ; frame[0].fp[-32].id == 2
r1 = &fp[-24]
r2 = &fp[-32]
call foo()
r0 = 0
exit

foo:
0: r9 = r1
1: r8 = r2
2: r7 = ktime_get_ns()
3: r6 = ktime_get_ns()
4: if (r6 > r7) goto skip_assign
5: r9 = r8

skip_assign: ; <--- checkpoint
6: r9 = *r9 ; (a) frame[1].r9.id == 2
; (b) frame[1].r9.id == 1

7: if r9 == 0 goto exit: ; mark_ptr_or_null_regs() transfers != 0 info
; for all regs sharing ID:
; (a) r9 != 0 => &frame[0].fp[-32] != 0
; (b) r9 != 0 => &frame[0].fp[-24] != 0

8: r8 = *r8 ; (a) r8 == &frame[0].fp[-32]
; (b) r8 == &frame[0].fp[-32]
9: r0 = *r8 ; (a) safe
; (b) unsafe

exit:
10: exit

While processing call to foo() verifier considers the following
execution paths:

(a) 0-10
(b) 0-4,6-10
(There is also path 0-7,10 but it is not interesting for the issue at
hand. (a) is verified first.)

Suppose that checkpoint is created at (6) when path (a) is verified,
next path (b) is verified and (6) is reached.

If states_equal() maintains separate 'idmap' for each frame the
mapping at (6) for frame[1] would be empty and
regsafe(r9)::check_ids() would add a pair 2->1 and return true,
which is an error.

If states_equal() maintains single 'idmap' for all frames the mapping
at (6) would be { 1->1, 2->2 } and regsafe(r9)::check_ids() would
return false when trying to add a pair 2->1.

This issue was suggested in the following discussion:
https://lore.kernel.org/bpf/CAEf4BzbFB5g4oUfyxk9rHy-PJSLQ3h8q9mV=rVoXfr_JVm8+1Q@mail.gmail.com/

Suggested-by: Andrii Nakryiko <andrii.nakryiko@gmail.com>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20221209135733.28851-4-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 7c884339 09-Dec-2022 Eduard Zingerman <eddyz87@gmail.com>

bpf: regsafe() must not skip check_ids()

The verifier.c:regsafe() has the following shortcut:

equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
...
if (equal)
return true;

Which is executed regardless old register type. This is incorrect for
register types that might have an ID checked by check_ids(), namely:
- PTR_TO_MAP_KEY
- PTR_TO_MAP_VALUE
- PTR_TO_PACKET_META
- PTR_TO_PACKET

The following pattern could be used to exploit this:

0: r9 = map_lookup_elem(...) ; Returns PTR_TO_MAP_VALUE_OR_NULL id=1.
1: r8 = map_lookup_elem(...) ; Returns PTR_TO_MAP_VALUE_OR_NULL id=2.
2: r7 = ktime_get_ns() ; Unbound SCALAR_VALUE.
3: r6 = ktime_get_ns() ; Unbound SCALAR_VALUE.
4: if r6 > r7 goto +1 ; No new information about the state
; is derived from this check, thus
; produced verifier states differ only
; in 'insn_idx'.
5: r9 = r8 ; Optionally make r9.id == r8.id.
--- checkpoint --- ; Assume is_state_visisted() creates a
; checkpoint here.
6: if r9 == 0 goto <exit> ; Nullness info is propagated to all
; registers with matching ID.
7: r1 = *(u64 *) r8 ; Not always safe.

Verifier first visits path 1-7 where r8 is verified to be not null
at (6). Later the jump from 4 to 6 is examined. The checkpoint for (6)
looks as follows:
R8_rD=map_value_or_null(id=2,off=0,ks=4,vs=8,imm=0)
R9_rwD=map_value_or_null(id=2,off=0,ks=4,vs=8,imm=0)
R10=fp0

The current state is:
R0=... R6=... R7=... fp-8=...
R8=map_value_or_null(id=2,off=0,ks=4,vs=8,imm=0)
R9=map_value_or_null(id=1,off=0,ks=4,vs=8,imm=0)
R10=fp0

Note that R8 states are byte-to-byte identical, so regsafe() would
exit early and skip call to check_ids(), thus ID mapping 2->2 will not
be added to 'idmap'. Next, states for R9 are compared: these are not
identical and check_ids() is executed, but 'idmap' is empty, so
check_ids() adds mapping 2->1 to 'idmap' and returns success.

This commit pushes the 'equal' down to register types that don't need
check_ids().

Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20221209135733.28851-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# f6ee298f 07-Dec-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Move PTR_TO_STACK alignment check to process_dynptr_func

After previous commit, we are minimizing helper specific assumptions
from check_func_arg_reg_off, making it generic, and offloading checks
for a specific argument type to their respective functions called after
check_func_arg_reg_off has been called.

This allows relying on a consistent set of guarantees after that call
and then relying on them in code that deals with registers for each
argument type later. This is in line with how process_spin_lock,
process_timer_func, process_kptr_func check reg->var_off to be constant.
The same reasoning is used here to move the alignment check into
process_dynptr_func. Note that it also needs to check for constant
var_off, and accumulate the constant var_off when computing the spi in
get_spi, but that fix will come in later changes.

Acked-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221207204141.308952-6-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 184c9bdb 07-Dec-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Rework check_func_arg_reg_off

While check_func_arg_reg_off is the place which performs generic checks
needed by various candidates of reg->type, there is some handling for
special cases, like ARG_PTR_TO_DYNPTR, OBJ_RELEASE, and
ARG_PTR_TO_RINGBUF_MEM.

This commit aims to streamline these special cases and instead leave
other things up to argument type specific code to handle. The function
will be restrictive by default, and cover all possible cases when
OBJ_RELEASE is set, without having to update the function again (and
missing to do that being a bug).

This is done primarily for two reasons: associating back reg->type to
its argument leaves room for the list getting out of sync when a new
reg->type is supported by an arg_type.

The other case is ARG_PTR_TO_RINGBUF_MEM. The problem there is something
we already handle, whenever a release argument is expected, it should
be passed as the pointer that was received from the acquire function.
Hence zero fixed and variable offset.

There is nothing special about ARG_PTR_TO_RINGBUF_MEM, where technically
its target register type PTR_TO_MEM | MEM_RINGBUF can already be passed
with non-zero offset to other helper functions, which makes sense.

Hence, lift the arg_type_is_release check for reg->off and cover all
possible register types, instead of duplicating the same kind of check
twice for current OBJ_RELEASE arg_types (alloc_mem and ptr_to_btf_id).

For the release argument, arg_type_is_dynptr is the special case, where
we go to actual object being freed through the dynptr, so the offset of
the pointer still needs to allow fixed and variable offset and
process_dynptr_func will verify them later for the release argument case
as well.

This is not specific to ARG_PTR_TO_DYNPTR though, we will need to make
this exception for any future object on the stack that needs to be
released. In this sense, PTR_TO_STACK as a candidate for object on stack
argument is a special case for release offset checks, and they need to
be done by the helper releasing the object on stack.

Since the check has been lifted above all register type checks, remove
the duplicated check that is being done for PTR_TO_BTF_ID.

Acked-by: Joanne Koong <joannelkoong@gmail.com>
Acked-by: David Vernet <void@manifault.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221207204141.308952-5-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 27060531 07-Dec-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Rework process_dynptr_func

Recently, user ringbuf support introduced a PTR_TO_DYNPTR register type
for use in callback state, because in case of user ringbuf helpers,
there is no dynptr on the stack that is passed into the callback. To
reflect such a state, a special register type was created.

However, some checks have been bypassed incorrectly during the addition
of this feature. First, for arg_type with MEM_UNINIT flag which
initialize a dynptr, they must be rejected for such register type.
Secondly, in the future, there are plans to add dynptr helpers that
operate on the dynptr itself and may change its offset and other
properties.

In all of these cases, PTR_TO_DYNPTR shouldn't be allowed to be passed
to such helpers, however the current code simply returns 0.

The rejection for helpers that release the dynptr is already handled.

For fixing this, we take a step back and rework existing code in a way
that will allow fitting in all classes of helpers and have a coherent
model for dealing with the variety of use cases in which dynptr is used.

First, for ARG_PTR_TO_DYNPTR, it can either be set alone or together
with a DYNPTR_TYPE_* constant that denotes the only type it accepts.

Next, helpers which initialize a dynptr use MEM_UNINIT to indicate this
fact. To make the distinction clear, use MEM_RDONLY flag to indicate
that the helper only operates on the memory pointed to by the dynptr,
not the dynptr itself. In C parlance, it would be equivalent to taking
the dynptr as a point to const argument.

When either of these flags are not present, the helper is allowed to
mutate both the dynptr itself and also the memory it points to.
Currently, the read only status of the memory is not tracked in the
dynptr, but it would be trivial to add this support inside dynptr state
of the register.

With these changes and renaming PTR_TO_DYNPTR to CONST_PTR_TO_DYNPTR to
better reflect its usage, it can no longer be passed to helpers that
initialize a dynptr, i.e. bpf_dynptr_from_mem, bpf_ringbuf_reserve_dynptr.

A note to reviewers is that in code that does mark_stack_slots_dynptr,
and unmark_stack_slots_dynptr, we implicitly rely on the fact that
PTR_TO_STACK reg is the only case that can reach that code path, as one
cannot pass CONST_PTR_TO_DYNPTR to helpers that don't set MEM_RDONLY. In
both cases such helpers won't be setting that flag.

The next patch will add a couple of selftest cases to make sure this
doesn't break.

Fixes: 205715673844 ("bpf: Add bpf_user_ringbuf_drain() helper")
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221207204141.308952-4-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# ac50fe51 07-Dec-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Propagate errors from process_* checks in check_func_arg

Currently, we simply ignore the errors in process_spin_lock,
process_timer_func, process_kptr_func, process_dynptr_func. Instead,
bubble up the error by storing and checking err variable.

Acked-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221207204141.308952-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 6b75bd3d 07-Dec-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Refactor ARG_PTR_TO_DYNPTR checks into process_dynptr_func

ARG_PTR_TO_DYNPTR is akin to ARG_PTR_TO_TIMER, ARG_PTR_TO_KPTR, where
the underlying register type is subjected to more special checks to
determine the type of object represented by the pointer and its state
consistency.

Move dynptr checks to their own 'process_dynptr_func' function so that
is consistent and in-line with existing code. This also makes it easier
to reuse this code for kfunc handling.

Then, reuse this consolidated function in kfunc dynptr handling too.
Note that for kfuncs, the arg_type constraint of DYNPTR_TYPE_LOCAL has
been lifted.

Acked-by: David Vernet <void@manifault.com>
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221207204141.308952-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# c2cc0ce7 07-Dec-2022 Yang Jihong <yangjihong1@huawei.com>

bpf: Fix comment error in fixup_kfunc_call function

insn->imm for kfunc is the relative address of __bpf_call_base,
instead of __bpf_base_call, Fix the comment error.

Signed-off-by: Yang Jihong <yangjihong1@huawei.com>
Link: https://lore.kernel.org/r/20221208013724.257848-1-yangjihong1@huawei.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# d35af0a7 07-Dec-2022 Björn Töpel <bjorn@rivosinc.com>

bpf: Do not zero-extend kfunc return values

In BPF all global functions, and BPF helpers return a 64-bit
value. For kfunc calls, this is not the case, and they can return
e.g. 32-bit values.

The return register R0 for kfuncs calls can therefore be marked as
subreg_def != DEF_NOT_SUBREG. In general, if a register is marked with
subreg_def != DEF_NOT_SUBREG, some archs (where bpf_jit_needs_zext()
returns true) require the verifier to insert explicit zero-extension
instructions.

For kfuncs calls, however, the caller should do sign/zero extension
for return values. In other words, the compiler is responsible to
insert proper instructions, not the verifier.

An example, provided by Yonghong Song:

$ cat t.c
extern unsigned foo(void);
unsigned bar1(void) {
return foo();
}
unsigned bar2(void) {
if (foo()) return 10; else return 20;
}

$ clang -target bpf -mcpu=v3 -O2 -c t.c && llvm-objdump -d t.o
t.o: file format elf64-bpf

Disassembly of section .text:

0000000000000000 <bar1>:
0: 85 10 00 00 ff ff ff ff call -0x1
1: 95 00 00 00 00 00 00 00 exit

0000000000000010 <bar2>:
2: 85 10 00 00 ff ff ff ff call -0x1
3: bc 01 00 00 00 00 00 00 w1 = w0
4: b4 00 00 00 14 00 00 00 w0 = 0x14
5: 16 01 01 00 00 00 00 00 if w1 == 0x0 goto +0x1 <LBB1_2>
6: b4 00 00 00 0a 00 00 00 w0 = 0xa

0000000000000038 <LBB1_2>:
7: 95 00 00 00 00 00 00 00 exit

If the return value of 'foo()' is used in the BPF program, the proper
zero-extension will be done.

Currently, the verifier correctly marks, say, a 32-bit return value as
subreg_def != DEF_NOT_SUBREG, but will fail performing the actual
zero-extension, due to a verifier bug in
opt_subreg_zext_lo32_rnd_hi32(). load_reg is not properly set to R0,
and the following path will be taken:

if (WARN_ON(load_reg == -1)) {
verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
return -EFAULT;
}

A longer discussion from v1 can be found in the link below.

Correct the verifier by avoiding doing explicit zero-extension of R0
for kfunc calls. Note that R0 will still be marked as a sub-register
for return values smaller than 64-bit.

Fixes: 83a2881903f3 ("bpf: Account for BPF_FETCH in insn_has_def32()")
Link: https://lore.kernel.org/bpf/20221202103620.1915679-1-bjorn@kernel.org/
Suggested-by: Yonghong Song <yhs@meta.com>
Signed-off-by: Björn Töpel <bjorn@rivosinc.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221207103540.396496-1-bjorn@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# dcb2288b 07-Dec-2022 Andrii Nakryiko <andrii@kernel.org>

bpf: Remove unused insn_cnt argument from visit_[func_call_]insn()

Number of total instructions in BPF program (including subprogs) can and
is accessed from env->prog->len. visit_func_call_insn() doesn't do any
checks against insn_cnt anymore, relying on push_insn() to do this check
internally. So remove unnecessary insn_cnt input argument from
visit_func_call_insn() and visit_insn() functions.

Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20221207195534.2866030-1-andrii@kernel.org


# 5b481aca 06-Dec-2022 Benjamin Tissoires <benjamin.tissoires@redhat.com>

bpf: do not rely on ALLOW_ERROR_INJECTION for fmod_ret

The current way of expressing that a non-bpf kernel component is willing
to accept that bpf programs can be attached to it and that they can change
the return value is to abuse ALLOW_ERROR_INJECTION.
This is debated in the link below, and the result is that it is not a
reasonable thing to do.

Reuse the kfunc declaration structure to also tag the kernel functions
we want to be fmodret. This way we can control from any subsystem which
functions are being modified by bpf without touching the verifier.

Link: https://lore.kernel.org/all/20221121104403.1545f9b5@gandalf.local.home/
Suggested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20221206145936.922196-2-benjamin.tissoires@redhat.com


# 618945fb 06-Dec-2022 Andrii Nakryiko <andrii@kernel.org>

bpf: remove unnecessary prune and jump points

Don't mark some instructions as jump points when there are actually no
jumps and instructions are just processed sequentially. Such case is
handled naturally by precision backtracking logic without the need to
update jump history. See get_prev_insn_idx(). It goes back linearly by
one instruction, unless current top of jmp_history is pointing to
current instruction. In such case we use `st->jmp_history[cnt - 1].prev_idx`
to find instruction from which we jumped to the current instruction
non-linearly.

Also remove both jump and prune point marking for instruction right
after unconditional jumps, as program flow can get to the instruction
right after unconditional jump instruction only if there is a jump to
that instruction from somewhere else in the program. In such case we'll
mark such instruction as prune/jump point because it's a destination of
a jump.

This change has no changes in terms of number of instructions or states
processes across Cilium and selftests programs.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/r/20221206233345.438540-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# a095f421 06-Dec-2022 Andrii Nakryiko <andrii@kernel.org>

bpf: mostly decouple jump history management from is_state_visited()

Jump history updating and state equivalence checks are conceptually
independent, so move push_jmp_history() out of is_state_visited(). Also
make a decision whether to perform state equivalence checks or not one
layer higher in do_check(), keeping is_state_visited() unconditionally
performing state checks.

push_jmp_history() should be performed after state checks. There is just
one small non-uniformity. When is_state_visited() finds already
validated equivalent state, it propagates precision marks to current
state's parent chain. For this to work correctly, jump history has to be
updated, so is_state_visited() is doing that internally.

But if no equivalent verified state is found, jump history has to be
updated in a newly cloned child state, so is_jmp_point()
+ push_jmp_history() is performed after is_state_visited() exited with
zero result, which means "proceed with validation".

This change has no functional changes. It's not strictly necessary, but
feels right to decouple these two processes.

Acked-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221206233345.438540-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# bffdeaa8 06-Dec-2022 Andrii Nakryiko <andrii@kernel.org>

bpf: decouple prune and jump points

BPF verifier marks some instructions as prune points. Currently these
prune points serve two purposes.

It's a point where verifier tries to find previously verified state and
check current state's equivalence to short circuit verification for
current code path.

But also currently it's a point where jump history, used for precision
backtracking, is updated. This is done so that non-linear flow of
execution could be properly backtracked.

Such coupling is coincidental and unnecessary. Some prune points are not
part of some non-linear jump path, so don't need update of jump history.
On the other hand, not all instructions which have to be recorded in
jump history necessarily are good prune points.

This patch splits prune and jump points into independent flags.
Currently all prune points are marked as jump points to minimize amount
of changes in this patch, but next patch will perform some optimization
of prune vs jmp point placement.

No functional changes are intended.

Acked-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221206233345.438540-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# d8939cb0 06-Dec-2022 Dave Marchevsky <davemarchevsky@fb.com>

bpf: Loosen alloc obj test in verifier's reg_btf_record

btf->struct_meta_tab is populated by btf_parse_struct_metas in btf.c.
There, a BTF record is created for any type containing a spin_lock or
any next-gen datastructure node/head.

Currently, for non-MAP_VALUE types, reg_btf_record will only search for
a record using struct_meta_tab if the reg->type exactly matches
(PTR_TO_BTF_ID | MEM_ALLOC). This exact match is too strict: an
"allocated obj" type - returned from bpf_obj_new - might pick up other
flags while working its way through the program.

Loosen the check to be exact for base_type and just use MEM_ALLOC mask
for type_flag.

This patch is marked Fixes as the original intent of reg_btf_record was
unlikely to have been to fail finding btf_record for valid alloc obj
types with additional flags, some of which (e.g. PTR_UNTRUSTED)
are valid register type states for alloc obj independent of this series.
However, I didn't find a specific broken repro case outside of this
series' added functionality, so it's possible that nothing was
triggering this logic error before.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
cc: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Fixes: 4e814da0d599 ("bpf: Allow locking bpf_spin_lock in allocated objects")
Link: https://lore.kernel.org/r/20221206231000.3180914-2-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 2c40d97d 30-Nov-2022 Yonghong Song <yhs@fb.com>

bpf: Enable sleeptable support for cgrp local storage

Similar to sk/inode/task local storage, enable sleepable support for
cgrp local storage.

Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221201050444.2785007-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# fca1aa75 03-Dec-2022 Yonghong Song <yhs@fb.com>

bpf: Handle MEM_RCU type properly

Commit 9bb00b2895cb ("bpf: Add kfunc bpf_rcu_read_lock/unlock()")
introduced MEM_RCU and bpf_rcu_read_lock/unlock() support. In that
commit, a rcu pointer is tagged with both MEM_RCU and PTR_TRUSTED
so that it can be passed into kfuncs or helpers as an argument.

Martin raised a good question in [1] such that the rcu pointer,
although being able to accessing the object, might have reference
count of 0. This might cause a problem if the rcu pointer is passed
to a kfunc which expects trusted arguments where ref count should
be greater than 0.

This patch makes the following changes related to MEM_RCU pointer:
- MEM_RCU pointer might be NULL (PTR_MAYBE_NULL).
- Introduce KF_RCU so MEM_RCU ptr can be acquired with
a KF_RCU tagged kfunc which assumes ref count of rcu ptr
could be zero.
- For mem access 'b = ptr->a', say 'ptr' is a MEM_RCU ptr, and
'a' is tagged with __rcu as well. Let us mark 'b' as
MEM_RCU | PTR_MAYBE_NULL.

[1] https://lore.kernel.org/bpf/ac70f574-4023-664e-b711-e0d3b18117fd@linux.dev/

Fixes: 9bb00b2895cb ("bpf: Add kfunc bpf_rcu_read_lock/unlock()")
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221203184602.477272-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 1f82dffc 01-Dec-2022 Dave Marchevsky <davemarchevsky@fb.com>

bpf: Fix release_on_unlock release logic for multiple refs

Consider a verifier state with three acquired references, all with
release_on_unlock = true:

idx 0 1 2
state->refs = [2 4 6]

(with 2, 4, and 6 being the ref ids).

When bpf_spin_unlock is called, process_spin_lock will loop through all
acquired_refs and, for each ref, if it's release_on_unlock, calls
release_reference on it. That function in turn calls
release_reference_state, which removes the reference from state->refs by
swapping the reference state with the last reference state in
refs array and decrements acquired_refs count.

process_spin_lock's loop logic, which is essentially:

for (i = 0; i < state->acquired_refs; i++) {
if (!state->refs[i].release_on_unlock)
continue;
release_reference(state->refs[i].id);
}

will fail to release release_on_unlock references which are swapped from
the end. Running this logic on our example demonstrates:

state->refs = [2 4 6] (start of idx=0 iter)
release state->refs[0] by swapping w/ state->refs[2]

state->refs = [6 4] (start of idx=1)
release state->refs[1], no need to swap as it's the last idx

state->refs = [6] (start of idx=2, loop terminates)

ref_id 6 should have been removed but was skipped.

Fix this by looping from back-to-front, which results in refs that are
candidates for removal being swapped with refs which have already been
examined and kept.

If we modify our initial example such that ref 6 is replaced with ref 7,
which is _not_ release_on_unlock, and loop from the back, we'd see:

state->refs = [2 4 7] (start of idx=2)

state->refs = [2 4 7] (start of idx=1)

state->refs = [2 7] (start of idx=0, refs 7 and 4 swapped)

state->refs = [7] (after idx=0, 7 and 2 swapped, loop terminates)

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
cc: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Fixes: 534e86bc6c66 ("bpf: Add 'release on unlock' logic for bpf_list_push_{front,back}")
Link: https://lore.kernel.org/r/20221201183406.1203621-1-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# c67cae55 25-Nov-2022 Alexei Starovoitov <ast@kernel.org>

bpf: Tighten ptr_to_btf_id checks.

The networking programs typically don't require CAP_PERFMON, but through kfuncs
like bpf_cast_to_kern_ctx() they can access memory through PTR_TO_BTF_ID. In
such case enforce CAP_PERFMON.
Also make sure that only GPL programs can access kernel data structures.
All kfuncs require GPL already.

Also remove allow_ptr_to_map_access. It's the same as allow_ptr_leaks and
different name for the same check only causes confusion.

Fixes: fd264ca02094 ("bpf: Add a kfunc to type cast from bpf uapi ctx to kernel ctx")
Fixes: 50c6b8a9aea2 ("selftests/bpf: Add a test for btf_type_tag "percpu"")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20221125220617.26846-1-alexei.starovoitov@gmail.com


# c6b0337f 24-Nov-2022 Alexei Starovoitov <ast@kernel.org>

bpf: Don't mark arguments to fentry/fexit programs as trusted.

The PTR_TRUSTED flag should only be applied to pointers where the verifier can
guarantee that such pointers are valid.
The fentry/fexit/fmod_ret programs are not in this category.
Only arguments of SEC("tp_btf") and SEC("iter") programs are trusted
(which have BPF_TRACE_RAW_TP and BPF_TRACE_ITER attach_type correspondingly)

This bug was masked because convert_ctx_accesses() was converting trusted
loads into BPF_PROBE_MEM loads. Fix it as well.
The loads from trusted pointers don't need exception handling.

Fixes: 3f00c5239344 ("bpf: Allow trusted pointers to be passed to KF_TRUSTED_ARGS kfuncs")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20221124215314.55890-1-alexei.starovoitov@gmail.com


# 9bb00b28 23-Nov-2022 Yonghong Song <yhs@fb.com>

bpf: Add kfunc bpf_rcu_read_lock/unlock()

Add two kfunc's bpf_rcu_read_lock() and bpf_rcu_read_unlock(). These two kfunc's
can be used for all program types. The following is an example about how
rcu pointer are used w.r.t. bpf_rcu_read_lock()/bpf_rcu_read_unlock().

struct task_struct {
...
struct task_struct *last_wakee;
struct task_struct __rcu *real_parent;
...
};

Let us say prog does 'task = bpf_get_current_task_btf()' to get a
'task' pointer. The basic rules are:
- 'real_parent = task->real_parent' should be inside bpf_rcu_read_lock
region. This is to simulate rcu_dereference() operation. The
'real_parent' is marked as MEM_RCU only if (1). task->real_parent is
inside bpf_rcu_read_lock region, and (2). task is a trusted ptr. So
MEM_RCU marked ptr can be 'trusted' inside the bpf_rcu_read_lock region.
- 'last_wakee = real_parent->last_wakee' should be inside bpf_rcu_read_lock
region since it tries to access rcu protected memory.
- the ptr 'last_wakee' will be marked as PTR_UNTRUSTED since in general
it is not clear whether the object pointed by 'last_wakee' is valid or
not even inside bpf_rcu_read_lock region.

The verifier will reset all rcu pointer register states to untrusted
at bpf_rcu_read_unlock() kfunc call site, so any such rcu pointer
won't be trusted any more outside the bpf_rcu_read_lock() region.

The current implementation does not support nested rcu read lock
region in the prog.

Acked-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221124053217.2373910-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 01685c5b 23-Nov-2022 Yonghong Song <yhs@fb.com>

bpf: Introduce might_sleep field in bpf_func_proto

Introduce bpf_func_proto->might_sleep to indicate a particular helper
might sleep. This will make later check whether a helper might be
sleepable or not easier.

Acked-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221124053211.2373553-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# ceb35b66 18-Nov-2022 Kees Cook <keescook@chromium.org>

bpf/verifier: Use kmalloc_size_roundup() to match ksize() usage

Most allocation sites in the kernel want an explicitly sized allocation
(and not "more"), and that dynamic runtime analysis tools (e.g. KASAN,
UBSAN_BOUNDS, FORTIFY_SOURCE, etc) are looking for precise bounds checking
(i.e. not something that is rounded up). A tiny handful of allocations
were doing an implicit alloc/realloc loop that actually depended on
ksize(), and didn't actually always call realloc. This has created a
long series of bugs and problems over many years related to the runtime
bounds checking, so these callers are finally being adjusted to _not_
depend on the ksize() side-effect, by doing one of several things:

- tracking the allocation size precisely and just never calling ksize()
at all [1].

- always calling realloc and not using ksize() at all. (This solution
ends up actually be a subset of the next solution.)

- using kmalloc_size_roundup() to explicitly round up the desired
allocation size immediately [2].

The bpf/verifier case is this another of this latter case, and is the
last outstanding case to be fixed in the kernel.

Because some of the dynamic bounds checking depends on the size being an
_argument_ to an allocator function (i.e. see the __alloc_size attribute),
the ksize() users are rare, and it could waste local variables, it
was been deemed better to explicitly separate the rounding up from the
allocation itself [3].

Round up allocations with kmalloc_size_roundup() so that the verifier's
use of ksize() is always accurate.

[1] e.g.:
https://git.kernel.org/linus/712f210a457d
https://git.kernel.org/linus/72c08d9f4c72

[2] e.g.:
https://git.kernel.org/netdev/net-next/c/12d6c1d3a2ad
https://git.kernel.org/netdev/net-next/c/ab3f7828c979
https://git.kernel.org/netdev/net-next/c/d6dd508080a3

[3] https://lore.kernel.org/lkml/0ea1fc165a6c6117f982f4f135093e69cb884930.camel@redhat.com/

Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/bpf/20221118183409.give.387-kees@kernel.org


# a35b9af4 20-Nov-2022 Yonghong Song <yhs@fb.com>

bpf: Add a kfunc for generic type cast

Implement bpf_rdonly_cast() which tries to cast the object
to a specified type. This tries to support use case like below:
#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
where skb_end_pointer(SKB) is a 'unsigned char *' and needs to
be casted to 'struct skb_shared_info *'.

The signature of bpf_rdonly_cast() looks like
void *bpf_rdonly_cast(void *obj, __u32 btf_id)
The function returns the same 'obj' but with PTR_TO_BTF_ID with
btf_id. The verifier will ensure btf_id being a struct type.

Since the supported type cast may not reflect what the 'obj'
represents, the returned btf_id is marked as PTR_UNTRUSTED, so
the return value and subsequent pointer chasing cannot be
used as helper/kfunc arguments.

Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221120195437.3114585-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# fd264ca0 20-Nov-2022 Yonghong Song <yhs@fb.com>

bpf: Add a kfunc to type cast from bpf uapi ctx to kernel ctx

Implement bpf_cast_to_kern_ctx() kfunc which does a type cast
of a uapi ctx object to the corresponding kernel ctx. Previously
if users want to access some data available in kctx but not
in uapi ctx, bpf_probe_read_kernel() helper is needed.
The introduction of bpf_cast_to_kern_ctx() allows direct
memory access which makes code simpler and easier to understand.

Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221120195432.3113982-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# e181d3f1 20-Nov-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Disallow bpf_obj_new_impl call when bpf_mem_alloc_init fails

In the unlikely event that bpf_global_ma is not correctly initialized,
instead of checking the boolean everytime bpf_obj_new_impl is called,
simply check it while loading the program and return an error if
bpf_global_ma_set is false.

Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221120212610.2361700-1-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 3f00c523 19-Nov-2022 David Vernet <void@manifault.com>

bpf: Allow trusted pointers to be passed to KF_TRUSTED_ARGS kfuncs

Kfuncs currently support specifying the KF_TRUSTED_ARGS flag to signal
to the verifier that it should enforce that a BPF program passes it a
"safe", trusted pointer. Currently, "safe" means that the pointer is
either PTR_TO_CTX, or is refcounted. There may be cases, however, where
the kernel passes a BPF program a safe / trusted pointer to an object
that the BPF program wishes to use as a kptr, but because the object
does not yet have a ref_obj_id from the perspective of the verifier, the
program would be unable to pass it to a KF_ACQUIRE | KF_TRUSTED_ARGS
kfunc.

The solution is to expand the set of pointers that are considered
trusted according to KF_TRUSTED_ARGS, so that programs can invoke kfuncs
with these pointers without getting rejected by the verifier.

There is already a PTR_UNTRUSTED flag that is set in some scenarios,
such as when a BPF program reads a kptr directly from a map
without performing a bpf_kptr_xchg() call. These pointers of course can
and should be rejected by the verifier. Unfortunately, however,
PTR_UNTRUSTED does not cover all the cases for safety that need to
be addressed to adequately protect kfuncs. Specifically, pointers
obtained by a BPF program "walking" a struct are _not_ considered
PTR_UNTRUSTED according to BPF. For example, say that we were to add a
kfunc called bpf_task_acquire(), with KF_ACQUIRE | KF_TRUSTED_ARGS, to
acquire a struct task_struct *. If we only used PTR_UNTRUSTED to signal
that a task was unsafe to pass to a kfunc, the verifier would mistakenly
allow the following unsafe BPF program to be loaded:

SEC("tp_btf/task_newtask")
int BPF_PROG(unsafe_acquire_task,
struct task_struct *task,
u64 clone_flags)
{
struct task_struct *acquired, *nested;

nested = task->last_wakee;

/* Would not be rejected by the verifier. */
acquired = bpf_task_acquire(nested);
if (!acquired)
return 0;

bpf_task_release(acquired);
return 0;
}

To address this, this patch defines a new type flag called PTR_TRUSTED
which tracks whether a PTR_TO_BTF_ID pointer is safe to pass to a
KF_TRUSTED_ARGS kfunc or a BPF helper function. PTR_TRUSTED pointers are
passed directly from the kernel as a tracepoint or struct_ops callback
argument. Any nested pointer that is obtained from walking a PTR_TRUSTED
pointer is no longer PTR_TRUSTED. From the example above, the struct
task_struct *task argument is PTR_TRUSTED, but the 'nested' pointer
obtained from 'task->last_wakee' is not PTR_TRUSTED.

A subsequent patch will add kfuncs for storing a task kfunc as a kptr,
and then another patch will add selftests to validate.

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221120051004.3605026-3-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# ef66c547 19-Nov-2022 David Vernet <void@manifault.com>

bpf: Allow multiple modifiers in reg_type_str() prefix

reg_type_str() in the verifier currently only allows a single register
type modifier to be present in the 'prefix' string which is eventually
stored in the env type_str_buf. This currently works fine because there
are no overlapping type modifiers, but once PTR_TRUSTED is added, that
will no longer be the case. This patch updates reg_type_str() to support
having multiple modifiers in the prefix string, and updates the size of
type_str_buf to be 128 bytes.

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221120051004.3605026-2-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 534e86bc 17-Nov-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Add 'release on unlock' logic for bpf_list_push_{front,back}

This commit implements the delayed release logic for bpf_list_push_front
and bpf_list_push_back.

Once a node has been added to the list, it's pointer changes to
PTR_UNTRUSTED. However, it is only released once the lock protecting the
list is unlocked. For such PTR_TO_BTF_ID | MEM_ALLOC with PTR_UNTRUSTED
set but an active ref_obj_id, it is still permitted to read them as long
as the lock is held. Writing to them is not allowed.

This allows having read access to push items we no longer own until we
release the lock guarding the list, allowing a little more flexibility
when working with these APIs.

Note that enabling write support has fairly tricky interactions with
what happens inside the critical section. Just as an example, currently,
bpf_obj_drop is not permitted, but if it were, being able to write to
the PTR_UNTRUSTED pointer while the object gets released back to the
memory allocator would violate safety properties we wish to guarantee
(i.e. not crashing the kernel). The memory could be reused for a
different type in the BPF program or even in the kernel as it gets
eventually kfree'd.

Not enabling bpf_obj_drop inside the critical section would appear to
prevent all of the above, but that is more of an artifical limitation
right now. Since the write support is tangled with how we handle
potential aliasing of nodes inside the critical section that may or may
not be part of the list anymore, it has been deferred to a future patch.

Acked-by: Dave Marchevsky <davemarchevsky@fb.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-18-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 8cab76ec 17-Nov-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Introduce single ownership BPF linked list API

Add a linked list API for use in BPF programs, where it expects
protection from the bpf_spin_lock in the same allocation as the
bpf_list_head. For now, only one bpf_spin_lock can be present hence that
is assumed to be the one protecting the bpf_list_head.

The following functions are added to kick things off:

// Add node to beginning of list
void bpf_list_push_front(struct bpf_list_head *head, struct bpf_list_node *node);

// Add node to end of list
void bpf_list_push_back(struct bpf_list_head *head, struct bpf_list_node *node);

// Remove node at beginning of list and return it
struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head);

// Remove node at end of list and return it
struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head);

The lock protecting the bpf_list_head needs to be taken for all
operations. The verifier ensures that the lock that needs to be taken is
always held, and only the correct lock is taken for these operations.
These checks are made statically by relying on the reg->id preserved for
registers pointing into regions having both bpf_spin_lock and the
objects protected by it. The comment over check_reg_allocation_locked in
this change describes the logic in detail.

Note that bpf_list_push_front and bpf_list_push_back are meant to
consume the object containing the node in the 1st argument, however that
specific mechanism is intended to not release the ref_obj_id directly
until the bpf_spin_unlock is called. In this commit, nothing is done,
but the next commit will be introducing logic to handle this case, so it
has been left as is for now.

bpf_list_pop_front and bpf_list_pop_back delete the first or last item
of the list respectively, and return pointer to the element at the
list_node offset. The user can then use container_of style macro to get
the actual entry type. The verifier however statically knows the actual
type, so the safety properties are still preserved.

With these additions, programs can now manage their own linked lists and
store their objects in them.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-17-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# df57f38a 17-Nov-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Permit NULL checking pointer with non-zero fixed offset

Pointer increment on seeing PTR_MAYBE_NULL is already protected against,
hence make an exception for PTR_TO_BTF_ID | MEM_ALLOC while still
keeping the warning for other unintended cases that might creep in.

bpf_list_pop_{front,_back} helpers planned to be introduced in next
commit will return a MEM_ALLOC register with incremented offset pointing
to bpf_list_node field. The user is supposed to then obtain the pointer
to the entry using container_of after NULL checking it. The current
restrictions trigger a warning when doing the NULL checking. Revisiting
the reason, it is meant as an assertion which seems to actually work and
catch the bad case.

Hence, under no other circumstances can reg->off be non-zero for a
register that has the PTR_MAYBE_NULL type flag set.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-16-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# ac9f0605 17-Nov-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Introduce bpf_obj_drop

Introduce bpf_obj_drop, which is the kfunc used to free allocated
objects (allocated using bpf_obj_new). Pairing with bpf_obj_new, it
implicitly destructs the fields part of object automatically without
user intervention.

Just like the previous patch, btf_struct_meta that is needed to free up
the special fields is passed as a hidden argument to the kfunc.

For the user, a convenience macro hides over the kernel side kfunc which
is named bpf_obj_drop_impl.

Continuing the previous example:

void prog(void) {
struct foo *f;

f = bpf_obj_new(typeof(*f));
if (!f)
return;
bpf_obj_drop(f);
}

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-15-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 958cf2e2 17-Nov-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Introduce bpf_obj_new

Introduce type safe memory allocator bpf_obj_new for BPF programs. The
kernel side kfunc is named bpf_obj_new_impl, as passing hidden arguments
to kfuncs still requires having them in prototype, unlike BPF helpers
which always take 5 arguments and have them checked using bpf_func_proto
in verifier, ignoring unset argument types.

Introduce __ign suffix to ignore a specific kfunc argument during type
checks, then use this to introduce support for passing type metadata to
the bpf_obj_new_impl kfunc.

The user passes BTF ID of the type it wants to allocates in program BTF,
the verifier then rewrites the first argument as the size of this type,
after performing some sanity checks (to ensure it exists and it is a
struct type).

The second argument is also fixed up and passed by the verifier. This is
the btf_struct_meta for the type being allocated. It would be needed
mostly for the offset array which is required for zero initializing
special fields while leaving the rest of storage in unitialized state.

It would also be needed in the next patch to perform proper destruction
of the object's special fields.

Under the hood, bpf_obj_new will call bpf_mem_alloc and bpf_mem_free,
using the any context BPF memory allocator introduced recently. To this
end, a global instance of the BPF memory allocator is initialized on
boot to be used for this purpose. This 'bpf_global_ma' serves all
allocations for bpf_obj_new. In the future, bpf_obj_new variants will
allow specifying a custom allocator.

Note that now that bpf_obj_new can be used to allocate objects that can
be linked to BPF linked list (when future linked list helpers are
available), we need to also free the elements using bpf_mem_free.
However, since the draining of elements is done outside the
bpf_spin_lock, we need to do migrate_disable around the call since
bpf_list_head_free can be called from map free path where migration is
enabled. Otherwise, when called from BPF programs migration is already
disabled.

A convenience macro is included in the bpf_experimental.h header to hide
over the ugly details of the implementation, leading to user code
looking similar to a language level extension which allocates and
constructs fields of a user type.

struct bar {
struct bpf_list_node node;
};

struct foo {
struct bpf_spin_lock lock;
struct bpf_list_head head __contains(bar, node);
};

void prog(void) {
struct foo *f;

f = bpf_obj_new(typeof(*f));
if (!f)
return;
...
}

A key piece of this story is still missing, i.e. the free function,
which will come in the next patch.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-14-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# a50388db 17-Nov-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Support constant scalar arguments for kfuncs

Allow passing known constant scalars as arguments to kfuncs that do not
represent a size parameter. We use mark_chain_precision for the constant
scalar argument to mark it precise. This makes the search pruning
optimization of verifier more conservative for such kfunc calls, and
each non-distinct argument is considered unequivalent.

We will use this support to then expose a bpf_obj_new function where it
takes the local type ID of a type in program BTF, and returns a
PTR_TO_BTF_ID | MEM_ALLOC to the local type, and allows programs to
allocate their own objects.

Each type ID resolves to a distinct type with a possibly distinct size,
hence the type ID constant matters in terms of program safety and its
precision needs to be checked between old and cur states inside regsafe.
The use of mark_chain_precision enables this.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-13-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 00b85860 17-Nov-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Rewrite kfunc argument handling

As we continue to add more features, argument types, kfunc flags, and
different extensions to kfuncs, the code to verify the correctness of
the kfunc prototype wrt the passed in registers has become ad-hoc and
ugly to read. To make life easier, and make a very clear split between
different stages of argument processing, move all the code into
verifier.c and refactor into easier to read helpers and functions.

This also makes sharing code within the verifier easier with kfunc
argument processing. This will be more and more useful in later patches
as we are now moving to implement very core BPF helpers as kfuncs, to
keep them experimental before baking into UAPI.

Remove all kfunc related bits now from btf_check_func_arg_match, as
users have been converted away to refactored kfunc argument handling.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-12-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# d0d78c1d 17-Nov-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Allow locking bpf_spin_lock global variables

Global variables reside in maps accessible using direct_value_addr
callbacks, so giving each load instruction's rewrite a unique reg->id
disallows us from holding locks which are global.

The reason for preserving reg->id as a unique value for registers that
may point to spin lock is that two separate lookups are treated as two
separate memory regions, and any possible aliasing is ignored for the
purposes of spin lock correctness.

This is not great especially for the global variable case, which are
served from maps that have max_entries == 1, i.e. they always lead to
map values pointing into the same map value.

So refactor the active_spin_lock into a 'active_lock' structure which
represents the lock identity, and instead of the reg->id, remember two
fields, a pointer and the reg->id. The pointer will store reg->map_ptr
or reg->btf. It's only necessary to distinguish for the id == 0 case of
global variables, but always setting the pointer to a non-NULL value and
using the pointer to check whether the lock is held simplifies code in
the verifier.

This is generic enough to allow it for global variables, map lookups,
and allocated objects at the same time.

Note that while whether a lock is held can be answered by just comparing
active_lock.ptr to NULL, to determine whether the register is pointing
to the same held lock requires comparing _both_ ptr and id.

Finally, as a result of this refactoring, pseudo load instructions are
not given a unique reg->id, as they are doing lookup for the same map
value (max_entries is never greater than 1).

Essentially, we consider that the tuple of (ptr, id) will always be
unique for any kind of argument to bpf_spin_{lock,unlock}.

Note that this can be extended in the future to also remember offset
used for locking, so that we can introduce multiple bpf_spin_lock fields
in the same allocation.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-10-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 4e814da0 17-Nov-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Allow locking bpf_spin_lock in allocated objects

Allow locking a bpf_spin_lock in an allocated object, in addition to
already supported map value pointers. The handling is similar to that of
map values, by just preserving the reg->id of PTR_TO_BTF_ID | MEM_ALLOC
as well, and adjusting process_spin_lock to work with them and remember
the id in verifier state.

Refactor the existing process_spin_lock to work with PTR_TO_BTF_ID |
MEM_ALLOC in addition to PTR_TO_MAP_VALUE. We need to update the
reg_may_point_to_spin_lock which is used in mark_ptr_or_null_reg to
preserve reg->id, that will be used in env->cur_state->active_spin_lock
to remember the currently held spin lock.

Also update the comment describing bpf_spin_lock implementation details
to also talk about PTR_TO_BTF_ID | MEM_ALLOC type.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-9-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 282de143 17-Nov-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Introduce allocated objects support

Introduce support for representing pointers to objects allocated by the
BPF program, i.e. PTR_TO_BTF_ID that point to a type in program BTF.
This is indicated by the presence of MEM_ALLOC type flag in reg->type to
avoid having to check btf_is_kernel when trying to match argument types
in helpers.

Whenever walking such types, any pointers being walked will always yield
a SCALAR instead of pointer. In the future we might permit kptr inside
such allocated objects (either kernel or program allocated), and it will
then form a PTR_TO_BTF_ID of the respective type.

For now, such allocated objects will always be referenced in verifier
context, hence ref_obj_id == 0 for them is a bug. It is allowed to write
to such objects, as long fields that are special are not touched
(support for which will be added in subsequent patches). Note that once
such a pointer is marked PTR_UNTRUSTED, it is no longer allowed to write
to it.

No PROBE_MEM handling is therefore done for loads into this type unless
PTR_UNTRUSTED is part of the register type, since they can never be in
an undefined state, and their lifetime will always be valid.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-6-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# befae758 15-Nov-2022 Eduard Zingerman <eddyz87@gmail.com>

bpf: propagate nullness information for reg to reg comparisons

Propagate nullness information for branches of register to register
equality compare instructions. The following rules are used:
- suppose register A maybe null
- suppose register B is not null
- for JNE A, B, ... - A is not null in the false branch
- for JEQ A, B, ... - A is not null in the true branch

E.g. for program like below:

r6 = skb->sk;
r7 = sk_fullsock(r6);
r0 = sk_fullsock(r6);
if (r0 == 0) return 0; (a)
if (r0 != r7) return 0; (b)
*r7->type; (c)
return 0;

It is safe to dereference r7 at point (c), because of (a) and (b).

Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221115224859.2452988-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 32637e33 08-Nov-2022 Toke Høiland-Jørgensen <toke@redhat.com>

bpf: Expand map key argument of bpf_redirect_map to u64

For queueing packets in XDP we want to add a new redirect map type with
support for 64-bit indexes. To prepare fore this, expand the width of the
'key' argument to the bpf_redirect_map() helper. Since BPF registers are
always 64-bit, this should be safe to do after the fact.

Acked-by: Song Liu <song@kernel.org>
Reviewed-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/r/20221108140601.149971-3-toke@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 6728aea7 14-Nov-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Refactor btf_struct_access

Instead of having to pass multiple arguments that describe the register,
pass the bpf_reg_state into the btf_struct_access callback. Currently,
all call sites simply reuse the btf and btf_id of the reg they want to
check the access of. The only exception to this pattern is the callsite
in check_ptr_to_map_access, hence for that case create a dummy reg to
simulate PTR_TO_BTF_ID access.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221114191547.1694267-8-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 894f2a8b 14-Nov-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Rename MEM_ALLOC to MEM_RINGBUF

Currently, verifier uses MEM_ALLOC type tag to specially tag memory
returned from bpf_ringbuf_reserve helper. However, this is currently
only used for this purpose and there is an implicit assumption that it
only refers to ringbuf memory (e.g. the check for ARG_PTR_TO_ALLOC_MEM
in check_func_arg_reg_off).

Hence, rename MEM_ALLOC to MEM_RINGBUF to indicate this special
relationship and instead open the use of MEM_ALLOC for more generic
allocations made for user types.

Also, since ARG_PTR_TO_ALLOC_MEM_OR_NULL is unused, simply drop it.

Finally, update selftests using 'alloc_' verifier string to 'ringbuf_'.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221114191547.1694267-7-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 2de2669b 14-Nov-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Rename RET_PTR_TO_ALLOC_MEM

Currently, the verifier has two return types, RET_PTR_TO_ALLOC_MEM, and
RET_PTR_TO_ALLOC_MEM_OR_NULL, however the former is confusingly named to
imply that it carries MEM_ALLOC, while only the latter does. This causes
confusion during code review leading to conclusions like that the return
value of RET_PTR_TO_DYNPTR_MEM_OR_NULL (which is RET_PTR_TO_ALLOC_MEM |
PTR_MAYBE_NULL) may be consumable by bpf_ringbuf_{submit,commit}.

Rename it to make it clear MEM_ALLOC needs to be tacked on top of
RET_PTR_TO_MEM.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221114191547.1694267-6-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# f0c5941f 14-Nov-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Support bpf_list_head in map values

Add the support on the map side to parse, recognize, verify, and build
metadata table for a new special field of the type struct bpf_list_head.
To parameterize the bpf_list_head for a certain value type and the
list_node member it will accept in that value type, we use BTF
declaration tags.

The definition of bpf_list_head in a map value will be done as follows:

struct foo {
struct bpf_list_node node;
int data;
};

struct map_value {
struct bpf_list_head head __contains(foo, node);
};

Then, the bpf_list_head only allows adding to the list 'head' using the
bpf_list_node 'node' for the type struct foo.

The 'contains' annotation is a BTF declaration tag composed of four
parts, "contains:name:node" where the name is then used to look up the
type in the map BTF, with its kind hardcoded to BTF_KIND_STRUCT during
the lookup. The node defines name of the member in this type that has
the type struct bpf_list_node, which is actually used for linking into
the linked list. For now, 'kind' part is hardcoded as struct.

This allows building intrusive linked lists in BPF, using container_of
to obtain pointer to entry, while being completely type safe from the
perspective of the verifier. The verifier knows exactly the type of the
nodes, and knows that list helpers return that type at some fixed offset
where the bpf_list_node member used for this list exists. The verifier
also uses this information to disallow adding types that are not
accepted by a certain list.

For now, no elements can be added to such lists. Support for that is
coming in future patches, hence draining and freeing items is done with
a TODO that will be resolved in a future patch.

Note that the bpf_list_head_free function moves the list out to a local
variable under the lock and releases it, doing the actual draining of
the list items outside the lock. While this helps with not holding the
lock for too long pessimizing other concurrent list operations, it is
also necessary for deadlock prevention: unless every function called in
the critical section would be notrace, a fentry/fexit program could
attach and call bpf_map_update_elem again on the map, leading to the
same lock being acquired if the key matches and lead to a deadlock.
While this requires some special effort on part of the BPF programmer to
trigger and is highly unlikely to occur in practice, it is always better
if we can avoid such a condition.

While notrace would prevent this, doing the draining outside the lock
has advantages of its own, hence it is used to also fix the deadlock
related problem.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221114191547.1694267-5-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 7a830b53 04-Nov-2022 Andrii Nakryiko <andrii@kernel.org>

bpf: aggressively forget precise markings during state checkpointing

Exploit the property of about-to-be-checkpointed state to be able to
forget all precise markings up to that point even more aggressively. We
now clear all potentially inherited precise markings right before
checkpointing and branching off into child state. If any of children
states require precise knowledge of any SCALAR register, those will be
propagated backwards later on before this state is finalized, preserving
correctness.

There is a single selftests BPF program change, but tremendous one: 25x
reduction in number of verified instructions and states in
trace_virtqueue_add_sgs.

Cilium results are more modest, but happen across wider range of programs.

SELFTESTS RESULTS
=================

$ ./veristat -C -e file,prog,insns,states ~/imprecise-early-results.csv ~/imprecise-aggressive-results.csv | grep -v '+0'
File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF)
------------------- ----------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
loop6.bpf.linked1.o trace_virtqueue_add_sgs 398057 15114 -382943 (-96.20%) 8717 336 -8381 (-96.15%)
------------------- ----------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------

CILIUM RESULTS
==============

$ ./veristat -C -e file,prog,insns,states ~/imprecise-early-results-cilium.csv ~/imprecise-aggressive-results-cilium.csv | grep -v '+0'
File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF)
------------- -------------------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
bpf_host.o tail_handle_nat_fwd_ipv4 23426 23221 -205 (-0.88%) 1537 1515 -22 (-1.43%)
bpf_host.o tail_handle_nat_fwd_ipv6 13009 12904 -105 (-0.81%) 719 708 -11 (-1.53%)
bpf_host.o tail_nodeport_nat_ingress_ipv6 5261 5196 -65 (-1.24%) 247 243 -4 (-1.62%)
bpf_host.o tail_nodeport_nat_ipv6_egress 3446 3406 -40 (-1.16%) 203 198 -5 (-2.46%)
bpf_lxc.o tail_handle_nat_fwd_ipv4 23426 23221 -205 (-0.88%) 1537 1515 -22 (-1.43%)
bpf_lxc.o tail_handle_nat_fwd_ipv6 13009 12904 -105 (-0.81%) 719 708 -11 (-1.53%)
bpf_lxc.o tail_ipv4_ct_egress 5074 4897 -177 (-3.49%) 255 248 -7 (-2.75%)
bpf_lxc.o tail_ipv4_ct_ingress 5100 4923 -177 (-3.47%) 255 248 -7 (-2.75%)
bpf_lxc.o tail_ipv4_ct_ingress_policy_only 5100 4923 -177 (-3.47%) 255 248 -7 (-2.75%)
bpf_lxc.o tail_ipv6_ct_egress 4558 4536 -22 (-0.48%) 188 187 -1 (-0.53%)
bpf_lxc.o tail_ipv6_ct_ingress 4578 4556 -22 (-0.48%) 188 187 -1 (-0.53%)
bpf_lxc.o tail_ipv6_ct_ingress_policy_only 4578 4556 -22 (-0.48%) 188 187 -1 (-0.53%)
bpf_lxc.o tail_nodeport_nat_ingress_ipv6 5261 5196 -65 (-1.24%) 247 243 -4 (-1.62%)
bpf_overlay.o tail_nodeport_nat_ingress_ipv6 5261 5196 -65 (-1.24%) 247 243 -4 (-1.62%)
bpf_overlay.o tail_nodeport_nat_ipv6_egress 3482 3442 -40 (-1.15%) 204 201 -3 (-1.47%)
bpf_xdp.o tail_nodeport_nat_egress_ipv4 17200 15619 -1581 (-9.19%) 1111 1010 -101 (-9.09%)
------------- -------------------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221104163649.121784-6-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# f63181b6 04-Nov-2022 Andrii Nakryiko <andrii@kernel.org>

bpf: stop setting precise in current state

Setting reg->precise to true in current state is not necessary from
correctness standpoint, but it does pessimise the whole precision (or
rather "imprecision", because that's what we want to keep as much as
possible) tracking. Why is somewhat subtle and my best attempt to
explain this is recorded in an extensive comment for __mark_chain_precise()
function. Some more careful thinking and code reading is probably required
still to grok this completely, unfortunately. Whiteboarding and a bunch
of extra handwaiving in person would be even more helpful, but is deemed
impractical in Git commit.

Next patch pushes this imprecision property even further, building on top of
the insights described in this patch.

End results are pretty nice, we get reduction in number of total instructions
and states verified due to a better states reuse, as some of the states are now
more generic and permissive due to less unnecessary precise=true requirements.

SELFTESTS RESULTS
=================

$ ./veristat -C -e file,prog,insns,states ~/subprog-precise-results.csv ~/imprecise-early-results.csv | grep -v '+0'
File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF)
--------------------------------------- ---------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
bpf_iter_ksym.bpf.linked1.o dump_ksym 347 285 -62 (-17.87%) 20 19 -1 (-5.00%)
pyperf600_bpf_loop.bpf.linked1.o on_event 3678 3736 +58 (+1.58%) 276 285 +9 (+3.26%)
setget_sockopt.bpf.linked1.o skops_sockopt 4038 3947 -91 (-2.25%) 347 343 -4 (-1.15%)
test_l4lb.bpf.linked1.o balancer_ingress 4559 2611 -1948 (-42.73%) 118 105 -13 (-11.02%)
test_l4lb_noinline.bpf.linked1.o balancer_ingress 6279 6268 -11 (-0.18%) 237 236 -1 (-0.42%)
test_misc_tcp_hdr_options.bpf.linked1.o misc_estab 1307 1303 -4 (-0.31%) 100 99 -1 (-1.00%)
test_sk_lookup.bpf.linked1.o ctx_narrow_access 456 447 -9 (-1.97%) 39 38 -1 (-2.56%)
test_sysctl_loop1.bpf.linked1.o sysctl_tcp_mem 1389 1384 -5 (-0.36%) 26 25 -1 (-3.85%)
test_tc_dtime.bpf.linked1.o egress_fwdns_prio101 518 485 -33 (-6.37%) 51 46 -5 (-9.80%)
test_tc_dtime.bpf.linked1.o egress_host 519 468 -51 (-9.83%) 50 44 -6 (-12.00%)
test_tc_dtime.bpf.linked1.o ingress_fwdns_prio101 842 1000 +158 (+18.76%) 73 88 +15 (+20.55%)
xdp_synproxy_kern.bpf.linked1.o syncookie_tc 405757 373173 -32584 (-8.03%) 25735 22882 -2853 (-11.09%)
xdp_synproxy_kern.bpf.linked1.o syncookie_xdp 479055 371590 -107465 (-22.43%) 29145 22207 -6938 (-23.81%)
--------------------------------------- ---------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------

Slight regression in test_tc_dtime.bpf.linked1.o/ingress_fwdns_prio101
is left for a follow up, there might be some more precision-related bugs
in existing BPF verifier logic.

CILIUM RESULTS
==============

$ ./veristat -C -e file,prog,insns,states ~/subprog-precise-results-cilium.csv ~/imprecise-early-results-cilium.csv | grep -v '+0'
File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF)
------------- ------------------------------ --------------- --------------- ------------------ ---------------- ---------------- -------------------
bpf_host.o cil_from_host 762 556 -206 (-27.03%) 43 37 -6 (-13.95%)
bpf_host.o tail_handle_nat_fwd_ipv4 23541 23426 -115 (-0.49%) 1538 1537 -1 (-0.07%)
bpf_host.o tail_nodeport_nat_egress_ipv4 33592 33566 -26 (-0.08%) 2163 2161 -2 (-0.09%)
bpf_lxc.o tail_handle_nat_fwd_ipv4 23541 23426 -115 (-0.49%) 1538 1537 -1 (-0.07%)
bpf_overlay.o tail_nodeport_nat_egress_ipv4 33581 33543 -38 (-0.11%) 2160 2157 -3 (-0.14%)
bpf_xdp.o tail_handle_nat_fwd_ipv4 21659 20920 -739 (-3.41%) 1440 1376 -64 (-4.44%)
bpf_xdp.o tail_handle_nat_fwd_ipv6 17084 17039 -45 (-0.26%) 907 905 -2 (-0.22%)
bpf_xdp.o tail_lb_ipv4 73442 73430 -12 (-0.02%) 4370 4369 -1 (-0.02%)
bpf_xdp.o tail_lb_ipv6 152114 151895 -219 (-0.14%) 6493 6479 -14 (-0.22%)
bpf_xdp.o tail_nodeport_nat_egress_ipv4 17377 17200 -177 (-1.02%) 1125 1111 -14 (-1.24%)
bpf_xdp.o tail_nodeport_nat_ingress_ipv6 6405 6397 -8 (-0.12%) 309 308 -1 (-0.32%)
bpf_xdp.o tail_rev_nodeport_lb4 7126 6934 -192 (-2.69%) 414 402 -12 (-2.90%)
bpf_xdp.o tail_rev_nodeport_lb6 18059 17905 -154 (-0.85%) 1105 1096 -9 (-0.81%)
------------- ------------------------------ --------------- --------------- ------------------ ---------------- ---------------- -------------------

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221104163649.121784-5-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# be2ef816 04-Nov-2022 Andrii Nakryiko <andrii@kernel.org>

bpf: allow precision tracking for programs with subprogs

Stop forcing precise=true for SCALAR registers when BPF program has any
subprograms. Current restriction means that any BPF program, as soon as
it uses subprograms, will end up not getting any of the precision
tracking benefits in reduction of number of verified states.

This patch keeps the fallback mark_all_scalars_precise() behavior if
precise marking has to cross function frames. E.g., if subprogram
requires R1 (first input arg) to be marked precise, ideally we'd need to
backtrack to the parent function and keep marking R1 and its
dependencies as precise. But right now we give up and force all the
SCALARs in any of the current and parent states to be forced to
precise=true. We can lift that restriction in the future.

But this patch fixes two issues identified when trying to enable
precision tracking for subprogs.

First, prevent "escaping" from top-most state in a global subprog. While
with entry-level BPF program we never end up requesting precision for
R1-R5 registers, because R2-R5 are not initialized (and so not readable
in correct BPF program), and R1 is PTR_TO_CTX, not SCALAR, and so is
implicitly precise. With global subprogs, though, it's different, as
global subprog a) can have up to 5 SCALAR input arguments, which might
get marked as precise=true and b) it is validated in isolation from its
main entry BPF program. b) means that we can end up exhausting parent
state chain and still not mark all registers in reg_mask as precise,
which would lead to verifier bug warning.

To handle that, we need to consider two cases. First, if the very first
state is not immediately "checkpointed" (i.e., stored in state lookup
hashtable), it will get correct first_insn_idx and last_insn_idx
instruction set during state checkpointing. As such, this case is
already handled and __mark_chain_precision() already handles that by
just doing nothing when we reach to the very first parent state.
st->parent will be NULL and we'll just stop. Perhaps some extra check
for reg_mask and stack_mask is due here, but this patch doesn't address
that issue.

More problematic second case is when global function's initial state is
immediately checkpointed before we manage to process the very first
instruction. This is happening because when there is a call to global
subprog from the main program the very first subprog's instruction is
marked as pruning point, so before we manage to process first
instruction we have to check and checkpoint state. This patch adds
a special handling for such "empty" state, which is identified by having
st->last_insn_idx set to -1. In such case, we check that we are indeed
validating global subprog, and with some sanity checking we mark input
args as precise if requested.

Note that we also initialize state->first_insn_idx with correct start
insn_idx offset. For main program zero is correct value, but for any
subprog it's quite confusing to not have first_insn_idx set. This
doesn't have any functional impact, but helps with debugging and state
printing. We also explicitly initialize state->last_insns_idx instead of
relying on is_state_visited() to do this with env->prev_insns_idx, which
will be -1 on the very first instruction. This concludes necessary
changes to handle specifically global subprog's precision tracking.

Second identified problem was missed handling of BPF helper functions
that call into subprogs (e.g., bpf_loop and few others). From precision
tracking and backtracking logic's standpoint those are effectively calls
into subprogs and should be called as BPF_PSEUDO_CALL calls.

This patch takes the least intrusive way and just checks against a short
list of current BPF helpers that do call subprogs, encapsulated in
is_callback_calling_function() function. But to prevent accidentally
forgetting to add new BPF helpers to this "list", we also do a sanity
check in __check_func_call, which has to be called for each such special
BPF helper, to validate that BPF helper is indeed recognized as
callback-calling one. This should catch any missed checks in the future.
Adding some special flags to be added in function proto definitions
seemed like an overkill in this case.

With the above changes, it's possible to remove forceful setting of
reg->precise to true in __mark_reg_unknown, which turns on precision
tracking both inside subprogs and entry progs that have subprogs. No
warnings or errors were detected across all the selftests, but also when
validating with veristat against internal Meta BPF objects and Cilium
objects. Further, in some BPF programs there are noticeable reduction in
number of states and instructions validated due to more effective
precision tracking, especially benefiting syncookie test.

$ ./veristat -C -e file,prog,insns,states ~/baseline-results.csv ~/subprog-precise-results.csv | grep -v '+0'
File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF)
---------------------------------------- -------------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
pyperf600_bpf_loop.bpf.linked1.o on_event 3966 3678 -288 (-7.26%) 306 276 -30 (-9.80%)
pyperf_global.bpf.linked1.o on_event 7563 7530 -33 (-0.44%) 520 517 -3 (-0.58%)
pyperf_subprogs.bpf.linked1.o on_event 36358 36934 +576 (+1.58%) 2499 2531 +32 (+1.28%)
setget_sockopt.bpf.linked1.o skops_sockopt 3965 4038 +73 (+1.84%) 343 347 +4 (+1.17%)
test_cls_redirect_subprogs.bpf.linked1.o cls_redirect 64965 64901 -64 (-0.10%) 4619 4612 -7 (-0.15%)
test_misc_tcp_hdr_options.bpf.linked1.o misc_estab 1491 1307 -184 (-12.34%) 110 100 -10 (-9.09%)
test_pkt_access.bpf.linked1.o test_pkt_access 354 349 -5 (-1.41%) 25 24 -1 (-4.00%)
test_sock_fields.bpf.linked1.o egress_read_sock_fields 435 375 -60 (-13.79%) 22 20 -2 (-9.09%)
test_sysctl_loop2.bpf.linked1.o sysctl_tcp_mem 1508 1501 -7 (-0.46%) 29 28 -1 (-3.45%)
test_tc_dtime.bpf.linked1.o egress_fwdns_prio100 468 435 -33 (-7.05%) 45 41 -4 (-8.89%)
test_tc_dtime.bpf.linked1.o ingress_fwdns_prio100 398 408 +10 (+2.51%) 42 39 -3 (-7.14%)
test_tc_dtime.bpf.linked1.o ingress_fwdns_prio101 1096 842 -254 (-23.18%) 97 73 -24 (-24.74%)
test_tcp_hdr_options.bpf.linked1.o estab 2758 2408 -350 (-12.69%) 208 181 -27 (-12.98%)
test_urandom_usdt.bpf.linked1.o urand_read_with_sema 466 448 -18 (-3.86%) 31 28 -3 (-9.68%)
test_urandom_usdt.bpf.linked1.o urand_read_without_sema 466 448 -18 (-3.86%) 31 28 -3 (-9.68%)
test_urandom_usdt.bpf.linked1.o urandlib_read_with_sema 466 448 -18 (-3.86%) 31 28 -3 (-9.68%)
test_urandom_usdt.bpf.linked1.o urandlib_read_without_sema 466 448 -18 (-3.86%) 31 28 -3 (-9.68%)
test_xdp_noinline.bpf.linked1.o balancer_ingress_v6 4302 4294 -8 (-0.19%) 257 256 -1 (-0.39%)
xdp_synproxy_kern.bpf.linked1.o syncookie_tc 583722 405757 -177965 (-30.49%) 35846 25735 -10111 (-28.21%)
xdp_synproxy_kern.bpf.linked1.o syncookie_xdp 609123 479055 -130068 (-21.35%) 35452 29145 -6307 (-17.79%)
---------------------------------------- -------------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221104163649.121784-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 529409ea 04-Nov-2022 Andrii Nakryiko <andrii@kernel.org>

bpf: propagate precision across all frames, not just the last one

When equivalent completed state is found and it has additional precision
restrictions, BPF verifier propagates precision to
currently-being-verified state chain (i.e., including parent states) so
that if some of the states in the chain are not yet completed, necessary
precision restrictions are enforced.

Unfortunately, right now this happens only for the last frame (deepest
active subprogram's frame), not all the frames. This can lead to
incorrect matching of states due to missing precision marker. Currently
this doesn't seem possible as BPF verifier forces everything to precise
when validated BPF program has any subprograms. But with the next patch
lifting this restriction, this becomes problematic.

In fact, without this fix, we'll start getting failure in one of the
existing test_verifier test cases:

#906/p precise: cross frame pruning FAIL
Unexpected success to load!
verification time 48 usec
stack depth 0+0
processed 26 insns (limit 1000000) max_states_per_insn 3 total_states 17 peak_states 17 mark_read 8

This patch adds precision propagation across all frames.

Fixes: a3ce685dd01a ("bpf: fix precision tracking")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221104163649.121784-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# a3b666bf 04-Nov-2022 Andrii Nakryiko <andrii@kernel.org>

bpf: propagate precision in ALU/ALU64 operations

When processing ALU/ALU64 operations (apart from BPF_MOV, which is
handled correctly already; and BPF_NEG and BPF_END are special and don't
have source register), if destination register is already marked
precise, this causes problem with potentially missing precision tracking
for the source register. E.g., when we have r1 >>= r5 and r1 is marked
precise, but r5 isn't, this will lead to r5 staying as imprecise. This
is due to the precision backtracking logic stopping early when it sees
r1 is already marked precise. If r1 wasn't precise, we'd keep
backtracking and would add r5 to the set of registers that need to be
marked precise. So there is a discrepancy here which can lead to invalid
and incompatible states matched due to lack of precision marking on r5.
If r1 wasn't precise, precision backtracking would correctly mark both
r1 and r5 as precise.

This is simple to fix, though. During the forward instruction simulation
pass, for arithmetic operations of `scalar <op>= scalar` form (where
<op> is ALU or ALU64 operations), if destination register is already
precise, mark source register as precise. This applies only when both
involved registers are SCALARs. `ptr += scalar` and `scalar += ptr`
cases are already handled correctly.

This does have (negative) effect on some selftest programs and few
Cilium programs. ~/baseline-tmp-results.csv are veristat results with
this patch, while ~/baseline-results.csv is without it. See post
scriptum for instructions on how to make Cilium programs testable with
veristat. Correctness has a price.

$ ./veristat -C -e file,prog,insns,states ~/baseline-results.csv ~/baseline-tmp-results.csv | grep -v '+0'
File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF)
----------------------- -------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
bpf_cubic.bpf.linked1.o bpf_cubic_cong_avoid 997 1700 +703 (+70.51%) 62 90 +28 (+45.16%)
test_l4lb.bpf.linked1.o balancer_ingress 4559 5469 +910 (+19.96%) 118 126 +8 (+6.78%)
----------------------- -------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------

$ ./veristat -C -e file,prog,verdict,insns,states ~/baseline-results-cilium.csv ~/baseline-tmp-results-cilium.csv | grep -v '+0'
File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF)
------------- ------------------------------ --------------- --------------- ------------------ ---------------- ---------------- -------------------
bpf_host.o tail_nodeport_nat_ingress_ipv6 4448 5261 +813 (+18.28%) 234 247 +13 (+5.56%)
bpf_host.o tail_nodeport_nat_ipv6_egress 3396 3446 +50 (+1.47%) 201 203 +2 (+1.00%)
bpf_lxc.o tail_nodeport_nat_ingress_ipv6 4448 5261 +813 (+18.28%) 234 247 +13 (+5.56%)
bpf_overlay.o tail_nodeport_nat_ingress_ipv6 4448 5261 +813 (+18.28%) 234 247 +13 (+5.56%)
bpf_xdp.o tail_lb_ipv4 71736 73442 +1706 (+2.38%) 4295 4370 +75 (+1.75%)
------------- ------------------------------ --------------- --------------- ------------------ ---------------- ---------------- -------------------

P.S. To make Cilium ([0]) programs libbpf-compatible and thus
veristat-loadable, apply changes from topmost commit in [1], which does
minimal changes to Cilium source code, mostly around SEC() annotations
and BPF map definitions.

[0] https://github.com/cilium/cilium/
[1] https://github.com/anakryiko/cilium/commits/libbpf-friendliness

Fixes: b5dc0163d8fd ("bpf: precise scalar_value tracking")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221104163649.121784-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# db559117 03-Nov-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Consolidate spin_lock, timer management into btf_record

Now that kptr_off_tab has been refactored into btf_record, and can hold
more than one specific field type, accomodate bpf_spin_lock and
bpf_timer as well.

While they don't require any more metadata than offset, having all
special fields in one place allows us to share the same code for
allocated user defined types and handle both map values and these
allocated objects in a similar fashion.

As an optimization, we still keep spin_lock_off and timer_off offsets in
the btf_record structure, just to avoid having to find the btf_field
struct each time their offset is needed. This is mostly needed to
manipulate such objects in a map value at runtime. It's ok to hardcode
just one offset as more than one field is disallowed.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221103191013.1236066-8-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# aa3496ac 03-Nov-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Refactor kptr_off_tab into btf_record

To prepare the BPF verifier to handle special fields in both map values
and program allocated types coming from program BTF, we need to refactor
the kptr_off_tab handling code into something more generic and reusable
across both cases to avoid code duplication.

Later patches also require passing this data to helpers at runtime, so
that they can work on user defined types, initialize them, destruct
them, etc.

The main observation is that both map values and such allocated types
point to a type in program BTF, hence they can be handled similarly. We
can prepare a field metadata table for both cases and store them in
struct bpf_map or struct btf depending on the use case.

Hence, refactor the code into generic btf_record and btf_field member
structs. The btf_record represents the fields of a specific btf_type in
user BTF. The cnt indicates the number of special fields we successfully
recognized, and field_mask is a bitmask of fields that were found, to
enable quick determination of availability of a certain field.

Subsequently, refactor the rest of the code to work with these generic
types, remove assumptions about kptr and kptr_off_tab, rename variables
to more meaningful names, etc.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221103191013.1236066-7-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# a28ace78 03-Nov-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Drop reg_type_may_be_refcounted_or_null

It is not scalable to maintain a list of types that can have non-zero
ref_obj_id. It is never set for scalars anyway, so just remove the
conditional on register types and print it whenever it is non-zero.

Acked-by: Dave Marchevsky <davemarchevsky@fb.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221103191013.1236066-6-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# f5e477a8 03-Nov-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Fix slot type check in check_stack_write_var_off

For the case where allow_ptr_leaks is false, code is checking whether
slot type is STACK_INVALID and STACK_SPILL and rejecting other cases.
This is a consequence of incorrectly checking for register type instead
of the slot type (NOT_INIT and SCALAR_VALUE respectively). Fix the
check.

Fixes: 01f810ace9ed ("bpf: Allow variable-offset stack access")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221103191013.1236066-5-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 261f4664 03-Nov-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Clobber stack slot when writing over spilled PTR_TO_BTF_ID

When support was added for spilled PTR_TO_BTF_ID to be accessed by
helper memory access, the stack slot was not overwritten to STACK_MISC
(and that too is only safe when env->allow_ptr_leaks is true).

This means that helpers who take ARG_PTR_TO_MEM and write to it may
essentially overwrite the value while the verifier continues to track
the slot for spilled register.

This can cause issues when PTR_TO_BTF_ID is spilled to stack, and then
overwritten by helper write access, which can then be passed to BPF
helpers or kfuncs.

Handle this by falling back to the case introduced in a later commit,
which will also handle PTR_TO_BTF_ID along with other pointer types,
i.e. cd17d38f8b28 ("bpf: Permits pointers on stack for helper calls").

Finally, include a comment on why REG_LIVE_WRITTEN is not being set when
clobber is set to true. In short, the reason is that while when clobber
is unset, we know that we won't be writing, when it is true, we *may*
write to any of the stack slots in that range. It may be a partial or
complete write, to just one or many stack slots.

We cannot be sure, hence to be conservative, we leave things as is and
never set REG_LIVE_WRITTEN for any stack slot. However, clobber still
needs to reset them to STACK_MISC assuming writes happened. However read
marks still need to be propagated upwards from liveness point of view,
as parent stack slot's contents may still continue to matter to child
states.

Cc: Yonghong Song <yhs@meta.com>
Fixes: 1d68f22b3d53 ("bpf: Handle spilled PTR_TO_BTF_ID properly when checking stack_boundary")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221103191013.1236066-4-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# b6d20799 26-Oct-2022 Xu Kuohai <xukuohai@huawei.com>

bpf: Fix a typo in comment for DFS algorithm

There is a typo in comment for DFS algorithm in bpf/verifier.c. The top
element should not be popped until all its neighbors have been checked.
Fix it.

Fixes: 475fb78fbf48 ("bpf: verifier (add branch/goto checks)")
Signed-off-by: Xu Kuohai <xukuohai@huawei.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20221027034458.2925218-1-xukuohai@huaweicloud.com


# c4bcfb38 25-Oct-2022 Yonghong Song <yhs@fb.com>

bpf: Implement cgroup storage available to non-cgroup-attached bpf progs

Similar to sk/inode/task storage, implement similar cgroup local storage.

There already exists a local storage implementation for cgroup-attached
bpf programs. See map type BPF_MAP_TYPE_CGROUP_STORAGE and helper
bpf_get_local_storage(). But there are use cases such that non-cgroup
attached bpf progs wants to access cgroup local storage data. For example,
tc egress prog has access to sk and cgroup. It is possible to use
sk local storage to emulate cgroup local storage by storing data in socket.
But this is a waste as it could be lots of sockets belonging to a particular
cgroup. Alternatively, a separate map can be created with cgroup id as the key.
But this will introduce additional overhead to manipulate the new map.
A cgroup local storage, similar to existing sk/inode/task storage,
should help for this use case.

The life-cycle of storage is managed with the life-cycle of the
cgroup struct. i.e. the storage is destroyed along with the owning cgroup
with a call to bpf_cgrp_storage_free() when cgroup itself
is deleted.

The userspace map operations can be done by using a cgroup fd as a key
passed to the lookup, update and delete operations.

Typically, the following code is used to get the current cgroup:
struct task_struct *task = bpf_get_current_task_btf();
... task->cgroups->dfl_cgrp ...
and in structure task_struct definition:
struct task_struct {
....
struct css_set __rcu *cgroups;
....
}
With sleepable program, accessing task->cgroups is not protected by rcu_read_lock.
So the current implementation only supports non-sleepable program and supporting
sleepable program will be the next step together with adding rcu_read_lock
protection for rcu tagged structures.

Since map name BPF_MAP_TYPE_CGROUP_STORAGE has been used for old cgroup local
storage support, the new map name BPF_MAP_TYPE_CGRP_STORAGE is used
for cgroup storage available to non-cgroup-attached bpf programs. The old
cgroup storage supports bpf_get_local_storage() helper to get the cgroup data.
The new cgroup storage helper bpf_cgrp_storage_get() can provide similar
functionality. While old cgroup storage pre-allocates storage memory, the new
mechanism can also pre-allocate with a user space bpf_map_update_elem() call
to avoid potential run-time memory allocation failure.
Therefore, the new cgroup storage can provide all functionality w.r.t.
the old one. So in uapi bpf.h, the old BPF_MAP_TYPE_CGROUP_STORAGE is alias to
BPF_MAP_TYPE_CGROUP_STORAGE_DEPRECATED to indicate the old cgroup storage can
be deprecated since the new one can provide the same functionality.

Acked-by: David Vernet <void@manifault.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221026042850.673791-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# d1673304 20-Oct-2022 Dave Marchevsky <davemarchevsky@fb.com>

bpf: Consider all mem_types compatible for map_{key,value} args

After the previous patch, which added PTR_TO_MEM | MEM_ALLOC type
map_key_value_types, the only difference between map_key_value_types and
mem_types sets is PTR_TO_BUF and PTR_TO_MEM, which are in the latter set
but not the former.

Helpers which expect ARG_PTR_TO_MAP_KEY or ARG_PTR_TO_MAP_VALUE
already effectively expect a valid blob of arbitrary memory that isn't
necessarily explicitly associated with a map. When validating a
PTR_TO_MAP_{KEY,VALUE} arg, the verifier expects meta->map_ptr to have
already been set, either by an earlier ARG_CONST_MAP_PTR arg, or custom
logic like that in process_timer_func or process_kptr_func.

So let's get rid of map_key_value_types and just use mem_types for those
args.

This has the effect of adding PTR_TO_BUF and PTR_TO_MEM to the set of
compatible types for ARG_PTR_TO_MAP_KEY and ARG_PTR_TO_MAP_VALUE.

PTR_TO_BUF is used by various bpf_iter implementations to represent a
chunk of valid r/w memory in ctx args for iter prog.

PTR_TO_MEM is used by networking, tracing, and ringbuf helpers to
represent a chunk of valid memory. The PTR_TO_MEM | MEM_ALLOC
type added in previous commit is specific to ringbuf helpers.
Presence or absence of MEM_ALLOC doesn't change the validity of using
PTR_TO_MEM as a map_{key,val} input.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221020160721.4030492-2-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 9ef40974 20-Oct-2022 Dave Marchevsky <davemarchevsky@fb.com>

bpf: Allow ringbuf memory to be used as map key

This patch adds support for the following pattern:

struct some_data *data = bpf_ringbuf_reserve(&ringbuf, sizeof(struct some_data, 0));
if (!data)
return;
bpf_map_lookup_elem(&another_map, &data->some_field);
bpf_ringbuf_submit(data);

Currently the verifier does not consider bpf_ringbuf_reserve's
PTR_TO_MEM | MEM_ALLOC ret type a valid key input to bpf_map_lookup_elem.
Since PTR_TO_MEM is by definition a valid region of memory, it is safe
to use it as a key for lookups.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221020160721.4030492-1-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# eb86559a 07-Nov-2022 Wang Yufen <wangyufen@huawei.com>

bpf: Fix memory leaks in __check_func_call

kmemleak reports this issue:

unreferenced object 0xffff88817139d000 (size 2048):
comm "test_progs", pid 33246, jiffies 4307381979 (age 45851.820s)
hex dump (first 32 bytes):
01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<0000000045f075f0>] kmalloc_trace+0x27/0xa0
[<0000000098b7c90a>] __check_func_call+0x316/0x1230
[<00000000b4c3c403>] check_helper_call+0x172e/0x4700
[<00000000aa3875b7>] do_check+0x21d8/0x45e0
[<000000001147357b>] do_check_common+0x767/0xaf0
[<00000000b5a595b4>] bpf_check+0x43e3/0x5bc0
[<0000000011e391b1>] bpf_prog_load+0xf26/0x1940
[<0000000007f765c0>] __sys_bpf+0xd2c/0x3650
[<00000000839815d6>] __x64_sys_bpf+0x75/0xc0
[<00000000946ee250>] do_syscall_64+0x3b/0x90
[<0000000000506b7f>] entry_SYSCALL_64_after_hwframe+0x63/0xcd

The root case here is: In function prepare_func_exit(), the callee is
not released in the abnormal scenario after "state->curframe--;". To
fix, move "state->curframe--;" to the very bottom of the function,
right when we free callee and reset frame[] pointer to NULL, as Andrii
suggested.

In addition, function __check_func_call() has a similar problem. In
the abnormal scenario before "state->curframe++;", the callee also
should be released by free_func_state().

Fixes: 69c087ba6225 ("bpf: Add bpf_for_each_map_elem() helper")
Fixes: fd978bf7fd31 ("bpf: Add reference tracking to verifier")
Signed-off-by: Wang Yufen <wangyufen@huawei.com>
Link: https://lore.kernel.org/r/1667884291-15666-1-git-send-email-wangyufen@huawei.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>


# f1db2081 03-Nov-2022 Youlin Li <liulin063@gmail.com>

bpf: Fix wrong reg type conversion in release_reference()

Some helper functions will allocate memory. To avoid memory leaks, the
verifier requires the eBPF program to release these memories by calling
the corresponding helper functions.

When a resource is released, all pointer registers corresponding to the
resource should be invalidated. The verifier use release_references() to
do this job, by apply __mark_reg_unknown() to each relevant register.

It will give these registers the type of SCALAR_VALUE. A register that
will contain a pointer value at runtime, but of type SCALAR_VALUE, which
may allow the unprivileged user to get a kernel pointer by storing this
register into a map.

Using __mark_reg_not_init() while NOT allow_ptr_leaks can mitigate this
problem.

Fixes: fd978bf7fd31 ("bpf: Add reference tracking to verifier")
Signed-off-by: Youlin Li <liulin063@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20221103093440.3161-1-liulin063@gmail.com


# 42378a9c 28-Oct-2022 Kees Cook <keescook@chromium.org>

bpf, verifier: Fix memory leak in array reallocation for stack state

If an error (NULL) is returned by krealloc(), callers of realloc_array()
were setting their allocation pointers to NULL, but on error krealloc()
does not touch the original allocation. This would result in a memory
resource leak. Instead, free the old allocation on the error handling
path.

The memory leak information is as follows as also reported by Zhengchao:

unreferenced object 0xffff888019801800 (size 256):
comm "bpf_repo", pid 6490, jiffies 4294959200 (age 17.170s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<00000000b211474b>] __kmalloc_node_track_caller+0x45/0xc0
[<0000000086712a0b>] krealloc+0x83/0xd0
[<00000000139aab02>] realloc_array+0x82/0xe2
[<00000000b1ca41d1>] grow_stack_state+0xfb/0x186
[<00000000cd6f36d2>] check_mem_access.cold+0x141/0x1341
[<0000000081780455>] do_check_common+0x5358/0xb350
[<0000000015f6b091>] bpf_check.cold+0xc3/0x29d
[<000000002973c690>] bpf_prog_load+0x13db/0x2240
[<00000000028d1644>] __sys_bpf+0x1605/0x4ce0
[<00000000053f29bd>] __x64_sys_bpf+0x75/0xb0
[<0000000056fedaf5>] do_syscall_64+0x35/0x80
[<000000002bd58261>] entry_SYSCALL_64_after_hwframe+0x63/0xcd

Fixes: c69431aab67a ("bpf: verifier: Improve function state reallocation")
Reported-by: Zhengchao Shao <shaozhengchao@huawei.com>
Reported-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Bill Wendling <morbo@google.com>
Cc: Lorenz Bauer <oss@lmb.io>
Link: https://lore.kernel.org/bpf/20221029025433.2533810-1-keescook@chromium.org


# c92a7a52 12-Oct-2022 David Vernet <void@manifault.com>

bpf: Allow bpf_user_ringbuf_drain() callbacks to return 1

The bpf_user_ringbuf_drain() helper function allows a BPF program to
specify a callback that is invoked when draining entries from a
BPF_MAP_TYPE_USER_RINGBUF ring buffer map. The API is meant to allow the
callback to return 0 if it wants to continue draining samples, and 1 if
it's done draining. Unfortunately, bpf_user_ringbuf_drain() landed shortly
after commit 1bfe26fb0827 ("bpf: Add verifier support for custom
callback return range"), which changed the default behavior of callbacks
to only support returning 0.

This patch corrects that oversight by allowing bpf_user_ringbuf_drain()
callbacks to return 0 or 1. A follow-on patch will update the
user_ringbuf selftests to also return 1 from a bpf_user_ringbuf_drain()
callback to prevent this from regressing in the future.

Fixes: 205715673844 ("bpf: Add bpf_user_ringbuf_drain() helper")
Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20221012232015.1510043-2-void@manifault.com


# a251c17a 05-Oct-2022 Jason A. Donenfeld <Jason@zx2c4.com>

treewide: use get_random_u32() when possible

The prandom_u32() function has been a deprecated inline wrapper around
get_random_u32() for several releases now, and compiles down to the
exact same code. Replace the deprecated wrapper with a direct call to
the real function. The same also applies to get_random_int(), which is
just a wrapper around get_random_u32(). This was done as a basic find
and replace.

Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Yury Norov <yury.norov@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz> # for ext4
Acked-by: Toke Høiland-Jørgensen <toke@toke.dk> # for sch_cake
Acked-by: Chuck Lever <chuck.lever@oracle.com> # for nfsd
Acked-by: Jakub Kicinski <kuba@kernel.org>
Acked-by: Mika Westerberg <mika.westerberg@linux.intel.com> # for thunderbolt
Acked-by: Darrick J. Wong <djwong@kernel.org> # for xfs
Acked-by: Helge Deller <deller@gmx.de> # for parisc
Acked-by: Heiko Carstens <hca@linux.ibm.com> # for s390
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>


# b8d31762 20-Sep-2022 Roberto Sassu <roberto.sassu@huawei.com>

btf: Allow dynamic pointer parameters in kfuncs

Allow dynamic pointers (struct bpf_dynptr_kern *) to be specified as
parameters in kfuncs. Also, ensure that dynamic pointers passed as argument
are valid and initialized, are a pointer to the stack, and of the type
local. More dynamic pointer types can be supported in the future.

To properly detect whether a parameter is of the desired type, introduce
the stringify_struct() macro to compare the returned structure name with
the desired name. In addition, protect against structure renames, by
halting the build with BUILD_BUG_ON(), so that developers have to revisit
the code.

To check if a dynamic pointer passed to the kfunc is valid and initialized,
and if its type is local, export the existing functions
is_dynptr_reg_valid_init() and is_dynptr_type_expected().

Cc: Joanne Koong <joannelkoong@gmail.com>
Cc: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220920075951.929132-5-roberto.sassu@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# e9e315b4 20-Sep-2022 Roberto Sassu <roberto.sassu@huawei.com>

bpf: Move dynptr type check to is_dynptr_type_expected()

Move dynptr type check to is_dynptr_type_expected() from
is_dynptr_reg_valid_init(), so that callers can better determine the cause
of a negative result (dynamic pointer not valid/initialized, dynamic
pointer of the wrong type). It will be useful for example for BTF, to
restrict which dynamic pointer types can be passed to kfuncs, as initially
only the local type will be supported.

Also, splitting makes the code more readable, since checking the dynamic
pointer type is not necessarily related to validity and initialization.

Split the validity/initialization and dynamic pointer type check also in
the verifier, and adjust the expected error message in the test (a test for
an unexpected dynptr type passed to a helper cannot be added due to missing
suitable helpers, but this case has been tested manually).

Cc: Joanne Koong <joannelkoong@gmail.com>
Cc: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220920075951.929132-4-roberto.sassu@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 20571567 19-Sep-2022 David Vernet <void@manifault.com>

bpf: Add bpf_user_ringbuf_drain() helper

In a prior change, we added a new BPF_MAP_TYPE_USER_RINGBUF map type which
will allow user-space applications to publish messages to a ring buffer
that is consumed by a BPF program in kernel-space. In order for this
map-type to be useful, it will require a BPF helper function that BPF
programs can invoke to drain samples from the ring buffer, and invoke
callbacks on those samples. This change adds that capability via a new BPF
helper function:

bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void *ctx,
u64 flags)

BPF programs may invoke this function to run callback_fn() on a series of
samples in the ring buffer. callback_fn() has the following signature:

long callback_fn(struct bpf_dynptr *dynptr, void *context);

Samples are provided to the callback in the form of struct bpf_dynptr *'s,
which the program can read using BPF helper functions for querying
struct bpf_dynptr's.

In order to support bpf_ringbuf_drain(), a new PTR_TO_DYNPTR register
type is added to the verifier to reflect a dynptr that was allocated by
a helper function and passed to a BPF program. Unlike PTR_TO_STACK
dynptrs which are allocated on the stack by a BPF program, PTR_TO_DYNPTR
dynptrs need not use reference tracking, as the BPF helper is trusted to
properly free the dynptr before returning. The verifier currently only
supports PTR_TO_DYNPTR registers that are also DYNPTR_TYPE_LOCAL.

Note that while the corresponding user-space libbpf logic will be added
in a subsequent patch, this patch does contain an implementation of the
.map_poll() callback for BPF_MAP_TYPE_USER_RINGBUF maps. This
.map_poll() callback guarantees that an epoll-waiting user-space
producer will receive at least one event notification whenever at least
one sample is drained in an invocation of bpf_user_ringbuf_drain(),
provided that the function is not invoked with the BPF_RB_NO_WAKEUP
flag. If the BPF_RB_FORCE_WAKEUP flag is provided, a wakeup
notification is sent even if no sample was drained.

Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220920000100.477320-3-void@manifault.com


# 583c1f42 19-Sep-2022 David Vernet <void@manifault.com>

bpf: Define new BPF_MAP_TYPE_USER_RINGBUF map type

We want to support a ringbuf map type where samples are published from
user-space, to be consumed by BPF programs. BPF currently supports a
kernel -> user-space circular ring buffer via the BPF_MAP_TYPE_RINGBUF
map type. We'll need to define a new map type for user-space -> kernel,
as none of the helpers exported for BPF_MAP_TYPE_RINGBUF will apply
to a user-space producer ring buffer, and we'll want to add one or
more helper functions that would not apply for a kernel-producer
ring buffer.

This patch therefore adds a new BPF_MAP_TYPE_USER_RINGBUF map type
definition. The map type is useless in its current form, as there is no
way to access or use it for anything until we one or more BPF helpers. A
follow-on patch will therefore add a new helper function that allows BPF
programs to run callbacks on samples that are published to the ring
buffer.

Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220920000100.477320-2-void@manifault.com


# 47e34cb7 12-Sep-2022 Dave Marchevsky <davemarchevsky@fb.com>

bpf: Add verifier check for BPF_PTR_POISON retval and arg

BPF_PTR_POISON was added in commit c0a5a21c25f37 ("bpf: Allow storing
referenced kptr in map") to denote a bpf_func_proto btf_id which the
verifier will replace with a dynamically-determined btf_id at verification
time.

This patch adds verifier 'poison' functionality to BPF_PTR_POISON in
order to prepare for expanded use of the value to poison ret- and
arg-btf_id in ongoing work, namely rbtree and linked list patchsets
[0, 1]. Specifically, when the verifier checks helper calls, it assumes
that BPF_PTR_POISON'ed ret type will be replaced with a valid type before
- or in lieu of - the default ret_btf_id logic. Similarly for arg btf_id.

If poisoned btf_id reaches default handling block for either, consider
this a verifier internal error and fail verification. Otherwise a helper
w/ poisoned btf_id but no verifier logic replacing the type will cause a
crash as the invalid pointer is dereferenced.

Also move BPF_PTR_POISON to existing include/linux/posion.h header and
remove unnecessary shift.

[0]: lore.kernel.org/bpf/20220830172759.4069786-1-davemarchevsky@fb.com
[1]: lore.kernel.org/bpf/20220904204145.3089-1-memxor@gmail.com

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220912154544.1398199-1-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 1bfe26fb 08-Sep-2022 Dave Marchevsky <davemarchevsky@fb.com>

bpf: Add verifier support for custom callback return range

Verifier logic to confirm that a callback function returns 0 or 1 was
added in commit 69c087ba6225b ("bpf: Add bpf_for_each_map_elem() helper").
At the time, callback return value was only used to continue or stop
iteration.

In order to support callbacks with a broader return value range, such as
those added in rbtree series[0] and others, add a callback_ret_range to
bpf_func_state. Verifier's helpers which set in_callback_fn will also
set the new field, which the verifier will later use to check return
value bounds.

Default to tnum_range(0, 0) instead of using tnum_unknown as a sentinel
value as the latter would prevent the valid range (0, U64_MAX) being
used. Previous global default tnum_range(0, 1) is explicitly set for
extant callback helpers. The change to global default was made after
discussion around this patch in rbtree series [1], goal here is to make
it more obvious that callback_ret_range should be explicitly set.

[0]: lore.kernel.org/bpf/20220830172759.4069786-1-davemarchevsky@fb.com/
[1]: lore.kernel.org/bpf/20220830172759.4069786-2-davemarchevsky@fb.com/

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Reviewed-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20220908230716.2751723-1-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 84c6ac41 07-Sep-2022 Daniel Xu <dxu@dxuuu.xyz>

bpf: Export btf_type_by_id() and bpf_log()

These symbols will be used in nf_conntrack.ko to support direct writes
to `nf_conn`.

Signed-off-by: Daniel Xu <dxu@dxuuu.xyz>
Link: https://lore.kernel.org/r/3c98c19dc50d3b18ea5eca135b4fc3a5db036060.1662568410.git.dxu@dxuuu.xyz
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 65269888 07-Sep-2022 Daniel Xu <dxu@dxuuu.xyz>

bpf: Remove duplicate PTR_TO_BTF_ID RO check

Since commit 27ae7997a661 ("bpf: Introduce BPF_PROG_TYPE_STRUCT_OPS")
there has existed bpf_verifier_ops:btf_struct_access. When
btf_struct_access is _unset_ for a prog type, the verifier runs the
default implementation, which is to enforce read only:

if (env->ops->btf_struct_access) {
[...]
} else {
if (atype != BPF_READ) {
verbose(env, "only read is supported\n");
return -EACCES;
}

[...]
}

When btf_struct_access is _set_, the expectation is that
btf_struct_access has full control over accesses, including if writes
are allowed.

Rather than carve out an exception for each prog type that may write to
BTF ptrs, delete the redundant check and give full control to
btf_struct_access.

Signed-off-by: Daniel Xu <dxu@dxuuu.xyz>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/962da2bff1238746589e332ff1aecc49403cd7ce.1662568410.git.dxu@dxuuu.xyz
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# b239da34 04-Sep-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Add helper macro bpf_for_each_reg_in_vstate

For a lot of use cases in future patches, we will want to modify the
state of registers part of some same 'group' (e.g. same ref_obj_id). It
won't just be limited to releasing reference state, but setting a type
flag dynamically based on certain actions, etc.

Hence, we need a way to easily pass a callback to the function that
iterates over all registers in current bpf_verifier_state in all frames
upto (and including) the curframe.

While in C++ we would be able to easily use a lambda to pass state and
the callback together, sadly we aren't using C++ in the kernel. The next
best thing to avoid defining a function for each case seems like
statement expressions in GNU C. The kernel already uses them heavily,
hence they can passed to the macro in the style of a lambda. The
statement expression will then be substituted in the for loop bodies.

Variables __state and __reg are set to current bpf_func_state and reg
for each invocation of the expression inside the passed in verifier
state.

Then, convert mark_ptr_or_null_regs, clear_all_pkt_pointers,
release_reference, find_good_pkt_pointers, find_equal_scalars to
use bpf_for_each_reg_in_vstate.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220904204145.3089-16-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# eb1f7f71 06-Sep-2022 Benjamin Tissoires <benjamin.tissoires@redhat.com>

bpf/verifier: allow kfunc to return an allocated mem

For drivers (outside of network), the incoming data is not statically
defined in a struct. Most of the time the data buffer is kzalloc-ed
and thus we can not rely on eBPF and BTF to explore the data.

This commit allows to return an arbitrary memory, previously allocated by
the driver.
An interesting extra point is that the kfunc can mark the exported
memory region as read only or read/write.

So, when a kfunc is not returning a pointer to a struct but to a plain
type, we can consider it is a valid allocated memory assuming that:
- one of the arguments is either called rdonly_buf_size or
rdwr_buf_size
- and this argument is a const from the caller point of view

We can then use this parameter as the size of the allocated memory.

The memory is either read-only or read-write based on the name
of the size parameter.

Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Link: https://lore.kernel.org/r/20220906151303.2780789-7-benjamin.tissoires@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 15baa55f 06-Sep-2022 Benjamin Tissoires <benjamin.tissoires@redhat.com>

bpf/verifier: allow all functions to read user provided context

When a function was trying to access data from context in a syscall eBPF
program, the verifier was rejecting the call unless it was accessing the
first element.
This is because the syscall context is not known at compile time, and
so we need to check this when actually accessing it.

Check for the valid memory access if there is no convert_ctx callback,
and allow such situation to happen.

Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Link: https://lore.kernel.org/r/20220906151303.2780789-4-benjamin.tissoires@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 95f2f26f 06-Sep-2022 Benjamin Tissoires <benjamin.tissoires@redhat.com>

bpf: split btf_check_subprog_arg_match in two

btf_check_subprog_arg_match() was used twice in verifier.c:
- when checking for the type mismatches between a (sub)prog declaration
and BTF
- when checking the call of a subprog to see if the provided arguments
are correct and valid

This is problematic when we check if the first argument of a program
(pointer to ctx) is correctly accessed:
To be able to ensure we access a valid memory in the ctx, the verifier
assumes the pointer to context is not null.
This has the side effect of marking the program accessing the entire
context, even if the context is never dereferenced.

For example, by checking the context access with the current code, the
following eBPF program would fail with -EINVAL if the ctx is set to null
from the userspace:

```
SEC("syscall")
int prog(struct my_ctx *args) {
return 0;
}
```

In that particular case, we do not want to actually check that the memory
is correct while checking for the BTF validity, but we just want to
ensure that the (sub)prog definition matches the BTF we have.

So split btf_check_subprog_arg_match() in two so we can actually check
for the memory used when in a call, and ignore that part when not.

Note that a further patch is in preparation to disentangled
btf_check_func_arg_match() from these two purposes, and so right now we
just add a new hack around that by adding a boolean to this function.

Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220906151303.2780789-3-benjamin.tissoires@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 02cc5aa2 02-Sep-2022 Alexei Starovoitov <ast@kernel.org>

bpf: Remove prealloc-only restriction for sleepable bpf programs.

Since hash map is now converted to bpf_mem_alloc and it's waiting for rcu and
rcu_tasks_trace GPs before freeing elements into global memory slabs it's safe
to use dynamically allocated hash maps in sleepable bpf programs.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220902211058.60789-15-alexei.starovoitov@gmail.com


# 96da3f7d 02-Sep-2022 Alexei Starovoitov <ast@kernel.org>

bpf: Remove tracing program restriction on map types

The hash map is now fully converted to bpf_mem_alloc. Its implementation is not
allocating synchronously and not calling call_rcu() directly. It's now safe to
use non-preallocated hash maps in all types of tracing programs including
BPF_PROG_TYPE_PERF_EVENT that runs out of NMI context.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220902211058.60789-13-alexei.starovoitov@gmail.com


# 34dd3bad 02-Sep-2022 Alexei Starovoitov <ast@kernel.org>

bpf: Relax the requirement to use preallocated hash maps in tracing progs.

Since bpf hash map was converted to use bpf_mem_alloc it is safe to use
from tracing programs and in RT kernels.
But per-cpu hash map is still using dynamic allocation for per-cpu map
values, hence keep the warning for this map type.
In the future alloc_percpu_gfp can be front-end-ed with bpf_mem_cache
and this restriction will be completely lifted.
perf_event (NMI) bpf programs have to use preallocated hash maps,
because free_htab_elem() is using call_rcu which might crash if re-entered.

Sleepable bpf programs have to use preallocated hash maps, because
life time of the map elements is not protected by rcu_read_lock/unlock.
This restriction can be lifted in the future as well.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220902211058.60789-6-alexei.starovoitov@gmail.com


# 9d9d00ac 22-Aug-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Fix reference state management for synchronous callbacks

Currently, verifier verifies callback functions (sync and async) as if
they will be executed once, (i.e. it explores execution state as if the
function was being called once). The next insn to explore is set to
start of subprog and the exit from nested frame is handled using
curframe > 0 and prepare_func_exit. In case of async callback it uses a
customized variant of push_stack simulating a kind of branch to set up
custom state and execution context for the async callback.

While this approach is simple and works when callback really will be
executed only once, it is unsafe for all of our current helpers which
are for_each style, i.e. they execute the callback multiple times.

A callback releasing acquired references of the caller may do so
multiple times, but currently verifier sees it as one call inside the
frame, which then returns to caller. Hence, it thinks it released some
reference that the cb e.g. got access through callback_ctx (register
filled inside cb from spilled typed register on stack).

Similarly, it may see that an acquire call is unpaired inside the
callback, so the caller will copy the reference state of callback and
then will have to release the register with new ref_obj_ids. But again,
the callback may execute multiple times, but the verifier will only
account for acquired references for a single symbolic execution of the
callback, which will cause leaks.

Note that for async callback case, things are different. While currently
we have bpf_timer_set_callback which only executes it once, even for
multiple executions it would be safe, as reference state is NULL and
check_reference_leak would force program to release state before
BPF_EXIT. The state is also unaffected by analysis for the caller frame.
Hence async callback is safe.

Since we want the reference state to be accessible, e.g. for pointers
loaded from stack through callback_ctx's PTR_TO_STACK, we still have to
copy caller's reference_state to callback's bpf_func_state, but we
enforce that whatever references it adds to that reference_state has
been released before it hits BPF_EXIT. This requires introducing a new
callback_ref member in the reference state to distinguish between caller
vs callee references. Hence, check_reference_leak now errors out if it
sees we are in callback_fn and we have not released callback_ref refs.
Since there can be multiple nested callbacks, like frame 0 -> cb1 -> cb2
etc. we need to also distinguish between whether this particular ref
belongs to this callback frame or parent, and only error for our own, so
we store state->frameno (which is always non-zero for callbacks).

In short, callbacks can read parent reference_state, but cannot mutate
it, to be able to use pointers acquired by the caller. They must only
undo their changes (by releasing their own acquired_refs before
BPF_EXIT) on top of caller reference_state before returning (at which
point the caller and callback state will match anyway, so no need to
copy it back to caller).

Fixes: 69c087ba6225 ("bpf: Add bpf_for_each_map_elem() helper")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220823013125.24938-1-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 4dd48c6f 10-Aug-2022 Artem Savkov <asavkov@redhat.com>

bpf: add destructive kfunc flag

Add KF_DESTRUCTIVE flag for destructive functions. Functions with this
flag set will require CAP_SYS_BOOT capabilities.

Signed-off-by: Artem Savkov <asavkov@redhat.com>
Link: https://lore.kernel.org/r/20220810065905.475418-2-asavkov@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 88374342 09-Aug-2022 Joanne Koong <joannelkoong@gmail.com>

bpf: Fix ref_obj_id for dynptr data slices in verifier

When a data slice is obtained from a dynptr (through the bpf_dynptr_data API),
the ref obj id of the dynptr must be found and then associated with the data
slice.

The ref obj id of the dynptr must be found *before* the caller saved regs are
reset. Without this fix, the ref obj id tracking is not correct for
dynptrs that are at an offset from the frame pointer.

Please also note that the data slice's ref obj id must be assigned after the
ret types are parsed, since RET_PTR_TO_ALLOC_MEM-type return regs get
zero-marked.

Fixes: 34d4ef5775f7 ("bpf: Add dynptr data slices")
Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20220809214055.4050604-1-joannelkoong@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# b2d8ef19 08-Aug-2022 Dave Marchevsky <davemarchevsky@fb.com>

bpf: Cleanup check_refcount_ok

Discussion around a recently-submitted patch provided historical
context for check_refcount_ok [0]. Specifically, the function and its
helpers - may_be_acquire_function and arg_type_may_be_refcounted -
predate the OBJ_RELEASE type flag and the addition of many more helpers
with acquire/release semantics.

The purpose of check_refcount_ok is to ensure:
1) Helper doesn't have multiple uses of return reg's ref_obj_id
2) Helper with release semantics only has one arg needing to be
released, since that's tracked using meta->ref_obj_id

With current verifier, it's safe to remove check_refcount_ok and its
helpers. Since addition of OBJ_RELEASE type flag, case 2) has been
handled by the arg_type_is_release check in check_func_arg. To ensure
case 1) won't result in verifier silently prioritizing one use of
ref_obj_id, this patch adds a helper_multiple_ref_obj_use check which
fails loudly if a helper passes > 1 test for use of ref_obj_id.

[0]: lore.kernel.org/bpf/20220713234529.4154673-1-davemarchevsky@fb.com

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220808171559.3251090-1-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 0c9a7a7e 02-Aug-2022 Joanne Koong <joannelkoong@gmail.com>

bpf: Verifier cleanups

This patch cleans up a few things in the verifier:

* type_is_pkt_pointer():
Future work (skb + xdp dynptrs [0]) will be using the reg type
PTR_TO_PACKET | PTR_MAYBE_NULL. type_is_pkt_pointer() should return
true for any type whose base type is PTR_TO_PACKET, regardless of
flags attached to it.

* reg_type_may_be_refcounted_or_null():
Get the base type at the start of the function to avoid
having to recompute it / improve readability

* check_func_proto(): remove unnecessary 'meta' arg

* check_helper_call():
Use switch casing on the base type of return value instead of
nested ifs on the full type

There are no functional behavior changes.

[0] https://lore.kernel.org/bpf/20220726184706.954822-1-joannelkoong@gmail.com/

Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/bpf/20220802214638.3643235-1-joannelkoong@gmail.com


# a657182a 25-Aug-2022 Daniel Borkmann <daniel@iogearbox.net>

bpf: Don't use tnum_range on array range checking for poke descriptors

Hsin-Wei reported a KASAN splat triggered by their BPF runtime fuzzer which
is based on a customized syzkaller:

BUG: KASAN: slab-out-of-bounds in bpf_int_jit_compile+0x1257/0x13f0
Read of size 8 at addr ffff888004e90b58 by task syz-executor.0/1489
CPU: 1 PID: 1489 Comm: syz-executor.0 Not tainted 5.19.0 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x9c/0xc9
print_address_description.constprop.0+0x1f/0x1f0
? bpf_int_jit_compile+0x1257/0x13f0
kasan_report.cold+0xeb/0x197
? kvmalloc_node+0x170/0x200
? bpf_int_jit_compile+0x1257/0x13f0
bpf_int_jit_compile+0x1257/0x13f0
? arch_prepare_bpf_dispatcher+0xd0/0xd0
? rcu_read_lock_sched_held+0x43/0x70
bpf_prog_select_runtime+0x3e8/0x640
? bpf_obj_name_cpy+0x149/0x1b0
bpf_prog_load+0x102f/0x2220
? __bpf_prog_put.constprop.0+0x220/0x220
? find_held_lock+0x2c/0x110
? __might_fault+0xd6/0x180
? lock_downgrade+0x6e0/0x6e0
? lock_is_held_type+0xa6/0x120
? __might_fault+0x147/0x180
__sys_bpf+0x137b/0x6070
? bpf_perf_link_attach+0x530/0x530
? new_sync_read+0x600/0x600
? __fget_files+0x255/0x450
? lock_downgrade+0x6e0/0x6e0
? fput+0x30/0x1a0
? ksys_write+0x1a8/0x260
__x64_sys_bpf+0x7a/0xc0
? syscall_enter_from_user_mode+0x21/0x70
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f917c4e2c2d

The problem here is that a range of tnum_range(0, map->max_entries - 1) has
limited ability to represent the concrete tight range with the tnum as the
set of resulting states from value + mask can result in a superset of the
actual intended range, and as such a tnum_in(range, reg->var_off) check may
yield true when it shouldn't, for example tnum_range(0, 2) would result in
00XX -> v = 0000, m = 0011 such that the intended set of {0, 1, 2} is here
represented by a less precise superset of {0, 1, 2, 3}. As the register is
known const scalar, really just use the concrete reg->var_off.value for the
upper index check.

Fixes: d2e4c1e6c294 ("bpf: Constant map key tracking for prog array pokes")
Reported-by: Hsin-Wei Hung <hsinweih@uci.edu>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/r/984b37f9fdf7ac36831d2137415a4a915744c1b6.1661462653.git.daniel@iogearbox.net
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 2fc31465 23-Aug-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Do mark_chain_precision for ARG_CONST_ALLOC_SIZE_OR_ZERO

Precision markers need to be propagated whenever we have an ARG_CONST_*
style argument, as the verifier cannot consider imprecise scalars to be
equivalent for the purposes of states_equal check when such arguments
refine the return value (in this case, set mem_size for PTR_TO_MEM). The
resultant mem_size for the R0 is derived from the constant value, and if
the verifier incorrectly prunes states considering them equivalent where
such arguments exist (by seeing that both registers have reg->precise as
false in regsafe), we can end up with invalid programs passing the
verifier which can do access beyond what should have been the correct
mem_size in that explored state.

To show a concrete example of the problem:

0000000000000000 <prog>:
0: r2 = *(u32 *)(r1 + 80)
1: r1 = *(u32 *)(r1 + 76)
2: r3 = r1
3: r3 += 4
4: if r3 > r2 goto +18 <LBB5_5>
5: w2 = 0
6: *(u32 *)(r1 + 0) = r2
7: r1 = *(u32 *)(r1 + 0)
8: r2 = 1
9: if w1 == 0 goto +1 <LBB5_3>
10: r2 = -1

0000000000000058 <LBB5_3>:
11: r1 = 0 ll
13: r3 = 0
14: call bpf_ringbuf_reserve
15: if r0 == 0 goto +7 <LBB5_5>
16: r1 = r0
17: r1 += 16777215
18: w2 = 0
19: *(u8 *)(r1 + 0) = r2
20: r1 = r0
21: r2 = 0
22: call bpf_ringbuf_submit

00000000000000b8 <LBB5_5>:
23: w0 = 0
24: exit

For the first case, the single line execution's exploration will prune
the search at insn 14 for the branch insn 9's second leg as it will be
verified first using r2 = -1 (UINT_MAX), while as w1 at insn 9 will
always be 0 so at runtime we don't get error for being greater than
UINT_MAX/4 from bpf_ringbuf_reserve. The verifier during regsafe just
sees reg->precise as false for both r2 registers in both states, hence
considers them equal for purposes of states_equal.

If we propagated precise markers using the backtracking support, we
would use the precise marking to then ensure that old r2 (UINT_MAX) was
within the new r2 (1) and this would never be true, so the verification
would rightfully fail.

The end result is that the out of bounds access at instruction 19 would
be permitted without this fix.

Note that reg->precise is always set to true when user does not have
CAP_BPF (or when subprog count is greater than 1 (i.e. use of any static
or global functions)), hence this is only a problem when precision marks
need to be explicitly propagated (i.e. privileged users with CAP_BPF).

A simplified test case has been included in the next patch to prevent
future regressions.

Fixes: 457f44363a88 ("bpf: Implement BPF ring buffer and verifier support for it")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220823185300.406-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# a4703e31 21-Jul-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Switch to new kfunc flags infrastructure

Instead of populating multiple sets to indicate some attribute and then
researching the same BTF ID in them, prepare a single unified BTF set
which indicates whether a kfunc is allowed to be called, and also its
attributes if any at the same time. Now, only one call is needed to
perform the lookup for both kfunc availability and its attributes.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220721134245.2450-4-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# aef9d4a3 20-Jul-2022 Stanislav Fomichev <sdf@google.com>

bpf: Check attach_func_proto more carefully in check_helper_call

Syzkaller found a problem similar to d1a6edecc1fd ("bpf: Check
attach_func_proto more carefully in check_return_code") where
attach_func_proto might be NULL:

RIP: 0010:check_helper_call+0x3dcb/0x8d50 kernel/bpf/verifier.c:7330
do_check kernel/bpf/verifier.c:12302 [inline]
do_check_common+0x6e1e/0xb980 kernel/bpf/verifier.c:14610
do_check_main kernel/bpf/verifier.c:14673 [inline]
bpf_check+0x661e/0xc520 kernel/bpf/verifier.c:15243
bpf_prog_load+0x11ae/0x1f80 kernel/bpf/syscall.c:2620

With the following reproducer:

bpf$BPF_PROG_RAW_TRACEPOINT_LOAD(0x5, &(0x7f0000000780)={0xf, 0x4, &(0x7f0000000040)=@framed={{}, [@call={0x85, 0x0, 0x0, 0xbb}]}, &(0x7f0000000000)='GPL\x00', 0x0, 0x0, 0x0, 0x0, 0x0, '\x00', 0x0, 0x2b, 0xffffffffffffffff, 0x8, 0x0, 0x0, 0x10, 0x0}, 0x80)

Let's do the same here, only check attach_func_proto for the prog types
where we are certain that attach_func_proto is defined.

Fixes: 69fd337a975c ("bpf: per-cgroup lsm flavor")
Reported-by: syzbot+0f8d989b1fba1addc5e0@syzkaller.appspotmail.com
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20220720164729.147544-1-sdf@google.com


# 9c7c48d6 14-Jul-2022 Alexei Starovoitov <ast@kernel.org>

bpf: Fix subprog names in stack traces.

The commit 7337224fc150 ("bpf: Improve the info.func_info and info.func_info_rec_size behavior")
accidently made bpf_prog_ksym_set_name() conservative for bpf subprograms.
Fixed it so instead of "bpf_prog_tag_F" the stack traces print "bpf_prog_tag_full_subprog_name".

Fixes: 7337224fc150 ("bpf: Improve the info.func_info and info.func_info_rec_size behavior")
Reported-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20220714211637.17150-1-alexei.starovoitov@gmail.com


# 5002615a 13-Jul-2022 Yafang Shao <laoar.shao@gmail.com>

bpf: Warn on non-preallocated case for BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE

BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE is also tracing type, which may
cause unexpected memory allocation if we set BPF_F_NO_PREALLOC. Let's
also warn on it similar as we do in case of BPF_PROG_TYPE_RAW_TRACEPOINT.

Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20220713160936.57488-1-laoar.shao@gmail.com


# 8ab4cdcf 12-Jul-2022 Joanne Koong <joannelkoong@gmail.com>

bpf: Tidy up verifier check_func_arg()

This patch does two things:

1. For matching against the arg type, the match should be against the
base type of the arg type, since the arg type can have different
bpf_type_flags set on it.

2. Uses switch casing to improve readability + efficiency.

Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Acked-by: Hao Luo <haoluo@google.com>
Link: https://lore.kernel.org/r/20220712210603.123791-1-joannelkoong@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# d1a6edec 08-Jul-2022 Stanislav Fomichev <sdf@google.com>

bpf: Check attach_func_proto more carefully in check_return_code

Syzkaller reports the following crash:

RIP: 0010:check_return_code kernel/bpf/verifier.c:10575 [inline]
RIP: 0010:do_check kernel/bpf/verifier.c:12346 [inline]
RIP: 0010:do_check_common+0xb3d2/0xd250 kernel/bpf/verifier.c:14610

With the following reproducer:

bpf$PROG_LOAD_XDP(0x5, &(0x7f00000004c0)={0xd, 0x3, &(0x7f0000000000)=ANY=[@ANYBLOB="1800000000000019000000000000000095"], &(0x7f0000000300)='GPL\x00', 0x0, 0x0, 0x0, 0x0, 0x0, '\x00', 0x0, 0x2b, 0xffffffffffffffff, 0x8, 0x0, 0x0, 0x10, 0x0}, 0x80)

Because we don't enforce expected_attach_type for XDP programs,
we end up in hitting 'if (prog->expected_attach_type == BPF_LSM_CGROUP'
part in check_return_code and follow up with testing
`prog->aux->attach_func_proto->type`, but `prog->aux->attach_func_proto`
is NULL.

Add explicit prog_type check for the "Note, BPF_LSM_CGROUP that
attach ..." condition. Also, don't skip return code check for
LSM/STRUCT_OPS.

The above actually brings an issue with existing selftest which
tries to return EPERM from void inet_csk_clone. Fix the
test (and move called_socket_clone to make sure it's not
incremented in case of an error) and add a new one to explicitly
verify this condition.

Fixes: 69fd337a975c ("bpf: per-cgroup lsm flavor")
Reported-by: syzbot+5cc0730bd4b4d2c5f152@syzkaller.appspotmail.com
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20220708175000.2603078-1-sdf@google.com


# 69fd337a 28-Jun-2022 Stanislav Fomichev <sdf@google.com>

bpf: per-cgroup lsm flavor

Allow attaching to lsm hooks in the cgroup context.

Attaching to per-cgroup LSM works exactly like attaching
to other per-cgroup hooks. New BPF_LSM_CGROUP is added
to trigger new mode; the actual lsm hook we attach to is
signaled via existing attach_btf_id.

For the hooks that have 'struct socket' or 'struct sock' as its first
argument, we use the cgroup associated with that socket. For the rest,
we use 'current' cgroup (this is all on default hierarchy == v2 only).
Note that for some hooks that work on 'struct sock' we still
take the cgroup from 'current' because some of them work on the socket
that hasn't been properly initialized yet.

Behind the scenes, we allocate a shim program that is attached
to the trampoline and runs cgroup effective BPF programs array.
This shim has some rudimentary ref counting and can be shared
between several programs attaching to the same lsm hook from
different cgroups.

Note that this patch bloats cgroup size because we add 211
cgroup_bpf_attach_type(s) for simplicity sake. This will be
addressed in the subsequent patch.

Also note that we only add non-sleepable flavor for now. To enable
sleepable use-cases, bpf_prog_run_array_cg has to grab trace rcu,
shim programs have to be freed via trace rcu, cgroup_bpf.effective
should be also trace-rcu-managed + maybe some other changes that
I'm not aware of.

Reviewed-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20220628174314.1216643-4-sdf@google.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# fb4e3b33 23-Jun-2022 Eduard Zingerman <eddyz87@gmail.com>

bpf: Fix for use-after-free bug in inline_bpf_loop

As reported by Dan Carpenter, the following statements in inline_bpf_loop()
might cause a use-after-free bug:

struct bpf_prog *new_prog;
// ...
new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
// ...
env->prog->insnsi[call_insn_offset].imm = callback_offset;

The bpf_patch_insn_data() might free the memory used by env->prog.

Fixes: 1ade23711971 ("bpf: Inline calls to bpf_loop when callback is known")
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20220624020613.548108-2-eddyz87@gmail.com


# 395e942d 21-Jun-2022 Simon Wang <wangchuanguo@inspur.com>

bpf: Replace hard-coded 0 with BPF_K in check_alu_op

Enhance readability a bit.

Signed-off-by: Simon Wang <wangchuanguo@inspur.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20220622031923.65692-1-wangchuanguo@inspur.com


# 95acd881 16-Jun-2022 Tony Ambardar <tony.ambardar@gmail.com>

bpf, x64: Add predicate for bpf2bpf with tailcalls support in JIT

The BPF core/verifier is hard-coded to permit mixing bpf2bpf and tail
calls for only x86-64. Change the logic to instead rely on a new weak
function 'bool bpf_jit_supports_subprog_tailcalls(void)', which a capable
JIT backend can override.

Update the x86-64 eBPF JIT to reflect this.

Signed-off-by: Tony Ambardar <Tony.Ambardar@gmail.com>
[jakub: drop MIPS bits and tweak patch subject]
Signed-off-by: Jakub Sitnicki <jakub@cloudflare.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20220617105735.733938-2-jakub@cloudflare.com


# 1ade2371 20-Jun-2022 Eduard Zingerman <eddyz87@gmail.com>

bpf: Inline calls to bpf_loop when callback is known

Calls to `bpf_loop` are replaced with direct loops to avoid
indirection. E.g. the following:

bpf_loop(10, foo, NULL, 0);

Is replaced by equivalent of the following:

for (int i = 0; i < 10; ++i)
foo(i, NULL);

This transformation could be applied when:
- callback is known and does not change during program execution;
- flags passed to `bpf_loop` are always zero.

Inlining logic works as follows:

- During execution simulation function `update_loop_inline_state`
tracks the following information for each `bpf_loop` call
instruction:
- is callback known and constant?
- are flags constant and zero?
- Function `optimize_bpf_loop` increases stack depth for functions
where `bpf_loop` calls can be inlined and invokes `inline_bpf_loop`
to apply the inlining. The additional stack space is used to spill
registers R6, R7 and R8. These registers are used as loop counter,
loop maximal bound and callback context parameter;

Measurements using `benchs/run_bench_bpf_loop.sh` inside QEMU / KVM on
i7-4710HQ CPU show a drop in latency from 14 ns/op to 2 ns/op.

Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/r/20220620235344.569325-4-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 508362ac 15-Jun-2022 Maxim Mikityanskiy <maximmi@nvidia.com>

bpf: Allow helpers to accept pointers with a fixed size

Before this commit, the BPF verifier required ARG_PTR_TO_MEM arguments
to be followed by ARG_CONST_SIZE holding the size of the memory region.
The helpers had to check that size in runtime.

There are cases where the size expected by a helper is a compile-time
constant. Checking it in runtime is an unnecessary overhead and waste of
BPF registers.

This commit allows helpers to accept pointers to memory without the
corresponding ARG_CONST_SIZE, given that they define the memory region
size in struct bpf_func_proto and use ARG_PTR_TO_FIXED_SIZE_MEM type.

arg_size is unionized with arg_btf_id to reduce the kernel image size,
and it's valid because they are used by different argument types.

Signed-off-by: Maxim Mikityanskiy <maximmi@nvidia.com>
Reviewed-by: Tariq Toukan <tariqt@nvidia.com>
Link: https://lore.kernel.org/r/20220615134847.3753567-3-maximmi@nvidia.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 64ad7556 14-Jun-2022 Delyan Kratunov <delyank@fb.com>

bpf: allow sleepable uprobe programs to attach

uprobe and kprobe programs have the same program type, KPROBE, which is
currently not allowed to load sleepable programs.

To avoid adding a new UPROBE type, instead allow sleepable KPROBE
programs to load and defer the is-it-actually-a-uprobe-program check
to attachment time, where there's already validation of the
corresponding perf_event.

A corollary of this patch is that you can now load a sleepable kprobe
program but cannot attach it.

Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Delyan Kratunov <delyank@fb.com>
Link: https://lore.kernel.org/r/fcd44a7cd204f372f6bb03ef794e829adeaef299.1655248076.git.delyank@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 6089fb32 07-Jun-2022 Yonghong Song <yhs@fb.com>

bpf: Add btf enum64 support

Currently, BTF only supports upto 32bit enum value with BTF_KIND_ENUM.
But in kernel, some enum indeed has 64bit values, e.g.,
in uapi bpf.h, we have
enum {
BPF_F_INDEX_MASK = 0xffffffffULL,
BPF_F_CURRENT_CPU = BPF_F_INDEX_MASK,
BPF_F_CTXLEN_MASK = (0xfffffULL << 32),
};
In this case, BTF_KIND_ENUM will encode the value of BPF_F_CTXLEN_MASK
as 0, which certainly is incorrect.

This patch added a new btf kind, BTF_KIND_ENUM64, which permits
64bit value to cover the above use case. The BTF_KIND_ENUM64 has
the following three fields followed by the common type:
struct bpf_enum64 {
__u32 nume_off;
__u32 val_lo32;
__u32 val_hi32;
};
Currently, btf type section has an alignment of 4 as all element types
are u32. Representing the value with __u64 will introduce a pad
for bpf_enum64 and may also introduce misalignment for the 64bit value.
Hence, two members of val_hi32 and val_lo32 are chosen to avoid these issues.

The kflag is also introduced for BTF_KIND_ENUM and BTF_KIND_ENUM64
to indicate whether the value is signed or unsigned. The kflag intends
to provide consistent output of BTF C fortmat with the original
source code. For example, the original BTF_KIND_ENUM bit value is 0xffffffff.
The format C has two choices, printing out 0xffffffff or -1 and current libbpf
prints out as unsigned value. But if the signedness is preserved in btf,
the value can be printed the same as the original source code.
The kflag value 0 means unsigned values, which is consistent to the default
by libbpf and should also cover most cases as well.

The new BTF_KIND_ENUM64 is intended to support the enum value represented as
64bit value. But it can represent all BTF_KIND_ENUM values as well.
The compiler ([1]) and pahole will generate BTF_KIND_ENUM64 only if the value has
to be represented with 64 bits.

In addition, a static inline function btf_kind_core_compat() is introduced which
will be used later when libbpf relo_core.c changed. Here the kernel shares the
same relo_core.c with libbpf.

[1] https://reviews.llvm.org/D124641

Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20220607062600.3716578-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 3844d153 01-Jul-2022 Daniel Borkmann <daniel@iogearbox.net>

bpf: Fix insufficient bounds propagation from adjust_scalar_min_max_vals

Kuee reported a corner case where the tnum becomes constant after the call
to __reg_bound_offset(), but the register's bounds are not, that is, its
min bounds are still not equal to the register's max bounds.

This in turn allows to leak pointers through turning a pointer register as
is into an unknown scalar via adjust_ptr_min_max_vals().

Before:

func#0 @0
0: R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0))
0: (b7) r0 = 1 ; R0_w=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0))
1: (b7) r3 = 0 ; R3_w=scalar(imm=0,umax=0,var_off=(0x0; 0x0))
2: (87) r3 = -r3 ; R3_w=scalar()
3: (87) r3 = -r3 ; R3_w=scalar()
4: (47) r3 |= 32767 ; R3_w=scalar(smin=-9223372036854743041,umin=32767,var_off=(0x7fff; 0xffffffffffff8000),s32_min=-2147450881)
5: (75) if r3 s>= 0x0 goto pc+1 ; R3_w=scalar(umin=9223372036854808575,var_off=(0x8000000000007fff; 0x7fffffffffff8000),s32_min=-2147450881,u32_min=32767)
6: (95) exit

from 5 to 7: R0=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0)) R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R3=scalar(umin=32767,umax=9223372036854775807,var_off=(0x7fff; 0x7fffffffffff8000),s32_min=-2147450881) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0))
7: (d5) if r3 s<= 0x8000 goto pc+1 ; R3=scalar(umin=32769,umax=9223372036854775807,var_off=(0x7fff; 0x7fffffffffff8000),s32_min=-2147450881,u32_min=32767)
8: (95) exit

from 7 to 9: R0=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0)) R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R3=scalar(umin=32767,umax=32768,var_off=(0x7fff; 0x8000)) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0))
9: (07) r3 += -32767 ; R3_w=scalar(imm=0,umax=1,var_off=(0x0; 0x0)) <--- [*]
10: (95) exit

What can be seen here is that R3=scalar(umin=32767,umax=32768,var_off=(0x7fff;
0x8000)) after the operation R3 += -32767 results in a 'malformed' constant, that
is, R3_w=scalar(imm=0,umax=1,var_off=(0x0; 0x0)). Intersecting with var_off has
not been done at that point via __update_reg_bounds(), which would have improved
the umax to be equal to umin.

Refactor the tnum <> min/max bounds information flow into a reg_bounds_sync()
helper and use it consistently everywhere. After the fix, bounds have been
corrected to R3_w=scalar(imm=0,umax=0,var_off=(0x0; 0x0)) and thus the register
is regarded as a 'proper' constant scalar of 0.

After:

func#0 @0
0: R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0))
0: (b7) r0 = 1 ; R0_w=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0))
1: (b7) r3 = 0 ; R3_w=scalar(imm=0,umax=0,var_off=(0x0; 0x0))
2: (87) r3 = -r3 ; R3_w=scalar()
3: (87) r3 = -r3 ; R3_w=scalar()
4: (47) r3 |= 32767 ; R3_w=scalar(smin=-9223372036854743041,umin=32767,var_off=(0x7fff; 0xffffffffffff8000),s32_min=-2147450881)
5: (75) if r3 s>= 0x0 goto pc+1 ; R3_w=scalar(umin=9223372036854808575,var_off=(0x8000000000007fff; 0x7fffffffffff8000),s32_min=-2147450881,u32_min=32767)
6: (95) exit

from 5 to 7: R0=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0)) R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R3=scalar(umin=32767,umax=9223372036854775807,var_off=(0x7fff; 0x7fffffffffff8000),s32_min=-2147450881) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0))
7: (d5) if r3 s<= 0x8000 goto pc+1 ; R3=scalar(umin=32769,umax=9223372036854775807,var_off=(0x7fff; 0x7fffffffffff8000),s32_min=-2147450881,u32_min=32767)
8: (95) exit

from 7 to 9: R0=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0)) R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R3=scalar(umin=32767,umax=32768,var_off=(0x7fff; 0x8000)) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0))
9: (07) r3 += -32767 ; R3_w=scalar(imm=0,umax=0,var_off=(0x0; 0x0)) <--- [*]
10: (95) exit

Fixes: b03c9f9fdc37 ("bpf/verifier: track signed and unsigned min/max values")
Reported-by: Kuee K1r0a <liulin063@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20220701124727.11153-2-daniel@iogearbox.net


# a12ca627 01-Jul-2022 Daniel Borkmann <daniel@iogearbox.net>

bpf: Fix incorrect verifier simulation around jmp32's jeq/jne

Kuee reported a quirk in the jmp32's jeq/jne simulation, namely that the
register value does not match expectations for the fall-through path. For
example:

Before fix:

0: R1=ctx(off=0,imm=0) R10=fp0
0: (b7) r2 = 0 ; R2_w=P0
1: (b7) r6 = 563 ; R6_w=P563
2: (87) r2 = -r2 ; R2_w=Pscalar()
3: (87) r2 = -r2 ; R2_w=Pscalar()
4: (4c) w2 |= w6 ; R2_w=Pscalar(umin=563,umax=4294967295,var_off=(0x233; 0xfffffdcc),s32_min=-2147483085) R6_w=P563
5: (56) if w2 != 0x8 goto pc+1 ; R2_w=P571 <--- [*]
6: (95) exit
R0 !read_ok

After fix:

0: R1=ctx(off=0,imm=0) R10=fp0
0: (b7) r2 = 0 ; R2_w=P0
1: (b7) r6 = 563 ; R6_w=P563
2: (87) r2 = -r2 ; R2_w=Pscalar()
3: (87) r2 = -r2 ; R2_w=Pscalar()
4: (4c) w2 |= w6 ; R2_w=Pscalar(umin=563,umax=4294967295,var_off=(0x233; 0xfffffdcc),s32_min=-2147483085) R6_w=P563
5: (56) if w2 != 0x8 goto pc+1 ; R2_w=P8 <--- [*]
6: (95) exit
R0 !read_ok

As can be seen on line 5 for the branch fall-through path in R2 [*] is that
given condition w2 != 0x8 is false, verifier should conclude that r2 = 8 as
upper 32 bit are known to be zero. However, verifier incorrectly concludes
that r2 = 571 which is far off.

The problem is it only marks false{true}_reg as known in the switch for JE/NE
case, but at the end of the function, it uses {false,true}_{64,32}off to
update {false,true}_reg->var_off and they still hold the prior value of
{false,true}_reg->var_off before it got marked as known. The subsequent
__reg_combine_32_into_64() then propagates this old var_off and derives new
bounds. The information between min/max bounds on {false,true}_reg from
setting the register to known const combined with the {false,true}_reg->var_off
based on the old information then derives wrong register data.

Fix it by detangling the BPF_JEQ/BPF_JNE cases and updating relevant
{false,true}_{64,32}off tnums along with the register marking to known
constant.

Fixes: 3f50f132d840 ("bpf: Verifier, do explicit ALU32 bounds tracking")
Reported-by: Kuee K1r0a <liulin063@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20220701124727.11153-1-daniel@iogearbox.net


# 34d4ef57 23-May-2022 Joanne Koong <joannelkoong@gmail.com>

bpf: Add dynptr data slices

This patch adds a new helper function

void *bpf_dynptr_data(struct bpf_dynptr *ptr, u32 offset, u32 len);

which returns a pointer to the underlying data of a dynptr. *len*
must be a statically known value. The bpf program may access the returned
data slice as a normal buffer (eg can do direct reads and writes), since
the verifier associates the length with the returned pointer, and
enforces that no out of bounds accesses occur.

Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20220523210712.3641569-6-joannelkoong@gmail.com


# bc34dee6 23-May-2022 Joanne Koong <joannelkoong@gmail.com>

bpf: Dynptr support for ring buffers

Currently, our only way of writing dynamically-sized data into a ring
buffer is through bpf_ringbuf_output but this incurs an extra memcpy
cost. bpf_ringbuf_reserve + bpf_ringbuf_commit avoids this extra
memcpy, but it can only safely support reservation sizes that are
statically known since the verifier cannot guarantee that the bpf
program won’t access memory outside the reserved space.

The bpf_dynptr abstraction allows for dynamically-sized ring buffer
reservations without the extra memcpy.

There are 3 new APIs:

long bpf_ringbuf_reserve_dynptr(void *ringbuf, u32 size, u64 flags, struct bpf_dynptr *ptr);
void bpf_ringbuf_submit_dynptr(struct bpf_dynptr *ptr, u64 flags);
void bpf_ringbuf_discard_dynptr(struct bpf_dynptr *ptr, u64 flags);

These closely follow the functionalities of the original ringbuf APIs.
For example, all ringbuffer dynptrs that have been reserved must be
either submitted or discarded before the program exits.

Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/bpf/20220523210712.3641569-4-joannelkoong@gmail.com


# 263ae152 23-May-2022 Joanne Koong <joannelkoong@gmail.com>

bpf: Add bpf_dynptr_from_mem for local dynptrs

This patch adds a new api bpf_dynptr_from_mem:

long bpf_dynptr_from_mem(void *data, u32 size, u64 flags, struct bpf_dynptr *ptr);

which initializes a dynptr to point to a bpf program's local memory. For now
only local memory that is of reg type PTR_TO_MAP_VALUE is supported.

Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220523210712.3641569-3-joannelkoong@gmail.com


# 97e03f52 23-May-2022 Joanne Koong <joannelkoong@gmail.com>

bpf: Add verifier support for dynptrs

This patch adds the bulk of the verifier work for supporting dynamic
pointers (dynptrs) in bpf.

A bpf_dynptr is opaque to the bpf program. It is a 16-byte structure
defined internally as:

struct bpf_dynptr_kern {
void *data;
u32 size;
u32 offset;
} __aligned(8);

The upper 8 bits of *size* is reserved (it contains extra metadata about
read-only status and dynptr type). Consequently, a dynptr only supports
memory less than 16 MB.

There are different types of dynptrs (eg malloc, ringbuf, ...). In this
patchset, the most basic one, dynptrs to a bpf program's local memory,
is added. For now only local memory that is of reg type PTR_TO_MAP_VALUE
is supported.

In the verifier, dynptr state information will be tracked in stack
slots. When the program passes in an uninitialized dynptr
(ARG_PTR_TO_DYNPTR | MEM_UNINIT), the stack slots corresponding
to the frame pointer where the dynptr resides at are marked
STACK_DYNPTR. For helper functions that take in initialized dynptrs (eg
bpf_dynptr_read + bpf_dynptr_write which are added later in this
patchset), the verifier enforces that the dynptr has been initialized
properly by checking that their corresponding stack slots have been
marked as STACK_DYNPTR.

The 6th patch in this patchset adds test cases that the verifier should
successfully reject, such as for example attempting to use a dynptr
after doing a direct write into it inside the bpf program.

Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/bpf/20220523210712.3641569-2-joannelkoong@gmail.com


# 1ec5ee8c 21-May-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Suppress 'passing zero to PTR_ERR' warning

Kernel Test Robot complains about passing zero to PTR_ERR for the said
line, suppress it by using PTR_ERR_OR_ZERO.

Fixes: c0a5a21c25f3 ("bpf: Allow storing referenced kptr in map")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20220521132620.1976921-1-memxor@gmail.com


# 3bc253c2 19-May-2022 Geliang Tang <geliang.tang@suse.com>

bpf: Add bpf_skc_to_mptcp_sock_proto

This patch implements a new struct bpf_func_proto, named
bpf_skc_to_mptcp_sock_proto. Define a new bpf_id BTF_SOCK_TYPE_MPTCP,
and a new helper bpf_skc_to_mptcp_sock(), which invokes another new
helper bpf_mptcp_sock_from_subflow() in net/mptcp/bpf.c to get struct
mptcp_sock from a given subflow socket.

v2: Emit BTF type, add func_id checks in verifier.c and bpf_trace.c,
remove build check for CONFIG_BPF_JIT
v5: Drop EXPORT_SYMBOL (Martin)

Co-developed-by: Nicolas Rybowski <nicolas.rybowski@tessares.net>
Co-developed-by: Matthieu Baerts <matthieu.baerts@tessares.net>
Signed-off-by: Nicolas Rybowski <nicolas.rybowski@tessares.net>
Signed-off-by: Matthieu Baerts <matthieu.baerts@tessares.net>
Signed-off-by: Geliang Tang <geliang.tang@suse.com>
Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220519233016.105670-2-mathew.j.martineau@linux.intel.com


# 16d1e00c 09-May-2022 Joanne Koong <joannelkoong@gmail.com>

bpf: Add MEM_UNINIT as a bpf_type_flag

Instead of having uninitialized versions of arguments as separate
bpf_arg_types (eg ARG_PTR_TO_UNINIT_MEM as the uninitialized version
of ARG_PTR_TO_MEM), we can instead use MEM_UNINIT as a bpf_type_flag
modifier to denote that the argument is uninitialized.

Doing so cleans up some of the logic in the verifier. We no longer
need to do two checks against an argument type (eg "if
(base_type(arg_type) == ARG_PTR_TO_MEM || base_type(arg_type) ==
ARG_PTR_TO_UNINIT_MEM)"), since uninitialized and initialized
versions of the same argument type will now share the same base type.

In the near future, MEM_UNINIT will be used by dynptr helper functions
as well.

Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20220509224257.3222614-2-joannelkoong@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 07343110 11-May-2022 Feng Zhou <zhoufeng.zf@bytedance.com>

bpf: add bpf_map_lookup_percpu_elem for percpu map

Add new ebpf helpers bpf_map_lookup_percpu_elem.

The implementation method is relatively simple, refer to the implementation
method of map_lookup_elem of percpu map, increase the parameters of cpu, and
obtain it according to the specified cpu.

Signed-off-by: Feng Zhou <zhoufeng.zf@bytedance.com>
Link: https://lore.kernel.org/r/20220511093854.411-2-zhoufeng.zf@bytedance.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 43bf0878 05-May-2022 Yuntao Wang <ytcoode@gmail.com>

bpf: Remove unused parameter from find_kfunc_desc_btf()

The func_id parameter in find_kfunc_desc_btf() is not used, get rid of it.

Fixes: 2357672c54c3 ("bpf: Introduce BPF support for kernel module function calls")
Signed-off-by: Yuntao Wang <ytcoode@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/bpf/20220505070114.3522522-1-ytcoode@gmail.com


# 2ab3b380 24-Apr-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Make BTF type match stricter for release arguments

The current of behavior of btf_struct_ids_match for release arguments is
that when type match fails, it retries with first member type again
(recursively). Since the offset is already 0, this is akin to just
casting the pointer in normal C, since if type matches it was just
embedded inside parent sturct as an object. However, we want to reject
cases for release function type matching, be it kfunc or BPF helpers.

An example is the following:

struct foo {
struct bar b;
};

struct foo *v = acq_foo();
rel_bar(&v->b); // btf_struct_ids_match fails btf_types_are_same, then
// retries with first member type and succeeds, while
// it should fail.

Hence, don't walk the struct and only rely on btf_types_are_same for
strict mode. All users of strict mode must be dealing with zero offset
anyway, since otherwise they would want the struct to be walked.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220424214901.2743946-10-memxor@gmail.com


# 6efe152d 24-Apr-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Prevent escaping of kptr loaded from maps

While we can guarantee that even for unreferenced kptr, the object
pointer points to being freed etc. can be handled by the verifier's
exception handling (normal load patching to PROBE_MEM loads), we still
cannot allow the user to pass these pointers to BPF helpers and kfunc,
because the same exception handling won't be done for accesses inside
the kernel. The same is true if a referenced pointer is loaded using
normal load instruction. Since the reference is not guaranteed to be
held while the pointer is used, it must be marked as untrusted.

Hence introduce a new type flag, PTR_UNTRUSTED, which is used to mark
all registers loading unreferenced and referenced kptr from BPF maps,
and ensure they can never escape the BPF program and into the kernel by
way of calling stable/unstable helpers.

In check_ptr_to_btf_access, the !type_may_be_null check to reject type
flags is still correct, as apart from PTR_MAYBE_NULL, only MEM_USER,
MEM_PERCPU, and PTR_UNTRUSTED may be set for PTR_TO_BTF_ID. The first
two are checked inside the function and rejected using a proper error
message, but we still want to allow dereference of untrusted case.

Also, we make sure to inherit PTR_UNTRUSTED when chain of pointers are
walked, so that this flag is never dropped once it has been set on a
PTR_TO_BTF_ID (i.e. trusted to untrusted transition can only be in one
direction).

In convert_ctx_accesses, extend the switch case to consider untrusted
PTR_TO_BTF_ID in addition to normal PTR_TO_BTF_ID for PROBE_MEM
conversion for BPF_LDX.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220424214901.2743946-5-memxor@gmail.com


# c0a5a21c 24-Apr-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Allow storing referenced kptr in map

Extending the code in previous commits, introduce referenced kptr
support, which needs to be tagged using 'kptr_ref' tag instead. Unlike
unreferenced kptr, referenced kptr have a lot more restrictions. In
addition to the type matching, only a newly introduced bpf_kptr_xchg
helper is allowed to modify the map value at that offset. This transfers
the referenced pointer being stored into the map, releasing the
references state for the program, and returning the old value and
creating new reference state for the returned pointer.

Similar to unreferenced pointer case, return value for this case will
also be PTR_TO_BTF_ID_OR_NULL. The reference for the returned pointer
must either be eventually released by calling the corresponding release
function, otherwise it must be transferred into another map.

It is also allowed to call bpf_kptr_xchg with a NULL pointer, to clear
the value, and obtain the old value if any.

BPF_LDX, BPF_STX, and BPF_ST cannot access referenced kptr. A future
commit will permit using BPF_LDX for such pointers, but attempt at
making it safe, since the lifetime of object won't be guaranteed.

There are valid reasons to enforce the restriction of permitting only
bpf_kptr_xchg to operate on referenced kptr. The pointer value must be
consistent in face of concurrent modification, and any prior values
contained in the map must also be released before a new one is moved
into the map. To ensure proper transfer of this ownership, bpf_kptr_xchg
returns the old value, which the verifier would require the user to
either free or move into another map, and releases the reference held
for the pointer being moved in.

In the future, direct BPF_XCHG instruction may also be permitted to work
like bpf_kptr_xchg helper.

Note that process_kptr_func doesn't have to call
check_helper_mem_access, since we already disallow rdonly/wronly flags
for map, which is what check_map_access_type checks, and we already
ensure the PTR_TO_MAP_VALUE refers to kptr by obtaining its off_desc,
so check_map_access is also not required.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220424214901.2743946-4-memxor@gmail.com


# 8f14852e 24-Apr-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Tag argument to be released in bpf_func_proto

Add a new type flag for bpf_arg_type that when set tells verifier that
for a release function, that argument's register will be the one for
which meta.ref_obj_id will be set, and which will then be released
using release_reference. To capture the regno, introduce a new field
release_regno in bpf_call_arg_meta.

This would be required in the next patch, where we may either pass NULL
or a refcounted pointer as an argument to the release function
bpf_kptr_xchg. Just releasing only when meta.ref_obj_id is set is not
enough, as there is a case where the type of argument needed matches,
but the ref_obj_id is set to 0. Hence, we must enforce that whenever
meta.ref_obj_id is zero, the register that is to be released can only
be NULL for a release function.

Since we now indicate whether an argument is to be released in
bpf_func_proto itself, is_release_function helper has lost its utitlity,
hence refactor code to work without it, and just rely on
meta.release_regno to know when to release state for a ref_obj_id.
Still, the restriction of one release argument and only one ref_obj_id
passed to BPF helper or kfunc remains. This may be lifted in the future.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220424214901.2743946-3-memxor@gmail.com


# 61df10c7 24-Apr-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Allow storing unreferenced kptr in map

This commit introduces a new pointer type 'kptr' which can be embedded
in a map value to hold a PTR_TO_BTF_ID stored by a BPF program during
its invocation. When storing such a kptr, BPF program's PTR_TO_BTF_ID
register must have the same type as in the map value's BTF, and loading
a kptr marks the destination register as PTR_TO_BTF_ID with the correct
kernel BTF and BTF ID.

Such kptr are unreferenced, i.e. by the time another invocation of the
BPF program loads this pointer, the object which the pointer points to
may not longer exist. Since PTR_TO_BTF_ID loads (using BPF_LDX) are
patched to PROBE_MEM loads by the verifier, it would safe to allow user
to still access such invalid pointer, but passing such pointers into
BPF helpers and kfuncs should not be permitted. A future patch in this
series will close this gap.

The flexibility offered by allowing programs to dereference such invalid
pointers while being safe at runtime frees the verifier from doing
complex lifetime tracking. As long as the user may ensure that the
object remains valid, it can ensure data read by it from the kernel
object is valid.

The user indicates that a certain pointer must be treated as kptr
capable of accepting stores of PTR_TO_BTF_ID of a certain type, by using
a BTF type tag 'kptr' on the pointed to type of the pointer. Then, this
information is recorded in the object BTF which will be passed into the
kernel by way of map's BTF information. The name and kind from the map
value BTF is used to look up the in-kernel type, and the actual BTF and
BTF ID is recorded in the map struct in a new kptr_off_tab member. For
now, only storing pointers to structs is permitted.

An example of this specification is shown below:

#define __kptr __attribute__((btf_type_tag("kptr")))

struct map_value {
...
struct task_struct __kptr *task;
...
};

Then, in a BPF program, user may store PTR_TO_BTF_ID with the type
task_struct into the map, and then load it later.

Note that the destination register is marked PTR_TO_BTF_ID_OR_NULL, as
the verifier cannot know whether the value is NULL or not statically, it
must treat all potential loads at that map value offset as loading a
possibly NULL pointer.

Only BPF_LDX, BPF_STX, and BPF_ST (with insn->imm = 0 to denote NULL)
are allowed instructions that can access such a pointer. On BPF_LDX, the
destination register is updated to be a PTR_TO_BTF_ID, and on BPF_STX,
it is checked whether the source register type is a PTR_TO_BTF_ID with
same BTF type as specified in the map BTF. The access size must always
be BPF_DW.

For the map in map support, the kptr_off_tab for outer map is copied
from the inner map's kptr_off_tab. It was chosen to do a deep copy
instead of introducing a refcount to kptr_off_tab, because the copy only
needs to be done when paramterizing using inner_map_fd in the map in map
case, hence would be unnecessary for all other users.

It is not permitted to use MAP_FREEZE command and mmap for BPF map
having kptrs, similar to the bpf_timer case. A kptr also requires that
BPF program has both read and write access to the map (hence both
BPF_F_RDONLY_PROG and BPF_F_WRONLY_PROG are disallowed).

Note that check_map_access must be called from both
check_helper_mem_access and for the BPF instructions, hence the kptr
check must distinguish between ACCESS_DIRECT and ACCESS_HELPER, and
reject ACCESS_HELPER cases. We rename stack_access_src to bpf_access_src
and reuse it for this purpose.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220424214901.2743946-2-memxor@gmail.com


# e9147b44 15-Apr-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Move check_ptr_off_reg before check_map_access

Some functions in next patch want to use this function, and those
functions will be called by check_map_access, hence move it before
check_map_access.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Link: https://lore.kernel.org/bpf/20220415160354.1050687-3-memxor@gmail.com


# 7b3552d3 19-Mar-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Reject writes for PTR_TO_MAP_KEY in check_helper_mem_access

It is not permitted to write to PTR_TO_MAP_KEY, but the current code in
check_helper_mem_access would allow for it, reject this case as well, as
helpers taking ARG_PTR_TO_UNINIT_MEM also take PTR_TO_MAP_KEY.

Fixes: 69c087ba6225 ("bpf: Add bpf_for_each_map_elem() helper")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220319080827.73251-4-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 97e6d7da 19-Mar-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Check PTR_TO_MEM | MEM_RDONLY in check_helper_mem_access

The commit being fixed was aiming to disallow users from incorrectly
obtaining writable pointer to memory that is only meant to be read. This
is enforced now using a MEM_RDONLY flag.

For instance, in case of global percpu variables, when the BTF type is
not struct (e.g. bpf_prog_active), the verifier marks register type as
PTR_TO_MEM | MEM_RDONLY from bpf_this_cpu_ptr or bpf_per_cpu_ptr
helpers. However, when passing such pointer to kfunc, global funcs, or
BPF helpers, in check_helper_mem_access, there is no expectation
MEM_RDONLY flag will be set, hence it is checked as pointer to writable
memory. Later, verifier sets up argument type of global func as
PTR_TO_MEM | PTR_MAYBE_NULL, so user can use a global func to get around
the limitations imposed by this flag.

This check will also cover global non-percpu variables that may be
introduced in kernel BTF in future.

Also, we update the log message for PTR_TO_BUF case to be similar to
PTR_TO_MEM case, so that the reason for error is clear to user.

Fixes: 34d3a78c681e ("bpf: Make per_cpu_ptr return rdonly PTR_TO_MEM.")
Reviewed-by: Hao Luo <haoluo@google.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220319080827.73251-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# be77354a 19-Mar-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Do write access check for kfunc and global func

When passing pointer to some map value to kfunc or global func, in
verifier we are passing meta as NULL to various functions, which uses
meta->raw_mode to check whether memory is being written to. Since some
kfunc or global funcs may also write to memory pointers they receive as
arguments, we must check for write access to memory. E.g. in some case
map may be read only and this will be missed by current checks.

However meta->raw_mode allows for uninitialized memory (e.g. on stack),
since there is not enough info available through BTF, we must perform
one call for read access (raw_mode = false), and one for write access
(raw_mode = true).

Fixes: e5069b9c23b3 ("bpf: Support pointers in global func args")
Fixes: d583691c47dc ("bpf: Introduce mem, size argument pair support for kfunc")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220319080827.73251-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# d56c9fe6 21-Mar-2022 Joanne Koong <joannelkoong@gmail.com>

bpf: Fix warning for cast from restricted gfp_t in verifier

This fixes the sparse warning reported by the kernel test robot:

kernel/bpf/verifier.c:13499:47: sparse: warning: cast from restricted gfp_t
kernel/bpf/verifier.c:13501:47: sparse: warning: cast from restricted gfp_t

This fix can be verified locally by running:
1) wget
https://raw.githubusercontent.com/intel/lkp-tests/master/sbin/make.cross
-O make.cross

2) chmod +x ~/bin/make.cross

3) COMPILER_INSTALL_PATH=$HOME/0day COMPILER=gcc-11.2.0 ./make.cross
C=1 CF='-fdiagnostic-prefix -D__CHECK_ENDIAN__'

Fixes: b00fa38a9c1c ("bpf: Enable non-atomic allocations in local storage")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220321185802.824223-1-joannekoong@fb.com


# f705ec76 21-Mar-2022 Jiri Olsa <jolsa@kernel.org>

Revert "bpf: Add support to inline bpf_get_func_ip helper on x86"

This reverts commit 97ee4d20ee67eb462581a7af01442de6586e390b.

Following change is adding more complexity to bpf_get_func_ip
helper for kprobe_multi programs, which can't be inlined easily.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20220321070113.1449167-2-jolsa@kernel.org


# b00fa38a 17-Mar-2022 Joanne Koong <joannelkoong@gmail.com>

bpf: Enable non-atomic allocations in local storage

Currently, local storage memory can only be allocated atomically
(GFP_ATOMIC). This restriction is too strict for sleepable bpf
programs.

In this patch, the verifier detects whether the program is sleepable,
and passes the corresponding GFP_KERNEL or GFP_ATOMIC flag as a
5th argument to bpf_task/sk/inode_storage_get. This flag will propagate
down to the local storage functions that allocate memory.

Please note that bpf_task/sk/inode_storage_update_elem functions are
invoked by userspace applications through syscalls. Preemption is
disabled before bpf_task/sk/inode_storage_update_elem is called, which
means they will always have to allocate memory atomically.

Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: KP Singh <kpsingh@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20220318045553.3091807-2-joannekoong@fb.com


# 97ee4d20 16-Mar-2022 Jiri Olsa <jolsa@kernel.org>

bpf: Add support to inline bpf_get_func_ip helper on x86

Adding support to inline it on x86, because it's single
load instruction.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220316122419.933957-6-jolsa@kernel.org


# d2a3b7c5 09-Mar-2022 Hou Tao <houtao1@huawei.com>

bpf: Fix net.core.bpf_jit_harden race

It is the bpf_jit_harden counterpart to commit 60b58afc96c9 ("bpf: fix
net.core.bpf_jit_enable race"). bpf_jit_harden will be tested twice
for each subprog if there are subprogs in bpf program and constant
blinding may increase the length of program, so when running
"./test_progs -t subprogs" and toggling bpf_jit_harden between 0 and 2,
jit_subprogs may fail because constant blinding increases the length
of subprog instructions during extra passs.

So cache the value of bpf_jit_blinding_enabled() during program
allocation, and use the cached value during constant blinding, subprog
JITing and args tracking of tail call.

Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220309123321.2400262-4-houtao1@huawei.com


# 1b773d00 10-Mar-2022 Yuntao Wang <ytcoode@gmail.com>

bpf: Use offsetofend() to simplify macro definition

Use offsetofend() instead of offsetof() + sizeof() to simplify
MIN_BPF_LINEINFO_SIZE macro definition.

Signed-off-by: Yuntao Wang <ytcoode@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Link: https://lore.kernel.org/bpf/20220310161518.534544-1-ytcoode@gmail.com


# 44e9a741 06-Mar-2022 Shung-Hsi Yu <shung-hsi.yu@suse.com>

bpf: Determine buf_info inside check_buffer_access()

Instead of determining buf_info string in the caller of check_buffer_access(),
we can determine whether the register type is read-only through
type_is_rdonly_mem() helper inside check_buffer_access() and construct
buf_info, making the code slightly cleaner.

Signed-off-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/YiWYLnAkEZXBP/gH@syu-laptop


# 5844101a 04-Mar-2022 Hao Luo <haoluo@google.com>

bpf: Reject programs that try to load __percpu memory.

With the introduction of the btf_type_tag "percpu", we can add a
MEM_PERCPU to identify those pointers that point to percpu memory.
The ability of differetiating percpu pointers from regular memory
pointers have two benefits:

1. It forbids unexpected use of percpu pointers, such as direct loads.
In kernel, there are special functions used for accessing percpu
memory. Directly loading percpu memory is meaningless. We already
have BPF helpers like bpf_per_cpu_ptr() and bpf_this_cpu_ptr() that
wrap the kernel percpu functions. So we can now convert percpu
pointers into regular pointers in a safe way.

2. Previously, bpf_per_cpu_ptr() and bpf_this_cpu_ptr() only work on
PTR_TO_PERCPU_BTF_ID, a special reg_type which describes static
percpu variables in kernel (we rely on pahole to encode them into
vmlinux BTF). Now, since we can identify __percpu tagged pointers,
we can also identify dynamically allocated percpu memory as well.
It means we can use bpf_xxx_cpu_ptr() on dynamic percpu memory.
This would be very convenient when accessing fields like
"cgroup->rstat_cpu".

Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20220304191657.981240-4-haoluo@google.com


# bff61f6f 04-Mar-2022 Hao Luo <haoluo@google.com>

bpf: Fix checking PTR_TO_BTF_ID in check_mem_access

With the introduction of MEM_USER in

commit c6f1bfe89ac9 ("bpf: reject program if a __user tagged memory accessed in kernel way")

PTR_TO_BTF_ID can be combined with a MEM_USER tag. Therefore, most
likely, when we compare reg_type against PTR_TO_BTF_ID, we want to use
the reg's base_type. Previously the check in check_mem_access() wants
to say: if the reg is BTF_ID but not NULL, the execution flow falls
into the 'then' branch. But now a reg of (BTF_ID | MEM_USER), which
should go into the 'then' branch, goes into the 'else'.

The end results before and after this patch are the same: regs tagged
with MEM_USER get rejected, but not in a way we intended. So fix the
condition, the error message now is correct.

Before (log from commit 696c39011538):

$ ./test_progs -v -n 22/3
...
libbpf: prog 'test_user1': BPF program load failed: Permission denied
libbpf: prog 'test_user1': -- BEGIN PROG LOAD LOG --
R1 type=ctx expected=fp
0: R1=ctx(id=0,off=0,imm=0) R10=fp0
; int BPF_PROG(test_user1, struct bpf_testmod_btf_type_tag_1 *arg)
0: (79) r1 = *(u64 *)(r1 +0)
func 'bpf_testmod_test_btf_type_tag_user_1' arg0 has btf_id 136561 type STRUCT 'bpf_testmod_btf_type_tag_1'
1: R1_w=user_ptr_bpf_testmod_btf_type_tag_1(id=0,off=0,imm=0)
; g = arg->a;
1: (61) r1 = *(u32 *)(r1 +0)
R1 invalid mem access 'user_ptr_'

Now:

libbpf: prog 'test_user1': BPF program load failed: Permission denied
libbpf: prog 'test_user1': -- BEGIN PROG LOAD LOG --
R1 type=ctx expected=fp
0: R1=ctx(id=0,off=0,imm=0) R10=fp0
; int BPF_PROG(test_user1, struct bpf_testmod_btf_type_tag_1 *arg)
0: (79) r1 = *(u64 *)(r1 +0)
func 'bpf_testmod_test_btf_type_tag_user_1' arg0 has btf_id 104036 type STRUCT 'bpf_testmod_btf_type_tag_1'
1: R1_w=user_ptr_bpf_testmod_btf_type_tag_1(id=0,ref_obj_id=0,off=0,imm=0)
; g = arg->a;
1: (61) r1 = *(u32 *)(r1 +0)
R1 is ptr_bpf_testmod_btf_type_tag_1 access user memory: off=0

Note the error message for the reason of rejection.

Fixes: c6f1bfe89ac9 ("bpf: reject program if a __user tagged memory accessed in kernel way")
Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20220304191657.981240-2-haoluo@google.com


# 24d5bb80 04-Mar-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Harden register offset checks for release helpers and kfuncs

Let's ensure that the PTR_TO_BTF_ID reg being passed in to release BPF
helpers and kfuncs always has its offset set to 0. While not a real
problem now, there's a very real possibility this will become a problem
when more and more kfuncs are exposed, and more BPF helpers are added
which can release PTR_TO_BTF_ID.

Previous commits already protected against non-zero var_off. One of the
case we are concerned about now is when we have a type that can be
returned by e.g. an acquire kfunc:

struct foo {
int a;
int b;
struct bar b;
};

... and struct bar is also a type that can be returned by another
acquire kfunc.

Then, doing the following sequence:

struct foo *f = bpf_get_foo(); // acquire kfunc
if (!f)
return 0;
bpf_put_bar(&f->b); // release kfunc

... would work with the current code, since the btf_struct_ids_match
takes reg->off into account for matching pointer type with release kfunc
argument type, but would obviously be incorrect, and most likely lead to
a kernel crash. A test has been included later to prevent regressions in
this area.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220304224645.3677453-5-memxor@gmail.com


# e1fad0ff 04-Mar-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Disallow negative offset in check_ptr_off_reg

check_ptr_off_reg only allows fixed offset to be set for PTR_TO_BTF_ID,
where reg->off < 0 doesn't make sense. This would shift the pointer
backwards, and fails later in btf_struct_ids_match or btf_struct_walk
due to out of bounds access (since offset is interpreted as unsigned).

Improve the verifier by rejecting this case by using a better error
message for BPF helpers and kfunc, by putting a check inside the
check_func_arg_reg_off function.

Also, update existing verifier selftests to work with new error string.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220304224645.3677453-4-memxor@gmail.com


# 25b35dd2 04-Mar-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Add check_func_arg_reg_off function

Lift the list of register types allowed for having fixed and variable
offsets when passed as helper function arguments into a common helper,
so that they can be reused for kfunc checks in later commits. Keeping a
common helper aids maintainability and allows us to follow the same
consistent rules across helpers and kfuncs. Also, convert check_func_arg
to use this function.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220304224645.3677453-2-memxor@gmail.com


# 7df5072c 01-Mar-2022 Mykola Lysenko <mykolal@fb.com>

bpf: Small BPF verifier log improvements

In particular these include:

1) Remove output of inv for scalars in print_verifier_state
2) Replace inv with scalar in verifier error messages
3) Remove _value suffixes for umin/umax/s32_min/etc (except map_value)
4) Remove output of id=0
5) Remove output of ref_obj_id=0

Signed-off-by: Mykola Lysenko <mykolal@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220301222745.1667206-1-mykolal@fb.com


# 8cbf062a 14-Feb-2022 Hou Tao <houtao1@huawei.com>

bpf: Reject kfunc calls that overflow insn->imm

Now kfunc call uses s32 to represent the offset between the address of
kfunc and __bpf_call_base, but it doesn't check whether or not s32 will
be overflowed. The overflow is possible when kfunc is in module and the
offset between module and kernel is greater than 2GB. Take arm64 as an
example, before commit b2eed9b58811 ("arm64/kernel: kaslr: reduce module
randomization range to 2 GB"), the offset between module symbol and
__bpf_call_base will in 4GB range due to KASLR and may overflow s32.

So add an extra checking to reject these invalid kfunc calls.

Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20220215065732.3179408-1-houtao1@huawei.com


# d00c6473 04-Feb-2022 Song Liu <song@kernel.org>

bpf: Use prog->jited_len in bpf_prog_ksym_set_addr()

Using prog->jited_len is simpler and more accurate than current
estimation (header + header->size).

Also, fix missing prog->jited_len with multi function program. This hasn't
been a real issue before this.

Signed-off-by: Song Liu <song@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220204185742.271030-5-song@kernel.org


# c6f1bfe8 27-Jan-2022 Yonghong Song <yhs@fb.com>

bpf: reject program if a __user tagged memory accessed in kernel way

BPF verifier supports direct memory access for BPF_PROG_TYPE_TRACING type
of bpf programs, e.g., a->b. If "a" is a pointer
pointing to kernel memory, bpf verifier will allow user to write
code in C like a->b and the verifier will translate it to a kernel
load properly. If "a" is a pointer to user memory, it is expected
that bpf developer should be bpf_probe_read_user() helper to
get the value a->b. Without utilizing BTF __user tagging information,
current verifier will assume that a->b is a kernel memory access
and this may generate incorrect result.

Now BTF contains __user information, it can check whether the
pointer points to a user memory or not. If it is, the verifier
can reject the program and force users to use bpf_probe_read_user()
helper explicitly.

In the future, we can easily extend btf_add_space for other
address space tagging, for example, rcu/percpu etc.

Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20220127154606.654961-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 5c073f26 14-Jan-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Add reference tracking support to kfunc

This patch adds verifier support for PTR_TO_BTF_ID return type of kfunc
to be a reference, by reusing acquire_reference_state/release_reference
support for existing in-kernel bpf helpers.

We make use of the three kfunc types:

- BTF_KFUNC_TYPE_ACQUIRE
Return true if kfunc_btf_id is an acquire kfunc. This will
acquire_reference_state for the returned PTR_TO_BTF_ID (this is the
only allow return value). Note that acquire kfunc must always return a
PTR_TO_BTF_ID{_OR_NULL}, otherwise the program is rejected.

- BTF_KFUNC_TYPE_RELEASE
Return true if kfunc_btf_id is a release kfunc. This will release the
reference to the passed in PTR_TO_BTF_ID which has a reference state
(from earlier acquire kfunc).
The btf_check_func_arg_match returns the regno (of argument register,
hence > 0) if the kfunc is a release kfunc, and a proper referenced
PTR_TO_BTF_ID is being passed to it.
This is similar to how helper call check uses bpf_call_arg_meta to
store the ref_obj_id that is later used to release the reference.
Similar to in-kernel helper, we only allow passing one referenced
PTR_TO_BTF_ID as an argument. It can also be passed in to normal
kfunc, but in case of release kfunc there must always be one
PTR_TO_BTF_ID argument that is referenced.

- BTF_KFUNC_TYPE_RET_NULL
For kfunc returning PTR_TO_BTF_ID, tells if it can be NULL, hence
force caller to mark the pointer not null (using check) before
accessing it. Note that taking into account the case fixed by commit
93c230e3f5bd ("bpf: Enforce id generation for all may-be-null register type")
we assign a non-zero id for mark_ptr_or_null_reg logic. Later, if more
return types are supported by kfunc, which have a _OR_NULL variant, it
might be better to move this id generation under a common
reg_type_may_be_null check, similar to the case in the commit.

Referenced PTR_TO_BTF_ID is currently only limited to kfunc, but can be
extended in the future to other BPF helpers as well. For now, we can
rely on the btf_struct_ids_match check to ensure we get the pointer to
the expected struct type. In the future, care needs to be taken to avoid
ambiguity for reference PTR_TO_BTF_ID passed to release function, in
case multiple candidates can release same BTF ID.

e.g. there might be two release kfuncs (or kfunc and helper):

foo(struct abc *p);
bar(struct abc *p);

... such that both release a PTR_TO_BTF_ID with btf_id of struct abc. In
this case we would need to track the acquire function corresponding to
the release function to avoid type confusion, and store this information
in the register state so that an incorrect program can be rejected. This
is not a problem right now, hence it is left as an exercise for the
future patch introducing such a case in the kernel.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220114163953.1455836-6-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# d583691c 14-Jan-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Introduce mem, size argument pair support for kfunc

BPF helpers can associate two adjacent arguments together to pass memory
of certain size, using ARG_PTR_TO_MEM and ARG_CONST_SIZE arguments.
Since we don't use bpf_func_proto for kfunc, we need to leverage BTF to
implement similar support.

The ARG_CONST_SIZE processing for helpers is refactored into a common
check_mem_size_reg helper that is shared with kfunc as well. kfunc
ptr_to_mem support follows logic similar to global functions, where
verification is done as if pointer is not null, even when it may be
null.

This leads to a simple to follow rule for writing kfunc: always check
the argument pointer for NULL, except when it is PTR_TO_CTX. Also, the
PTR_TO_CTX case is also only safe when the helper expecting pointer to
program ctx is not exposed to other programs where same struct is not
ctx type. In that case, the type check will fall through to other cases
and would permit passing other types of pointers, possibly NULL at
runtime.

Currently, we require the size argument to be suffixed with "__sz" in
the parameter name. This information is then recorded in kernel BTF and
verified during function argument checking. In the future we can use BTF
tagging instead, and modify the kernel function definitions. This will
be a purely kernel-side change.

This allows us to have some form of backwards compatibility for
structures that are passed in to the kernel function with their size,
and allow variable length structures to be passed in if they are
accompanied by a size parameter.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220114163953.1455836-5-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# b202d844 14-Jan-2022 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Remove check_kfunc_call callback and old kfunc BTF ID API

Completely remove the old code for check_kfunc_call to help it work
with modules, and also the callback itself.

The previous commit adds infrastructure to register all sets and put
them in vmlinux or module BTF, and concatenates all related sets
organized by the hook and the type. Once populated, these sets remain
immutable for the lifetime of the struct btf.

Also, since we don't need the 'owner' module anywhere when doing
check_kfunc_call, drop the 'btf_modp' module parameter from
find_kfunc_desc_btf.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220114163953.1455836-4-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# a672b2e3 13-Jan-2022 Daniel Borkmann <daniel@iogearbox.net>

bpf: Fix ringbuf memory type confusion when passing to helpers

The bpf_ringbuf_submit() and bpf_ringbuf_discard() have ARG_PTR_TO_ALLOC_MEM
in their bpf_func_proto definition as their first argument, and thus both expect
the result from a prior bpf_ringbuf_reserve() call which has a return type of
RET_PTR_TO_ALLOC_MEM_OR_NULL.

While the non-NULL memory from bpf_ringbuf_reserve() can be passed to other
helpers, the two sinks (bpf_ringbuf_submit(), bpf_ringbuf_discard()) right now
only enforce a register type of PTR_TO_MEM.

This can lead to potential type confusion since it would allow other PTR_TO_MEM
memory to be passed into the two sinks which did not come from bpf_ringbuf_reserve().

Add a new MEM_ALLOC composable type attribute for PTR_TO_MEM, and enforce that:

- bpf_ringbuf_reserve() returns NULL or PTR_TO_MEM | MEM_ALLOC
- bpf_ringbuf_submit() and bpf_ringbuf_discard() only take PTR_TO_MEM | MEM_ALLOC
but not plain PTR_TO_MEM arguments via ARG_PTR_TO_ALLOC_MEM
- however, other helpers might treat PTR_TO_MEM | MEM_ALLOC as plain PTR_TO_MEM
to populate the memory area when they use ARG_PTR_TO_{UNINIT_,}MEM in their
func proto description

Fixes: 457f44363a88 ("bpf: Implement BPF ring buffer and verifier support for it")
Reported-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# 64620e0a 11-Jan-2022 Daniel Borkmann <daniel@iogearbox.net>

bpf: Fix out of bounds access for ringbuf helpers

Both bpf_ringbuf_submit() and bpf_ringbuf_discard() have ARG_PTR_TO_ALLOC_MEM
in their bpf_func_proto definition as their first argument. They both expect
the result from a prior bpf_ringbuf_reserve() call which has a return type of
RET_PTR_TO_ALLOC_MEM_OR_NULL.

Meaning, after a NULL check in the code, the verifier will promote the register
type in the non-NULL branch to a PTR_TO_MEM and in the NULL branch to a known
zero scalar. Generally, pointer arithmetic on PTR_TO_MEM is allowed, so the
latter could have an offset.

The ARG_PTR_TO_ALLOC_MEM expects a PTR_TO_MEM register type. However, the non-
zero result from bpf_ringbuf_reserve() must be fed into either bpf_ringbuf_submit()
or bpf_ringbuf_discard() but with the original offset given it will then read
out the struct bpf_ringbuf_hdr mapping.

The verifier missed to enforce a zero offset, so that out of bounds access
can be triggered which could be used to escalate privileges if unprivileged
BPF was enabled (disabled by default in kernel).

Fixes: 457f44363a88 ("bpf: Implement BPF ring buffer and verifier support for it")
Reported-by: <tr3e.wang@gmail.com> (SecCoder Security Lab)
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# 6788ab23 10-Jan-2022 Daniel Borkmann <daniel@iogearbox.net>

bpf: Generally fix helper register offset check

Right now the assertion on check_ptr_off_reg() is only enforced for register
types PTR_TO_CTX (and open coded also for PTR_TO_BTF_ID), however, this is
insufficient since many other PTR_TO_* register types such as PTR_TO_FUNC do
not handle/expect register offsets when passed to helper functions.

Given this can slip-through easily when adding new types, make this an explicit
allow-list and reject all other current and future types by default if this is
encountered.

Also, extend check_ptr_off_reg() to handle PTR_TO_BTF_ID as well instead of
duplicating it. For PTR_TO_BTF_ID, reg->off is used for BTF to match expected
BTF ids if struct offset is used. This part still needs to be allowed, but the
dynamic off from the tnum must be rejected.

Fixes: 69c087ba6225 ("bpf: Add bpf_for_each_map_elem() helper")
Fixes: eaa6bcb71ef6 ("bpf: Introduce bpf_per_cpu_ptr()")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# d400a6cf 14-Jan-2022 Daniel Borkmann <daniel@iogearbox.net>

bpf: Mark PTR_TO_FUNC register initially with zero offset

Similar as with other pointer types where we use ldimm64, clear the register
content to zero first, and then populate the PTR_TO_FUNC type and subprogno
number. Currently this is not done, and leads to reuse of stale register
tracking data.

Given for special ldimm64 cases we always clear the register offset, make it
common for all cases, so it won't be forgotten in future.

Fixes: 69c087ba6225 ("bpf: Add bpf_for_each_map_elem() helper")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# be80a1d3 10-Jan-2022 Daniel Borkmann <daniel@iogearbox.net>

bpf: Generalize check_ctx_reg for reuse with other types

Generalize the check_ctx_reg() helper function into a more generic named one
so that it can be reused for other register types as well to check whether
their offset is non-zero. No functional change.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# 343e5375 07-Jan-2022 Christy Lee <christylee@fb.com>

bpf: Fix incorrect integer literal used for marking scratched stack.

env->scratched_stack_slots is a 64-bit value, we should use ULL
instead of UL literal values.

Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Christy Lee <christylee@fb.com>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/r/20220108005854.658596-1-christylee@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# a5bebc4f 05-Jan-2022 Kris Van Hees <kris.van.hees@oracle.com>

bpf: Fix verifier support for validation of async callbacks

Commit bfc6bb74e4f1 ("bpf: Implement verifier support for validation of async callbacks.")
added support for BPF_FUNC_timer_set_callback to
the __check_func_call() function. The test in __check_func_call() is
flaweed because it can mis-interpret a regular BPF-to-BPF pseudo-call
as a BPF_FUNC_timer_set_callback callback call.

Consider the conditional in the code:

if (insn->code == (BPF_JMP | BPF_CALL) &&
insn->imm == BPF_FUNC_timer_set_callback) {

The BPF_FUNC_timer_set_callback has value 170. This means that if you
have a BPF program that contains a pseudo-call with an instruction delta
of 170, this conditional will be found to be true by the verifier, and
it will interpret the pseudo-call as a callback. This leads to a mess
with the verification of the program because it makes the wrong
assumptions about the nature of this call.

Solution: include an explicit check to ensure that insn->src_reg == 0.
This ensures that calls cannot be mis-interpreted as an async callback
call.

Fixes: bfc6bb74e4f1 ("bpf: Implement verifier support for validation of async callbacks.")
Signed-off-by: Kris Van Hees <kris.van.hees@oracle.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220105210150.GH1559@oracle.com


# e60b0d12 05-Jan-2022 Daniel Borkmann <daniel@iogearbox.net>

bpf: Don't promote bogus looking registers after null check.

If we ever get to a point again where we convert a bogus looking <ptr>_or_null
typed register containing a non-zero fixed or variable offset, then lets not
reset these bounds to zero since they are not and also don't promote the register
to a <ptr> type, but instead leave it as <ptr>_or_null. Converting to a unknown
register could be an avenue as well, but then if we run into this case it would
allow to leak a kernel pointer this way.

Fixes: f1174f77b50c ("bpf/verifier: rework value tracking")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 0fe4b381 24-Dec-2021 KP Singh <kpsingh@kernel.org>

bpf: Allow bpf_local_storage to be used by sleepable programs

Other maps like hashmaps are already available to sleepable programs.
Sleepable BPF programs run under trace RCU. Allow task, sk and inode
storage to be used from sleepable programs. This allows sleepable and
non-sleepable programs to provide shareable annotations on kernel
objects.

Sleepable programs run in trace RCU where as non-sleepable programs run
in a normal RCU critical section i.e. __bpf_prog_enter{_sleepable}
and __bpf_prog_exit{_sleepable}) (rcu_read_lock or rcu_read_lock_trace).

In order to make the local storage maps accessible to both sleepable
and non-sleepable programs, one needs to call both
call_rcu_tasks_trace and call_rcu to wait for both trace and classical
RCU grace periods to expire before freeing memory.

Paul's work on call_rcu_tasks_trace allows us to have per CPU queueing
for call_rcu_tasks_trace. This behaviour can be achieved by setting
rcupdate.rcu_task_enqueue_lim=<num_cpus> boot parameter.

In light of these new performance changes and to keep the local storage
code simple, avoid adding a new flag for sleepable maps / local storage
to select the RCU synchronization (trace / classical).

Also, update the dereferencing of the pointers to use
rcu_derference_check (with either the trace or normal RCU locks held)
with a common bpf_rcu_lock_held helper method.

Signed-off-by: KP Singh <kpsingh@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20211224152916.1550677-2-kpsingh@kernel.org


# 216e3cd2 16-Dec-2021 Hao Luo <haoluo@google.com>

bpf: Add MEM_RDONLY for helper args that are pointers to rdonly mem.

Some helper functions may modify its arguments, for example,
bpf_d_path, bpf_get_stack etc. Previously, their argument types
were marked as ARG_PTR_TO_MEM, which is compatible with read-only
mem types, such as PTR_TO_RDONLY_BUF. Therefore it's legitimate,
but technically incorrect, to modify a read-only memory by passing
it into one of such helper functions.

This patch tags the bpf_args compatible with immutable memory with
MEM_RDONLY flag. The arguments that don't have this flag will be
only compatible with mutable memory types, preventing the helper
from modifying a read-only memory. The bpf_args that have
MEM_RDONLY are compatible with both mutable memory and immutable
memory.

Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211217003152.48334-9-haoluo@google.com


# 34d3a78c 16-Dec-2021 Hao Luo <haoluo@google.com>

bpf: Make per_cpu_ptr return rdonly PTR_TO_MEM.

Tag the return type of {per, this}_cpu_ptr with RDONLY_MEM. The
returned value of this pair of helpers is kernel object, which
can not be updated by bpf programs. Previously these two helpers
return PTR_OT_MEM for kernel objects of scalar type, which allows
one to directly modify the memory. Now with RDONLY_MEM tagging,
the verifier will reject programs that write into RDONLY_MEM.

Fixes: 63d9b80dcf2c ("bpf: Introducte bpf_this_cpu_ptr()")
Fixes: eaa6bcb71ef6 ("bpf: Introduce bpf_per_cpu_ptr()")
Fixes: 4976b718c355 ("bpf: Introduce pseudo_btf_id")
Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211217003152.48334-8-haoluo@google.com


# cf9f2f8d 16-Dec-2021 Hao Luo <haoluo@google.com>

bpf: Convert PTR_TO_MEM_OR_NULL to composable types.

Remove PTR_TO_MEM_OR_NULL and replace it with PTR_TO_MEM combined with
flag PTR_MAYBE_NULL.

Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211217003152.48334-7-haoluo@google.com


# 20b2aff4 16-Dec-2021 Hao Luo <haoluo@google.com>

bpf: Introduce MEM_RDONLY flag

This patch introduce a flag MEM_RDONLY to tag a reg value
pointing to read-only memory. It makes the following changes:

1. PTR_TO_RDWR_BUF -> PTR_TO_BUF
2. PTR_TO_RDONLY_BUF -> PTR_TO_BUF | MEM_RDONLY

Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211217003152.48334-6-haoluo@google.com


# c25b2ae1 16-Dec-2021 Hao Luo <haoluo@google.com>

bpf: Replace PTR_TO_XXX_OR_NULL with PTR_TO_XXX | PTR_MAYBE_NULL

We have introduced a new type to make bpf_reg composable, by
allocating bits in the type to represent flags.

One of the flags is PTR_MAYBE_NULL which indicates a pointer
may be NULL. This patch switches the qualified reg_types to
use this flag. The reg_types changed in this patch include:

1. PTR_TO_MAP_VALUE_OR_NULL
2. PTR_TO_SOCKET_OR_NULL
3. PTR_TO_SOCK_COMMON_OR_NULL
4. PTR_TO_TCP_SOCK_OR_NULL
5. PTR_TO_BTF_ID_OR_NULL
6. PTR_TO_MEM_OR_NULL
7. PTR_TO_RDONLY_BUF_OR_NULL
8. PTR_TO_RDWR_BUF_OR_NULL

Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20211217003152.48334-5-haoluo@google.com


# 3c480732 16-Dec-2021 Hao Luo <haoluo@google.com>

bpf: Replace RET_XXX_OR_NULL with RET_XXX | PTR_MAYBE_NULL

We have introduced a new type to make bpf_ret composable, by
reserving high bits to represent flags.

One of the flag is PTR_MAYBE_NULL, which indicates a pointer
may be NULL. When applying this flag to ret_types, it means
the returned value could be a NULL pointer. This patch
switches the qualified arg_types to use this flag.
The ret_types changed in this patch include:

1. RET_PTR_TO_MAP_VALUE_OR_NULL
2. RET_PTR_TO_SOCKET_OR_NULL
3. RET_PTR_TO_TCP_SOCK_OR_NULL
4. RET_PTR_TO_SOCK_COMMON_OR_NULL
5. RET_PTR_TO_ALLOC_MEM_OR_NULL
6. RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL
7. RET_PTR_TO_BTF_ID_OR_NULL

This patch doesn't eliminate the use of these names, instead
it makes them aliases to 'RET_PTR_TO_XXX | PTR_MAYBE_NULL'.

Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211217003152.48334-4-haoluo@google.com


# 48946bd6 16-Dec-2021 Hao Luo <haoluo@google.com>

bpf: Replace ARG_XXX_OR_NULL with ARG_XXX | PTR_MAYBE_NULL

We have introduced a new type to make bpf_arg composable, by
reserving high bits of bpf_arg to represent flags of a type.

One of the flags is PTR_MAYBE_NULL which indicates a pointer
may be NULL. When applying this flag to an arg_type, it means
the arg can take NULL pointer. This patch switches the
qualified arg_types to use this flag. The arg_types changed
in this patch include:

1. ARG_PTR_TO_MAP_VALUE_OR_NULL
2. ARG_PTR_TO_MEM_OR_NULL
3. ARG_PTR_TO_CTX_OR_NULL
4. ARG_PTR_TO_SOCKET_OR_NULL
5. ARG_PTR_TO_ALLOC_MEM_OR_NULL
6. ARG_PTR_TO_STACK_OR_NULL

This patch does not eliminate the use of these arg_types, instead
it makes them an alias to the 'ARG_XXX | PTR_MAYBE_NULL'.

Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211217003152.48334-3-haoluo@google.com


# 496f3324 16-Dec-2021 Christy Lee <christylee@fb.com>

Only output backtracking information in log level 2

Backtracking information is very verbose, don't print it in log
level 1 to improve readability.

Signed-off-by: Christy Lee <christylee@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20211216213358.3374427-4-christylee@fb.com


# 2e576648 16-Dec-2021 Christy Lee <christylee@fb.com>

bpf: Right align verifier states in verifier logs.

Make the verifier logs more readable, print the verifier states
on the corresponding instruction line. If the previous line was
not a bpf instruction, then print the verifier states on its own
line.

Before:

Validating test_pkt_access_subprog3() func#3...
86: R1=invP(id=0) R2=ctx(id=0,off=0,imm=0) R10=fp0
; int test_pkt_access_subprog3(int val, struct __sk_buff *skb)
86: (bf) r6 = r2
87: R2=ctx(id=0,off=0,imm=0) R6_w=ctx(id=0,off=0,imm=0)
87: (bc) w7 = w1
88: R1=invP(id=0) R7_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff))
; return get_skb_len(skb) * get_skb_ifindex(val, skb, get_constant(123));
88: (bf) r1 = r6
89: R1_w=ctx(id=0,off=0,imm=0) R6_w=ctx(id=0,off=0,imm=0)
89: (85) call pc+9
Func#4 is global and valid. Skipping.
90: R0_w=invP(id=0)
90: (bc) w8 = w0
91: R0_w=invP(id=0) R8_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff))
; return get_skb_len(skb) * get_skb_ifindex(val, skb, get_constant(123));
91: (b7) r1 = 123
92: R1_w=invP123
92: (85) call pc+65
Func#5 is global and valid. Skipping.
93: R0=invP(id=0)

After:

86: R1=invP(id=0) R2=ctx(id=0,off=0,imm=0) R10=fp0
; int test_pkt_access_subprog3(int val, struct __sk_buff *skb)
86: (bf) r6 = r2 ; R2=ctx(id=0,off=0,imm=0) R6_w=ctx(id=0,off=0,imm=0)
87: (bc) w7 = w1 ; R1=invP(id=0) R7_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff))
; return get_skb_len(skb) * get_skb_ifindex(val, skb, get_constant(123));
88: (bf) r1 = r6 ; R1_w=ctx(id=0,off=0,imm=0) R6_w=ctx(id=0,off=0,imm=0)
89: (85) call pc+9
Func#4 is global and valid. Skipping.
90: R0_w=invP(id=0)
90: (bc) w8 = w0 ; R0_w=invP(id=0) R8_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff))
; return get_skb_len(skb) * get_skb_ifindex(val, skb, get_constant(123));
91: (b7) r1 = 123 ; R1_w=invP123
92: (85) call pc+65
Func#5 is global and valid. Skipping.
93: R0=invP(id=0)

Signed-off-by: Christy Lee <christylee@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 0f55f9ed 16-Dec-2021 Christy Lee <christylee@fb.com>

bpf: Only print scratched registers and stack slots to verifier logs.

When printing verifier state for any log level, print full verifier
state only on function calls or on errors. Otherwise, only print the
registers and stack slots that were accessed.

Log size differences:

verif_scale_loop6 before: 234566564
verif_scale_loop6 after: 72143943
69% size reduction

kfree_skb before: 166406
kfree_skb after: 55386
69% size reduction

Before:

156: (61) r0 = *(u32 *)(r1 +0)
157: R0_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R1=ctx(id=0,off=0,imm=0) R2_w=invP0 R10=fp0 fp-8_w=00000000 fp-16_w=00\
000000 fp-24_w=00000000 fp-32_w=00000000 fp-40_w=00000000 fp-48_w=00000000 fp-56_w=00000000 fp-64_w=00000000 fp-72_w=00000000 fp-80_w=00000\
000 fp-88_w=00000000 fp-96_w=00000000 fp-104_w=00000000 fp-112_w=00000000 fp-120_w=00000000 fp-128_w=00000000 fp-136_w=00000000 fp-144_w=00\
000000 fp-152_w=00000000 fp-160_w=00000000 fp-168_w=00000000 fp-176_w=00000000 fp-184_w=00000000 fp-192_w=00000000 fp-200_w=00000000 fp-208\
_w=00000000 fp-216_w=00000000 fp-224_w=00000000 fp-232_w=00000000 fp-240_w=00000000 fp-248_w=00000000 fp-256_w=00000000 fp-264_w=00000000 f\
p-272_w=00000000 fp-280_w=00000000 fp-288_w=00000000 fp-296_w=00000000 fp-304_w=00000000 fp-312_w=00000000 fp-320_w=00000000 fp-328_w=00000\
000 fp-336_w=00000000 fp-344_w=00000000 fp-352_w=00000000 fp-360_w=00000000 fp-368_w=00000000 fp-376_w=00000000 fp-384_w=00000000 fp-392_w=\
00000000 fp-400_w=00000000 fp-408_w=00000000 fp-416_w=00000000 fp-424_w=00000000 fp-432_w=00000000 fp-440_w=00000000 fp-448_w=00000000
; return skb->len;
157: (95) exit
Func#4 is safe for any args that match its prototype
Validating get_constant() func#5...
158: R1=invP(id=0) R10=fp0
; int get_constant(long val)
158: (bf) r0 = r1
159: R0_w=invP(id=1) R1=invP(id=1) R10=fp0
; return val - 122;
159: (04) w0 += -122
160: R0_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R1=invP(id=1) R10=fp0
; return val - 122;
160: (95) exit
Func#5 is safe for any args that match its prototype
Validating get_skb_ifindex() func#6...
161: R1=invP(id=0) R2=ctx(id=0,off=0,imm=0) R3=invP(id=0) R10=fp0
; int get_skb_ifindex(int val, struct __sk_buff *skb, int var)
161: (bc) w0 = w3
162: R0_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R1=invP(id=0) R2=ctx(id=0,off=0,imm=0) R3=invP(id=0) R10=fp0

After:

156: (61) r0 = *(u32 *)(r1 +0)
157: R0_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R1=ctx(id=0,off=0,imm=0)
; return skb->len;
157: (95) exit
Func#4 is safe for any args that match its prototype
Validating get_constant() func#5...
158: R1=invP(id=0) R10=fp0
; int get_constant(long val)
158: (bf) r0 = r1
159: R0_w=invP(id=1) R1=invP(id=1)
; return val - 122;
159: (04) w0 += -122
160: R0_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff))
; return val - 122;
160: (95) exit
Func#5 is safe for any args that match its prototype
Validating get_skb_ifindex() func#6...
161: R1=invP(id=0) R2=ctx(id=0,off=0,imm=0) R3=invP(id=0) R10=fp0
; int get_skb_ifindex(int val, struct __sk_buff *skb, int var)
161: (bc) w0 = w3
162: R0_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R3=invP(id=0)

Signed-off-by: Christy Lee <christylee@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20211216213358.3374427-2-christylee@fb.com


# aef2feda 15-Dec-2021 Jakub Kicinski <kuba@kernel.org>

add missing bpf-cgroup.h includes

We're about to break the cgroup-defs.h -> bpf-cgroup.h dependency,
make sure those who actually need more than the definition of
struct cgroup_bpf include bpf-cgroup.h explicitly.

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/bpf/20211216025538.1649516-3-kuba@kernel.org


# f92c1e18 08-Dec-2021 Jiri Olsa <jolsa@redhat.com>

bpf: Add get_func_[arg|ret|arg_cnt] helpers

Adding following helpers for tracing programs:

Get n-th argument of the traced function:
long bpf_get_func_arg(void *ctx, u32 n, u64 *value)

Get return value of the traced function:
long bpf_get_func_ret(void *ctx, u64 *value)

Get arguments count of the traced function:
long bpf_get_func_arg_cnt(void *ctx)

The trampoline now stores number of arguments on ctx-8
address, so it's easy to verify argument index and find
return value argument's position.

Moving function ip address on the trampoline stack behind
the number of functions arguments, so it's now stored on
ctx-16 address if it's needed.

All helpers above are inlined by verifier.

Also bit unrelated small change - using newly added function
bpf_prog_has_trampoline in check_get_func_ip.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211208193245.172141-5-jolsa@kernel.org


# 866de407 02-Dec-2021 Hou Tao <houtao1@huawei.com>

bpf: Disallow BPF_LOG_KERNEL log level for bpf(BPF_BTF_LOAD)

BPF_LOG_KERNEL is only used internally, so disallow bpf_btf_load()
to set log level as BPF_LOG_KERNEL. The same checking has already
been done in bpf_check(), so factor out a helper to check the
validity of log attributes and use it in both places.

Fixes: 8580ac9404f6 ("bpf: Process in-kernel BTF")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20211203053001.740945-1-houtao1@huawei.com


# fbd94c7a 01-Dec-2021 Alexei Starovoitov <ast@kernel.org>

bpf: Pass a set of bpf_core_relo-s to prog_load command.

struct bpf_core_relo is generated by llvm and processed by libbpf.
It's a de-facto uapi.
With CO-RE in the kernel the struct bpf_core_relo becomes uapi de-jure.
Add an ability to pass a set of 'struct bpf_core_relo' to prog_load command
and let the kernel perform CO-RE relocations.

Note the struct bpf_line_info and struct bpf_func_info have the same
layout when passed from LLVM to libbpf and from libbpf to the kernel
except "insn_off" fields means "byte offset" when LLVM generates it.
Then libbpf converts it to "insn index" to pass to the kernel.
The struct bpf_core_relo's "insn_off" field is always "byte offset".

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20211201181040.23337-6-alexei.starovoitov@gmail.com


# 436d404c 01-Dec-2021 Hou Tao <houtao1@huawei.com>

bpf: Clean-up bpf_verifier_vlog() for BPF_LOG_KERNEL log level

An extra newline will output for bpf_log() with BPF_LOG_KERNEL level
as shown below:

[ 52.095704] BPF:The function test_3 has 12 arguments. Too many.
[ 52.095704]
[ 52.096896] Error in parsing func ptr test_3 in struct bpf_dummy_ops

Now all bpf_log() are ended by newline, but not all btf_verifier_log()
are ended by newline, so checking whether or not the log message
has the trailing newline and adding a newline if not.

Also there is no need to calculate the left userspace buffer size
for kernel log output and to truncate the output by '\0' which
has already been done by vscnprintf(), so only do these for
userspace log output.

Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20211201073458.2731595-2-houtao1@huawei.com


# e6f2dd0f 29-Nov-2021 Joanne Koong <joannekoong@fb.com>

bpf: Add bpf_loop helper

This patch adds the kernel-side and API changes for a new helper
function, bpf_loop:

long bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx,
u64 flags);

where long (*callback_fn)(u32 index, void *ctx);

bpf_loop invokes the "callback_fn" **nr_loops** times or until the
callback_fn returns 1. The callback_fn can only return 0 or 1, and
this is enforced by the verifier. The callback_fn index is zero-indexed.

A few things to please note:
~ The "u64 flags" parameter is currently unused but is included in
case a future use case for it arises.
~ In the kernel-side implementation of bpf_loop (kernel/bpf/bpf_iter.c),
bpf_callback_t is used as the callback function cast.
~ A program can have nested bpf_loop calls but the program must
still adhere to the verifier constraint of its stack depth (the stack depth
cannot exceed MAX_BPF_STACK))
~ Recursive callback_fns do not pass the verifier, due to the call stack
for these being too deep.
~ The next patch will include the tests and benchmark

Signed-off-by: Joanne Koong <joannekoong@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20211130030622.4131246-2-joannekoong@fb.com


# d19ddb47 12-Nov-2021 Song Liu <songliubraving@fb.com>

bpf: Introduce btf_tracing_ids

Similar to btf_sock_ids, btf_tracing_ids provides btf ID for task_struct,
file, and vm_area_struct via easy to understand format like
btf_tracing_ids[BTF_TRACING_TYPE_[TASK|file|VMA]].

Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20211112150243.1270987-3-songliubraving@fb.com


# 7c7e3d31 05-Nov-2021 Song Liu <songliubraving@fb.com>

bpf: Introduce helper bpf_find_vma

In some profiler use cases, it is necessary to map an address to the
backing file, e.g., a shared library. bpf_find_vma helper provides a
flexible way to achieve this. bpf_find_vma maps an address of a task to
the vma (vm_area_struct) for this address, and feed the vma to an callback
BPF function. The callback function is necessary here, as we need to
ensure mmap_sem is unlocked.

It is necessary to lock mmap_sem for find_vma. To lock and unlock mmap_sem
safely when irqs are disable, we use the same mechanism as stackmap with
build_id. Specifically, when irqs are disabled, the unlocked is postponed
in an irq_work. Refactor stackmap.c so that the irq_work is shared among
bpf_find_vma and stackmap helpers.

Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: Hengqi Chen <hengqi.chen@gmail.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20211105232330.1936330-2-songliubraving@fb.com


# e572ff80 15-Dec-2021 Daniel Borkmann <daniel@iogearbox.net>

bpf: Make 32->64 bounds propagation slightly more robust

Make the bounds propagation in __reg_assign_32_into_64() slightly more
robust and readable by aligning it similarly as we did back in the
__reg_combine_64_into_32() counterpart. Meaning, only propagate or
pessimize them as a smin/smax pair.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# 3cf2b61e 15-Dec-2021 Daniel Borkmann <daniel@iogearbox.net>

bpf: Fix signed bounds propagation after mov32

For the case where both s32_{min,max}_value bounds are positive, the
__reg_assign_32_into_64() directly propagates them to their 64 bit
counterparts, otherwise it pessimises them into [0,u32_max] universe and
tries to refine them later on by learning through the tnum as per comment
in mentioned function. However, that does not always happen, for example,
in mov32 operation we call zext_32_to_64(dst_reg) which invokes the
__reg_assign_32_into_64() as is without subsequent bounds update as
elsewhere thus no refinement based on tnum takes place.

Thus, not calling into the __update_reg_bounds() / __reg_deduce_bounds() /
__reg_bound_offset() triplet as we do, for example, in case of ALU ops via
adjust_scalar_min_max_vals(), will lead to more pessimistic bounds when
dumping the full register state:

Before fix:

0: (b4) w0 = -1
1: R0_w=invP4294967295
(id=0,imm=ffffffff,
smin_value=4294967295,smax_value=4294967295,
umin_value=4294967295,umax_value=4294967295,
var_off=(0xffffffff; 0x0),
s32_min_value=-1,s32_max_value=-1,
u32_min_value=-1,u32_max_value=-1)

1: (bc) w0 = w0
2: R0_w=invP4294967295
(id=0,imm=ffffffff,
smin_value=0,smax_value=4294967295,
umin_value=4294967295,umax_value=4294967295,
var_off=(0xffffffff; 0x0),
s32_min_value=-1,s32_max_value=-1,
u32_min_value=-1,u32_max_value=-1)

Technically, the smin_value=0 and smax_value=4294967295 bounds are not
incorrect, but given the register is still a constant, they break assumptions
about const scalars that smin_value == smax_value and umin_value == umax_value.

After fix:

0: (b4) w0 = -1
1: R0_w=invP4294967295
(id=0,imm=ffffffff,
smin_value=4294967295,smax_value=4294967295,
umin_value=4294967295,umax_value=4294967295,
var_off=(0xffffffff; 0x0),
s32_min_value=-1,s32_max_value=-1,
u32_min_value=-1,u32_max_value=-1)

1: (bc) w0 = w0
2: R0_w=invP4294967295
(id=0,imm=ffffffff,
smin_value=4294967295,smax_value=4294967295,
umin_value=4294967295,umax_value=4294967295,
var_off=(0xffffffff; 0x0),
s32_min_value=-1,s32_max_value=-1,
u32_min_value=-1,u32_max_value=-1)

Without the smin_value == smax_value and umin_value == umax_value invariant
being intact for const scalars, it is possible to leak out kernel pointers
from unprivileged user space if the latter is enabled. For example, when such
registers are involved in pointer arithmtics, then adjust_ptr_min_max_vals()
will taint the destination register into an unknown scalar, and the latter
can be exported and stored e.g. into a BPF map value.

Fixes: 3f50f132d840 ("bpf: Verifier, do explicit ALU32 bounds tracking")
Reported-by: Kuee K1r0a <liulin063@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# a82fe085 07-Dec-2021 Daniel Borkmann <daniel@iogearbox.net>

bpf: Fix kernel address leakage in atomic cmpxchg's r0 aux reg

The implementation of BPF_CMPXCHG on a high level has the following parameters:

.-[old-val] .-[new-val]
BPF_R0 = cmpxchg{32,64}(DST_REG + insn->off, BPF_R0, SRC_REG)
`-[mem-loc] `-[old-val]

Given a BPF insn can only have two registers (dst, src), the R0 is fixed and
used as an auxilliary register for input (old value) as well as output (returning
old value from memory location). While the verifier performs a number of safety
checks, it misses to reject unprivileged programs where R0 contains a pointer as
old value.

Through brute-forcing it takes about ~16sec on my machine to leak a kernel pointer
with BPF_CMPXCHG. The PoC is basically probing for kernel addresses by storing the
guessed address into the map slot as a scalar, and using the map value pointer as
R0 while SRC_REG has a canary value to detect a matching address.

Fix it by checking R0 for pointers, and reject if that's the case for unprivileged
programs.

Fixes: 5ffa25502b5a ("bpf: Add instructions for atomic_[cmp]xchg")
Reported-by: Ryota Shiga (Flatt Security)
Acked-by: Brendan Jackman <jackmanb@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 7d3baf0a 06-Dec-2021 Daniel Borkmann <daniel@iogearbox.net>

bpf: Fix kernel address leakage in atomic fetch

The change in commit 37086bfdc737 ("bpf: Propagate stack bounds to registers
in atomics w/ BPF_FETCH") around check_mem_access() handling is buggy since
this would allow for unprivileged users to leak kernel pointers. For example,
an atomic fetch/and with -1 on a stack destination which holds a spilled
pointer will migrate the spilled register type into a scalar, which can then
be exported out of the program (since scalar != pointer) by dumping it into
a map value.

The original implementation of XADD was preventing this situation by using
a double call to check_mem_access() one with BPF_READ and a subsequent one
with BPF_WRITE, in both cases passing -1 as a placeholder value instead of
register as per XADD semantics since it didn't contain a value fetch. The
BPF_READ also included a check in check_stack_read_fixed_off() which rejects
the program if the stack slot is of __is_pointer_value() if dst_regno < 0.
The latter is to distinguish whether we're dealing with a regular stack spill/
fill or some arithmetical operation which is disallowed on non-scalars, see
also 6e7e63cbb023 ("bpf: Forbid XADD on spilled pointers for unprivileged
users") for more context on check_mem_access() and its handling of placeholder
value -1.

One minimally intrusive option to fix the leak is for the BPF_FETCH case to
initially check the BPF_READ case via check_mem_access() with -1 as register,
followed by the actual load case with non-negative load_reg to propagate
stack bounds to registers.

Fixes: 37086bfdc737 ("bpf: Propagate stack bounds to registers in atomics w/ BPF_FETCH")
Reported-by: <n4ke4mry@gmail.com>
Acked-by: Brendan Jackman <jackmanb@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 345e004d 09-Dec-2021 Paul Chaignon <paul@isovalent.com>

bpf: Fix incorrect state pruning for <8B spill/fill

Commit 354e8f1970f8 ("bpf: Support <8-byte scalar spill and refill")
introduced support in the verifier to track <8B spill/fills of scalars.
The backtracking logic for the precision bit was however skipping
spill/fills of less than 8B. That could cause state pruning to consider
two states equivalent when they shouldn't be.

As an example, consider the following bytecode snippet:

0: r7 = r1
1: call bpf_get_prandom_u32
2: r6 = 2
3: if r0 == 0 goto pc+1
4: r6 = 3
...
8: [state pruning point]
...
/* u32 spill/fill */
10: *(u32 *)(r10 - 8) = r6
11: r8 = *(u32 *)(r10 - 8)
12: r0 = 0
13: if r8 == 3 goto pc+1
14: r0 = 1
15: exit

The verifier first walks the path with R6=3. Given the support for <8B
spill/fills, at instruction 13, it knows the condition is true and skips
instruction 14. At that point, the backtracking logic kicks in but stops
at the fill instruction since it only propagates the precision bit for
8B spill/fill. When the verifier then walks the path with R6=2, it will
consider it safe at instruction 8 because R6 is not marked as needing
precision. Instruction 14 is thus never walked and is then incorrectly
removed as 'dead code'.

It's also possible to lead the verifier to accept e.g. an out-of-bound
memory access instead of causing an incorrect dead code elimination.

This regression was found via Cilium's bpf-next CI where it was causing
a conntrack map update to be silently skipped because the code had been
removed by the verifier.

This commit fixes it by enabling support for <8B spill/fills in the
bactracking logic. In case of a <8B spill/fill, the full 8B stack slot
will be marked as needing precision. Then, in __mark_chain_precision,
any tracked register spilled in a marked slot will itself be marked as
needing precision, regardless of the spill size. This logic makes two
assumptions: (1) only 8B-aligned spill/fill are tracked and (2) spilled
registers are only tracked if the spill and fill sizes are equal. Commit
ef979017b837 ("bpf: selftest: Add verifier tests for <8-byte scalar
spill and refill") covers the first assumption and the next commit in
this patchset covers the second.

Fixes: 354e8f1970f8 ("bpf: Support <8-byte scalar spill and refill")
Signed-off-by: Paul Chaignon <paul@isovalent.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 2fa7d94a 30-Nov-2021 Maxim Mikityanskiy <maximmi@nvidia.com>

bpf: Fix the off-by-two error in range markings

The first commit cited below attempts to fix the off-by-one error that
appeared in some comparisons with an open range. Due to this error,
arithmetically equivalent pieces of code could get different verdicts
from the verifier, for example (pseudocode):

// 1. Passes the verifier:
if (data + 8 > data_end)
return early
read *(u64 *)data, i.e. [data; data+7]

// 2. Rejected by the verifier (should still pass):
if (data + 7 >= data_end)
return early
read *(u64 *)data, i.e. [data; data+7]

The attempted fix, however, shifts the range by one in a wrong
direction, so the bug not only remains, but also such piece of code
starts failing in the verifier:

// 3. Rejected by the verifier, but the check is stricter than in #1.
if (data + 8 >= data_end)
return early
read *(u64 *)data, i.e. [data; data+7]

The change performed by that fix converted an off-by-one bug into
off-by-two. The second commit cited below added the BPF selftests
written to ensure than code chunks like #3 are rejected, however,
they should be accepted.

This commit fixes the off-by-two error by adjusting new_range in the
right direction and fixes the tests by changing the range into the
one that should actually fail.

Fixes: fb2a311a31d3 ("bpf: fix off by one for range markings with L{T, E} patterns")
Fixes: b37242c773b2 ("bpf: add test cases to bpf selftests to cover all access tests")
Signed-off-by: Maxim Mikityanskiy <maximmi@nvidia.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20211130181607.593149-1-maximmi@nvidia.com


# 353050be 09-Nov-2021 Daniel Borkmann <daniel@iogearbox.net>

bpf: Fix toctou on read-only map's constant scalar tracking

Commit a23740ec43ba ("bpf: Track contents of read-only maps as scalars") is
checking whether maps are read-only both from BPF program side and user space
side, and then, given their content is constant, reading out their data via
map->ops->map_direct_value_addr() which is then subsequently used as known
scalar value for the register, that is, it is marked as __mark_reg_known()
with the read value at verification time. Before a23740ec43ba, the register
content was marked as an unknown scalar so the verifier could not make any
assumptions about the map content.

The current implementation however is prone to a TOCTOU race, meaning, the
value read as known scalar for the register is not guaranteed to be exactly
the same at a later point when the program is executed, and as such, the
prior made assumptions of the verifier with regards to the program will be
invalid which can cause issues such as OOB access, etc.

While the BPF_F_RDONLY_PROG map flag is always fixed and required to be
specified at map creation time, the map->frozen property is initially set to
false for the map given the map value needs to be populated, e.g. for global
data sections. Once complete, the loader "freezes" the map from user space
such that no subsequent updates/deletes are possible anymore. For the rest
of the lifetime of the map, this freeze one-time trigger cannot be undone
anymore after a successful BPF_MAP_FREEZE cmd return. Meaning, any new BPF_*
cmd calls which would update/delete map entries will be rejected with -EPERM
since map_get_sys_perms() removes the FMODE_CAN_WRITE permission. This also
means that pending update/delete map entries must still complete before this
guarantee is given. This corner case is not an issue for loaders since they
create and prepare such program private map in successive steps.

However, a malicious user is able to trigger this TOCTOU race in two different
ways: i) via userfaultfd, and ii) via batched updates. For i) userfaultfd is
used to expand the competition interval, so that map_update_elem() can modify
the contents of the map after map_freeze() and bpf_prog_load() were executed.
This works, because userfaultfd halts the parallel thread which triggered a
map_update_elem() at the time where we copy key/value from the user buffer and
this already passed the FMODE_CAN_WRITE capability test given at that time the
map was not "frozen". Then, the main thread performs the map_freeze() and
bpf_prog_load(), and once that had completed successfully, the other thread
is woken up to complete the pending map_update_elem() which then changes the
map content. For ii) the idea of the batched update is similar, meaning, when
there are a large number of updates to be processed, it can increase the
competition interval between the two. It is therefore possible in practice to
modify the contents of the map after executing map_freeze() and bpf_prog_load().

One way to fix both i) and ii) at the same time is to expand the use of the
map's map->writecnt. The latter was introduced in fc9702273e2e ("bpf: Add mmap()
support for BPF_MAP_TYPE_ARRAY") and further refined in 1f6cb19be2e2 ("bpf:
Prevent re-mmap()'ing BPF map as writable for initially r/o mapping") with
the rationale to make a writable mmap()'ing of a map mutually exclusive with
read-only freezing. The counter indicates writable mmap() mappings and then
prevents/fails the freeze operation. Its semantics can be expanded beyond
just mmap() by generally indicating ongoing write phases. This would essentially
span any parallel regular and batched flavor of update/delete operation and
then also have map_freeze() fail with -EBUSY. For the check_mem_access() in
the verifier we expand upon the bpf_map_is_rdonly() check ensuring that all
last pending writes have completed via bpf_map_write_active() test. Once the
map->frozen is set and bpf_map_write_active() indicates a map->writecnt of 0
only then we are really guaranteed to use the map's data as known constants.
For map->frozen being set and pending writes in process of still being completed
we fall back to marking that register as unknown scalar so we don't end up
making assumptions about it. With this, both TOCTOU reproducers from i) and
ii) are fixed.

Note that the map->writecnt has been converted into a atomic64 in the fix in
order to avoid a double freeze_mutex mutex_{un,}lock() pair when updating
map->writecnt in the various map update/delete BPF_* cmd flavors. Spanning
the freeze_mutex over entire map update/delete operations in syscall side
would not be possible due to then causing everything to be serialized.
Similarly, something like synchronize_rcu() after setting map->frozen to wait
for update/deletes to complete is not possible either since it would also
have to span the user copy which can sleep. On the libbpf side, this won't
break d66562fba1ce ("libbpf: Add BPF object skeleton support") as the
anonymous mmap()-ed "map initialization image" is remapped as a BPF map-backed
mmap()-ed memory where for .rodata it's non-writable.

Fixes: a23740ec43ba ("bpf: Track contents of read-only maps as scalars")
Reported-by: w1tcher.bupt@gmail.com
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 5e0bc308 13-Nov-2021 Dmitrii Banshchikov <me@ubique.spb.ru>

bpf: Forbid bpf_ktime_get_coarse_ns and bpf_timer_* in tracing progs

Use of bpf_ktime_get_coarse_ns() and bpf_timer_* helpers in tracing
progs may result in locking issues.

bpf_ktime_get_coarse_ns() uses ktime_get_coarse_ns() time accessor that
isn't safe for any context:
======================================================
WARNING: possible circular locking dependency detected
5.15.0-syzkaller #0 Not tainted
------------------------------------------------------
syz-executor.4/14877 is trying to acquire lock:
ffffffff8cb30008 (tk_core.seq.seqcount){----}-{0:0}, at: ktime_get_coarse_ts64+0x25/0x110 kernel/time/timekeeping.c:2255

but task is already holding lock:
ffffffff90dbf200 (&obj_hash[i].lock){-.-.}-{2:2}, at: debug_object_deactivate+0x61/0x400 lib/debugobjects.c:735

which lock already depends on the new lock.

the existing dependency chain (in reverse order) is:

-> #1 (&obj_hash[i].lock){-.-.}-{2:2}:
lock_acquire+0x19f/0x4d0 kernel/locking/lockdep.c:5625
__raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline]
_raw_spin_lock_irqsave+0xd1/0x120 kernel/locking/spinlock.c:162
__debug_object_init+0xd9/0x1860 lib/debugobjects.c:569
debug_hrtimer_init kernel/time/hrtimer.c:414 [inline]
debug_init kernel/time/hrtimer.c:468 [inline]
hrtimer_init+0x20/0x40 kernel/time/hrtimer.c:1592
ntp_init_cmos_sync kernel/time/ntp.c:676 [inline]
ntp_init+0xa1/0xad kernel/time/ntp.c:1095
timekeeping_init+0x512/0x6bf kernel/time/timekeeping.c:1639
start_kernel+0x267/0x56e init/main.c:1030
secondary_startup_64_no_verify+0xb1/0xbb

-> #0 (tk_core.seq.seqcount){----}-{0:0}:
check_prev_add kernel/locking/lockdep.c:3051 [inline]
check_prevs_add kernel/locking/lockdep.c:3174 [inline]
validate_chain+0x1dfb/0x8240 kernel/locking/lockdep.c:3789
__lock_acquire+0x1382/0x2b00 kernel/locking/lockdep.c:5015
lock_acquire+0x19f/0x4d0 kernel/locking/lockdep.c:5625
seqcount_lockdep_reader_access+0xfe/0x230 include/linux/seqlock.h:103
ktime_get_coarse_ts64+0x25/0x110 kernel/time/timekeeping.c:2255
ktime_get_coarse include/linux/timekeeping.h:120 [inline]
ktime_get_coarse_ns include/linux/timekeeping.h:126 [inline]
____bpf_ktime_get_coarse_ns kernel/bpf/helpers.c:173 [inline]
bpf_ktime_get_coarse_ns+0x7e/0x130 kernel/bpf/helpers.c:171
bpf_prog_a99735ebafdda2f1+0x10/0xb50
bpf_dispatcher_nop_func include/linux/bpf.h:721 [inline]
__bpf_prog_run include/linux/filter.h:626 [inline]
bpf_prog_run include/linux/filter.h:633 [inline]
BPF_PROG_RUN_ARRAY include/linux/bpf.h:1294 [inline]
trace_call_bpf+0x2cf/0x5d0 kernel/trace/bpf_trace.c:127
perf_trace_run_bpf_submit+0x7b/0x1d0 kernel/events/core.c:9708
perf_trace_lock+0x37c/0x440 include/trace/events/lock.h:39
trace_lock_release+0x128/0x150 include/trace/events/lock.h:58
lock_release+0x82/0x810 kernel/locking/lockdep.c:5636
__raw_spin_unlock_irqrestore include/linux/spinlock_api_smp.h:149 [inline]
_raw_spin_unlock_irqrestore+0x75/0x130 kernel/locking/spinlock.c:194
debug_hrtimer_deactivate kernel/time/hrtimer.c:425 [inline]
debug_deactivate kernel/time/hrtimer.c:481 [inline]
__run_hrtimer kernel/time/hrtimer.c:1653 [inline]
__hrtimer_run_queues+0x2f9/0xa60 kernel/time/hrtimer.c:1749
hrtimer_interrupt+0x3b3/0x1040 kernel/time/hrtimer.c:1811
local_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1086 [inline]
__sysvec_apic_timer_interrupt+0xf9/0x270 arch/x86/kernel/apic/apic.c:1103
sysvec_apic_timer_interrupt+0x8c/0xb0 arch/x86/kernel/apic/apic.c:1097
asm_sysvec_apic_timer_interrupt+0x12/0x20
__raw_spin_unlock_irqrestore include/linux/spinlock_api_smp.h:152 [inline]
_raw_spin_unlock_irqrestore+0xd4/0x130 kernel/locking/spinlock.c:194
try_to_wake_up+0x702/0xd20 kernel/sched/core.c:4118
wake_up_process kernel/sched/core.c:4200 [inline]
wake_up_q+0x9a/0xf0 kernel/sched/core.c:953
futex_wake+0x50f/0x5b0 kernel/futex/waitwake.c:184
do_futex+0x367/0x560 kernel/futex/syscalls.c:127
__do_sys_futex kernel/futex/syscalls.c:199 [inline]
__se_sys_futex+0x401/0x4b0 kernel/futex/syscalls.c:180
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x44/0xd0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae

There is a possible deadlock with bpf_timer_* set of helpers:
hrtimer_start()
lock_base();
trace_hrtimer...()
perf_event()
bpf_run()
bpf_timer_start()
hrtimer_start()
lock_base() <- DEADLOCK

Forbid use of bpf_ktime_get_coarse_ns() and bpf_timer_* helpers in
BPF_PROG_TYPE_KPROBE, BPF_PROG_TYPE_TRACEPOINT, BPF_PROG_TYPE_PERF_EVENT
and BPF_PROG_TYPE_RAW_TRACEPOINT prog types.

Fixes: d05512618056 ("bpf: Add bpf_ktime_get_coarse_ns helper")
Fixes: b00628b1c7d5 ("bpf: Introduce bpf timers.")
Reported-by: syzbot+43fd005b5a1b4d10781e@syzkaller.appspotmail.com
Signed-off-by: Dmitrii Banshchikov <me@ubique.spb.ru>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211113142227.566439-2-me@ubique.spb.ru


# 34d11a44 10-Nov-2021 Alexei Starovoitov <ast@kernel.org>

bpf: Fix inner map state pruning regression.

Introduction of map_uid made two lookups from outer map to be distinct.
That distinction is only necessary when inner map has an embedded timer.
Otherwise it will make the verifier state pruning to be conservative
which will cause complex programs to hit 1M insn_processed limit.
Tighten map_uid logic to apply to inner maps with timers only.

Fixes: 3e8ce29850f1 ("bpf: Prevent pointer mismatch in bpf_timer_init.")
Reported-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Lorenz Bauer <lmb@cloudflare.com>
Link: https://lore.kernel.org/bpf/CACAyw99hVEJFoiBH_ZGyy=+oO-jyydoz6v1DeKPKs2HVsUH28w@mail.gmail.com
Link: https://lore.kernel.org/bpf/20211110172556.20754-1-alexei.starovoitov@gmail.com


# 3990ed4c 05-Nov-2021 Martin KaFai Lau <kafai@fb.com>

bpf: Stop caching subprog index in the bpf_pseudo_func insn

This patch is to fix an out-of-bound access issue when jit-ing the
bpf_pseudo_func insn (i.e. ld_imm64 with src_reg == BPF_PSEUDO_FUNC)

In jit_subprog(), it currently reuses the subprog index cached in
insn[1].imm. This subprog index is an index into a few array related
to subprogs. For example, in jit_subprog(), it is an index to the newly
allocated 'struct bpf_prog **func' array.

The subprog index was cached in insn[1].imm after add_subprog(). However,
this could become outdated (and too big in this case) if some subprogs
are completely removed during dead code elimination (in
adjust_subprog_starts_after_remove). The cached index in insn[1].imm
is not updated accordingly and causing out-of-bound issue in the later
jit_subprog().

Unlike bpf_pseudo_'func' insn, the current bpf_pseudo_'call' insn
is handling the DCE properly by calling find_subprog(insn->imm) to
figure out the index instead of caching the subprog index.
The existing bpf_adj_branches() will adjust the insn->imm
whenever insn is added or removed.

Instead of having two ways handling subprog index,
this patch is to make bpf_pseudo_func works more like
bpf_pseudo_call.

First change is to stop caching the subprog index result
in insn[1].imm after add_subprog(). The verification
process will use find_subprog(insn->imm) to figure
out the subprog index.

Second change is in bpf_adj_branches() and have it to
adjust the insn->imm for the bpf_pseudo_func insn also
whenever insn is added or removed.

Third change is in jit_subprog(). Like the bpf_pseudo_call handling,
bpf_pseudo_func temporarily stores the find_subprog() result
in insn->off. It is fine because the prog's insn has been finalized
at this point. insn->off will be reset back to 0 later to avoid
confusing the userspace prog dump tool.

Fixes: 69c087ba6225 ("bpf: Add bpf_for_each_map_elem() helper")
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211106014014.651018-1-kafai@fb.com


# f30d4968 02-Nov-2021 Martin KaFai Lau <kafai@fb.com>

bpf: Do not reject when the stack read size is different from the tracked scalar size

Below is a simplified case from a report in bcc [0]:

r4 = 20
*(u32 *)(r10 -4) = r4
*(u32 *)(r10 -8) = r4 /* r4 state is tracked */
r4 = *(u64 *)(r10 -8) /* Read more than the tracked 32bit scalar.
* verifier rejects as 'corrupted spill memory'.
*/

After commit 354e8f1970f8 ("bpf: Support <8-byte scalar spill and refill"),
the 8-byte aligned 32bit spill is also tracked by the verifier and the
register state is stored.

However, if 8 bytes are read from the stack instead of the tracked 4 byte
scalar, then verifier currently rejects the program as "corrupted spill
memory". This patch fixes this case by allowing it to read but marks the
register as unknown.

Also note that, if the prog is trying to corrupt/leak an earlier spilled
pointer by spilling another <8 bytes register on top, this has already
been rejected in the check_stack_write_fixed_off().

[0] https://github.com/iovisor/bcc/pull/3683

Fixes: 354e8f1970f8 ("bpf: Support <8-byte scalar spill and refill")
Reported-by: Hengqi Chen <hengqi.chen@gmail.com>
Reported-by: Yonghong Song <yhs@gmail.com>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Hengqi Chen <hengqi.chen@gmail.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20211102064535.316018-1-kafai@fb.com


# 388e2c0b 01-Nov-2021 Alexei Starovoitov <ast@kernel.org>

bpf: Fix propagation of signed bounds from 64-bit min/max into 32-bit.

Similar to unsigned bounds propagation fix signed bounds.
The 'Fixes' tag is a hint. There is no security bug here.
The verifier was too conservative.

Fixes: 3f50f132d840 ("bpf: Verifier, do explicit ALU32 bounds tracking")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20211101222153.78759-2-alexei.starovoitov@gmail.com


# b9979db8 01-Nov-2021 Alexei Starovoitov <ast@kernel.org>

bpf: Fix propagation of bounds from 64-bit min/max into 32-bit and var_off.

Before this fix:
166: (b5) if r2 <= 0x1 goto pc+22
from 166 to 189: R2=invP(id=1,umax_value=1,var_off=(0x0; 0xffffffff))

After this fix:
166: (b5) if r2 <= 0x1 goto pc+22
from 166 to 189: R2=invP(id=1,umax_value=1,var_off=(0x0; 0x1))

While processing BPF_JLE the reg_set_min_max() would set true_reg->umax_value = 1
and call __reg_combine_64_into_32(true_reg).

Without the fix it would not pass the condition:
if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value))

since umin_value == 0 at this point.
Before commit 10bf4e83167c the umin was incorrectly ingored.
The commit 10bf4e83167c fixed the correctness issue, but pessimized
propagation of 64-bit min max into 32-bit min max and corresponding var_off.

Fixes: 10bf4e83167c ("bpf: Fix propagation of 32 bit unsigned bounds from 64 bit bounds")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20211101222153.78759-1-alexei.starovoitov@gmail.com


# 9330986c 27-Oct-2021 Joanne Koong <joannekoong@fb.com>

bpf: Add bloom filter map implementation

This patch adds the kernel-side changes for the implementation of
a bpf bloom filter map.

The bloom filter map supports peek (determining whether an element
is present in the map) and push (adding an element to the map)
operations.These operations are exposed to userspace applications
through the already existing syscalls in the following way:

BPF_MAP_LOOKUP_ELEM -> peek
BPF_MAP_UPDATE_ELEM -> push

The bloom filter map does not have keys, only values. In light of
this, the bloom filter map's API matches that of queue stack maps:
user applications use BPF_MAP_LOOKUP_ELEM/BPF_MAP_UPDATE_ELEM
which correspond internally to bpf_map_peek_elem/bpf_map_push_elem,
and bpf programs must use the bpf_map_peek_elem and bpf_map_push_elem
APIs to query or add an element to the bloom filter map. When the
bloom filter map is created, it must be created with a key_size of 0.

For updates, the user will pass in the element to add to the map
as the value, with a NULL key. For lookups, the user will pass in the
element to query in the map as the value, with a NULL key. In the
verifier layer, this requires us to modify the argument type of
a bloom filter's BPF_FUNC_map_peek_elem call to ARG_PTR_TO_MAP_VALUE;
as well, in the syscall layer, we need to copy over the user value
so that in bpf_map_peek_elem, we know which specific value to query.

A few things to please take note of:
* If there are any concurrent lookups + updates, the user is
responsible for synchronizing this to ensure no false negative lookups
occur.
* The number of hashes to use for the bloom filter is configurable from
userspace. If no number is specified, the default used will be 5 hash
functions. The benchmarks later in this patchset can help compare the
performance of using different number of hashes on different entry
sizes. In general, using more hashes decreases both the false positive
rate and the speed of a lookup.
* Deleting an element in the bloom filter map is not supported.
* The bloom filter map may be used as an inner map.
* The "max_entries" size that is specified at map creation time is used
to approximate a reasonable bitmap size for the bloom filter, and is not
otherwise strictly enforced. If the user wishes to insert more entries
into the bloom filter than "max_entries", they may do so but they should
be aware that this may lead to a higher false positive rate.

Signed-off-by: Joanne Koong <joannekoong@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20211027234504.30744-2-joannekoong@fb.com


# aba64c7d 20-Oct-2021 Dave Marchevsky <davemarchevsky@fb.com>

bpf: Add verified_insns to bpf_prog_info and fdinfo

This stat is currently printed in the verifier log and not stored
anywhere. To ease consumption of this data, add a field to bpf_prog_aux
so it can be exposed via BPF_OBJ_GET_INFO_BY_FD and fdinfo.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20211020074818.1017682-2-davemarchevsky@fb.com


# 588cd7ef 08-Oct-2021 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Silence Coverity warning for find_kfunc_desc_btf

The helper function returns a pointer that in the failure case encodes
an error in the struct btf pointer. The current code lead to Coverity
warning about the use of the invalid pointer:

*** CID 1507963: Memory - illegal accesses (USE_AFTER_FREE)
/kernel/bpf/verifier.c: 1788 in find_kfunc_desc_btf()
1782 return ERR_PTR(-EINVAL);
1783 }
1784
1785 kfunc_btf = __find_kfunc_desc_btf(env, offset, btf_modp);
1786 if (IS_ERR_OR_NULL(kfunc_btf)) {
1787 verbose(env, "cannot find module BTF for func_id %u\n", func_id);
>>> CID 1507963: Memory - illegal accesses (USE_AFTER_FREE)
>>> Using freed pointer "kfunc_btf".
1788 return kfunc_btf ?: ERR_PTR(-ENOENT);
1789 }
1790 return kfunc_btf;
1791 }
1792 return btf_vmlinux ?: ERR_PTR(-ENOENT);
1793 }

Daniel suggested the use of ERR_CAST so that the intended use is clear
to Coverity, but on closer look it seems that we never return NULL from
the helper. Andrii noted that since __find_kfunc_desc_btf already logs
errors for all cases except btf_get_by_fd, it is much easier to add
logging for that and remove the IS_ERR check altogether, returning
directly from it.

Suggested-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20211009040900.803436-1-memxor@gmail.com


# 0640c77c 05-Oct-2021 Andrey Ignatov <rdna@fb.com>

bpf: Avoid retpoline for bpf_for_each_map_elem

Similarly to 09772d92cd5a ("bpf: avoid retpoline for
lookup/update/delete calls on maps") and 84430d4232c3 ("bpf, verifier:
avoid retpoline for map push/pop/peek operation") avoid indirect call
while calling bpf_for_each_map_elem.

Before (a program fragment):

; if (rules_map) {
142: (15) if r4 == 0x0 goto pc+8
143: (bf) r3 = r10
; bpf_for_each_map_elem(rules_map, process_each_rule, &ctx, 0);
144: (07) r3 += -24
145: (bf) r1 = r4
146: (18) r2 = subprog[+5]
148: (b7) r4 = 0
149: (85) call bpf_for_each_map_elem#143680 <-- indirect call via
helper

After (same program fragment):

; if (rules_map) {
142: (15) if r4 == 0x0 goto pc+8
143: (bf) r3 = r10
; bpf_for_each_map_elem(rules_map, process_each_rule, &ctx, 0);
144: (07) r3 += -24
145: (bf) r1 = r4
146: (18) r2 = subprog[+5]
148: (b7) r4 = 0
149: (85) call bpf_for_each_array_elem#170336 <-- direct call

On a benchmark that calls bpf_for_each_map_elem() once and does many
other things (mostly checking fields in skb) with CONFIG_RETPOLINE=y it
makes program faster.

Before:

============================================================================
Benchmark.cpp time/iter iters/s
============================================================================
IngressMatchByRemoteEndpoint 80.78ns 12.38M
IngressMatchByRemoteIP 80.66ns 12.40M
IngressMatchByRemotePort 80.87ns 12.37M

After:

============================================================================
Benchmark.cpp time/iter iters/s
============================================================================
IngressMatchByRemoteEndpoint 73.49ns 13.61M
IngressMatchByRemoteIP 71.48ns 13.99M
IngressMatchByRemotePort 70.39ns 14.21M

Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211006001838.75607-1-rdna@fb.com


# a5d82727 01-Oct-2021 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Be conservative while processing invalid kfunc calls

This patch also modifies the BPF verifier to only return error for
invalid kfunc calls specially marked by userspace (with insn->imm == 0,
insn->off == 0) after the verifier has eliminated dead instructions.
This can be handled in the fixup stage, and skip processing during add
and check stages.

If such an invalid call is dropped, the fixup stage will not encounter
insn->imm as 0, otherwise it bails out and returns an error.

This will be exposed as weak ksym support in libbpf in later patches.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211002011757.311265-3-memxor@gmail.com


# 2357672c 01-Oct-2021 Kumar Kartikeya Dwivedi <memxor@gmail.com>

bpf: Introduce BPF support for kernel module function calls

This change adds support on the kernel side to allow for BPF programs to
call kernel module functions. Userspace will prepare an array of module
BTF fds that is passed in during BPF_PROG_LOAD using fd_array parameter.
In the kernel, the module BTFs are placed in the auxilliary struct for
bpf_prog, and loaded as needed.

The verifier then uses insn->off to index into the fd_array. insn->off
0 is reserved for vmlinux BTF (for backwards compat), so userspace must
use an fd_array index > 0 for module kfunc support. kfunc_btf_tab is
sorted based on offset in an array, and each offset corresponds to one
descriptor, with a max limit up to 256 such module BTFs.

We also change existing kfunc_tab to distinguish each element based on
imm, off pair as each such call will now be distinct.

Another change is to check_kfunc_call callback, which now include a
struct module * pointer, this is to be used in later patch such that the
kfunc_id and module pointer are matched for dynamically registered BTF
sets from loadable modules, so that same kfunc_id in two modules doesn't
lead to check_kfunc_call succeeding. For the duration of the
check_kfunc_call, the reference to struct module exists, as it returns
the pointer stored in kfunc_btf_tab.

Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211002011757.311265-2-memxor@gmail.com


# 3d717fad 28-Sep-2021 Kees Cook <keescook@chromium.org>

bpf: Replace "want address" users of BPF_CAST_CALL with BPF_CALL_IMM

In order to keep ahead of cases in the kernel where Control Flow
Integrity (CFI) may trip over function call casts, enabling
-Wcast-function-type is helpful. To that end, BPF_CAST_CALL causes
various warnings and is one of the last places in the kernel triggering
this warning.

Most places using BPF_CAST_CALL actually just want a void * to perform
math on. It's not actually performing a call, so just use a different
helper to get the void *, by way of the new BPF_CALL_IMM() helper, which
can clean up a common copy/paste idiom as well.

This change results in no object code difference.

Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://github.com/KSPP/linux/issues/20
Link: https://lore.kernel.org/lkml/CAEf4Bzb46=-J5Fxc3mMZ8JQPtK1uoE0q6+g6WPz53Cvx=CBEhw@mail.gmail.com
Link: https://lore.kernel.org/bpf/20210928230946.4062144-2-keescook@chromium.org


# 354e8f19 21-Sep-2021 Martin KaFai Lau <kafai@fb.com>

bpf: Support <8-byte scalar spill and refill

The verifier currently does not save the reg state when
spilling <8byte bounded scalar to the stack. The bpf program
will be incorrectly rejected when this scalar is refilled to
the reg and then used to offset into a packet header.
The later patch has a simplified bpf prog from a real use case
to demonstrate this case. The current work around is
to reparse the packet again such that this offset scalar
is close to where the packet data will be accessed to
avoid the spill. Thus, the header is parsed twice.

The llvm patch [1] will align the <8bytes spill to
the 8-byte stack address. This can simplify the verifier
support by avoiding to store multiple reg states for
each 8 byte stack slot.

This patch changes the verifier to save the reg state when
spilling <8bytes scalar to the stack. This reg state saving
is limited to spill aligned to the 8-byte stack address.
The current refill logic has already called coerce_reg_to_size(),
so coerce_reg_to_size() is not called on state->stack[spi].spilled_ptr
during spill.

When refilling in check_stack_read_fixed_off(), it checks
the refill size is the same as the number of bytes marked with
STACK_SPILL before restoring the reg state. When restoring
the reg state to state->regs[dst_regno], it needs
to avoid the state->regs[dst_regno].subreg_def being
over written because it has been marked by the check_reg_arg()
earlier [check_mem_access() is called after check_reg_arg() in
do_check()]. Reordering check_mem_access() and check_reg_arg()
will need a lot of changes in test_verifier's tests because
of the difference in verifier's error message. Thus, the
patch here is to save the state->regs[dst_regno].subreg_def
first in check_stack_read_fixed_off().

There are cases that the verifier needs to scrub the spilled slot
from STACK_SPILL to STACK_MISC. After this patch the spill is not always
in 8 bytes now, so it can no longer assume the other 7 bytes are always
marked as STACK_SPILL. In particular, the scrub needs to avoid marking
an uninitialized byte from STACK_INVALID to STACK_MISC. Otherwise, the
verifier will incorrectly accept bpf program reading uninitialized bytes
from the stack. A new helper scrub_spilled_slot() is created for this
purpose.

[1]: https://reviews.llvm.org/D109073

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210922004941.625398-1-kafai@fb.com


# 27113c59 21-Sep-2021 Martin KaFai Lau <kafai@fb.com>

bpf: Check the other end of slot_type for STACK_SPILL

Every 8 bytes of the stack is tracked by a bpf_stack_state.
Within each bpf_stack_state, there is a 'u8 slot_type[8]' to track
the type of each byte. Verifier tests slot_type[0] == STACK_SPILL
to decide if the spilled reg state is saved. Verifier currently only
saves the reg state if the whole 8 bytes are spilled to the stack,
so checking the slot_type[7] is the same as checking slot_type[0].

The later patch will allow verifier to save the bounded scalar
reg also for <8 bytes spill. There is a llvm patch [1] to ensure
the <8 bytes spill will be 8-byte aligned, so checking
slot_type[7] instead of slot_type[0] is required.

While at it, this patch refactors the slot_type[0] == STACK_SPILL
test into a new function is_spilled_reg() and change the
slot_type[0] check to slot_type[7] check in there also.

[1] https://reviews.llvm.org/D109073

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210922004934.624194-1-kafai@fb.com


# 9dd3d069 08-Dec-2020 Matthew Wilcox (Oracle) <willy@infradead.org>

mm/filemap: Add filemap_add_folio()

Convert __add_to_page_cache_locked() into __filemap_add_folio().
Add an assertion to it that (for !hugetlbfs), the folio is naturally
aligned within the file. Move the prototype from mm.h to pagemap.h.
Convert add_to_page_cache_lru() into filemap_add_folio(). Add a
compatibility wrapper for unconverted callers.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Howells <dhowells@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>


# 0e6491b5 10-Sep-2021 Bixuan Cui <cuibixuan@huawei.com>

bpf: Add oversize check before call kvcalloc()

Commit 7661809d493b ("mm: don't allow oversized kvmalloc() calls") add the
oversize check. When the allocation is larger than what kmalloc() supports,
the following warning triggered:

WARNING: CPU: 0 PID: 8408 at mm/util.c:597 kvmalloc_node+0x108/0x110 mm/util.c:597
Modules linked in:
CPU: 0 PID: 8408 Comm: syz-executor221 Not tainted 5.14.0-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:kvmalloc_node+0x108/0x110 mm/util.c:597
Call Trace:
kvmalloc include/linux/mm.h:806 [inline]
kvmalloc_array include/linux/mm.h:824 [inline]
kvcalloc include/linux/mm.h:829 [inline]
check_btf_line kernel/bpf/verifier.c:9925 [inline]
check_btf_info kernel/bpf/verifier.c:10049 [inline]
bpf_check+0xd634/0x150d0 kernel/bpf/verifier.c:13759
bpf_prog_load kernel/bpf/syscall.c:2301 [inline]
__sys_bpf+0x11181/0x126e0 kernel/bpf/syscall.c:4587
__do_sys_bpf kernel/bpf/syscall.c:4691 [inline]
__se_sys_bpf kernel/bpf/syscall.c:4689 [inline]
__x64_sys_bpf+0x78/0x90 kernel/bpf/syscall.c:4689
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae

Reported-by: syzbot+f3e749d4c662818ae439@syzkaller.appspotmail.com
Signed-off-by: Bixuan Cui <cuibixuan@huawei.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20210911005557.45518-1-cuibixuan@huawei.com


# d7af7e49 20-Aug-2021 Andrey Ignatov <rdna@fb.com>

bpf: Fix possible out of bound write in narrow load handling

Fix a verifier bug found by smatch static checker in [0].

This problem has never been seen in prod to my best knowledge. Fixing it
still seems to be a good idea since it's hard to say for sure whether
it's possible or not to have a scenario where a combination of
convert_ctx_access() and a narrow load would lead to an out of bound
write.

When narrow load is handled, one or two new instructions are added to
insn_buf array, but before it was only checked that

cnt >= ARRAY_SIZE(insn_buf)

And it's safe to add a new instruction to insn_buf[cnt++] only once. The
second try will lead to out of bound write. And this is what can happen
if `shift` is set.

Fix it by making sure that if the BPF_RSH instruction has to be added in
addition to BPF_AND then there is enough space for two more instructions
in insn_buf.

The full report [0] is below:

kernel/bpf/verifier.c:12304 convert_ctx_accesses() warn: offset 'cnt' incremented past end of array
kernel/bpf/verifier.c:12311 convert_ctx_accesses() warn: offset 'cnt' incremented past end of array

kernel/bpf/verifier.c
12282
12283 insn->off = off & ~(size_default - 1);
12284 insn->code = BPF_LDX | BPF_MEM | size_code;
12285 }
12286
12287 target_size = 0;
12288 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
12289 &target_size);
12290 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
^^^^^^^^^^^^^^^^^^^^^^^^^^^
Bounds check.

12291 (ctx_field_size && !target_size)) {
12292 verbose(env, "bpf verifier is misconfigured\n");
12293 return -EINVAL;
12294 }
12295
12296 if (is_narrower_load && size < target_size) {
12297 u8 shift = bpf_ctx_narrow_access_offset(
12298 off, size, size_default) * 8;
12299 if (ctx_field_size <= 4) {
12300 if (shift)
12301 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
^^^^^
increment beyond end of array

12302 insn->dst_reg,
12303 shift);
--> 12304 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
^^^^^
out of bounds write

12305 (1 << size * 8) - 1);
12306 } else {
12307 if (shift)
12308 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
12309 insn->dst_reg,
12310 shift);
12311 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
^^^^^^^^^^^^^^^
Same.

12312 (1ULL << size * 8) - 1);
12313 }
12314 }
12315
12316 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12317 if (!new_prog)
12318 return -ENOMEM;
12319
12320 delta += cnt - 1;
12321
12322 /* keep walking new program and skip insns we just inserted */
12323 env->prog = new_prog;
12324 insn = new_prog->insnsi + i + delta;
12325 }
12326
12327 return 0;
12328 }

[0] https://lore.kernel.org/bpf/20210817050843.GA21456@kili/

v1->v2:
- clarify that problem was only seen by static checker but not in prod;

Fixes: 46f53a65d2de ("bpf: Allow narrow loads with offset > 0")
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210820163935.1902398-1-rdna@fb.com


# fb7dd8bc 15-Aug-2021 Andrii Nakryiko <andrii@kernel.org>

bpf: Refactor BPF_PROG_RUN into a function

Turn BPF_PROG_RUN into a proper always inlined function. No functional and
performance changes are intended, but it makes it much easier to understand
what's going on with how BPF programs are actually get executed. It's more
obvious what types and callbacks are expected. Also extra () around input
parameters can be dropped, as well as `__` variable prefixes intended to avoid
naming collisions, which makes the code simpler to read and write.

This refactoring also highlighted one extra issue. BPF_PROG_RUN is both
a macro and an enum value (BPF_PROG_RUN == BPF_PROG_TEST_RUN). Turning
BPF_PROG_RUN into a function causes naming conflict compilation error. So
rename BPF_PROG_RUN into lower-case bpf_prog_run(), similar to
bpf_prog_run_xdp(), bpf_prog_run_pin_on_cpu(), etc. All existing callers of
BPF_PROG_RUN, the macro, are switched to bpf_prog_run() explicitly.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20210815070609.987780-2-andrii@kernel.org


# 9ffd9f3f 14-Jul-2021 Jiri Olsa <jolsa@redhat.com>

bpf: Add bpf_get_func_ip helper for kprobe programs

Adding bpf_get_func_ip helper for BPF_PROG_TYPE_KPROBE programs,
so it's now possible to call bpf_get_func_ip from both kprobe and
kretprobe programs.

Taking the caller's address from 'struct kprobe::addr', which is
defined for both kprobe and kretprobe.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Link: https://lore.kernel.org/bpf/20210714094400.396467-5-jolsa@kernel.org


# 9b99edca 14-Jul-2021 Jiri Olsa <jolsa@redhat.com>

bpf: Add bpf_get_func_ip helper for tracing programs

Adding bpf_get_func_ip helper for BPF_PROG_TYPE_TRACING programs,
specifically for all trampoline attach types.

The trampoline's caller IP address is stored in (ctx - 8) address.
so there's no reason to actually call the helper, but rather fixup
the call instruction and return [ctx - 8] value directly.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210714094400.396467-4-jolsa@kernel.org


# 7ddc80a4 14-Jul-2021 Alexei Starovoitov <ast@kernel.org>

bpf: Teach stack depth check about async callbacks.

Teach max stack depth checking algorithm about async callbacks
that don't increase bpf program stack size.
Also add sanity check that bpf_tail_call didn't sneak into async cb.
It's impossible, since PTR_TO_CTX is not available in async cb,
hence the program cannot contain bpf_tail_call(ctx,...);

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20210715005417.78572-10-alexei.starovoitov@gmail.com


# bfc6bb74 14-Jul-2021 Alexei Starovoitov <ast@kernel.org>

bpf: Implement verifier support for validation of async callbacks.

bpf_for_each_map_elem() and bpf_timer_set_callback() helpers are relying on
PTR_TO_FUNC infra in the verifier to validate addresses to subprograms
and pass them into the helpers as function callbacks.
In case of bpf_for_each_map_elem() the callback is invoked synchronously
and the verifier treats it as a normal subprogram call by adding another
bpf_func_state and new frame in __check_func_call().
bpf_timer_set_callback() doesn't invoke the callback directly.
The subprogram will be called asynchronously from bpf_timer_cb().
Teach the verifier to validate such async callbacks as special kind
of jump by pushing verifier state into stack and let pop_stack() process it.

Special care needs to be taken during state pruning.
The call insn doing bpf_timer_set_callback has to be a prune_point.
Otherwise short timer callbacks might not have prune points in front of
bpf_timer_set_callback() which means is_state_visited() will be called
after this call insn is processed in __check_func_call(). Which means that
another async_cb state will be pushed to be walked later and the verifier
will eventually hit BPF_COMPLEXITY_LIMIT_JMP_SEQ limit.
Since push_async_cb() looks like another push_stack() branch the
infinite loop detection will trigger false positive. To recognize
this case mark such states as in_async_callback_fn.
To distinguish infinite loop in async callback vs the same callback called
with different arguments for different map and timer add async_entry_cnt
to bpf_func_state.

Enforce return zero from async callbacks.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20210715005417.78572-9-alexei.starovoitov@gmail.com


# 86fc6ee6 14-Jul-2021 Alexei Starovoitov <ast@kernel.org>

bpf: Relax verifier recursion check.

In the following bpf subprogram:
static int timer_cb(void *map, void *key, void *value)
{
bpf_timer_set_callback(.., timer_cb);
}

the 'timer_cb' is a pointer to a function.
ld_imm64 insn is used to carry this pointer.
bpf_pseudo_func() returns true for such ld_imm64 insn.

Unlike bpf_for_each_map_elem() the bpf_timer_set_callback() is asynchronous.
Relax control flow check to allow such "recursion" that is seen as an infinite
loop by check_cfg(). The distinction between bpf_for_each_map_elem() the
bpf_timer_set_callback() is done in the follow up patch.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20210715005417.78572-8-alexei.starovoitov@gmail.com


# 3e8ce298 14-Jul-2021 Alexei Starovoitov <ast@kernel.org>

bpf: Prevent pointer mismatch in bpf_timer_init.

bpf_timer_init() arguments are:
1. pointer to a timer (which is embedded in map element).
2. pointer to a map.
Make sure that pointer to a timer actually belongs to that map.

Use map_uid (which is unique id of inner map) to reject:
inner_map1 = bpf_map_lookup_elem(outer_map, key1)
inner_map2 = bpf_map_lookup_elem(outer_map, key2)
if (inner_map1 && inner_map2) {
timer = bpf_map_lookup_elem(inner_map1);
if (timer)
// mismatch would have been allowed
bpf_timer_init(timer, inner_map2);
}

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20210715005417.78572-6-alexei.starovoitov@gmail.com


# 68134668 14-Jul-2021 Alexei Starovoitov <ast@kernel.org>

bpf: Add map side support for bpf timers.

Restrict bpf timers to array, hash (both preallocated and kmalloced), and
lru map types. The per-cpu maps with timers don't make sense, since 'struct
bpf_timer' is a part of map value. bpf timers in per-cpu maps would mean that
the number of timers depends on number of possible cpus and timers would not be
accessible from all cpus. lpm map support can be added in the future.
The timers in inner maps are supported.

The bpf_map_update/delete_elem() helpers and sys_bpf commands cancel and free
bpf_timer in a given map element.

Similar to 'struct bpf_spin_lock' BTF is required and it is used to validate
that map element indeed contains 'struct bpf_timer'.

Make check_and_init_map_value() init both bpf_spin_lock and bpf_timer when
map element data is reused in preallocated htab and lru maps.

Teach copy_map_value() to support both bpf_spin_lock and bpf_timer in a single
map element. There could be one of each, but not more than one. Due to 'one
bpf_timer in one element' restriction do not support timers in global data,
since global data is a map of single element, but from bpf program side it's
seen as many global variables and restriction of single global timer would be
odd. The sys_bpf map_freeze and sys_mmap syscalls are not allowed on maps with
timers, since user space could have corrupted mmap element and crashed the
kernel. The maps with timers cannot be readonly. Due to these restrictions
search for bpf_timer in datasec BTF in case it was placed in the global data to
report clear error.

The previous patch allowed 'struct bpf_timer' as a first field in a map
element only. Relax this restriction.

Refactor lru map to s/bpf_lru_push_free/htab_lru_push_free/ to cancel and free
the timer when lru map deletes an element as a part of it eviction algorithm.

Make sure that bpf program cannot access 'struct bpf_timer' via direct load/store.
The timer operation are done through helpers only.
This is similar to 'struct bpf_spin_lock'.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20210715005417.78572-5-alexei.starovoitov@gmail.com


# b00628b1 14-Jul-2021 Alexei Starovoitov <ast@kernel.org>

bpf: Introduce bpf timers.

Introduce 'struct bpf_timer { __u64 :64; __u64 :64; };' that can be embedded
in hash/array/lru maps as a regular field and helpers to operate on it:

// Initialize the timer.
// First 4 bits of 'flags' specify clockid.
// Only CLOCK_MONOTONIC, CLOCK_REALTIME, CLOCK_BOOTTIME are allowed.
long bpf_timer_init(struct bpf_timer *timer, struct bpf_map *map, int flags);

// Configure the timer to call 'callback_fn' static function.
long bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn);

// Arm the timer to expire 'nsec' nanoseconds from the current time.
long bpf_timer_start(struct bpf_timer *timer, u64 nsec, u64 flags);

// Cancel the timer and wait for callback_fn to finish if it was running.
long bpf_timer_cancel(struct bpf_timer *timer);

Here is how BPF program might look like:
struct map_elem {
int counter;
struct bpf_timer timer;
};

struct {
__uint(type, BPF_MAP_TYPE_HASH);
__uint(max_entries, 1000);
__type(key, int);
__type(value, struct map_elem);
} hmap SEC(".maps");

static int timer_cb(void *map, int *key, struct map_elem *val);
/* val points to particular map element that contains bpf_timer. */

SEC("fentry/bpf_fentry_test1")
int BPF_PROG(test1, int a)
{
struct map_elem *val;
int key = 0;

val = bpf_map_lookup_elem(&hmap, &key);
if (val) {
bpf_timer_init(&val->timer, &hmap, CLOCK_REALTIME);
bpf_timer_set_callback(&val->timer, timer_cb);
bpf_timer_start(&val->timer, 1000 /* call timer_cb2 in 1 usec */, 0);
}
}

This patch adds helper implementations that rely on hrtimers
to call bpf functions as timers expire.
The following patches add necessary safety checks.

Only programs with CAP_BPF are allowed to use bpf_timer.

The amount of timers used by the program is constrained by
the memcg recorded at map creation time.

The bpf_timer_init() helper needs explicit 'map' argument because inner maps
are dynamic and not known at load time. While the bpf_timer_set_callback() is
receiving hidden 'aux->prog' argument supplied by the verifier.

The prog pointer is needed to do refcnting of bpf program to make sure that
program doesn't get freed while the timer is armed. This approach relies on
"user refcnt" scheme used in prog_array that stores bpf programs for
bpf_tail_call. The bpf_timer_set_callback() will increment the prog refcnt which is
paired with bpf_timer_cancel() that will drop the prog refcnt. The
ops->map_release_uref is responsible for cancelling the timers and dropping
prog refcnt when user space reference to a map reaches zero.
This uref approach is done to make sure that Ctrl-C of user space process will
not leave timers running forever unless the user space explicitly pinned a map
that contained timers in bpffs.

bpf_timer_init() and bpf_timer_set_callback() will return -EPERM if map doesn't
have user references (is not held by open file descriptor from user space and
not pinned in bpffs).

The bpf_map_delete_elem() and bpf_map_update_elem() operations cancel
and free the timer if given map element had it allocated.
"bpftool map update" command can be used to cancel timers.

The 'struct bpf_timer' is explicitly __attribute__((aligned(8))) because
'__u64 :64' has 1 byte alignment of 8 byte padding.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20210715005417.78572-4-alexei.starovoitov@gmail.com


# 75f0fc7b 14-Jul-2021 He Fengqing <hefengqing@huawei.com>

bpf: Fix potential memleak and UAF in the verifier.

In bpf_patch_insn_data(), we first use the bpf_patch_insn_single() to
insert new instructions, then use adjust_insn_aux_data() to adjust
insn_aux_data. If the old env->prog have no enough room for new inserted
instructions, we use bpf_prog_realloc to construct new_prog and free the
old env->prog.

There have two errors here. First, if adjust_insn_aux_data() return
ENOMEM, we should free the new_prog. Second, if adjust_insn_aux_data()
return ENOMEM, bpf_patch_insn_data() will return NULL, and env->prog has
been freed in bpf_prog_realloc, but we will use it in bpf_check().

So in this patch, we make the adjust_insn_aux_data() never fails. In
bpf_patch_insn_data(), we first pre-malloc memory for the new
insn_aux_data, then call bpf_patch_insn_single() to insert new
instructions, at last call adjust_insn_aux_data() to adjust
insn_aux_data.

Fixes: 8041902dae52 ("bpf: adjust insn_aux_data when patching insns")
Signed-off-by: He Fengqing <hefengqing@huawei.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20210714101815.164322-1-hefengqing@huawei.com


# 5b029a32 23-Aug-2021 Daniel Borkmann <daniel@iogearbox.net>

bpf: Fix ringbuf helper function compatibility

Commit 457f44363a88 ("bpf: Implement BPF ring buffer and verifier support
for it") extended check_map_func_compatibility() by enforcing map -> helper
function match, but not helper -> map type match.

Due to this all of the bpf_ringbuf_*() helper functions could be used with
a wrong map type such as array or hash map, leading to invalid access due
to type confusion.

Also, both BPF_FUNC_ringbuf_{submit,discard} have ARG_PTR_TO_ALLOC_MEM as
argument and not a BPF map. Therefore, their check_map_func_compatibility()
presence is incorrect since it's only for map type checking.

Fixes: 457f44363a88 ("bpf: Implement BPF ring buffer and verifier support for it")
Reported-by: Ryota Shiga (Flatt Security)
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# 45c709f8 12-Aug-2021 Ilya Leoshkevich <iii@linux.ibm.com>

bpf: Clear zext_dst of dead insns

"access skb fields ok" verifier test fails on s390 with the "verifier
bug. zext_dst is set, but no reg is defined" message. The first insns
of the test prog are ...

0: 61 01 00 00 00 00 00 00 ldxw %r0,[%r1+0]
8: 35 00 00 01 00 00 00 00 jge %r0,0,1
10: 61 01 00 08 00 00 00 00 ldxw %r0,[%r1+8]

... and the 3rd one is dead (this does not look intentional to me, but
this is a separate topic).

sanitize_dead_code() converts dead insns into "ja -1", but keeps
zext_dst. When opt_subreg_zext_lo32_rnd_hi32() tries to parse such
an insn, it sees this discrepancy and bails. This problem can be seen
only with JITs whose bpf_jit_needs_zext() returns true.

Fix by clearning dead insns' zext_dst.

The commits that contributed to this problem are:

1. 5aa5bd14c5f8 ("bpf: add initial suite for selftests"), which
introduced the test with the dead code.
2. 5327ed3d44b7 ("bpf: verifier: mark verified-insn with
sub-register zext flag"), which introduced the zext_dst flag.
3. 83a2881903f3 ("bpf: Account for BPF_FETCH in
insn_has_def32()"), which introduced the sanity check.
4. 9183671af6db ("bpf: Fix leakage under speculation on
mispredicted branches"), which bisect points to.

It's best to fix this on stable branches that contain the second one,
since that's the point where the inconsistency was introduced.

Fixes: 5327ed3d44b7 ("bpf: verifier: mark verified-insn with sub-register zext flag")
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20210812151811.184086-2-iii@linux.ibm.com


# 2039f26f 13-Jul-2021 Daniel Borkmann <daniel@iogearbox.net>

bpf: Fix leakage due to insufficient speculative store bypass mitigation

Spectre v4 gadgets make use of memory disambiguation, which is a set of
techniques that execute memory access instructions, that is, loads and
stores, out of program order; Intel's optimization manual, section 2.4.4.5:

A load instruction micro-op may depend on a preceding store. Many
microarchitectures block loads until all preceding store addresses are
known. The memory disambiguator predicts which loads will not depend on
any previous stores. When the disambiguator predicts that a load does
not have such a dependency, the load takes its data from the L1 data
cache. Eventually, the prediction is verified. If an actual conflict is
detected, the load and all succeeding instructions are re-executed.

af86ca4e3088 ("bpf: Prevent memory disambiguation attack") tried to mitigate
this attack by sanitizing the memory locations through preemptive "fast"
(low latency) stores of zero prior to the actual "slow" (high latency) store
of a pointer value such that upon dependency misprediction the CPU then
speculatively executes the load of the pointer value and retrieves the zero
value instead of the attacker controlled scalar value previously stored at
that location, meaning, subsequent access in the speculative domain is then
redirected to the "zero page".

The sanitized preemptive store of zero prior to the actual "slow" store is
done through a simple ST instruction based on r10 (frame pointer) with
relative offset to the stack location that the verifier has been tracking
on the original used register for STX, which does not have to be r10. Thus,
there are no memory dependencies for this store, since it's only using r10
and immediate constant of zero; hence af86ca4e3088 /assumed/ a low latency
operation.

However, a recent attack demonstrated that this mitigation is not sufficient
since the preemptive store of zero could also be turned into a "slow" store
and is thus bypassed as well:

[...]
// r2 = oob address (e.g. scalar)
// r7 = pointer to map value
31: (7b) *(u64 *)(r10 -16) = r2
// r9 will remain "fast" register, r10 will become "slow" register below
32: (bf) r9 = r10
// JIT maps BPF reg to x86 reg:
// r9 -> r15 (callee saved)
// r10 -> rbp
// train store forward prediction to break dependency link between both r9
// and r10 by evicting them from the predictor's LRU table.
33: (61) r0 = *(u32 *)(r7 +24576)
34: (63) *(u32 *)(r7 +29696) = r0
35: (61) r0 = *(u32 *)(r7 +24580)
36: (63) *(u32 *)(r7 +29700) = r0
37: (61) r0 = *(u32 *)(r7 +24584)
38: (63) *(u32 *)(r7 +29704) = r0
39: (61) r0 = *(u32 *)(r7 +24588)
40: (63) *(u32 *)(r7 +29708) = r0
[...]
543: (61) r0 = *(u32 *)(r7 +25596)
544: (63) *(u32 *)(r7 +30716) = r0
// prepare call to bpf_ringbuf_output() helper. the latter will cause rbp
// to spill to stack memory while r13/r14/r15 (all callee saved regs) remain
// in hardware registers. rbp becomes slow due to push/pop latency. below is
// disasm of bpf_ringbuf_output() helper for better visual context:
//
// ffffffff8117ee20: 41 54 push r12
// ffffffff8117ee22: 55 push rbp
// ffffffff8117ee23: 53 push rbx
// ffffffff8117ee24: 48 f7 c1 fc ff ff ff test rcx,0xfffffffffffffffc
// ffffffff8117ee2b: 0f 85 af 00 00 00 jne ffffffff8117eee0 <-- jump taken
// [...]
// ffffffff8117eee0: 49 c7 c4 ea ff ff ff mov r12,0xffffffffffffffea
// ffffffff8117eee7: 5b pop rbx
// ffffffff8117eee8: 5d pop rbp
// ffffffff8117eee9: 4c 89 e0 mov rax,r12
// ffffffff8117eeec: 41 5c pop r12
// ffffffff8117eeee: c3 ret
545: (18) r1 = map[id:4]
547: (bf) r2 = r7
548: (b7) r3 = 0
549: (b7) r4 = 4
550: (85) call bpf_ringbuf_output#194288
// instruction 551 inserted by verifier \
551: (7a) *(u64 *)(r10 -16) = 0 | /both/ are now slow stores here
// storing map value pointer r7 at fp-16 | since value of r10 is "slow".
552: (7b) *(u64 *)(r10 -16) = r7 /
// following "fast" read to the same memory location, but due to dependency
// misprediction it will speculatively execute before insn 551/552 completes.
553: (79) r2 = *(u64 *)(r9 -16)
// in speculative domain contains attacker controlled r2. in non-speculative
// domain this contains r7, and thus accesses r7 +0 below.
554: (71) r3 = *(u8 *)(r2 +0)
// leak r3

As can be seen, the current speculative store bypass mitigation which the
verifier inserts at line 551 is insufficient since /both/, the write of
the zero sanitation as well as the map value pointer are a high latency
instruction due to prior memory access via push/pop of r10 (rbp) in contrast
to the low latency read in line 553 as r9 (r15) which stays in hardware
registers. Thus, architecturally, fp-16 is r7, however, microarchitecturally,
fp-16 can still be r2.

Initial thoughts to address this issue was to track spilled pointer loads
from stack and enforce their load via LDX through r10 as well so that /both/
the preemptive store of zero /as well as/ the load use the /same/ register
such that a dependency is created between the store and load. However, this
option is not sufficient either since it can be bypassed as well under
speculation. An updated attack with pointer spill/fills now _all_ based on
r10 would look as follows:

[...]
// r2 = oob address (e.g. scalar)
// r7 = pointer to map value
[...]
// longer store forward prediction training sequence than before.
2062: (61) r0 = *(u32 *)(r7 +25588)
2063: (63) *(u32 *)(r7 +30708) = r0
2064: (61) r0 = *(u32 *)(r7 +25592)
2065: (63) *(u32 *)(r7 +30712) = r0
2066: (61) r0 = *(u32 *)(r7 +25596)
2067: (63) *(u32 *)(r7 +30716) = r0
// store the speculative load address (scalar) this time after the store
// forward prediction training.
2068: (7b) *(u64 *)(r10 -16) = r2
// preoccupy the CPU store port by running sequence of dummy stores.
2069: (63) *(u32 *)(r7 +29696) = r0
2070: (63) *(u32 *)(r7 +29700) = r0
2071: (63) *(u32 *)(r7 +29704) = r0
2072: (63) *(u32 *)(r7 +29708) = r0
2073: (63) *(u32 *)(r7 +29712) = r0
2074: (63) *(u32 *)(r7 +29716) = r0
2075: (63) *(u32 *)(r7 +29720) = r0
2076: (63) *(u32 *)(r7 +29724) = r0
2077: (63) *(u32 *)(r7 +29728) = r0
2078: (63) *(u32 *)(r7 +29732) = r0
2079: (63) *(u32 *)(r7 +29736) = r0
2080: (63) *(u32 *)(r7 +29740) = r0
2081: (63) *(u32 *)(r7 +29744) = r0
2082: (63) *(u32 *)(r7 +29748) = r0
2083: (63) *(u32 *)(r7 +29752) = r0
2084: (63) *(u32 *)(r7 +29756) = r0
2085: (63) *(u32 *)(r7 +29760) = r0
2086: (63) *(u32 *)(r7 +29764) = r0
2087: (63) *(u32 *)(r7 +29768) = r0
2088: (63) *(u32 *)(r7 +29772) = r0
2089: (63) *(u32 *)(r7 +29776) = r0
2090: (63) *(u32 *)(r7 +29780) = r0
2091: (63) *(u32 *)(r7 +29784) = r0
2092: (63) *(u32 *)(r7 +29788) = r0
2093: (63) *(u32 *)(r7 +29792) = r0
2094: (63) *(u32 *)(r7 +29796) = r0
2095: (63) *(u32 *)(r7 +29800) = r0
2096: (63) *(u32 *)(r7 +29804) = r0
2097: (63) *(u32 *)(r7 +29808) = r0
2098: (63) *(u32 *)(r7 +29812) = r0
// overwrite scalar with dummy pointer; same as before, also including the
// sanitation store with 0 from the current mitigation by the verifier.
2099: (7a) *(u64 *)(r10 -16) = 0 | /both/ are now slow stores here
2100: (7b) *(u64 *)(r10 -16) = r7 | since store unit is still busy.
// load from stack intended to bypass stores.
2101: (79) r2 = *(u64 *)(r10 -16)
2102: (71) r3 = *(u8 *)(r2 +0)
// leak r3
[...]

Looking at the CPU microarchitecture, the scheduler might issue loads (such
as seen in line 2101) before stores (line 2099,2100) because the load execution
units become available while the store execution unit is still busy with the
sequence of dummy stores (line 2069-2098). And so the load may use the prior
stored scalar from r2 at address r10 -16 for speculation. The updated attack
may work less reliable on CPU microarchitectures where loads and stores share
execution resources.

This concludes that the sanitizing with zero stores from af86ca4e3088 ("bpf:
Prevent memory disambiguation attack") is insufficient. Moreover, the detection
of stack reuse from af86ca4e3088 where previously data (STACK_MISC) has been
written to a given stack slot where a pointer value is now to be stored does
not have sufficient coverage as precondition for the mitigation either; for
several reasons outlined as follows:

1) Stack content from prior program runs could still be preserved and is
therefore not "random", best example is to split a speculative store
bypass attack between tail calls, program A would prepare and store the
oob address at a given stack slot and then tail call into program B which
does the "slow" store of a pointer to the stack with subsequent "fast"
read. From program B PoV such stack slot type is STACK_INVALID, and
therefore also must be subject to mitigation.

2) The STACK_SPILL must not be coupled to register_is_const(&stack->spilled_ptr)
condition, for example, the previous content of that memory location could
also be a pointer to map or map value. Without the fix, a speculative
store bypass is not mitigated in such precondition and can then lead to
a type confusion in the speculative domain leaking kernel memory near
these pointer types.

While brainstorming on various alternative mitigation possibilities, we also
stumbled upon a retrospective from Chrome developers [0]:

[...] For variant 4, we implemented a mitigation to zero the unused memory
of the heap prior to allocation, which cost about 1% when done concurrently
and 4% for scavenging. Variant 4 defeats everything we could think of. We
explored more mitigations for variant 4 but the threat proved to be more
pervasive and dangerous than we anticipated. For example, stack slots used
by the register allocator in the optimizing compiler could be subject to
type confusion, leading to pointer crafting. Mitigating type confusion for
stack slots alone would have required a complete redesign of the backend of
the optimizing compiler, perhaps man years of work, without a guarantee of
completeness. [...]

From BPF side, the problem space is reduced, however, options are rather
limited. One idea that has been explored was to xor-obfuscate pointer spills
to the BPF stack:

[...]
// preoccupy the CPU store port by running sequence of dummy stores.
[...]
2106: (63) *(u32 *)(r7 +29796) = r0
2107: (63) *(u32 *)(r7 +29800) = r0
2108: (63) *(u32 *)(r7 +29804) = r0
2109: (63) *(u32 *)(r7 +29808) = r0
2110: (63) *(u32 *)(r7 +29812) = r0
// overwrite scalar with dummy pointer; xored with random 'secret' value
// of 943576462 before store ...
2111: (b4) w11 = 943576462
2112: (af) r11 ^= r7
2113: (7b) *(u64 *)(r10 -16) = r11
2114: (79) r11 = *(u64 *)(r10 -16)
2115: (b4) w2 = 943576462
2116: (af) r2 ^= r11
// ... and restored with the same 'secret' value with the help of AX reg.
2117: (71) r3 = *(u8 *)(r2 +0)
[...]

While the above would not prevent speculation, it would make data leakage
infeasible by directing it to random locations. In order to be effective
and prevent type confusion under speculation, such random secret would have
to be regenerated for each store. The additional complexity involved for a
tracking mechanism that prevents jumps such that restoring spilled pointers
would not get corrupted is not worth the gain for unprivileged. Hence, the
fix in here eventually opted for emitting a non-public BPF_ST | BPF_NOSPEC
instruction which the x86 JIT translates into a lfence opcode. Inserting the
latter in between the store and load instruction is one of the mitigations
options [1]. The x86 instruction manual notes:

[...] An LFENCE that follows an instruction that stores to memory might
complete before the data being stored have become globally visible. [...]

The latter meaning that the preceding store instruction finished execution
and the store is at minimum guaranteed to be in the CPU's store queue, but
it's not guaranteed to be in that CPU's L1 cache at that point (globally
visible). The latter would only be guaranteed via sfence. So the load which
is guaranteed to execute after the lfence for that local CPU would have to
rely on store-to-load forwarding. [2], in section 2.3 on store buffers says:

[...] For every store operation that is added to the ROB, an entry is
allocated in the store buffer. This entry requires both the virtual and
physical address of the target. Only if there is no free entry in the store
buffer, the frontend stalls until there is an empty slot available in the
store buffer again. Otherwise, the CPU can immediately continue adding
subsequent instructions to the ROB and execute them out of order. On Intel
CPUs, the store buffer has up to 56 entries. [...]

One small upside on the fix is that it lifts constraints from af86ca4e3088
where the sanitize_stack_off relative to r10 must be the same when coming
from different paths. The BPF_ST | BPF_NOSPEC gets emitted after a BPF_STX
or BPF_ST instruction. This happens either when we store a pointer or data
value to the BPF stack for the first time, or upon later pointer spills.
The former needs to be enforced since otherwise stale stack data could be
leaked under speculation as outlined earlier. For non-x86 JITs the BPF_ST |
BPF_NOSPEC mapping is currently optimized away, but others could emit a
speculation barrier as well if necessary. For real-world unprivileged
programs e.g. generated by LLVM, pointer spill/fill is only generated upon
register pressure and LLVM only tries to do that for pointers which are not
used often. The program main impact will be the initial BPF_ST | BPF_NOSPEC
sanitation for the STACK_INVALID case when the first write to a stack slot
occurs e.g. upon map lookup. In future we might refine ways to mitigate
the latter cost.

[0] https://arxiv.org/pdf/1902.05178.pdf
[1] https://msrc-blog.microsoft.com/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/
[2] https://arxiv.org/pdf/1905.05725.pdf

Fixes: af86ca4e3088 ("bpf: Prevent memory disambiguation attack")
Fixes: f7cf25b2026d ("bpf: track spill/fill of constants")
Co-developed-by: Piotr Krysiuk <piotras@gmail.com>
Co-developed-by: Benedict Schlueter <benedict.schlueter@rub.de>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Piotr Krysiuk <piotras@gmail.com>
Signed-off-by: Benedict Schlueter <benedict.schlueter@rub.de>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# e042aa53 16-Jul-2021 Daniel Borkmann <daniel@iogearbox.net>

bpf: Fix pointer arithmetic mask tightening under state pruning

In 7fedb63a8307 ("bpf: Tighten speculative pointer arithmetic mask") we
narrowed the offset mask for unprivileged pointer arithmetic in order to
mitigate a corner case where in the speculative domain it is possible to
advance, for example, the map value pointer by up to value_size-1 out-of-
bounds in order to leak kernel memory via side-channel to user space.

The verifier's state pruning for scalars leaves one corner case open
where in the first verification path R_x holds an unknown scalar with an
aux->alu_limit of e.g. 7, and in a second verification path that same
register R_x, here denoted as R_x', holds an unknown scalar which has
tighter bounds and would thus satisfy range_within(R_x, R_x') as well as
tnum_in(R_x, R_x') for state pruning, yielding an aux->alu_limit of 3:
Given the second path fits the register constraints for pruning, the final
generated mask from aux->alu_limit will remain at 7. While technically
not wrong for the non-speculative domain, it would however be possible
to craft similar cases where the mask would be too wide as in 7fedb63a8307.

One way to fix it is to detect the presence of unknown scalar map pointer
arithmetic and force a deeper search on unknown scalars to ensure that
we do not run into a masking mismatch.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# 59089a18 29-Jun-2021 Daniel Borkmann <daniel@iogearbox.net>

bpf: Remove superfluous aux sanitation on subprog rejection

Follow-up to fe9a5ca7e370 ("bpf: Do not mark insn as seen under speculative
path verification"). The sanitize_insn_aux_data() helper does not serve a
particular purpose in today's code. The original intention for the helper
was that if function-by-function verification fails, a given program would
be cleared from temporary insn_aux_data[], and then its verification would
be re-attempted in the context of the main program a second time.

However, a failure in do_check_subprogs() will skip do_check_main() and
propagate the error to the user instead, thus such situation can never occur.
Given its interaction is not compatible to the Spectre v1 mitigation (due to
comparing aux->seen with env->pass_cnt), just remove sanitize_insn_aux_data()
to avoid future bugs in this area.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# 5dd0a6b8 12-Jul-2021 Daniel Borkmann <daniel@iogearbox.net>

bpf: Fix tail_call_reachable rejection for interpreter when jit failed

During testing of f263a81451c1 ("bpf: Track subprog poke descriptors correctly
and fix use-after-free") under various failure conditions, for example, when
jit_subprogs() fails and tries to clean up the program to be run under the
interpreter, we ran into the following freeze:

[...]
#127/8 tailcall_bpf2bpf_3:FAIL
[...]
[ 92.041251] BUG: KASAN: slab-out-of-bounds in ___bpf_prog_run+0x1b9d/0x2e20
[ 92.042408] Read of size 8 at addr ffff88800da67f68 by task test_progs/682
[ 92.043707]
[ 92.044030] CPU: 1 PID: 682 Comm: test_progs Tainted: G O 5.13.0-53301-ge6c08cb33a30-dirty #87
[ 92.045542] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1 04/01/2014
[ 92.046785] Call Trace:
[ 92.047171] ? __bpf_prog_run_args64+0xc0/0xc0
[ 92.047773] ? __bpf_prog_run_args32+0x8b/0xb0
[ 92.048389] ? __bpf_prog_run_args64+0xc0/0xc0
[ 92.049019] ? ktime_get+0x117/0x130
[...] // few hundred [similar] lines more
[ 92.659025] ? ktime_get+0x117/0x130
[ 92.659845] ? __bpf_prog_run_args64+0xc0/0xc0
[ 92.660738] ? __bpf_prog_run_args32+0x8b/0xb0
[ 92.661528] ? __bpf_prog_run_args64+0xc0/0xc0
[ 92.662378] ? print_usage_bug+0x50/0x50
[ 92.663221] ? print_usage_bug+0x50/0x50
[ 92.664077] ? bpf_ksym_find+0x9c/0xe0
[ 92.664887] ? ktime_get+0x117/0x130
[ 92.665624] ? kernel_text_address+0xf5/0x100
[ 92.666529] ? __kernel_text_address+0xe/0x30
[ 92.667725] ? unwind_get_return_address+0x2f/0x50
[ 92.668854] ? ___bpf_prog_run+0x15d4/0x2e20
[ 92.670185] ? ktime_get+0x117/0x130
[ 92.671130] ? __bpf_prog_run_args64+0xc0/0xc0
[ 92.672020] ? __bpf_prog_run_args32+0x8b/0xb0
[ 92.672860] ? __bpf_prog_run_args64+0xc0/0xc0
[ 92.675159] ? ktime_get+0x117/0x130
[ 92.677074] ? lock_is_held_type+0xd5/0x130
[ 92.678662] ? ___bpf_prog_run+0x15d4/0x2e20
[ 92.680046] ? ktime_get+0x117/0x130
[ 92.681285] ? __bpf_prog_run32+0x6b/0x90
[ 92.682601] ? __bpf_prog_run64+0x90/0x90
[ 92.683636] ? lock_downgrade+0x370/0x370
[ 92.684647] ? mark_held_locks+0x44/0x90
[ 92.685652] ? ktime_get+0x117/0x130
[ 92.686752] ? lockdep_hardirqs_on+0x79/0x100
[ 92.688004] ? ktime_get+0x117/0x130
[ 92.688573] ? __cant_migrate+0x2b/0x80
[ 92.689192] ? bpf_test_run+0x2f4/0x510
[ 92.689869] ? bpf_test_timer_continue+0x1c0/0x1c0
[ 92.690856] ? rcu_read_lock_bh_held+0x90/0x90
[ 92.691506] ? __kasan_slab_alloc+0x61/0x80
[ 92.692128] ? eth_type_trans+0x128/0x240
[ 92.692737] ? __build_skb+0x46/0x50
[ 92.693252] ? bpf_prog_test_run_skb+0x65e/0xc50
[ 92.693954] ? bpf_prog_test_run_raw_tp+0x2d0/0x2d0
[ 92.694639] ? __fget_light+0xa1/0x100
[ 92.695162] ? bpf_prog_inc+0x23/0x30
[ 92.695685] ? __sys_bpf+0xb40/0x2c80
[ 92.696324] ? bpf_link_get_from_fd+0x90/0x90
[ 92.697150] ? mark_held_locks+0x24/0x90
[ 92.698007] ? lockdep_hardirqs_on_prepare+0x124/0x220
[ 92.699045] ? finish_task_switch+0xe6/0x370
[ 92.700072] ? lockdep_hardirqs_on+0x79/0x100
[ 92.701233] ? finish_task_switch+0x11d/0x370
[ 92.702264] ? __switch_to+0x2c0/0x740
[ 92.703148] ? mark_held_locks+0x24/0x90
[ 92.704155] ? __x64_sys_bpf+0x45/0x50
[ 92.705146] ? do_syscall_64+0x35/0x80
[ 92.706953] ? entry_SYSCALL_64_after_hwframe+0x44/0xae
[...]

Turns out that the program rejection from e411901c0b77 ("bpf: allow for tailcalls
in BPF subprograms for x64 JIT") is buggy since env->prog->aux->tail_call_reachable
is never true. Commit ebf7d1f508a7 ("bpf, x64: rework pro/epilogue and tailcall
handling in JIT") added a tracker into check_max_stack_depth() which propagates
the tail_call_reachable condition throughout the subprograms. This info is then
assigned to the subprogram's func[i]->aux->tail_call_reachable. However, in the
case of the rejection check upon JIT failure, env->prog->aux->tail_call_reachable
is used. func[0]->aux->tail_call_reachable which represents the main program's
information did not propagate this to the outer env->prog->aux, though. Add this
propagation into check_max_stack_depth() where it needs to belong so that the
check can be done reliably.

Fixes: ebf7d1f508a7 ("bpf, x64: rework pro/epilogue and tailcall handling in JIT")
Fixes: e411901c0b77 ("bpf: allow for tailcalls in BPF subprograms for x64 JIT")
Co-developed-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com>
Link: https://lore.kernel.org/bpf/618c34e3163ad1a36b1e82377576a6081e182f25.1626123173.git.daniel@iogearbox.net


# f263a814 07-Jul-2021 John Fastabend <john.fastabend@gmail.com>

bpf: Track subprog poke descriptors correctly and fix use-after-free

Subprograms are calling map_poke_track(), but on program release there is no
hook to call map_poke_untrack(). However, on program release, the aux memory
(and poke descriptor table) is freed even though we still have a reference to
it in the element list of the map aux data. When we run map_poke_run(), we then
end up accessing free'd memory, triggering KASAN in prog_array_map_poke_run():

[...]
[ 402.824689] BUG: KASAN: use-after-free in prog_array_map_poke_run+0xc2/0x34e
[ 402.824698] Read of size 4 at addr ffff8881905a7940 by task hubble-fgs/4337
[ 402.824705] CPU: 1 PID: 4337 Comm: hubble-fgs Tainted: G I 5.12.0+ #399
[ 402.824715] Call Trace:
[ 402.824719] dump_stack+0x93/0xc2
[ 402.824727] print_address_description.constprop.0+0x1a/0x140
[ 402.824736] ? prog_array_map_poke_run+0xc2/0x34e
[ 402.824740] ? prog_array_map_poke_run+0xc2/0x34e
[ 402.824744] kasan_report.cold+0x7c/0xd8
[ 402.824752] ? prog_array_map_poke_run+0xc2/0x34e
[ 402.824757] prog_array_map_poke_run+0xc2/0x34e
[ 402.824765] bpf_fd_array_map_update_elem+0x124/0x1a0
[...]

The elements concerned are walked as follows:

for (i = 0; i < elem->aux->size_poke_tab; i++) {
poke = &elem->aux->poke_tab[i];
[...]

The access to size_poke_tab is a 4 byte read, verified by checking offsets
in the KASAN dump:

[ 402.825004] The buggy address belongs to the object at ffff8881905a7800
which belongs to the cache kmalloc-1k of size 1024
[ 402.825008] The buggy address is located 320 bytes inside of
1024-byte region [ffff8881905a7800, ffff8881905a7c00)

The pahole output of bpf_prog_aux:

struct bpf_prog_aux {
[...]
/* --- cacheline 5 boundary (320 bytes) --- */
u32 size_poke_tab; /* 320 4 */
[...]

In general, subprograms do not necessarily manage their own data structures.
For example, BTF func_info and linfo are just pointers to the main program
structure. This allows reference counting and cleanup to be done on the latter
which simplifies their management a bit. The aux->poke_tab struct, however,
did not follow this logic. The initial proposed fix for this use-after-free
bug further embedded poke data tracking into the subprogram with proper
reference counting. However, Daniel and Alexei questioned why we were treating
these objects special; I agree, its unnecessary. The fix here removes the per
subprogram poke table allocation and map tracking and instead simply points
the aux->poke_tab pointer at the main programs poke table. This way, map
tracking is simplified to the main program and we do not need to manage them
per subprogram.

This also means, bpf_prog_free_deferred(), which unwinds the program reference
counting and kfrees objects, needs to ensure that we don't try to double free
the poke_tab when free'ing the subprog structures. This is easily solved by
NULL'ing the poke_tab pointer. The second detail is to ensure that per
subprogram JIT logic only does fixups on poke_tab[] entries it owns. To do
this, we add a pointer in the poke structure to point at the subprogram value
so JITs can easily check while walking the poke_tab structure if the current
entry belongs to the current program. The aux pointer is stable and therefore
suitable for such comparison. On the jit_subprogs() error path, we omit
cleaning up the poke->aux field because these are only ever referenced from
the JIT side, but on error we will never make it to the JIT, so its fine to
leave them dangling. Removing these pointers would complicate the error path
for no reason. However, we do need to untrack all poke descriptors from the
main program as otherwise they could race with the freeing of JIT memory from
the subprograms. Lastly, a748c6975dea3 ("bpf: propagate poke descriptors to
subprograms") had an off-by-one on the subprogram instruction index range
check as it was testing 'insn_idx >= subprog_start && insn_idx <= subprog_end'.
However, subprog_end is the next subprogram's start instruction.

Fixes: a748c6975dea3 ("bpf: propagate poke descriptors to subprograms")
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Co-developed-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20210707223848.14580-2-john.fastabend@gmail.com


# 7506d211 16-Jun-2021 John Fastabend <john.fastabend@gmail.com>

bpf: Fix null ptr deref with mixed tail calls and subprogs

The sub-programs prog->aux->poke_tab[] is populated in jit_subprogs() and
then used when emitting 'BPF_JMP|BPF_TAIL_CALL' insn->code from the
individual JITs. The poke_tab[] to use is stored in the insn->imm by
the code adding it to that array slot. The JIT then uses imm to find the
right entry for an individual instruction. In the x86 bpf_jit_comp.c
this is done by calling emit_bpf_tail_call_direct with the poke_tab[]
of the imm value.

However, we observed the below null-ptr-deref when mixing tail call
programs with subprog programs. For this to happen we just need to
mix bpf-2-bpf calls and tailcalls with some extra calls or instructions
that would be patched later by one of the fixup routines. So whats
happening?

Before the fixup_call_args() -- where the jit op is done -- various
code patching is done by do_misc_fixups(). This may increase the
insn count, for example when we patch map_lookup_up using map_gen_lookup
hook. This does two things. First, it means the instruction index,
insn_idx field, of a tail call instruction will move by a 'delta'.

In verifier code,

struct bpf_jit_poke_descriptor desc = {
.reason = BPF_POKE_REASON_TAIL_CALL,
.tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
.tail_call.key = bpf_map_key_immediate(aux),
.insn_idx = i + delta,
};

Then subprog start values subprog_info[i].start will be updated
with the delta and any poke descriptor index will also be updated
with the delta in adjust_poke_desc(). If we look at the adjust
subprog starts though we see its only adjusted when the delta
occurs before the new instructions,

/* NOTE: fake 'exit' subprog should be updated as well. */
for (i = 0; i <= env->subprog_cnt; i++) {
if (env->subprog_info[i].start <= off)
continue;

Earlier subprograms are not changed because their start values
are not moved. But, adjust_poke_desc() does the offset + delta
indiscriminately. The result is poke descriptors are potentially
corrupted.

Then in jit_subprogs() we only populate the poke_tab[]
when the above insn_idx is less than the next subprogram start. From
above we corrupted our insn_idx so we might incorrectly assume a
poke descriptor is not used in a subprogram omitting it from the
subprogram. And finally when the jit runs it does the deref of poke_tab
when emitting the instruction and crashes with below. Because earlier
step omitted the poke descriptor.

The fix is straight forward with above context. Simply move same logic
from adjust_subprog_starts() into adjust_poke_descs() and only adjust
insn_idx when needed.

[ 82.396354] bpf_testmod: version magic '5.12.0-rc2alu+ SMP preempt mod_unload ' should be '5.12.0+ SMP preempt mod_unload '
[ 82.623001] loop10: detected capacity change from 0 to 8
[ 88.487424] ==================================================================
[ 88.487438] BUG: KASAN: null-ptr-deref in do_jit+0x184a/0x3290
[ 88.487455] Write of size 8 at addr 0000000000000008 by task test_progs/5295
[ 88.487471] CPU: 7 PID: 5295 Comm: test_progs Tainted: G I 5.12.0+ #386
[ 88.487483] Hardware name: Dell Inc. Precision 5820 Tower/002KVM, BIOS 1.9.2 01/24/2019
[ 88.487490] Call Trace:
[ 88.487498] dump_stack+0x93/0xc2
[ 88.487515] kasan_report.cold+0x5f/0xd8
[ 88.487530] ? do_jit+0x184a/0x3290
[ 88.487542] do_jit+0x184a/0x3290
...
[ 88.487709] bpf_int_jit_compile+0x248/0x810
...
[ 88.487765] bpf_check+0x3718/0x5140
...
[ 88.487920] bpf_prog_load+0xa22/0xf10

Fixes: a748c6975dea3 ("bpf: propagate poke descriptors to subprograms")
Reported-by: Jussi Maki <joamaki@gmail.com>
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Daniel Borkmann <daniel@iogearbox.net>


# 8fb33b60 24-May-2021 Zhen Lei <thunder.leizhen@huawei.com>

bpf: Fix spelling mistakes

Fix some spelling mistakes in comments:
aother ==> another
Netiher ==> Neither
desribe ==> describe
intializing ==> initializing
funciton ==> function
wont ==> won't and move the word 'the' at the end to the next line
accross ==> across
pathes ==> paths
triggerred ==> triggered
excute ==> execute
ether ==> either
conervative ==> conservative
convetion ==> convention
markes ==> marks
interpeter ==> interpreter

Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210525025659.8898-2-thunder.leizhen@huawei.com


# 387544bf 13-May-2021 Alexei Starovoitov <ast@kernel.org>

bpf: Introduce fd_idx

Typical program loading sequence involves creating bpf maps and applying
map FDs into bpf instructions in various places in the bpf program.
This job is done by libbpf that is using compiler generated ELF relocations
to patch certain instruction after maps are created and BTFs are loaded.
The goal of fd_idx is to allow bpf instructions to stay immutable
after compilation. At load time the libbpf would still create maps as usual,
but it wouldn't need to patch instructions. It would store map_fds into
__u32 fd_array[] and would pass that pointer to sys_bpf(BPF_PROG_LOAD).

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210514003623.28033-9-alexei.starovoitov@gmail.com


# af2ac3e1 13-May-2021 Alexei Starovoitov <ast@kernel.org>

bpf: Prepare bpf syscall to be used from kernel and user space.

With the help from bpfptr_t prepare relevant bpf syscall commands
to be used from kernel and user space.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210514003623.28033-4-alexei.starovoitov@gmail.com


# 79a7f8bd 13-May-2021 Alexei Starovoitov <ast@kernel.org>

bpf: Introduce bpf_sys_bpf() helper and program type.

Add placeholders for bpf_sys_bpf() helper and new program type.
Make sure to check that expected_attach_type is zero for future extensibility.
Allow tracing helper functions to be used in this program type, since they will
only execute from user context via bpf_prog_test_run.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210514003623.28033-2-alexei.starovoitov@gmail.com


# c9e73e3d 29-Apr-2021 Lorenz Bauer <lmb@cloudflare.com>

bpf: verifier: Allocate idmap scratch in verifier env

func_states_equal makes a very short lived allocation for idmap,
probably because it's too large to fit on the stack. However the
function is called quite often, leading to a lot of alloc / free
churn. Replace the temporary allocation with dedicated scratch
space in struct bpf_verifier_env.

Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Edward Cree <ecree.xilinx@gmail.com>
Link: https://lore.kernel.org/bpf/20210429134656.122225-4-lmb@cloudflare.com


# 06ab6a50 29-Apr-2021 Lorenz Bauer <lmb@cloudflare.com>

bpf: verifier: Use copy_array for jmp_history

Eliminate a couple needless kfree / kmalloc cycles by using
copy_array for jmp_history.

Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210429134656.122225-3-lmb@cloudflare.com


# c69431aa 29-Apr-2021 Lorenz Bauer <lmb@cloudflare.com>

bpf: verifier: Improve function state reallocation

Resizing and copying stack and reference tracking state currently
does a lot of kfree / kmalloc when the size of the tracked set changes.
The logic in copy_*_state and realloc_*_state is also hard to follow.

Refactor this into two core functions. copy_array copies from a source
into a destination. It avoids reallocation by taking the allocated
size of the destination into account via ksize(). The function is
essentially krealloc_array, with the difference that the contents of
dst are not preserved. realloc_array changes the size of an array and
zeroes newly allocated items. Contrary to krealloc both functions don't
free the destination if the size is zero. Instead we rely on free_func_state
to clean up.

realloc_stack_state is renamed to grow_stack_state to better convey
that it never shrinks the stack state.

Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210429134656.122225-2-lmb@cloudflare.com


# 9183671a 28-May-2021 Daniel Borkmann <daniel@iogearbox.net>

bpf: Fix leakage under speculation on mispredicted branches

The verifier only enumerates valid control-flow paths and skips paths that
are unreachable in the non-speculative domain. And so it can miss issues
under speculative execution on mispredicted branches.

For example, a type confusion has been demonstrated with the following
crafted program:

// r0 = pointer to a map array entry
// r6 = pointer to readable stack slot
// r9 = scalar controlled by attacker
1: r0 = *(u64 *)(r0) // cache miss
2: if r0 != 0x0 goto line 4
3: r6 = r9
4: if r0 != 0x1 goto line 6
5: r9 = *(u8 *)(r6)
6: // leak r9

Since line 3 runs iff r0 == 0 and line 5 runs iff r0 == 1, the verifier
concludes that the pointer dereference on line 5 is safe. But: if the
attacker trains both the branches to fall-through, such that the following
is speculatively executed ...

r6 = r9
r9 = *(u8 *)(r6)
// leak r9

... then the program will dereference an attacker-controlled value and could
leak its content under speculative execution via side-channel. This requires
to mistrain the branch predictor, which can be rather tricky, because the
branches are mutually exclusive. However such training can be done at
congruent addresses in user space using different branches that are not
mutually exclusive. That is, by training branches in user space ...

A: if r0 != 0x0 goto line C
B: ...
C: if r0 != 0x0 goto line D
D: ...

... such that addresses A and C collide to the same CPU branch prediction
entries in the PHT (pattern history table) as those of the BPF program's
lines 2 and 4, respectively. A non-privileged attacker could simply brute
force such collisions in the PHT until observing the attack succeeding.

Alternative methods to mistrain the branch predictor are also possible that
avoid brute forcing the collisions in the PHT. A reliable attack has been
demonstrated, for example, using the following crafted program:

// r0 = pointer to a [control] map array entry
// r7 = *(u64 *)(r0 + 0), training/attack phase
// r8 = *(u64 *)(r0 + 8), oob address
// [...]
// r0 = pointer to a [data] map array entry
1: if r7 == 0x3 goto line 3
2: r8 = r0
// crafted sequence of conditional jumps to separate the conditional
// branch in line 193 from the current execution flow
3: if r0 != 0x0 goto line 5
4: if r0 == 0x0 goto exit
5: if r0 != 0x0 goto line 7
6: if r0 == 0x0 goto exit
[...]
187: if r0 != 0x0 goto line 189
188: if r0 == 0x0 goto exit
// load any slowly-loaded value (due to cache miss in phase 3) ...
189: r3 = *(u64 *)(r0 + 0x1200)
// ... and turn it into known zero for verifier, while preserving slowly-
// loaded dependency when executing:
190: r3 &= 1
191: r3 &= 2
// speculatively bypassed phase dependency
192: r7 += r3
193: if r7 == 0x3 goto exit
194: r4 = *(u8 *)(r8 + 0)
// leak r4

As can be seen, in training phase (phase != 0x3), the condition in line 1
turns into false and therefore r8 with the oob address is overridden with
the valid map value address, which in line 194 we can read out without
issues. However, in attack phase, line 2 is skipped, and due to the cache
miss in line 189 where the map value is (zeroed and later) added to the
phase register, the condition in line 193 takes the fall-through path due
to prior branch predictor training, where under speculation, it'll load the
byte at oob address r8 (unknown scalar type at that point) which could then
be leaked via side-channel.

One way to mitigate these is to 'branch off' an unreachable path, meaning,
the current verification path keeps following the is_branch_taken() path
and we push the other branch to the verification stack. Given this is
unreachable from the non-speculative domain, this branch's vstate is
explicitly marked as speculative. This is needed for two reasons: i) if
this path is solely seen from speculative execution, then we later on still
want the dead code elimination to kick in in order to sanitize these
instructions with jmp-1s, and ii) to ensure that paths walked in the
non-speculative domain are not pruned from earlier walks of paths walked in
the speculative domain. Additionally, for robustness, we mark the registers
which have been part of the conditional as unknown in the speculative path
given there should be no assumptions made on their content.

The fix in here mitigates type confusion attacks described earlier due to
i) all code paths in the BPF program being explored and ii) existing
verifier logic already ensuring that given memory access instruction
references one specific data structure.

An alternative to this fix that has also been looked at in this scope was to
mark aux->alu_state at the jump instruction with a BPF_JMP_TAKEN state as
well as direction encoding (always-goto, always-fallthrough, unknown), such
that mixing of different always-* directions themselves as well as mixing of
always-* with unknown directions would cause a program rejection by the
verifier, e.g. programs with constructs like 'if ([...]) { x = 0; } else
{ x = 1; }' with subsequent 'if (x == 1) { [...] }'. For unprivileged, this
would result in only single direction always-* taken paths, and unknown taken
paths being allowed, such that the former could be patched from a conditional
jump to an unconditional jump (ja). Compared to this approach here, it would
have two downsides: i) valid programs that otherwise are not performing any
pointer arithmetic, etc, would potentially be rejected/broken, and ii) we are
required to turn off path pruning for unprivileged, where both can be avoided
in this work through pushing the invalid branch to the verification stack.

The issue was originally discovered by Adam and Ofek, and later independently
discovered and reported as a result of Benedict and Piotr's research work.

Fixes: b2157399cc98 ("bpf: prevent out-of-bounds speculation")
Reported-by: Adam Morrison <mad@cs.tau.ac.il>
Reported-by: Ofek Kirzner <ofekkir@gmail.com>
Reported-by: Benedict Schlueter <benedict.schlueter@rub.de>
Reported-by: Piotr Krysiuk <piotras@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Reviewed-by: Benedict Schlueter <benedict.schlueter@rub.de>
Reviewed-by: Piotr Krysiuk <piotras@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# fe9a5ca7 28-May-2021 Daniel Borkmann <daniel@iogearbox.net>

bpf: Do not mark insn as seen under speculative path verification

... in such circumstances, we do not want to mark the instruction as seen given
the goal is still to jmp-1 rewrite/sanitize dead code, if it is not reachable
from the non-speculative path verification. We do however want to verify it for
safety regardless.

With the patch as-is all the insns that have been marked as seen before the
patch will also be marked as seen after the patch (just with a potentially
different non-zero count). An upcoming patch will also verify paths that are
unreachable in the non-speculative domain, hence this extension is needed.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Reviewed-by: Benedict Schlueter <benedict.schlueter@rub.de>
Reviewed-by: Piotr Krysiuk <piotras@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# d203b0fd 28-May-2021 Daniel Borkmann <daniel@iogearbox.net>

bpf: Inherit expanded/patched seen count from old aux data

Instead of relying on current env->pass_cnt, use the seen count from the
old aux data in adjust_insn_aux_data(), and expand it to the new range of
patched instructions. This change is valid given we always expand 1:n
with n>=1, so what applies to the old/original instruction needs to apply
for the replacement as well.

Not relying on env->pass_cnt is a prerequisite for a later change where we
want to avoid marking an instruction seen when verified under speculative
execution path.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Reviewed-by: Benedict Schlueter <benedict.schlueter@rub.de>
Reviewed-by: Piotr Krysiuk <piotras@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# a7036191 04-May-2021 Daniel Borkmann <daniel@iogearbox.net>

bpf: No need to simulate speculative domain for immediates

In 801c6058d14a ("bpf: Fix leakage of uninitialized bpf stack under
speculation") we replaced masking logic with direct loads of immediates
if the register is a known constant. Given in this case we do not apply
any masking, there is also no reason for the operation to be truncated
under the speculative domain.

Therefore, there is also zero reason for the verifier to branch-off and
simulate this case, it only needs to do it for unknown but bounded scalars.
As a side-effect, this also enables few test cases that were previously
rejected due to simulation under zero truncation.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Piotr Krysiuk <piotras@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# bb01a1bb 21-May-2021 Daniel Borkmann <daniel@iogearbox.net>

bpf: Fix mask direction swap upon off reg sign change

Masking direction as indicated via mask_to_left is considered to be
calculated once and then used to derive pointer limits. Thus, this
needs to be placed into bpf_sanitize_info instead so we can pass it
to sanitize_ptr_alu() call after the pointer move. Piotr noticed a
corner case where the off reg causes masking direction change which
then results in an incorrect final aux->alu_limit.

Fixes: 7fedb63a8307 ("bpf: Tighten speculative pointer arithmetic mask")
Reported-by: Piotr Krysiuk <piotras@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Piotr Krysiuk <piotras@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# 3d0220f6 21-May-2021 Daniel Borkmann <daniel@iogearbox.net>

bpf: Wrap aux data inside bpf_sanitize_info container

Add a container structure struct bpf_sanitize_info which holds
the current aux info, and update call-sites to sanitize_ptr_alu()
to pass it in. This is needed for passing in additional state
later on.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Piotr Krysiuk <piotras@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# ceb11679 20-May-2021 Yinjun Zhang <yinjun.zhang@corigine.com>

bpf, offload: Reorder offload callback 'prepare' in verifier

Commit 4976b718c355 ("bpf: Introduce pseudo_btf_id") switched the
order of resolve_pseudo_ldimm(), in which some pseudo instructions
are rewritten. Thus those rewritten instructions cannot be passed
to driver via 'prepare' offload callback.

Reorder the 'prepare' offload callback to fix it.

Fixes: 4976b718c355 ("bpf: Introduce pseudo_btf_id")
Signed-off-by: Yinjun Zhang <yinjun.zhang@corigine.com>
Signed-off-by: Simon Horman <simon.horman@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20210520085834.15023-1-simon.horman@netronome.com


# 35e3815f 29-Apr-2021 Jiri Olsa <jolsa@kernel.org>

bpf: Add deny list of btf ids check for tracing programs

The recursion check in __bpf_prog_enter and __bpf_prog_exit
leaves some (not inlined) functions unprotected:

In __bpf_prog_enter:
- migrate_disable is called before prog->active is checked

In __bpf_prog_exit:
- migrate_enable,rcu_read_unlock_strict are called after
prog->active is decreased

When attaching trampoline to them we get panic like:

traps: PANIC: double fault, error_code: 0x0
double fault: 0000 [#1] SMP PTI
RIP: 0010:__bpf_prog_enter+0x4/0x50
...
Call Trace:
<IRQ>
bpf_trampoline_6442466513_0+0x18/0x1000
migrate_disable+0x5/0x50
__bpf_prog_enter+0x9/0x50
bpf_trampoline_6442466513_0+0x18/0x1000
migrate_disable+0x5/0x50
__bpf_prog_enter+0x9/0x50
bpf_trampoline_6442466513_0+0x18/0x1000
migrate_disable+0x5/0x50
__bpf_prog_enter+0x9/0x50
bpf_trampoline_6442466513_0+0x18/0x1000
migrate_disable+0x5/0x50
...

Fixing this by adding deny list of btf ids for tracing
programs and checking btf id during program verification.
Adding above functions to this list.

Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210429114712.43783-1-jolsa@kernel.org


# 049c4e13 10-May-2021 Daniel Borkmann <daniel@iogearbox.net>

bpf: Fix alu32 const subreg bound tracking on bitwise operations

Fix a bug in the verifier's scalar32_min_max_*() functions which leads to
incorrect tracking of 32 bit bounds for the simulation of and/or/xor bitops.
When both the src & dst subreg is a known constant, then the assumption is
that scalar_min_max_*() will take care to update bounds correctly. However,
this is not the case, for example, consider a register R2 which has a tnum
of 0xffffffff00000000, meaning, lower 32 bits are known constant and in this
case of value 0x00000001. R2 is then and'ed with a register R3 which is a
64 bit known constant, here, 0x100000002.

What can be seen in line '10:' is that 32 bit bounds reach an invalid state
where {u,s}32_min_value > {u,s}32_max_value. The reason is scalar32_min_max_*()
delegates 32 bit bounds updates to scalar_min_max_*(), however, that really
only takes place when both the 64 bit src & dst register is a known constant.
Given scalar32_min_max_*() is intended to be designed as closely as possible
to scalar_min_max_*(), update the 32 bit bounds in this situation through
__mark_reg32_known() which will set all {u,s}32_{min,max}_value to the correct
constant, which is 0x00000000 after the fix (given 0x00000001 & 0x00000002 in
32 bit space). This is possible given var32_off already holds the final value
as dst_reg->var_off is updated before calling scalar32_min_max_*().

Before fix, invalid tracking of R2:

[...]
9: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,smin_value=-9223372036854775807 (0x8000000000000001),smax_value=9223372032559808513 (0x7fffffff00000001),umin_value=1,umax_value=0xffffffff00000001,var_off=(0x1; 0xffffffff00000000),s32_min_value=1,s32_max_value=1,u32_min_value=1,u32_max_value=1) R3_w=inv4294967298 R10=fp0
9: (5f) r2 &= r3
10: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,smin_value=0,smax_value=4294967296 (0x100000000),umin_value=0,umax_value=0x100000000,var_off=(0x0; 0x100000000),s32_min_value=1,s32_max_value=0,u32_min_value=1,u32_max_value=0) R3_w=inv4294967298 R10=fp0
[...]

After fix, correct tracking of R2:

[...]
9: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,smin_value=-9223372036854775807 (0x8000000000000001),smax_value=9223372032559808513 (0x7fffffff00000001),umin_value=1,umax_value=0xffffffff00000001,var_off=(0x1; 0xffffffff00000000),s32_min_value=1,s32_max_value=1,u32_min_value=1,u32_max_value=1) R3_w=inv4294967298 R10=fp0
9: (5f) r2 &= r3
10: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,smin_value=0,smax_value=4294967296 (0x100000000),umin_value=0,umax_value=0x100000000,var_off=(0x0; 0x100000000),s32_min_value=0,s32_max_value=0,u32_min_value=0,u32_max_value=0) R3_w=inv4294967298 R10=fp0
[...]

Fixes: 3f50f132d840 ("bpf: Verifier, do explicit ALU32 bounds tracking")
Fixes: 2921c90d4718 ("bpf: Fix a verifier failure with xor")
Reported-by: Manfred Paul (@_manfp)
Reported-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# 801c6058 29-Apr-2021 Daniel Borkmann <daniel@iogearbox.net>

bpf: Fix leakage of uninitialized bpf stack under speculation

The current implemented mechanisms to mitigate data disclosure under
speculation mainly address stack and map value oob access from the
speculative domain. However, Piotr discovered that uninitialized BPF
stack is not protected yet, and thus old data from the kernel stack,
potentially including addresses of kernel structures, could still be
extracted from that 512 bytes large window. The BPF stack is special
compared to map values since it's not zero initialized for every
program invocation, whereas map values /are/ zero initialized upon
their initial allocation and thus cannot leak any prior data in either
domain. In the non-speculative domain, the verifier ensures that every
stack slot read must have a prior stack slot write by the BPF program
to avoid such data leaking issue.

However, this is not enough: for example, when the pointer arithmetic
operation moves the stack pointer from the last valid stack offset to
the first valid offset, the sanitation logic allows for any intermediate
offsets during speculative execution, which could then be used to
extract any restricted stack content via side-channel.

Given for unprivileged stack pointer arithmetic the use of unknown
but bounded scalars is generally forbidden, we can simply turn the
register-based arithmetic operation into an immediate-based arithmetic
operation without the need for masking. This also gives the benefit
of reducing the needed instructions for the operation. Given after
the work in 7fedb63a8307 ("bpf: Tighten speculative pointer arithmetic
mask"), the aux->alu_limit already holds the final immediate value for
the offset register with the known scalar. Thus, a simple mov of the
immediate to AX register with using AX as the source for the original
instruction is sufficient and possible now in this case.

Reported-by: Piotr Krysiuk <piotras@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Piotr Krysiuk <piotras@gmail.com>
Reviewed-by: Piotr Krysiuk <piotras@gmail.com>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# b9b34ddb 30-Apr-2021 Daniel Borkmann <daniel@iogearbox.net>

bpf: Fix masking negation logic upon negative dst register

The negation logic for the case where the off_reg is sitting in the
dst register is not correct given then we cannot just invert the add
to a sub or vice versa. As a fix, perform the final bitwise and-op
unconditionally into AX from the off_reg, then move the pointer from
the src to dst and finally use AX as the source for the original
pointer arithmetic operation such that the inversion yields a correct
result. The single non-AX mov in between is possible given constant
blinding is retaining it as it's not an immediate based operation.

Fixes: 979d63d50c0c ("bpf: prevent out of bounds speculation on pointer arithmetic")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Piotr Krysiuk <piotras@gmail.com>
Reviewed-by: Piotr Krysiuk <piotras@gmail.com>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# 48cac3f4 27-Apr-2021 Florent Revest <revest@chromium.org>

bpf: Implement formatted output helpers with bstr_printf

BPF has three formatted output helpers: bpf_trace_printk, bpf_seq_printf
and bpf_snprintf. Their signatures specify that all arguments are
provided from the BPF world as u64s (in an array or as registers). All
of these helpers are currently implemented by calling functions such as
snprintf() whose signatures take a variable number of arguments, then
placed in a va_list by the compiler to call vsnprintf().

"d9c9e4db bpf: Factorize bpf_trace_printk and bpf_seq_printf" introduced
a bpf_printf_prepare function that fills an array of u64 sanitized
arguments with an array of "modifiers" which indicate what the "real"
size of each argument should be (given by the format specifier). The
BPF_CAST_FMT_ARG macro consumes these arrays and casts each argument to
its real size. However, the C promotion rules implicitely cast them all
back to u64s. Therefore, the arguments given to snprintf are u64s and
the va_list constructed by the compiler will use 64 bits for each
argument. On 64 bit machines, this happens to work well because 32 bit
arguments in va_lists need to occupy 64 bits anyway, but on 32 bit
architectures this breaks the layout of the va_list expected by the
called function and mangles values.

In "88a5c690b6 bpf: fix bpf_trace_printk on 32 bit archs", this problem
had been solved for bpf_trace_printk only with a "horrid workaround"
that emitted multiple calls to trace_printk where each call had
different argument types and generated different va_list layouts. One of
the call would be dynamically chosen at runtime. This was ok with the 3
arguments that bpf_trace_printk takes but bpf_seq_printf and
bpf_snprintf accept up to 12 arguments. Because this approach scales
code exponentially, it is not a viable option anymore.

Because the promotion rules are part of the language and because the
construction of a va_list is an arch-specific ABI, it's best to just
avoid variadic arguments and va_lists altogether. Thankfully the
kernel's snprintf() has an alternative in the form of bstr_printf() that
accepts arguments in a "binary buffer representation". These binary
buffers are currently created by vbin_printf and used in the tracing
subsystem to split the cost of printing into two parts: a fast one that
only dereferences and remembers values, and a slower one, called later,
that does the pretty-printing.

This patch refactors bpf_printf_prepare to construct binary buffers of
arguments consumable by bstr_printf() instead of arrays of arguments and
modifiers. This gets rid of BPF_CAST_FMT_ARG and greatly simplifies the
bpf_printf_prepare usage but there are a few gotchas that change how
bpf_printf_prepare needs to do things.

Currently, bpf_printf_prepare uses a per cpu temporary buffer as a
generic storage for strings and IP addresses. With this refactoring, the
temporary buffers now holds all the arguments in a structured binary
format.

To comply with the format expected by bstr_printf, certain format
specifiers also need to be pre-formatted: %pB and %pi6/%pi4/%pI4/%pI6.
Because vsnprintf subroutines for these specifiers are hard to expose,
we pre-format these arguments with calls to snprintf().

Reported-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210427174313.860948-3-revest@chromium.org


# 10bf4e83 23-Apr-2021 Daniel Borkmann <daniel@iogearbox.net>

bpf: Fix propagation of 32 bit unsigned bounds from 64 bit bounds

Similarly as b02709587ea3 ("bpf: Fix propagation of 32-bit signed bounds
from 64-bit bounds."), we also need to fix the propagation of 32 bit
unsigned bounds from 64 bit counterparts. That is, really only set the
u32_{min,max}_value when /both/ {umin,umax}_value safely fit in 32 bit
space. For example, the register with a umin_value == 1 does /not/ imply
that u32_min_value is also equal to 1, since umax_value could be much
larger than 32 bit subregister can hold, and thus u32_min_value is in
the interval [0,1] instead.

Before fix, invalid tracking result of R2_w=inv1:

[...]
5: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0) R10=fp0
5: (35) if r2 >= 0x1 goto pc+1
[...] // goto path
7: R0=inv1337 R1=ctx(id=0,off=0,imm=0) R2=inv(id=0,umin_value=1) R10=fp0
7: (b6) if w2 <= 0x1 goto pc+1
[...] // goto path
9: R0=inv1337 R1=ctx(id=0,off=0,imm=0) R2=inv(id=0,smin_value=-9223372036854775807,smax_value=9223372032559808513,umin_value=1,umax_value=18446744069414584321,var_off=(0x1; 0xffffffff00000000),s32_min_value=1,s32_max_value=1,u32_max_value=1) R10=fp0
9: (bc) w2 = w2
10: R0=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv1 R10=fp0
[...]

After fix, correct tracking result of R2_w=inv(id=0,umax_value=1,var_off=(0x0; 0x1)):

[...]
5: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0) R10=fp0
5: (35) if r2 >= 0x1 goto pc+1
[...] // goto path
7: R0=inv1337 R1=ctx(id=0,off=0,imm=0) R2=inv(id=0,umin_value=1) R10=fp0
7: (b6) if w2 <= 0x1 goto pc+1
[...] // goto path
9: R0=inv1337 R1=ctx(id=0,off=0,imm=0) R2=inv(id=0,smax_value=9223372032559808513,umax_value=18446744069414584321,var_off=(0x0; 0xffffffff00000001),s32_min_value=0,s32_max_value=1,u32_max_value=1) R10=fp0
9: (bc) w2 = w2
10: R0=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,umax_value=1,var_off=(0x0; 0x1)) R10=fp0
[...]

Thus, same issue as in b02709587ea3 holds for unsigned subregister tracking.
Also, align __reg64_bound_u32() similarly to __reg64_bound_s32() as done in
b02709587ea3 to make them uniform again.

Fixes: 3f50f132d840 ("bpf: Verifier, do explicit ALU32 bounds tracking")
Reported-by: Manfred Paul (@_manfp)
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# a8fad73e 22-Apr-2021 Florent Revest <revest@chromium.org>

bpf: Remove unnecessary map checks for ARG_PTR_TO_CONST_STR

reg->type is enforced by check_reg_type() and map should never be NULL
(it would already have been dereferenced anyway) so these checks are
unnecessary.

Reported-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210422235543.4007694-3-revest@chromium.org


# 8e8ee109 22-Apr-2021 Florent Revest <revest@chromium.org>

bpf: Notify user if we ever hit a bpf_snprintf verifier bug

In check_bpf_snprintf_call(), a map_direct_value_addr() of the fmt map
should never fail because it has already been checked by
ARG_PTR_TO_CONST_STR. But if it ever fails, it's better to error out
with an explicit debug message rather than silently fail.

Reported-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210422235543.4007694-2-revest@chromium.org


# fd0b88f7 16-Apr-2021 Dave Marchevsky <davemarchevsky@fb.com>

bpf: Refine retval for bpf_get_task_stack helper

Verifier can constrain the min/max bounds of bpf_get_task_stack's return
value more tightly than the default tnum_unknown. Like bpf_get_stack,
return value is num bytes written into a caller-supplied buf, or error,
so do_refine_retval_range will work.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20210416204704.2816874-2-davemarchevsky@fb.com


# 7b15523a 19-Apr-2021 Florent Revest <revest@chromium.org>

bpf: Add a bpf_snprintf helper

The implementation takes inspiration from the existing bpf_trace_printk
helper but there are a few differences:

To allow for a large number of format-specifiers, parameters are
provided in an array, like in bpf_seq_printf.

Because the output string takes two arguments and the array of
parameters also takes two arguments, the format string needs to fit in
one argument. Thankfully, ARG_PTR_TO_CONST_STR is guaranteed to point to
a zero-terminated read-only map so we don't need a format string length
arg.

Because the format-string is known at verification time, we also do
a first pass of format string validation in the verifier logic. This
makes debugging easier.

Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210419155243.1632274-4-revest@chromium.org


# fff13c4b 19-Apr-2021 Florent Revest <revest@chromium.org>

bpf: Add a ARG_PTR_TO_CONST_STR argument type

This type provides the guarantee that an argument is going to be a const
pointer to somewhere in a read-only map value. It also checks that this
pointer is followed by a zero character before the end of the map value.

Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210419155243.1632274-3-revest@chromium.org


# e6ac2450 24-Mar-2021 Martin KaFai Lau <kafai@fb.com>

bpf: Support bpf program calling kernel function

This patch adds support to BPF verifier to allow bpf program calling
kernel function directly.

The use case included in this set is to allow bpf-tcp-cc to directly
call some tcp-cc helper functions (e.g. "tcp_cong_avoid_ai()"). Those
functions have already been used by some kernel tcp-cc implementations.

This set will also allow the bpf-tcp-cc program to directly call the
kernel tcp-cc implementation, For example, a bpf_dctcp may only want to
implement its own dctcp_cwnd_event() and reuse other dctcp_*() directly
from the kernel tcp_dctcp.c instead of reimplementing (or
copy-and-pasting) them.

The tcp-cc kernel functions mentioned above will be white listed
for the struct_ops bpf-tcp-cc programs to use in a later patch.
The white listed functions are not bounded to a fixed ABI contract.
Those functions have already been used by the existing kernel tcp-cc.
If any of them has changed, both in-tree and out-of-tree kernel tcp-cc
implementations have to be changed. The same goes for the struct_ops
bpf-tcp-cc programs which have to be adjusted accordingly.

This patch is to make the required changes in the bpf verifier.

First change is in btf.c, it adds a case in "btf_check_func_arg_match()".
When the passed in "btf->kernel_btf == true", it means matching the
verifier regs' states with a kernel function. This will handle the
PTR_TO_BTF_ID reg. It also maps PTR_TO_SOCK_COMMON, PTR_TO_SOCKET,
and PTR_TO_TCP_SOCK to its kernel's btf_id.

In the later libbpf patch, the insn calling a kernel function will
look like:

insn->code == (BPF_JMP | BPF_CALL)
insn->src_reg == BPF_PSEUDO_KFUNC_CALL /* <- new in this patch */
insn->imm == func_btf_id /* btf_id of the running kernel */

[ For the future calling function-in-kernel-module support, an array
of module btf_fds can be passed at the load time and insn->off
can be used to index into this array. ]

At the early stage of verifier, the verifier will collect all kernel
function calls into "struct bpf_kfunc_desc". Those
descriptors are stored in "prog->aux->kfunc_tab" and will
be available to the JIT. Since this "add" operation is similar
to the current "add_subprog()" and looking for the same insn->code,
they are done together in the new "add_subprog_and_kfunc()".

In the "do_check()" stage, the new "check_kfunc_call()" is added
to verify the kernel function call instruction:
1. Ensure the kernel function can be used by a particular BPF_PROG_TYPE.
A new bpf_verifier_ops "check_kfunc_call" is added to do that.
The bpf-tcp-cc struct_ops program will implement this function in
a later patch.
2. Call "btf_check_kfunc_args_match()" to ensure the regs can be
used as the args of a kernel function.
3. Mark the regs' type, subreg_def, and zext_dst.

At the later do_misc_fixups() stage, the new fixup_kfunc_call()
will replace the insn->imm with the function address (relative
to __bpf_call_base). If needed, the jit can find the btf_func_model
by calling the new bpf_jit_find_kfunc_model(prog, insn).
With the imm set to the function address, "bpftool prog dump xlated"
will be able to display the kernel function calls the same way as
it displays other bpf helper calls.

gpl_compatible program is required to call kernel function.

This feature currently requires JIT.

The verifier selftests are adjusted because of the changes in
the verbose log in add_subprog_and_kfunc().

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210325015142.1544736-1-kafai@fb.com


# 34747c41 24-Mar-2021 Martin KaFai Lau <kafai@fb.com>

bpf: Refactor btf_check_func_arg_match

This patch moved the subprog specific logic from
btf_check_func_arg_match() to the new btf_check_subprog_arg_match().
The core logic is left in btf_check_func_arg_match() which
will be reused later to check the kernel function call.

The "if (!btf_type_is_ptr(t))" is checked first to improve the
indentation which will be useful for a later patch.

Some of the "btf_kind_str[]" usages is replaced with the shortcut
"btf_type_str(t)".

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210325015136.1544504-1-kafai@fb.com


# e16301fb 24-Mar-2021 Martin KaFai Lau <kafai@fb.com>

bpf: Simplify freeing logic in linfo and jited_linfo

This patch simplifies the linfo freeing logic by combining
"bpf_prog_free_jited_linfo()" and "bpf_prog_free_unused_jited_linfo()"
into the new "bpf_prog_jit_attempt_done()".
It is a prep work for the kernel function call support. In a later
patch, freeing the kernel function call descriptors will also
be done in the "bpf_prog_jit_attempt_done()".

"bpf_prog_free_linfo()" is removed since it is only called by
"__bpf_prog_put_noref()". The kvfree() are directly called
instead.

It also takes this chance to s/kcalloc/kvcalloc/ for the jited_linfo
allocation.

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210325015130.1544323-1-kafai@fb.com


# 80847a71 25-Mar-2021 Daniel Borkmann <daniel@iogearbox.net>

bpf: Undo ptr_to_map_key alu sanitation for now

Remove PTR_TO_MAP_KEY for the time being from being sanitized on pointer ALU
through sanitize_ptr_alu() mainly for 3 reasons:

1) It's currently unused and not available from unprivileged. However that by
itself is not yet a strong reason to drop the code.

2) Commit 69c087ba6225 ("bpf: Add bpf_for_each_map_elem() helper") implemented
the sanitation not fully correct in that unlike stack or map_value pointer
it doesn't probe whether the access to the map key /after/ the simulated ALU
operation is still in bounds. This means that the generated mask can truncate
the offset in the non-speculative domain whereas it should only truncate in
the speculative domain. The verifier should instead reject such program as
we do for other types.

3) Given the recent fixes from f232326f6966 ("bpf: Prohibit alu ops for pointer
types not defining ptr_limit"), 10d2bb2e6b1d ("bpf: Fix off-by-one for area
size in creating mask to left"), b5871dca250c ("bpf: Simplify alu_limit masking
for pointer arithmetic") as well as 1b1597e64e1a ("bpf: Add sanity check for
upper ptr_limit") the code changed quite a bit and the merge in efd13b71a3fa
broke the PTR_TO_MAP_KEY case due to an incorrect merge conflict.

Remove the relevant pieces for the time being and we can rework the PTR_TO_MAP_KEY
case once everything settles.

Fixes: efd13b71a3fa ("Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net")
Fixes: 69c087ba6225 ("bpf: Add bpf_for_each_map_elem() helper")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 9ef05281 17-Mar-2021 Jianlin Lv <Jianlin.Lv@arm.com>

bpf: Remove insn_buf[] declaration in inner block

Two insn_buf[16] variables are declared in the function which acts on
function scope and block scope respectively. The statement in the inner
block is redundant, so remove it.

Signed-off-by: Jianlin Lv <Jianlin.Lv@arm.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20210318024851.49693-1-Jianlin.Lv@arm.com


# e6a4750f 07-Mar-2021 Björn Töpel <bjorn@kernel.org>

bpf, xdp: Make bpf_redirect_map() a map operation

Currently the bpf_redirect_map() implementation dispatches to the
correct map-lookup function via a switch-statement. To avoid the
dispatching, this change adds bpf_redirect_map() as a map
operation. Each map provides its bpf_redirect_map() version, and
correct function is automatically selected by the BPF verifier.

A nice side-effect of the code movement is that the map lookup
functions are now local to the map implementation files, which removes
one additional function call.

Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20210308112907.559576-2-bjorn.topel@gmail.com


# 314ee05e 26-Feb-2021 Yonghong Song <yhs@fb.com>

bpf: Add hashtab support for bpf_for_each_map_elem() helper

This patch added support for hashmap, percpu hashmap,
lru hashmap and percpu lru hashmap.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210226204927.3885020-1-yhs@fb.com


# 69c087ba 26-Feb-2021 Yonghong Song <yhs@fb.com>

bpf: Add bpf_for_each_map_elem() helper

The bpf_for_each_map_elem() helper is introduced which
iterates all map elements with a callback function. The
helper signature looks like
long bpf_for_each_map_elem(map, callback_fn, callback_ctx, flags)
and for each map element, the callback_fn will be called. For example,
like hashmap, the callback signature may look like
long callback_fn(map, key, val, callback_ctx)

There are two known use cases for this. One is from upstream ([1]) where
a for_each_map_elem helper may help implement a timeout mechanism
in a more generic way. Another is from our internal discussion
for a firewall use case where a map contains all the rules. The packet
data can be compared to all these rules to decide allow or deny
the packet.

For array maps, users can already use a bounded loop to traverse
elements. Using this helper can avoid using bounded loop. For other
type of maps (e.g., hash maps) where bounded loop is hard or
impossible to use, this helper provides a convenient way to
operate on all elements.

For callback_fn, besides map and map element, a callback_ctx,
allocated on caller stack, is also passed to the callback
function. This callback_ctx argument can provide additional
input and allow to write to caller stack for output.

If the callback_fn returns 0, the helper will iterate through next
element if available. If the callback_fn returns 1, the helper
will stop iterating and returns to the bpf program. Other return
values are not used for now.

Currently, this helper is only available with jit. It is possible
to make it work with interpreter with so effort but I leave it
as the future work.

[1]: https://lore.kernel.org/bpf/20210122205415.113822-1-xiyou.wangcong@gmail.com/

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210226204925.3884923-1-yhs@fb.com


# 282a0f46 26-Feb-2021 Yonghong Song <yhs@fb.com>

bpf: Change return value of verifier function add_subprog()

Currently, verifier function add_subprog() returns 0 for success
and negative value for failure. Change the return value
to be the subprog number for success. This functionality will be
used in the next patch to save a call to find_subprog().

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210226204924.3884848-1-yhs@fb.com


# 14351375 26-Feb-2021 Yonghong Song <yhs@fb.com>

bpf: Refactor check_func_call() to allow callback function

Later proposed bpf_for_each_map_elem() helper has callback
function as one of its arguments. This patch refactored
check_func_call() to permit callback function which sets
callee state. Different callback functions may have
different callee states.
There is no functionality change for this patch.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210226204923.3884627-1-yhs@fb.com


# bc2591d6 26-Feb-2021 Yonghong Song <yhs@fb.com>

bpf: Factor out verbose_invalid_scalar()

Factor out the function verbose_invalid_scalar() to verbose
print if a scalar is not in a tnum range. There is no
functionality change and the function will be used by
later patch which introduced bpf_for_each_map_elem().

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210226204922.3884375-1-yhs@fb.com


# efdb22de 26-Feb-2021 Yonghong Song <yhs@fb.com>

bpf: Factor out visit_func_call_insn() in check_cfg()

During verifier check_cfg(), all instructions are
visited to ensure verifier can handle program control flows.
This patch factored out function visit_func_call_insn()
so it can be reused in later patch to visit callback function
calls. There is no functionality change for this patch.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210226204920.3884136-1-yhs@fb.com


# e6ac5933 17-Feb-2021 Brendan Jackman <jackmanb@google.com>

bpf: Rename fixup_bpf_calls and add some comments

This function has become overloaded, it actually does lots of diverse
things in a single pass. Rename it to avoid confusion, and add some
concise commentary.

Signed-off-by: Brendan Jackman <jackmanb@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210217104509.2423183-1-jackmanb@google.com


# 523a4cf4 25-Feb-2021 Dmitrii Banshchikov <me@ubique.spb.ru>

bpf: Use MAX_BPF_FUNC_REG_ARGS macro

Instead of using integer literal here and there use macro name for
better context.

Signed-off-by: Dmitrii Banshchikov <me@ubique.spb.ru>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20210225202629.585485-1-me@ubique.spb.ru


# 7fedb63a 24-Mar-2021 Daniel Borkmann <daniel@iogearbox.net>

bpf: Tighten speculative pointer arithmetic mask

This work tightens the offset mask we use for unprivileged pointer arithmetic
in order to mitigate a corner case reported by Piotr and Benedict where in
the speculative domain it is possible to advance, for example, the map value
pointer by up to value_size-1 out-of-bounds in order to leak kernel memory
via side-channel to user space.

Before this change, the computed ptr_limit for retrieve_ptr_limit() helper
represents largest valid distance when moving pointer to the right or left
which is then fed as aux->alu_limit to generate masking instructions against
the offset register. After the change, the derived aux->alu_limit represents
the largest potential value of the offset register which we mask against which
is just a narrower subset of the former limit.

For minimal complexity, we call sanitize_ptr_alu() from 2 observation points
in adjust_ptr_min_max_vals(), that is, before and after the simulated alu
operation. In the first step, we retieve the alu_state and alu_limit before
the operation as well as we branch-off a verifier path and push it to the
verification stack as we did before which checks the dst_reg under truncation,
in other words, when the speculative domain would attempt to move the pointer
out-of-bounds.

In the second step, we retrieve the new alu_limit and calculate the absolute
distance between both. Moreover, we commit the alu_state and final alu_limit
via update_alu_sanitation_state() to the env's instruction aux data, and bail
out from there if there is a mismatch due to coming from different verification
paths with different states.

Reported-by: Piotr Krysiuk <piotras@gmail.com>
Reported-by: Benedict Schlueter <benedict.schlueter@rub.de>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: Benedict Schlueter <benedict.schlueter@rub.de>


# f5288193 24-Mar-2021 Daniel Borkmann <daniel@iogearbox.net>

bpf: Move sanitize_val_alu out of op switch

Add a small sanitize_needed() helper function and move sanitize_val_alu()
out of the main opcode switch. In upcoming work, we'll move sanitize_ptr_alu()
as well out of its opcode switch so this helps to streamline both.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# 073815b7 23-Mar-2021 Daniel Borkmann <daniel@iogearbox.net>

bpf: Refactor and streamline bounds check into helper

Move the bounds check in adjust_ptr_min_max_vals() into a small helper named
sanitize_check_bounds() in order to simplify the former a bit.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# a6aaece0 23-Mar-2021 Daniel Borkmann <daniel@iogearbox.net>

bpf: Improve verifier error messages for users

Consolidate all error handling and provide more user-friendly error messages
from sanitize_ptr_alu() and sanitize_val_alu().

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# b658bbb8 23-Mar-2021 Daniel Borkmann <daniel@iogearbox.net>

bpf: Rework ptr_limit into alu_limit and add common error path

Small refactor with no semantic changes in order to consolidate the max
ptr_limit boundary check.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# 24c109bb 23-Mar-2021 Daniel Borkmann <daniel@iogearbox.net>

bpf: Ensure off_reg has no mixed signed bounds for all types

The mixed signed bounds check really belongs into retrieve_ptr_limit()
instead of outside of it in adjust_ptr_min_max_vals(). The reason is
that this check is not tied to PTR_TO_MAP_VALUE only, but to all pointer
types that we handle in retrieve_ptr_limit() and given errors from the latter
propagate back to adjust_ptr_min_max_vals() and lead to rejection of the
program, it's a better place to reside to avoid anything slipping through
for future types. The reason why we must reject such off_reg is that we
otherwise would not be able to derive a mask, see details in 9d7eceede769
("bpf: restrict unknown scalars of mixed signed bounds for unprivileged").

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# 6f55b2f2 22-Mar-2021 Daniel Borkmann <daniel@iogearbox.net>

bpf: Move off_reg into sanitize_ptr_alu

Small refactor to drag off_reg into sanitize_ptr_alu(), so we later on can
use off_reg for generalizing some of the checks for all pointer types.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# 96011483 23-Mar-2021 Daniel Borkmann <daniel@iogearbox.net>

bpf: Use correct permission flag for mixed signed bounds arithmetic

We forbid adding unknown scalars with mixed signed bounds due to the
spectre v1 masking mitigation. Hence this also needs bypass_spec_v1
flag instead of allow_ptr_leaks.

Fixes: 2c78ee898d8f ("bpf: Implement CAP_BPF")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# 12aa8a94 26-Mar-2021 Toke Høiland-Jørgensen <toke@redhat.com>

bpf: Enforce that struct_ops programs be GPL-only

With the introduction of the struct_ops program type, it became possible to
implement kernel functionality in BPF, making it viable to use BPF in place
of a regular kernel module for these particular operations.

Thus far, the only user of this mechanism is for implementing TCP
congestion control algorithms. These are clearly marked as GPL-only when
implemented as modules (as seen by the use of EXPORT_SYMBOL_GPL for
tcp_register_congestion_control()), so it seems like an oversight that this
was not carried over to BPF implementations. Since this is the only user
of the struct_ops mechanism, just enforcing GPL-only for the struct_ops
program type seems like the simplest way to fix this.

Fixes: 0baf26b0fcd7 ("bpf: tcp: Support tcp_congestion_ops in bpf")
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20210326100314.121853-1-toke@redhat.com


# 1b1597e6 16-Mar-2021 Piotr Krysiuk <piotras@gmail.com>

bpf: Add sanity check for upper ptr_limit

Given we know the max possible value of ptr_limit at the time of retrieving
the latter, add basic assertions, so that the verifier can bail out if
anything looks odd and reject the program. Nothing triggered this so far,
but it also does not hurt to have these.

Signed-off-by: Piotr Krysiuk <piotras@gmail.com>
Co-developed-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# b5871dca 16-Mar-2021 Piotr Krysiuk <piotras@gmail.com>

bpf: Simplify alu_limit masking for pointer arithmetic

Instead of having the mov32 with aux->alu_limit - 1 immediate, move this
operation to retrieve_ptr_limit() instead to simplify the logic and to
allow for subsequent sanity boundary checks inside retrieve_ptr_limit().
This avoids in future that at the time of the verifier masking rewrite
we'd run into an underflow which would not sign extend due to the nature
of mov32 instruction.

Signed-off-by: Piotr Krysiuk <piotras@gmail.com>
Co-developed-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# 10d2bb2e 16-Mar-2021 Piotr Krysiuk <piotras@gmail.com>

bpf: Fix off-by-one for area size in creating mask to left

retrieve_ptr_limit() computes the ptr_limit for registers with stack and
map_value type. ptr_limit is the size of the memory area that is still
valid / in-bounds from the point of the current position and direction
of the operation (add / sub). This size will later be used for masking
the operation such that attempting out-of-bounds access in the speculative
domain is redirected to remain within the bounds of the current map value.

When masking to the right the size is correct, however, when masking to
the left, the size is off-by-one which would lead to an incorrect mask
and thus incorrect arithmetic operation in the non-speculative domain.
Piotr found that if the resulting alu_limit value is zero, then the
BPF_MOV32_IMM() from the fixup_bpf_calls() rewrite will end up loading
0xffffffff into AX instead of sign-extending to the full 64 bit range,
and as a result, this allows abuse for executing speculatively out-of-
bounds loads against 4GB window of address space and thus extracting the
contents of kernel memory via side-channel.

Fixes: 979d63d50c0c ("bpf: prevent out of bounds speculation on pointer arithmetic")
Signed-off-by: Piotr Krysiuk <piotras@gmail.com>
Co-developed-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# f232326f 16-Mar-2021 Piotr Krysiuk <piotras@gmail.com>

bpf: Prohibit alu ops for pointer types not defining ptr_limit

The purpose of this patch is to streamline error propagation and in particular
to propagate retrieve_ptr_limit() errors for pointer types that are not defining
a ptr_limit such that register-based alu ops against these types can be rejected.

The main rationale is that a gap has been identified by Piotr in the existing
protection against speculatively out-of-bounds loads, for example, in case of
ctx pointers, unprivileged programs can still perform pointer arithmetic. This
can be abused to execute speculatively out-of-bounds loads without restrictions
and thus extract contents of kernel memory.

Fix this by rejecting unprivileged programs that attempt any pointer arithmetic
on unprotected pointer types. The two affected ones are pointer to ctx as well
as pointer to map. Field access to a modified ctx' pointer is rejected at a
later point in time in the verifier, and 7c6967326267 ("bpf: Permit map_ptr
arithmetic with opcode add and offset 0") only relevant for root-only use cases.
Risk of unprivileged program breakage is considered very low.

Fixes: 7c6967326267 ("bpf: Permit map_ptr arithmetic with opcode add and offset 0")
Fixes: b2157399cc98 ("bpf: prevent out-of-bounds speculation")
Signed-off-by: Piotr Krysiuk <piotras@gmail.com>
Co-developed-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# 350a5c4d 07-Mar-2021 Alexei Starovoitov <ast@kernel.org>

bpf: Dont allow vmlinux BTF to be used in map_create and prog_load.

The syzbot got FD of vmlinux BTF and passed it into map_create which caused
crash in btf_type_id_size() when it tried to access resolved_ids. The vmlinux
BTF doesn't have 'resolved_ids' and 'resolved_sizes' initialized to save
memory. To avoid such issues disallow using vmlinux BTF in prog_load and
map_create commands.

Fixes: 5329722057d4 ("bpf: Assign ID to vmlinux BTF and return extra info for BTF in GET_OBJ_INFO")
Reported-by: syzbot+8bab8ed346746e7540e8@syzkaller.appspotmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20210307225248.79031-1-alexei.starovoitov@gmail.com


# 39491867 04-Mar-2021 Brendan Jackman <jackmanb@google.com>

bpf: Explicitly zero-extend R0 after 32-bit cmpxchg

As pointed out by Ilya and explained in the new comment, there's a
discrepancy between x86 and BPF CMPXCHG semantics: BPF always loads
the value from memory into r0, while x86 only does so when r0 and the
value in memory are different. The same issue affects s390.

At first this might sound like pure semantics, but it makes a real
difference when the comparison is 32-bit, since the load will
zero-extend r0/rax.

The fix is to explicitly zero-extend rax after doing such a
CMPXCHG. Since this problem affects multiple archs, this is done in
the verifier by patching in a BPF_ZEXT_REG instruction after every
32-bit cmpxchg. Any archs that don't need such manual zero-extension
can do a look-ahead with insn_is_zext to skip the unnecessary mov.

Note this still goes on top of Ilya's patch:

https://lore.kernel.org/bpf/20210301154019.129110-1-iii@linux.ibm.com/T/#u

Differences v5->v6[1]:
- Moved is_cmpxchg_insn and ensured it can be safely re-used. Also renamed it
and removed 'inline' to match the style of the is_*_function helpers.
- Fixed up comments in verifier test (thanks for the careful review, Martin!)

Differences v4->v5[1]:
- Moved the logic entirely into opt_subreg_zext_lo32_rnd_hi32, thanks to Martin
for suggesting this.

Differences v3->v4[1]:
- Moved the optimization against pointless zext into the correct place:
opt_subreg_zext_lo32_rnd_hi32 is called _after_ fixup_bpf_calls.

Differences v2->v3[1]:
- Moved patching into fixup_bpf_calls (patch incoming to rename this function)
- Added extra commentary on bpf_jit_needs_zext
- Added check to avoid adding a pointless zext(r0) if there's already one there.

Difference v1->v2[1]: Now solved centrally in the verifier instead of
specifically for the x86 JIT. Thanks to Ilya and Daniel for the suggestions!

[1] v5: https://lore.kernel.org/bpf/CA+i-1C3ytZz6FjcPmUg5s4L51pMQDxWcZNvM86w4RHZ_o2khwg@mail.gmail.com/T/#t
v4: https://lore.kernel.org/bpf/CA+i-1C3ytZz6FjcPmUg5s4L51pMQDxWcZNvM86w4RHZ_o2khwg@mail.gmail.com/T/#t
v3: https://lore.kernel.org/bpf/08669818-c99d-0d30-e1db-53160c063611@iogearbox.net/T/#t
v2: https://lore.kernel.org/bpf/08669818-c99d-0d30-e1db-53160c063611@iogearbox.net/T/#t
v1: https://lore.kernel.org/bpf/d7ebaefb-bfd6-a441-3ff2-2fdfe699b1d2@iogearbox.net/T/#t

Reported-by: Ilya Leoshkevich <iii@linux.ibm.com>
Fixes: 5ffa25502b5a ("bpf: Add instructions for atomic_[cmp]xchg")
Signed-off-by: Brendan Jackman <jackmanb@google.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Ilya Leoshkevich <iii@linux.ibm.com>
Tested-by: Ilya Leoshkevich <iii@linux.ibm.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 83a28819 01-Mar-2021 Ilya Leoshkevich <iii@linux.ibm.com>

bpf: Account for BPF_FETCH in insn_has_def32()

insn_has_def32() returns false for 32-bit BPF_FETCH insns. This makes
adjust_insn_aux_data() incorrectly set zext_dst, as can be seen in [1].
This happens because insn_no_def() does not know about the BPF_FETCH
variants of BPF_STX.

Fix in two steps.

First, replace insn_no_def() with insn_def_regno(), which returns the
register an insn defines. Normally insn_no_def() calls are followed by
insn->dst_reg uses; replace those with the insn_def_regno() return
value.

Second, adjust the BPF_STX special case in is_reg64() to deal with
queries made from opt_subreg_zext_lo32_rnd_hi32(), where the state
information is no longer available. Add a comment, since the purpose
of this special case is not clear at first glance.

[1] https://lore.kernel.org/bpf/20210223150845.1857620-1-jackmanb@google.com/

Fixes: 5ffa25502b5a ("bpf: Add instructions for atomic_[cmp]xchg")
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Brendan Jackman <jackmanb@google.com>
Link: https://lore.kernel.org/bpf/20210301154019.129110-1-iii@linux.ibm.com


# 33ccec5f 17-Feb-2021 Dan Carpenter <dan.carpenter@oracle.com>

bpf: Fix a warning message in mark_ptr_not_null_reg()

The WARN_ON() argument is a condition, not an error message. So this
code will print a stack trace but will not print the warning message.
Fix that and also change it to only WARN_ONCE().

Fixes: 4ddb74165ae5 ("bpf: Extract nullable reg type conversion into a helper function")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/YCzJlV3hnF%2Ft1Pk4@mwanda


# 45159b27 11-Feb-2021 Ilya Leoshkevich <iii@linux.ibm.com>

bpf: Clear subreg_def for global function return values

test_global_func4 fails on s390 as reported by Yauheni in [1].

The immediate problem is that the zext code includes the instruction,
whose result needs to be zero-extended, into the zero-extension
patchlet, and if this instruction happens to be a branch, then its
delta is not adjusted. As a result, the verifier rejects the program
later.

However, according to [2], as far as the verifier's algorithm is
concerned and as specified by the insn_no_def() function, branching
insns do not define anything. This includes call insns, even though
one might argue that they define %r0.

This means that the real problem is that zero extension kicks in at
all. This happens because clear_caller_saved_regs() sets BPF_REG_0's
subreg_def after global function calls. This can be fixed in many
ways; this patch mimics what helper function call handling already
does.

[1] https://lore.kernel.org/bpf/20200903140542.156624-1-yauheni.kaliuta@redhat.com/
[2] https://lore.kernel.org/bpf/CAADnVQ+2RPKcftZw8d+B1UwB35cpBhpF5u3OocNh90D9pETPwg@mail.gmail.com/

Fixes: 51c39bb1d5d1 ("bpf: Introduce function-by-function verification")
Reported-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com>
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20210212040408.90109-1-iii@linux.ibm.com


# e5069b9c 12-Feb-2021 Dmitrii Banshchikov <me@ubique.spb.ru>

bpf: Support pointers in global func args

Add an ability to pass a pointer to a type with known size in arguments
of a global function. Such pointers may be used to overcome the limit on
the maximum number of arguments, avoid expensive and tricky workarounds
and to have multiple output arguments.

A referenced type may contain pointers but indirect access through them
isn't supported.

The implementation consists of two parts. If a global function has an
argument that is a pointer to a type with known size then:

1) In btf_check_func_arg_match(): check that the corresponding
register points to NULL or to a valid memory region that is large enough
to contain the expected argument's type.

2) In btf_prepare_func_args(): set the corresponding register type to
PTR_TO_MEM_OR_NULL and its size to the size of the expected type.

Only global functions are supported because allowance of pointers for
static functions might break validation. Consider the following
scenario. A static function has a pointer argument. A caller passes
pointer to its stack memory. Because the callee can change referenced
memory verifier cannot longer assume any particular slot type of the
caller's stack memory hence the slot type is changed to SLOT_MISC. If
there is an operation that relies on slot type other than SLOT_MISC then
verifier won't be able to infer safety of the operation.

When verifier sees a static function that has a pointer argument
different from PTR_TO_CTX then it skips arguments check and continues
with "inline" validation with more information available. The operation
that relies on the particular slot type now succeeds.

Because global functions were not allowed to have pointer arguments
different from PTR_TO_CTX it's not possible to break existing and valid
code.

Signed-off-by: Dmitrii Banshchikov <me@ubique.spb.ru>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210212205642.620788-4-me@ubique.spb.ru


# 4ddb7416 12-Feb-2021 Dmitrii Banshchikov <me@ubique.spb.ru>

bpf: Extract nullable reg type conversion into a helper function

Extract conversion from a register's nullable type to a type with a
value. The helper will be used in mark_ptr_not_null_reg().

Signed-off-by: Dmitrii Banshchikov <me@ubique.spb.ru>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210212205642.620788-3-me@ubique.spb.ru


# 9b00f1b7 10-Feb-2021 Daniel Borkmann <daniel@iogearbox.net>

bpf: Fix truncation handling for mod32 dst reg wrt zero

Recently noticed that when mod32 with a known src reg of 0 is performed,
then the dst register is 32-bit truncated in verifier:

0: R1=ctx(id=0,off=0,imm=0) R10=fp0
0: (b7) r0 = 0
1: R0_w=inv0 R1=ctx(id=0,off=0,imm=0) R10=fp0
1: (b7) r1 = -1
2: R0_w=inv0 R1_w=inv-1 R10=fp0
2: (b4) w2 = -1
3: R0_w=inv0 R1_w=inv-1 R2_w=inv4294967295 R10=fp0
3: (9c) w1 %= w0
4: R0_w=inv0 R1_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R2_w=inv4294967295 R10=fp0
4: (b7) r0 = 1
5: R0_w=inv1 R1_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R2_w=inv4294967295 R10=fp0
5: (1d) if r1 == r2 goto pc+1
R0_w=inv1 R1_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R2_w=inv4294967295 R10=fp0
6: R0_w=inv1 R1_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R2_w=inv4294967295 R10=fp0
6: (b7) r0 = 2
7: R0_w=inv2 R1_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R2_w=inv4294967295 R10=fp0
7: (95) exit
7: R0=inv1 R1=inv(id=0,umin_value=4294967295,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R2=inv4294967295 R10=fp0
7: (95) exit

However, as a runtime result, we get 2 instead of 1, meaning the dst
register does not contain (u32)-1 in this case. The reason is fairly
straight forward given the 0 test leaves the dst register as-is:

# ./bpftool p d x i 23
0: (b7) r0 = 0
1: (b7) r1 = -1
2: (b4) w2 = -1
3: (16) if w0 == 0x0 goto pc+1
4: (9c) w1 %= w0
5: (b7) r0 = 1
6: (1d) if r1 == r2 goto pc+1
7: (b7) r0 = 2
8: (95) exit

This was originally not an issue given the dst register was marked as
completely unknown (aka 64 bit unknown). However, after 468f6eafa6c4
("bpf: fix 32-bit ALU op verification") the verifier casts the register
output to 32 bit, and hence it becomes 32 bit unknown. Note that for
the case where the src register is unknown, the dst register is marked
64 bit unknown. After the fix, the register is truncated by the runtime
and the test passes:

# ./bpftool p d x i 23
0: (b7) r0 = 0
1: (b7) r1 = -1
2: (b4) w2 = -1
3: (16) if w0 == 0x0 goto pc+2
4: (9c) w1 %= w0
5: (05) goto pc+1
6: (bc) w1 = w1
7: (b7) r0 = 1
8: (1d) if r1 == r2 goto pc+1
9: (b7) r0 = 2
10: (95) exit

Semantics also match with {R,W}x mod{64,32} 0 -> {R,W}x. Invalid div
has always been {R,W}x div{64,32} 0 -> 0. Rewrites are as follows:

mod32: mod64:

(16) if w0 == 0x0 goto pc+2 (15) if r0 == 0x0 goto pc+1
(9c) w1 %= w0 (9f) r1 %= r0
(05) goto pc+1
(bc) w1 = w1

Fixes: 468f6eafa6c4 ("bpf: fix 32-bit ALU op verification")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# b2e37a71 10-Feb-2021 Ilya Leoshkevich <iii@linux.ibm.com>

bpf: Fix subreg optimization for BPF_FETCH

All 32-bit variants of BPF_FETCH (add, and, or, xor, xchg, cmpxchg)
define a 32-bit subreg and thus have zext_dst set. Their encoding,
however, uses dst_reg field as a base register, which causes
opt_subreg_zext_lo32_rnd_hi32() to zero-extend said base register
instead of the one the insn really defines (r0 or src_reg).

Fix by properly choosing a register being defined, similar to how
check_atomic() already does that.

Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210210204502.83429-1-iii@linux.ibm.com


# 638e4b82 09-Feb-2021 Alexei Starovoitov <ast@kernel.org>

bpf: Allows per-cpu maps and map-in-map in sleepable programs

Since sleepable programs are now executing under migrate_disable
the per-cpu maps are safe to use.
The map-in-map were ok to use in sleepable from the time sleepable
progs were introduced.

Note that non-preallocated maps are still not safe, since there is
no rcu_read_lock yet in sleepable programs and dynamically allocated
map elements are relying on rcu protection. The sleepable programs
have rcu_read_lock_trace instead. That limitation will be addresses
in the future.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: KP Singh <kpsingh@kernel.org>
Link: https://lore.kernel.org/bpf/20210210033634.62081-9-alexei.starovoitov@gmail.com


# 700d4796 09-Feb-2021 Alexei Starovoitov <ast@kernel.org>

bpf: Optimize program stats

Move bpf_prog_stats from prog->aux into prog to avoid one extra load
in critical path of program execution.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210210033634.62081-2-alexei.starovoitov@gmail.com


# 01f810ac 06-Feb-2021 Andrei Matei <andreimatei1@gmail.com>

bpf: Allow variable-offset stack access

Before this patch, variable offset access to the stack was dissalowed
for regular instructions, but was allowed for "indirect" accesses (i.e.
helpers). This patch removes the restriction, allowing reading and
writing to the stack through stack pointers with variable offsets. This
makes stack-allocated buffers more usable in programs, and brings stack
pointers closer to other types of pointers.

The motivation is being able to use stack-allocated buffers for data
manipulation. When the stack size limit is sufficient, allocating
buffers on the stack is simpler than per-cpu arrays, or other
alternatives.

In unpriviledged programs, variable-offset reads and writes are
disallowed (they were already disallowed for the indirect access case)
because the speculative execution checking code doesn't support them.
Additionally, when writing through a variable-offset stack pointer, if
any pointers are in the accessible range, there's possilibities of later
leaking pointers because the write cannot be tracked precisely.

Writes with variable offset mark the whole range as initialized, even
though we don't know which stack slots are actually written. This is in
order to not reject future reads to these slots. Note that this doesn't
affect writes done through helpers; like before, helpers need the whole
stack range to be initialized to begin with.
All the stack slots are in range are considered scalars after the write;
variable-offset register spills are not tracked.

For reads, all the stack slots in the variable range needs to be
initialized (but see above about what writes do), otherwise the read is
rejected. All register spilled in stack slots that might be read are
marked as having been read, however reads through such pointers don't do
register filling; the target register will always be either a scalar or
a constant zero.

Signed-off-by: Andrei Matei <andreimatei1@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210207011027.676572-2-andreimatei1@gmail.com


# 23a2d70c 04-Feb-2021 Yonghong Song <yhs@fb.com>

bpf: Refactor BPF_PSEUDO_CALL checking as a helper function

There is no functionality change. This refactoring intends
to facilitate next patch change with BPF_PSEUDO_FUNC.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210204234827.1628953-1-yhs@fb.com


# ba90c2cc 04-Feb-2021 KP Singh <kpsingh@kernel.org>

bpf: Allow usage of BPF ringbuffer in sleepable programs

The BPF ringbuffer map is pre-allocated and the implementation logic
does not rely on disabling preemption or per-cpu data structures. Using
the BPF ringbuffer sleepable LSM and tracing programs does not trigger
any warnings with DEBUG_ATOMIC_SLEEP, DEBUG_PREEMPT,
PROVE_RCU and PROVE_LOCKING and LOCKDEP enabled.

This allows helpers like bpf_copy_from_user and bpf_ima_inode_hash to
write to the BPF ring buffer from sleepable BPF programs.

Signed-off-by: KP Singh <kpsingh@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210204193622.3367275-2-kpsingh@kernel.org


# 37086bfd 02-Feb-2021 Brendan Jackman <jackmanb@google.com>

bpf: Propagate stack bounds to registers in atomics w/ BPF_FETCH

When BPF_FETCH is set, atomic instructions load a value from memory
into a register. The current verifier code first checks via
check_mem_access whether we can access the memory, and then checks
via check_reg_arg whether we can write into the register.

For loads, check_reg_arg has the side-effect of marking the
register's value as unkonwn, and check_mem_access has the side effect
of propagating bounds from memory to the register. This currently only
takes effect for stack memory.

Therefore with the current order, bounds information is thrown away,
but by simply reversing the order of check_reg_arg
vs. check_mem_access, we can instead propagate bounds smartly.

A simple test is added with an infinite loop that can only be proved
unreachable if this propagation is present. This is implemented both
with C and directly in test_verifier using assembly.

Suggested-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Brendan Jackman <jackmanb@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210202135002.4024825-1-jackmanb@google.com


# 77241217 27-Jan-2021 Stanislav Fomichev <sdf@google.com>

bpf: Allow rewriting to ports under ip_unprivileged_port_start

At the moment, BPF_CGROUP_INET{4,6}_BIND hooks can rewrite user_port
to the privileged ones (< ip_unprivileged_port_start), but it will
be rejected later on in the __inet_bind or __inet6_bind.

Let's add another return value to indicate that CAP_NET_BIND_SERVICE
check should be ignored. Use the same idea as we currently use
in cgroup/egress where bit #1 indicates CN. Instead, for
cgroup/bind{4,6}, bit #1 indicates that CAP_NET_BIND_SERVICE should
be bypassed.

v5:
- rename flags to be less confusing (Andrey Ignatov)
- rework BPF_PROG_CGROUP_INET_EGRESS_RUN_ARRAY to work on flags
and accept BPF_RET_SET_CN (no behavioral changes)

v4:
- Add missing IPv6 support (Martin KaFai Lau)

v3:
- Update description (Martin KaFai Lau)
- Fix capability restore in selftest (Martin KaFai Lau)

v2:
- Switch to explicit return code (Martin KaFai Lau)

Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Andrey Ignatov <rdna@fb.com>
Link: https://lore.kernel.org/bpf/20210127193140.3170382-1-sdf@google.com


# 18b24d78 21-Jan-2021 Tobias Klauser <tklauser@distanz.ch>

bpf: Fix typo in scalar{,32}_min_max_rsh comments

s/bounts/bounds/

Signed-off-by: Tobias Klauser <tklauser@distanz.ch>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20210121174324.24127-1-tklauser@distanz.ch


# 981f94c3 14-Jan-2021 Brendan Jackman <jackmanb@google.com>

bpf: Add bitwise atomic instructions

This adds instructions for

atomic[64]_[fetch_]and
atomic[64]_[fetch_]or
atomic[64]_[fetch_]xor

All these operations are isomorphic enough to implement with the same
verifier, interpreter, and x86 JIT code, hence being a single commit.

The main interesting thing here is that x86 doesn't directly support
the fetch_ version these operations, so we need to generate a CMPXCHG
loop in the JIT. This requires the use of two temporary registers,
IIUC it's safe to use BPF_REG_AX and x86's AUX_REG for this purpose.

Signed-off-by: Brendan Jackman <jackmanb@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20210114181751.768687-10-jackmanb@google.com


# 5ffa2550 14-Jan-2021 Brendan Jackman <jackmanb@google.com>

bpf: Add instructions for atomic_[cmp]xchg

This adds two atomic opcodes, both of which include the BPF_FETCH
flag. XCHG without the BPF_FETCH flag would naturally encode
atomic_set. This is not supported because it would be of limited
value to userspace (it doesn't imply any barriers). CMPXCHG without
BPF_FETCH woulud be an atomic compare-and-write. We don't have such
an operation in the kernel so it isn't provided to BPF either.

There are two significant design decisions made for the CMPXCHG
instruction:

- To solve the issue that this operation fundamentally has 3
operands, but we only have two register fields. Therefore the
operand we compare against (the kernel's API calls it 'old') is
hard-coded to be R0. x86 has similar design (and A64 doesn't
have this problem).

A potential alternative might be to encode the other operand's
register number in the immediate field.

- The kernel's atomic_cmpxchg returns the old value, while the C11
userspace APIs return a boolean indicating the comparison
result. Which should BPF do? A64 returns the old value. x86 returns
the old value in the hard-coded register (and also sets a
flag). That means return-old-value is easier to JIT, so that's
what we use.

Signed-off-by: Brendan Jackman <jackmanb@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20210114181751.768687-8-jackmanb@google.com


# 5ca419f2 14-Jan-2021 Brendan Jackman <jackmanb@google.com>

bpf: Add BPF_FETCH field / create atomic_fetch_add instruction

The BPF_FETCH field can be set in bpf_insn.imm, for BPF_ATOMIC
instructions, in order to have the previous value of the
atomically-modified memory location loaded into the src register
after an atomic op is carried out.

Suggested-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Brendan Jackman <jackmanb@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20210114181751.768687-7-jackmanb@google.com


# c5bcb5eb 14-Jan-2021 Brendan Jackman <jackmanb@google.com>

bpf: Move BPF_STX reserved field check into BPF_STX verifier code

I can't find a reason why this code is in resolve_pseudo_ldimm64;
since I'll be modifying it in a subsequent commit, tidy it up.

Signed-off-by: Brendan Jackman <jackmanb@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20210114181751.768687-6-jackmanb@google.com


# 91c960b0 14-Jan-2021 Brendan Jackman <jackmanb@google.com>

bpf: Rename BPF_XADD and prepare to encode other atomics in .imm

A subsequent patch will add additional atomic operations. These new
operations will use the same opcode field as the existing XADD, with
the immediate discriminating different operations.

In preparation, rename the instruction mode BPF_ATOMIC and start
calling the zero immediate BPF_ADD.

This is possible (doesn't break existing valid BPF progs) because the
immediate field is currently reserved MBZ and BPF_ADD is zero.

All uses are removed from the tree but the BPF_XADD definition is
kept around to avoid breaking builds for people including kernel
headers.

Signed-off-by: Brendan Jackman <jackmanb@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Björn Töpel <bjorn.topel@gmail.com>
Link: https://lore.kernel.org/bpf/20210114181751.768687-5-jackmanb@google.com


# 541c3bad 12-Jan-2021 Andrii Nakryiko <andrii@kernel.org>

bpf: Support BPF ksym variables in kernel modules

Add support for directly accessing kernel module variables from BPF programs
using special ldimm64 instructions. This functionality builds upon vmlinux
ksym support, but extends ldimm64 with src_reg=BPF_PSEUDO_BTF_ID to allow
specifying kernel module BTF's FD in insn[1].imm field.

During BPF program load time, verifier will resolve FD to BTF object and will
take reference on BTF object itself and, for module BTFs, corresponding module
as well, to make sure it won't be unloaded from under running BPF program. The
mechanism used is similar to how bpf_prog keeps track of used bpf_maps.

One interesting change is also in how per-CPU variable is determined. The
logic is to find .data..percpu data section in provided BTF, but both vmlinux
and module each have their own .data..percpu entries in BTF. So for module's
case, the search for DATASEC record needs to look at only module's added BTF
types. This is implemented with custom search function.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Hao Luo <haoluo@google.com>
Link: https://lore.kernel.org/bpf/20210112075520.4103414-6-andrii@kernel.org


# 28a8add6 11-Jan-2021 Brendan Jackman <jackmanb@google.com>

bpf: Fix a verifier message for alloc size helper arg

The error message here is misleading, the argument will be rejected unless
it is a known constant.

Signed-off-by: Brendan Jackman <jackmanb@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210112123913.2016804-1-jackmanb@google.com


# e88b2c6e 09-Feb-2021 Daniel Borkmann <daniel@iogearbox.net>

bpf: Fix 32 bit src register truncation on div/mod

While reviewing a different fix, John and I noticed an oddity in one of the
BPF program dumps that stood out, for example:

# bpftool p d x i 13
0: (b7) r0 = 808464450
1: (b4) w4 = 808464432
2: (bc) w0 = w0
3: (15) if r0 == 0x0 goto pc+1
4: (9c) w4 %= w0
[...]

In line 2 we noticed that the mov32 would 32 bit truncate the original src
register for the div/mod operation. While for the two operations the dst
register is typically marked unknown e.g. from adjust_scalar_min_max_vals()
the src register is not, and thus verifier keeps tracking original bounds,
simplified:

0: R1=ctx(id=0,off=0,imm=0) R10=fp0
0: (b7) r0 = -1
1: R0_w=invP-1 R1=ctx(id=0,off=0,imm=0) R10=fp0
1: (b7) r1 = -1
2: R0_w=invP-1 R1_w=invP-1 R10=fp0
2: (3c) w0 /= w1
3: R0_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R1_w=invP-1 R10=fp0
3: (77) r1 >>= 32
4: R0_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R1_w=invP4294967295 R10=fp0
4: (bf) r0 = r1
5: R0_w=invP4294967295 R1_w=invP4294967295 R10=fp0
5: (95) exit
processed 6 insns (limit 1000000) max_states_per_insn 0 total_states 0 peak_states 0 mark_read 0

Runtime result of r0 at exit is 0 instead of expected -1. Remove the
verifier mov32 src rewrite in div/mod and replace it with a jmp32 test
instead. After the fix, we result in the following code generation when
having dividend r1 and divisor r6:

div, 64 bit: div, 32 bit:

0: (b7) r6 = 8 0: (b7) r6 = 8
1: (b7) r1 = 8 1: (b7) r1 = 8
2: (55) if r6 != 0x0 goto pc+2 2: (56) if w6 != 0x0 goto pc+2
3: (ac) w1 ^= w1 3: (ac) w1 ^= w1
4: (05) goto pc+1 4: (05) goto pc+1
5: (3f) r1 /= r6 5: (3c) w1 /= w6
6: (b7) r0 = 0 6: (b7) r0 = 0
7: (95) exit 7: (95) exit

mod, 64 bit: mod, 32 bit:

0: (b7) r6 = 8 0: (b7) r6 = 8
1: (b7) r1 = 8 1: (b7) r1 = 8
2: (15) if r6 == 0x0 goto pc+1 2: (16) if w6 == 0x0 goto pc+1
3: (9f) r1 %= r6 3: (9c) w1 %= w6
4: (b7) r0 = 0 4: (b7) r0 = 0
5: (95) exit 5: (95) exit

x86 in particular can throw a 'divide error' exception for div
instruction not only for divisor being zero, but also for the case
when the quotient is too large for the designated register. For the
edx:eax and rdx:rax dividend pair it is not an issue in x86 BPF JIT
since we always zero edx (rdx). Hence really the only protection
needed is against divisor being zero.

Fixes: 68fda450a7df ("bpf: fix 32-bit divide by zero")
Co-developed-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# fd675184 05-Feb-2021 Daniel Borkmann <daniel@iogearbox.net>

bpf: Fix verifier jmp32 pruning decision logic

Anatoly has been fuzzing with kBdysch harness and reported a hang in
one of the outcomes:

func#0 @0
0: R1=ctx(id=0,off=0,imm=0) R10=fp0
0: (b7) r0 = 808464450
1: R0_w=invP808464450 R1=ctx(id=0,off=0,imm=0) R10=fp0
1: (b4) w4 = 808464432
2: R0_w=invP808464450 R1=ctx(id=0,off=0,imm=0) R4_w=invP808464432 R10=fp0
2: (9c) w4 %= w0
3: R0_w=invP808464450 R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R10=fp0
3: (66) if w4 s> 0x30303030 goto pc+0
R0_w=invP808464450 R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff),s32_max_value=808464432) R10=fp0
4: R0_w=invP808464450 R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff),s32_max_value=808464432) R10=fp0
4: (7f) r0 >>= r0
5: R0_w=invP(id=0) R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff),s32_max_value=808464432) R10=fp0
5: (9c) w4 %= w0
6: R0_w=invP(id=0) R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0) R10=fp0
6: (66) if w0 s> 0x3030 goto pc+0
R0_w=invP(id=0,s32_max_value=12336) R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0) R10=fp0
7: R0=invP(id=0,s32_max_value=12336) R1=ctx(id=0,off=0,imm=0) R4=invP(id=0) R10=fp0
7: (d6) if w0 s<= 0x303030 goto pc+1
9: R0=invP(id=0,s32_max_value=12336) R1=ctx(id=0,off=0,imm=0) R4=invP(id=0) R10=fp0
9: (95) exit
propagating r0

from 6 to 7: safe
4: R0_w=invP808464450 R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0,umin_value=808464433,umax_value=2147483647,var_off=(0x0; 0x7fffffff)) R10=fp0
4: (7f) r0 >>= r0
5: R0_w=invP(id=0) R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0,umin_value=808464433,umax_value=2147483647,var_off=(0x0; 0x7fffffff)) R10=fp0
5: (9c) w4 %= w0
6: R0_w=invP(id=0) R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0) R10=fp0
6: (66) if w0 s> 0x3030 goto pc+0
R0_w=invP(id=0,s32_max_value=12336) R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0) R10=fp0
propagating r0
7: safe
propagating r0

from 6 to 7: safe
processed 15 insns (limit 1000000) max_states_per_insn 0 total_states 1 peak_states 1 mark_read 1

The underlying program was xlated as follows:

# bpftool p d x i 10
0: (b7) r0 = 808464450
1: (b4) w4 = 808464432
2: (bc) w0 = w0
3: (15) if r0 == 0x0 goto pc+1
4: (9c) w4 %= w0
5: (66) if w4 s> 0x30303030 goto pc+0
6: (7f) r0 >>= r0
7: (bc) w0 = w0
8: (15) if r0 == 0x0 goto pc+1
9: (9c) w4 %= w0
10: (66) if w0 s> 0x3030 goto pc+0
11: (d6) if w0 s<= 0x303030 goto pc+1
12: (05) goto pc-1
13: (95) exit

The verifier rewrote original instructions it recognized as dead code with
'goto pc-1', but reality differs from verifier simulation in that we are
actually able to trigger a hang due to hitting the 'goto pc-1' instructions.

Taking a closer look at the verifier analysis, the reason is that it misjudges
its pruning decision at the first 'from 6 to 7: safe' occasion. What happens
is that while both old/cur registers are marked as precise, they get misjudged
for the jmp32 case as range_within() yields true, meaning that the prior
verification path with a wider register bound could be verified successfully
and therefore the current path with a narrower register bound is deemed safe
as well whereas in reality it's not. R0 old/cur path's bounds compare as
follows:

old: smin_value=0x8000000000000000,smax_value=0x7fffffffffffffff,umin_value=0x0,umax_value=0xffffffffffffffff,var_off=(0x0; 0xffffffffffffffff)
cur: smin_value=0x8000000000000000,smax_value=0x7fffffff7fffffff,umin_value=0x0,umax_value=0xffffffff7fffffff,var_off=(0x0; 0xffffffff7fffffff)

old: s32_min_value=0x80000000,s32_max_value=0x00003030,u32_min_value=0x00000000,u32_max_value=0xffffffff
cur: s32_min_value=0x00003031,s32_max_value=0x7fffffff,u32_min_value=0x00003031,u32_max_value=0x7fffffff

The 64 bit bounds generally look okay and while the information that got
propagated from 32 to 64 bit looks correct as well, it's not precise enough
for judging a conditional jmp32. Given the latter only operates on subregisters
we also need to take these into account as well for a range_within() probe
in order to be able to prune paths. Extending the range_within() constraint
to both bounds will be able to tell us that the old signed 32 bit bounds are
not wider than the cur signed 32 bit bounds.

With the fix in place, the program will now verify the 'goto' branch case as
it should have been:

[...]
6: R0_w=invP(id=0) R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0) R10=fp0
6: (66) if w0 s> 0x3030 goto pc+0
R0_w=invP(id=0,s32_max_value=12336) R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0) R10=fp0
7: R0=invP(id=0,s32_max_value=12336) R1=ctx(id=0,off=0,imm=0) R4=invP(id=0) R10=fp0
7: (d6) if w0 s<= 0x303030 goto pc+1
9: R0=invP(id=0,s32_max_value=12336) R1=ctx(id=0,off=0,imm=0) R4=invP(id=0) R10=fp0
9: (95) exit

7: R0_w=invP(id=0,smax_value=9223372034707292159,umax_value=18446744071562067967,var_off=(0x0; 0xffffffff7fffffff),s32_min_value=12337,u32_min_value=12337,u32_max_value=2147483647) R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0) R10=fp0
7: (d6) if w0 s<= 0x303030 goto pc+1
R0_w=invP(id=0,smax_value=9223372034707292159,umax_value=18446744071562067967,var_off=(0x0; 0xffffffff7fffffff),s32_min_value=3158065,u32_min_value=3158065,u32_max_value=2147483647) R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0) R10=fp0
8: R0_w=invP(id=0,smax_value=9223372034707292159,umax_value=18446744071562067967,var_off=(0x0; 0xffffffff7fffffff),s32_min_value=3158065,u32_min_value=3158065,u32_max_value=2147483647) R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0) R10=fp0
8: (30) r0 = *(u8 *)skb[808464432]
BPF_LD_[ABS|IND] uses reserved fields
processed 11 insns (limit 1000000) max_states_per_insn 1 total_states 1 peak_states 1 mark_read 1

The bug is quite subtle in the sense that when verifier would determine that
a given branch is dead code, it would (here: wrongly) remove these instructions
from the program and hard-wire the taken branch for privileged programs instead
of the 'goto pc-1' rewrites which will cause hard to debug problems.

Fixes: 3f50f132d840 ("bpf: Verifier, do explicit ALU32 bounds tracking")
Reported-by: Anatoly Trosinenko <anatoly.trosinenko@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# ee114dd6 05-Feb-2021 Daniel Borkmann <daniel@iogearbox.net>

bpf: Fix verifier jsgt branch analysis on max bound

Fix incorrect is_branch{32,64}_taken() analysis for the jsgt case. The return
code for both will tell the caller whether a given conditional jump is taken
or not, e.g. 1 means branch will be taken [for the involved registers] and the
goto target will be executed, 0 means branch will not be taken and instead we
fall-through to the next insn, and last but not least a -1 denotes that it is
not known at verification time whether a branch will be taken or not. Now while
the jsgt has the branch-taken case correct with reg->s32_min_value > sval, the
branch-not-taken case is off-by-one when testing for reg->s32_max_value < sval
since the branch will also be taken for reg->s32_max_value == sval. The jgt
branch analysis, for example, gets this right.

Fixes: 3f50f132d840 ("bpf: Verifier, do explicit ALU32 bounds tracking")
Fixes: 4f7b3e82589e ("bpf: improve verifier branch analysis")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# bc895e8b 19-Jan-2021 Daniel Borkmann <daniel@iogearbox.net>

bpf: Fix signed_{sub,add32}_overflows type handling

Fix incorrect signed_{sub,add32}_overflows() input types (and a related buggy
comment). It looks like this might have slipped in via copy/paste issue, also
given prior to 3f50f132d840 ("bpf: Verifier, do explicit ALU32 bounds tracking")
the signature of signed_sub_overflows() had s64 a and s64 b as its input args
whereas now they are truncated to s32. Thus restore proper types. Also, the case
of signed_add32_overflows() is not consistent to signed_sub32_overflows(). Both
have s32 as inputs, therefore align the former.

Fixes: 3f50f132d840 ("bpf: Verifier, do explicit ALU32 bounds tracking")
Reported-by: De4dCr0w <sa516203@mail.ustc.edu.cn>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# 744ea4e3 12-Jan-2021 Gilad Reti <gilad.reti@gmail.com>

bpf: Support PTR_TO_MEM{,_OR_NULL} register spilling

Add support for pointer to mem register spilling, to allow the verifier
to track pointers to valid memory addresses. Such pointers are returned
for example by a successful call of the bpf_ringbuf_reserve helper.

The patch was partially contributed by CyberArk Software, Inc.

Fixes: 457f44363a88 ("bpf: Implement BPF ring buffer and verifier support for it")
Suggested-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Gilad Reti <gilad.reti@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: KP Singh <kpsingh@kernel.org>
Link: https://lore.kernel.org/bpf/20210113053810.13518-1-gilad.reti@gmail.com


# cd17d38f 09-Dec-2020 Yonghong Song <yhs@fb.com>

bpf: Permits pointers on stack for helper calls

Currently, when checking stack memory accessed by helper calls,
for spills, only PTR_TO_BTF_ID and SCALAR_VALUE are
allowed.

Song discovered an issue where the below bpf program
int dump_task(struct bpf_iter__task *ctx)
{
struct seq_file *seq = ctx->meta->seq;
static char[] info = "abc";
BPF_SEQ_PRINTF(seq, "%s\n", info);
return 0;
}
may cause a verifier failure.

The verifier output looks like:
; struct seq_file *seq = ctx->meta->seq;
1: (79) r1 = *(u64 *)(r1 +0)
; BPF_SEQ_PRINTF(seq, "%s\n", info);
2: (18) r2 = 0xffff9054400f6000
4: (7b) *(u64 *)(r10 -8) = r2
5: (bf) r4 = r10
;
6: (07) r4 += -8
; BPF_SEQ_PRINTF(seq, "%s\n", info);
7: (18) r2 = 0xffff9054400fe000
9: (b4) w3 = 4
10: (b4) w5 = 8
11: (85) call bpf_seq_printf#126
R1_w=ptr_seq_file(id=0,off=0,imm=0) R2_w=map_value(id=0,off=0,ks=4,vs=4,imm=0)
R3_w=inv4 R4_w=fp-8 R5_w=inv8 R10=fp0 fp-8_w=map_value
last_idx 11 first_idx 0
regs=8 stack=0 before 10: (b4) w5 = 8
regs=8 stack=0 before 9: (b4) w3 = 4
invalid indirect read from stack off -8+0 size 8

Basically, the verifier complains the map_value pointer at "fp-8" location.
To fix the issue, if env->allow_ptr_leaks is true, let us also permit
pointers on the stack to be accessible by the helper.

Reported-by: Song Liu <songliubraving@fb.com>
Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20201210013349.943719-1-yhs@fb.com


# b0270958 08-Dec-2020 Alexei Starovoitov <ast@kernel.org>

bpf: Fix propagation of 32-bit signed bounds from 64-bit bounds.

The 64-bit signed bounds should not affect 32-bit signed bounds unless the
verifier knows that upper 32-bits are either all 1s or all 0s. For example the
register with smin_value==1 doesn't mean that s32_min_value is also equal to 1,
since smax_value could be larger than 32-bit subregister can hold.
The verifier refines the smax/s32_max return value from certain helpers in
do_refine_retval_range(). Teach the verifier to recognize that smin/s32_min
value is also bounded. When both smin and smax bounds fit into 32-bit
subregister the verifier can propagate those bounds.

Fixes: 3f50f132d840 ("bpf: Verifier, do explicit ALU32 bounds tracking")
Reported-by: Jean-Philippe Brucker <jean-philippe@linaro.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 22dc4a0f 03-Dec-2020 Andrii Nakryiko <andrii@kernel.org>

bpf: Remove hard-coded btf_vmlinux assumption from BPF verifier

Remove a permeating assumption thoughout BPF verifier of vmlinux BTF. Instead,
wherever BTF type IDs are involved, also track the instance of struct btf that
goes along with the type ID. This allows to gradually add support for kernel
module BTFs and using/tracking module types across BPF helper calls and
registers.

This patch also renames btf_id() function to btf_obj_id() to minimize naming
clash with using btf_id to denote BTF *type* ID, rather than BTF *object*'s ID.

Also, altough btf_vmlinux can't get destructed and thus doesn't need
refcounting, module BTFs need that, so apply BTF refcounting universally when
BPF program is using BTF-powered attachment (tp_btf, fentry/fexit, etc). This
makes for simpler clean up code.

Now that BTF type ID is not enough to uniquely identify a BTF type, extend BPF
trampoline key to include BTF object ID. To differentiate that from target
program BPF ID, set 31st bit of type ID. BTF type IDs (at least currently) are
not allowed to take full 32 bits, so there is no danger of confusing that bit
with a valid BTF type ID.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20201203204634.1325171-10-andrii@kernel.org


# 59e2e27d 20-Nov-2020 Wedson Almeida Filho <wedsonaf@google.com>

bpf: Refactor check_cfg to use a structured loop.

The current implementation uses a number of gotos to implement a loop
and different paths within the loop, which makes the code less readable
than it would be with an explicit while-loop. This patch also replaces a
chain of if/if-elses keyed on the same expression with a switch
statement.

No change in behaviour is intended.

Signed-off-by: Wedson Almeida Filho <wedsonaf@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20201121015509.3594191-1-wedsonaf@google.com


# f782e2c3 13-Nov-2020 Dmitrii Banshchikov <me@ubique.spb.ru>

bpf: Relax return code check for subprograms

Currently verifier enforces return code checks for subprograms in the
same manner as it does for program entry points. This prevents returning
arbitrary scalar values from subprograms. Scalar type of returned values
is checked by btf_prepare_func_args() and hence it should be safe to
allow only scalars for now. Relax return code checks for subprograms and
allow any correct scalar values.

Fixes: 51c39bb1d5d10 (bpf: Introduce function-by-function verification)
Signed-off-by: Dmitrii Banshchikov <me@ubique.spb.ru>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20201113171756.90594-1-me@ubique.spb.ru


# 423f1610 12-Nov-2020 KP Singh <kpsingh@google.com>

bpf: Augment the set of sleepable LSM hooks

Update the set of sleepable hooks with the ones that do not trigger
a warning with might_fault() when exercised with the correct kernel
config options enabled, i.e.

DEBUG_ATOMIC_SLEEP=y
LOCKDEP=y
PROVE_LOCKING=y

This means that a sleepable LSM eBPF program can be attached to these
LSM hooks. A new helper method bpf_lsm_is_sleepable_hook is added and
the set is maintained locally in bpf_lsm.c

Signed-off-by: KP Singh <kpsingh@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20201113005930.541956-2-kpsingh@chromium.org


# 6d94e741 10-Nov-2020 Alexei Starovoitov <ast@kernel.org>

bpf: Support for pointers beyond pkt_end.

This patch adds the verifier support to recognize inlined branch conditions.
The LLVM knows that the branch evaluates to the same value, but the verifier
couldn't track it. Hence causing valid programs to be rejected.
The potential LLVM workaround: https://reviews.llvm.org/D87428
can have undesired side effects, since LLVM doesn't know that
skb->data/data_end are being compared. LLVM has to introduce extra boolean
variable and use inline_asm trick to force easier for the verifier assembly.

Instead teach the verifier to recognize that
r1 = skb->data;
r1 += 10;
r2 = skb->data_end;
if (r1 > r2) {
here r1 points beyond packet_end and
subsequent
if (r1 > r2) // always evaluates to "true".
}

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Jiri Olsa <jolsa@redhat.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20201111031213.25109-2-alexei.starovoitov@gmail.com


# f16e6313 10-Nov-2020 Kaixu Xia <kaixuxia@tencent.com>

bpf: Fix unsigned 'datasec_id' compared with zero in check_pseudo_btf_id

The unsigned variable datasec_id is assigned a return value from the call
to check_pseudo_btf_id(), which may return negative error code.

This fixes the following coccicheck warning:

./kernel/bpf/verifier.c:9616:5-15: WARNING: Unsigned expression compared with zero: datasec_id > 0

Fixes: eaa6bcb71ef6 ("bpf: Introduce bpf_per_cpu_ptr()")
Reported-by: Tosk Robot <tencent_os_robot@tencent.com>
Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Cc: Hao Luo <haoluo@google.com>
Link: https://lore.kernel.org/bpf/1605071026-25906-1-git-send-email-kaixuxia@tencent.com


# 3ca1032a 06-Nov-2020 KP Singh <kpsingh@google.com>

bpf: Implement get_current_task_btf and RET_PTR_TO_BTF_ID

The currently available bpf_get_current_task returns an unsigned integer
which can be used along with BPF_CORE_READ to read data from
the task_struct but still cannot be used as an input argument to a
helper that accepts an ARG_PTR_TO_BTF_ID of type task_struct.

In order to implement this helper a new return type, RET_PTR_TO_BTF_ID,
is added. This is similar to RET_PTR_TO_BTF_ID_OR_NULL but does not
require checking the nullness of returned pointer.

Signed-off-by: KP Singh <kpsingh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20201106103747.2780972-6-kpsingh@chromium.org


# 4cf1bc1f 06-Nov-2020 KP Singh <kpsingh@google.com>

bpf: Implement task local storage

Similar to bpf_local_storage for sockets and inodes add local storage
for task_struct.

The life-cycle of storage is managed with the life-cycle of the
task_struct. i.e. the storage is destroyed along with the owning task
with a callback to the bpf_task_storage_free from the task_free LSM
hook.

The BPF LSM allocates an __rcu pointer to the bpf_local_storage in
the security blob which are now stackable and can co-exist with other
LSMs.

The userspace map operations can be done by using a pid fd as a key
passed to the lookup, update and delete operations.

Signed-off-by: KP Singh <kpsingh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20201106103747.2780972-3-kpsingh@chromium.org


# 9e7a4d98 06-Nov-2020 KP Singh <kpsingh@google.com>

bpf: Allow LSM programs to use bpf spin locks

Usage of spin locks was not allowed for tracing programs due to
insufficient preemption checks. The verifier does not currently prevent
LSM programs from using spin locks, but the helpers are not exposed
via bpf_lsm_func_proto.

Based on the discussion in [1], non-sleepable LSM programs should be
able to use bpf_spin_{lock, unlock}.

Sleepable LSM programs can be preempted which means that allowng spin
locks will need more work (disabling preemption and the verifier
ensuring that no sleepable helpers are called when a spin lock is held).

[1]: https://lore.kernel.org/bpf/20201103153132.2717326-1-kpsingh@chromium.org/T/#md601a053229287659071600d3483523f752cd2fb

Signed-off-by: KP Singh <kpsingh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20201106103747.2780972-2-kpsingh@chromium.org


# 93c230e3 19-Oct-2020 Martin KaFai Lau <kafai@fb.com>

bpf: Enforce id generation for all may-be-null register type

The commit af7ec1383361 ("bpf: Add bpf_skc_to_tcp6_sock() helper")
introduces RET_PTR_TO_BTF_ID_OR_NULL and
the commit eaa6bcb71ef6 ("bpf: Introduce bpf_per_cpu_ptr()")
introduces RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL.
Note that for RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL, the reg0->type
could become PTR_TO_MEM_OR_NULL which is not covered by
BPF_PROBE_MEM.

The BPF_REG_0 will then hold a _OR_NULL pointer type. This _OR_NULL
pointer type requires the bpf program to explicitly do a NULL check first.
After NULL check, the verifier will mark all registers having
the same reg->id as safe to use. However, the reg->id
is not set for those new _OR_NULL return types. One of the ways
that may be wrong is, checking NULL for one btf_id typed pointer will
end up validating all other btf_id typed pointers because
all of them have id == 0. The later tests will exercise
this path.

To fix it and also avoid similar issue in the future, this patch
moves the id generation logic out of each individual RET type
test in check_helper_call(). Instead, it does one
reg_type_may_be_null() test and then do the id generation
if needed.

This patch also adds a WARN_ON_ONCE in mark_ptr_or_null_reg()
to catch future breakage.

The _OR_NULL pointer usage in the bpf_iter_reg.ctx_arg_info is
fine because it just happens that the existing id generation after
check_ctx_access() has covered it. It is also using the
reg_type_may_be_null() to decide if id generation is needed or not.

Fixes: af7ec1383361 ("bpf: Add bpf_skc_to_tcp6_sock() helper")
Fixes: eaa6bcb71ef6 ("bpf: Introduce bpf_per_cpu_ptr()")
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20201019194212.1050855-1-kafai@fb.com


# e688c3db 14-Oct-2020 Alexei Starovoitov <ast@kernel.org>

bpf: Fix register equivalence tracking.

The 64-bit JEQ/JNE handling in reg_set_min_max() was clearing reg->id in either
true or false branch. In the case 'if (reg->id)' check was done on the other
branch the counter part register would have reg->id == 0 when called into
find_equal_scalars(). In such case the helper would incorrectly identify other
registers with id == 0 as equivalent and propagate the state incorrectly.
Fix it by preserving ID across reg_set_min_max().

In other words any kind of comparison operator on the scalar register
should preserve its ID to recognize:

r1 = r2
if (r1 == 20) {
#1 here both r1 and r2 == 20
} else if (r2 < 20) {
#2 here both r1 and r2 < 20
}

The patch is addressing #1 case. The #2 was working correctly already.

Fixes: 75748837b7e5 ("bpf: Propagate scalar ranges through register assignments.")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Tested-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20201014175608.1416-1-alexei.starovoitov@gmail.com


# 4a8f87e6 10-Oct-2020 Daniel Borkmann <daniel@iogearbox.net>

bpf: Allow for map-in-map with dynamic inner array map entries

Recent work in f4d05259213f ("bpf: Add map_meta_equal map ops") and 134fede4eecf
("bpf: Relax max_entries check for most of the inner map types") added support
for dynamic inner max elements for most map-in-map types. Exceptions were maps
like array or prog array where the map_gen_lookup() callback uses the maps'
max_entries field as a constant when emitting instructions.

We recently implemented Maglev consistent hashing into Cilium's load balancer
which uses map-in-map with an outer map being hash and inner being array holding
the Maglev backend table for each service. This has been designed this way in
order to reduce overall memory consumption given the outer hash map allows to
avoid preallocating a large, flat memory area for all services. Also, the
number of service mappings is not always known a-priori.

The use case for dynamic inner array map entries is to further reduce memory
overhead, for example, some services might just have a small number of back
ends while others could have a large number. Right now the Maglev backend table
for small and large number of backends would need to have the same inner array
map entries which adds a lot of unneeded overhead.

Dynamic inner array map entries can be realized by avoiding the inlined code
generation for their lookup. The lookup will still be efficient since it will
be calling into array_map_lookup_elem() directly and thus avoiding retpoline.
The patch adds a BPF_F_INNER_MAP flag to map creation which therefore skips
inline code generation and relaxes array_map_meta_equal() check to ignore both
maps' max_entries. This also still allows to have faster lookups for map-in-map
when BPF_F_INNER_MAP is not specified and hence dynamic max_entries not needed.

Example code generation where inner map is dynamic sized array:

# bpftool p d x i 125
int handle__sys_enter(void * ctx):
; int handle__sys_enter(void *ctx)
0: (b4) w1 = 0
; int key = 0;
1: (63) *(u32 *)(r10 -4) = r1
2: (bf) r2 = r10
;
3: (07) r2 += -4
; inner_map = bpf_map_lookup_elem(&outer_arr_dyn, &key);
4: (18) r1 = map[id:468]
6: (07) r1 += 272
7: (61) r0 = *(u32 *)(r2 +0)
8: (35) if r0 >= 0x3 goto pc+5
9: (67) r0 <<= 3
10: (0f) r0 += r1
11: (79) r0 = *(u64 *)(r0 +0)
12: (15) if r0 == 0x0 goto pc+1
13: (05) goto pc+1
14: (b7) r0 = 0
15: (b4) w6 = -1
; if (!inner_map)
16: (15) if r0 == 0x0 goto pc+6
17: (bf) r2 = r10
;
18: (07) r2 += -4
; val = bpf_map_lookup_elem(inner_map, &key);
19: (bf) r1 = r0 | No inlining but instead
20: (85) call array_map_lookup_elem#149280 | call to array_map_lookup_elem()
; return val ? *val : -1; | for inner array lookup.
21: (15) if r0 == 0x0 goto pc+1
; return val ? *val : -1;
22: (61) r6 = *(u32 *)(r0 +0)
; }
23: (bc) w0 = w6
24: (95) exit

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20201010234006.7075-4-daniel@iogearbox.net


# 5689d49b 08-Oct-2020 Yonghong Song <yhs@fb.com>

bpf: Track spill/fill of bounded scalars.

Under register pressure the llvm may spill registers with bounds into the stack.
The verifier has to track them through spill/fill otherwise many kinds of bound
errors will be seen. The spill/fill of induction variables was already
happening. This patch extends this logic from tracking spill/fill of a constant
into any bounded register. There is no need to track spill/fill of unbounded,
since no new information will be retrieved from the stack during register fill.

Though extra stack difference could cause state pruning to be less effective, no
adverse affects were seen from this patch on selftests and on cilium programs.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20201009011240.48506-3-alexei.starovoitov@gmail.com


# 75748837 08-Oct-2020 Alexei Starovoitov <ast@kernel.org>

bpf: Propagate scalar ranges through register assignments.

The llvm register allocator may use two different registers representing the
same virtual register. In such case the following pattern can be observed:
1047: (bf) r9 = r6
1048: (a5) if r6 < 0x1000 goto pc+1
1050: ...
1051: (a5) if r9 < 0x2 goto pc+66
1052: ...
1053: (bf) r2 = r9 /* r2 needs to have upper and lower bounds */

This is normal behavior of greedy register allocator.
The slides 137+ explain why regalloc introduces such register copy:
http://llvm.org/devmtg/2018-04/slides/Yatsina-LLVM%20Greedy%20Register%20Allocator.pdf
There is no way to tell llvm 'not to do this'.
Hence the verifier has to recognize such patterns.

In order to track this information without backtracking allocate ID
for scalars in a similar way as it's done for find_good_pkt_pointers().

When the verifier encounters r9 = r6 assignment it will assign the same ID
to both registers. Later if either register range is narrowed via conditional
jump propagate the register state into the other register.

Clear register ID in adjust_reg_min_max_vals() for any alu instruction. The
register ID is ignored for scalars in regsafe() and doesn't affect state
pruning. mark_reg_unknown() clears the ID. It's used to process call, endian
and other instructions. Hence ID is explicitly cleared only in
adjust_reg_min_max_vals() and in 32-bit mov.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20201009011240.48506-2-alexei.starovoitov@gmail.com


# 5b9fbeb7 07-Oct-2020 Daniel Borkmann <daniel@iogearbox.net>

bpf: Fix scalar32_min_max_or bounds tracking

Simon reported an issue with the current scalar32_min_max_or() implementation.
That is, compared to the other 32 bit subreg tracking functions, the code in
scalar32_min_max_or() stands out that it's using the 64 bit registers instead
of 32 bit ones. This leads to bounds tracking issues, for example:

[...]
8: R0=map_value(id=0,off=0,ks=4,vs=48,imm=0) R10=fp0 fp-8=mmmmmmmm
8: (79) r1 = *(u64 *)(r0 +0)
R0=map_value(id=0,off=0,ks=4,vs=48,imm=0) R10=fp0 fp-8=mmmmmmmm
9: R0=map_value(id=0,off=0,ks=4,vs=48,imm=0) R1_w=inv(id=0) R10=fp0 fp-8=mmmmmmmm
9: (b7) r0 = 1
10: R0_w=inv1 R1_w=inv(id=0) R10=fp0 fp-8=mmmmmmmm
10: (18) r2 = 0x600000002
12: R0_w=inv1 R1_w=inv(id=0) R2_w=inv25769803778 R10=fp0 fp-8=mmmmmmmm
12: (ad) if r1 < r2 goto pc+1
R0_w=inv1 R1_w=inv(id=0,umin_value=25769803778) R2_w=inv25769803778 R10=fp0 fp-8=mmmmmmmm
13: R0_w=inv1 R1_w=inv(id=0,umin_value=25769803778) R2_w=inv25769803778 R10=fp0 fp-8=mmmmmmmm
13: (95) exit
14: R0_w=inv1 R1_w=inv(id=0,umax_value=25769803777,var_off=(0x0; 0x7ffffffff)) R2_w=inv25769803778 R10=fp0 fp-8=mmmmmmmm
14: (25) if r1 > 0x0 goto pc+1
R0_w=inv1 R1_w=inv(id=0,umax_value=0,var_off=(0x0; 0x7fffffff),u32_max_value=2147483647) R2_w=inv25769803778 R10=fp0 fp-8=mmmmmmmm
15: R0_w=inv1 R1_w=inv(id=0,umax_value=0,var_off=(0x0; 0x7fffffff),u32_max_value=2147483647) R2_w=inv25769803778 R10=fp0 fp-8=mmmmmmmm
15: (95) exit
16: R0_w=inv1 R1_w=inv(id=0,umin_value=1,umax_value=25769803777,var_off=(0x0; 0x77fffffff),u32_max_value=2147483647) R2_w=inv25769803778 R10=fp0 fp-8=mmmmmmmm
16: (47) r1 |= 0
17: R0_w=inv1 R1_w=inv(id=0,umin_value=1,umax_value=32212254719,var_off=(0x1; 0x700000000),s32_max_value=1,u32_max_value=1) R2_w=inv25769803778 R10=fp0 fp-8=mmmmmmmm
[...]

The bound tests on the map value force the upper unsigned bound to be 25769803777
in 64 bit (0b11000000000000000000000000000000001) and then lower one to be 1. By
using OR they are truncated and thus result in the range [1,1] for the 32 bit reg
tracker. This is incorrect given the only thing we know is that the value must be
positive and thus 2147483647 (0b1111111111111111111111111111111) at max for the
subregs. Fix it by using the {u,s}32_{min,max}_value vars instead. This also makes
sense, for example, for the case where we update dst_reg->s32_{min,max}_value in
the else branch we need to use the newly computed dst_reg->u32_{min,max}_value as
we know that these are positive. Previously, in the else branch the 64 bit values
of umin_value=1 and umax_value=32212254719 were used and latter got truncated to
be 1 as upper bound there. After the fix the subreg range is now correct:

[...]
8: R0=map_value(id=0,off=0,ks=4,vs=48,imm=0) R10=fp0 fp-8=mmmmmmmm
8: (79) r1 = *(u64 *)(r0 +0)
R0=map_value(id=0,off=0,ks=4,vs=48,imm=0) R10=fp0 fp-8=mmmmmmmm
9: R0=map_value(id=0,off=0,ks=4,vs=48,imm=0) R1_w=inv(id=0) R10=fp0 fp-8=mmmmmmmm
9: (b7) r0 = 1
10: R0_w=inv1 R1_w=inv(id=0) R10=fp0 fp-8=mmmmmmmm
10: (18) r2 = 0x600000002
12: R0_w=inv1 R1_w=inv(id=0) R2_w=inv25769803778 R10=fp0 fp-8=mmmmmmmm
12: (ad) if r1 < r2 goto pc+1
R0_w=inv1 R1_w=inv(id=0,umin_value=25769803778) R2_w=inv25769803778 R10=fp0 fp-8=mmmmmmmm
13: R0_w=inv1 R1_w=inv(id=0,umin_value=25769803778) R2_w=inv25769803778 R10=fp0 fp-8=mmmmmmmm
13: (95) exit
14: R0_w=inv1 R1_w=inv(id=0,umax_value=25769803777,var_off=(0x0; 0x7ffffffff)) R2_w=inv25769803778 R10=fp0 fp-8=mmmmmmmm
14: (25) if r1 > 0x0 goto pc+1
R0_w=inv1 R1_w=inv(id=0,umax_value=0,var_off=(0x0; 0x7fffffff),u32_max_value=2147483647) R2_w=inv25769803778 R10=fp0 fp-8=mmmmmmmm
15: R0_w=inv1 R1_w=inv(id=0,umax_value=0,var_off=(0x0; 0x7fffffff),u32_max_value=2147483647) R2_w=inv25769803778 R10=fp0 fp-8=mmmmmmmm
15: (95) exit
16: R0_w=inv1 R1_w=inv(id=0,umin_value=1,umax_value=25769803777,var_off=(0x0; 0x77fffffff),u32_max_value=2147483647) R2_w=inv25769803778 R10=fp0 fp-8=mmmmmmmm
16: (47) r1 |= 0
17: R0_w=inv1 R1_w=inv(id=0,umin_value=1,umax_value=32212254719,var_off=(0x0; 0x77fffffff),u32_max_value=2147483647) R2_w=inv25769803778 R10=fp0 fp-8=mmmmmmmm
[...]

Fixes: 3f50f132d840 ("bpf: Verifier, do explicit ALU32 bounds tracking")
Reported-by: Simon Scannell <scannell.smn@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# 49a2a4d4 06-Oct-2020 Randy Dunlap <rdunlap@infradead.org>

kernel/bpf/verifier: Fix build when NET is not enabled

Fix build errors in kernel/bpf/verifier.c when CONFIG_NET is
not enabled.

../kernel/bpf/verifier.c:3995:13: error: ‘btf_sock_ids’ undeclared here (not in a function); did you mean ‘bpf_sock_ops’?
.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],

../kernel/bpf/verifier.c:3995:26: error: ‘BTF_SOCK_TYPE_SOCK_COMMON’ undeclared here (not in a function); did you mean ‘PTR_TO_SOCK_COMMON’?
.btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],

Fixes: 1df8f55a37bd ("bpf: Enable bpf_skc_to_* sock casting helper to networking prog type")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20201007021613.13646-1-rdunlap@infradead.org


# 8731745e 02-Oct-2020 Gustavo A. R. Silva <gustavoars@kernel.org>

bpf, verifier: Use fallthrough pseudo-keyword

Replace /* fallthrough */ comments with the new pseudo-keyword
macro fallthrough [1].

[1] https://www.kernel.org/doc/html/v5.7/process/deprecated.html?highlight=fallthrough#implicit-switch-case-fall-through

Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20201002234217.GA12280@embeddedor


# 63d9b80d 29-Sep-2020 Hao Luo <haoluo@google.com>

bpf: Introducte bpf_this_cpu_ptr()

Add bpf_this_cpu_ptr() to help access percpu var on this cpu. This
helper always returns a valid pointer, therefore no need to check
returned value for NULL. Also note that all programs run with
preemption disabled, which means that the returned pointer is stable
during all the execution of the program.

Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200929235049.2533242-6-haoluo@google.com


# eaa6bcb7 29-Sep-2020 Hao Luo <haoluo@google.com>

bpf: Introduce bpf_per_cpu_ptr()

Add bpf_per_cpu_ptr() to help bpf programs access percpu vars.
bpf_per_cpu_ptr() has the same semantic as per_cpu_ptr() in the kernel
except that it may return NULL. This happens when the cpu parameter is
out of range. So the caller must check the returned value.

Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200929235049.2533242-5-haoluo@google.com


# 4976b718 29-Sep-2020 Hao Luo <haoluo@google.com>

bpf: Introduce pseudo_btf_id

Pseudo_btf_id is a type of ld_imm insn that associates a btf_id to a
ksym so that further dereferences on the ksym can use the BTF info
to validate accesses. Internally, when seeing a pseudo_btf_id ld insn,
the verifier reads the btf_id stored in the insn[0]'s imm field and
marks the dst_reg as PTR_TO_BTF_ID. The btf_id points to a VAR_KIND,
which is encoded in btf_vminux by pahole. If the VAR is not of a struct
type, the dst reg will be marked as PTR_TO_MEM instead of PTR_TO_BTF_ID
and the mem_size is resolved to the size of the VAR's type.

>From the VAR btf_id, the verifier can also read the address of the
ksym's corresponding kernel var from kallsyms and use that to fill
dst_reg.

Therefore, the proper functionality of pseudo_btf_id depends on (1)
kallsyms and (2) the encoding of kernel global VARs in pahole, which
should be available since pahole v1.18.

Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200929235049.2533242-2-haoluo@google.com


# 4a1e7c0c 29-Sep-2020 Toke Høiland-Jørgensen <toke@redhat.com>

bpf: Support attaching freplace programs to multiple attach points

This enables support for attaching freplace programs to multiple attach
points. It does this by amending the UAPI for bpf_link_Create with a target
btf ID that can be used to supply the new attachment point along with the
target program fd. The target must be compatible with the target that was
supplied at program load time.

The implementation reuses the checks that were factored out of
check_attach_btf_id() to ensure compatibility between the BTF types of the
old and new attachment. If these match, a new bpf_tracing_link will be
created for the new attach target, allowing multiple attachments to
co-exist simultaneously.

The code could theoretically support multiple-attach of other types of
tracing programs as well, but since I don't have a use case for any of
those, there is no API support for doing so.

Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/160138355169.48470.17165680973640685368.stgit@toke.dk


# 3aac1ead 29-Sep-2020 Toke Høiland-Jørgensen <toke@redhat.com>

bpf: Move prog->aux->linked_prog and trampoline into bpf_link on attach

In preparation for allowing multiple attachments of freplace programs, move
the references to the target program and trampoline into the
bpf_tracing_link structure when that is created. To do this atomically,
introduce a new mutex in prog->aux to protect writing to the two pointers
to target prog and trampoline, and rename the members to make it clear that
they are related.

With this change, it is no longer possible to attach the same tracing
program multiple times (detaching in-between), since the reference from the
tracing program to the target disappears on the first attach. However,
since the next patch will let the caller supply an attach target, that will
also make it possible to attach to the same place multiple times.

Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/160138355059.48470.2503076992210324984.stgit@toke.dk


# 76654e67 27-Sep-2020 Alan Maguire <alan.maguire@oracle.com>

bpf: Provide function to get vmlinux BTF information

It will be used later for BPF structure display support

Signed-off-by: Alan Maguire <alan.maguire@oracle.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/1601292670-1616-2-git-send-email-alan.maguire@oracle.com


# f7b12b6f 25-Sep-2020 Toke Høiland-Jørgensen <toke@redhat.com>

bpf: verifier: refactor check_attach_btf_id()

The check_attach_btf_id() function really does three things:

1. It performs a bunch of checks on the program to ensure that the
attachment is valid.

2. It stores a bunch of state about the attachment being requested in
the verifier environment and struct bpf_prog objects.

3. It allocates a trampoline for the attachment.

This patch splits out (1.) and (3.) into separate functions which will
perform the checks, but return the computed values instead of directly
modifying the environment. This is done in preparation for reusing the
checks when the actual attachment is happening, which will allow tracing
programs to have multiple (compatible) attachments.

This also fixes a bug where a bunch of checks were skipped if a trampoline
already existed for the tracing target.

Fixes: 6ba43b761c41 ("bpf: Attachment verification for BPF_MODIFY_RETURN")
Fixes: 1e6c62a88215 ("bpf: Introduce sleepable BPF programs")
Acked-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# efc68158 25-Sep-2020 Toke Høiland-Jørgensen <toke@redhat.com>

bpf: change logging calls from verbose() to bpf_log() and use log pointer

In preparation for moving code around, change a bunch of references to
env->log (and the verbose() logging helper) to use bpf_log() and a direct
pointer to struct bpf_verifier_log. While we're touching the function
signature, mark the 'prog' argument to bpf_check_type_match() as const.

Also enhance the bpf_verifier_log_needed() check to handle NULL pointers
for the log struct so we can re-use the code with logging disabled.

Acked-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 1af9270e 25-Sep-2020 Toke Høiland-Jørgensen <toke@redhat.com>

bpf: disallow attaching modify_return tracing functions to other BPF programs

From the checks and commit messages for modify_return, it seems it was
never the intention that it should be possible to attach a tracing program
with expected_attach_type == BPF_MODIFY_RETURN to another BPF program.
However, check_attach_modify_return() will only look at the function name,
so if the target function starts with "security_", the attach will be
allowed even for bpf2bpf attachment.

Fix this oversight by also blocking the modification if a target program is
supplied.

Fixes: 18644cec714a ("bpf: Fix use-after-free in fmod_ret check")
Fixes: 6ba43b761c41 ("bpf: Attachment verification for BPF_MODIFY_RETURN")
Acked-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 6550f2dd 28-Sep-2020 Lorenz Bauer <lmb@cloudflare.com>

bpf: sockmap: Enable map_update_elem from bpf_iter

Allow passing a pointer to a BTF struct sock_common* when updating
a sockmap or sockhash. Since BTF pointers can fault and therefore be
NULL at runtime we need to add an additional !sk check to
sock_map_update_elem. Since we may be passed a request or timewait
socket we also need to check sk_fullsock. Doing this allows calling
map_update_elem on sockmap from bpf_iter context, which uses
BTF pointers.

Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200928090805.23343-2-lmb@cloudflare.com


# 4fbb38a3 24-Sep-2020 John Fastabend <john.fastabend@gmail.com>

bpf, verifier: Remove redundant var_off.value ops in scalar known reg cases

In BPF_AND and BPF_OR alu cases we have this pattern when the src and dst
tnum is a constant.

1 dst_reg->var_off = tnum_[op](dst_reg->var_off, src_reg.var_off)
2 scalar32_min_max_[op]
3 if (known) return
4 scalar_min_max_[op]
5 if (known)
6 __mark_reg_known(dst_reg,
dst_reg->var_off.value [op] src_reg.var_off.value)

The result is in 1 we calculate the var_off value and store it in the
dst_reg. Then in 6 we duplicate this logic doing the op again on the
value.

The duplication comes from the the tnum_[op] handlers because they have
already done the value calcuation. For example this is tnum_and().

struct tnum tnum_and(struct tnum a, struct tnum b)
{
u64 alpha, beta, v;

alpha = a.value | a.mask;
beta = b.value | b.mask;
v = a.value & b.value;
return TNUM(v, alpha & beta & ~v);
}

So lets remove the redundant op calculation. Its confusing for readers
and unnecessary. Its also not harmful because those ops have the
property, r1 & r1 = r1 and r1 | r1 = r1.

Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 1df8f55a 24-Sep-2020 Martin KaFai Lau <kafai@fb.com>

bpf: Enable bpf_skc_to_* sock casting helper to networking prog type

There is a constant need to add more fields into the bpf_tcp_sock
for the bpf programs running at tc, sock_ops...etc.

A current workaround could be to use bpf_probe_read_kernel(). However,
other than making another helper call for reading each field and missing
CO-RE, it is also not as intuitive to use as directly reading
"tp->lsndtime" for example. While already having perfmon cap to do
bpf_probe_read_kernel(), it will be much easier if the bpf prog can
directly read from the tcp_sock.

This patch tries to do that by using the existing casting-helpers
bpf_skc_to_*() whose func_proto returns a btf_id. For example, the
func_proto of bpf_skc_to_tcp_sock returns the btf_id of the
kernel "struct tcp_sock".

These helpers are also added to is_ptr_cast_function().
It ensures the returning reg (BPF_REF_0) will also carries the ref_obj_id.
That will keep the ref-tracking works properly.

The bpf_skc_to_* helpers are made available to most of the bpf prog
types in filter.c. The bpf_skc_to_* helpers will be limited by
perfmon cap.

This patch adds a ARG_PTR_TO_BTF_ID_SOCK_COMMON. The helper accepting
this arg can accept a btf-id-ptr (PTR_TO_BTF_ID + &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON])
or a legacy-ctx-convert-skc-ptr (PTR_TO_SOCK_COMMON). The bpf_skc_to_*()
helpers are changed to take ARG_PTR_TO_BTF_ID_SOCK_COMMON such that
they will accept pointer obtained from skb->sk.

Instead of specifying both arg_type and arg_btf_id in the same func_proto
which is how the current ARG_PTR_TO_BTF_ID does, the arg_btf_id of
the new ARG_PTR_TO_BTF_ID_SOCK_COMMON is specified in the
compatible_reg_types[] in verifier.c. The reason is the arg_btf_id is
always the same. Discussion in this thread:
https://lore.kernel.org/bpf/20200922070422.1917351-1-kafai@fb.com/

The ARG_PTR_TO_BTF_ID_ part gives a clear expectation that the helper is
expecting a PTR_TO_BTF_ID which could be NULL. This is the same
behavior as the existing helper taking ARG_PTR_TO_BTF_ID.

The _SOCK_COMMON part means the helper is also expecting the legacy
SOCK_COMMON pointer.

By excluding the _OR_NULL part, the bpf prog cannot call helper
with a literal NULL which doesn't make sense in most cases.
e.g. bpf_skc_to_tcp_sock(NULL) will be rejected. All PTR_TO_*_OR_NULL
reg has to do a NULL check first before passing into the helper or else
the bpf prog will be rejected. This behavior is nothing new and
consistent with the current expectation during bpf-prog-load.

[ ARG_PTR_TO_BTF_ID_SOCK_COMMON will be used to replace
ARG_PTR_TO_SOCK* of other existing helpers later such that
those existing helpers can take the PTR_TO_BTF_ID returned by
the bpf_skc_to_*() helpers.

The only special case is bpf_sk_lookup_assign() which can accept a
literal NULL ptr. It has to be handled specially in another follow
up patch if there is a need (e.g. by renaming ARG_PTR_TO_SOCKET_OR_NULL
to ARG_PTR_TO_BTF_ID_SOCK_COMMON_OR_NULL). ]

[ When converting the older helpers that take ARG_PTR_TO_SOCK* in
the later patch, if the kernel does not support BTF,
ARG_PTR_TO_BTF_ID_SOCK_COMMON will behave like ARG_PTR_TO_SOCK_COMMON
because no reg->type could have PTR_TO_BTF_ID in this case.

It is not a concern for the newer-btf-only helper like the bpf_skc_to_*()
here though because these helpers must require BTF vmlinux to begin
with. ]

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20200925000350.3855720-1-kafai@fb.com


# a968d5e2 24-Sep-2020 Martin KaFai Lau <kafai@fb.com>

bpf: Move the PTR_TO_BTF_ID check to check_reg_type()

check_reg_type() checks whether a reg can be used as an arg of a
func_proto. For PTR_TO_BTF_ID, the check is actually not
completely done until the reg->btf_id is pointing to a
kernel struct that is acceptable by the func_proto.

Thus, this patch moves the btf_id check into check_reg_type().
"arg_type" and "arg_btf_id" are passed to check_reg_type() instead of
"compatible". The compatible_reg_types[] usage is localized in
check_reg_type() now.

The "if (!btf_id) verbose(...); " is also removed since it won't happen.

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Lorenz Bauer <lmb@cloudflare.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20200925000344.3854828-1-kafai@fb.com


# 0789e13b 23-Sep-2020 Lorenz Bauer <lmb@cloudflare.com>

bpf: Explicitly size compatible_reg_types

Arrays with designated initializers have an implicit length of the highest
initialized value plus one. I used this to ensure that newly added entries
in enum bpf_reg_type get a NULL entry in compatible_reg_types.

This is difficult to understand since it requires knowledge of the
peculiarities of designated initializers. Use __BPF_ARG_TYPE_MAX to size
the array instead.

Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200923160156.80814-1-lmb@cloudflare.com


# f79e7ea5 21-Sep-2020 Lorenz Bauer <lmb@cloudflare.com>

bpf: Use a table to drive helper arg type checks

The mapping between bpf_arg_type and bpf_reg_type is encoded in a big
hairy if statement that is hard to follow. The debug output also leaves
to be desired: if a reg_type doesn't match we only print one of the
options, instead printing all the valid ones.

Convert the if statement into a table which is then used to drive type
checking. If none of the reg_types match we print all options, e.g.:

R2 type=rdonly_buf expected=fp, pkt, pkt_meta, map_value

Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20200921121227.255763-12-lmb@cloudflare.com


# fd1b0d60 21-Sep-2020 Lorenz Bauer <lmb@cloudflare.com>

bpf: Hoist type checking for nullable arg types

check_func_arg has a plethora of weird if statements with empty branches.
They work around the fact that *_OR_NULL argument types should accept a
SCALAR_VALUE register, as long as it's value is 0. These statements make
it difficult to reason about the type checking logic.

Instead, skip more detailed type checking logic iff the register is 0,
and the function expects a nullable type. This allows simplifying the type
checking itself.

Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20200921121227.255763-11-lmb@cloudflare.com


# c18f0b6a 21-Sep-2020 Lorenz Bauer <lmb@cloudflare.com>

bpf: Check ARG_PTR_TO_SPINLOCK register type in check_func_arg

Move the check for PTR_TO_MAP_VALUE to check_func_arg, where all other
checking is done as well. Move the invocation of process_spin_lock away
from the register type checking, to allow a future refactoring.

Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20200921121227.255763-10-lmb@cloudflare.com


# a2bbe7cc 21-Sep-2020 Lorenz Bauer <lmb@cloudflare.com>

bpf: Set meta->raw_mode for pointers close to use

If we encounter a pointer to memory, we set meta->raw_mode depending
on the type of memory we point at. What isn't obvious is that this
information is only used when the next memory size argument is
encountered.

Move the assignment closer to where it's used, and add a comment that
explains what is going on.

Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20200921121227.255763-9-lmb@cloudflare.com


# feec7040 21-Sep-2020 Lorenz Bauer <lmb@cloudflare.com>

bpf: Make context access check generic

Always check context access if the register we're operating on is
PTR_TO_CTX, rather than relying on ARG_PTR_TO_CTX. This allows
simplifying the arg_type checking section of the function.

Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20200921121227.255763-8-lmb@cloudflare.com


# 02f7c958 21-Sep-2020 Lorenz Bauer <lmb@cloudflare.com>

bpf: Make reference tracking generic

Instead of dealing with reg->ref_obj_id individually for every arg type that
needs it, rely on the fact that ref_obj_id is zero if the register is not
reference tracked.

Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20200921121227.255763-7-lmb@cloudflare.com


# d7b9454a 21-Sep-2020 Lorenz Bauer <lmb@cloudflare.com>

bpf: Make BTF pointer type checking generic

Perform BTF type checks if the register we're working on contains a BTF
pointer, rather than if the argument is for a BTF pointer. This is easier
to understand, and allows removing the code from the arg_type checking
section of the function.

Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20200921121227.255763-6-lmb@cloudflare.com


# 9436ef6e 21-Sep-2020 Lorenz Bauer <lmb@cloudflare.com>

bpf: Allow specifying a BTF ID per argument in function protos

Function prototypes using ARG_PTR_TO_BTF_ID currently use two ways to signal
which BTF IDs are acceptable. First, bpf_func_proto.btf_id is an array of
IDs, one for each argument. This array is only accessed up to the highest
numbered argument that uses ARG_PTR_TO_BTF_ID and may therefore be less than
five arguments long. It usually points at a BTF_ID_LIST. Second, check_btf_id
is a function pointer that is called by the verifier if present. It gets the
actual BTF ID of the register, and the argument number we're currently checking.
It turns out that the only user check_arg_btf_id ignores the argument, and is
simply used to check whether the BTF ID has a struct sock_common at it's start.

Replace both of these mechanisms with an explicit BTF ID for each argument
in a function proto. Thanks to btf_struct_ids_match this is very flexible:
check_arg_btf_id can be replaced by requiring struct sock_common.

Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20200921121227.255763-5-lmb@cloudflare.com


# 0d004c02 21-Sep-2020 Lorenz Bauer <lmb@cloudflare.com>

bpf: Check scalar or invalid register in check_helper_mem_access

Move the check for a NULL or zero register to check_helper_mem_access. This
makes check_stack_boundary easier to understand.

Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200921121227.255763-3-lmb@cloudflare.com


# 09b28d76 17-Sep-2020 Alexei Starovoitov <ast@kernel.org>

bpf: Add abnormal return checks.

LD_[ABS|IND] instructions may return from the function early. bpf_tail_call
pseudo instruction is either fallthrough or return. Allow them in the
subprograms only when subprograms are BTF annotated and have scalar return
types. Allow ld_abs and tail_call in the main program even if it calls into
subprograms. In the past that was not ok to do for ld_abs, since it was JITed
with special exit sequence. Since bpf_gen_ld_abs() was introduced the ld_abs
looks like normal exit insn from JIT point of view, so it's safe to allow them
in the main program.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# e411901c 16-Sep-2020 Maciej Fijalkowski <maciej.fijalkowski@intel.com>

bpf: allow for tailcalls in BPF subprograms for x64 JIT

Relax verifier's restriction that was meant to forbid tailcall usage
when subprog count was higher than 1.

Also, do not max out the stack depth of program that utilizes tailcalls.

Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# ebf7d1f5 16-Sep-2020 Maciej Fijalkowski <maciej.fijalkowski@intel.com>

bpf, x64: rework pro/epilogue and tailcall handling in JIT

This commit serves two things:
1) it optimizes BPF prologue/epilogue generation
2) it makes possible to have tailcalls within BPF subprogram

Both points are related to each other since without 1), 2) could not be
achieved.

In [1], Alexei says:
"The prologue will look like:
nop5
xor eax,eax  // two new bytes if bpf_tail_call() is used in this
// function
push rbp
mov rbp, rsp
sub rsp, rounded_stack_depth
push rax // zero init tail_call counter
variable number of push rbx,r13,r14,r15

Then bpf_tail_call will pop variable number rbx,..
and final 'pop rax'
Then 'add rsp, size_of_current_stack_frame'
jmp to next function and skip over 'nop5; xor eax,eax; push rpb; mov
rbp, rsp'

This way new function will set its own stack size and will init tail
call
counter with whatever value the parent had.

If next function doesn't use bpf_tail_call it won't have 'xor eax,eax'.
Instead it would need to have 'nop2' in there."

Implement that suggestion.

Since the layout of stack is changed, tail call counter handling can not
rely anymore on popping it to rbx just like it have been handled for
constant prologue case and later overwrite of rbx with actual value of
rbx pushed to stack. Therefore, let's use one of the register (%rcx) that
is considered to be volatile/caller-saved and pop the value of tail call
counter in there in the epilogue.

Drop the BUILD_BUG_ON in emit_prologue and in
emit_bpf_tail_call_indirect where instruction layout is not constant
anymore.

Introduce new poke target, 'tailcall_bypass' to poke descriptor that is
dedicated for skipping the register pops and stack unwind that are
generated right before the actual jump to target program.
For case when the target program is not present, BPF program will skip
the pop instructions and nop5 dedicated for jmpq $target. An example of
such state when only R6 of callee saved registers is used by program:

ffffffffc0513aa1: e9 0e 00 00 00 jmpq 0xffffffffc0513ab4
ffffffffc0513aa6: 5b pop %rbx
ffffffffc0513aa7: 58 pop %rax
ffffffffc0513aa8: 48 81 c4 00 00 00 00 add $0x0,%rsp
ffffffffc0513aaf: 0f 1f 44 00 00 nopl 0x0(%rax,%rax,1)
ffffffffc0513ab4: 48 89 df mov %rbx,%rdi

When target program is inserted, the jump that was there to skip
pops/nop5 will become the nop5, so CPU will go over pops and do the
actual tailcall.

One might ask why there simply can not be pushes after the nop5?
In the following example snippet:

ffffffffc037030c: 48 89 fb mov %rdi,%rbx
(...)
ffffffffc0370332: 5b pop %rbx
ffffffffc0370333: 58 pop %rax
ffffffffc0370334: 48 81 c4 00 00 00 00 add $0x0,%rsp
ffffffffc037033b: 0f 1f 44 00 00 nopl 0x0(%rax,%rax,1)
ffffffffc0370340: 48 81 ec 00 00 00 00 sub $0x0,%rsp
ffffffffc0370347: 50 push %rax
ffffffffc0370348: 53 push %rbx
ffffffffc0370349: 48 89 df mov %rbx,%rdi
ffffffffc037034c: e8 f7 21 00 00 callq 0xffffffffc0372548

There is the bpf2bpf call (at ffffffffc037034c) right after the tailcall
and jump target is not present. ctx is in %rbx register and BPF
subprogram that we will call into on ffffffffc037034c is relying on it,
e.g. it will pick ctx from there. Such code layout is therefore broken
as we would overwrite the content of %rbx with the value that was pushed
on the prologue. That is the reason for the 'bypass' approach.

Special care needs to be taken during the install/update/remove of
tailcall target. In case when target program is not present, the CPU
must not execute the pop instructions that precede the tailcall.

To address that, the following states can be defined:
A nop, unwind, nop
B nop, unwind, tail
C skip, unwind, nop
D skip, unwind, tail

A is forbidden (lead to incorrectness). The state transitions between
tailcall install/update/remove will work as follows:

First install tail call f: C->D->B(f)
* poke the tailcall, after that get rid of the skip
Update tail call f to f': B(f)->B(f')
* poke the tailcall (poke->tailcall_target) and do NOT touch the
poke->tailcall_bypass
Remove tail call: B(f')->C(f')
* poke->tailcall_bypass is poked back to jump, then we wait the RCU
grace period so that other programs will finish its execution and
after that we are safe to remove the poke->tailcall_target
Install new tail call (f''): C(f')->D(f'')->B(f'').
* same as first step

This way CPU can never be exposed to "unwind, tail" state.

Last but not least, when tailcalls get mixed with bpf2bpf calls, it
would be possible to encounter the endless loop due to clearing the
tailcall counter if for example we would use the tailcall3-like from BPF
selftests program that would be subprogram-based, meaning the tailcall
would be present within the BPF subprogram.

This test, broken down to particular steps, would do:
entry -> set tailcall counter to 0, bump it by 1, tailcall to func0
func0 -> call subprog_tail
(we are NOT skipping the first 11 bytes of prologue and this subprogram
has a tailcall, therefore we clear the counter...)
subprog -> do the same thing as entry

and then loop forever.

To address this, the idea is to go through the call chain of bpf2bpf progs
and look for a tailcall presence throughout whole chain. If we saw a single
tail call then each node in this call chain needs to be marked as a subprog
that can reach the tailcall. We would later feed the JIT with this info
and:
- set eax to 0 only when tailcall is reachable and this is the entry prog
- if tailcall is reachable but there's no tailcall in insns of currently
JITed prog then push rax anyway, so that it will be possible to
propagate further down the call chain
- finally if tailcall is reachable, then we need to precede the 'call'
insn with mov rax, [rbp - (stack_depth + 8)]

Tail call related cases from test_verifier kselftest are also working
fine. Sample BPF programs that utilize tail calls (sockex3, tracex5)
work properly as well.

[1]: https://lore.kernel.org/bpf/20200517043227.2gpq22ifoq37ogst@ast-mbp.dhcp.thefacebook.com/

Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 7f6e4312 16-Sep-2020 Maciej Fijalkowski <maciej.fijalkowski@intel.com>

bpf: Limit caller's stack depth 256 for subprogs with tailcalls

Protect against potential stack overflow that might happen when bpf2bpf
calls get combined with tailcalls. Limit the caller's stack depth for
such case down to 256 so that the worst case scenario would result in 8k
stack size (32 which is tailcall limit * 256 = 8k).

Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# a748c697 16-Sep-2020 Maciej Fijalkowski <maciej.fijalkowski@intel.com>

bpf: propagate poke descriptors to subprograms

Previously, there was no need for poke descriptors being present in
subprogram's bpf_prog_aux struct since tailcalls were simply not allowed
in them. Each subprog is JITed independently so in order to enable
JITing subprograms that use tailcalls, do the following:

- in fixup_bpf_calls() store the index of tailcall insn onto the generated
poke descriptor,
- in case when insn patching occurs, adjust the tailcall insn idx from
bpf_patch_insn_data,
- then in jit_subprogs() check whether the given poke descriptor belongs
to the current subprog by checking if that previously stored absolute
index of tail call insn is in the scope of the insns of given subprog,
- update the insn->imm with new poke descriptor slot so that while JITing
the proper poke descriptor will be grabbed

This way each of the main program's poke descriptors are distributed
across the subprograms poke descriptor array, so main program's
descriptors can be untracked out of the prog array map.

Add also subprog's aux struct to the BPF map poke_progs list by calling
on it map_poke_track().

In case of any error, call the map_poke_untrack() on subprog's aux
structs that have already been registered to prog array map.

Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 7c696732 08-Sep-2020 Yonghong Song <yhs@fb.com>

bpf: Permit map_ptr arithmetic with opcode add and offset 0

Commit 41c48f3a98231 ("bpf: Support access
to bpf map fields") added support to access map fields
with CORE support. For example,

struct bpf_map {
__u32 max_entries;
} __attribute__((preserve_access_index));

struct bpf_array {
struct bpf_map map;
__u32 elem_size;
} __attribute__((preserve_access_index));

struct {
__uint(type, BPF_MAP_TYPE_ARRAY);
__uint(max_entries, 4);
__type(key, __u32);
__type(value, __u32);
} m_array SEC(".maps");

SEC("cgroup_skb/egress")
int cg_skb(void *ctx)
{
struct bpf_array *array = (struct bpf_array *)&m_array;

/* .. array->map.max_entries .. */
}

In kernel, bpf_htab has similar structure,

struct bpf_htab {
struct bpf_map map;
...
}

In the above cg_skb(), to access array->map.max_entries, with CORE, the clang will
generate two builtin's.
base = &m_array;
/* access array.map */
map_addr = __builtin_preserve_struct_access_info(base, 0, 0);
/* access array.map.max_entries */
max_entries_addr = __builtin_preserve_struct_access_info(map_addr, 0, 0);
max_entries = *max_entries_addr;

In the current llvm, if two builtin's are in the same function or
in the same function after inlining, the compiler is smart enough to chain
them together and generates like below:
base = &m_array;
max_entries = *(base + reloc_offset); /* reloc_offset = 0 in this case */
and we are fine.

But if we force no inlining for one of functions in test_map_ptr() selftest, e.g.,
check_default(), the above two __builtin_preserve_* will be in two different
functions. In this case, we will have code like:
func check_hash():
reloc_offset_map = 0;
base = &m_array;
map_base = base + reloc_offset_map;
check_default(map_base, ...)
func check_default(map_base, ...):
max_entries = *(map_base + reloc_offset_max_entries);

In kernel, map_ptr (CONST_PTR_TO_MAP) does not allow any arithmetic.
The above "map_base = base + reloc_offset_map" will trigger a verifier failure.
; VERIFY(check_default(&hash->map, map));
0: (18) r7 = 0xffffb4fe8018a004
2: (b4) w1 = 110
3: (63) *(u32 *)(r7 +0) = r1
R1_w=invP110 R7_w=map_value(id=0,off=4,ks=4,vs=8,imm=0) R10=fp0
; VERIFY_TYPE(BPF_MAP_TYPE_HASH, check_hash);
4: (18) r1 = 0xffffb4fe8018a000
6: (b4) w2 = 1
7: (63) *(u32 *)(r1 +0) = r2
R1_w=map_value(id=0,off=0,ks=4,vs=8,imm=0) R2_w=invP1 R7_w=map_value(id=0,off=4,ks=4,vs=8,imm=0) R10=fp0
8: (b7) r2 = 0
9: (18) r8 = 0xffff90bcb500c000
11: (18) r1 = 0xffff90bcb500c000
13: (0f) r1 += r2
R1 pointer arithmetic on map_ptr prohibited

To fix the issue, let us permit map_ptr + 0 arithmetic which will
result in exactly the same map_ptr.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200908175702.2463625-1-yhs@fb.com


# f56407fa 31-Aug-2020 Alexei Starovoitov <ast@kernel.org>

bpf: Remove bpf_lsm_file_mprotect from sleepable list.

Technically the bpf programs can sleep while attached to bpf_lsm_file_mprotect,
but such programs need to access user memory. So they're in might_fault()
category. Which means they cannot be called from file_mprotect lsm hook that
takes write lock on mm->mmap_lock.
Adjust the test accordingly.

Also add might_fault() to __bpf_prog_enter_sleepable() to catch such deadlocks early.

Fixes: 1e6c62a88215 ("bpf: Introduce sleepable BPF programs")
Fixes: e68a144547fc ("selftests/bpf: Add sleepable tests")
Reported-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200831201651.82447-1-alexei.starovoitov@gmail.com


# 29523c5e 31-Aug-2020 Alexei Starovoitov <ast@kernel.org>

bpf: Fix build without BPF_LSM.

resolve_btfids doesn't like empty set. Add unused ID when BPF_LSM is off.

Fixes: 1e6c62a88215 ("bpf: Introduce sleepable BPF programs")
Reported-by: Björn Töpel <bjorn.topel@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Song Liu <songliubraving@fb.com>
Acked-by: KP Singh <kpsingh@google.com>
Link: https://lore.kernel.org/bpf/20200831163132.66521-1-alexei.starovoitov@gmail.com


# 1e6c62a8 27-Aug-2020 Alexei Starovoitov <ast@kernel.org>

bpf: Introduce sleepable BPF programs

Introduce sleepable BPF programs that can request such property for themselves
via BPF_F_SLEEPABLE flag at program load time. In such case they will be able
to use helpers like bpf_copy_from_user() that might sleep. At present only
fentry/fexit/fmod_ret and lsm programs can request to be sleepable and only
when they are attached to kernel functions that are known to allow sleeping.

The non-sleepable programs are relying on implicit rcu_read_lock() and
migrate_disable() to protect life time of programs, maps that they use and
per-cpu kernel structures used to pass info between bpf programs and the
kernel. The sleepable programs cannot be enclosed into rcu_read_lock().
migrate_disable() maps to preempt_disable() in non-RT kernels, so the progs
should not be enclosed in migrate_disable() as well. Therefore
rcu_read_lock_trace is used to protect the life time of sleepable progs.

There are many networking and tracing program types. In many cases the
'struct bpf_prog *' pointer itself is rcu protected within some other kernel
data structure and the kernel code is using rcu_dereference() to load that
program pointer and call BPF_PROG_RUN() on it. All these cases are not touched.
Instead sleepable bpf programs are allowed with bpf trampoline only. The
program pointers are hard-coded into generated assembly of bpf trampoline and
synchronize_rcu_tasks_trace() is used to protect the life time of the program.
The same trampoline can hold both sleepable and non-sleepable progs.

When rcu_read_lock_trace is held it means that some sleepable bpf program is
running from bpf trampoline. Those programs can use bpf arrays and preallocated
hash/lru maps. These map types are waiting on programs to complete via
synchronize_rcu_tasks_trace();

Updates to trampoline now has to do synchronize_rcu_tasks_trace() and
synchronize_rcu_tasks() to wait for sleepable progs to finish and for
trampoline assembly to finish.

This is the first step of introducing sleepable progs. Eventually dynamically
allocated hash maps can be allowed and networking program types can become
sleepable too.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: KP Singh <kpsingh@google.com>
Link: https://lore.kernel.org/bpf/20200827220114.69225-3-alexei.starovoitov@gmail.com


# 2921c90d 25-Aug-2020 Yonghong Song <yhs@fb.com>

bpf: Fix a verifier failure with xor

bpf selftest test_progs/test_sk_assign failed with llvm 11 and llvm 12.
Compared to llvm 10, llvm 11 and 12 generates xor instruction which
is not handled properly in verifier. The following illustrates the
problem:

16: (b4) w5 = 0
17: ... R5_w=inv0 ...
...
132: (a4) w5 ^= 1
133: ... R5_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) ...
...
37: (bc) w8 = w5
38: ... R5=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff))
R8_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) ...
...
41: (bc) w3 = w8
42: ... R3_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) ...
45: (56) if w3 != 0x0 goto pc+1
... R3_w=inv0 ...
46: (b7) r1 = 34
47: R1_w=inv34 R7=pkt(id=0,off=26,r=38,imm=0)
47: (0f) r7 += r1
48: R1_w=invP34 R3_w=inv0 R7_w=pkt(id=0,off=60,r=38,imm=0)
48: (b4) w9 = 0
49: R1_w=invP34 R3_w=inv0 R7_w=pkt(id=0,off=60,r=38,imm=0)
49: (69) r1 = *(u16 *)(r7 +0)
invalid access to packet, off=60 size=2, R7(id=0,off=60,r=38)
R7 offset is outside of the packet

At above insn 132, w5 = 0, but after w5 ^= 1, we give a really conservative
value of w5. At insn 45, in reality the condition should be always false.
But due to conservative value for w3, the verifier evaluates it could be
true and this later leads to verifier failure complaining potential
packet out-of-bound access.

This patch implemented proper XOR support in verifier.
In the above example, we have:
132: R5=invP0
132: (a4) w5 ^= 1
133: R5_w=invP1
...
37: (bc) w8 = w5
...
41: (bc) w3 = w8
42: R3_w=invP1
...
45: (56) if w3 != 0x0 goto pc+1
47: R3_w=invP1
...
processed 353 insns ...
and the verifier can verify the program successfully.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20200825064608.2017937-1-yhs@fb.com


# 7e40781c 25-Aug-2020 Udip Pant <udippant@fb.com>

bpf: verifier: Use target program's type for access verifications

This patch adds changes in verifier to make decisions such as granting
of read / write access or enforcement of return code status based on
the program type of the target program while using dynamic program
extension (of type BPF_PROG_TYPE_EXT).

The BPF_PROG_TYPE_EXT type can be used to extend types such as XDP, SKB
and others. Since the BPF_PROG_TYPE_EXT program type on itself is just a
placeholder for those, we need this extended check for those extended
programs to actually work with proper access, while using this option.

Specifically, it introduces following changes:
- may_access_direct_pkt_data:
allow access to packet data based on the target prog
- check_return_code:
enforce return code based on the target prog
(currently, this check is skipped for EXT program)
- check_ld_abs:
check for 'may_access_skb' based on the target prog
- check_map_prog_compatibility:
enforce the map compatibility check based on the target prog
- may_update_sockmap:
allow sockmap update based on the target prog

Some other occurrences of prog->type is left as it without replacing
with the 'resolved' type:
- do_check_common() and check_attach_btf_id():
already have specific logic to handle the EXT prog type
- jit_subprogs() and bpf_check():
Not changed for jit compilation or while inferring env->ops

Next few patches in this series include selftests for some of these cases.

Signed-off-by: Udip Pant <udippant@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200825232003.2877030-2-udippant@fb.com


# eae2e83e 25-Aug-2020 Jiri Olsa <jolsa@kernel.org>

bpf: Add BTF_SET_START/END macros

Adding support to define sorted set of BTF ID values.

Following defines sorted set of BTF ID values:

BTF_SET_START(btf_allowlist_d_path)
BTF_ID(func, vfs_truncate)
BTF_ID(func, vfs_fallocate)
BTF_ID(func, dentry_open)
BTF_ID(func, vfs_getattr)
BTF_ID(func, filp_close)
BTF_SET_END(btf_allowlist_d_path)

It defines following 'struct btf_id_set' variable to access
values and count:

struct btf_id_set btf_allowlist_d_path;

Adding 'allowed' callback to struct bpf_func_proto, to allow
verifier the check on allowed callers.

Adding btf_id_set_contains function, which will be used by
allowed callbacks to verify the caller's BTF ID value is
within allowed set.

Also removing extra '\' in __BTF_ID_LIST macro.

Added BTF_SET_START_GLOBAL macro for global sets.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200825192124.710397-10-jolsa@kernel.org


# faaf4a79 25-Aug-2020 Jiri Olsa <jolsa@kernel.org>

bpf: Add btf_struct_ids_match function

Adding btf_struct_ids_match function to check if given address provided
by BTF object + offset is also address of another nested BTF object.

This allows to pass an argument to helper, which is defined via parent
BTF object + offset, like for bpf_d_path (added in following changes):

SEC("fentry/filp_close")
int BPF_PROG(prog_close, struct file *file, void *id)
{
...
ret = bpf_d_path(&file->f_path, ...

The first bpf_d_path argument is hold by verifier as BTF file object
plus offset of f_path member.

The btf_struct_ids_match function will walk the struct file object and
check if there's nested struct path object on the given offset.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200825192124.710397-9-jolsa@kernel.org


# 8ea63684 25-Aug-2020 KP Singh <kpsingh@google.com>

bpf: Implement bpf_local_storage for inodes

Similar to bpf_local_storage for sockets, add local storage for inodes.
The life-cycle of storage is managed with the life-cycle of the inode.
i.e. the storage is destroyed along with the owning inode.

The BPF LSM allocates an __rcu pointer to the bpf_local_storage in the
security blob which are now stackable and can co-exist with other LSMs.

Signed-off-by: KP Singh <kpsingh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200825182919.1118197-6-kpsingh@chromium.org


# df561f66 23-Aug-2020 Gustavo A. R. Silva <gustavoars@kernel.org>

treewide: Use fallthrough pseudo-keyword

Replace the existing /* fall through */ comments and its variants with
the new pseudo-keyword macro fallthrough[1]. Also, remove unnecessary
fall-through markings when it is the case.

[1] https://www.kernel.org/doc/html/v5.7/process/deprecated.html?highlight=fallthrough#implicit-switch-case-fall-through

Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>


# 0126240f 21-Aug-2020 Lorenz Bauer <lmb@cloudflare.com>

bpf: sockmap: Allow update from BPF

Allow calling bpf_map_update_elem on sockmap and sockhash from a BPF
context. The synchronization required for this is a bit fiddly: we
need to prevent the socket from changing its state while we add it
to the sockmap, since we rely on getting a callback via
sk_prot->unhash. However, we can't just lock_sock like in
sock_map_sk_acquire because that might sleep. So instead we disable
softirq processing and use bh_lock_sock to prevent further
modification.

Yet, this is still not enough. BPF can be called in contexts where
the current CPU might have locked a socket. If the BPF can get
a hold of such a socket, inserting it into a sockmap would lead to
a deadlock. One straight forward example are sock_ops programs that
have ctx->sk, but the same problem exists for kprobes, etc.
We deal with this by allowing sockmap updates only from known safe
contexts. Improper usage is rejected by the verifier.

I've audited the enabled contexts to make sure they can't run in
a locked context. It's possible that CGROUP_SKB and others are
safe as well, but the auditing here is much more difficult. In
any case, we can extend the safe contexts when the need arises.

Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200821102948.21918-6-lmb@cloudflare.com


# 912f442c 21-Aug-2020 Lorenz Bauer <lmb@cloudflare.com>

bpf: Override the meaning of ARG_PTR_TO_MAP_VALUE for sockmap and sockhash

The verifier assumes that map values are simple blobs of memory, and
therefore treats ARG_PTR_TO_MAP_VALUE, etc. as such. However, there are
map types where this isn't true. For example, sockmap and sockhash store
sockets. In general this isn't a big problem: we can just
write helpers that explicitly requests PTR_TO_SOCKET instead of
ARG_PTR_TO_MAP_VALUE.

The one exception are the standard map helpers like map_update_elem,
map_lookup_elem, etc. Here it would be nice we could overload the
function prototype for different kinds of maps. Unfortunately, this
isn't entirely straight forward:
We only know the type of the map once we have resolved meta->map_ptr
in check_func_arg. This means we can't swap out the prototype
in check_helper_call until we're half way through the function.

Instead, modify check_func_arg to treat ARG_PTR_TO_MAP_VALUE to
mean "the native type for the map" instead of "pointer to memory"
for sockmap and sockhash. This means we don't have to modify the
function prototype at all

Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200821102948.21918-5-lmb@cloudflare.com


# b8c1a309 06-Aug-2020 Randy Dunlap <rdunlap@infradead.org>

bpf: Delete repeated words in comments

Drop repeated words in kernel/bpf/: {has, the}

Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200807033141.10437-1-rdunlap@infradead.org


# 4fc00b79 28-Jul-2020 Yonghong Song <yhs@fb.com>

bpf: Add missing newline characters in verifier error messages

Newline characters are added in two verifier error messages,
refactored in Commit afbf21dce668 ("bpf: Support readonly/readwrite
buffers in verifier"). This way, they do not mix with
messages afterwards.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20200728221801.1090349-1-yhs@fb.com


# f6dfbe31 27-Jul-2020 Colin Ian King <colin.king@canonical.com>

bpf: Fix swapped arguments in calls to check_buffer_access

There are a couple of arguments of the boolean flag zero_size_allowed and
the char pointer buf_info when calling to function check_buffer_access that
are swapped by mistake. Fix these by swapping them to correct the argument
ordering.

Fixes: afbf21dce668 ("bpf: Support readonly/readwrite buffers in verifier")
Addresses-Coverity: ("Array compared to 0")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200727175411.155179-1-colin.king@canonical.com


# 5d99cb2c 23-Jul-2020 Song Liu <songliubraving@fb.com>

bpf: Fail PERF_EVENT_IOC_SET_BPF when bpf_get_[stack|stackid] cannot work

bpf_get_[stack|stackid] on perf_events with precise_ip uses callchain
attached to perf_sample_data. If this callchain is not presented, do not
allow attaching BPF program that calls bpf_get_[stack|stackid] to this
event.

In the error case, -EPROTO is returned so that libbpf can identify this
error and print proper hint message.

Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200723180648.1429892-3-songliubraving@fb.com


# afbf21dc 23-Jul-2020 Yonghong Song <yhs@fb.com>

bpf: Support readonly/readwrite buffers in verifier

Readonly and readwrite buffer register states
are introduced. Totally four states,
PTR_TO_RDONLY_BUF[_OR_NULL] and PTR_TO_RDWR_BUF[_OR_NULL]
are supported. As suggested by their respective
names, PTR_TO_RDONLY_BUF[_OR_NULL] are for
readonly buffers and PTR_TO_RDWR_BUF[_OR_NULL]
for read/write buffers.

These new register states will be used
by later bpf map element iterator.

New register states share some similarity to
PTR_TO_TP_BUFFER as it will calculate accessed buffer
size during verification time. The accessed buffer
size will be later compared to other metrics during
later attach/link_create time.

Similar to reg_state PTR_TO_BTF_ID_OR_NULL in bpf
iterator programs, PTR_TO_RDONLY_BUF_OR_NULL or
PTR_TO_RDWR_BUF_OR_NULL reg_types can be set at
prog->aux->bpf_ctx_arg_aux, and bpf verifier will
retrieve the values during btf_ctx_access().
Later bpf map element iterator implementation
will show how such information will be assigned
during target registeration time.

The verifier is also enhanced such that PTR_TO_RDONLY_BUF
can be passed to ARG_PTR_TO_MEM[_OR_NULL] helper argument, and
PTR_TO_RDWR_BUF can be passed to ARG_PTR_TO_MEM[_OR_NULL] or
ARG_PTR_TO_UNINIT_MEM.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200723184111.590274-1-yhs@fb.com


# e9ddbb77 16-Jul-2020 Jakub Sitnicki <jakub@cloudflare.com>

bpf: Introduce SK_LOOKUP program type with a dedicated attach point

Add a new program type BPF_PROG_TYPE_SK_LOOKUP with a dedicated attach type
BPF_SK_LOOKUP. The new program kind is to be invoked by the transport layer
when looking up a listening socket for a new connection request for
connection oriented protocols, or when looking up an unconnected socket for
a packet for connection-less protocols.

When called, SK_LOOKUP BPF program can select a socket that will receive
the packet. This serves as a mechanism to overcome the limits of what
bind() API allows to express. Two use-cases driving this work are:

(1) steer packets destined to an IP range, on fixed port to a socket

192.0.2.0/24, port 80 -> NGINX socket

(2) steer packets destined to an IP address, on any port to a socket

198.51.100.1, any port -> L7 proxy socket

In its run-time context program receives information about the packet that
triggered the socket lookup. Namely IP version, L4 protocol identifier, and
address 4-tuple. Context can be further extended to include ingress
interface identifier.

To select a socket BPF program fetches it from a map holding socket
references, like SOCKMAP or SOCKHASH, and calls bpf_sk_assign(ctx, sk, ...)
helper to record the selection. Transport layer then uses the selected
socket as a result of socket lookup.

In its basic form, SK_LOOKUP acts as a filter and hence must return either
SK_PASS or SK_DROP. If the program returns with SK_PASS, transport should
look for a socket to receive the packet, or use the one selected by the
program if available, while SK_DROP informs the transport layer that the
lookup should fail.

This patch only enables the user to attach an SK_LOOKUP program to a
network namespace. Subsequent patches hook it up to run on local delivery
path in ipv4 and ipv6 stacks.

Suggested-by: Marek Majkowski <marek@cloudflare.com>
Signed-off-by: Jakub Sitnicki <jakub@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200717103536.397595-3-jakub@cloudflare.com


# fa28dcb8 30-Jun-2020 Song Liu <songliubraving@fb.com>

bpf: Introduce helper bpf_get_task_stack()

Introduce helper bpf_get_task_stack(), which dumps stack trace of given
task. This is different to bpf_get_stack(), which gets stack track of
current task. One potential use case of bpf_get_task_stack() is to call
it from bpf_iter__task and dump all /proc/<pid>/stack to a seq_file.

bpf_get_task_stack() uses stack_trace_save_tsk() instead of
get_perf_callchain() for kernel stack. The benefit of this choice is that
stack_trace_save_tsk() doesn't require changes in arch/. The downside of
using stack_trace_save_tsk() is that stack_trace_save_tsk() dumps the
stack trace to unsigned long array. For 32-bit systems, we need to
translate it to u64 array.

Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200630062846.664389-3-songliubraving@fb.com


# 01c66c48 30-Jun-2020 Yonghong Song <yhs@fb.com>

bpf: Fix an incorrect branch elimination by verifier

Wenbo reported an issue in [1] where a checking of null
pointer is evaluated as always false. In this particular
case, the program type is tp_btf and the pointer to
compare is a PTR_TO_BTF_ID.

The current verifier considers PTR_TO_BTF_ID always
reprents a non-null pointer, hence all PTR_TO_BTF_ID compares
to 0 will be evaluated as always not-equal, which resulted
in the branch elimination.

For example,
struct bpf_fentry_test_t {
struct bpf_fentry_test_t *a;
};
int BPF_PROG(test7, struct bpf_fentry_test_t *arg)
{
if (arg == 0)
test7_result = 1;
return 0;
}
int BPF_PROG(test8, struct bpf_fentry_test_t *arg)
{
if (arg->a == 0)
test8_result = 1;
return 0;
}

In above bpf programs, both branch arg == 0 and arg->a == 0
are removed. This may not be what developer expected.

The bug is introduced by Commit cac616db39c2 ("bpf: Verifier
track null pointer branch_taken with JNE and JEQ"),
where PTR_TO_BTF_ID is considered to be non-null when evaluting
pointer vs. scalar comparison. This may be added
considering we have PTR_TO_BTF_ID_OR_NULL in the verifier
as well.

PTR_TO_BTF_ID_OR_NULL is added to explicitly requires
a non-NULL testing in selective cases. The current generic
pointer tracing framework in verifier always
assigns PTR_TO_BTF_ID so users does not need to
check NULL pointer at every pointer level like a->b->c->d.

We may not want to assign every PTR_TO_BTF_ID as
PTR_TO_BTF_ID_OR_NULL as this will require a null test
before pointer dereference which may cause inconvenience
for developers. But we could avoid branch elimination
to preserve original code intention.

This patch simply removed PTR_TO_BTD_ID from reg_type_not_null()
in verifier, which prevented the above branches from being eliminated.

[1]: https://lore.kernel.org/bpf/79dbb7c0-449d-83eb-5f4f-7af0cc269168@fb.com/T/

Fixes: cac616db39c2 ("bpf: Verifier track null pointer branch_taken with JNE and JEQ")
Reported-by: Wenbo Zhang <ethercflow@gmail.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200630171240.2523722-1-yhs@fb.com


# af7ec138 23-Jun-2020 Yonghong Song <yhs@fb.com>

bpf: Add bpf_skc_to_tcp6_sock() helper

The helper is used in tracing programs to cast a socket
pointer to a tcp6_sock pointer.
The return value could be NULL if the casting is illegal.

A new helper return type RET_PTR_TO_BTF_ID_OR_NULL is added
so the verifier is able to deduce proper return types for the helper.

Different from the previous BTF_ID based helpers,
the bpf_skc_to_tcp6_sock() argument can be several possible
btf_ids. More specifically, all possible socket data structures
with sock_common appearing in the first in the memory layout.
This patch only added socket types related to tcp and udp.

All possible argument btf_id and return value btf_id
for helper bpf_skc_to_tcp6_sock() are pre-calculcated and
cached. In the future, it is even possible to precompute
these btf_id's at kernel build time.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20200623230809.3988195-1-yhs@fb.com


# c4c0bdc0 23-Jun-2020 Yonghong Song <yhs@fb.com>

bpf: Set the number of exception entries properly for subprograms

Currently, if a bpf program has more than one subprograms, each program will be
jitted separately. For programs with bpf-to-bpf calls the
prog->aux->num_exentries is not setup properly. For example, with
bpf_iter_netlink.c modified to force one function to be not inlined and with
CONFIG_BPF_JIT_ALWAYS_ON the following error is seen:
$ ./test_progs -n 3/3
...
libbpf: failed to load program 'iter/netlink'
libbpf: failed to load object 'bpf_iter_netlink'
libbpf: failed to load BPF skeleton 'bpf_iter_netlink': -4007
test_netlink:FAIL:bpf_iter_netlink__open_and_load skeleton open_and_load failed
#3/3 netlink:FAIL
The dmesg shows the following errors:
ex gen bug
which is triggered by the following code in arch/x86/net/bpf_jit_comp.c:
if (excnt >= bpf_prog->aux->num_exentries) {
pr_err("ex gen bug\n");
return -EFAULT;
}

This patch fixes the issue by computing proper num_exentries for each
subprogram before calling JIT.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 41c48f3a 19-Jun-2020 Andrey Ignatov <rdna@fb.com>

bpf: Support access to bpf map fields

There are multiple use-cases when it's convenient to have access to bpf
map fields, both `struct bpf_map` and map type specific struct-s such as
`struct bpf_array`, `struct bpf_htab`, etc.

For example while working with sock arrays it can be necessary to
calculate the key based on map->max_entries (some_hash % max_entries).
Currently this is solved by communicating max_entries via "out-of-band"
channel, e.g. via additional map with known key to get info about target
map. That works, but is not very convenient and error-prone while
working with many maps.

In other cases necessary data is dynamic (i.e. unknown at loading time)
and it's impossible to get it at all. For example while working with a
hash table it can be convenient to know how much capacity is already
used (bpf_htab.count.counter for BPF_F_NO_PREALLOC case).

At the same time kernel knows this info and can provide it to bpf
program.

Fill this gap by adding support to access bpf map fields from bpf
program for both `struct bpf_map` and map type specific fields.

Support is implemented via btf_struct_access() so that a user can define
their own `struct bpf_map` or map type specific struct in their program
with only necessary fields and preserve_access_index attribute, cast a
map to this struct and use a field.

For example:

struct bpf_map {
__u32 max_entries;
} __attribute__((preserve_access_index));

struct bpf_array {
struct bpf_map map;
__u32 elem_size;
} __attribute__((preserve_access_index));

struct {
__uint(type, BPF_MAP_TYPE_ARRAY);
__uint(max_entries, 4);
__type(key, __u32);
__type(value, __u32);
} m_array SEC(".maps");

SEC("cgroup_skb/egress")
int cg_skb(void *ctx)
{
struct bpf_array *array = (struct bpf_array *)&m_array;
struct bpf_map *map = (struct bpf_map *)&m_array;

/* .. use map->max_entries or array->map.max_entries .. */
}

Similarly to other btf_struct_access() use-cases (e.g. struct tcp_sock
in net/ipv4/bpf_tcp_ca.c) the patch allows access to any fields of
corresponding struct. Only reading from map fields is supported.

For btf_struct_access() to work there should be a way to know btf id of
a struct that corresponds to a map type. To get btf id there should be a
way to get a stringified name of map-specific struct, such as
"bpf_array", "bpf_htab", etc for a map type. Two new fields are added to
`struct bpf_map_ops` to handle it:
* .map_btf_name keeps a btf name of a struct returned by map_alloc();
* .map_btf_id is used to cache btf id of that struct.

To make btf ids calculation cheaper they're calculated once while
preparing btf_vmlinux and cached same way as it's done for btf_id field
of `struct bpf_func_proto`

While calculating btf ids, struct names are NOT checked for collision.
Collisions will be checked as a part of the work to prepare btf ids used
in verifier in compile time that should land soon. The only known
collision for `struct bpf_htab` (kernel/bpf/hashtab.c vs
net/core/sock_map.c) was fixed earlier.

Both new fields .map_btf_name and .map_btf_id must be set for a map type
for the feature to work. If neither is set for a map type, verifier will
return ENOTSUPP on a try to access map_ptr of corresponding type. If
just one of them set, it's verifier misconfiguration.

Only `struct bpf_array` for BPF_MAP_TYPE_ARRAY and `struct bpf_htab` for
BPF_MAP_TYPE_HASH are supported by this patch. Other map types will be
supported separately.

The feature is available only for CONFIG_DEBUG_INFO_BTF=y and gated by
perfmon_capable() so that unpriv programs won't have access to bpf map
fields.

Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/6479686a0cd1e9067993df57b4c3eef0e276fec9.1592600985.git.rdna@fb.com


# 6c693541 18-Jun-2020 Yonghong Song <yhs@fb.com>

bpf: Avoid verifier failure for 32bit pointer arithmetic

When do experiments with llvm (disabling instcombine and
simplifyCFG), I hit the following error with test_seg6_loop.o.

; R1=pkt(id=0,off=0,r=48,imm=0), R7=pkt(id=0,off=40,r=48,imm=0)
w2 = w7
; R2_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff))
w2 -= w1
R2 32-bit pointer arithmetic prohibited

The corresponding source code is:
uint32_t srh_off
// srh and skb->data are all packet pointers
srh_off = (char *)srh - (char *)(long)skb->data;

The verifier does not support 32-bit pointer/scalar arithmetic.

Without my llvm change, the code looks like

; R3=pkt(id=0,off=40,r=48,imm=0), R8=pkt(id=0,off=0,r=48,imm=0)
w3 -= w8
; R3_w=inv(id=0)

This is explicitly allowed in verifier if both registers are
pointers and the opcode is BPF_SUB.

To fix this problem, I changed the verifier to allow
32-bit pointer/scaler BPF_SUB operations.

At the source level, the issue could be workarounded with
inline asm or changing "uint32_t srh_off" to "uint64_t srh_off".
But I feel that verifier change might be the right thing to do.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20200618234631.3321118-1-yhs@fb.com


# e7ed83d6 04-Jun-2020 Dan Carpenter <dan.carpenter@oracle.com>

bpf: Fix an error code in check_btf_func()

This code returns success if the "info_aux" allocation fails but it
should return -ENOMEM.

Fixes: 8c1b6e69dcc1 ("bpf: Compare BTF types of functions arguments with actual types")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20200604085436.GA943001@mwanda


# 457f4436 29-May-2020 Andrii Nakryiko <andriin@fb.com>

bpf: Implement BPF ring buffer and verifier support for it

This commit adds a new MPSC ring buffer implementation into BPF ecosystem,
which allows multiple CPUs to submit data to a single shared ring buffer. On
the consumption side, only single consumer is assumed.

Motivation
----------
There are two distinctive motivators for this work, which are not satisfied by
existing perf buffer, which prompted creation of a new ring buffer
implementation.
- more efficient memory utilization by sharing ring buffer across CPUs;
- preserving ordering of events that happen sequentially in time, even
across multiple CPUs (e.g., fork/exec/exit events for a task).

These two problems are independent, but perf buffer fails to satisfy both.
Both are a result of a choice to have per-CPU perf ring buffer. Both can be
also solved by having an MPSC implementation of ring buffer. The ordering
problem could technically be solved for perf buffer with some in-kernel
counting, but given the first one requires an MPSC buffer, the same solution
would solve the second problem automatically.

Semantics and APIs
------------------
Single ring buffer is presented to BPF programs as an instance of BPF map of
type BPF_MAP_TYPE_RINGBUF. Two other alternatives considered, but ultimately
rejected.

One way would be to, similar to BPF_MAP_TYPE_PERF_EVENT_ARRAY, make
BPF_MAP_TYPE_RINGBUF could represent an array of ring buffers, but not enforce
"same CPU only" rule. This would be more familiar interface compatible with
existing perf buffer use in BPF, but would fail if application needed more
advanced logic to lookup ring buffer by arbitrary key. HASH_OF_MAPS addresses
this with current approach. Additionally, given the performance of BPF
ringbuf, many use cases would just opt into a simple single ring buffer shared
among all CPUs, for which current approach would be an overkill.

Another approach could introduce a new concept, alongside BPF map, to
represent generic "container" object, which doesn't necessarily have key/value
interface with lookup/update/delete operations. This approach would add a lot
of extra infrastructure that has to be built for observability and verifier
support. It would also add another concept that BPF developers would have to
familiarize themselves with, new syntax in libbpf, etc. But then would really
provide no additional benefits over the approach of using a map.
BPF_MAP_TYPE_RINGBUF doesn't support lookup/update/delete operations, but so
doesn't few other map types (e.g., queue and stack; array doesn't support
delete, etc).

The approach chosen has an advantage of re-using existing BPF map
infrastructure (introspection APIs in kernel, libbpf support, etc), being
familiar concept (no need to teach users a new type of object in BPF program),
and utilizing existing tooling (bpftool). For common scenario of using
a single ring buffer for all CPUs, it's as simple and straightforward, as
would be with a dedicated "container" object. On the other hand, by being
a map, it can be combined with ARRAY_OF_MAPS and HASH_OF_MAPS map-in-maps to
implement a wide variety of topologies, from one ring buffer for each CPU
(e.g., as a replacement for perf buffer use cases), to a complicated
application hashing/sharding of ring buffers (e.g., having a small pool of
ring buffers with hashed task's tgid being a look up key to preserve order,
but reduce contention).

Key and value sizes are enforced to be zero. max_entries is used to specify
the size of ring buffer and has to be a power of 2 value.

There are a bunch of similarities between perf buffer
(BPF_MAP_TYPE_PERF_EVENT_ARRAY) and new BPF ring buffer semantics:
- variable-length records;
- if there is no more space left in ring buffer, reservation fails, no
blocking;
- memory-mappable data area for user-space applications for ease of
consumption and high performance;
- epoll notifications for new incoming data;
- but still the ability to do busy polling for new data to achieve the
lowest latency, if necessary.

BPF ringbuf provides two sets of APIs to BPF programs:
- bpf_ringbuf_output() allows to *copy* data from one place to a ring
buffer, similarly to bpf_perf_event_output();
- bpf_ringbuf_reserve()/bpf_ringbuf_commit()/bpf_ringbuf_discard() APIs
split the whole process into two steps. First, a fixed amount of space is
reserved. If successful, a pointer to a data inside ring buffer data area
is returned, which BPF programs can use similarly to a data inside
array/hash maps. Once ready, this piece of memory is either committed or
discarded. Discard is similar to commit, but makes consumer ignore the
record.

bpf_ringbuf_output() has disadvantage of incurring extra memory copy, because
record has to be prepared in some other place first. But it allows to submit
records of the length that's not known to verifier beforehand. It also closely
matches bpf_perf_event_output(), so will simplify migration significantly.

bpf_ringbuf_reserve() avoids the extra copy of memory by providing a memory
pointer directly to ring buffer memory. In a lot of cases records are larger
than BPF stack space allows, so many programs have use extra per-CPU array as
a temporary heap for preparing sample. bpf_ringbuf_reserve() avoid this needs
completely. But in exchange, it only allows a known constant size of memory to
be reserved, such that verifier can verify that BPF program can't access
memory outside its reserved record space. bpf_ringbuf_output(), while slightly
slower due to extra memory copy, covers some use cases that are not suitable
for bpf_ringbuf_reserve().

The difference between commit and discard is very small. Discard just marks
a record as discarded, and such records are supposed to be ignored by consumer
code. Discard is useful for some advanced use-cases, such as ensuring
all-or-nothing multi-record submission, or emulating temporary malloc()/free()
within single BPF program invocation.

Each reserved record is tracked by verifier through existing
reference-tracking logic, similar to socket ref-tracking. It is thus
impossible to reserve a record, but forget to submit (or discard) it.

bpf_ringbuf_query() helper allows to query various properties of ring buffer.
Currently 4 are supported:
- BPF_RB_AVAIL_DATA returns amount of unconsumed data in ring buffer;
- BPF_RB_RING_SIZE returns the size of ring buffer;
- BPF_RB_CONS_POS/BPF_RB_PROD_POS returns current logical possition of
consumer/producer, respectively.
Returned values are momentarily snapshots of ring buffer state and could be
off by the time helper returns, so this should be used only for
debugging/reporting reasons or for implementing various heuristics, that take
into account highly-changeable nature of some of those characteristics.

One such heuristic might involve more fine-grained control over poll/epoll
notifications about new data availability in ring buffer. Together with
BPF_RB_NO_WAKEUP/BPF_RB_FORCE_WAKEUP flags for output/commit/discard helpers,
it allows BPF program a high degree of control and, e.g., more efficient
batched notifications. Default self-balancing strategy, though, should be
adequate for most applications and will work reliable and efficiently already.

Design and implementation
-------------------------
This reserve/commit schema allows a natural way for multiple producers, either
on different CPUs or even on the same CPU/in the same BPF program, to reserve
independent records and work with them without blocking other producers. This
means that if BPF program was interruped by another BPF program sharing the
same ring buffer, they will both get a record reserved (provided there is
enough space left) and can work with it and submit it independently. This
applies to NMI context as well, except that due to using a spinlock during
reservation, in NMI context, bpf_ringbuf_reserve() might fail to get a lock,
in which case reservation will fail even if ring buffer is not full.

The ring buffer itself internally is implemented as a power-of-2 sized
circular buffer, with two logical and ever-increasing counters (which might
wrap around on 32-bit architectures, that's not a problem):
- consumer counter shows up to which logical position consumer consumed the
data;
- producer counter denotes amount of data reserved by all producers.

Each time a record is reserved, producer that "owns" the record will
successfully advance producer counter. At that point, data is still not yet
ready to be consumed, though. Each record has 8 byte header, which contains
the length of reserved record, as well as two extra bits: busy bit to denote
that record is still being worked on, and discard bit, which might be set at
commit time if record is discarded. In the latter case, consumer is supposed
to skip the record and move on to the next one. Record header also encodes
record's relative offset from the beginning of ring buffer data area (in
pages). This allows bpf_ringbuf_commit()/bpf_ringbuf_discard() to accept only
the pointer to the record itself, without requiring also the pointer to ring
buffer itself. Ring buffer memory location will be restored from record
metadata header. This significantly simplifies verifier, as well as improving
API usability.

Producer counter increments are serialized under spinlock, so there is
a strict ordering between reservations. Commits, on the other hand, are
completely lockless and independent. All records become available to consumer
in the order of reservations, but only after all previous records where
already committed. It is thus possible for slow producers to temporarily hold
off submitted records, that were reserved later.

Reservation/commit/consumer protocol is verified by litmus tests in
Documentation/litmus-test/bpf-rb.

One interesting implementation bit, that significantly simplifies (and thus
speeds up as well) implementation of both producers and consumers is how data
area is mapped twice contiguously back-to-back in the virtual memory. This
allows to not take any special measures for samples that have to wrap around
at the end of the circular buffer data area, because the next page after the
last data page would be first data page again, and thus the sample will still
appear completely contiguous in virtual memory. See comment and a simple ASCII
diagram showing this visually in bpf_ringbuf_area_alloc().

Another feature that distinguishes BPF ringbuf from perf ring buffer is
a self-pacing notifications of new data being availability.
bpf_ringbuf_commit() implementation will send a notification of new record
being available after commit only if consumer has already caught up right up
to the record being committed. If not, consumer still has to catch up and thus
will see new data anyways without needing an extra poll notification.
Benchmarks (see tools/testing/selftests/bpf/benchs/bench_ringbuf.c) show that
this allows to achieve a very high throughput without having to resort to
tricks like "notify only every Nth sample", which are necessary with perf
buffer. For extreme cases, when BPF program wants more manual control of
notifications, commit/discard/output helpers accept BPF_RB_NO_WAKEUP and
BPF_RB_FORCE_WAKEUP flags, which give full control over notifications of data
availability, but require extra caution and diligence in using this API.

Comparison to alternatives
--------------------------
Before considering implementing BPF ring buffer from scratch existing
alternatives in kernel were evaluated, but didn't seem to meet the needs. They
largely fell into few categores:
- per-CPU buffers (perf, ftrace, etc), which don't satisfy two motivations
outlined above (ordering and memory consumption);
- linked list-based implementations; while some were multi-producer designs,
consuming these from user-space would be very complicated and most
probably not performant; memory-mapping contiguous piece of memory is
simpler and more performant for user-space consumers;
- io_uring is SPSC, but also requires fixed-sized elements. Naively turning
SPSC queue into MPSC w/ lock would have subpar performance compared to
locked reserve + lockless commit, as with BPF ring buffer. Fixed sized
elements would be too limiting for BPF programs, given existing BPF
programs heavily rely on variable-sized perf buffer already;
- specialized implementations (like a new printk ring buffer, [0]) with lots
of printk-specific limitations and implications, that didn't seem to fit
well for intended use with BPF programs.

[0] https://lwn.net/Articles/779550/

Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200529075424.3139988-2-andriin@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 3a71dc36 29-May-2020 John Fastabend <john.fastabend@gmail.com>

bpf: Fix a verifier issue when assigning 32bit reg states to 64bit ones

With the latest trunk llvm (llvm 11), I hit a verifier issue for
test_prog subtest test_verif_scale1.

The following simplified example illustrate the issue:
w9 = 0 /* R9_w=inv0 */
r8 = *(u32 *)(r1 + 80) /* __sk_buff->data_end */
r7 = *(u32 *)(r1 + 76) /* __sk_buff->data */
......
w2 = w9 /* R2_w=inv0 */
r6 = r7 /* R6_w=pkt(id=0,off=0,r=0,imm=0) */
r6 += r2 /* R6_w=inv(id=0) */
r3 = r6 /* R3_w=inv(id=0) */
r3 += 14 /* R3_w=inv(id=0) */
if r3 > r8 goto end
r5 = *(u32 *)(r6 + 0) /* R6_w=inv(id=0) */
<== error here: R6 invalid mem access 'inv'
...
end:

In real test_verif_scale1 code, "w9 = 0" and "w2 = w9" are in
different basic blocks.

In the above, after "r6 += r2", r6 becomes a scalar, which eventually
caused the memory access error. The correct register state should be
a pkt pointer.

The inprecise register state starts at "w2 = w9".
The 32bit register w9 is 0, in __reg_assign_32_into_64(),
the 64bit reg->smax_value is assigned to be U32_MAX.
The 64bit reg->smin_value is 0 and the 64bit register
itself remains constant based on reg->var_off.

In adjust_ptr_min_max_vals(), the verifier checks for a known constant,
smin_val must be equal to smax_val. Since they are not equal,
the verifier decides r6 is a unknown scalar, which caused later failure.

The llvm10 does not have this issue as it generates different code:
w9 = 0 /* R9_w=inv0 */
r8 = *(u32 *)(r1 + 80) /* __sk_buff->data_end */
r7 = *(u32 *)(r1 + 76) /* __sk_buff->data */
......
r6 = r7 /* R6_w=pkt(id=0,off=0,r=0,imm=0) */
r6 += r9 /* R6_w=pkt(id=0,off=0,r=0,imm=0) */
r3 = r6 /* R3_w=pkt(id=0,off=0,r=0,imm=0) */
r3 += 14 /* R3_w=pkt(id=0,off=14,r=0,imm=0) */
if r3 > r8 goto end
...

To fix the above issue, we can include zero in the test condition for
assigning the s32_max_value and s32_min_value to their 64-bit equivalents
smax_value and smin_value.

Further, fix the condition to avoid doing zero extension bounds checks
when s32_min_value <= 0. This could allow for the case where bounds
32-bit bounds (-1,1) get incorrectly translated to (0,1) 64-bit bounds.
When in-fact the -1 min value needs to force U32_MAX bound.

Fixes: 3f50f132d840 ("bpf: Verifier, do explicit ALU32 bounds tracking")
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/159077331983.6014.5758956193749002737.stgit@john-Precision-5820-Tower


# 18644cec 28-May-2020 Alexei Starovoitov <ast@kernel.org>

bpf: Fix use-after-free in fmod_ret check

Fix the following issue:
[ 436.749342] BUG: KASAN: use-after-free in bpf_trampoline_put+0x39/0x2a0
[ 436.749995] Write of size 4 at addr ffff8881ef38b8a0 by task kworker/3:5/2243
[ 436.750712]
[ 436.752677] Workqueue: events bpf_prog_free_deferred
[ 436.753183] Call Trace:
[ 436.756483] bpf_trampoline_put+0x39/0x2a0
[ 436.756904] bpf_prog_free_deferred+0x16d/0x3d0
[ 436.757377] process_one_work+0x94a/0x15b0
[ 436.761969]
[ 436.762130] Allocated by task 2529:
[ 436.763323] bpf_trampoline_lookup+0x136/0x540
[ 436.763776] bpf_check+0x2872/0xa0a8
[ 436.764144] bpf_prog_load+0xb6f/0x1350
[ 436.764539] __do_sys_bpf+0x16d7/0x3720
[ 436.765825]
[ 436.765988] Freed by task 2529:
[ 436.767084] kfree+0xc6/0x280
[ 436.767397] bpf_trampoline_put+0x1fd/0x2a0
[ 436.767826] bpf_check+0x6832/0xa0a8
[ 436.768197] bpf_prog_load+0xb6f/0x1350
[ 436.768594] __do_sys_bpf+0x16d7/0x3720

prog->aux->trampoline = tr should be set only when prog is valid.
Otherwise prog freeing will try to put trampoline via prog->aux->trampoline,
but it may not point to a valid trampoline.

Fixes: 6ba43b761c41 ("bpf: Attachment verification for BPF_MODIFY_RETURN")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: KP Singh <kpsingh@google.com>
Link: https://lore.kernel.org/bpf/20200529043839.15824-2-alexei.starovoitov@gmail.com


# cac616db 21-May-2020 John Fastabend <john.fastabend@gmail.com>

bpf: Verifier track null pointer branch_taken with JNE and JEQ

Currently, when considering the branches that may be taken for a jump
instruction if the register being compared is a pointer the verifier
assumes both branches may be taken. But, if the jump instruction
is comparing if a pointer is NULL we have this information in the
verifier encoded in the reg->type so we can do better in these cases.
Specifically, these two common cases can be handled.

* If the instruction is BPF_JEQ and we are comparing against a
zero value. This test is 'if ptr == 0 goto +X' then using the
type information in reg->type we can decide if the ptr is not
null. This allows us to avoid pushing both branches onto the
stack and instead only use the != 0 case. For example
PTR_TO_SOCK and PTR_TO_SOCK_OR_NULL encode the null pointer.
Note if the type is PTR_TO_SOCK_OR_NULL we can not learn anything.
And also if the value is non-zero we learn nothing because it
could be any arbitrary value a different pointer for example

* If the instruction is BPF_JNE and ware comparing against a zero
value then a similar analysis as above can be done. The test in
asm looks like 'if ptr != 0 goto +X'. Again using the type
information if the non null type is set (from above PTR_TO_SOCK)
we know the jump is taken.

In this patch we extend is_branch_taken() to consider this extra
information and to return only the branch that will be taken. This
resolves a verifier issue reported with C code like the following.
See progs/test_sk_lookup_kern.c in selftests.

sk = bpf_sk_lookup_tcp(skb, tuple, tuple_len, BPF_F_CURRENT_NETNS, 0);
bpf_printk("sk=%d\n", sk ? 1 : 0);
if (sk)
bpf_sk_release(sk);
return sk ? TC_ACT_OK : TC_ACT_UNSPEC;

In the above the bpf_printk() will resolve the pointer from
PTR_TO_SOCK_OR_NULL to PTR_TO_SOCK. Then the second test guarding
the release will cause the verifier to walk both paths resulting
in the an unreleased sock reference. See verifier/ref_tracking.c
in selftests for an assembly version of the above.

After the above additional logic is added the C code above passes
as expected.

Reported-by: Andrey Ignatov <rdna@fb.com>
Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/159009164651.6313.380418298578070501.stgit@john-Precision-5820-Tower


# 1b66d253 18-May-2020 Daniel Borkmann <daniel@iogearbox.net>

bpf: Add get{peer, sock}name attach types for sock_addr

As stated in 983695fa6765 ("bpf: fix unconnected udp hooks"), the objective
for the existing cgroup connect/sendmsg/recvmsg/bind BPF hooks is to be
transparent to applications. In Cilium we make use of these hooks [0] in
order to enable E-W load balancing for existing Kubernetes service types
for all Cilium managed nodes in the cluster. Those backends can be local
or remote. The main advantage of this approach is that it operates as close
as possible to the socket, and therefore allows to avoid packet-based NAT
given in connect/sendmsg/recvmsg hooks we only need to xlate sock addresses.

This also allows to expose NodePort services on loopback addresses in the
host namespace, for example. As another advantage, this also efficiently
blocks bind requests for applications in the host namespace for exposed
ports. However, one missing item is that we also need to perform reverse
xlation for inet{,6}_getname() hooks such that we can return the service
IP/port tuple back to the application instead of the remote peer address.

The vast majority of applications does not bother about getpeername(), but
in a few occasions we've seen breakage when validating the peer's address
since it returns unexpectedly the backend tuple instead of the service one.
Therefore, this trivial patch allows to customise and adds a getpeername()
as well as getsockname() BPF cgroup hook for both IPv4 and IPv6 in order
to address this situation.

Simple example:

# ./cilium/cilium service list
ID Frontend Service Type Backend
1 1.2.3.4:80 ClusterIP 1 => 10.0.0.10:80

Before; curl's verbose output example, no getpeername() reverse xlation:

# curl --verbose 1.2.3.4
* Rebuilt URL to: 1.2.3.4/
* Trying 1.2.3.4...
* TCP_NODELAY set
* Connected to 1.2.3.4 (10.0.0.10) port 80 (#0)
> GET / HTTP/1.1
> Host: 1.2.3.4
> User-Agent: curl/7.58.0
> Accept: */*
[...]

After; with getpeername() reverse xlation:

# curl --verbose 1.2.3.4
* Rebuilt URL to: 1.2.3.4/
* Trying 1.2.3.4...
* TCP_NODELAY set
* Connected to 1.2.3.4 (1.2.3.4) port 80 (#0)
> GET / HTTP/1.1
> Host: 1.2.3.4
> User-Agent: curl/7.58.0
> Accept: */*
[...]

Originally, I had both under a BPF_CGROUP_INET{4,6}_GETNAME type and exposed
peer to the context similar as in inet{,6}_getname() fashion, but API-wise
this is suboptimal as it always enforces programs having to test for ctx->peer
which can easily be missed, hence BPF_CGROUP_INET{4,6}_GET{PEER,SOCK}NAME split.
Similarly, the checked return code is on tnum_range(1, 1), but if a use case
comes up in future, it can easily be changed to return an error code instead.
Helper and ctx member access is the same as with connect/sendmsg/etc hooks.

[0] https://github.com/cilium/cilium/blob/master/bpf/bpf_sock.c

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Andrey Ignatov <rdna@fb.com>
Link: https://lore.kernel.org/bpf/61a479d759b2482ae3efb45546490bacd796a220.1589841594.git.daniel@iogearbox.net


# 2ec0616e 15-May-2020 Daniel Borkmann <daniel@iogearbox.net>

bpf: Fix check_return_code to only allow [0,1] in trace_iter progs

As per 15d83c4d7cef ("bpf: Allow loading of a bpf_iter program") we only
allow a range of [0,1] for return codes. Therefore BPF_TRACE_ITER relies
on the default tnum_range(0, 1) which is set in range var. On recent merge
of net into net-next commit e92888c72fbd ("bpf: Enforce returning 0 for
fentry/fexit progs") got pulled in and caused a merge conflict with the
changes from 15d83c4d7cef. The resolution had a snall hiccup in that it
removed the [0,1] range restriction again so that BPF_TRACE_ITER would
have no enforcement. Fix it by adding it back.

Fixes: da07f52d3caf ("Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# 2c78ee89 13-May-2020 Alexei Starovoitov <ast@kernel.org>

bpf: Implement CAP_BPF

Implement permissions as stated in uapi/linux/capability.h
In order to do that the verifier allow_ptr_leaks flag is split
into four flags and they are set as:
env->allow_ptr_leaks = bpf_allow_ptr_leaks();
env->bypass_spec_v1 = bpf_bypass_spec_v1();
env->bypass_spec_v4 = bpf_bypass_spec_v4();
env->bpf_capable = bpf_capable();

The first three currently equivalent to perfmon_capable(), since leaking kernel
pointers and reading kernel memory via side channel attacks is roughly
equivalent to reading kernel memory with cap_perfmon.

'bpf_capable' enables bounded loops, precision tracking, bpf to bpf calls and
other verifier features. 'allow_ptr_leaks' enable ptr leaks, ptr conversions,
subtraction of pointers. 'bypass_spec_v1' disables speculative analysis in the
verifier, run time mitigations in bpf array, and enables indirect variable
access in bpf programs. 'bypass_spec_v4' disables emission of sanitation code
by the verifier.

That means that the networking BPF program loaded with CAP_BPF + CAP_NET_ADMIN
will have speculative checks done by the verifier and other spectre mitigation
applied. Such networking BPF program will not be able to leak kernel pointers
and will not be able to access arbitrary kernel memory.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200513230355.7858-3-alexei.starovoitov@gmail.com


# 47cc0ed5 14-May-2020 Daniel Borkmann <daniel@iogearbox.net>

bpf: Add bpf_probe_read_{user, kernel}_str() to do_refine_retval_range

Given bpf_probe_read{,str}() BPF helpers are now only available under
CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE, we need to add the drop-in
replacements of bpf_probe_read_{kernel,user}_str() to do_refine_retval_range()
as well to avoid hitting the same issue as in 849fa50662fbc ("bpf/verifier:
refine retval R0 state for bpf_get_stack helper").

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200515101118.6508-3-daniel@iogearbox.net


# e92888c7 13-May-2020 Yonghong Song <yhs@fb.com>

bpf: Enforce returning 0 for fentry/fexit progs

Currently, tracing/fentry and tracing/fexit prog
return values are not enforced. In trampoline codes,
the fentry/fexit prog return values are ignored.
Let us enforce it to be 0 to avoid confusion and
allows potential future extension.

This patch also explicitly added return value
checking for tracing/raw_tp, tracing/fmod_ret,
and freplace programs such that these program
return values can be anything. The purpose are
two folds:
1. to make it explicit about return value expectations
for these programs in verifier.
2. for tracing prog_type, if a future attach type
is added, the default is -ENOTSUPP which will
enforce to specify return value ranges explicitly.

Fixes: fec56f5890d9 ("bpf: Introduce BPF trampoline")
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200514053206.1298415-1-yhs@fb.com


# 3c32cc1b 13-May-2020 Yonghong Song <yhs@fb.com>

bpf: Enable bpf_iter targets registering ctx argument types

Commit b121b341e598 ("bpf: Add PTR_TO_BTF_ID_OR_NULL
support") adds a field btf_id_or_null_non0_off to
bpf_prog->aux structure to indicate that the
first ctx argument is PTR_TO_BTF_ID reg_type and
all others are PTR_TO_BTF_ID_OR_NULL.
This approach does not really scale if we have
other different reg types in the future, e.g.,
a pointer to a buffer.

This patch enables bpf_iter targets registering ctx argument
reg types which may be different from the default one.
For example, for pointers to structures, the default reg_type
is PTR_TO_BTF_ID for tracing program. The target can register
a particular pointer type as PTR_TO_BTF_ID_OR_NULL which can
be used by the verifier to enforce accesses.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200513180221.2949882-1-yhs@fb.com


# 1d68f22b 09-May-2020 Yonghong Song <yhs@fb.com>

bpf: Handle spilled PTR_TO_BTF_ID properly when checking stack_boundary

This specifically to handle the case like below:
// ptr below is a socket ptr identified by PTR_TO_BTF_ID
u64 param[2] = { ptr, val };
bpf_seq_printf(seq, fmt, sizeof(fmt), param, sizeof(param));

In this case, the 16 bytes stack for "param" contains:
8 bytes for ptr with spilled PTR_TO_BTF_ID
8 bytes for val as STACK_MISC

The current verifier will complain the ptr should not be visible
to the helper.
...
16: (7b) *(u64 *)(r10 -64) = r2
18: (7b) *(u64 *)(r10 -56) = r1
19: (bf) r4 = r10
;
20: (07) r4 += -64
; BPF_SEQ_PRINTF(seq, fmt1, (long)s, s->sk_protocol);
21: (bf) r1 = r6
22: (18) r2 = 0xffffa8d00018605a
24: (b4) w3 = 10
25: (b4) w5 = 16
26: (85) call bpf_seq_printf#125
R0=inv(id=0) R1_w=ptr_seq_file(id=0,off=0,imm=0)
R2_w=map_value(id=0,off=90,ks=4,vs=144,imm=0) R3_w=inv10
R4_w=fp-64 R5_w=inv16 R6=ptr_seq_file(id=0,off=0,imm=0)
R7=ptr_netlink_sock(id=0,off=0,imm=0) R10=fp0 fp-56_w=mmmmmmmm
fp-64_w=ptr_
last_idx 26 first_idx 13
regs=8 stack=0 before 25: (b4) w5 = 16
regs=8 stack=0 before 24: (b4) w3 = 10
invalid indirect read from stack off -64+0 size 16

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200509175915.2476783-1-yhs@fb.com


# b121b341 09-May-2020 Yonghong Song <yhs@fb.com>

bpf: Add PTR_TO_BTF_ID_OR_NULL support

Add bpf_reg_type PTR_TO_BTF_ID_OR_NULL support.
For tracing/iter program, the bpf program context
definition, e.g., for previous bpf_map target, looks like
struct bpf_iter__bpf_map {
struct bpf_iter_meta *meta;
struct bpf_map *map;
};

The kernel guarantees that meta is not NULL, but
map pointer maybe NULL. The NULL map indicates that all
objects have been traversed, so bpf program can take
proper action, e.g., do final aggregation and/or send
final report to user space.

Add btf_id_or_null_non0_off to prog->aux structure, to
indicate that if the context access offset is not 0,
set to PTR_TO_BTF_ID_OR_NULL instead of PTR_TO_BTF_ID.
This bit is set for tracing/iter program.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200509175912.2476576-1-yhs@fb.com


# 15d83c4d 09-May-2020 Yonghong Song <yhs@fb.com>

bpf: Allow loading of a bpf_iter program

A bpf_iter program is a tracing program with attach type
BPF_TRACE_ITER. The load attribute
attach_btf_id
is used by the verifier against a particular kernel function,
which represents a target, e.g., __bpf_iter__bpf_map
for target bpf_map which is implemented later.

The program return value must be 0 or 1 for now.
0 : successful, except potential seq_file buffer overflow
which is handled by seq_file reader.
1 : request to restart the same object

In the future, other return values may be used for filtering or
teminating the iterator.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200509175900.2474947-1-yhs@fb.com


# 64d85290 29-Apr-2020 Jakub Sitnicki <jakub@cloudflare.com>

bpf: Allow bpf_map_lookup_elem for SOCKMAP and SOCKHASH

White-list map lookup for SOCKMAP/SOCKHASH from BPF. Lookup returns a
pointer to a full socket and acquires a reference if necessary.

To support it we need to extend the verifier to know that:

(1) register storing the lookup result holds a pointer to socket, if
lookup was done on SOCKMAP/SOCKHASH, and that

(2) map lookup on SOCKMAP/SOCKHASH is a reference acquiring operation,
which needs a corresponding reference release with bpf_sk_release.

On sock_map side, lookup handlers exposed via bpf_map_ops now bump
sk_refcnt if socket is reference counted. In turn, bpf_sk_select_reuseport,
the only in-kernel user of SOCKMAP/SOCKHASH ops->map_lookup_elem, was
updated to release the reference.

Sockets fetched from a map can be used in the same way as ones returned by
BPF socket lookup helpers, such as bpf_sk_lookup_tcp. In particular, they
can be used with bpf_sk_assign to direct packets toward a socket on TC
ingress path.

Suggested-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Jakub Sitnicki <jakub@cloudflare.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20200429181154.479310-2-jakub@cloudflare.com


# f2e10bff 28-Apr-2020 Andrii Nakryiko <andriin@fb.com>

bpf: Add support for BPF_OBJ_GET_INFO_BY_FD for bpf_link

Add ability to fetch bpf_link details through BPF_OBJ_GET_INFO_BY_FD command.
Also enhance show_fdinfo to potentially include bpf_link type-specific
information (similarly to obj_info).

Also introduce enum bpf_link_type stored in bpf_link itself and expose it in
UAPI. bpf_link_tracing also now will store and return bpf_attach_type.

Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200429001614.1544-5-andriin@fb.com


# 6f8a57cc 23-Apr-2020 Andrii Nakryiko <andriin@fb.com>

bpf: Make verifier log more relevant by default

To make BPF verifier verbose log more releavant and easier to use to debug
verification failures, "pop" parts of log that were successfully verified.
This has effect of leaving only verifier logs that correspond to code branches
that lead to verification failure, which in practice should result in much
shorter and more relevant verifier log dumps. This behavior is made the
default behavior and can be overriden to do exhaustive logging by specifying
BPF_LOG_LEVEL2 log level.

Using BPF_LOG_LEVEL2 to disable this behavior is not ideal, because in some
cases it's good to have BPF_LOG_LEVEL2 per-instruction register dump
verbosity, but still have only relevant verifier branches logged. But for this
patch, I didn't want to add any new flags. It might be worth-while to just
rethink how BPF verifier logging is performed and requested and streamline it
a bit. But this trimming of successfully verified branches seems to be useful
and a good default behavior.

To test this, I modified runqslower slightly to introduce read of
uninitialized stack variable. Log (**truncated in the middle** to save many
lines out of this commit message) BEFORE this change:

; int handle__sched_switch(u64 *ctx)
0: (bf) r6 = r1
; struct task_struct *prev = (struct task_struct *)ctx[1];
1: (79) r1 = *(u64 *)(r6 +8)
func 'sched_switch' arg1 has btf_id 151 type STRUCT 'task_struct'
2: (b7) r2 = 0
; struct event event = {};
3: (7b) *(u64 *)(r10 -24) = r2
last_idx 3 first_idx 0
regs=4 stack=0 before 2: (b7) r2 = 0
4: (7b) *(u64 *)(r10 -32) = r2
5: (7b) *(u64 *)(r10 -40) = r2
6: (7b) *(u64 *)(r10 -48) = r2
; if (prev->state == TASK_RUNNING)

[ ... instruction dump from insn #7 through #50 are cut out ... ]

51: (b7) r2 = 16
52: (85) call bpf_get_current_comm#16
last_idx 52 first_idx 42
regs=4 stack=0 before 51: (b7) r2 = 16
; bpf_perf_event_output(ctx, &events, BPF_F_CURRENT_CPU,
53: (bf) r1 = r6
54: (18) r2 = 0xffff8881f3868800
56: (18) r3 = 0xffffffff
58: (bf) r4 = r7
59: (b7) r5 = 32
60: (85) call bpf_perf_event_output#25
last_idx 60 first_idx 53
regs=20 stack=0 before 59: (b7) r5 = 32
61: (bf) r2 = r10
; event.pid = pid;
62: (07) r2 += -16
; bpf_map_delete_elem(&start, &pid);
63: (18) r1 = 0xffff8881f3868000
65: (85) call bpf_map_delete_elem#3
; }
66: (b7) r0 = 0
67: (95) exit

from 44 to 66: safe

from 34 to 66: safe

from 11 to 28: R1_w=inv0 R2_w=inv0 R6_w=ctx(id=0,off=0,imm=0) R10=fp0 fp-8=mmmm???? fp-24_w=00000000 fp-32_w=00000000 fp-40_w=00000000 fp-48_w=00000000
; bpf_map_update_elem(&start, &pid, &ts, 0);
28: (bf) r2 = r10
;
29: (07) r2 += -16
; tsp = bpf_map_lookup_elem(&start, &pid);
30: (18) r1 = 0xffff8881f3868000
32: (85) call bpf_map_lookup_elem#1
invalid indirect read from stack off -16+0 size 4
processed 65 insns (limit 1000000) max_states_per_insn 1 total_states 5 peak_states 5 mark_read 4

Notice how there is a successful code path from instruction 0 through 67, few
successfully verified jumps (44->66, 34->66), and only after that 11->28 jump
plus error on instruction #32.

AFTER this change (full verifier log, **no truncation**):

; int handle__sched_switch(u64 *ctx)
0: (bf) r6 = r1
; struct task_struct *prev = (struct task_struct *)ctx[1];
1: (79) r1 = *(u64 *)(r6 +8)
func 'sched_switch' arg1 has btf_id 151 type STRUCT 'task_struct'
2: (b7) r2 = 0
; struct event event = {};
3: (7b) *(u64 *)(r10 -24) = r2
last_idx 3 first_idx 0
regs=4 stack=0 before 2: (b7) r2 = 0
4: (7b) *(u64 *)(r10 -32) = r2
5: (7b) *(u64 *)(r10 -40) = r2
6: (7b) *(u64 *)(r10 -48) = r2
; if (prev->state == TASK_RUNNING)
7: (79) r2 = *(u64 *)(r1 +16)
; if (prev->state == TASK_RUNNING)
8: (55) if r2 != 0x0 goto pc+19
R1_w=ptr_task_struct(id=0,off=0,imm=0) R2_w=inv0 R6_w=ctx(id=0,off=0,imm=0) R10=fp0 fp-24_w=00000000 fp-32_w=00000000 fp-40_w=00000000 fp-48_w=00000000
; trace_enqueue(prev->tgid, prev->pid);
9: (61) r1 = *(u32 *)(r1 +1184)
10: (63) *(u32 *)(r10 -4) = r1
; if (!pid || (targ_pid && targ_pid != pid))
11: (15) if r1 == 0x0 goto pc+16

from 11 to 28: R1_w=inv0 R2_w=inv0 R6_w=ctx(id=0,off=0,imm=0) R10=fp0 fp-8=mmmm???? fp-24_w=00000000 fp-32_w=00000000 fp-40_w=00000000 fp-48_w=00000000
; bpf_map_update_elem(&start, &pid, &ts, 0);
28: (bf) r2 = r10
;
29: (07) r2 += -16
; tsp = bpf_map_lookup_elem(&start, &pid);
30: (18) r1 = 0xffff8881db3ce800
32: (85) call bpf_map_lookup_elem#1
invalid indirect read from stack off -16+0 size 4
processed 65 insns (limit 1000000) max_states_per_insn 1 total_states 5 peak_states 5 mark_read 4

Notice how in this case, there are 0-11 instructions + jump from 11 to
28 is recorded + 28-32 instructions with error on insn #32.

test_verifier test runner was updated to specify BPF_LOG_LEVEL2 for
VERBOSE_ACCEPT expected result due to potentially "incomplete" success verbose
log at BPF_LOG_LEVEL1.

On success, verbose log will only have a summary of number of processed
instructions, etc, but no branch tracing log. Having just a last succesful
branch tracing seemed weird and confusing. Having small and clean summary log
in success case seems quite logical and nice, though.

Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200423195850.1259827-1-andriin@fb.com


# b0b3fb67 17-Apr-2020 Mao Wenan <maowenan@huawei.com>

bpf: Remove set but not used variable 'dst_known'

Fixes gcc '-Wunused-but-set-variable' warning:

kernel/bpf/verifier.c:5603:18: warning: variable ‘dst_known’
set but not used [-Wunused-but-set-variable], delete this
variable.

Signed-off-by: Mao Wenan <maowenan@huawei.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20200418013735.67882-1-maowenan@huawei.com


# 03f87c0b 24-Apr-2020 Toke Høiland-Jørgensen <toke@redhat.com>

bpf: Propagate expected_attach_type when verifying freplace programs

For some program types, the verifier relies on the expected_attach_type of
the program being verified in the verification process. However, for
freplace programs, the attach type was not propagated along with the
verifier ops, so the expected_attach_type would always be zero for freplace
programs.

This in turn caused the verifier to sometimes make the wrong call for
freplace programs. For all existing uses of expected_attach_type for this
purpose, the result of this was only false negatives (i.e., freplace
functions would be rejected by the verifier even though they were valid
programs for the target they were replacing). However, should a false
positive be introduced, this can lead to out-of-bounds accesses and/or
crashes.

The fix introduced in this patch is to propagate the expected_attach_type
to the freplace program during verification, and reset it after that is
done.

Fixes: be8704ff07d2 ("bpf: Introduce dynamic program extensions")
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/158773526726.293902.13257293296560360508.stgit@toke.dk


# 8ff3571f 16-Apr-2020 Jann Horn <jannh@google.com>

bpf: Fix handling of XADD on BTF memory

check_xadd() can cause check_ptr_to_btf_access() to be executed with
atype==BPF_READ and value_regno==-1 (meaning "just check whether the access
is okay, don't tell me what type it will result in").
Handle that case properly and skip writing type information, instead of
indexing into the registers at index -1 and writing into out-of-bounds
memory.

Note that at least at the moment, you can't actually write through a BTF
pointer, so check_xadd() will reject the program after calling
check_ptr_to_btf_access with atype==BPF_WRITE; but that's after the
verifier has already corrupted memory.

This patch assumes that BTF pointers are not available in unprivileged
programs.

Fixes: 9e15db66136a ("bpf: Implement accurate raw_tp context access via BTF")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200417000007.10734-2-jannh@google.com


# 6e7e63cb 16-Apr-2020 Jann Horn <jannh@google.com>

bpf: Forbid XADD on spilled pointers for unprivileged users

When check_xadd() verifies an XADD operation on a pointer to a stack slot
containing a spilled pointer, check_stack_read() verifies that the read,
which is part of XADD, is valid. However, since the placeholder value -1 is
passed as `value_regno`, check_stack_read() can only return a binary
decision and can't return the type of the value that was read. The intent
here is to verify whether the value read from the stack slot may be used as
a SCALAR_VALUE; but since check_stack_read() doesn't check the type, and
the type information is lost when check_stack_read() returns, this is not
enforced, and a malicious user can abuse XADD to leak spilled kernel
pointers.

Fix it by letting check_stack_read() verify that the value is usable as a
SCALAR_VALUE if no type information is passed to the caller.

To be able to use __is_pointer_value() in check_stack_read(), move it up.

Fix up the expected unprivileged error message for a BPF selftest that,
until now, assumed that unprivileged users can use XADD on stack-spilled
pointers. This also gives us a test for the behavior introduced in this
patch for free.

In theory, this could also be fixed by forbidding XADD on stack spills
entirely, since XADD is a locked operation (for operations on memory with
concurrency) and there can't be any concurrency on the BPF stack; but
Alexei has said that he wants to keep XADD on stack slots working to avoid
changes to the test suite [1].

The following BPF program demonstrates how to leak a BPF map pointer as an
unprivileged user using this bug:

// r7 = map_pointer
BPF_LD_MAP_FD(BPF_REG_7, small_map),
// r8 = launder(map_pointer)
BPF_STX_MEM(BPF_DW, BPF_REG_FP, BPF_REG_7, -8),
BPF_MOV64_IMM(BPF_REG_1, 0),
((struct bpf_insn) {
.code = BPF_STX | BPF_DW | BPF_XADD,
.dst_reg = BPF_REG_FP,
.src_reg = BPF_REG_1,
.off = -8
}),
BPF_LDX_MEM(BPF_DW, BPF_REG_8, BPF_REG_FP, -8),

// store r8 into map
BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_7),
BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_FP),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG2, -4),
BPF_ST_MEM(BPF_W, BPF_REG_ARG2, 0, 0),
BPF_EMIT_CALL(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 1),
BPF_EXIT_INSN(),
BPF_STX_MEM(BPF_DW, BPF_REG_0, BPF_REG_8, 0),

BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN()

[1] https://lore.kernel.org/bpf/20200416211116.qxqcza5vo2ddnkdq@ast-mbp.dhcp.thefacebook.com/

Fixes: 17a5267067f3 ("bpf: verifier (add verifier core)")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200417000007.10734-1-jannh@google.com


# 89f33dca 13-Apr-2020 Zou Wei <zou_wei@huawei.com>

bpf: remove unneeded conversion to bool in __mark_reg_unknown

This issue was detected by using the Coccinelle software:

kernel/bpf/verifier.c:1259:16-21: WARNING: conversion to bool not needed here

The conversion to bool is unneeded, remove it.

Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Zou Wei <zou_wei@huawei.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/1586779076-101346-1-git-send-email-zou_wei@huawei.com


# fa123ac0 30-Mar-2020 John Fastabend <john.fastabend@gmail.com>

bpf: Verifier, refine 32bit bound in do_refine_retval_range

Further refine return values range in do_refine_retval_range by noting
these are int return types (We will assume here that int is a 32-bit type).

Two reasons to pull this out of original patch. First it makes the original
fix impossible to backport. And second I've not seen this as being problematic
in practice unlike the other case.

Fixes: 849fa50662fbc ("bpf/verifier: refine retval R0 state for bpf_get_stack helper")
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/158560421952.10843.12496354931526965046.stgit@john-Precision-5820-Tower


# 3f50f132 30-Mar-2020 John Fastabend <john.fastabend@gmail.com>

bpf: Verifier, do explicit ALU32 bounds tracking

It is not possible for the current verifier to track ALU32 and JMP ops
correctly. This can result in the verifier aborting with errors even though
the program should be verifiable. BPF codes that hit this can work around
it by changin int variables to 64-bit types, marking variables volatile,
etc. But this is all very ugly so it would be better to avoid these tricks.

But, the main reason to address this now is do_refine_retval_range() was
assuming return values could not be negative. Once we fixed this code that
was previously working will no longer work. See do_refine_retval_range()
patch for details. And we don't want to suddenly cause programs that used
to work to fail.

The simplest example code snippet that illustrates the problem is likely
this,

53: w8 = w0 // r8 <- [0, S32_MAX],
// w8 <- [-S32_MIN, X]
54: w8 <s 0 // r8 <- [0, U32_MAX]
// w8 <- [0, X]

The expected 64-bit and 32-bit bounds after each line are shown on the
right. The current issue is without the w* bounds we are forced to use
the worst case bound of [0, U32_MAX]. To resolve this type of case,
jmp32 creating divergent 32-bit bounds from 64-bit bounds, we add explicit
32-bit register bounds s32_{min|max}_value and u32_{min|max}_value. Then
from branch_taken logic creating new bounds we can track 32-bit bounds
explicitly.

The next case we observed is ALU ops after the jmp32,

53: w8 = w0 // r8 <- [0, S32_MAX],
// w8 <- [-S32_MIN, X]
54: w8 <s 0 // r8 <- [0, U32_MAX]
// w8 <- [0, X]
55: w8 += 1 // r8 <- [0, U32_MAX+1]
// w8 <- [0, X+1]

In order to keep the bounds accurate at this point we also need to track
ALU32 ops. To do this we add explicit ALU32 logic for each of the ALU
ops, mov, add, sub, etc.

Finally there is a question of how and when to merge bounds. The cases
enumerate here,

1. MOV ALU32 - zext 32-bit -> 64-bit
2. MOV ALU64 - copy 64-bit -> 32-bit
3. op ALU32 - zext 32-bit -> 64-bit
4. op ALU64 - n/a
5. jmp ALU32 - 64-bit: var32_off | upper_32_bits(var64_off)
6. jmp ALU64 - 32-bit: (>> (<< var64_off))

Details for each case,

For "MOV ALU32" BPF arch zero extends so we simply copy the bounds
from 32-bit into 64-bit ensuring we truncate var_off and 64-bit
bounds correctly. See zext_32_to_64.

For "MOV ALU64" copy all bounds including 32-bit into new register. If
the src register had 32-bit bounds the dst register will as well.

For "op ALU32" zero extend 32-bit into 64-bit the same as move,
see zext_32_to_64.

For "op ALU64" calculate both 32-bit and 64-bit bounds no merging
is done here. Except we have a special case. When RSH or ARSH is
done we can't simply ignore shifting bits from 64-bit reg into the
32-bit subreg. So currently just push bounds from 64-bit into 32-bit.
This will be correct in the sense that they will represent a valid
state of the register. However we could lose some accuracy if an
ARSH is following a jmp32 operation. We can handle this special
case in a follow up series.

For "jmp ALU32" mark 64-bit reg unknown and recalculate 64-bit bounds
from tnum by setting var_off to ((<<(>>var_off)) | var32_off). We
special case if 64-bit bounds has zero'd upper 32bits at which point
we can simply copy 32-bit bounds into 64-bit register. This catches
a common compiler trick where upper 32-bits are zeroed and then
32-bit ops are used followed by a 64-bit compare or 64-bit op on
a pointer. See __reg_combine_64_into_32().

For "jmp ALU64" cast the bounds of the 64bit to their 32-bit
counterpart. For example s32_min_value = (s32)reg->smin_value. For
tnum use only the lower 32bits via, (>>(<<var_off)). See
__reg_combine_64_into_32().

Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/158560419880.10843.11448220440809118343.stgit@john-Precision-5820-Tower


# 10060503 30-Mar-2020 John Fastabend <john.fastabend@gmail.com>

bpf: Verifier, do_refine_retval_range may clamp umin to 0 incorrectly

do_refine_retval_range() is called to refine return values from specified
helpers, probe_read_str and get_stack at the moment, the reasoning is
because both have a max value as part of their input arguments and
because the helper ensure the return value will not be larger than this
we can set smax values of the return register, r0.

However, the return value is a signed integer so setting umax is incorrect
It leads to further confusion when the do_refine_retval_range() then calls,
__reg_deduce_bounds() which will see a umax value as meaning the value is
unsigned and then assuming it is unsigned set the smin = umin which in this
case results in 'smin = 0' and an 'smax = X' where X is the input argument
from the helper call.

Here are the comments from _reg_deduce_bounds() on why this would be safe
to do.

/* Learn sign from unsigned bounds. Signed bounds cross the sign
* boundary, so we must be careful.
*/
if ((s64)reg->umax_value >= 0) {
/* Positive. We can't learn anything from the smin, but smax
* is positive, hence safe.
*/
reg->smin_value = reg->umin_value;
reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
reg->umax_value);

But now we incorrectly have a return value with type int with the
signed bounds (0,X). Suppose the return value is negative, which is
possible the we have the verifier and reality out of sync. Among other
things this may result in any error handling code being falsely detected
as dead-code and removed. For instance the example below shows using
bpf_probe_read_str() causes the error path to be identified as dead
code and removed.

>From the 'llvm-object -S' dump,

r2 = 100
call 45
if r0 s< 0 goto +4
r4 = *(u32 *)(r7 + 0)

But from dump xlate

(b7) r2 = 100
(85) call bpf_probe_read_compat_str#-96768
(61) r4 = *(u32 *)(r7 +0) <-- dropped if goto

Due to verifier state after call being

R0=inv(id=0,umax_value=100,var_off=(0x0; 0x7f))

To fix omit setting the umax value because its not safe. The only
actual bounds we know is the smax. This results in the correct bounds
(SMIN, X) where X is the max length from the helper. After this the
new verifier state looks like the following after call 45.

R0=inv(id=0,smax_value=100)

Then xlated version no longer removed dead code giving the expected
result,

(b7) r2 = 100
(85) call bpf_probe_read_compat_str#-96768
(c5) if r0 s< 0x0 goto pc+4
(61) r4 = *(u32 *)(r7 +0)

Note, bpf_probe_read_* calls are root only so we wont hit this case
with non-root bpf users.

v3: comment had some documentation about meta set to null case which
is not relevant here and confusing to include in the comment.

v2 note: In original version we set msize_smax_value from check_func_arg()
and propagated this into smax of retval. The logic was smax is the bound
on the retval we set and because the type in the helper is ARG_CONST_SIZE
we know that the reg is a positive tnum_const() so umax=smax. Alexei
pointed out though this is a bit odd to read because the register in
check_func_arg() has a C type of u32 and the umax bound would be the
normally relavent bound here. Pulling in extra knowledge about future
checks makes reading the code a bit tricky. Further having a signed
meta data that can only ever be positive is also a bit odd. So dropped
the msize_smax_value metadata and made it a u64 msize_max_value to
indicate its unsigned. And additionally save bound from umax value in
check_arg_funcs which is the same as smax due to as noted above tnumx_cont
and negative check but reads better. By my analysis nothing functionally
changes in v2 but it does get easier to read so that is win.

Fixes: 849fa50662fbc ("bpf/verifier: refine retval R0 state for bpf_get_stack helper")
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/158560417900.10843.14351995140624628941.stgit@john-Precision-5820-Tower


# 0fc31b10 30-Mar-2020 Jann Horn <jannh@google.com>

bpf: Simplify reg_set_min_max_inv handling

reg_set_min_max_inv() contains exactly the same logic as reg_set_min_max(),
just flipped around. While this makes sense in a cBPF verifier (where ALU
operations are not symmetric), it does not make sense for eBPF.

Replace reg_set_min_max_inv() with a helper that flips the opcode around,
then lets reg_set_min_max() do the complicated work.

Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200330160324.15259-4-daniel@iogearbox.net


# 604dca5e 30-Mar-2020 Jann Horn <jannh@google.com>

bpf: Fix tnum constraints for 32-bit comparisons

The BPF verifier tried to track values based on 32-bit comparisons by
(ab)using the tnum state via 581738a681b6 ("bpf: Provide better register
bounds after jmp32 instructions"). The idea is that after a check like
this:

if ((u32)r0 > 3)
exit

We can't meaningfully constrain the arithmetic-range-based tracking, but
we can update the tnum state to (value=0,mask=0xffff'ffff'0000'0003).
However, the implementation from 581738a681b6 didn't compute the tnum
constraint based on the fixed operand, but instead derives it from the
arithmetic-range-based tracking. This means that after the following
sequence of operations:

if (r0 >= 0x1'0000'0001)
exit
if ((u32)r0 > 7)
exit

The verifier assumed that the lower half of r0 is in the range (0, 0)
and apply the tnum constraint (value=0,mask=0xffff'ffff'0000'0000) thus
causing the overall tnum to be (value=0,mask=0x1'0000'0000), which was
incorrect. Provide a fixed implementation.

Fixes: 581738a681b6 ("bpf: Provide better register bounds after jmp32 instructions")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200330160324.15259-3-daniel@iogearbox.net


# f2d67fec 30-Mar-2020 Daniel Borkmann <daniel@iogearbox.net>

bpf: Undo incorrect __reg_bound_offset32 handling

Anatoly has been fuzzing with kBdysch harness and reported a hang in
one of the outcomes:

0: (b7) r0 = 808464432
1: (7f) r0 >>= r0
2: (14) w0 -= 808464432
3: (07) r0 += 808464432
4: (b7) r1 = 808464432
5: (de) if w1 s<= w0 goto pc+0
R0_w=invP(id=0,umin_value=808464432,umax_value=5103431727,var_off=(0x30303020;0x10000001f)) R1_w=invP808464432 R10=fp0
6: (07) r0 += -2144337872
7: (14) w0 -= -1607454672
8: (25) if r0 > 0x30303030 goto pc+0
R0_w=invP(id=0,umin_value=271581184,umax_value=271581311,var_off=(0x10300000;0x7f)) R1_w=invP808464432 R10=fp0
9: (76) if w0 s>= 0x303030 goto pc+2
12: (95) exit

from 8 to 9: safe

from 5 to 6: R0_w=invP(id=0,umin_value=808464432,umax_value=5103431727,var_off=(0x30303020;0x10000001f)) R1_w=invP808464432 R10=fp0
6: (07) r0 += -2144337872
7: (14) w0 -= -1607454672
8: (25) if r0 > 0x30303030 goto pc+0
R0_w=invP(id=0,umin_value=271581184,umax_value=271581311,var_off=(0x10300000;0x7f)) R1_w=invP808464432 R10=fp0
9: safe

from 8 to 9: safe
verification time 589 usec
stack depth 0
processed 17 insns (limit 1000000) [...]

The underlying program was xlated as follows:

# bpftool p d x i 9
0: (b7) r0 = 808464432
1: (7f) r0 >>= r0
2: (14) w0 -= 808464432
3: (07) r0 += 808464432
4: (b7) r1 = 808464432
5: (de) if w1 s<= w0 goto pc+0
6: (07) r0 += -2144337872
7: (14) w0 -= -1607454672
8: (25) if r0 > 0x30303030 goto pc+0
9: (76) if w0 s>= 0x303030 goto pc+2
10: (05) goto pc-1
11: (05) goto pc-1
12: (95) exit

The verifier rewrote original instructions it recognized as dead code with
'goto pc-1', but reality differs from verifier simulation in that we're
actually able to trigger a hang due to hitting the 'goto pc-1' instructions.

Taking different examples to make the issue more obvious: in this example
we're probing bounds on a completely unknown scalar variable in r1:

[...]
5: R0_w=inv1 R1_w=inv(id=0) R10=fp0
5: (18) r2 = 0x4000000000
7: R0_w=inv1 R1_w=inv(id=0) R2_w=inv274877906944 R10=fp0
7: (18) r3 = 0x2000000000
9: R0_w=inv1 R1_w=inv(id=0) R2_w=inv274877906944 R3_w=inv137438953472 R10=fp0
9: (18) r4 = 0x400
11: R0_w=inv1 R1_w=inv(id=0) R2_w=inv274877906944 R3_w=inv137438953472 R4_w=inv1024 R10=fp0
11: (18) r5 = 0x200
13: R0_w=inv1 R1_w=inv(id=0) R2_w=inv274877906944 R3_w=inv137438953472 R4_w=inv1024 R5_w=inv512 R10=fp0
13: (2d) if r1 > r2 goto pc+4
R0_w=inv1 R1_w=inv(id=0,umax_value=274877906944,var_off=(0x0; 0x7fffffffff)) R2_w=inv274877906944 R3_w=inv137438953472 R4_w=inv1024 R5_w=inv512 R10=fp0
14: R0_w=inv1 R1_w=inv(id=0,umax_value=274877906944,var_off=(0x0; 0x7fffffffff)) R2_w=inv274877906944 R3_w=inv137438953472 R4_w=inv1024 R5_w=inv512 R10=fp0
14: (ad) if r1 < r3 goto pc+3
R0_w=inv1 R1_w=inv(id=0,umin_value=137438953472,umax_value=274877906944,var_off=(0x0; 0x7fffffffff)) R2_w=inv274877906944 R3_w=inv137438953472 R4_w=inv1024 R5_w=inv512 R10=fp0
15: R0=inv1 R1=inv(id=0,umin_value=137438953472,umax_value=274877906944,var_off=(0x0; 0x7fffffffff)) R2=inv274877906944 R3=inv137438953472 R4=inv1024 R5=inv512 R10=fp0
15: (2e) if w1 > w4 goto pc+2
R0=inv1 R1=inv(id=0,umin_value=137438953472,umax_value=274877906944,var_off=(0x0; 0x7f00000000)) R2=inv274877906944 R3=inv137438953472 R4=inv1024 R5=inv512 R10=fp0
16: R0=inv1 R1=inv(id=0,umin_value=137438953472,umax_value=274877906944,var_off=(0x0; 0x7f00000000)) R2=inv274877906944 R3=inv137438953472 R4=inv1024 R5=inv512 R10=fp0
16: (ae) if w1 < w5 goto pc+1
R0=inv1 R1=inv(id=0,umin_value=137438953472,umax_value=274877906944,var_off=(0x0; 0x7f00000000)) R2=inv274877906944 R3=inv137438953472 R4=inv1024 R5=inv512 R10=fp0
[...]

We're first probing lower/upper bounds via jmp64, later we do a similar
check via jmp32 and examine the resulting var_off there. After fall-through
in insn 14, we get the following bounded r1 with 0x7fffffffff unknown marked
bits in the variable section.

Thus, after knowing r1 <= 0x4000000000 and r1 >= 0x2000000000:

max: 0b100000000000000000000000000000000000000 / 0x4000000000
var: 0b111111111111111111111111111111111111111 / 0x7fffffffff
min: 0b010000000000000000000000000000000000000 / 0x2000000000

Now, in insn 15 and 16, we perform a similar probe with lower/upper bounds
in jmp32.

Thus, after knowing r1 <= 0x4000000000 and r1 >= 0x2000000000 and
w1 <= 0x400 and w1 >= 0x200:

max: 0b100000000000000000000000000000000000000 / 0x4000000000
var: 0b111111100000000000000000000000000000000 / 0x7f00000000
min: 0b010000000000000000000000000000000000000 / 0x2000000000

The lower/upper bounds haven't changed since they have high bits set in
u64 space and the jmp32 tests can only refine bounds in the low bits.

However, for the var part the expectation would have been 0x7f000007ff
or something less precise up to 0x7fffffffff. A outcome of 0x7f00000000
is not correct since it would contradict the earlier probed bounds
where we know that the result should have been in [0x200,0x400] in u32
space. Therefore, tests with such info will lead to wrong verifier
assumptions later on like falsely predicting conditional jumps to be
always taken, etc.

The issue here is that __reg_bound_offset32()'s implementation from
commit 581738a681b6 ("bpf: Provide better register bounds after jmp32
instructions") makes an incorrect range assumption:

static void __reg_bound_offset32(struct bpf_reg_state *reg)
{
u64 mask = 0xffffFFFF;
struct tnum range = tnum_range(reg->umin_value & mask,
reg->umax_value & mask);
struct tnum lo32 = tnum_cast(reg->var_off, 4);
struct tnum hi32 = tnum_lshift(tnum_rshift(reg->var_off, 32), 32);

reg->var_off = tnum_or(hi32, tnum_intersect(lo32, range));
}

In the above walk-through example, __reg_bound_offset32() as-is chose
a range after masking with 0xffffffff of [0x0,0x0] since umin:0x2000000000
and umax:0x4000000000 and therefore the lo32 part was clamped to 0x0 as
well. However, in the umin:0x2000000000 and umax:0x4000000000 range above
we'd end up with an actual possible interval of [0x0,0xffffffff] for u32
space instead.

In case of the original reproducer, the situation looked as follows at
insn 5 for r0:

[...]
5: R0_w=invP(id=0,umin_value=808464432,umax_value=5103431727,var_off=(0x0; 0x1ffffffff)) R1_w=invP808464432 R10=fp0
0x30303030 0x13030302f
5: (de) if w1 s<= w0 goto pc+0
R0_w=invP(id=0,umin_value=808464432,umax_value=5103431727,var_off=(0x30303020; 0x10000001f)) R1_w=invP808464432 R10=fp0
0x30303030 0x13030302f
[...]

After the fall-through, we similarly forced the var_off result into
the wrong range [0x30303030,0x3030302f] suggesting later on that fixed
bits must only be of 0x30303020 with 0x10000001f unknowns whereas such
assumption can only be made when both bounds in hi32 range match.

Originally, I was thinking to fix this by moving reg into a temp reg and
use proper coerce_reg_to_size() helper on the temp reg where we can then
based on that define the range tnum for later intersection:

static void __reg_bound_offset32(struct bpf_reg_state *reg)
{
struct bpf_reg_state tmp = *reg;
struct tnum lo32, hi32, range;

coerce_reg_to_size(&tmp, 4);
range = tnum_range(tmp.umin_value, tmp.umax_value);
lo32 = tnum_cast(reg->var_off, 4);
hi32 = tnum_lshift(tnum_rshift(reg->var_off, 32), 32);
reg->var_off = tnum_or(hi32, tnum_intersect(lo32, range));
}

In the case of the concrete example, this gives us a more conservative unknown
section. Thus, after knowing r1 <= 0x4000000000 and r1 >= 0x2000000000 and
w1 <= 0x400 and w1 >= 0x200:

max: 0b100000000000000000000000000000000000000 / 0x4000000000
var: 0b111111111111111111111111111111111111111 / 0x7fffffffff
min: 0b010000000000000000000000000000000000000 / 0x2000000000

However, above new __reg_bound_offset32() has no effect on refining the
knowledge of the register contents. Meaning, if the bounds in hi32 range
mismatch we'll get the identity function given the range reg spans
[0x0,0xffffffff] and we cast var_off into lo32 only to later on binary
or it again with the hi32.

Likewise, if the bounds in hi32 range match, then we mask both bounds
with 0xffffffff, use the resulting umin/umax for the range to later
intersect the lo32 with it. However, _prior_ called __reg_bound_offset()
did already such intersection on the full reg and we therefore would only
repeat the same operation on the lo32 part twice.

Given this has no effect and the original commit had false assumptions,
this patch reverts the code entirely which is also more straight forward
for stable trees: apparently 581738a681b6 got auto-selected by Sasha's
ML system and misclassified as a fix, so it got sucked into v5.4 where
it should never have landed. A revert is low-risk also from a user PoV
since it requires a recent kernel and llc to opt-into -mcpu=v3 BPF CPU
to generate jmp32 instructions. A proper bounds refinement would need a
significantly more complex approach which is currently being worked, but
no stable material [0]. Hence revert is best option for stable. After the
revert, the original reported program gets rejected as follows:

1: (7f) r0 >>= r0
2: (14) w0 -= 808464432
3: (07) r0 += 808464432
4: (b7) r1 = 808464432
5: (de) if w1 s<= w0 goto pc+0
R0_w=invP(id=0,umin_value=808464432,umax_value=5103431727,var_off=(0x0; 0x1ffffffff)) R1_w=invP808464432 R10=fp0
6: (07) r0 += -2144337872
7: (14) w0 -= -1607454672
8: (25) if r0 > 0x30303030 goto pc+0
R0_w=invP(id=0,umax_value=808464432,var_off=(0x0; 0x3fffffff)) R1_w=invP808464432 R10=fp0
9: (76) if w0 s>= 0x303030 goto pc+2
R0=invP(id=0,umax_value=3158063,var_off=(0x0; 0x3fffff)) R1=invP808464432 R10=fp0
10: (30) r0 = *(u8 *)skb[808464432]
BPF_LD_[ABS|IND] uses reserved fields
processed 11 insns (limit 1000000) [...]

[0] https://lore.kernel.org/bpf/158507130343.15666.8018068546764556975.stgit@john-Precision-5820-Tower/T/

Fixes: 581738a681b6 ("bpf: Provide better register bounds after jmp32 instructions")
Reported-by: Anatoly Trosinenko <anatoly.trosinenko@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200330160324.15259-2-daniel@iogearbox.net


# 9e4e01df 28-Mar-2020 KP Singh <kpsingh@google.com>

bpf: lsm: Implement attach, detach and execution

JITed BPF programs are dynamically attached to the LSM hooks
using BPF trampolines. The trampoline prologue generates code to handle
conversion of the signature of the hook to the appropriate BPF context.

The allocated trampoline programs are attached to the nop functions
initialized as LSM hooks.

BPF_PROG_TYPE_LSM programs must have a GPL compatible license and
and need CAP_SYS_ADMIN (required for loading eBPF programs).

Upon attachment:

* A BPF fexit trampoline is used for LSM hooks with a void return type.
* A BPF fmod_ret trampoline is used for LSM hooks which return an
int. The attached programs can override the return value of the
bpf LSM hook to indicate a MAC Policy decision.

Signed-off-by: KP Singh <kpsingh@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Brendan Jackman <jackmanb@google.com>
Reviewed-by: Florent Revest <revest@google.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: James Morris <jamorris@linux.microsoft.com>
Link: https://lore.kernel.org/bpf/20200329004356.27286-5-kpsingh@chromium.org


# f318903c 27-Mar-2020 Daniel Borkmann <daniel@iogearbox.net>

bpf: Add netns cookie and enable it for bpf cgroup hooks

In Cilium we're mainly using BPF cgroup hooks today in order to implement
kube-proxy free Kubernetes service translation for ClusterIP, NodePort (*),
ExternalIP, and LoadBalancer as well as HostPort mapping [0] for all traffic
between Cilium managed nodes. While this works in its current shape and avoids
packet-level NAT for inter Cilium managed node traffic, there is one major
limitation we're facing today, that is, lack of netns awareness.

In Kubernetes, the concept of Pods (which hold one or multiple containers)
has been built around network namespaces, so while we can use the global scope
of attaching to root BPF cgroup hooks also to our advantage (e.g. for exposing
NodePort ports on loopback addresses), we also have the need to differentiate
between initial network namespaces and non-initial one. For example, ExternalIP
services mandate that non-local service IPs are not to be translated from the
host (initial) network namespace as one example. Right now, we have an ugly
work-around in place where non-local service IPs for ExternalIP services are
not xlated from connect() and friends BPF hooks but instead via less efficient
packet-level NAT on the veth tc ingress hook for Pod traffic.

On top of determining whether we're in initial or non-initial network namespace
we also have a need for a socket-cookie like mechanism for network namespaces
scope. Socket cookies have the nice property that they can be combined as part
of the key structure e.g. for BPF LRU maps without having to worry that the
cookie could be recycled. We are planning to use this for our sessionAffinity
implementation for services. Therefore, add a new bpf_get_netns_cookie() helper
which would resolve both use cases at once: bpf_get_netns_cookie(NULL) would
provide the cookie for the initial network namespace while passing the context
instead of NULL would provide the cookie from the application's network namespace.
We're using a hole, so no size increase; the assignment happens only once.
Therefore this allows for a comparison on initial namespace as well as regular
cookie usage as we have today with socket cookies. We could later on enable
this helper for other program types as well as we would see need.

(*) Both externalTrafficPolicy={Local|Cluster} types
[0] https://github.com/cilium/cilium/blob/master/bpf/bpf_sock.c

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/c47d2346982693a9cf9da0e12690453aded4c788.1585323121.git.daniel@iogearbox.net


# 294f2fc6 24-Mar-2020 John Fastabend <john.fastabend@gmail.com>

bpf: Verifer, adjust_scalar_min_max_vals to always call update_reg_bounds()

Currently, for all op verification we call __red_deduce_bounds() and
__red_bound_offset() but we only call __update_reg_bounds() in bitwise
ops. However, we could benefit from calling __update_reg_bounds() in
BPF_ADD, BPF_SUB, and BPF_MUL cases as well.

For example, a register with state 'R1_w=invP0' when we subtract from
it,

w1 -= 2

Before coerce we will now have an smin_value=S64_MIN, smax_value=U64_MAX
and unsigned bounds umin_value=0, umax_value=U64_MAX. These will then
be clamped to S32_MIN, U32_MAX values by coerce in the case of alu32 op
as done in above example. However tnum will be a constant because the
ALU op is done on a constant.

Without update_reg_bounds() we have a scenario where tnum is a const
but our unsigned bounds do not reflect this. By calling update_reg_bounds
after coerce to 32bit we further refine the umin_value to U64_MAX in the
alu64 case or U32_MAX in the alu32 case above.

Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/158507151689.15666.566796274289413203.stgit@john-Precision-5820-Tower


# 07cd2631 24-Mar-2020 John Fastabend <john.fastabend@gmail.com>

bpf: Verifer, refactor adjust_scalar_min_max_vals

Pull per op ALU logic into individual functions. We are about to add
u32 versions of each of these by pull them out the code gets a bit
more readable here and nicer in the next patch.

Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/158507149518.15666.15672349629329072411.stgit@john-Precision-5820-Tower


# d831ee84 06-Mar-2020 Eelco Chaudron <echaudro@redhat.com>

bpf: Add bpf_xdp_output() helper

Introduce new helper that reuses existing xdp perf_event output
implementation, but can be called from raw_tracepoint programs
that receive 'struct xdp_buff *' as a tracepoint argument.

Signed-off-by: Eelco Chaudron <echaudro@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/158348514556.2239.11050972434793741444.stgit@xdp-tutorial


# 69191754 05-Mar-2020 KP Singh <kpsingh@google.com>

bpf: Remove unnecessary CAP_MAC_ADMIN check

While well intentioned, checking CAP_MAC_ADMIN for attaching
BPF_MODIFY_RETURN tracing programs to "security_" functions is not
necessary as tracing BPF programs already require CAP_SYS_ADMIN.

Fixes: 6ba43b761c41 ("bpf: Attachment verification for BPF_MODIFY_RETURN")
Signed-off-by: KP Singh <kpsingh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200305204955.31123-1-kpsingh@chromium.org


# 6ba43b76 04-Mar-2020 KP Singh <kpsingh@google.com>

bpf: Attachment verification for BPF_MODIFY_RETURN

- Allow BPF_MODIFY_RETURN attachment only to functions that are:

* Whitelisted for error injection by checking
within_error_injection_list. Similar discussions happened for the
bpf_override_return helper.

* security hooks, this is expected to be cleaned up with the LSM
changes after the KRSI patches introduce the LSM_HOOK macro:

https://lore.kernel.org/bpf/20200220175250.10795-1-kpsingh@chromium.org/

- The attachment is currently limited to functions that return an int.
This can be extended later other types (e.g. PTR).

Signed-off-by: KP Singh <kpsingh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200304191853.1529-5-kpsingh@chromium.org


# ae240823 04-Mar-2020 KP Singh <kpsingh@google.com>

bpf: Introduce BPF_MODIFY_RETURN

When multiple programs are attached, each program receives the return
value from the previous program on the stack and the last program
provides the return value to the attached function.

The fmod_ret bpf programs are run after the fentry programs and before
the fexit programs. The original function is only called if all the
fmod_ret programs return 0 to avoid any unintended side-effects. The
success value, i.e. 0 is not currently configurable but can be made so
where user-space can specify it at load time.

For example:

int func_to_be_attached(int a, int b)
{ <--- do_fentry

do_fmod_ret:
<update ret by calling fmod_ret>
if (ret != 0)
goto do_fexit;

original_function:

<side_effects_happen_here>

} <--- do_fexit

The fmod_ret program attached to this function can be defined as:

SEC("fmod_ret/func_to_be_attached")
int BPF_PROG(func_name, int a, int b, int ret)
{
// This will skip the original function logic.
return 1;
}

The first fmod_ret program is passed 0 in its return argument.

Signed-off-by: KP Singh <kpsingh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200304191853.1529-4-kpsingh@chromium.org


# 2ed905c5 24-Feb-2020 Thomas Gleixner <tglx@linutronix.de>

bpf: Enforce preallocation for instrumentation programs on RT

Aside of the general unsafety of run-time map allocation for
instrumentation type programs RT enabled kernels have another constraint:

The instrumentation programs are invoked with preemption disabled, but the
memory allocator spinlocks cannot be acquired in atomic context because
they are converted to 'sleeping' spinlocks on RT.

Therefore enforce map preallocation for these programs types when RT is
enabled.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200224145642.648784007@linutronix.de


# 94dacdbd 24-Feb-2020 Thomas Gleixner <tglx@linutronix.de>

bpf: Tighten the requirements for preallocated hash maps

The assumption that only programs attached to perf NMI events can deadlock
on memory allocators is wrong. Assume the following simplified callchain:

kmalloc() from regular non BPF context
cache empty
freelist empty
lock(zone->lock);
tracepoint or kprobe
BPF()
update_elem()
lock(bucket)
kmalloc()
cache empty
freelist empty
lock(zone->lock); <- DEADLOCK

There are other ways which do not involve locking to create wreckage:

kmalloc() from regular non BPF context
local_irq_save();
...
obj = slab_first();
kprobe()
BPF()
update_elem()
lock(bucket)
kmalloc()
local_irq_save();
...
obj = slab_first(); <- Same object as above ...

So preallocation _must_ be enforced for all variants of intrusive
instrumentation.

Unfortunately immediate enforcement would break backwards compatibility, so
for now such programs still are allowed to run, but a one time warning is
emitted in dmesg and the verifier emits a warning in the verifier log as
well so developers are made aware about this and can fix their programs
before the enforcement becomes mandatory.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200224145642.540542802@linutronix.de


# 9fed9000 18-Feb-2020 Jakub Sitnicki <jakub@cloudflare.com>

bpf: Allow selecting reuseport socket from a SOCKMAP/SOCKHASH

SOCKMAP & SOCKHASH now support storing references to listening
sockets. Nothing keeps us from using these map types a collection of
sockets to select from in BPF reuseport programs. Whitelist the map types
with the bpf_sk_select_reuseport helper.

The restriction that the socket has to be a member of a reuseport group
still applies. Sockets in SOCKMAP/SOCKHASH that don't have sk_reuseport_cb
set are not a valid target and we signal it with -EINVAL.

The main benefit from this change is that, in contrast to
REUSEPORT_SOCKARRAY, SOCK{MAP,HASH} don't impose a restriction that a
listening socket can be just one BPF map at the same time.

Signed-off-by: Jakub Sitnicki <jakub@cloudflare.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200218171023.844439-9-jakub@cloudflare.com


# 5576b991 22-Jan-2020 Martin KaFai Lau <kafai@fb.com>

bpf: Add BPF_FUNC_jiffies64

This patch adds a helper to read the 64bit jiffies. It will be used
in a later patch to implement the bpf_cubic.c.

The helper is inlined for jit_requested and 64 BITS_PER_LONG
as the map_gen_lookup(). Other cases could be considered together
with map_gen_lookup() if needed.

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200122233646.903260-1-kafai@fb.com


# be8704ff 20-Jan-2020 Alexei Starovoitov <ast@kernel.org>

bpf: Introduce dynamic program extensions

Introduce dynamic program extensions. The users can load additional BPF
functions and replace global functions in previously loaded BPF programs while
these programs are executing.

Global functions are verified individually by the verifier based on their types only.
Hence the global function in the new program which types match older function can
safely replace that corresponding function.

This new function/program is called 'an extension' of old program. At load time
the verifier uses (attach_prog_fd, attach_btf_id) pair to identify the function
to be replaced. The BPF program type is derived from the target program into
extension program. Technically bpf_verifier_ops is copied from target program.
The BPF_PROG_TYPE_EXT program type is a placeholder. It has empty verifier_ops.
The extension program can call the same bpf helper functions as target program.
Single BPF_PROG_TYPE_EXT type is used to extend XDP, SKB and all other program
types. The verifier allows only one level of replacement. Meaning that the
extension program cannot recursively extend an extension. That also means that
the maximum stack size is increasing from 512 to 1024 bytes and maximum
function nesting level from 8 to 16. The programs don't always consume that
much. The stack usage is determined by the number of on-stack variables used by
the program. The verifier could have enforced 512 limit for combined original
plus extension program, but it makes for difficult user experience. The main
use case for extensions is to provide generic mechanism to plug external
programs into policy program or function call chaining.

BPF trampoline is used to track both fentry/fexit and program extensions
because both are using the same nop slot at the beginning of every BPF
function. Attaching fentry/fexit to a function that was replaced is not
allowed. The opposite is true as well. Replacing a function that currently
being analyzed with fentry/fexit is not allowed. The executable page allocated
by BPF trampoline is not used by program extensions. This inefficiency will be
optimized in future patches.

Function by function verification of global function supports scalars and
pointer to context only. Hence program extensions are supported for such class
of global functions only. In the future the verifier will be extended with
support to pointers to structures, arrays with sizes, etc.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20200121005348.2769920-2-ast@kernel.org


# f59bbfc2 21-Jan-2020 Alexei Starovoitov <ast@kernel.org>

bpf: Fix error path under memory pressure

Restore the 'if (env->cur_state)' check that was incorrectly removed during
code move. Under memory pressure env->cur_state can be freed and zeroed inside
do_check(). Hence the check is necessary.

Fixes: 51c39bb1d5d1 ("bpf: Introduce function-by-function verification")
Reported-by: syzbot+b296579ba5015704d9fa@syzkaller.appspotmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20200122024138.3385590-1-ast@kernel.org


# 0af2ffc9 15-Jan-2020 Daniel Borkmann <daniel@iogearbox.net>

bpf: Fix incorrect verifier simulation of ARSH under ALU32

Anatoly has been fuzzing with kBdysch harness and reported a hang in one
of the outcomes:

0: R1=ctx(id=0,off=0,imm=0) R10=fp0
0: (85) call bpf_get_socket_cookie#46
1: R0_w=invP(id=0) R10=fp0
1: (57) r0 &= 808464432
2: R0_w=invP(id=0,umax_value=808464432,var_off=(0x0; 0x30303030)) R10=fp0
2: (14) w0 -= 810299440
3: R0_w=invP(id=0,umax_value=4294967295,var_off=(0xcf800000; 0x3077fff0)) R10=fp0
3: (c4) w0 s>>= 1
4: R0_w=invP(id=0,umin_value=1740636160,umax_value=2147221496,var_off=(0x67c00000; 0x183bfff8)) R10=fp0
4: (76) if w0 s>= 0x30303030 goto pc+216
221: R0_w=invP(id=0,umin_value=1740636160,umax_value=2147221496,var_off=(0x67c00000; 0x183bfff8)) R10=fp0
221: (95) exit
processed 6 insns (limit 1000000) [...]

Taking a closer look, the program was xlated as follows:

# ./bpftool p d x i 12
0: (85) call bpf_get_socket_cookie#7800896
1: (bf) r6 = r0
2: (57) r6 &= 808464432
3: (14) w6 -= 810299440
4: (c4) w6 s>>= 1
5: (76) if w6 s>= 0x30303030 goto pc+216
6: (05) goto pc-1
7: (05) goto pc-1
8: (05) goto pc-1
[...]
220: (05) goto pc-1
221: (05) goto pc-1
222: (95) exit

Meaning, the visible effect is very similar to f54c7898ed1c ("bpf: Fix
precision tracking for unbounded scalars"), that is, the fall-through
branch in the instruction 5 is considered to be never taken given the
conclusion from the min/max bounds tracking in w6, and therefore the
dead-code sanitation rewrites it as goto pc-1. However, real-life input
disagrees with verification analysis since a soft-lockup was observed.

The bug sits in the analysis of the ARSH. The definition is that we shift
the target register value right by K bits through shifting in copies of
its sign bit. In adjust_scalar_min_max_vals(), we do first coerce the
register into 32 bit mode, same happens after simulating the operation.
However, for the case of simulating the actual ARSH, we don't take the
mode into account and act as if it's always 64 bit, but location of sign
bit is different:

dst_reg->smin_value >>= umin_val;
dst_reg->smax_value >>= umin_val;
dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);

Consider an unknown R0 where bpf_get_socket_cookie() (or others) would
for example return 0xffff. With the above ARSH simulation, we'd see the
following results:

[...]
1: R1=ctx(id=0,off=0,imm=0) R2_w=invP65535 R10=fp0
1: (85) call bpf_get_socket_cookie#46
2: R0_w=invP(id=0) R10=fp0
2: (57) r0 &= 808464432
-> R0_runtime = 0x3030
3: R0_w=invP(id=0,umax_value=808464432,var_off=(0x0; 0x30303030)) R10=fp0
3: (14) w0 -= 810299440
-> R0_runtime = 0xcfb40000
4: R0_w=invP(id=0,umax_value=4294967295,var_off=(0xcf800000; 0x3077fff0)) R10=fp0
(0xffffffff)
4: (c4) w0 s>>= 1
-> R0_runtime = 0xe7da0000
5: R0_w=invP(id=0,umin_value=1740636160,umax_value=2147221496,var_off=(0x67c00000; 0x183bfff8)) R10=fp0
(0x67c00000) (0x7ffbfff8)
[...]

In insn 3, we have a runtime value of 0xcfb40000, which is '1100 1111 1011
0100 0000 0000 0000 0000', the result after the shift has 0xe7da0000 that
is '1110 0111 1101 1010 0000 0000 0000 0000', where the sign bit is correctly
retained in 32 bit mode. In insn4, the umax was 0xffffffff, and changed into
0x7ffbfff8 after the shift, that is, '0111 1111 1111 1011 1111 1111 1111 1000'
and means here that the simulation didn't retain the sign bit. With above
logic, the updates happen on the 64 bit min/max bounds and given we coerced
the register, the sign bits of the bounds are cleared as well, meaning, we
need to force the simulation into s32 space for 32 bit alu mode.

Verification after the fix below. We're first analyzing the fall-through branch
on 32 bit signed >= test eventually leading to rejection of the program in this
specific case:

0: R1=ctx(id=0,off=0,imm=0) R10=fp0
0: (b7) r2 = 808464432
1: R1=ctx(id=0,off=0,imm=0) R2_w=invP808464432 R10=fp0
1: (85) call bpf_get_socket_cookie#46
2: R0_w=invP(id=0) R10=fp0
2: (bf) r6 = r0
3: R0_w=invP(id=0) R6_w=invP(id=0) R10=fp0
3: (57) r6 &= 808464432
4: R0_w=invP(id=0) R6_w=invP(id=0,umax_value=808464432,var_off=(0x0; 0x30303030)) R10=fp0
4: (14) w6 -= 810299440
5: R0_w=invP(id=0) R6_w=invP(id=0,umax_value=4294967295,var_off=(0xcf800000; 0x3077fff0)) R10=fp0
5: (c4) w6 s>>= 1
6: R0_w=invP(id=0) R6_w=invP(id=0,umin_value=3888119808,umax_value=4294705144,var_off=(0xe7c00000; 0x183bfff8)) R10=fp0
(0x67c00000) (0xfffbfff8)
6: (76) if w6 s>= 0x30303030 goto pc+216
7: R0_w=invP(id=0) R6_w=invP(id=0,umin_value=3888119808,umax_value=4294705144,var_off=(0xe7c00000; 0x183bfff8)) R10=fp0
7: (30) r0 = *(u8 *)skb[808464432]
BPF_LD_[ABS|IND] uses reserved fields
processed 8 insns (limit 1000000) [...]

Fixes: 9cbe1f5a32dc ("bpf/verifier: improve register value range tracking with ARSH")
Reported-by: Anatoly Trosinenko <anatoly.trosinenko@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200115204733.16648-1-daniel@iogearbox.net


# 51c39bb1 09-Jan-2020 Alexei Starovoitov <ast@kernel.org>

bpf: Introduce function-by-function verification

New llvm and old llvm with libbpf help produce BTF that distinguish global and
static functions. Unlike arguments of static function the arguments of global
functions cannot be removed or optimized away by llvm. The compiler has to use
exactly the arguments specified in a function prototype. The argument type
information allows the verifier validate each global function independently.
For now only supported argument types are pointer to context and scalars. In
the future pointers to structures, sizes, pointer to packet data can be
supported as well. Consider the following example:

static int f1(int ...)
{
...
}

int f3(int b);

int f2(int a)
{
f1(a) + f3(a);
}

int f3(int b)
{
...
}

int main(...)
{
f1(...) + f2(...) + f3(...);
}

The verifier will start its safety checks from the first global function f2().
It will recursively descend into f1() because it's static. Then it will check
that arguments match for the f3() invocation inside f2(). It will not descend
into f3(). It will finish f2() that has to be successfully verified for all
possible values of 'a'. Then it will proceed with f3(). That function also has
to be safe for all possible values of 'b'. Then it will start subprog 0 (which
is main() function). It will recursively descend into f1() and will skip full
check of f2() and f3(), since they are global. The order of processing global
functions doesn't affect safety, since all global functions must be proven safe
based on their arguments only.

Such function by function verification can drastically improve speed of the
verification and reduce complexity.

Note that the stack limit of 512 still applies to the call chain regardless whether
functions were static or global. The nested level of 8 also still applies. The
same recursion prevention checks are in place as well.

The type information and static/global kind is preserved after the verification
hence in the above example global function f2() and f3() can be replaced later
by equivalent functions with the same types that are loaded and verified later
without affecting safety of this main() program. Such replacement (re-linking)
of global functions is a subject of future patches.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20200110064124.1760511-3-ast@kernel.org


# 85d33df3 08-Jan-2020 Martin KaFai Lau <kafai@fb.com>

bpf: Introduce BPF_MAP_TYPE_STRUCT_OPS

The patch introduces BPF_MAP_TYPE_STRUCT_OPS. The map value
is a kernel struct with its func ptr implemented in bpf prog.
This new map is the interface to register/unregister/introspect
a bpf implemented kernel struct.

The kernel struct is actually embedded inside another new struct
(or called the "value" struct in the code). For example,
"struct tcp_congestion_ops" is embbeded in:
struct bpf_struct_ops_tcp_congestion_ops {
refcount_t refcnt;
enum bpf_struct_ops_state state;
struct tcp_congestion_ops data; /* <-- kernel subsystem struct here */
}
The map value is "struct bpf_struct_ops_tcp_congestion_ops".
The "bpftool map dump" will then be able to show the
state ("inuse"/"tobefree") and the number of subsystem's refcnt (e.g.
number of tcp_sock in the tcp_congestion_ops case). This "value" struct
is created automatically by a macro. Having a separate "value" struct
will also make extending "struct bpf_struct_ops_XYZ" easier (e.g. adding
"void (*init)(void)" to "struct bpf_struct_ops_XYZ" to do some
initialization works before registering the struct_ops to the kernel
subsystem). The libbpf will take care of finding and populating the
"struct bpf_struct_ops_XYZ" from "struct XYZ".

Register a struct_ops to a kernel subsystem:
1. Load all needed BPF_PROG_TYPE_STRUCT_OPS prog(s)
2. Create a BPF_MAP_TYPE_STRUCT_OPS with attr->btf_vmlinux_value_type_id
set to the btf id "struct bpf_struct_ops_tcp_congestion_ops" of the
running kernel.
Instead of reusing the attr->btf_value_type_id,
btf_vmlinux_value_type_id s added such that attr->btf_fd can still be
used as the "user" btf which could store other useful sysadmin/debug
info that may be introduced in the furture,
e.g. creation-date/compiler-details/map-creator...etc.
3. Create a "struct bpf_struct_ops_tcp_congestion_ops" object as described
in the running kernel btf. Populate the value of this object.
The function ptr should be populated with the prog fds.
4. Call BPF_MAP_UPDATE with the object created in (3) as
the map value. The key is always "0".

During BPF_MAP_UPDATE, the code that saves the kernel-func-ptr's
args as an array of u64 is generated. BPF_MAP_UPDATE also allows
the specific struct_ops to do some final checks in "st_ops->init_member()"
(e.g. ensure all mandatory func ptrs are implemented).
If everything looks good, it will register this kernel struct
to the kernel subsystem. The map will not allow further update
from this point.

Unregister a struct_ops from the kernel subsystem:
BPF_MAP_DELETE with key "0".

Introspect a struct_ops:
BPF_MAP_LOOKUP_ELEM with key "0". The map value returned will
have the prog _id_ populated as the func ptr.

The map value state (enum bpf_struct_ops_state) will transit from:
INIT (map created) =>
INUSE (map updated, i.e. reg) =>
TOBEFREE (map value deleted, i.e. unreg)

The kernel subsystem needs to call bpf_struct_ops_get() and
bpf_struct_ops_put() to manage the "refcnt" in the
"struct bpf_struct_ops_XYZ". This patch uses a separate refcnt
for the purose of tracking the subsystem usage. Another approach
is to reuse the map->refcnt and then "show" (i.e. during map_lookup)
the subsystem's usage by doing map->refcnt - map->usercnt to filter out
the map-fd/pinned-map usage. However, that will also tie down the
future semantics of map->refcnt and map->usercnt.

The very first subsystem's refcnt (during reg()) holds one
count to map->refcnt. When the very last subsystem's refcnt
is gone, it will also release the map->refcnt. All bpf_prog will be
freed when the map->refcnt reaches 0 (i.e. during map_free()).

Here is how the bpftool map command will look like:
[root@arch-fb-vm1 bpf]# bpftool map show
6: struct_ops name dctcp flags 0x0
key 4B value 256B max_entries 1 memlock 4096B
btf_id 6
[root@arch-fb-vm1 bpf]# bpftool map dump id 6
[{
"value": {
"refcnt": {
"refs": {
"counter": 1
}
},
"state": 1,
"data": {
"list": {
"next": 0,
"prev": 0
},
"key": 0,
"flags": 2,
"init": 24,
"release": 0,
"ssthresh": 25,
"cong_avoid": 30,
"set_state": 27,
"cwnd_event": 28,
"in_ack_event": 26,
"undo_cwnd": 29,
"pkts_acked": 0,
"min_tso_segs": 0,
"sndbuf_expand": 0,
"cong_control": 0,
"get_info": 0,
"name": [98,112,102,95,100,99,116,99,112,0,0,0,0,0,0,0
],
"owner": 0
}
}
}
]

Misc Notes:
* bpf_struct_ops_map_sys_lookup_elem() is added for syscall lookup.
It does an inplace update on "*value" instead returning a pointer
to syscall.c. Otherwise, it needs a separate copy of "zero" value
for the BPF_STRUCT_OPS_STATE_INIT to avoid races.

* The bpf_struct_ops_map_delete_elem() is also called without
preempt_disable() from map_delete_elem(). It is because
the "->unreg()" may requires sleepable context, e.g.
the "tcp_unregister_congestion_control()".

* "const" is added to some of the existing "struct btf_func_model *"
function arg to avoid a compiler warning caused by this patch.

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200109003505.3855919-1-kafai@fb.com


# 27ae7997 08-Jan-2020 Martin KaFai Lau <kafai@fb.com>

bpf: Introduce BPF_PROG_TYPE_STRUCT_OPS

This patch allows the kernel's struct ops (i.e. func ptr) to be
implemented in BPF. The first use case in this series is the
"struct tcp_congestion_ops" which will be introduced in a
latter patch.

This patch introduces a new prog type BPF_PROG_TYPE_STRUCT_OPS.
The BPF_PROG_TYPE_STRUCT_OPS prog is verified against a particular
func ptr of a kernel struct. The attr->attach_btf_id is the btf id
of a kernel struct. The attr->expected_attach_type is the member
"index" of that kernel struct. The first member of a struct starts
with member index 0. That will avoid ambiguity when a kernel struct
has multiple func ptrs with the same func signature.

For example, a BPF_PROG_TYPE_STRUCT_OPS prog is written
to implement the "init" func ptr of the "struct tcp_congestion_ops".
The attr->attach_btf_id is the btf id of the "struct tcp_congestion_ops"
of the _running_ kernel. The attr->expected_attach_type is 3.

The ctx of BPF_PROG_TYPE_STRUCT_OPS is an array of u64 args saved
by arch_prepare_bpf_trampoline that will be done in the next
patch when introducing BPF_MAP_TYPE_STRUCT_OPS.

"struct bpf_struct_ops" is introduced as a common interface for the kernel
struct that supports BPF_PROG_TYPE_STRUCT_OPS prog. The supporting kernel
struct will need to implement an instance of the "struct bpf_struct_ops".

The supporting kernel struct also needs to implement a bpf_verifier_ops.
During BPF_PROG_LOAD, bpf_struct_ops_find() will find the right
bpf_verifier_ops by searching the attr->attach_btf_id.

A new "btf_struct_access" is also added to the bpf_verifier_ops such
that the supporting kernel struct can optionally provide its own specific
check on accessing the func arg (e.g. provide limited write access).

After btf_vmlinux is parsed, the new bpf_struct_ops_init() is called
to initialize some values (e.g. the btf id of the supporting kernel
struct) and it can only be done once the btf_vmlinux is available.

The R0 checks at BPF_EXIT is excluded for the BPF_PROG_TYPE_STRUCT_OPS prog
if the return type of the prog->aux->attach_func_proto is "void".

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200109003503.3855825-1-kafai@fb.com


# 65726b5b 08-Jan-2020 Martin KaFai Lau <kafai@fb.com>

bpf: Save PTR_TO_BTF_ID register state when spilling to stack

This patch makes the verifier save the PTR_TO_BTF_ID register state when
spilling to the stack.

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200109003454.3854870-1-kafai@fb.com


# 6d4f151a 06-Jan-2020 Daniel Borkmann <daniel@iogearbox.net>

bpf: Fix passing modified ctx to ld/abs/ind instruction

Anatoly has been fuzzing with kBdysch harness and reported a KASAN
slab oob in one of the outcomes:

[...]
[ 77.359642] BUG: KASAN: slab-out-of-bounds in bpf_skb_load_helper_8_no_cache+0x71/0x130
[ 77.360463] Read of size 4 at addr ffff8880679bac68 by task bpf/406
[ 77.361119]
[ 77.361289] CPU: 2 PID: 406 Comm: bpf Not tainted 5.5.0-rc2-xfstests-00157-g2187f215eba #1
[ 77.362134] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
[ 77.362984] Call Trace:
[ 77.363249] dump_stack+0x97/0xe0
[ 77.363603] print_address_description.constprop.0+0x1d/0x220
[ 77.364251] ? bpf_skb_load_helper_8_no_cache+0x71/0x130
[ 77.365030] ? bpf_skb_load_helper_8_no_cache+0x71/0x130
[ 77.365860] __kasan_report.cold+0x37/0x7b
[ 77.366365] ? bpf_skb_load_helper_8_no_cache+0x71/0x130
[ 77.366940] kasan_report+0xe/0x20
[ 77.367295] bpf_skb_load_helper_8_no_cache+0x71/0x130
[ 77.367821] ? bpf_skb_load_helper_8+0xf0/0xf0
[ 77.368278] ? mark_lock+0xa3/0x9b0
[ 77.368641] ? kvm_sched_clock_read+0x14/0x30
[ 77.369096] ? sched_clock+0x5/0x10
[ 77.369460] ? sched_clock_cpu+0x18/0x110
[ 77.369876] ? bpf_skb_load_helper_8+0xf0/0xf0
[ 77.370330] ___bpf_prog_run+0x16c0/0x28f0
[ 77.370755] __bpf_prog_run32+0x83/0xc0
[ 77.371153] ? __bpf_prog_run64+0xc0/0xc0
[ 77.371568] ? match_held_lock+0x1b/0x230
[ 77.371984] ? rcu_read_lock_held+0xa1/0xb0
[ 77.372416] ? rcu_is_watching+0x34/0x50
[ 77.372826] sk_filter_trim_cap+0x17c/0x4d0
[ 77.373259] ? sock_kzfree_s+0x40/0x40
[ 77.373648] ? __get_filter+0x150/0x150
[ 77.374059] ? skb_copy_datagram_from_iter+0x80/0x280
[ 77.374581] ? do_raw_spin_unlock+0xa5/0x140
[ 77.375025] unix_dgram_sendmsg+0x33a/0xa70
[ 77.375459] ? do_raw_spin_lock+0x1d0/0x1d0
[ 77.375893] ? unix_peer_get+0xa0/0xa0
[ 77.376287] ? __fget_light+0xa4/0xf0
[ 77.376670] __sys_sendto+0x265/0x280
[ 77.377056] ? __ia32_sys_getpeername+0x50/0x50
[ 77.377523] ? lock_downgrade+0x350/0x350
[ 77.377940] ? __sys_setsockopt+0x2a6/0x2c0
[ 77.378374] ? sock_read_iter+0x240/0x240
[ 77.378789] ? __sys_socketpair+0x22a/0x300
[ 77.379221] ? __ia32_sys_socket+0x50/0x50
[ 77.379649] ? mark_held_locks+0x1d/0x90
[ 77.380059] ? trace_hardirqs_on_thunk+0x1a/0x1c
[ 77.380536] __x64_sys_sendto+0x74/0x90
[ 77.380938] do_syscall_64+0x68/0x2a0
[ 77.381324] entry_SYSCALL_64_after_hwframe+0x49/0xbe
[ 77.381878] RIP: 0033:0x44c070
[...]

After further debugging, turns out while in case of other helper functions
we disallow passing modified ctx, the special case of ld/abs/ind instruction
which has similar semantics (except r6 being the ctx argument) is missing
such check. Modified ctx is impossible here as bpf_skb_load_helper_8_no_cache()
and others are expecting skb fields in original position, hence, add
check_ctx_reg() to reject any modified ctx. Issue was first introduced back
in f1174f77b50c ("bpf/verifier: rework value tracking").

Fixes: f1174f77b50c ("bpf/verifier: rework value tracking")
Reported-by: Anatoly Trosinenko <anatoly.trosinenko@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200106215157.3553-1-daniel@iogearbox.net


# f54c7898 22-Dec-2019 Daniel Borkmann <daniel@iogearbox.net>

bpf: Fix precision tracking for unbounded scalars

Anatoly has been fuzzing with kBdysch harness and reported a hang in one
of the outcomes. Upon closer analysis, it turns out that precise scalar
value tracking is missing a few precision markings for unknown scalars:

0: R1=ctx(id=0,off=0,imm=0) R10=fp0
0: (b7) r0 = 0
1: R0_w=invP0 R1=ctx(id=0,off=0,imm=0) R10=fp0
1: (35) if r0 >= 0xf72e goto pc+0
--> only follow fallthrough
2: R0_w=invP0 R1=ctx(id=0,off=0,imm=0) R10=fp0
2: (35) if r0 >= 0x80fe0000 goto pc+0
--> only follow fallthrough
3: R0_w=invP0 R1=ctx(id=0,off=0,imm=0) R10=fp0
3: (14) w0 -= -536870912
4: R0_w=invP536870912 R1=ctx(id=0,off=0,imm=0) R10=fp0
4: (0f) r1 += r0
5: R0_w=invP536870912 R1_w=inv(id=0) R10=fp0
5: (55) if r1 != 0x104c1500 goto pc+0
--> push other branch for later analysis
R0_w=invP536870912 R1_w=inv273421568 R10=fp0
6: R0_w=invP536870912 R1_w=inv273421568 R10=fp0
6: (b7) r0 = 0
7: R0=invP0 R1=inv273421568 R10=fp0
7: (76) if w1 s>= 0xffffff00 goto pc+3
--> only follow goto
11: R0=invP0 R1=inv273421568 R10=fp0
11: (95) exit
6: R0_w=invP536870912 R1_w=inv(id=0) R10=fp0
6: (b7) r0 = 0
propagating r0
7: safe
processed 11 insns [...]

In the analysis of the second path coming after the successful exit above,
the path is being pruned at line 7. Pruning analysis found that both r0 are
precise P0 and both R1 are non-precise scalars and given prior path with
R1 as non-precise scalar succeeded, this one is therefore safe as well.

However, problem is that given condition at insn 7 in the first run, we only
followed goto and didn't push the other branch for later analysis, we've
never walked the few insns in there and therefore dead-code sanitation
rewrites it as goto pc-1, causing the hang depending on the skb address
hitting these conditions. The issue is that R1 should have been marked as
precise as well such that pruning enforces range check and conluded that new
R1 is not in range of old R1. In insn 4, we mark R1 (skb) as unknown scalar
via __mark_reg_unbounded() but not mark_reg_unbounded() and therefore
regs->precise remains as false.

Back in b5dc0163d8fd ("bpf: precise scalar_value tracking"), this was not
the case since marking out of __mark_reg_unbounded() had this covered as well.
Once in both are set as precise in 4 as they should have been, we conclude
that given R1 was in prior fall-through path 0x104c1500 and now is completely
unknown, the check at insn 7 concludes that we need to continue walking.
Analysis after the fix:

0: R1=ctx(id=0,off=0,imm=0) R10=fp0
0: (b7) r0 = 0
1: R0_w=invP0 R1=ctx(id=0,off=0,imm=0) R10=fp0
1: (35) if r0 >= 0xf72e goto pc+0
2: R0_w=invP0 R1=ctx(id=0,off=0,imm=0) R10=fp0
2: (35) if r0 >= 0x80fe0000 goto pc+0
3: R0_w=invP0 R1=ctx(id=0,off=0,imm=0) R10=fp0
3: (14) w0 -= -536870912
4: R0_w=invP536870912 R1=ctx(id=0,off=0,imm=0) R10=fp0
4: (0f) r1 += r0
5: R0_w=invP536870912 R1_w=invP(id=0) R10=fp0
5: (55) if r1 != 0x104c1500 goto pc+0
R0_w=invP536870912 R1_w=invP273421568 R10=fp0
6: R0_w=invP536870912 R1_w=invP273421568 R10=fp0
6: (b7) r0 = 0
7: R0=invP0 R1=invP273421568 R10=fp0
7: (76) if w1 s>= 0xffffff00 goto pc+3
11: R0=invP0 R1=invP273421568 R10=fp0
11: (95) exit
6: R0_w=invP536870912 R1_w=invP(id=0) R10=fp0
6: (b7) r0 = 0
7: R0_w=invP0 R1_w=invP(id=0) R10=fp0
7: (76) if w1 s>= 0xffffff00 goto pc+3
R0_w=invP0 R1_w=invP(id=0) R10=fp0
8: R0_w=invP0 R1_w=invP(id=0) R10=fp0
8: (a5) if r0 < 0x2007002a goto pc+0
9: R0_w=invP0 R1_w=invP(id=0) R10=fp0
9: (57) r0 &= -16316416
10: R0_w=invP0 R1_w=invP(id=0) R10=fp0
10: (a6) if w0 < 0x1201 goto pc+0
11: R0_w=invP0 R1_w=invP(id=0) R10=fp0
11: (95) exit
11: R0=invP0 R1=invP(id=0) R10=fp0
11: (95) exit
processed 16 insns [...]

Fixes: 6754172c208d ("bpf: fix precision tracking in presence of bpf2bpf calls")
Reported-by: Anatoly Trosinenko <anatoly.trosinenko@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20191222223740.25297-1-daniel@iogearbox.net


# cc52d914 19-Dec-2019 Daniel Borkmann <daniel@iogearbox.net>

bpf: Fix record_func_key to perform backtracking on r3

While testing Cilium with /unreleased/ Linus' tree under BPF-based NodePort
implementation, I noticed a strange BPF SNAT engine behavior from time to
time. In some cases it would do the correct SNAT/DNAT service translation,
but at a random point in time it would just stop and perform an unexpected
translation after SYN, SYN/ACK and stack would send a RST back. While initially
assuming that there is some sort of a race condition in BPF code, adding
trace_printk()s for debugging purposes at some point seemed to have resolved
the issue auto-magically.

Digging deeper on this Heisenbug and reducing the trace_printk() calls to
an absolute minimum, it turns out that a single call would suffice to
trigger / not trigger the seen RST issue, even though the logic of the
program itself remains unchanged. Turns out the single call changed verifier
pruning behavior to get everything to work. Reconstructing a minimal test
case, the incorrect JIT dump looked as follows:

# bpftool p d j i 11346
0xffffffffc0cba96c:
[...]
21: movzbq 0x30(%rdi),%rax
26: cmp $0xd,%rax
2a: je 0x000000000000003a
2c: xor %edx,%edx
2e: movabs $0xffff89cc74e85800,%rsi
38: jmp 0x0000000000000049
3a: mov $0x2,%edx
3f: movabs $0xffff89cc74e85800,%rsi
49: mov -0x224(%rbp),%eax
4f: cmp $0x20,%eax
52: ja 0x0000000000000062
54: add $0x1,%eax
57: mov %eax,-0x224(%rbp)
5d: jmpq 0xffffffffffff6911
62: mov $0x1,%eax
[...]

Hence, unexpectedly, JIT emitted a direct jump even though retpoline based
one would have been needed since in line 2c and 3a we have different slot
keys in BPF reg r3. Verifier log of the test case reveals what happened:

0: (b7) r0 = 14
1: (73) *(u8 *)(r1 +48) = r0
2: (71) r0 = *(u8 *)(r1 +48)
3: (15) if r0 == 0xd goto pc+4
R0_w=inv(id=0,umax_value=255,var_off=(0x0; 0xff)) R1=ctx(id=0,off=0,imm=0) R10=fp0
4: (b7) r3 = 0
5: (18) r2 = 0xffff89cc74d54a00
7: (05) goto pc+3
11: (85) call bpf_tail_call#12
12: (b7) r0 = 1
13: (95) exit
from 3 to 8: R0_w=inv13 R1=ctx(id=0,off=0,imm=0) R10=fp0
8: (b7) r3 = 2
9: (18) r2 = 0xffff89cc74d54a00
11: safe
processed 13 insns (limit 1000000) [...]

Second branch is pruned by verifier since considered safe, but issue is that
record_func_key() couldn't have seen the index in line 3a and therefore
decided that emitting a direct jump at this location was okay.

Fix this by reusing our backtracking logic for precise scalar verification
in order to prevent pruning on the slot key. This means verifier will track
content of r3 all the way backwards and only prune if both scalars were
unknown in state equivalence check and therefore poisoned in the first place
in record_func_key(). The range is [x,x] in record_func_key() case since
the slot always would have to be constant immediate. Correct verification
after fix:

0: (b7) r0 = 14
1: (73) *(u8 *)(r1 +48) = r0
2: (71) r0 = *(u8 *)(r1 +48)
3: (15) if r0 == 0xd goto pc+4
R0_w=invP(id=0,umax_value=255,var_off=(0x0; 0xff)) R1=ctx(id=0,off=0,imm=0) R10=fp0
4: (b7) r3 = 0
5: (18) r2 = 0x0
7: (05) goto pc+3
11: (85) call bpf_tail_call#12
12: (b7) r0 = 1
13: (95) exit
from 3 to 8: R0_w=invP13 R1=ctx(id=0,off=0,imm=0) R10=fp0
8: (b7) r3 = 2
9: (18) r2 = 0x0
11: (85) call bpf_tail_call#12
12: (b7) r0 = 1
13: (95) exit
processed 15 insns (limit 1000000) [...]

And correct corresponding JIT dump:

# bpftool p d j i 11
0xffffffffc0dc34c4:
[...]
21: movzbq 0x30(%rdi),%rax
26: cmp $0xd,%rax
2a: je 0x000000000000003a
2c: xor %edx,%edx
2e: movabs $0xffff9928b4c02200,%rsi
38: jmp 0x0000000000000049
3a: mov $0x2,%edx
3f: movabs $0xffff9928b4c02200,%rsi
49: cmp $0x4,%rdx
4d: jae 0x0000000000000093
4f: and $0x3,%edx
52: mov %edx,%edx
54: cmp %edx,0x24(%rsi)
57: jbe 0x0000000000000093
59: mov -0x224(%rbp),%eax
5f: cmp $0x20,%eax
62: ja 0x0000000000000093
64: add $0x1,%eax
67: mov %eax,-0x224(%rbp)
6d: mov 0x110(%rsi,%rdx,8),%rax
75: test %rax,%rax
78: je 0x0000000000000093
7a: mov 0x30(%rax),%rax
7e: add $0x19,%rax
82: callq 0x000000000000008e
87: pause
89: lfence
8c: jmp 0x0000000000000087
8e: mov %rax,(%rsp)
92: retq
93: mov $0x1,%eax
[...]

Also explicitly adding explicit env->allow_ptr_leaks to fixup_bpf_calls() since
backtracking is enabled under former (direct jumps as well, but use different
test). In case of only tracking different map pointers as in c93552c443eb ("bpf:
properly enforce index mask to prevent out-of-bounds speculation"), pruning
cannot make such short-cuts, neither if there are paths with scalar and non-scalar
types as r3. mark_chain_precision() is only needed after we know that
register_is_const(). If it was not the case, we already poison the key on first
path and non-const key in later paths are not matching the scalar range in regsafe()
either. Cilium NodePort testing passes fine as well now. Note, released kernels
not affected.

Fixes: d2e4c1e6c294 ("bpf: Constant map key tracking for prog array pokes")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/ac43ffdeb7386c5bd688761ed266f3722bb39823.1576789878.git.daniel@iogearbox.net


# e4730423 17-Dec-2019 Daniel Borkmann <daniel@iogearbox.net>

bpf: Fix cgroup local storage prog tracking

Recently noticed that we're tracking programs related to local storage maps
through their prog pointer. This is a wrong assumption since the prog pointer
can still change throughout the verification process, for example, whenever
bpf_patch_insn_single() is called.

Therefore, the prog pointer that was assigned via bpf_cgroup_storage_assign()
is not guaranteed to be the same as we pass in bpf_cgroup_storage_release()
and the map would therefore remain in busy state forever. Fix this by using
the prog's aux pointer which is stable throughout verification and beyond.

Fixes: de9cbbaadba5 ("bpf: introduce cgroup storage maps")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/1471c69eca3022218666f909bc927a92388fd09e.1576580332.git.daniel@iogearbox.net


# a2ea0746 16-Dec-2019 Daniel Borkmann <daniel@iogearbox.net>

bpf: Fix missing prog untrack in release_maps

Commit da765a2f5993 ("bpf: Add poke dependency tracking for prog array
maps") wrongly assumed that in case of prog load errors, we're cleaning
up all program tracking via bpf_free_used_maps().

However, it can happen that we're still at the point where we didn't copy
map pointers into the prog's aux section such that env->prog->aux->used_maps
is still zero, running into a UAF. In such case, the verifier has similar
release_maps() helper that drops references to used maps from its env.

Consolidate the release code into __bpf_free_used_maps() and call it from
all sides to fix it.

Fixes: da765a2f5993 ("bpf: Add poke dependency tracking for prog array maps")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/1c2909484ca524ae9f55109b06f22b6213e76376.1576514756.git.daniel@iogearbox.net


# e9eeec58 04-Dec-2019 Yonghong Song <yhs@fb.com>

bpf: Fix a bug when getting subprog 0 jited image in check_attach_btf_id

For jited bpf program, if the subprogram count is 1, i.e.,
there is no callees in the program, prog->aux->func will be NULL
and prog->bpf_func points to image address of the program.

If there is more than one subprogram, prog->aux->func is populated,
and subprogram 0 can be accessed through either prog->bpf_func or
prog->aux->func[0]. Other subprograms should be accessed through
prog->aux->func[subprog_id].

This patch fixed a bug in check_attach_btf_id(), where
prog->aux->func[subprog_id] is used to access any subprogram which
caused a segfault like below:
[79162.619208] BUG: kernel NULL pointer dereference, address:
0000000000000000
......
[79162.634255] Call Trace:
[79162.634974] ? _cond_resched+0x15/0x30
[79162.635686] ? kmem_cache_alloc_trace+0x162/0x220
[79162.636398] ? selinux_bpf_prog_alloc+0x1f/0x60
[79162.637111] bpf_prog_load+0x3de/0x690
[79162.637809] __do_sys_bpf+0x105/0x1740
[79162.638488] do_syscall_64+0x5b/0x180
[79162.639147] entry_SYSCALL_64_after_hwframe+0x44/0xa9
......

Fixes: 5b92a28aae4d ("bpf: Support attaching tracing BPF program to other BPF programs")
Reported-by: Eelco Chaudron <echaudro@redhat.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20191205010606.177774-1-yhs@fb.com


# d2e4c1e6 22-Nov-2019 Daniel Borkmann <daniel@iogearbox.net>

bpf: Constant map key tracking for prog array pokes

Add tracking of constant keys into tail call maps. The signature of
bpf_tail_call_proto is that arg1 is ctx, arg2 map pointer and arg3
is a index key. The direct call approach for tail calls can be enabled
if the verifier asserted that for all branches leading to the tail call
helper invocation, the map pointer and index key were both constant
and the same.

Tracking of map pointers we already do from prior work via c93552c443eb
("bpf: properly enforce index mask to prevent out-of-bounds speculation")
and 09772d92cd5a ("bpf: avoid retpoline for lookup/update/ delete calls
on maps").

Given the tail call map index key is not on stack but directly in the
register, we can add similar tracking approach and later in fixup_bpf_calls()
add a poke descriptor to the progs poke_tab with the relevant information
for the JITing phase.

We internally reuse insn->imm for the rewritten BPF_JMP | BPF_TAIL_CALL
instruction in order to point into the prog's poke_tab, and keep insn->imm
as 0 as indicator that current indirect tail call emission must be used.
Note that publishing to the tracker must happen at the end of fixup_bpf_calls()
since adding elements to the poke_tab reallocates its memory, so we need
to wait until its in final state.

Future work can generalize and add similar approach to optimize plain
array map lookups. Difference there is that we need to look into the key
value that sits on stack. For clarity in bpf_insn_aux_data, map_state
has been renamed into map_ptr_state, so we get map_{ptr,key}_state as
trackers.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/e8db37f6b2ae60402fa40216c96738ee9b316c32.1574452833.git.daniel@iogearbox.net


# 581738a6 21-Nov-2019 Yonghong Song <yhs@fb.com>

bpf: Provide better register bounds after jmp32 instructions

With latest llvm (trunk https://github.com/llvm/llvm-project),
test_progs, which has +alu32 enabled, failed for strobemeta.o.
The verifier output looks like below with edit to replace large
decimal numbers with hex ones.
193: (85) call bpf_probe_read_user_str#114
R0=inv(id=0)
194: (26) if w0 > 0x1 goto pc+4
R0_w=inv(id=0,umax_value=0xffffffff00000001)
195: (6b) *(u16 *)(r7 +80) = r0
196: (bc) w6 = w0
R6_w=inv(id=0,umax_value=0xffffffff,var_off=(0x0; 0xffffffff))
197: (67) r6 <<= 32
R6_w=inv(id=0,smax_value=0x7fffffff00000000,umax_value=0xffffffff00000000,
var_off=(0x0; 0xffffffff00000000))
198: (77) r6 >>= 32
R6=inv(id=0,umax_value=0xffffffff,var_off=(0x0; 0xffffffff))
...
201: (79) r8 = *(u64 *)(r10 -416)
R8_w=map_value(id=0,off=40,ks=4,vs=13872,imm=0)
202: (0f) r8 += r6
R8_w=map_value(id=0,off=40,ks=4,vs=13872,umax_value=0xffffffff,var_off=(0x0; 0xffffffff))
203: (07) r8 += 9696
R8_w=map_value(id=0,off=9736,ks=4,vs=13872,umax_value=0xffffffff,var_off=(0x0; 0xffffffff))
...
255: (bf) r1 = r8
R1_w=map_value(id=0,off=9736,ks=4,vs=13872,umax_value=0xffffffff,var_off=(0x0; 0xffffffff))
...
257: (85) call bpf_probe_read_user_str#114
R1 unbounded memory access, make sure to bounds check any array access into a map

The value range for register r6 at insn 198 should be really just 0/1.
The umax_value=0xffffffff caused later verification failure.

After jmp instructions, the current verifier already tried to use just
obtained information to get better register range. The current mechanism is
for 64bit register only. This patch implemented to tighten the range
for 32bit sub-registers after jmp32 instructions.
With the patch, we have the below range ranges for the
above code sequence:
193: (85) call bpf_probe_read_user_str#114
R0=inv(id=0)
194: (26) if w0 > 0x1 goto pc+4
R0_w=inv(id=0,smax_value=0x7fffffff00000001,umax_value=0xffffffff00000001,
var_off=(0x0; 0xffffffff00000001))
195: (6b) *(u16 *)(r7 +80) = r0
196: (bc) w6 = w0
R6_w=inv(id=0,umax_value=0xffffffff,var_off=(0x0; 0x1))
197: (67) r6 <<= 32
R6_w=inv(id=0,umax_value=0x100000000,var_off=(0x0; 0x100000000))
198: (77) r6 >>= 32
R6=inv(id=0,umax_value=1,var_off=(0x0; 0x1))
...
201: (79) r8 = *(u64 *)(r10 -416)
R8_w=map_value(id=0,off=40,ks=4,vs=13872,imm=0)
202: (0f) r8 += r6
R8_w=map_value(id=0,off=40,ks=4,vs=13872,umax_value=1,var_off=(0x0; 0x1))
203: (07) r8 += 9696
R8_w=map_value(id=0,off=9736,ks=4,vs=13872,umax_value=1,var_off=(0x0; 0x1))
...
255: (bf) r1 = r8
R1_w=map_value(id=0,off=9736,ks=4,vs=13872,umax_value=1,var_off=(0x0; 0x1))
...
257: (85) call bpf_probe_read_user_str#114
...

At insn 194, the register R0 has better var_off.mask and smax_value.
Especially, the var_off.mask ensures later lshift and rshift
maintains proper value range.

Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20191121170650.449030-1-yhs@fb.com


# 1e0bd5a0 17-Nov-2019 Andrii Nakryiko <andriin@fb.com>

bpf: Switch bpf_map ref counter to atomic64_t so bpf_map_inc() never fails

92117d8443bc ("bpf: fix refcnt overflow") turned refcounting of bpf_map into
potentially failing operation, when refcount reaches BPF_MAX_REFCNT limit
(32k). Due to using 32-bit counter, it's possible in practice to overflow
refcounter and make it wrap around to 0, causing erroneous map free, while
there are still references to it, causing use-after-free problems.

But having a failing refcounting operations are problematic in some cases. One
example is mmap() interface. After establishing initial memory-mapping, user
is allowed to arbitrarily map/remap/unmap parts of mapped memory, arbitrarily
splitting it into multiple non-contiguous regions. All this happening without
any control from the users of mmap subsystem. Rather mmap subsystem sends
notifications to original creator of memory mapping through open/close
callbacks, which are optionally specified during initial memory mapping
creation. These callbacks are used to maintain accurate refcount for bpf_map
(see next patch in this series). The problem is that open() callback is not
supposed to fail, because memory-mapped resource is set up and properly
referenced. This is posing a problem for using memory-mapping with BPF maps.

One solution to this is to maintain separate refcount for just memory-mappings
and do single bpf_map_inc/bpf_map_put when it goes from/to zero, respectively.
There are similar use cases in current work on tcp-bpf, necessitating extra
counter as well. This seems like a rather unfortunate and ugly solution that
doesn't scale well to various new use cases.

Another approach to solve this is to use non-failing refcount_t type, which
uses 32-bit counter internally, but, once reaching overflow state at UINT_MAX,
stays there. This utlimately causes memory leak, but prevents use after free.

But given refcounting is not the most performance-critical operation with BPF
maps (it's not used from running BPF program code), we can also just switch to
64-bit counter that can't overflow in practice, potentially disadvantaging
32-bit platforms a tiny bit. This simplifies semantics and allows above
described scenarios to not worry about failing refcount increment operation.

In terms of struct bpf_map size, we are still good and use the same amount of
space:

BEFORE (3 cache lines, 8 bytes of padding at the end):
struct bpf_map {
const struct bpf_map_ops * ops __attribute__((__aligned__(64))); /* 0 8 */
struct bpf_map * inner_map_meta; /* 8 8 */
void * security; /* 16 8 */
enum bpf_map_type map_type; /* 24 4 */
u32 key_size; /* 28 4 */
u32 value_size; /* 32 4 */
u32 max_entries; /* 36 4 */
u32 map_flags; /* 40 4 */
int spin_lock_off; /* 44 4 */
u32 id; /* 48 4 */
int numa_node; /* 52 4 */
u32 btf_key_type_id; /* 56 4 */
u32 btf_value_type_id; /* 60 4 */
/* --- cacheline 1 boundary (64 bytes) --- */
struct btf * btf; /* 64 8 */
struct bpf_map_memory memory; /* 72 16 */
bool unpriv_array; /* 88 1 */
bool frozen; /* 89 1 */

/* XXX 38 bytes hole, try to pack */

/* --- cacheline 2 boundary (128 bytes) --- */
atomic_t refcnt __attribute__((__aligned__(64))); /* 128 4 */
atomic_t usercnt; /* 132 4 */
struct work_struct work; /* 136 32 */
char name[16]; /* 168 16 */

/* size: 192, cachelines: 3, members: 21 */
/* sum members: 146, holes: 1, sum holes: 38 */
/* padding: 8 */
/* forced alignments: 2, forced holes: 1, sum forced holes: 38 */
} __attribute__((__aligned__(64)));

AFTER (same 3 cache lines, no extra padding now):
struct bpf_map {
const struct bpf_map_ops * ops __attribute__((__aligned__(64))); /* 0 8 */
struct bpf_map * inner_map_meta; /* 8 8 */
void * security; /* 16 8 */
enum bpf_map_type map_type; /* 24 4 */
u32 key_size; /* 28 4 */
u32 value_size; /* 32 4 */
u32 max_entries; /* 36 4 */
u32 map_flags; /* 40 4 */
int spin_lock_off; /* 44 4 */
u32 id; /* 48 4 */
int numa_node; /* 52 4 */
u32 btf_key_type_id; /* 56 4 */
u32 btf_value_type_id; /* 60 4 */
/* --- cacheline 1 boundary (64 bytes) --- */
struct btf * btf; /* 64 8 */
struct bpf_map_memory memory; /* 72 16 */
bool unpriv_array; /* 88 1 */
bool frozen; /* 89 1 */

/* XXX 38 bytes hole, try to pack */

/* --- cacheline 2 boundary (128 bytes) --- */
atomic64_t refcnt __attribute__((__aligned__(64))); /* 128 8 */
atomic64_t usercnt; /* 136 8 */
struct work_struct work; /* 144 32 */
char name[16]; /* 176 16 */

/* size: 192, cachelines: 3, members: 21 */
/* sum members: 154, holes: 1, sum holes: 38 */
/* forced alignments: 2, forced holes: 1, sum forced holes: 38 */
} __attribute__((__aligned__(64)));

This patch, while modifying all users of bpf_map_inc, also cleans up its
interface to match bpf_map_put with separate operations for bpf_map_inc and
bpf_map_inc_with_uref (to match bpf_map_put and bpf_map_put_with_uref,
respectively). Also, given there are no users of bpf_map_inc_not_zero
specifying uref=true, remove uref flag and default to uref=false internally.

Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20191117172806.2195367-2-andriin@fb.com


# 5b92a28a 14-Nov-2019 Alexei Starovoitov <ast@kernel.org>

bpf: Support attaching tracing BPF program to other BPF programs

Allow FENTRY/FEXIT BPF programs to attach to other BPF programs of any type
including their subprograms. This feature allows snooping on input and output
packets in XDP, TC programs including their return values. In order to do that
the verifier needs to track types not only of vmlinux, but types of other BPF
programs as well. The verifier also needs to translate uapi/linux/bpf.h types
used by networking programs into kernel internal BTF types used by FENTRY/FEXIT
BPF programs. In some cases LLVM optimizations can remove arguments from BPF
subprograms without adjusting BTF info that LLVM backend knows. When BTF info
disagrees with actual types that the verifiers sees the BPF trampoline has to
fallback to conservative and treat all arguments as u64. The FENTRY/FEXIT
program can still attach to such subprograms, but it won't be able to recognize
pointer types like 'struct sk_buff *' and it won't be able to pass them to
bpf_skb_output() for dumping packets to user space. The FENTRY/FEXIT program
would need to use bpf_probe_read_kernel() instead.

The BPF_PROG_LOAD command is extended with attach_prog_fd field. When it's set
to zero the attach_btf_id is one vmlinux BTF type ids. When attach_prog_fd
points to previously loaded BPF program the attach_btf_id is BTF type id of
main function or one of its subprograms.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20191114185720.1641606-18-ast@kernel.org


# 8c1b6e69 14-Nov-2019 Alexei Starovoitov <ast@kernel.org>

bpf: Compare BTF types of functions arguments with actual types

Make the verifier check that BTF types of function arguments match actual types
passed into top-level BPF program and into BPF-to-BPF calls. If types match
such BPF programs and sub-programs will have full support of BPF trampoline. If
types mismatch the trampoline has to be conservative. It has to save/restore
five program arguments and assume 64-bit scalars.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20191114185720.1641606-17-ast@kernel.org


# 91cc1a99 14-Nov-2019 Alexei Starovoitov <ast@kernel.org>

bpf: Annotate context types

Annotate BPF program context types with program-side type and kernel-side type.
This type information is used by the verifier. btf_get_prog_ctx_type() is
used in the later patches to verify that BTF type of ctx in BPF program matches to
kernel expected ctx type. For example, the XDP program type is:
BPF_PROG_TYPE(BPF_PROG_TYPE_XDP, xdp, struct xdp_md, struct xdp_buff)
That means that XDP program should be written as:
int xdp_prog(struct xdp_md *ctx) { ... }

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20191114185720.1641606-16-ast@kernel.org


# 9cc31b3a 14-Nov-2019 Alexei Starovoitov <ast@kernel.org>

bpf: Fix race in btf_resolve_helper_id()

btf_resolve_helper_id() caching logic is a bit racy, since under root the
verifier can verify several programs in parallel. Fix it with READ/WRITE_ONCE.
Fix the type as well, since error is also recorded.

Fixes: a7658e1a4164 ("bpf: Check types of arguments passed into helpers")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20191114185720.1641606-15-ast@kernel.org


# fec56f58 14-Nov-2019 Alexei Starovoitov <ast@kernel.org>

bpf: Introduce BPF trampoline

Introduce BPF trampoline concept to allow kernel code to call into BPF programs
with practically zero overhead. The trampoline generation logic is
architecture dependent. It's converting native calling convention into BPF
calling convention. BPF ISA is 64-bit (even on 32-bit architectures). The
registers R1 to R5 are used to pass arguments into BPF functions. The main BPF
program accepts only single argument "ctx" in R1. Whereas CPU native calling
convention is different. x86-64 is passing first 6 arguments in registers
and the rest on the stack. x86-32 is passing first 3 arguments in registers.
sparc64 is passing first 6 in registers. And so on.

The trampolines between BPF and kernel already exist. BPF_CALL_x macros in
include/linux/filter.h statically compile trampolines from BPF into kernel
helpers. They convert up to five u64 arguments into kernel C pointers and
integers. On 64-bit architectures this BPF_to_kernel trampolines are nops. On
32-bit architecture they're meaningful.

The opposite job kernel_to_BPF trampolines is done by CAST_TO_U64 macros and
__bpf_trace_##call() shim functions in include/trace/bpf_probe.h. They convert
kernel function arguments into array of u64s that BPF program consumes via
R1=ctx pointer.

This patch set is doing the same job as __bpf_trace_##call() static
trampolines, but dynamically for any kernel function. There are ~22k global
kernel functions that are attachable via nop at function entry. The function
arguments and types are described in BTF. The job of btf_distill_func_proto()
function is to extract useful information from BTF into "function model" that
architecture dependent trampoline generators will use to generate assembly code
to cast kernel function arguments into array of u64s. For example the kernel
function eth_type_trans has two pointers. They will be casted to u64 and stored
into stack of generated trampoline. The pointer to that stack space will be
passed into BPF program in R1. On x86-64 such generated trampoline will consume
16 bytes of stack and two stores of %rdi and %rsi into stack. The verifier will
make sure that only two u64 are accessed read-only by BPF program. The verifier
will also recognize the precise type of the pointers being accessed and will
not allow typecasting of the pointer to a different type within BPF program.

The tracing use case in the datacenter demonstrated that certain key kernel
functions have (like tcp_retransmit_skb) have 2 or more kprobes that are always
active. Other functions have both kprobe and kretprobe. So it is essential to
keep both kernel code and BPF programs executing at maximum speed. Hence
generated BPF trampoline is re-generated every time new program is attached or
detached to maintain maximum performance.

To avoid the high cost of retpoline the attached BPF programs are called
directly. __bpf_prog_enter/exit() are used to support per-program execution
stats. In the future this logic will be optimized further by adding support
for bpf_stats_enabled_key inside generated assembly code. Introduction of
preemptible and sleepable BPF programs will completely remove the need to call
to __bpf_prog_enter/exit().

Detach of a BPF program from the trampoline should not fail. To avoid memory
allocation in detach path the half of the page is used as a reserve and flipped
after each attach/detach. 2k bytes is enough to call 40+ BPF programs directly
which is enough for BPF tracing use cases. This limit can be increased in the
future.

BPF_TRACE_FENTRY programs have access to raw kernel function arguments while
BPF_TRACE_FEXIT programs have access to kernel return value as well. Often
kprobe BPF program remembers function arguments in a map while kretprobe
fetches arguments from a map and analyzes them together with return value.
BPF_TRACE_FEXIT accelerates this typical use case.

Recursion prevention for kprobe BPF programs is done via per-cpu
bpf_prog_active counter. In practice that turned out to be a mistake. It
caused programs to randomly skip execution. The tracing tools missed results
they were looking for. Hence BPF trampoline doesn't provide builtin recursion
prevention. It's a job of BPF program itself and will be addressed in the
follow up patches.

BPF trampoline is intended to be used beyond tracing and fentry/fexit use cases
in the future. For example to remove retpoline cost from XDP programs.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20191114185720.1641606-5-ast@kernel.org


# f1b9509c 30-Oct-2019 Alexei Starovoitov <ast@kernel.org>

bpf: Replace prog_raw_tp+btf_id with prog_tracing

The bpf program type raw_tp together with 'expected_attach_type'
was the most appropriate api to indicate BTF-enabled raw_tp programs.
But during development it became apparent that 'expected_attach_type'
cannot be used and new 'attach_btf_id' field had to be introduced.
Which means that the information is duplicated in two fields where
one of them is ignored.
Clean it up by introducing new program type where both
'expected_attach_type' and 'attach_btf_id' fields have
specific meaning.
In the future 'expected_attach_type' will be extended
with other attach points that have similar semantics to raw_tp.
This patch is replacing BTF-enabled BPF_PROG_TYPE_RAW_TRACEPOINT with
prog_type = BPF_RPOG_TYPE_TRACING
expected_attach_type = BPF_TRACE_RAW_TP
attach_btf_id = btf_id of raw tracepoint inside the kernel
Future patches will add
expected_attach_type = BPF_TRACE_FENTRY or BPF_TRACE_FEXIT
where programs have the same input context and the same helpers,
but different attach points.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20191030223212.953010-2-ast@kernel.org


# 15ab09bd 28-Oct-2019 Alexei Starovoitov <ast@kernel.org>

bpf: Enforce 'return 0' in BTF-enabled raw_tp programs

The return value of raw_tp programs is ignored by __bpf_trace_run()
that calls them. The verifier also allows any value to be returned.
For BTF-enabled raw_tp lets enforce 'return 0', so that return value
can be used for something in the future.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20191029032426.1206762-1-ast@kernel.org


# 38207291 24-Oct-2019 Martin KaFai Lau <kafai@fb.com>

bpf: Prepare btf_ctx_access for non raw_tp use case

This patch makes a few changes to btf_ctx_access() to prepare
it for non raw_tp use case where the attach_btf_id is not
necessary a BTF_KIND_TYPEDEF.

It moves the "btf_trace_" prefix check and typedef-follow logic to a new
function "check_attach_btf_id()" which is called only once during
bpf_check(). btf_ctx_access() only operates on a BTF_KIND_FUNC_PROTO
type now. That should also be more efficient since it is done only
one instead of every-time check_ctx_access() is called.

"check_attach_btf_id()" needs to find the func_proto type from
the attach_btf_id. It needs to store the result into the
newly added prog->aux->attach_func_proto. func_proto
btf type has no name, so a proper name should be stored into
"attach_func_name" also.

v2:
- Move the "btf_trace_" check to an earlier verifier phase (Alexei)

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20191025001811.1718491-1-kafai@fb.com


# a7658e1a 15-Oct-2019 Alexei Starovoitov <ast@kernel.org>

bpf: Check types of arguments passed into helpers

Introduce new helper that reuses existing skb perf_event output
implementation, but can be called from raw_tracepoint programs
that receive 'struct sk_buff *' as tracepoint argument or
can walk other kernel data structures to skb pointer.

In order to do that teach verifier to resolve true C types
of bpf helpers into in-kernel BTF ids.
The type of kernel pointer passed by raw tracepoint into bpf
program will be tracked by the verifier all the way until
it's passed into helper function.
For example:
kfree_skb() kernel function calls trace_kfree_skb(skb, loc);
bpf programs receives that skb pointer and may eventually
pass it into bpf_skb_output() bpf helper which in-kernel is
implemented via bpf_skb_event_output() kernel function.
Its first argument in the kernel is 'struct sk_buff *'.
The verifier makes sure that types match all the way.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20191016032505.2089704-11-ast@kernel.org


# 3dec541b 15-Oct-2019 Alexei Starovoitov <ast@kernel.org>

bpf: Add support for BTF pointers to x86 JIT

Pointer to BTF object is a pointer to kernel object or NULL.
Such pointers can only be used by BPF_LDX instructions.
The verifier changed their opcode from LDX|MEM|size
to LDX|PROBE_MEM|size to make JITing easier.
The number of entries in extable is the number of BPF_LDX insns
that access kernel memory via "pointer to BTF type".
Only these load instructions can fault.
Since x86 extable is relative it has to be allocated in the same
memory region as JITed code.
Allocate it prior to last pass of JITing and let the last pass populate it.
Pointer to extable in bpf_prog_aux is necessary to make page fault
handling fast.
Page fault handling is done in two steps:
1. bpf_prog_kallsyms_find() finds BPF program that page faulted.
It's done by walking rb tree.
2. then extable for given bpf program is binary searched.
This process is similar to how page faulting is done for kernel modules.
The exception handler skips over faulting x86 instruction and
initializes destination register with zero. This mimics exact
behavior of bpf_probe_read (when probe_kernel_read faults dest is zeroed).

JITs for other architectures can add support in similar way.
Until then they will reject unknown opcode and fallback to interpreter.

Since extable should be aligned and placed near JITed code
make bpf_jit_binary_alloc() return 4 byte aligned image offset,
so that extable aligning formula in bpf_int_jit_compile() doesn't need
to rely on internal implementation of bpf_jit_binary_alloc().
On x86 gcc defaults to 16-byte alignment for regular kernel functions
due to better performance. JITed code may be aligned to 16 in the future,
but it will use 4 in the meantime.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20191016032505.2089704-10-ast@kernel.org


# 2a02759e 15-Oct-2019 Alexei Starovoitov <ast@kernel.org>

bpf: Add support for BTF pointers to interpreter

Pointer to BTF object is a pointer to kernel object or NULL.
The memory access in the interpreter has to be done via probe_kernel_read
to avoid page faults.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20191016032505.2089704-9-ast@kernel.org


# 9e15db66 15-Oct-2019 Alexei Starovoitov <ast@kernel.org>

bpf: Implement accurate raw_tp context access via BTF

libbpf analyzes bpf C program, searches in-kernel BTF for given type name
and stores it into expected_attach_type.
The kernel verifier expects this btf_id to point to something like:
typedef void (*btf_trace_kfree_skb)(void *, struct sk_buff *skb, void *loc);
which represents signature of raw_tracepoint "kfree_skb".

Then btf_ctx_access() matches ctx+0 access in bpf program with 'skb'
and 'ctx+8' access with 'loc' arguments of "kfree_skb" tracepoint.
In first case it passes btf_id of 'struct sk_buff *' back to the verifier core
and 'void *' in second case.

Then the verifier tracks PTR_TO_BTF_ID as any other pointer type.
Like PTR_TO_SOCKET points to 'struct bpf_sock',
PTR_TO_TCP_SOCK points to 'struct bpf_tcp_sock', and so on.
PTR_TO_BTF_ID points to in-kernel structs.
If 1234 is btf_id of 'struct sk_buff' in vmlinux's BTF
then PTR_TO_BTF_ID#1234 points to one of in kernel skbs.

When PTR_TO_BTF_ID#1234 is dereferenced (like r2 = *(u64 *)r1 + 32)
the btf_struct_access() checks which field of 'struct sk_buff' is
at offset 32. Checks that size of access matches type definition
of the field and continues to track the dereferenced type.
If that field was a pointer to 'struct net_device' the r2's type
will be PTR_TO_BTF_ID#456. Where 456 is btf_id of 'struct net_device'
in vmlinux's BTF.

Such verifier analysis prevents "cheating" in BPF C program.
The program cannot cast arbitrary pointer to 'struct sk_buff *'
and access it. C compiler would allow type cast, of course,
but the verifier will notice type mismatch based on BPF assembly
and in-kernel BTF.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20191016032505.2089704-7-ast@kernel.org


# 8580ac94 15-Oct-2019 Alexei Starovoitov <ast@kernel.org>

bpf: Process in-kernel BTF

If in-kernel BTF exists parse it and prepare 'struct btf *btf_vmlinux'
for further use by the verifier.
In-kernel BTF is trusted just like kallsyms and other build artifacts
embedded into vmlinux.
Yet run this BTF image through BTF verifier to make sure
that it is valid and it wasn't mangled during the build.
If in-kernel BTF is incorrect it means either gcc or pahole or kernel
are buggy. In such case disallow loading BPF programs.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20191016032505.2089704-4-ast@kernel.org


# 2dedd7d2 11-Oct-2019 Andrii Nakryiko <andriin@fb.com>

bpf: Fix cast to pointer from integer of different size warning

Fix "warning: cast to pointer from integer of different size" when
casting u64 addr to void *.

Fixes: a23740ec43ba ("bpf: Track contents of read-only maps as scalars")
Reported-by: kbuild test robot <lkp@intel.com>
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20191011172053.2980619-1-andriin@fb.com


# a23740ec 09-Oct-2019 Andrii Nakryiko <andriin@fb.com>

bpf: Track contents of read-only maps as scalars

Maps that are read-only both from BPF program side and user space side
have their contents constant, so verifier can track referenced values
precisely and use that knowledge for dead code elimination, branch
pruning, etc. This patch teaches BPF verifier how to do this.

Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20191009201458.2679171-2-andriin@fb.com


# d895a0f1 15-Aug-2019 Ilya Leoshkevich <iii@linux.ibm.com>

bpf: fix accessing bpf_sysctl.file_pos on s390

"ctx:file_pos sysctl:read write ok" fails on s390 with "Read value !=
nux". This is because verifier rewrites a complete 32-bit
bpf_sysctl.file_pos update to a partial update of the first 32 bits of
64-bit *bpf_sysctl_kern.ppos, which is not correct on big-endian
systems.

Fix by using an offset on big-endian systems.

Ditto for bpf_sysctl.file_pos reads. Currently the test does not detect
a problem there, since it expects to see 0, which it gets with high
probability in error cases, so change it to seek to offset 3 and expect
3 in bpf_sysctl.file_pos.

Fixes: e1550bfe0de4 ("bpf: Add file_pos field to bpf_sysctl ctx")
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20190816105300.49035-1-iii@linux.ibm.com/


# 2339cd6c 03-Sep-2019 Alexei Starovoitov <ast@kernel.org>

bpf: fix precision tracking of stack slots

The problem can be seen in the following two tests:
0: (bf) r3 = r10
1: (55) if r3 != 0x7b goto pc+0
2: (7a) *(u64 *)(r3 -8) = 0
3: (79) r4 = *(u64 *)(r10 -8)
..
0: (85) call bpf_get_prandom_u32#7
1: (bf) r3 = r10
2: (55) if r3 != 0x7b goto pc+0
3: (7b) *(u64 *)(r3 -8) = r0
4: (79) r4 = *(u64 *)(r10 -8)

When backtracking need to mark R4 it will mark slot fp-8.
But ST or STX into fp-8 could belong to the same block of instructions.
When backtracing is done the parent state may have fp-8 slot
as "unallocated stack". Which will cause verifier to warn
and incorrectly reject such programs.

Writes into stack via non-R10 register are rare. llvm always
generates canonical stack spill/fill.
For such pathological case fall back to conservative precision
tracking instead of rejecting.

Reported-by: syzbot+c8d66267fd2b5955287e@syzkaller.appspotmail.com
Fixes: b5dc0163d8fd ("bpf: precise scalar_value tracking")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 10d274e8 22-Aug-2019 Alexei Starovoitov <ast@kernel.org>

bpf: introduce verifier internal test flag

Introduce BPF_F_TEST_STATE_FREQ flag to stress test parentage chain
and state pruning.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 6754172c 21-Aug-2019 Alexei Starovoitov <ast@kernel.org>

bpf: fix precision tracking in presence of bpf2bpf calls

While adding extra tests for precision tracking and extra infra
to adjust verifier heuristics the existing test
"calls: cross frame pruning - liveness propagation" started to fail.
The root cause is the same as described in verifer.c comment:

* Also if parent's curframe > frame where backtracking started,
* the verifier need to mark registers in both frames, otherwise callees
* may incorrectly prune callers. This is similar to
* commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
* For now backtracking falls back into conservative marking.

Turned out though that returning -ENOTSUPP from backtrack_insn() and
doing mark_all_scalars_precise() in the current parentage chain is not enough.
Depending on how is_state_visited() heuristic is creating parentage chain
it's possible that callee will incorrectly prune caller.
Fix the issue by setting precise=true earlier and more aggressively.
Before this fix the precision tracking _within_ functions that don't do
bpf2bpf calls would still work. Whereas now precision tracking is completely
disabled when bpf2bpf calls are present anywhere in the program.

No difference in cilium tests (they don't have bpf2bpf calls).
No difference in test_progs though some of them have bpf2bpf calls,
but precision tracking wasn't effective there.

Fixes: b5dc0163d8fd ("bpf: precise scalar_value tracking")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 6f9d451a 26-Jul-2019 Toke Høiland-Jørgensen <toke@redhat.com>

xdp: Add devmap_hash map type for looking up devices by hashed index

A common pattern when using xdp_redirect_map() is to create a device map
where the lookup key is simply ifindex. Because device maps are arrays,
this leaves holes in the map, and the map has to be sized to fit the
largest ifindex, regardless of how many devices actually are actually
needed in the map.

This patch adds a second type of device map where the key is looked up
using a hashmap, instead of being used as an array index. This allows maps
to be densely packed, so they can be smaller.

Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# d9b8aada 19-Jul-2019 Ilya Leoshkevich <iii@linux.ibm.com>

bpf: fix narrower loads on s390

The very first check in test_pkt_md_access is failing on s390, which
happens because loading a part of a struct __sk_buff field produces
an incorrect result.

The preprocessed code of the check is:

{
__u8 tmp = *((volatile __u8 *)&skb->len +
((sizeof(skb->len) - sizeof(__u8)) / sizeof(__u8)));
if (tmp != ((*(volatile __u32 *)&skb->len) & 0xFF)) return 2;
};

clang generates the following code for it:

0: 71 21 00 03 00 00 00 00 r2 = *(u8 *)(r1 + 3)
1: 61 31 00 00 00 00 00 00 r3 = *(u32 *)(r1 + 0)
2: 57 30 00 00 00 00 00 ff r3 &= 255
3: 5d 23 00 1d 00 00 00 00 if r2 != r3 goto +29 <LBB0_10>

Finally, verifier transforms it to:

0: (61) r2 = *(u32 *)(r1 +104)
1: (bc) w2 = w2
2: (74) w2 >>= 24
3: (bc) w2 = w2
4: (54) w2 &= 255
5: (bc) w2 = w2

The problem is that when verifier emits the code to replace a partial
load of a struct __sk_buff field (*(u8 *)(r1 + 3)) with a full load of
struct sk_buff field (*(u32 *)(r1 + 104)), an optional shift and a
bitwise AND, it assumes that the machine is little endian and
incorrectly decides to use a shift.

Adjust shift count calculation to account for endianness.

Fixes: 31fd85816dbe ("bpf: permits narrower load from bpf program context fields")
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# ed4ed404 11-Jul-2019 Gustavo A. R. Silva <gustavo@embeddedor.com>

bpf: verifier: avoid fall-through warnings

In preparation to enabling -Wimplicit-fallthrough, this patch silences
the following warning:

kernel/bpf/verifier.c: In function ‘check_return_code’:
kernel/bpf/verifier.c:6106:6: warning: this statement may fall through [-Wimplicit-fallthrough=]
if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
^
kernel/bpf/verifier.c:6109:2: note: here
case BPF_PROG_TYPE_CGROUP_SKB:
^~~~

Warning level 3 was used: -Wimplicit-fallthrough=3

Notice that is much clearer to explicitly add breaks in each case
statement (that actually contains some code), rather than letting
the code to fall through.

This patch is part of the ongoing efforts to enable
-Wimplicit-fallthrough.

Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# b3b50f05 08-Jul-2019 Andrii Nakryiko <andriin@fb.com>

bpf: fix precision bit propagation for BPF_ST instructions

When backtracking instructions to propagate precision bit for registers
and stack slots, one class of instructions (BPF_ST) weren't handled
causing extra stack slots to be propagated into parent state. Parent
state might not have that much stack allocated, though, which causes
warning on invalid stack slot usage.

This patch adds handling of BPF_ST instructions:

BPF_MEM | <size> | BPF_ST: *(size *) (dst_reg + off) = imm32

Reported-by: syzbot+4da3ff23081bafe74fc2@syzkaller.appspotmail.com
Fixes: b5dc0163d8fd ("bpf: precise scalar_value tracking")
Cc: Alexei Starovoitov <ast@fb.com>
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# a3ce685d 28-Jun-2019 Alexei Starovoitov <ast@kernel.org>

bpf: fix precision tracking

When equivalent state is found the current state needs to propagate precision marks.
Otherwise the verifier will prune the search incorrectly.

There is a price for correctness:
before before broken fixed
cnst spill precise precise
bpf_lb-DLB_L3.o 1923 8128 1863 1898
bpf_lb-DLB_L4.o 3077 6707 2468 2666
bpf_lb-DUNKNOWN.o 1062 1062 544 544
bpf_lxc-DDROP_ALL.o 166729 380712 22629 36823
bpf_lxc-DUNKNOWN.o 174607 440652 28805 45325
bpf_netdev.o 8407 31904 6801 7002
bpf_overlay.o 5420 23569 4754 4858
bpf_lxc_jit.o 39389 359445 50925 69631
Overall precision tracking is still very effective.

Fixes: b5dc0163d8fd ("bpf: precise scalar_value tracking")
Reported-by: Lawrence Brakmo <brakmo@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Tested-by: Lawrence Brakmo <brakmo@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 0cdbb4b0 28-Jun-2019 Toke Høiland-Jørgensen <toke@redhat.com>

devmap: Allow map lookups from eBPF

We don't currently allow lookups into a devmap from eBPF, because the map
lookup returns a pointer directly to the dev->ifindex, which shouldn't be
modifiable from eBPF.

However, being able to do lookups in devmaps is useful to know (e.g.)
whether forwarding to a specific interface is enabled. Currently, programs
work around this by keeping a shadow map of another type which indicates
whether a map index is valid.

Since we now have a flag to make maps read-only from the eBPF side, we can
simply lift the lookup restriction if we make sure this flag is always set.

Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 0d01da6a 27-Jun-2019 Stanislav Fomichev <sdf@google.com>

bpf: implement getsockopt and setsockopt hooks

Implement new BPF_PROG_TYPE_CGROUP_SOCKOPT program type and
BPF_CGROUP_{G,S}ETSOCKOPT cgroup hooks.

BPF_CGROUP_SETSOCKOPT can modify user setsockopt arguments before
passing them down to the kernel or bypass kernel completely.
BPF_CGROUP_GETSOCKOPT can can inspect/modify getsockopt arguments that
kernel returns.
Both hooks reuse existing PTR_TO_PACKET{,_END} infrastructure.

The buffer memory is pre-allocated (because I don't think there is
a precedent for working with __user memory from bpf). This might be
slow to do for each {s,g}etsockopt call, that's why I've added
__cgroup_bpf_prog_array_is_empty that exits early if there is nothing
attached to a cgroup. Note, however, that there is a race between
__cgroup_bpf_prog_array_is_empty and BPF_PROG_RUN_ARRAY where cgroup
program layout might have changed; this should not be a problem
because in general there is a race between multiple calls to
{s,g}etsocktop and user adding/removing bpf progs from a cgroup.

The return code of the BPF program is handled as follows:
* 0: EPERM
* 1: success, continue with next BPF program in the cgroup chain

v9:
* allow overwriting setsockopt arguments (Alexei Starovoitov):
* use set_fs (same as kernel_setsockopt)
* buffer is always kzalloc'd (no small on-stack buffer)

v8:
* use s32 for optlen (Andrii Nakryiko)

v7:
* return only 0 or 1 (Alexei Starovoitov)
* always run all progs (Alexei Starovoitov)
* use optval=0 as kernel bypass in setsockopt (Alexei Starovoitov)
(decided to use optval=-1 instead, optval=0 might be a valid input)
* call getsockopt hook after kernel handlers (Alexei Starovoitov)

v6:
* rework cgroup chaining; stop as soon as bpf program returns
0 or 2; see patch with the documentation for the details
* drop Andrii's and Martin's Acked-by (not sure they are comfortable
with the new state of things)

v5:
* skip copy_to_user() and put_user() when ret == 0 (Martin Lau)

v4:
* don't export bpf_sk_fullsock helper (Martin Lau)
* size != sizeof(__u64) for uapi pointers (Martin Lau)
* offsetof instead of bpf_ctx_range when checking ctx access (Martin Lau)

v3:
* typos in BPF_PROG_CGROUP_SOCKOPT_RUN_ARRAY comments (Andrii Nakryiko)
* reverse christmas tree in BPF_PROG_CGROUP_SOCKOPT_RUN_ARRAY (Andrii
Nakryiko)
* use __bpf_md_ptr instead of __u32 for optval{,_end} (Martin Lau)
* use BPF_FIELD_SIZEOF() for consistency (Martin Lau)
* new CG_SOCKOPT_ACCESS macro to wrap repeated parts

v2:
* moved bpf_sockopt_kern fields around to remove a hole (Martin Lau)
* aligned bpf_sockopt_kern->buf to 8 bytes (Martin Lau)
* bpf_prog_array_is_empty instead of bpf_prog_array_length (Martin Lau)
* added [0,2] return code check to verifier (Martin Lau)
* dropped unused buf[64] from the stack (Martin Lau)
* use PTR_TO_SOCKET for bpf_sockopt->sk (Martin Lau)
* dropped bpf_target_off from ctx rewrites (Martin Lau)
* use return code for kernel bypass (Martin Lau & Andrii Nakryiko)

Cc: Andrii Nakryiko <andriin@fb.com>
Cc: Martin Lau <kafai@fb.com>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# b5dc0163 15-Jun-2019 Alexei Starovoitov <ast@kernel.org>

bpf: precise scalar_value tracking

Introduce precision tracking logic that
helps cilium programs the most:
old clang old clang new clang new clang
with all patches with all patches
bpf_lb-DLB_L3.o 1838 2283 1923 1863
bpf_lb-DLB_L4.o 3218 2657 3077 2468
bpf_lb-DUNKNOWN.o 1064 545 1062 544
bpf_lxc-DDROP_ALL.o 26935 23045 166729 22629
bpf_lxc-DUNKNOWN.o 34439 35240 174607 28805
bpf_netdev.o 9721 8753 8407 6801
bpf_overlay.o 6184 7901 5420 4754
bpf_lxc_jit.o 39389 50925 39389 50925

Consider code:
654: (85) call bpf_get_hash_recalc#34
655: (bf) r7 = r0
656: (15) if r8 == 0x0 goto pc+29
657: (bf) r2 = r10
658: (07) r2 += -48
659: (18) r1 = 0xffff8881e41e1b00
661: (85) call bpf_map_lookup_elem#1
662: (15) if r0 == 0x0 goto pc+23
663: (69) r1 = *(u16 *)(r0 +0)
664: (15) if r1 == 0x0 goto pc+21
665: (bf) r8 = r7
666: (57) r8 &= 65535
667: (bf) r2 = r8
668: (3f) r2 /= r1
669: (2f) r2 *= r1
670: (bf) r1 = r8
671: (1f) r1 -= r2
672: (57) r1 &= 255
673: (25) if r1 > 0x1e goto pc+12
R0=map_value(id=0,off=0,ks=20,vs=64,imm=0) R1_w=inv(id=0,umax_value=30,var_off=(0x0; 0x1f))
674: (67) r1 <<= 1
675: (0f) r0 += r1

At this point the verifier will notice that scalar R1 is used in map pointer adjustment.
R1 has to be precise for later operations on R0 to be validated properly.

The verifier will backtrack the above code in the following way:
last_idx 675 first_idx 664
regs=2 stack=0 before 675: (0f) r0 += r1 // started backtracking R1 regs=2 is a bitmask
regs=2 stack=0 before 674: (67) r1 <<= 1
regs=2 stack=0 before 673: (25) if r1 > 0x1e goto pc+12
regs=2 stack=0 before 672: (57) r1 &= 255
regs=2 stack=0 before 671: (1f) r1 -= r2 // now both R1 and R2 has to be precise -> regs=6 mask
regs=6 stack=0 before 670: (bf) r1 = r8 // after this insn R8 and R2 has to be precise
regs=104 stack=0 before 669: (2f) r2 *= r1 // after this one R8, R2, and R1
regs=106 stack=0 before 668: (3f) r2 /= r1
regs=106 stack=0 before 667: (bf) r2 = r8
regs=102 stack=0 before 666: (57) r8 &= 65535
regs=102 stack=0 before 665: (bf) r8 = r7
regs=82 stack=0 before 664: (15) if r1 == 0x0 goto pc+21
// this is the end of verifier state. The following regs will be marked precised:
R1_rw=invP(id=0,umax_value=65535,var_off=(0x0; 0xffff)) R7_rw=invP(id=0)
parent didn't have regs=82 stack=0 marks // so backtracking continues into parent state
last_idx 663 first_idx 655
regs=82 stack=0 before 663: (69) r1 = *(u16 *)(r0 +0) // R1 was assigned no need to track it further
regs=80 stack=0 before 662: (15) if r0 == 0x0 goto pc+23 // keep tracking R7
regs=80 stack=0 before 661: (85) call bpf_map_lookup_elem#1 // keep tracking R7
regs=80 stack=0 before 659: (18) r1 = 0xffff8881e41e1b00
regs=80 stack=0 before 658: (07) r2 += -48
regs=80 stack=0 before 657: (bf) r2 = r10
regs=80 stack=0 before 656: (15) if r8 == 0x0 goto pc+29
regs=80 stack=0 before 655: (bf) r7 = r0 // here the assignment into R7
// mark R0 to be precise:
R0_rw=invP(id=0)
parent didn't have regs=1 stack=0 marks // regs=1 -> tracking R0
last_idx 654 first_idx 644
regs=1 stack=0 before 654: (85) call bpf_get_hash_recalc#34 // and in the parent frame it was a return value
// nothing further to backtrack

Two scalar registers not marked precise are equivalent from state pruning point of view.
More details in the patch comments.

It doesn't support bpf2bpf calls yet and enabled for root only.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# eea1c227 15-Jun-2019 Alexei Starovoitov <ast@kernel.org>

bpf: fix callees pruning callers

The commit 7640ead93924 partially resolved the issue of callees
incorrectly pruning the callers.
With introduction of bounded loops and jmps_processed heuristic
single verifier state may contain multiple branches and calls.
It's possible that new verifier state (for future pruning) will be
allocated inside callee. Then callee will exit (still within the same
verifier state). It will go back to the caller and there R6-R9 registers
will be read and will trigger mark_reg_read. But the reg->live for all frames
but the top frame is not set to LIVE_NONE. Hence mark_reg_read will fail
to propagate liveness into parent and future walking will incorrectly
conclude that the states are equivalent because LIVE_READ is not set.
In other words the rule for parent/live should be:
whenever register parentage chain is set the reg->live should be set to LIVE_NONE.
is_state_visited logic already follows this rule for spilled registers.

Fixes: 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
Fixes: f4d7e40a5b71 ("bpf: introduce function calls (verification)")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 2589726d 15-Jun-2019 Alexei Starovoitov <ast@kernel.org>

bpf: introduce bounded loops

Allow the verifier to validate the loops by simulating their execution.
Exisiting programs have used '#pragma unroll' to unroll the loops
by the compiler. Instead let the verifier simulate all iterations
of the loop.
In order to do that introduce parentage chain of bpf_verifier_state and
'branches' counter for the number of branches left to explore.
See more detailed algorithm description in bpf_verifier.h

This algorithm borrows the key idea from Edward Cree approach:
https://patchwork.ozlabs.org/patch/877222/
Additional state pruning heuristics make such brute force loop walk
practical even for large loops.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# fb8d251e 15-Jun-2019 Alexei Starovoitov <ast@kernel.org>

bpf: extend is_branch_taken to registers

This patch extends is_branch_taken() logic from JMP+K instructions
to JMP+X instructions.
Conditional branches are often done when src and dst registers
contain known scalars. In such case the verifier can follow
the branch that is going to be taken when program executes.
That speeds up the verification and is essential feature to support
bounded loops.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# f7cf25b2 15-Jun-2019 Alexei Starovoitov <ast@kernel.org>

bpf: track spill/fill of constants

Compilers often spill induction variables into the stack,
hence it is necessary for the verifier to track scalar values
of the registers through stack slots.

Also few bpf programs were incorrectly rejected in the past,
since the verifier was not able to track such constants while
they were used to compute offsets into packet headers.

Tracking constants through the stack significantly decreases
the chances of state pruning, since two different constants
are considered to be different by state equivalency.
End result that cilium tests suffer serious degradation in the number
of states processed and corresponding verification time increase.

before after
bpf_lb-DLB_L3.o 1838 6441
bpf_lb-DLB_L4.o 3218 5908
bpf_lb-DUNKNOWN.o 1064 1064
bpf_lxc-DDROP_ALL.o 26935 93790
bpf_lxc-DUNKNOWN.o 34439 123886
bpf_netdev.o 9721 31413
bpf_overlay.o 6184 18561
bpf_lxc_jit.o 39389 359445

After further debugging turned out that cillium progs are
getting hurt by clang due to the same constant tracking issue.
Newer clang generates better code by spilling less to the stack.
Instead it keeps more constants in the registers which
hurts state pruning since the verifier already tracks constants
in the registers:
old clang new clang
(no spill/fill tracking introduced by this patch)
bpf_lb-DLB_L3.o 1838 1923
bpf_lb-DLB_L4.o 3218 3077
bpf_lb-DUNKNOWN.o 1064 1062
bpf_lxc-DDROP_ALL.o 26935 166729
bpf_lxc-DUNKNOWN.o 34439 174607
bpf_netdev.o 9721 8407
bpf_overlay.o 6184 5420
bpf_lcx_jit.o 39389 39389

The final table is depressing:
old clang old clang new clang new clang
const spill/fill const spill/fill
bpf_lb-DLB_L3.o 1838 6441 1923 8128
bpf_lb-DLB_L4.o 3218 5908 3077 6707
bpf_lb-DUNKNOWN.o 1064 1064 1062 1062
bpf_lxc-DDROP_ALL.o 26935 93790 166729 380712
bpf_lxc-DUNKNOWN.o 34439 123886 174607 440652
bpf_netdev.o 9721 31413 8407 31904
bpf_overlay.o 6184 18561 5420 23569
bpf_lxc_jit.o 39389 359445 39389 359445

Tracking constants in the registers hurts state pruning already.
Adding tracking of constants through stack hurts pruning even more.
The later patch address this general constant tracking issue
with coarse/precise logic.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# fada7fdc 06-Jun-2019 Jonathan Lemon <jonathan.lemon@gmail.com>

bpf: Allow bpf_map_lookup_elem() on an xskmap

Currently, the AF_XDP code uses a separate map in order to
determine if an xsk is bound to a queue. Instead of doing this,
have bpf_map_lookup_elem() return a xdp_sock.

Rearrange some xdp_sock members to eliminate structure holes.

Remove selftest - will be added back in later patch.

Signed-off-by: Jonathan Lemon <jonathan.lemon@gmail.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 983695fa 06-Jun-2019 Daniel Borkmann <daniel@iogearbox.net>

bpf: fix unconnected udp hooks

Intention of cgroup bind/connect/sendmsg BPF hooks is to act transparently
to applications as also stated in original motivation in 7828f20e3779 ("Merge
branch 'bpf-cgroup-bind-connect'"). When recently integrating the latter
two hooks into Cilium to enable host based load-balancing with Kubernetes,
I ran into the issue that pods couldn't start up as DNS got broken. Kubernetes
typically sets up DNS as a service and is thus subject to load-balancing.

Upon further debugging, it turns out that the cgroupv2 sendmsg BPF hooks API
is currently insufficient and thus not usable as-is for standard applications
shipped with most distros. To break down the issue we ran into with a simple
example:

# cat /etc/resolv.conf
nameserver 147.75.207.207
nameserver 147.75.207.208

For the purpose of a simple test, we set up above IPs as service IPs and
transparently redirect traffic to a different DNS backend server for that
node:

# cilium service list
ID Frontend Backend
1 147.75.207.207:53 1 => 8.8.8.8:53
2 147.75.207.208:53 1 => 8.8.8.8:53

The attached BPF program is basically selecting one of the backends if the
service IP/port matches on the cgroup hook. DNS breaks here, because the
hooks are not transparent enough to applications which have built-in msg_name
address checks:

# nslookup 1.1.1.1
;; reply from unexpected source: 8.8.8.8#53, expected 147.75.207.207#53
;; reply from unexpected source: 8.8.8.8#53, expected 147.75.207.208#53
;; reply from unexpected source: 8.8.8.8#53, expected 147.75.207.207#53
[...]
;; connection timed out; no servers could be reached

# dig 1.1.1.1
;; reply from unexpected source: 8.8.8.8#53, expected 147.75.207.207#53
;; reply from unexpected source: 8.8.8.8#53, expected 147.75.207.208#53
;; reply from unexpected source: 8.8.8.8#53, expected 147.75.207.207#53
[...]

; <<>> DiG 9.11.3-1ubuntu1.7-Ubuntu <<>> 1.1.1.1
;; global options: +cmd
;; connection timed out; no servers could be reached

For comparison, if none of the service IPs is used, and we tell nslookup
to use 8.8.8.8 directly it works just fine, of course:

# nslookup 1.1.1.1 8.8.8.8
1.1.1.1.in-addr.arpa name = one.one.one.one.

In order to fix this and thus act more transparent to the application,
this needs reverse translation on recvmsg() side. A minimal fix for this
API is to add similar recvmsg() hooks behind the BPF cgroups static key
such that the program can track state and replace the current sockaddr_in{,6}
with the original service IP. From BPF side, this basically tracks the
service tuple plus socket cookie in an LRU map where the reverse NAT can
then be retrieved via map value as one example. Side-note: the BPF cgroups
static key should be converted to a per-hook static key in future.

Same example after this fix:

# cilium service list
ID Frontend Backend
1 147.75.207.207:53 1 => 8.8.8.8:53
2 147.75.207.208:53 1 => 8.8.8.8:53

Lookups work fine now:

# nslookup 1.1.1.1
1.1.1.1.in-addr.arpa name = one.one.one.one.

Authoritative answers can be found from:

# dig 1.1.1.1

; <<>> DiG 9.11.3-1ubuntu1.7-Ubuntu <<>> 1.1.1.1
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 51550
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 1

;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 512
;; QUESTION SECTION:
;1.1.1.1. IN A

;; AUTHORITY SECTION:
. 23426 IN SOA a.root-servers.net. nstld.verisign-grs.com. 2019052001 1800 900 604800 86400

;; Query time: 17 msec
;; SERVER: 147.75.207.207#53(147.75.207.207)
;; WHEN: Tue May 21 12:59:38 UTC 2019
;; MSG SIZE rcvd: 111

And from an actual packet level it shows that we're using the back end
server when talking via 147.75.207.20{7,8} front end:

# tcpdump -i any udp
[...]
12:59:52.698732 IP foo.42011 > google-public-dns-a.google.com.domain: 18803+ PTR? 1.1.1.1.in-addr.arpa. (38)
12:59:52.698735 IP foo.42011 > google-public-dns-a.google.com.domain: 18803+ PTR? 1.1.1.1.in-addr.arpa. (38)
12:59:52.701208 IP google-public-dns-a.google.com.domain > foo.42011: 18803 1/0/0 PTR one.one.one.one. (67)
12:59:52.701208 IP google-public-dns-a.google.com.domain > foo.42011: 18803 1/0/0 PTR one.one.one.one. (67)
[...]

In order to be flexible and to have same semantics as in sendmsg BPF
programs, we only allow return codes in [1,1] range. In the sendmsg case
the program is called if msg->msg_name is present which can be the case
in both, connected and unconnected UDP.

The former only relies on the sockaddr_in{,6} passed via connect(2) if
passed msg->msg_name was NULL. Therefore, on recvmsg side, we act in similar
way to call into the BPF program whenever a non-NULL msg->msg_name was
passed independent of sk->sk_state being TCP_ESTABLISHED or not. Note
that for TCP case, the msg->msg_name is ignored in the regular recvmsg
path and therefore not relevant.

For the case of ip{,v6}_recv_error() paths, picked up via MSG_ERRQUEUE,
the hook is not called. This is intentional as it aligns with the same
semantics as in case of TCP cgroup BPF hooks right now. This might be
better addressed in future through a different bpf_attach_type such
that this case can be distinguished from the regular recvmsg paths,
for example.

Fixes: 1cedee13d25a ("bpf: Hooks for sys_sendmsg")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrey Ignatov <rdna@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Martynas Pumputis <m@lambda.lt>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 5b497af4 29-May-2019 Thomas Gleixner <tglx@linutronix.de>

treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 295

Based on 1 normalized pattern(s):

this program is free software you can redistribute it and or modify
it under the terms of version 2 of the gnu general public license as
published by the free software foundation this program is
distributed in the hope that it will be useful but without any
warranty without even the implied warranty of merchantability or
fitness for a particular purpose see the gnu general public license
for more details

extracted by the scancode license scanner the SPDX license identifier

GPL-2.0-only

has been chosen to replace the boilerplate/reference in 64 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190529141901.894819585@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>


# 5cf1e914 28-May-2019 brakmo <brakmo@fb.com>

bpf: cgroup inet skb programs can return 0 to 3

Allows cgroup inet skb programs to return values in the range [0, 3].
The second bit is used to deterine if congestion occurred and higher
level protocol should decrease rate. E.g. TCP would call tcp_enter_cwr()

The bpf_prog must set expected_attach_type to BPF_CGROUP_INET_EGRESS
at load time if it uses the new return values (i.e. 2 or 3).

The expected_attach_type is currently not enforced for
BPF_PROG_TYPE_CGROUP_SKB. e.g Meaning the current bpf_prog with
expected_attach_type setting to BPF_CGROUP_INET_EGRESS can attach to
BPF_CGROUP_INET_INGRESS. Blindly enforcing expected_attach_type will
break backward compatibility.

This patch adds a enforce_expected_attach_type bit to only
enforce the expected_attach_type when it uses the new
return value.

Signed-off-by: Lawrence Brakmo <brakmo@fb.com>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# d6c2308c 24-May-2019 Jiong Wang <jiong.wang@netronome.com>

bpf: verifier: randomize high 32-bit when BPF_F_TEST_RND_HI32 is set

This patch randomizes high 32-bit of a definition when BPF_F_TEST_RND_HI32
is set.

Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# a4b1d3c1 24-May-2019 Jiong Wang <jiong.wang@netronome.com>

bpf: verifier: insert zero extension according to analysis result

After previous patches, verifier will mark a insn if it really needs zero
extension on dst_reg.

It is then for back-ends to decide how to use such information to eliminate
unnecessary zero extension code-gen during JIT compilation.

One approach is verifier insert explicit zero extension for those insns
that need zero extension in a generic way, JIT back-ends then do not
generate zero extension for sub-register write at default.

However, only those back-ends which do not have hardware zero extension
want this optimization. Back-ends like x86_64 and AArch64 have hardware
zero extension support that the insertion should be disabled.

This patch introduces new target hook "bpf_jit_needs_zext" which returns
false at default, meaning verifier zero extension insertion is disabled at
default. A back-end could override this hook to return true if it doesn't
have hardware support and want verifier insert zero extension explicitly.

Offload targets do not use this native target hook, instead, they could
get the optimization results using bpf_prog_offload_ops.finalize.

NOTE: arches could have diversified features, it is possible for one arch
to have hardware zero extension support for some sub-register write insns
but not for all. For example, PowerPC, SPARC have zero extended loads, but
not for alu32. So when verifier zero extension insertion enabled, these JIT
back-ends need to peephole insns to remove those zero extension inserted
for insn that actually has hardware zero extension support. The peephole
could be as simple as looking the next insn, if it is a special zero
extension insn then it is safe to eliminate it if the current insn has
hardware zero extension support.

Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# b325fbca 24-May-2019 Jiong Wang <jiong.wang@netronome.com>

bpf: verifier: mark patched-insn with sub-register zext flag

Patched insns do not go through generic verification, therefore doesn't has
zero extension information collected during insn walking.

We don't bother analyze them at the moment, for any sub-register def comes
from them, just conservatively mark it as needing zero extension.

Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 5327ed3d 24-May-2019 Jiong Wang <jiong.wang@netronome.com>

bpf: verifier: mark verified-insn with sub-register zext flag

eBPF ISA specification requires high 32-bit cleared when low 32-bit
sub-register is written. This applies to destination register of ALU32 etc.
JIT back-ends must guarantee this semantic when doing code-gen. x86_64 and
AArch64 ISA has the same semantics, so the corresponding JIT back-end
doesn't need to do extra work.

However, 32-bit arches (arm, x86, nfp etc.) and some other 64-bit arches
(PowerPC, SPARC etc) need to do explicit zero extension to meet this
requirement, otherwise code like the following will fail.

u64_value = (u64) u32_value
... other uses of u64_value

This is because compiler could exploit the semantic described above and
save those zero extensions for extending u32_value to u64_value, these JIT
back-ends are expected to guarantee this through inserting extra zero
extensions which however could be a significant increase on the code size.
Some benchmarks show there could be ~40% sub-register writes out of total
insns, meaning at least ~40% extra code-gen.

One observation is these extra zero extensions are not always necessary.
Take above code snippet for example, it is possible u32_value will never be
casted into a u64, the value of high 32-bit of u32_value then could be
ignored and extra zero extension could be eliminated.

This patch implements this idea, insns defining sub-registers will be
marked when the high 32-bit of the defined sub-register matters. For
those unmarked insns, it is safe to eliminate high 32-bit clearnace for
them.

Algo:
- Split read flags into READ32 and READ64.

- Record index of insn that does sub-register write. Keep the index inside
reg state and update it during verifier insn walking.

- A full register read on a sub-register marks its definition insn as
needing zero extension on dst register.

A new sub-register write overrides the old one.

- When propagating read64 during path pruning, also mark any insn defining
a sub-register that is read in the pruned path as full-register.

Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# dc2a4ebc 21-May-2019 Alexei Starovoitov <ast@kernel.org>

bpf: convert explored_states to hash table

All prune points inside a callee bpf function most likely will have
different callsites. For example, if function foo() is called from
two callsites the half of explored states in all prune points in foo()
will be useless for subsequent walking of one of those callsites.
Fortunately explored_states pruning heuristics keeps the number of states
per prune point small, but walking these states is still a waste of cpu
time when the callsite of the current state is different from the callsite
of the explored state.

To improve pruning logic convert explored_states into hash table and
use simple insn_idx ^ callsite hash to select hash bucket.
This optimization has no effect on programs without bpf2bpf calls
and drastically improves programs with calls.
In the later case it reduces total memory consumption in 1M scale tests
by almost 3 times (peak_states drops from 5752 to 2016).

Care should be taken when comparing the states for equivalency.
Since the same hash bucket can now contain states with different indices
the insn_idx has to be part of verifier_state and compared.

Different hash table sizes and different hash functions were explored,
but the results were not significantly better vs this patch.
They can be improved in the future.

Hit/miss heuristic is not counting index miscompare as a miss.
Otherwise verifier stats become unstable when experimenting
with different hash functions.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# a8f500af 21-May-2019 Alexei Starovoitov <ast@kernel.org>

bpf: split explored_states

split explored_states into prune_point boolean mark
and link list of explored states.
This removes STATE_LIST_MARK hack and allows marks to be separate from states.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 5d839021 21-May-2019 Alexei Starovoitov <ast@kernel.org>

bpf: cleanup explored_states

clean up explored_states to prep for introduction of hashtable
No functional changes.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# b285fcb7 21-May-2019 Alexei Starovoitov <ast@kernel.org>

bpf: bump jmp sequence limit

The limit of 1024 subsequent jumps was causing otherwise valid
programs to be rejected. Bump it to 8192 and make the error more verbose.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# e2f7fc0a 08-May-2019 Krzesimir Nowak <krzesimir@kinvolk.io>

bpf: fix undefined behavior in narrow load handling

Commit 31fd85816dbe ("bpf: permits narrower load from bpf program
context fields") made the verifier add AND instructions to clear the
unwanted bits with a mask when doing a narrow load. The mask is
computed with

(1 << size * 8) - 1

where "size" is the size of the narrow load. When doing a 4 byte load
of a an 8 byte field the verifier shifts the literal 1 by 32 places to
the left. This results in an overflow of a signed integer, which is an
undefined behavior. Typically, the computed mask was zero, so the
result of the narrow load ended up being zero too.

Cast the literal to long long to avoid overflows. Note that narrow
load of the 4 byte fields does not have the undefined behavior,
because the load size can only be either 1 or 2 bytes, so shifting 1
by 8 or 16 places will not overflow it. And reading 4 bytes would not
be a narrow load of a 4 bytes field.

Fixes: 31fd85816dbe ("bpf: permits narrower load from bpf program context fields")
Reviewed-by: Alban Crequy <alban@kinvolk.io>
Reviewed-by: Iago López Galeiras <iago@kinvolk.io>
Signed-off-by: Krzesimir Nowak <krzesimir@kinvolk.io>
Cc: Yonghong Song <yhs@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 6ac99e8f 26-Apr-2019 Martin KaFai Lau <kafai@fb.com>

bpf: Introduce bpf sk local storage

After allowing a bpf prog to
- directly read the skb->sk ptr
- get the fullsock bpf_sock by "bpf_sk_fullsock()"
- get the bpf_tcp_sock by "bpf_tcp_sock()"
- get the listener sock by "bpf_get_listener_sock()"
- avoid duplicating the fields of "(bpf_)sock" and "(bpf_)tcp_sock"
into different bpf running context.

this patch is another effort to make bpf's network programming
more intuitive to do (together with memory and performance benefit).

When bpf prog needs to store data for a sk, the current practice is to
define a map with the usual 4-tuples (src/dst ip/port) as the key.
If multiple bpf progs require to store different sk data, multiple maps
have to be defined. Hence, wasting memory to store the duplicated
keys (i.e. 4 tuples here) in each of the bpf map.
[ The smallest key could be the sk pointer itself which requires
some enhancement in the verifier and it is a separate topic. ]

Also, the bpf prog needs to clean up the elem when sk is freed.
Otherwise, the bpf map will become full and un-usable quickly.
The sk-free tracking currently could be done during sk state
transition (e.g. BPF_SOCK_OPS_STATE_CB).

The size of the map needs to be predefined which then usually ended-up
with an over-provisioned map in production. Even the map was re-sizable,
while the sk naturally come and go away already, this potential re-size
operation is arguably redundant if the data can be directly connected
to the sk itself instead of proxy-ing through a bpf map.

This patch introduces sk->sk_bpf_storage to provide local storage space
at sk for bpf prog to use. The space will be allocated when the first bpf
prog has created data for this particular sk.

The design optimizes the bpf prog's lookup (and then optionally followed by
an inline update). bpf_spin_lock should be used if the inline update needs
to be protected.

BPF_MAP_TYPE_SK_STORAGE:
-----------------------
To define a bpf "sk-local-storage", a BPF_MAP_TYPE_SK_STORAGE map (new in
this patch) needs to be created. Multiple BPF_MAP_TYPE_SK_STORAGE maps can
be created to fit different bpf progs' needs. The map enforces
BTF to allow printing the sk-local-storage during a system-wise
sk dump (e.g. "ss -ta") in the future.

The purpose of a BPF_MAP_TYPE_SK_STORAGE map is not for lookup/update/delete
a "sk-local-storage" data from a particular sk.
Think of the map as a meta-data (or "type") of a "sk-local-storage". This
particular "type" of "sk-local-storage" data can then be stored in any sk.

The main purposes of this map are mostly:
1. Define the size of a "sk-local-storage" type.
2. Provide a similar syscall userspace API as the map (e.g. lookup/update,
map-id, map-btf...etc.)
3. Keep track of all sk's storages of this "type" and clean them up
when the map is freed.

sk->sk_bpf_storage:
------------------
The main lookup/update/delete is done on sk->sk_bpf_storage (which
is a "struct bpf_sk_storage"). When doing a lookup,
the "map" pointer is now used as the "key" to search on the
sk_storage->list. The "map" pointer is actually serving
as the "type" of the "sk-local-storage" that is being
requested.

To allow very fast lookup, it should be as fast as looking up an
array at a stable-offset. At the same time, it is not ideal to
set a hard limit on the number of sk-local-storage "type" that the
system can have. Hence, this patch takes a cache approach.
The last search result from sk_storage->list is cached in
sk_storage->cache[] which is a stable sized array. Each
"sk-local-storage" type has a stable offset to the cache[] array.
In the future, a map's flag could be introduced to do cache
opt-out/enforcement if it became necessary.

The cache size is 16 (i.e. 16 types of "sk-local-storage").
Programs can share map. On the program side, having a few bpf_progs
running in the networking hotpath is already a lot. The bpf_prog
should have already consolidated the existing sock-key-ed map usage
to minimize the map lookup penalty. 16 has enough runway to grow.

All sk-local-storage data will be removed from sk->sk_bpf_storage
during sk destruction.

bpf_sk_storage_get() and bpf_sk_storage_delete():
------------------------------------------------
Instead of using bpf_map_(lookup|update|delete)_elem(),
the bpf prog needs to use the new helper bpf_sk_storage_get() and
bpf_sk_storage_delete(). The verifier can then enforce the
ARG_PTR_TO_SOCKET argument. The bpf_sk_storage_get() also allows to
"create" new elem if one does not exist in the sk. It is done by
the new BPF_SK_STORAGE_GET_F_CREATE flag. An optional value can also be
provided as the initial value during BPF_SK_STORAGE_GET_F_CREATE.
The BPF_MAP_TYPE_SK_STORAGE also supports bpf_spin_lock. Together,
it has eliminated the potential use cases for an equivalent
bpf_map_update_elem() API (for bpf_prog) in this patch.

Misc notes:
----------
1. map_get_next_key is not supported. From the userspace syscall
perspective, the map has the socket fd as the key while the map
can be shared by pinned-file or map-id.

Since btf is enforced, the existing "ss" could be enhanced to pretty
print the local-storage.

Supporting a kernel defined btf with 4 tuples as the return key could
be explored later also.

2. The sk->sk_lock cannot be acquired. Atomic operations is used instead.
e.g. cmpxchg is done on the sk->sk_bpf_storage ptr.
Please refer to the source code comments for the details in
synchronization cases and considerations.

3. The mem is charged to the sk->sk_omem_alloc as the sk filter does.

Benchmark:
---------
Here is the benchmark data collected by turning on
the "kernel.bpf_stats_enabled" sysctl.
Two bpf progs are tested:

One bpf prog with the usual bpf hashmap (max_entries = 8192) with the
sk ptr as the key. (verifier is modified to support sk ptr as the key
That should have shortened the key lookup time.)

Another bpf prog is with the new BPF_MAP_TYPE_SK_STORAGE.

Both are storing a "u32 cnt", do a lookup on "egress_skb/cgroup" for
each egress skb and then bump the cnt. netperf is used to drive
data with 4096 connected UDP sockets.

BPF_MAP_TYPE_HASH with a modifier verifier (152ns per bpf run)
27: cgroup_skb name egress_sk_map tag 74f56e832918070b run_time_ns 58280107540 run_cnt 381347633
loaded_at 2019-04-15T13:46:39-0700 uid 0
xlated 344B jited 258B memlock 4096B map_ids 16
btf_id 5

BPF_MAP_TYPE_SK_STORAGE in this patch (66ns per bpf run)
30: cgroup_skb name egress_sk_stora tag d4aa70984cc7bbf6 run_time_ns 25617093319 run_cnt 390989739
loaded_at 2019-04-15T13:47:54-0700 uid 0
xlated 168B jited 156B memlock 4096B map_ids 17
btf_id 6

Here is a high-level picture on how are the objects organized:

sk
┌──────┐
│ │
│ │
│ │
│*sk_bpf_storage─────▶ bpf_sk_storage
└──────┘ ┌───────┐
┌───────────┤ list │
│ │ │
│ │ │
│ │ │
│ └───────┘

│ elem
│ ┌────────┐
├─▶│ snode │
│ ├────────┤
│ │ data │ bpf_map
│ ├────────┤ ┌─────────┐
│ │map_node│◀─┬─────┤ list │
│ └────────┘ │ │ │
│ │ │ │
│ elem │ │ │
│ ┌────────┐ │ └─────────┘
└─▶│ snode │ │
├────────┤ │
bpf_map │ data │ │
┌─────────┐ ├────────┤ │
│ list ├───────▶│map_node│ │
│ │ └────────┘ │
│ │ │
│ │ elem │
└─────────┘ ┌────────┐ │
┌─▶│ snode │ │
│ ├────────┤ │
│ │ data │ │
│ ├────────┤ │
│ │map_node│◀─┘
│ └────────┘


│ ┌───────┐
sk └──────────│ list │
┌──────┐ │ │
│ │ │ │
│ │ │ │
│ │ └───────┘
│*sk_bpf_storage───────▶bpf_sk_storage
└──────┘

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 9df1c28b 26-Apr-2019 Matt Mullins <mmullins@fb.com>

bpf: add writable context for raw tracepoints

This is an opt-in interface that allows a tracepoint to provide a safe
buffer that can be written from a BPF_PROG_TYPE_RAW_TRACEPOINT program.
The size of the buffer must be a compile-time constant, and is checked
before allowing a BPF program to attach to a tracepoint that uses this
feature.

The pointer to this buffer will be the first argument of tracepoints
that opt in; the pointer is valid and can be bpf_probe_read() by both
BPF_PROG_TYPE_RAW_TRACEPOINT and BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE
programs that attach to such a tracepoint, but the buffer to which it
points may only be written by the latter.

Signed-off-by: Matt Mullins <mmullins@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# c6a9efa1 24-Apr-2019 Paul Chaignon <paul.chaignon@orange.com>

bpf: mark registers in all frames after pkt/null checks

In case of a null check on a pointer inside a subprog, we should mark all
registers with this pointer as either safe or unknown, in both the current
and previous frames. Currently, only spilled registers and registers in
the current frame are marked. Packet bound checks in subprogs have the
same issue. This patch fixes it to mark registers in previous frames as
well.

A good reproducer for null checks looks as follow:

1: ptr = bpf_map_lookup_elem(map, &key);
2: ret = subprog(ptr) {
3: return ptr != NULL;
4: }
5: if (ret)
6: value = *ptr;

With the above, the verifier will complain on line 6 because it sees ptr
as map_value_or_null despite the null check in subprog 1.

Note that this patch fixes another resulting bug when using
bpf_sk_release():

1: sk = bpf_sk_lookup_tcp(...);
2: subprog(sk) {
3: if (sk)
4: bpf_sk_release(sk);
5: }
6: if (!sk)
7: return 0;
8: return 1;

In the above, mark_ptr_or_null_regs will warn on line 6 because it will
try to free the reference state, even though it was already freed on
line 3.

Fixes: f4d7e40a5b71 ("bpf: introduce function calls (verification)")
Signed-off-by: Paul Chaignon <paul.chaignon@orange.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 45a73c17 19-Apr-2019 Alexei Starovoitov <ast@kernel.org>

bpf: drop bpf_verifier_lock

Drop bpf_verifier_lock for root to avoid being DoS-ed by unprivileged.
The BPF verifier is now fully parallel.
All unpriv users are still serialized by bpf_verifier_lock to avoid
exhausting kernel memory by running N parallel verifications.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 7df737e9 19-Apr-2019 Alexei Starovoitov <ast@kernel.org>

bpf: remove global variables

Move three global variables protected by bpf_verifier_lock into
'struct bpf_verifier_env' to allow parallel verification.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 0d306c31 16-Apr-2019 Prashant Bhole <bhole_prashant_q7@lab.ntt.co.jp>

bpf: use BPF_CAST_CALL for casting bpf call

verifier.c uses BPF_CAST_CALL for casting bpf call except at one
place in jit_subprogs(). Let's use the macro for consistency.

Signed-off-by: Prashant Bhole <bhole_prashant_q7@lab.ntt.co.jp>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# c342dc10 12-Apr-2019 Jiong Wang <jiong.wang@netronome.com>

bpf: refactor "check_reg_arg" to eliminate code redundancy

There are a few "regs[regno]" here are there across "check_reg_arg", this
patch factor it out into a simple "reg" pointer. The intention is to
simplify code indentation and make the later patches in this set look
cleaner.

Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 55e7f3b5 12-Apr-2019 Jiong Wang <jiong.wang@netronome.com>

bpf: factor out reg and stack slot propagation into "propagate_liveness_reg"

After code refactor in previous patches, the propagation logic inside the
for loop in "propagate_liveness" becomes clear that they are good enough to
be factored out into a common function "propagate_liveness_reg".

Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 3f8cafa4 12-Apr-2019 Jiong Wang <jiong.wang@netronome.com>

bpf: refactor propagate_liveness to eliminate code redundance

Access to reg states were not factored out, the consequence is long code
for dereferencing them which made the indentation not good for reading.

This patch factor out these code so the core code in the loop could be
easier to follow.

Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 1b04aee7 12-Apr-2019 Jiong Wang <jiong.wang@netronome.com>

bpf: refactor propagate_liveness to eliminate duplicated for loop

Propagation for register and stack slot are finished in separate for loop,
while they are perfect to be put into a single loop.

This could also let them share some common variables in later patches.

Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 57c3bb72 18-Mar-2019 Andrey Ignatov <rdna@fb.com>

bpf: Introduce ARG_PTR_TO_{INT,LONG} arg types

Currently the way to pass result from BPF helper to BPF program is to
provide memory area defined by pointer and size: func(void *, size_t).

It works great for generic use-case, but for simple types, such as int,
it's overkill and consumes two arguments when it could use just one.

Introduce new argument types ARG_PTR_TO_INT and ARG_PTR_TO_LONG to be
able to pass result from helper to program via pointer to int and long
correspondingly: func(int *) or func(long *).

New argument types are similar to ARG_PTR_TO_MEM with the following
differences:
* they don't require corresponding ARG_CONST_SIZE argument, predefined
access sizes are used instead (32bit for int, 64bit for long);
* it's possible to use more than one such an argument in a helper;
* provided pointers have to be aligned.

It's easy to introduce similar ARG_PTR_TO_CHAR and ARG_PTR_TO_SHORT
argument types. It's not done due to lack of use-case though.

Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 7b146ceb 27-Feb-2019 Andrey Ignatov <rdna@fb.com>

bpf: Sysctl hook

Containerized applications may run as root and it may create problems
for whole host. Specifically such applications may change a sysctl and
affect applications in other containers.

Furthermore in existing infrastructure it may not be possible to just
completely disable writing to sysctl, instead such a process should be
gradual with ability to log what sysctl are being changed by a
container, investigate, limit the set of writable sysctl to currently
used ones (so that new ones can not be changed) and eventually reduce
this set to zero.

The patch introduces new program type BPF_PROG_TYPE_CGROUP_SYSCTL and
attach type BPF_CGROUP_SYSCTL to solve these problems on cgroup basis.

New program type has access to following minimal context:
struct bpf_sysctl {
__u32 write;
};

Where @write indicates whether sysctl is being read (= 0) or written (=
1).

Helpers to access sysctl name and value will be introduced separately.

BPF_CGROUP_SYSCTL attach point is added to sysctl code right before
passing control to ctl_table->proc_handler so that BPF program can
either allow or deny access to sysctl.

Suggested-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 591fe988 09-Apr-2019 Daniel Borkmann <daniel@iogearbox.net>

bpf: add program side {rd, wr}only support for maps

This work adds two new map creation flags BPF_F_RDONLY_PROG
and BPF_F_WRONLY_PROG in order to allow for read-only or
write-only BPF maps from a BPF program side.

Today we have BPF_F_RDONLY and BPF_F_WRONLY, but this only
applies to system call side, meaning the BPF program has full
read/write access to the map as usual while bpf(2) calls with
map fd can either only read or write into the map depending
on the flags. BPF_F_RDONLY_PROG and BPF_F_WRONLY_PROG allows
for the exact opposite such that verifier is going to reject
program loads if write into a read-only map or a read into a
write-only map is detected. For read-only map case also some
helpers are forbidden for programs that would alter the map
state such as map deletion, update, etc. As opposed to the two
BPF_F_RDONLY / BPF_F_WRONLY flags, BPF_F_RDONLY_PROG as well
as BPF_F_WRONLY_PROG really do correspond to the map lifetime.

We've enabled this generic map extension to various non-special
maps holding normal user data: array, hash, lru, lpm, local
storage, queue and stack. Further generic map types could be
followed up in future depending on use-case. Main use case
here is to forbid writes into .rodata map values from verifier
side.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# d8eca5bb 09-Apr-2019 Daniel Borkmann <daniel@iogearbox.net>

bpf: implement lookup-free direct value access for maps

This generic extension to BPF maps allows for directly loading
an address residing inside a BPF map value as a single BPF
ldimm64 instruction!

The idea is similar to what BPF_PSEUDO_MAP_FD does today, which
is a special src_reg flag for ldimm64 instruction that indicates
that inside the first part of the double insns's imm field is a
file descriptor which the verifier then replaces as a full 64bit
address of the map into both imm parts. For the newly added
BPF_PSEUDO_MAP_VALUE src_reg flag, the idea is the following:
the first part of the double insns's imm field is again a file
descriptor corresponding to the map, and the second part of the
imm field is an offset into the value. The verifier will then
replace both imm parts with an address that points into the BPF
map value at the given value offset for maps that support this
operation. Currently supported is array map with single entry.
It is possible to support more than just single map element by
reusing both 16bit off fields of the insns as a map index, so
full array map lookup could be expressed that way. It hasn't
been implemented here due to lack of concrete use case, but
could easily be done so in future in a compatible way, since
both off fields right now have to be 0 and would correctly
denote a map index 0.

The BPF_PSEUDO_MAP_VALUE is a distinct flag as otherwise with
BPF_PSEUDO_MAP_FD we could not differ offset 0 between load of
map pointer versus load of map's value at offset 0, and changing
BPF_PSEUDO_MAP_FD's encoding into off by one to differ between
regular map pointer and map value pointer would add unnecessary
complexity and increases barrier for debugability thus less
suitable. Using the second part of the imm field as an offset
into the value does /not/ come with limitations since maximum
possible value size is in u32 universe anyway.

This optimization allows for efficiently retrieving an address
to a map value memory area without having to issue a helper call
which needs to prepare registers according to calling convention,
etc, without needing the extra NULL test, and without having to
add the offset in an additional instruction to the value base
pointer. The verifier then treats the destination register as
PTR_TO_MAP_VALUE with constant reg->off from the user passed
offset from the second imm field, and guarantees that this is
within bounds of the map value. Any subsequent operations are
normally treated as typical map value handling without anything
extra needed from verification side.

The two map operations for direct value access have been added to
array map for now. In future other types could be supported as
well depending on the use case. The main use case for this commit
is to allow for BPF loader support for global variables that
reside in .data/.rodata/.bss sections such that we can directly
load the address of them with minimal additional infrastructure
required. Loader support has been added in subsequent commits for
libbpf library.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 1fbd20f8 04-Apr-2019 Andrey Ignatov <rdna@fb.com>

bpf: Add missed newline in verifier verbose log

check_stack_access() that prints verbose log is used in
adjust_ptr_min_max_vals() that prints its own verbose log and now they
stick together, e.g.:

variable stack access var_off=(0xfffffffffffffff0; 0x4) off=-16
size=1R2 stack pointer arithmetic goes out of range, prohibited for
!root

Add missing newline so that log is more readable:
variable stack access var_off=(0xfffffffffffffff0; 0x4) off=-16 size=1
R2 stack pointer arithmetic goes out of range, prohibited for !root

Fixes: f1174f77b50c ("bpf/verifier: rework value tracking")
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 107c26a7 04-Apr-2019 Andrey Ignatov <rdna@fb.com>

bpf: Sanity check max value for var_off stack access

As discussed in [1] max value of variable offset has to be checked for
overflow on stack access otherwise verifier would accept code like this:

0: (b7) r2 = 6
1: (b7) r3 = 28
2: (7a) *(u64 *)(r10 -16) = 0
3: (7a) *(u64 *)(r10 -8) = 0
4: (79) r4 = *(u64 *)(r1 +168)
5: (c5) if r4 s< 0x0 goto pc+4
R1=ctx(id=0,off=0,imm=0) R2=inv6 R3=inv28
R4=inv(id=0,umax_value=9223372036854775807,var_off=(0x0;
0x7fffffffffffffff)) R10=fp0,call_-1 fp-8=mmmmmmmm fp-16=mmmmmmmm
6: (17) r4 -= 16
7: (0f) r4 += r10
8: (b7) r5 = 8
9: (85) call bpf_getsockopt#57
10: (b7) r0 = 0
11: (95) exit

, where R4 obviosly has unbounded max value.

Fix it by checking that reg->smax_value is inside (-BPF_MAX_VAR_OFF;
BPF_MAX_VAR_OFF) range.

reg->smax_value is used instead of reg->umax_value because stack
pointers are calculated using negative offset from fp. This is opposite
to e.g. map access where offset must be non-negative and where
umax_value is used.

Also dedicated verbose logs are added for both min and max bound check
failures to have diagnostics consistent with variable offset handling in
check_map_access().

[1] https://marc.info/?l=linux-netdev&m=155433357510597&w=2

Fixes: 2011fccfb61b ("bpf: Support variable offset stack access from helpers")
Reported-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 088ec26d 04-Apr-2019 Andrey Ignatov <rdna@fb.com>

bpf: Reject indirect var_off stack access in unpriv mode

Proper support of indirect stack access with variable offset in
unprivileged mode (!root) requires corresponding support in Spectre
masking for stack ALU in retrieve_ptr_limit().

There are no use-case for variable offset in unprivileged mode though so
make verifier reject such accesses for simplicity.

Pointer arithmetics is one (and only?) way to cause variable offset and
it's already rejected in unpriv mode so that verifier won't even get to
helper function whose argument contains variable offset, e.g.:

0: (7a) *(u64 *)(r10 -16) = 0
1: (7a) *(u64 *)(r10 -8) = 0
2: (61) r2 = *(u32 *)(r1 +0)
3: (57) r2 &= 4
4: (17) r2 -= 16
5: (0f) r2 += r10
variable stack access var_off=(0xfffffffffffffff0; 0x4) off=-16 size=1R2
stack pointer arithmetic goes out of range, prohibited for !root

Still it looks like a good idea to reject variable offset indirect stack
access for unprivileged mode in check_stack_boundary() explicitly.

Fixes: 2011fccfb61b ("bpf: Support variable offset stack access from helpers")
Reported-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# f2bcd05e 04-Apr-2019 Andrey Ignatov <rdna@fb.com>

bpf: Reject indirect var_off stack access in raw mode

It's hard to guarantee that whole memory is marked as initialized on
helper return if uninitialized stack is accessed with variable offset
since specific bounds are unknown to verifier. This may cause
uninitialized stack leaking.

Reject such an access in check_stack_boundary to prevent possible
leaking.

There are no known use-cases for indirect uninitialized stack access
with variable offset so it shouldn't break anything.

Fixes: 2011fccfb61b ("bpf: Support variable offset stack access from helpers")
Reported-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 7a9f5c65 01-Apr-2019 Alexei Starovoitov <ast@kernel.org>

bpf: increase verifier log limit

The existing 16Mbyte verifier log limit is not enough for log_level=2
even for small programs. Increase it to 1Gbyte.
Note it's not a kernel memory limit.
It's an amount of memory user space provides to store
the verifier log. The kernel populates it 1k at a time.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# c04c0d2b 01-Apr-2019 Alexei Starovoitov <ast@kernel.org>

bpf: increase complexity limit and maximum program size

Large verifier speed improvements allow to increase
verifier complexity limit.
Now regardless of the program composition and its size it takes
little time for the verifier to hit insn_processed limit.
On typical x86 machine non-debug kernel processes 1M instructions
in 1/10 of a second.
(before these speed improvements specially crafted programs
could be hitting multi-second verification times)
Full kasan kernel with debug takes ~1 second for the same 1M insns.
Hence bump the BPF_COMPLEXITY_LIMIT_INSNS limit to 1M.
Also increase the number of instructions per program
from 4k to internal BPF_COMPLEXITY_LIMIT_INSNS limit.
4k limit was confusing to users, since small programs with hundreds
of insns could be hitting BPF_COMPLEXITY_LIMIT_INSNS limit.
Sometimes adding more insns and bpf_trace_printk debug statements
would make the verifier accept the program while removing
code would make the verifier reject it.
Some user space application started to add #define MAX_FOO to
their programs and do:
MAX_FOO=100;
again:
compile with MAX_FOO;
try to load;
if (fails_to_load) { reduce MAX_FOO; goto again; }
to be able to fit maximum amount of processing into single program.
Other users artificially split their single program into a set of programs
and use all 32 iterations of tail_calls to increase compute limits.
And the most advanced folks used unlimited tc-bpf filter list
to execute many bpf programs.
Essentially the users managed to workaround 4k insn limit.
This patch removes the limit for root programs from uapi.
BPF_COMPLEXITY_LIMIT_INSNS is the kernel internal limit
and success to load the program no longer depends on program size,
but on 'smartness' of the verifier only.
The verifier will continue to get smarter with every kernel release.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 4f73379e 01-Apr-2019 Alexei Starovoitov <ast@kernel.org>

bpf: verbose jump offset overflow check

Larger programs may trigger 16-bit jump offset overflow check
during instruction patching. Make this error verbose otherwise
users cannot decipher error code without printks in the verifier.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 71dde681 01-Apr-2019 Alexei Starovoitov <ast@kernel.org>

bpf: convert temp arrays to kvcalloc

Temporary arrays used during program verification need to be vmalloc-ed
to support large bpf programs.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 25af32da 01-Apr-2019 Alexei Starovoitov <ast@kernel.org>

bpf: improve verification speed by not remarking live_read

With large verifier speed improvement brought by the previous patch
mark_reg_read() becomes the hottest function during verification.
On a typical program it consumes 40% of cpu.
mark_reg_read() walks parentage chain of registers to mark parents as LIVE_READ.
Once the register is marked there is no need to remark it again in the future.
Hence stop walking the chain once first LIVE_READ is seen.
This optimization drops mark_reg_read() time from 40% of cpu to <1%
and overall 2x improvement of verification speed.
For some programs the longest_mark_read_walk counter improves from ~500 to ~5

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 9f4686c4 01-Apr-2019 Alexei Starovoitov <ast@kernel.org>

bpf: improve verification speed by droping states

Branch instructions, branch targets and calls in a bpf program are
the places where the verifier remembers states that led to successful
verification of the program.
These states are used to prune brute force program analysis.
For unprivileged programs there is a limit of 64 states per such
'branching' instructions (maximum length is tracked by max_states_per_insn
counter introduced in the previous patch).
Simply reducing this threshold to 32 or lower increases insn_processed
metric to the point that small valid programs get rejected.
For root programs there is no limit and cilium programs can have
max_states_per_insn to be 100 or higher.
Walking 100+ states multiplied by number of 'branching' insns during
verification consumes significant amount of cpu time.
Turned out simple LRU-like mechanism can be used to remove states
that unlikely will be helpful in future search pruning.
This patch introduces hit_cnt and miss_cnt counters:
hit_cnt - this many times this state successfully pruned the search
miss_cnt - this many times this state was not equivalent to other states
(and that other states were added to state list)

The heuristic introduced in this patch is:
if (sl->miss_cnt > sl->hit_cnt * 3 + 3)
/* drop this state from future considerations */

Higher numbers increase max_states_per_insn (allow more states to be
considered for pruning) and slow verification speed, but do not meaningfully
reduce insn_processed metric.
Lower numbers drop too many states and insn_processed increases too much.
Many different formulas were considered.
This one is simple and works well enough in practice.
(the analysis was done on selftests/progs/* and on cilium programs)

The end result is this heuristic improves verification speed by 10 times.
Large synthetic programs that used to take a second more now take
1/10 of a second.
In cases where max_states_per_insn used to be 100 or more, now it's ~10.

There is a slight increase in insn_processed for cilium progs:
before after
bpf_lb-DLB_L3.o 1831 1838
bpf_lb-DLB_L4.o 3029 3218
bpf_lb-DUNKNOWN.o 1064 1064
bpf_lxc-DDROP_ALL.o 26309 26935
bpf_lxc-DUNKNOWN.o 33517 34439
bpf_netdev.o 9713 9721
bpf_overlay.o 6184 6184
bpf_lcx_jit.o 37335 39389
And 2-3 times improvement in the verification speed.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 06ee7115 01-Apr-2019 Alexei Starovoitov <ast@kernel.org>

bpf: add verifier stats and log_level bit 2

In order to understand the verifier bottlenecks add various stats
and extend log_level:
log_level 1 and 2 are kept as-is:
bit 0 - level=1 - print every insn and verifier state at branch points
bit 1 - level=2 - print every insn and verifier state at every insn
bit 2 - level=4 - print verifier error and stats at the end of verification

When verifier rejects the program the libbpf is trying to load the program twice.
Once with log_level=0 (no messages, only error code is reported to user space)
and second time with log_level=1 to tell the user why the verifier rejected it.

With introduction of bit 2 - level=4 the libbpf can choose to always use that
level and load programs once, since the verification speed is not affected and
in case of error the verbose message will be available.

Note that the verifier stats are not part of uapi just like all other
verbose messages. They're expected to change in the future.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 2011fccf 28-Mar-2019 Andrey Ignatov <rdna@fb.com>

bpf: Support variable offset stack access from helpers

Currently there is a difference in how verifier checks memory access for
helper arguments for PTR_TO_MAP_VALUE and PTR_TO_STACK with regard to
variable part of offset.

check_map_access, that is used for PTR_TO_MAP_VALUE, can handle variable
offsets just fine, so that BPF program can call a helper like this:

some_helper(map_value_ptr + off, size);

, where offset is unknown at load time, but is checked by program to be
in a safe rage (off >= 0 && off + size < map_value_size).

But it's not the case for check_stack_boundary, that is used for
PTR_TO_STACK, and same code with pointer to stack is rejected by
verifier:

some_helper(stack_value_ptr + off, size);

For example:
0: (7a) *(u64 *)(r10 -16) = 0
1: (7a) *(u64 *)(r10 -8) = 0
2: (61) r2 = *(u32 *)(r1 +0)
3: (57) r2 &= 4
4: (17) r2 -= 16
5: (0f) r2 += r10
6: (18) r1 = 0xffff888111343a80
8: (85) call bpf_map_lookup_elem#1
invalid variable stack read R2 var_off=(0xfffffffffffffff0; 0x4)

Add support for variable offset access to check_stack_boundary so that
if offset is checked by program to be in a safe range it's accepted by
verifier.

Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 927cb781 20-Mar-2019 Paul Chaignon <paul.chaignon@orange.com>

bpf: remove incorrect 'verifier bug' warning

The BPF verifier checks the maximum number of call stack frames twice,
first in the main CFG traversal (do_check) and then in a subsequent
traversal (check_max_stack_depth). If the second check fails, it logs a
'verifier bug' warning and errors out, as the number of call stack frames
should have been verified already.

However, the second check may fail without indicating a verifier bug: if
the excessive function calls reside in dead code, the main CFG traversal
may not visit them; the subsequent traversal visits all instructions,
including dead code.

This case raises the question of how invalid dead code should be treated.
This patch implements the conservative option and rejects such code.

Signed-off-by: Paul Chaignon <paul.chaignon@orange.com>
Tested-by: Xiao Han <xiao.han@orange.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 83d16312 21-Mar-2019 Jakub Kicinski <kuba@kernel.org>

bpf: verifier: propagate liveness on all frames

Commit 7640ead93924 ("bpf: verifier: make sure callees don't prune
with caller differences") connected up parentage chains of all
frames of the stack. It didn't, however, ensure propagate_liveness()
propagates all liveness information along those chains.

This means pruning happening in the callee may generate explored
states with incomplete liveness for the chains in lower frames
of the stack.

The included selftest is similar to the prior one from commit
7640ead93924 ("bpf: verifier: make sure callees don't prune with
caller differences"), where callee would prune regardless of the
difference in r8 state.

Now we also initialize r9 to 0 or 1 based on a result from get_random().
r9 is never read so the walk with r9 = 0 gets pruned (correctly) after
the walk with r9 = 1 completes.

The selftest is so arranged that the pruning will happen in the
callee. Since callee does not propagate read marks of r8, the
explored state at the pruning point prior to the callee will
now ignore r8.

Propagate liveness on all frames of the stack when pruning.

Fixes: f4d7e40a5b71 ("bpf: introduce function calls (verification)")
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# edbf8c01 21-Mar-2019 Lorenz Bauer <lmb@cloudflare.com>

bpf: add skc_lookup_tcp helper

Allow looking up a sock_common. This gives eBPF programs
access to timewait and request sockets.

Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 85a51f8c 21-Mar-2019 Lorenz Bauer <lmb@cloudflare.com>

bpf: allow helpers to return PTR_TO_SOCK_COMMON

It's currently not possible to access timewait or request sockets
from eBPF, since there is no way to return a PTR_TO_SOCK_COMMON
from a helper. Introduce RET_PTR_TO_SOCK_COMMON to enable this
behaviour.

Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 0f3adc28 21-Mar-2019 Lorenz Bauer <lmb@cloudflare.com>

bpf: track references based on is_acquire_func

So far, the verifier only acquires reference tracking state for
RET_PTR_TO_SOCKET_OR_NULL. Instead of extending this for every
new return type which desires these semantics, acquire reference
tracking state iff the called helper is an acquire function.

Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 0803278b 21-Mar-2019 Xu Yu <xuyu@linux.alibaba.com>

bpf: do not restore dst_reg when cur_state is freed

Syzkaller hit 'KASAN: use-after-free Write in sanitize_ptr_alu' bug.

Call trace:

dump_stack+0xbf/0x12e
print_address_description+0x6a/0x280
kasan_report+0x237/0x360
sanitize_ptr_alu+0x85a/0x8d0
adjust_ptr_min_max_vals+0x8f2/0x1ca0
adjust_reg_min_max_vals+0x8ed/0x22e0
do_check+0x1ca6/0x5d00
bpf_check+0x9ca/0x2570
bpf_prog_load+0xc91/0x1030
__se_sys_bpf+0x61e/0x1f00
do_syscall_64+0xc8/0x550
entry_SYSCALL_64_after_hwframe+0x49/0xbe

Fault injection trace:

 kfree+0xea/0x290
 free_func_state+0x4a/0x60
 free_verifier_state+0x61/0xe0
 push_stack+0x216/0x2f0 <- inject failslab
 sanitize_ptr_alu+0x2b1/0x8d0
 adjust_ptr_min_max_vals+0x8f2/0x1ca0
 adjust_reg_min_max_vals+0x8ed/0x22e0
 do_check+0x1ca6/0x5d00
 bpf_check+0x9ca/0x2570
 bpf_prog_load+0xc91/0x1030
 __se_sys_bpf+0x61e/0x1f00
 do_syscall_64+0xc8/0x550
 entry_SYSCALL_64_after_hwframe+0x49/0xbe

When kzalloc() fails in push_stack(), free_verifier_state() will free
current verifier state. As push_stack() returns, dst_reg was restored
if ptr_is_dst_reg is false. However, as member of the cur_state,
dst_reg is also freed, and error occurs when dereferencing dst_reg.
Simply fix it by testing ret of push_stack() before restoring dst_reg.

Fixes: 979d63d50c0c ("bpf: prevent out of bounds speculation on pointer arithmetic")
Signed-off-by: Xu Yu <xuyu@linux.alibaba.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# cba368c1 18-Mar-2019 Martin KaFai Lau <kafai@fb.com>

bpf: Only print ref_obj_id for refcounted reg

Naresh reported that test_align fails because of the mismatch at the
verbose printout of the register states. The reason is due to the newly
added ref_obj_id.

ref_obj_id is only useful for refcounted reg. Thus, this patch fixes it
by only printing ref_obj_id for refcounted reg. While at it, it also uses
comma instead of space to separate between "id" and "ref_obj_id".

Fixes: 1b986589680a ("bpf: Fix bpf_tcp_sock and bpf_sk_fullsock issue related to bpf_sk_release")
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 1b986589 12-Mar-2019 Martin KaFai Lau <kafai@fb.com>

bpf: Fix bpf_tcp_sock and bpf_sk_fullsock issue related to bpf_sk_release

Lorenz Bauer [thanks!] reported that a ptr returned by bpf_tcp_sock(sk)
can still be accessed after bpf_sk_release(sk).
Both bpf_tcp_sock() and bpf_sk_fullsock() have the same issue.
This patch addresses them together.

A simple reproducer looks like this:

sk = bpf_sk_lookup_tcp();
/* if (!sk) ... */
tp = bpf_tcp_sock(sk);
/* if (!tp) ... */
bpf_sk_release(sk);
snd_cwnd = tp->snd_cwnd; /* oops! The verifier does not complain. */

The problem is the verifier did not scrub the register's states of
the tcp_sock ptr (tp) after bpf_sk_release(sk).

[ Note that when calling bpf_tcp_sock(sk), the sk is not always
refcount-acquired. e.g. bpf_tcp_sock(skb->sk). The verifier works
fine for this case. ]

Currently, the verifier does not track if a helper's return ptr (in REG_0)
is "carry"-ing one of its argument's refcount status. To carry this info,
the reg1->id needs to be stored in reg0.

One approach was tried, like "reg0->id = reg1->id", when calling
"bpf_tcp_sock()". The main idea was to avoid adding another "ref_obj_id"
for the same reg. However, overlapping the NULL marking and ref
tracking purpose in one "id" does not work well:

ref_sk = bpf_sk_lookup_tcp();
fullsock = bpf_sk_fullsock(ref_sk);
tp = bpf_tcp_sock(ref_sk);
if (!fullsock) {
bpf_sk_release(ref_sk);
return 0;
}
/* fullsock_reg->id is marked for NOT-NULL.
* Same for tp_reg->id because they have the same id.
*/

/* oops. verifier did not complain about the missing !tp check */
snd_cwnd = tp->snd_cwnd;

Hence, a new "ref_obj_id" is needed in "struct bpf_reg_state".
With a new ref_obj_id, when bpf_sk_release(sk) is called, the verifier can
scrub all reg states which has a ref_obj_id match. It is done with the
changes in release_reg_references() in this patch.

While fixing it, sk_to_full_sk() is removed from bpf_tcp_sock() and
bpf_sk_fullsock() to avoid these helpers from returning
another ptr. It will make bpf_sk_release(tp) possible:

sk = bpf_sk_lookup_tcp();
/* if (!sk) ... */
tp = bpf_tcp_sock(sk);
/* if (!tp) ... */
bpf_sk_release(tp);

A separate helper "bpf_get_listener_sock()" will be added in a later
patch to do sk_to_full_sk().

Misc change notes:
- To allow bpf_sk_release(tp), the arg of bpf_sk_release() is changed
from ARG_PTR_TO_SOCKET to ARG_PTR_TO_SOCK_COMMON. ARG_PTR_TO_SOCKET
is removed from bpf.h since no helper is using it.

- arg_type_is_refcounted() is renamed to arg_type_may_be_refcounted()
because ARG_PTR_TO_SOCK_COMMON is the only one and skb->sk is not
refcounted. All bpf_sk_release(), bpf_sk_fullsock() and bpf_tcp_sock()
take ARG_PTR_TO_SOCK_COMMON.

- check_refcount_ok() ensures is_acquire_function() cannot take
arg_type_may_be_refcounted() as its argument.

- The check_func_arg() can only allow one refcount-ed arg. It is
guaranteed by check_refcount_ok() which ensures at most one arg can be
refcounted. Hence, it is a verifier internal error if >1 refcount arg
found in check_func_arg().

- In release_reference(), release_reference_state() is called
first to ensure a match on "reg->ref_obj_id" can be found before
scrubbing the reg states with release_reg_references().

- reg_is_refcounted() is no longer needed.
1. In mark_ptr_or_null_regs(), its usage is replaced by
"ref_obj_id && ref_obj_id == id" because,
when is_null == true, release_reference_state() should only be
called on the ref_obj_id obtained by a acquire helper (i.e.
is_acquire_function() == true). Otherwise, the following
would happen:

sk = bpf_sk_lookup_tcp();
/* if (!sk) { ... } */
fullsock = bpf_sk_fullsock(sk);
if (!fullsock) {
/*
* release_reference_state(fullsock_reg->ref_obj_id)
* where fullsock_reg->ref_obj_id == sk_reg->ref_obj_id.
*
* Hence, the following bpf_sk_release(sk) will fail
* because the ref state has already been released in the
* earlier release_reference_state(fullsock_reg->ref_obj_id).
*/
bpf_sk_release(sk);
}

2. In release_reg_references(), the current reg_is_refcounted() call
is unnecessary because the id check is enough.

- The type_is_refcounted() and type_is_refcounted_or_null()
are no longer needed also because reg_is_refcounted() is removed.

Fixes: 655a51e536c0 ("bpf: Add struct bpf_tcp_sock and BPF_FUNC_tcp_sock")
Reported-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 20182390 04-Mar-2019 Daniel Borkmann <daniel@iogearbox.net>

bpf: fix replace_map_fd_with_map_ptr's ldimm64 second imm field

Non-zero imm value in the second part of the ldimm64 instruction for
BPF_PSEUDO_MAP_FD is invalid, and thus must be rejected. The map fd
only ever sits in the first instructions' imm field. None of the BPF
loaders known to us are using it, so risk of regression is minimal.
For clarity and consistency, the few insn->{src_reg,imm} occurrences
are rewritten into insn[0].{src_reg,imm}. Add a test case to the BPF
selftest suite as well.

Fixes: 0246e64d9a5f ("bpf: handle pseudo BPF_LD_IMM64 insn")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 3612af78 01-Mar-2019 Daniel Borkmann <daniel@iogearbox.net>

bpf: fix sanitation rewrite in case of non-pointers

Marek reported that he saw an issue with the below snippet in that
timing measurements where off when loaded as unpriv while results
were reasonable when loaded as privileged:

[...]
uint64_t a = bpf_ktime_get_ns();
uint64_t b = bpf_ktime_get_ns();
uint64_t delta = b - a;
if ((int64_t)delta > 0) {
[...]

Turns out there is a bug where a corner case is missing in the fix
d3bd7413e0ca ("bpf: fix sanitation of alu op with pointer / scalar
type from different paths"), namely fixup_bpf_calls() only checks
whether aux has a non-zero alu_state, but it also needs to test for
the case of BPF_ALU_NON_POINTER since in both occasions we need to
skip the masking rewrite (as there is nothing to mask).

Fixes: d3bd7413e0ca ("bpf: fix sanitation of alu op with pointer / scalar type from different paths")
Reported-by: Marek Majkowski <marek@cloudflare.com>
Reported-by: Arthur Fabre <afabre@cloudflare.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/netdev/CAJPywTJqP34cK20iLM5YmUMz9KXQOdu1-+BZrGMAGgLuBWz7fg@mail.gmail.com/T/
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 492ecee8 25-Feb-2019 Alexei Starovoitov <ast@kernel.org>

bpf: enable program stats

JITed BPF programs are indistinguishable from kernel functions, but unlike
kernel code BPF code can be changed often.
Typical approach of "perf record" + "perf report" profiling and tuning of
kernel code works just as well for BPF programs, but kernel code doesn't
need to be monitored whereas BPF programs do.
Users load and run large amount of BPF programs.
These BPF stats allow tools monitor the usage of BPF on the server.
The monitoring tools will turn sysctl kernel.bpf_stats_enabled
on and off for few seconds to sample average cost of the programs.
Aggregated data over hours and days will provide an insight into cost of BPF
and alarms can trigger in case given program suddenly gets more expensive.

The cost of two sched_clock() per program invocation adds ~20 nsec.
Fast BPF progs (like selftests/bpf/progs/test_pkt_access.c) will slow down
from ~10 nsec to ~30 nsec.
static_key minimizes the cost of the stats collection.
There is no measurable difference before/after this patch
with kernel.bpf_stats_enabled=0

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 655a51e5 10-Feb-2019 Martin KaFai Lau <kafai@fb.com>

bpf: Add struct bpf_tcp_sock and BPF_FUNC_tcp_sock

This patch adds a helper function BPF_FUNC_tcp_sock and it
is currently available for cg_skb and sched_(cls|act):

struct bpf_tcp_sock *bpf_tcp_sock(struct bpf_sock *sk);

int cg_skb_foo(struct __sk_buff *skb) {
struct bpf_tcp_sock *tp;
struct bpf_sock *sk;
__u32 snd_cwnd;

sk = skb->sk;
if (!sk)
return 1;

tp = bpf_tcp_sock(sk);
if (!tp)
return 1;

snd_cwnd = tp->snd_cwnd;
/* ... */

return 1;
}

A 'struct bpf_tcp_sock' is also added to the uapi bpf.h to provide
read-only access. bpf_tcp_sock has all the existing tcp_sock's fields
that has already been exposed by the bpf_sock_ops.
i.e. no new tcp_sock's fields are exposed in bpf.h.

This helper returns a pointer to the tcp_sock. If it is not a tcp_sock
or it cannot be traced back to a tcp_sock by sk_to_full_sk(), it
returns NULL. Hence, the caller needs to check for NULL before
accessing it.

The current use case is to expose members from tcp_sock
to allow a cg_skb_bpf_prog to provide per cgroup traffic
policing/shaping.

Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 46f8bc92 10-Feb-2019 Martin KaFai Lau <kafai@fb.com>

bpf: Add a bpf_sock pointer to __sk_buff and a bpf_sk_fullsock helper

In kernel, it is common to check "skb->sk && sk_fullsock(skb->sk)"
before accessing the fields in sock. For example, in __netdev_pick_tx:

static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
struct net_device *sb_dev)
{
/* ... */

struct sock *sk = skb->sk;

if (queue_index != new_index && sk &&
sk_fullsock(sk) &&
rcu_access_pointer(sk->sk_dst_cache))
sk_tx_queue_set(sk, new_index);

/* ... */

return queue_index;
}

This patch adds a "struct bpf_sock *sk" pointer to the "struct __sk_buff"
where a few of the convert_ctx_access() in filter.c has already been
accessing the skb->sk sock_common's fields,
e.g. sock_ops_convert_ctx_access().

"__sk_buff->sk" is a PTR_TO_SOCK_COMMON_OR_NULL in the verifier.
Some of the fileds in "bpf_sock" will not be directly
accessible through the "__sk_buff->sk" pointer. It is limited
by the new "bpf_sock_common_is_valid_access()".
e.g. The existing "type", "protocol", "mark" and "priority" in bpf_sock
are not allowed.

The newly added "struct bpf_sock *bpf_sk_fullsock(struct bpf_sock *sk)"
can be used to get a sk with all accessible fields in "bpf_sock".
This helper is added to both cg_skb and sched_(cls|act).

int cg_skb_foo(struct __sk_buff *skb) {
struct bpf_sock *sk;

sk = skb->sk;
if (!sk)
return 1;

sk = bpf_sk_fullsock(sk);
if (!sk)
return 1;

if (sk->family != AF_INET6 || sk->protocol != IPPROTO_TCP)
return 1;

/* some_traffic_shaping(); */

return 1;
}

(1) The sk is read only

(2) There is no new "struct bpf_sock_common" introduced.

(3) Future kernel sock's members could be added to bpf_sock only
instead of repeatedly adding at multiple places like currently
in bpf_sock_ops_md, bpf_sock_addr_md, sk_reuseport_md...etc.

(4) After "sk = skb->sk", the reg holding sk is in type
PTR_TO_SOCK_COMMON_OR_NULL.

(5) After bpf_sk_fullsock(), the return type will be in type
PTR_TO_SOCKET_OR_NULL which is the same as the return type of
bpf_sk_lookup_xxx().

However, bpf_sk_fullsock() does not take refcnt. The
acquire_reference_state() is only depending on the return type now.
To avoid it, a new is_acquire_function() is checked before calling
acquire_reference_state().

(6) The WARN_ON in "release_reference_state()" is no longer an
internal verifier bug.

When reg->id is not found in state->refs[], it means the
bpf_prog does something wrong like
"bpf_sk_release(bpf_sk_fullsock(skb->sk))" where reference has
never been acquired by calling "bpf_sk_fullsock(skb->sk)".

A -EINVAL and a verbose are done instead of WARN_ON. A test is
added to the test_verifier in a later patch.

Since the WARN_ON in "release_reference_state()" is no longer
needed, "__release_reference_state()" is folded into
"release_reference_state()" also.

Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 5f456649 08-Feb-2019 Martin KaFai Lau <kafai@fb.com>

bpf: Fix narrow load on a bpf_sock returned from sk_lookup()

By adding this test to test_verifier:
{
"reference tracking: access sk->src_ip4 (narrow load)",
.insns = {
BPF_SK_LOOKUP,
BPF_MOV64_REG(BPF_REG_6, BPF_REG_0),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3),
BPF_LDX_MEM(BPF_H, BPF_REG_2, BPF_REG_0, offsetof(struct bpf_sock, src_ip4) + 2),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_EMIT_CALL(BPF_FUNC_sk_release),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
},

The above test loads 2 bytes from sk->src_ip4 where
sk is obtained by bpf_sk_lookup_tcp().

It hits an internal verifier error from convert_ctx_accesses():
[root@arch-fb-vm1 bpf]# ./test_verifier 665 665
Failed to load prog 'Invalid argument'!
0: (b7) r2 = 0
1: (63) *(u32 *)(r10 -8) = r2
2: (7b) *(u64 *)(r10 -16) = r2
3: (7b) *(u64 *)(r10 -24) = r2
4: (7b) *(u64 *)(r10 -32) = r2
5: (7b) *(u64 *)(r10 -40) = r2
6: (7b) *(u64 *)(r10 -48) = r2
7: (bf) r2 = r10
8: (07) r2 += -48
9: (b7) r3 = 36
10: (b7) r4 = 0
11: (b7) r5 = 0
12: (85) call bpf_sk_lookup_tcp#84
13: (bf) r6 = r0
14: (15) if r0 == 0x0 goto pc+3
R0=sock(id=1,off=0,imm=0) R6=sock(id=1,off=0,imm=0) R10=fp0,call_-1 fp-8=????0000 fp-16=0000mmmm fp-24=mmmmmmmm fp-32=mmmmmmmm fp-40=mmmmmmmm fp-48=mmmmmmmm refs=1
15: (69) r2 = *(u16 *)(r0 +26)
16: (bf) r1 = r6
17: (85) call bpf_sk_release#86
18: (95) exit

from 14 to 18: safe
processed 20 insns (limit 131072), stack depth 48
bpf verifier is misconfigured
Summary: 0 PASSED, 0 SKIPPED, 1 FAILED

The bpf_sock_is_valid_access() is expecting src_ip4 can be narrowly
loaded (meaning load any 1 or 2 bytes of the src_ip4) by
marking info->ctx_field_size. However, this marked
ctx_field_size is not used. This patch fixes it.

Due to the recent refactoring in test_verifier,
this new test will be added to the bpf-next branch
(together with the bpf_tcp_sock patchset)
to avoid merge conflict.

Fixes: c64b7983288e ("bpf: Add PTR_TO_SOCKET verifier type")
Cc: Joe Stringer <joe@wand.net.nz>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Joe Stringer <joe@wand.net.nz>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# d6238766 08-Feb-2019 Martin KaFai Lau <kafai@fb.com>

bpf: Fix narrow load on a bpf_sock returned from sk_lookup()

By adding this test to test_verifier:
{
"reference tracking: access sk->src_ip4 (narrow load)",
.insns = {
BPF_SK_LOOKUP,
BPF_MOV64_REG(BPF_REG_6, BPF_REG_0),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3),
BPF_LDX_MEM(BPF_H, BPF_REG_2, BPF_REG_0, offsetof(struct bpf_sock, src_ip4) + 2),
BPF_MOV64_REG(BPF_REG_1, BPF_REG_6),
BPF_EMIT_CALL(BPF_FUNC_sk_release),
BPF_EXIT_INSN(),
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = ACCEPT,
},

The above test loads 2 bytes from sk->src_ip4 where
sk is obtained by bpf_sk_lookup_tcp().

It hits an internal verifier error from convert_ctx_accesses():
[root@arch-fb-vm1 bpf]# ./test_verifier 665 665
Failed to load prog 'Invalid argument'!
0: (b7) r2 = 0
1: (63) *(u32 *)(r10 -8) = r2
2: (7b) *(u64 *)(r10 -16) = r2
3: (7b) *(u64 *)(r10 -24) = r2
4: (7b) *(u64 *)(r10 -32) = r2
5: (7b) *(u64 *)(r10 -40) = r2
6: (7b) *(u64 *)(r10 -48) = r2
7: (bf) r2 = r10
8: (07) r2 += -48
9: (b7) r3 = 36
10: (b7) r4 = 0
11: (b7) r5 = 0
12: (85) call bpf_sk_lookup_tcp#84
13: (bf) r6 = r0
14: (15) if r0 == 0x0 goto pc+3
R0=sock(id=1,off=0,imm=0) R6=sock(id=1,off=0,imm=0) R10=fp0,call_-1 fp-8=????0000 fp-16=0000mmmm fp-24=mmmmmmmm fp-32=mmmmmmmm fp-40=mmmmmmmm fp-48=mmmmmmmm refs=1
15: (69) r2 = *(u16 *)(r0 +26)
16: (bf) r1 = r6
17: (85) call bpf_sk_release#86
18: (95) exit

from 14 to 18: safe
processed 20 insns (limit 131072), stack depth 48
bpf verifier is misconfigured
Summary: 0 PASSED, 0 SKIPPED, 1 FAILED

The bpf_sock_is_valid_access() is expecting src_ip4 can be narrowly
loaded (meaning load any 1 or 2 bytes of the src_ip4) by
marking info->ctx_field_size. However, this marked
ctx_field_size is not used. This patch fixes it.

Due to the recent refactoring in test_verifier,
this new test will be added to the bpf-next branch
(together with the bpf_tcp_sock patchset)
to avoid merge conflict.

Fixes: c64b7983288e ("bpf: Add PTR_TO_SOCKET verifier type")
Cc: Joe Stringer <joe@wand.net.nz>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Joe Stringer <joe@wand.net.nz>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# e16d2f1a 31-Jan-2019 Alexei Starovoitov <ast@kernel.org>

bpf: add support for bpf_spin_lock to cgroup local storage

Allow 'struct bpf_spin_lock' to reside inside cgroup local storage.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# d83525ca 31-Jan-2019 Alexei Starovoitov <ast@kernel.org>

bpf: introduce bpf_spin_lock

Introduce 'struct bpf_spin_lock' and bpf_spin_lock/unlock() helpers to let
bpf program serialize access to other variables.

Example:
struct hash_elem {
int cnt;
struct bpf_spin_lock lock;
};
struct hash_elem * val = bpf_map_lookup_elem(&hash_map, &key);
if (val) {
bpf_spin_lock(&val->lock);
val->cnt++;
bpf_spin_unlock(&val->lock);
}

Restrictions and safety checks:
- bpf_spin_lock is only allowed inside HASH and ARRAY maps.
- BTF description of the map is mandatory for safety analysis.
- bpf program can take one bpf_spin_lock at a time, since two or more can
cause dead locks.
- only one 'struct bpf_spin_lock' is allowed per map element.
It drastically simplifies implementation yet allows bpf program to use
any number of bpf_spin_locks.
- when bpf_spin_lock is taken the calls (either bpf2bpf or helpers) are not allowed.
- bpf program must bpf_spin_unlock() before return.
- bpf program can access 'struct bpf_spin_lock' only via
bpf_spin_lock()/bpf_spin_unlock() helpers.
- load/store into 'struct bpf_spin_lock lock;' field is not allowed.
- to use bpf_spin_lock() helper the BTF description of map value must be
a struct and have 'struct bpf_spin_lock anyname;' field at the top level.
Nested lock inside another struct is not allowed.
- syscall map_lookup doesn't copy bpf_spin_lock field to user space.
- syscall map_update and program map_update do not update bpf_spin_lock field.
- bpf_spin_lock cannot be on the stack or inside networking packet.
bpf_spin_lock can only be inside HASH or ARRAY map value.
- bpf_spin_lock is available to root only and to all program types.
- bpf_spin_lock is not allowed in inner maps of map-in-map.
- ld_abs is not allowed inside spin_lock-ed region.
- tracing progs and socket filter progs cannot use bpf_spin_lock due to
insufficient preemption checks

Implementation details:
- cgroup-bpf class of programs can nest with xdp/tc programs.
Hence bpf_spin_lock is equivalent to spin_lock_irqsave.
Other solutions to avoid nested bpf_spin_lock are possible.
Like making sure that all networking progs run with softirq disabled.
spin_lock_irqsave is the simplest and doesn't add overhead to the
programs that don't use it.
- arch_spinlock_t is used when its implemented as queued_spin_lock
- archs can force their own arch_spinlock_t
- on architectures where queued_spin_lock is not available and
sizeof(arch_spinlock_t) != sizeof(__u32) trivial lock is used.
- presence of bpf_spin_lock inside map value could have been indicated via
extra flag during map_create, but specifying it via BTF is cleaner.
It provides introspection for map key/value and reduces user mistakes.

Next steps:
- allow bpf_spin_lock in other map types (like cgroup local storage)
- introduce BPF_F_LOCK flag for bpf_map_update() syscall and helper
to request kernel to grab bpf_spin_lock before rewriting the value.
That will serialize access to map elements.

Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 092ed096 25-Jan-2019 Jiong Wang <jiong.wang@netronome.com>

bpf: verifier support JMP32

This patch teach verifier about the new BPF_JMP32 instruction class.
Verifier need to treat it similar as the existing BPF_JMP class.
A BPF_JMP32 insn needs to go through all checks that have been done on
BPF_JMP.

Also, verifier is doing runtime optimizations based on the extra info
conditional jump instruction could offer, especially when the comparison is
between constant and register that the value range of the register could be
improved based on the comparison results. These code are updated
accordingly.

Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# a72dafaf 25-Jan-2019 Jiong Wang <jiong.wang@netronome.com>

bpf: refactor verifier min/max code for condition jump

The current min/max code does both signed and unsigned comparisons against
the input argument "val" which is "u64" and there is explicit type casting
when the comparison is signed.

As we will need slightly more complexer type casting when JMP32 introduced,
it is better to host the signed type casting. This makes the code more
clean with ignorable runtime overhead.

Also, code for J*GE/GT/LT/LE and JEQ/JNE are very similar, this patch
combine them.

The main purpose for this refactor is to make sure the min/max code will
still be readable and with minimum code duplication after JMP32 introduced.

Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 08ca90af 22-Jan-2019 Jakub Kicinski <kuba@kernel.org>

bpf: notify offload JITs about optimizations

Let offload JITs know when instructions are replaced and optimized
out, so they can update their state appropriately. The optimizations
are best effort, if JIT returns an error from any callback verifier
will stop notifying it as state may now be out of sync, but the
verifier continues making progress.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 9e4c24e7 22-Jan-2019 Jakub Kicinski <kuba@kernel.org>

bpf: verifier: record original instruction index

The communication between the verifier and advanced JITs is based
on instruction indexes. We have to keep them stable throughout
the optimizations otherwise referring to a particular instruction
gets messy quickly.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# a1b14abc 22-Jan-2019 Jakub Kicinski <kuba@kernel.org>

bpf: verifier: remove unconditional branches by 0

Unconditional branches by 0 instructions are basically noops
but they can result from earlier optimizations, e.g. a conditional
jumps which would never be taken or a conditional jump around
dead code.

Remove those branches.

v0.2:
- s/opt_remove_dead_branches/opt_remove_nops/ (Jiong).

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Jiong Wang <jiong.wang@netronome.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 52875a04 22-Jan-2019 Jakub Kicinski <kuba@kernel.org>

bpf: verifier: remove dead code

Instead of overwriting dead code with jmp -1 instructions
remove it completely for root. Adjust verifier state and
line info appropriately.

v2:
- adjust func_info (Alexei);
- make sure first instruction retains line info (Alexei).
v4: (Yonghong)
- remove unnecessary if (!insn to remove) checks;
- always keep last line info if first live instruction lacks one.
v5: (Martin Lau)
- improve and clarify comments.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# e2ae4ca2 22-Jan-2019 Jakub Kicinski <kuba@kernel.org>

bpf: verifier: hard wire branches to dead code

Loading programs with dead code becomes more and more
common, as people begin to patch constants at load time.
Turn conditional jumps to unconditional ones, to avoid
potential branch misprediction penalty.

This optimization is enabled for privileged users only.

For branches which just fall through we could just mark
them as not seen and have dead code removal take care of
them, but that seems less clean.

v0.2:
- don't call capable(CAP_SYS_ADMIN) twice (Jiong).
v3:
- fix GCC warning;

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# d0b2818e 16-Jan-2019 Peter Oskolkov <posk@google.com>

bpf: fix a (false) compiler warning

An older GCC compiler complains:

kernel/bpf/verifier.c: In function 'bpf_check':
kernel/bpf/verifier.c:4***:13: error: 'prev_offset' may be used uninitialized
in this function [-Werror=maybe-uninitialized]
} else if (krecord[i].insn_offset <= prev_offset) {
^
kernel/bpf/verifier.c:4***:38: note: 'prev_offset' was declared here
u32 i, nfuncs, urec_size, min_size, prev_offset;

Although the compiler is wrong here, the patch makes sure
that prev_offset is always initialized, just to silence the warning.

v2: fix a spelling error in the commit message.

Signed-off-by: Peter Oskolkov <posk@google.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# d3bd7413 05-Jan-2019 Daniel Borkmann <daniel@iogearbox.net>

bpf: fix sanitation of alu op with pointer / scalar type from different paths

While 979d63d50c0c ("bpf: prevent out of bounds speculation on pointer
arithmetic") took care of rejecting alu op on pointer when e.g. pointer
came from two different map values with different map properties such as
value size, Jann reported that a case was not covered yet when a given
alu op is used in both "ptr_reg += reg" and "numeric_reg += reg" from
different branches where we would incorrectly try to sanitize based
on the pointer's limit. Catch this corner case and reject the program
instead.

Fixes: 979d63d50c0c ("bpf: prevent out of bounds speculation on pointer arithmetic")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 979d63d5 02-Jan-2019 Daniel Borkmann <daniel@iogearbox.net>

bpf: prevent out of bounds speculation on pointer arithmetic

Jann reported that the original commit back in b2157399cc98
("bpf: prevent out-of-bounds speculation") was not sufficient
to stop CPU from speculating out of bounds memory access:
While b2157399cc98 only focussed on masking array map access
for unprivileged users for tail calls and data access such
that the user provided index gets sanitized from BPF program
and syscall side, there is still a more generic form affected
from BPF programs that applies to most maps that hold user
data in relation to dynamic map access when dealing with
unknown scalars or "slow" known scalars as access offset, for
example:

- Load a map value pointer into R6
- Load an index into R7
- Do a slow computation (e.g. with a memory dependency) that
loads a limit into R8 (e.g. load the limit from a map for
high latency, then mask it to make the verifier happy)
- Exit if R7 >= R8 (mispredicted branch)
- Load R0 = R6[R7]
- Load R0 = R6[R0]

For unknown scalars there are two options in the BPF verifier
where we could derive knowledge from in order to guarantee
safe access to the memory: i) While </>/<=/>= variants won't
allow to derive any lower or upper bounds from the unknown
scalar where it would be safe to add it to the map value
pointer, it is possible through ==/!= test however. ii) another
option is to transform the unknown scalar into a known scalar,
for example, through ALU ops combination such as R &= <imm>
followed by R |= <imm> or any similar combination where the
original information from the unknown scalar would be destroyed
entirely leaving R with a constant. The initial slow load still
precedes the latter ALU ops on that register, so the CPU
executes speculatively from that point. Once we have the known
scalar, any compare operation would work then. A third option
only involving registers with known scalars could be crafted
as described in [0] where a CPU port (e.g. Slow Int unit)
would be filled with many dependent computations such that
the subsequent condition depending on its outcome has to wait
for evaluation on its execution port and thereby executing
speculatively if the speculated code can be scheduled on a
different execution port, or any other form of mistraining
as described in [1], for example. Given this is not limited
to only unknown scalars, not only map but also stack access
is affected since both is accessible for unprivileged users
and could potentially be used for out of bounds access under
speculation.

In order to prevent any of these cases, the verifier is now
sanitizing pointer arithmetic on the offset such that any
out of bounds speculation would be masked in a way where the
pointer arithmetic result in the destination register will
stay unchanged, meaning offset masked into zero similar as
in array_index_nospec() case. With regards to implementation,
there are three options that were considered: i) new insn
for sanitation, ii) push/pop insn and sanitation as inlined
BPF, iii) reuse of ax register and sanitation as inlined BPF.

Option i) has the downside that we end up using from reserved
bits in the opcode space, but also that we would require
each JIT to emit masking as native arch opcodes meaning
mitigation would have slow adoption till everyone implements
it eventually which is counter-productive. Option ii) and iii)
have both in common that a temporary register is needed in
order to implement the sanitation as inlined BPF since we
are not allowed to modify the source register. While a push /
pop insn in ii) would be useful to have in any case, it
requires once again that every JIT needs to implement it
first. While possible, amount of changes needed would also
be unsuitable for a -stable patch. Therefore, the path which
has fewer changes, less BPF instructions for the mitigation
and does not require anything to be changed in the JITs is
option iii) which this work is pursuing. The ax register is
already mapped to a register in all JITs (modulo arm32 where
it's mapped to stack as various other BPF registers there)
and used in constant blinding for JITs-only so far. It can
be reused for verifier rewrites under certain constraints.
The interpreter's tmp "register" has therefore been remapped
into extending the register set with hidden ax register and
reusing that for a number of instructions that needed the
prior temporary variable internally (e.g. div, mod). This
allows for zero increase in stack space usage in the interpreter,
and enables (restricted) generic use in rewrites otherwise as
long as such a patchlet does not make use of these instructions.
The sanitation mask is dynamic and relative to the offset the
map value or stack pointer currently holds.

There are various cases that need to be taken under consideration
for the masking, e.g. such operation could look as follows:
ptr += val or val += ptr or ptr -= val. Thus, the value to be
sanitized could reside either in source or in destination
register, and the limit is different depending on whether
the ALU op is addition or subtraction and depending on the
current known and bounded offset. The limit is derived as
follows: limit := max_value_size - (smin_value + off). For
subtraction: limit := umax_value + off. This holds because
we do not allow any pointer arithmetic that would
temporarily go out of bounds or would have an unknown
value with mixed signed bounds where it is unclear at
verification time whether the actual runtime value would
be either negative or positive. For example, we have a
derived map pointer value with constant offset and bounded
one, so limit based on smin_value works because the verifier
requires that statically analyzed arithmetic on the pointer
must be in bounds, and thus it checks if resulting
smin_value + off and umax_value + off is still within map
value bounds at time of arithmetic in addition to time of
access. Similarly, for the case of stack access we derive
the limit as follows: MAX_BPF_STACK + off for subtraction
and -off for the case of addition where off := ptr_reg->off +
ptr_reg->var_off.value. Subtraction is a special case for
the masking which can be in form of ptr += -val, ptr -= -val,
or ptr -= val. In the first two cases where we know that
the value is negative, we need to temporarily negate the
value in order to do the sanitation on a positive value
where we later swap the ALU op, and restore original source
register if the value was in source.

The sanitation of pointer arithmetic alone is still not fully
sufficient as is, since a scenario like the following could
happen ...

PTR += 0x1000 (e.g. K-based imm)
PTR -= BIG_NUMBER_WITH_SLOW_COMPARISON
PTR += 0x1000
PTR -= BIG_NUMBER_WITH_SLOW_COMPARISON
[...]

... which under speculation could end up as ...

PTR += 0x1000
PTR -= 0 [ truncated by mitigation ]
PTR += 0x1000
PTR -= 0 [ truncated by mitigation ]
[...]

... and therefore still access out of bounds. To prevent such
case, the verifier is also analyzing safety for potential out
of bounds access under speculative execution. Meaning, it is
also simulating pointer access under truncation. We therefore
"branch off" and push the current verification state after the
ALU operation with known 0 to the verification stack for later
analysis. Given the current path analysis succeeded it is
likely that the one under speculation can be pruned. In any
case, it is also subject to existing complexity limits and
therefore anything beyond this point will be rejected. In
terms of pruning, it needs to be ensured that the verification
state from speculative execution simulation must never prune
a non-speculative execution path, therefore, we mark verifier
state accordingly at the time of push_stack(). If verifier
detects out of bounds access under speculative execution from
one of the possible paths that includes a truncation, it will
reject such program.

Given we mask every reg-based pointer arithmetic for
unprivileged programs, we've been looking into how it could
affect real-world programs in terms of size increase. As the
majority of programs are targeted for privileged-only use
case, we've unconditionally enabled masking (with its alu
restrictions on top of it) for privileged programs for the
sake of testing in order to check i) whether they get rejected
in its current form, and ii) by how much the number of
instructions and size will increase. We've tested this by
using Katran, Cilium and test_l4lb from the kernel selftests.
For Katran we've evaluated balancer_kern.o, Cilium bpf_lxc.o
and an older test object bpf_lxc_opt_-DUNKNOWN.o and l4lb
we've used test_l4lb.o as well as test_l4lb_noinline.o. We
found that none of the programs got rejected by the verifier
with this change, and that impact is rather minimal to none.
balancer_kern.o had 13,904 bytes (1,738 insns) xlated and
7,797 bytes JITed before and after the change. Most complex
program in bpf_lxc.o had 30,544 bytes (3,817 insns) xlated
and 18,538 bytes JITed before and after and none of the other
tail call programs in bpf_lxc.o had any changes either. For
the older bpf_lxc_opt_-DUNKNOWN.o object we found a small
increase from 20,616 bytes (2,576 insns) and 12,536 bytes JITed
before to 20,664 bytes (2,582 insns) and 12,558 bytes JITed
after the change. Other programs from that object file had
similar small increase. Both test_l4lb.o had no change and
remained at 6,544 bytes (817 insns) xlated and 3,401 bytes
JITed and for test_l4lb_noinline.o constant at 5,080 bytes
(634 insns) xlated and 3,313 bytes JITed. This can be explained
in that LLVM typically optimizes stack based pointer arithmetic
by using K-based operations and that use of dynamic map access
is not overly frequent. However, in future we may decide to
optimize the algorithm further under known guarantees from
branch and value speculation. Latter seems also unclear in
terms of prediction heuristics that today's CPUs apply as well
as whether there could be collisions in e.g. the predictor's
Value History/Pattern Table for triggering out of bounds access,
thus masking is performed unconditionally at this point but could
be subject to relaxation later on. We were generally also
brainstorming various other approaches for mitigation, but the
blocker was always lack of available registers at runtime and/or
overhead for runtime tracking of limits belonging to a specific
pointer. Thus, we found this to be minimally intrusive under
given constraints.

With that in place, a simple example with sanitized access on
unprivileged load at post-verification time looks as follows:

# bpftool prog dump xlated id 282
[...]
28: (79) r1 = *(u64 *)(r7 +0)
29: (79) r2 = *(u64 *)(r7 +8)
30: (57) r1 &= 15
31: (79) r3 = *(u64 *)(r0 +4608)
32: (57) r3 &= 1
33: (47) r3 |= 1
34: (2d) if r2 > r3 goto pc+19
35: (b4) (u32) r11 = (u32) 20479 |
36: (1f) r11 -= r2 | Dynamic sanitation for pointer
37: (4f) r11 |= r2 | arithmetic with registers
38: (87) r11 = -r11 | containing bounded or known
39: (c7) r11 s>>= 63 | scalars in order to prevent
40: (5f) r11 &= r2 | out of bounds speculation.
41: (0f) r4 += r11 |
42: (71) r4 = *(u8 *)(r4 +0)
43: (6f) r4 <<= r1
[...]

For the case where the scalar sits in the destination register
as opposed to the source register, the following code is emitted
for the above example:

[...]
16: (b4) (u32) r11 = (u32) 20479
17: (1f) r11 -= r2
18: (4f) r11 |= r2
19: (87) r11 = -r11
20: (c7) r11 s>>= 63
21: (5f) r2 &= r11
22: (0f) r2 += r0
23: (61) r0 = *(u32 *)(r2 +0)
[...]

JIT blinding example with non-conflicting use of r10:

[...]
d5: je 0x0000000000000106 _
d7: mov 0x0(%rax),%edi |
da: mov $0xf153246,%r10d | Index load from map value and
e0: xor $0xf153259,%r10 | (const blinded) mask with 0x1f.
e7: and %r10,%rdi |_
ea: mov $0x2f,%r10d |
f0: sub %rdi,%r10 | Sanitized addition. Both use r10
f3: or %rdi,%r10 | but do not interfere with each
f6: neg %r10 | other. (Neither do these instructions
f9: sar $0x3f,%r10 | interfere with the use of ax as temp
fd: and %r10,%rdi | in interpreter.)
100: add %rax,%rdi |_
103: mov 0x0(%rdi),%eax
[...]

Tested that it fixes Jann's reproducer, and also checked that test_verifier
and test_progs suite with interpreter, JIT and JIT with hardening enabled
on x86-64 and arm64 runs successfully.

[0] Speculose: Analyzing the Security Implications of Speculative
Execution in CPUs, Giorgi Maisuradze and Christian Rossow,
https://arxiv.org/pdf/1801.04084.pdf

[1] A Systematic Evaluation of Transient Execution Attacks and
Defenses, Claudio Canella, Jo Van Bulck, Michael Schwarz,
Moritz Lipp, Benjamin von Berg, Philipp Ortner, Frank Piessens,
Dmitry Evtyushkin, Daniel Gruss,
https://arxiv.org/pdf/1811.05441.pdf

Fixes: b2157399cc98 ("bpf: prevent out-of-bounds speculation")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# b7137c4e 02-Jan-2019 Daniel Borkmann <daniel@iogearbox.net>

bpf: fix check_map_access smin_value test when pointer contains offset

In check_map_access() we probe actual bounds through __check_map_access()
with offset of reg->smin_value + off for lower bound and offset of
reg->umax_value + off for the upper bound. However, even though the
reg->smin_value could have a negative value, the final result of the
sum with off could be positive when pointer arithmetic with known and
unknown scalars is combined. In this case we reject the program with
an error such as "R<x> min value is negative, either use unsigned index
or do a if (index >=0) check." even though the access itself would be
fine. Therefore extend the check to probe whether the actual resulting
reg->smin_value + off is less than zero.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 9d7eceed 02-Jan-2019 Daniel Borkmann <daniel@iogearbox.net>

bpf: restrict unknown scalars of mixed signed bounds for unprivileged

For unknown scalars of mixed signed bounds, meaning their smin_value is
negative and their smax_value is positive, we need to reject arithmetic
with pointer to map value. For unprivileged the goal is to mask every
map pointer arithmetic and this cannot reliably be done when it is
unknown at verification time whether the scalar value is negative or
positive. Given this is a corner case, the likelihood of breaking should
be very small.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# e4298d25 02-Jan-2019 Daniel Borkmann <daniel@iogearbox.net>

bpf: restrict stack pointer arithmetic for unprivileged

Restrict stack pointer arithmetic for unprivileged users in that
arithmetic itself must not go out of bounds as opposed to the actual
access later on. Therefore after each adjust_ptr_min_max_vals() with
a stack pointer as a destination we simulate a check_stack_access()
of 1 byte on the destination and once that fails the program is
rejected for unprivileged program loads. This is analog to map
value pointer arithmetic and needed for masking later on.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 0d6303db 02-Jan-2019 Daniel Borkmann <daniel@iogearbox.net>

bpf: restrict map value pointer arithmetic for unprivileged

Restrict map value pointer arithmetic for unprivileged users in that
arithmetic itself must not go out of bounds as opposed to the actual
access later on. Therefore after each adjust_ptr_min_max_vals() with a
map value pointer as a destination it will simulate a check_map_access()
of 1 byte on the destination and once that fails the program is rejected
for unprivileged program loads. We use this later on for masking any
pointer arithmetic with the remainder of the map value space. The
likelihood of breaking any existing real-world unprivileged eBPF
program is very small for this corner case.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# c08435ec 02-Jan-2019 Daniel Borkmann <daniel@iogearbox.net>

bpf: move {prev_,}insn_idx into verifier env

Move prev_insn_idx and insn_idx from the do_check() function into
the verifier environment, so they can be read inside the various
helper functions for handling the instructions. It's easier to put
this into the environment rather than changing all call-sites only
to pass it along. insn_idx is useful in particular since this later
on allows to hold state in env->insn_aux_data[env->insn_idx].

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 9b38c405 19-Dec-2018 Jakub Kicinski <kuba@kernel.org>

bpf: verifier: reorder stack size check with dead code sanitization

Reorder the calls to check_max_stack_depth() and sanitize_dead_code()
to separate functions which can rewrite instructions from pure checks.

No functional changes.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 960ea056 19-Dec-2018 Jakub Kicinski <kuba@kernel.org>

bpf: verifier: teach the verifier to reason about the BPF_JSET instruction

Some JITs (nfp) try to optimize code on their own. It could make
sense in case of BPF_JSET instruction which is currently not interpreted
by the verifier, meaning for instance that dead could would not be
detected if it was under BPF_JSET branch.

Teach the verifier basics of BPF_JSET, JIT optimizations will be
removed shortly.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Jiong Wang <jiong.wang@netronome.com>
Acked-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# fdbaa0be 19-Dec-2018 Martin KaFai Lau <kafai@fb.com>

bpf: Ensure line_info.insn_off cannot point to insn with zero code

This patch rejects a line_info if the bpf insn code referred by
line_info.insn_off is 0. F.e. a broken userspace tool might generate
a line_info.insn_off that points to the second 8 bytes of a BPF_LD_IMM64.

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 0bae2d4d 15-Dec-2018 Jiong Wang <jiong.wang@netronome.com>

bpf: correct slot_type marking logic to allow more stack slot sharing

Verifier is supposed to support sharing stack slot allocated to ptr with
SCALAR_VALUE for privileged program. However this doesn't happen for some
cases.

The reason is verifier is not clearing slot_type STACK_SPILL for all bytes,
it only clears part of them, while verifier is using:

slot_type[0] == STACK_SPILL

as a convention to check one slot is ptr type.

So, the consequence of partial clearing slot_type is verifier could treat a
partially overridden ptr slot, which should now be a SCALAR_VALUE slot,
still as ptr slot, and rejects some valid programs.

Before this patch, test_xdp_noinline.o under bpf selftests, bpf_lxc.o and
bpf_netdev.o under Cilium bpf repo, when built with -mattr=+alu32 are
rejected due to this issue. After this patch, they all accepted.

There is no processed insn number change before and after this patch on
Cilium bpf programs.

Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 9242b5f5 13-Dec-2018 Alexei Starovoitov <ast@kernel.org>

bpf: add self-check logic to liveness analysis

Introduce REG_LIVE_DONE to check the liveness propagation
and prepare the states for merging.
See algorithm description in clean_live_states().

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 19e2dbb7 13-Dec-2018 Alexei Starovoitov <ast@kernel.org>

bpf: improve stacksafe state comparison

"if (old->allocated_stack > cur->allocated_stack)" check is too conservative.
In some cases explored stack could have allocated more space,
but that stack space was not live.
The test case improves from 19 to 15 processed insns
and improvement on real programs is significant as well:

before after
bpf_lb-DLB_L3.o 1940 1831
bpf_lb-DLB_L4.o 3089 3029
bpf_lb-DUNKNOWN.o 1065 1064
bpf_lxc-DDROP_ALL.o 28052 26309
bpf_lxc-DUNKNOWN.o 35487 33517
bpf_netdev.o 10864 9713
bpf_overlay.o 6643 6184
bpf_lcx_jit.o 38437 37335

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Edward Cree <ecree@solarflare.com>
Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# b233920c 13-Dec-2018 Alexei Starovoitov <ast@kernel.org>

bpf: speed up stacksafe check

Don't check the same stack liveness condition 8 times.
once is enough.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Edward Cree <ecree@solarflare.com>
Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# d9762e84 13-Dec-2018 Martin KaFai Lau <kafai@fb.com>

bpf: verbose log bpf_line_info in verifier

This patch adds bpf_line_info during the verifier's verbose.
It can give error context for debug purpose.

~~~~~~~~~~
Here is the verbose log for backedge:
while (a) {
a += bpf_get_smp_processor_id();
bpf_trace_printk(fmt, sizeof(fmt), a);
}

~> bpftool prog load ./test_loop.o /sys/fs/bpf/test_loop type tracepoint
13: while (a) {
3: a += bpf_get_smp_processor_id();
back-edge from insn 13 to 3

~~~~~~~~~~
Here is the verbose log for invalid pkt access:
Modification to test_xdp_noinline.c:

data = (void *)(long)xdp->data;
data_end = (void *)(long)xdp->data_end;
/*
if (data + 4 > data_end)
return XDP_DROP;
*/
*(u32 *)data = dst->dst;

~> bpftool prog load ./test_xdp_noinline.o /sys/fs/bpf/test_xdp_noinline type xdp
; data = (void *)(long)xdp->data;
224: (79) r2 = *(u64 *)(r10 -112)
225: (61) r2 = *(u32 *)(r2 +0)
; *(u32 *)data = dst->dst;
226: (63) *(u32 *)(r2 +0) = r1
invalid access to packet, off=0 size=4, R2(id=0,off=0,r=0)
R2 offset is outside of the packet

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 23127b33 13-Dec-2018 Martin KaFai Lau <kafai@fb.com>

bpf: Create a new btf_name_by_offset() for non type name use case

The current btf_name_by_offset() is returning "(anon)" type name for
the offset == 0 case and "(invalid-name-offset)" for the out-of-bound
offset case.

It fits well for the internal BTF verbose log purpose which
is focusing on type. For example,
offset == 0 => "(anon)" => anonymous type/name.
Returning non-NULL for the bad offset case is needed
during the BTF verification process because the BTF verifier may
complain about another field first before discovering the name_off
is invalid.

However, it may not be ideal for the newer use case which does not
necessary mean type name. For example, when logging line_info
in the BPF verifier in the next patch, it is better to log an
empty src line instead of logging "(anon)".

The existing bpf_name_by_offset() is renamed to __bpf_name_by_offset()
and static to btf.c.

A new bpf_name_by_offset() is added for generic context usage. It
returns "\0" for name_off == 0 (note that btf->strings[0] is "\0")
and NULL for invalid offset. It allows the caller to decide
what is the best output in its context.

The new btf_name_by_offset() is overlapped with btf_name_offset_valid().
Hence, btf_name_offset_valid() is removed from btf.h to keep the btf.h API
minimal. The existing btf_name_offset_valid() usage in btf.c could also be
replaced later.

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 7640ead9 12-Dec-2018 Jakub Kicinski <kuba@kernel.org>

bpf: verifier: make sure callees don't prune with caller differences

Currently for liveness and state pruning the register parentage
chains don't include states of the callee. This makes some sense
as the callee can't access those registers. However, this means
that READs done after the callee returns will not propagate into
the states of the callee. Callee will then perform pruning
disregarding differences in caller state.

Example:

0: (85) call bpf_user_rnd_u32
1: (b7) r8 = 0
2: (55) if r0 != 0x0 goto pc+1
3: (b7) r8 = 1
4: (bf) r1 = r8
5: (85) call pc+4
6: (15) if r8 == 0x1 goto pc+1
7: (05) *(u64 *)(r9 - 8) = r3
8: (b7) r0 = 0
9: (95) exit

10: (15) if r1 == 0x0 goto pc+0
11: (95) exit

Here we acquire unknown state with call to get_random() [1]. Then
we store this random state in r8 (either 0 or 1) [1 - 3], and make
a call on line 5. Callee does nothing but a trivial conditional
jump (to create a pruning point). Upon return caller checks the
state of r8 and either performs an unsafe read or not.

Verifier will first explore the path with r8 == 1, creating a pruning
point at [11]. The parentage chain for r8 will include only callers
states so once verifier reaches [6] it will mark liveness only on states
in the caller, and not [11]. Now when verifier walks the paths with
r8 == 0 it will reach [11] and since REG_LIVE_READ on r8 was not
propagated there it will prune the walk entirely (stop walking
the entire program, not just the callee). Since [6] was never walked
with r8 == 0, [7] will be considered dead and replaced with "goto -1"
causing hang at runtime.

This patch weaves the callee's explored states onto the callers
parentage chain. Rough parentage for r8 would have looked like this
before:

[0] [1] [2] [3] [4] [5] [10] [11] [6] [7]
| | ,---|----. | | |
sl0: sl0: / sl0: \ sl0: sl0: sl0:
fr0: r8 <-- fr0: r8<+--fr0: r8 `fr0: r8 ,fr0: r8<-fr0: r8
\ fr1: r8 <- fr1: r8 /
\__________________/

after:

[0] [1] [2] [3] [4] [5] [10] [11] [6] [7]
| | | | | |
sl0: sl0: sl0: sl0: sl0: sl0:
fr0: r8 <-- fr0: r8 <- fr0: r8 <- fr0: r8 <-fr0: r8<-fr0: r8
fr1: r8 <- fr1: r8

Now the mark from instruction 6 will travel through callees states.

Note that we don't have to connect r0 because its overwritten by
callees state on return and r1 - r5 because those are not alive
any more once a call is made.

v2:
- don't connect the callees registers twice (Alexei: suggestion & code)
- add more details to the comment (Ed & Alexei)
v1: don't unnecessarily link caller saved regs (Jiong)

Fixes: f4d7e40a5b71 ("bpf: introduce function calls (verification)")
Reported-by: David Beckett <david.beckett@netronome.com>
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# e434b8cd 06-Dec-2018 Jiong Wang <jiong.wang@netronome.com>

bpf: relax verifier restriction on BPF_MOV | BPF_ALU

Currently, the destination register is marked as unknown for 32-bit
sub-register move (BPF_MOV | BPF_ALU) whenever the source register type is
SCALAR_VALUE.

This is too conservative that some valid cases will be rejected.
Especially, this may turn a constant scalar value into unknown value that
could break some assumptions of verifier.

For example, test_l4lb_noinline.c has the following C code:

struct real_definition *dst

1: if (!get_packet_dst(&dst, &pckt, vip_info, is_ipv6))
2: return TC_ACT_SHOT;
3:
4: if (dst->flags & F_IPV6) {

get_packet_dst is responsible for initializing "dst" into valid pointer and
return true (1), otherwise return false (0). The compiled instruction
sequence using alu32 will be:

412: (54) (u32) r7 &= (u32) 1
413: (bc) (u32) r0 = (u32) r7
414: (95) exit

insn 413, a BPF_MOV | BPF_ALU, however will turn r0 into unknown value even
r7 contains SCALAR_VALUE 1.

This causes trouble when verifier is walking the code path that hasn't
initialized "dst" inside get_packet_dst, for which case 0 is returned and
we would then expect verifier concluding line 1 in the above C code pass
the "if" check, therefore would skip fall through path starting at line 4.
Now, because r0 returned from callee has became unknown value, so verifier
won't skip analyzing path starting at line 4 and "dst->flags" requires
dereferencing the pointer "dst" which actually hasn't be initialized for
this path.

This patch relaxed the code marking sub-register move destination. For a
SCALAR_VALUE, it is safe to just copy the value from source then truncate
it into 32-bit.

A unit test also included to demonstrate this issue. This test will fail
before this patch.

This relaxation could let verifier skipping more paths for conditional
comparison against immediate. It also let verifier recording a more
accurate/strict value for one register at one state, if this state end up
with going through exit without rejection and it is used for state
comparison later, then it is possible an inaccurate/permissive value is
better. So the real impact on verifier processed insn number is complex.
But in all, without this fix, valid program could be rejected.

>From real benchmarking on kernel selftests and Cilium bpf tests, there is
no impact on processed instruction number when tests ares compiled with
default compilation options. There is slightly improvements when they are
compiled with -mattr=+alu32 after this patch.

Also, test_xdp_noinline/-mattr=+alu32 now passed verification. It is
rejected before this fix.

Insn processed before/after this patch:

default -mattr=+alu32

Kernel selftest

===
test_xdp.o 371/371 369/369
test_l4lb.o 6345/6345 5623/5623
test_xdp_noinline.o 2971/2971 rejected/2727
test_tcp_estates.o 429/429 430/430

Cilium bpf
===
bpf_lb-DLB_L3.o: 2085/2085 1685/1687
bpf_lb-DLB_L4.o: 2287/2287 1986/1982
bpf_lb-DUNKNOWN.o: 690/690 622/622
bpf_lxc.o: 95033/95033 N/A
bpf_netdev.o: 7245/7245 N/A
bpf_overlay.o: 2898/2898 3085/2947

NOTE:
- bpf_lxc.o and bpf_netdev.o compiled by -mattr=+alu32 are rejected by
verifier due to another issue inside verifier on supporting alu32
binary.
- Each cilium bpf program could generate several processed insn number,
above number is sum of them.

v1->v2:
- Restrict the change on SCALAR_VALUE.
- Update benchmark numbers on Cilium bpf tests.

Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# c454a46b 07-Dec-2018 Martin KaFai Lau <kafai@fb.com>

bpf: Add bpf_line_info support

This patch adds bpf_line_info support.

It accepts an array of bpf_line_info objects during BPF_PROG_LOAD.
The "line_info", "line_info_cnt" and "line_info_rec_size" are added
to the "union bpf_attr". The "line_info_rec_size" makes
bpf_line_info extensible in the future.

The new "check_btf_line()" ensures the userspace line_info is valid
for the kernel to use.

When the verifier is translating/patching the bpf_prog (through
"bpf_patch_insn_single()"), the line_infos' insn_off is also
adjusted by the newly added "bpf_adj_linfo()".

If the bpf_prog is jited, this patch also provides the jited addrs (in
aux->jited_linfo) for the corresponding line_info.insn_off.
"bpf_prog_fill_jited_linfo()" is added to fill the aux->jited_linfo.
It is currently called by the x86 jit. Other jits can also use
"bpf_prog_fill_jited_linfo()" and it will be done in the followup patches.
In the future, if it deemed necessary, a particular jit could also provide
its own "bpf_prog_fill_jited_linfo()" implementation.

A few "*line_info*" fields are added to the bpf_prog_info such
that the user can get the xlated line_info back (i.e. the line_info
with its insn_off reflecting the translated prog). The jited_line_info
is available if the prog is jited. It is an array of __u64.
If the prog is not jited, jited_line_info_cnt is 0.

The verifier's verbose log with line_info will be done in
a follow up patch.

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# c49f7dbd 05-Dec-2018 Jiong Wang <jiong.wang@netronome.com>

bpf: verifier remove the rejection on BPF_ALU | BPF_ARSH

This patch remove the rejection on BPF_ALU | BPF_ARSH as we have supported
them on interpreter and all JIT back-ends

Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# d30d42e0 05-Dec-2018 Martin KaFai Lau <kafai@fb.com>

bpf: Change insn_offset to insn_off in bpf_func_info

The later patch will introduce "struct bpf_line_info" which
has member "line_off" and "file_off" referring back to the
string section in btf. The line_"off" and file_"off"
are more consistent to the naming convention in btf.h that
means "offset" (e.g. name_off in "struct btf_type").

The to-be-added "struct bpf_line_info" also has another
member, "insn_off" which is the same as the "insn_offset"
in "struct bpf_func_info". Hence, this patch renames "insn_offset"
to "insn_off" for "struct bpf_func_info".

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# ceefbc96 03-Dec-2018 Alexei Starovoitov <ast@kernel.org>

bpf: add per-insn complexity limit

malicious bpf program may try to force the verifier to remember
a lot of distinct verifier states.
Put a limit to number of per-insn 'struct bpf_verifier_state'.
Note that hitting the limit doesn't reject the program.
It potentially makes the verifier do more steps to analyze the program.
It means that malicious programs will hit BPF_COMPLEXITY_LIMIT_INSNS sooner
instead of spending cpu time walking long link list.

The limit of BPF_COMPLEXITY_LIMIT_STATES==64 affects cilium progs
with slight increase in number of "steps" it takes to successfully verify
the programs:
before after
bpf_lb-DLB_L3.o 1940 1940
bpf_lb-DLB_L4.o 3089 3089
bpf_lb-DUNKNOWN.o 1065 1065
bpf_lxc-DDROP_ALL.o 28052 | 28162
bpf_lxc-DUNKNOWN.o 35487 | 35541
bpf_netdev.o 10864 10864
bpf_overlay.o 6643 6643
bpf_lcx_jit.o 38437 38437

But it also makes malicious program to be rejected in 0.4 seconds vs 6.5
Hence apply this limit to unprivileged programs only.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 4f7b3e82 03-Dec-2018 Alexei Starovoitov <ast@kernel.org>

bpf: improve verifier branch analysis

pathological bpf programs may try to force verifier to explode in
the number of branch states:
20: (d5) if r1 s<= 0x24000028 goto pc+0
21: (b5) if r0 <= 0xe1fa20 goto pc+2
22: (d5) if r1 s<= 0x7e goto pc+0
23: (b5) if r0 <= 0xe880e000 goto pc+0
24: (c5) if r0 s< 0x2100ecf4 goto pc+0
25: (d5) if r1 s<= 0xe880e000 goto pc+1
26: (c5) if r0 s< 0xf4041810 goto pc+0
27: (d5) if r1 s<= 0x1e007e goto pc+0
28: (b5) if r0 <= 0xe86be000 goto pc+0
29: (07) r0 += 16614
30: (c5) if r0 s< 0x6d0020da goto pc+0
31: (35) if r0 >= 0x2100ecf4 goto pc+0

Teach verifier to recognize always taken and always not taken branches.
This analysis is already done for == and != comparison.
Expand it to all other branches.

It also helps real bpf programs to be verified faster:
before after
bpf_lb-DLB_L3.o 2003 1940
bpf_lb-DLB_L4.o 3173 3089
bpf_lb-DUNKNOWN.o 1080 1065
bpf_lxc-DDROP_ALL.o 29584 28052
bpf_lxc-DUNKNOWN.o 36916 35487
bpf_netdev.o 11188 10864
bpf_overlay.o 6679 6643
bpf_lcx_jit.o 39555 38437

Reported-by: Anatoly Trosinenko <anatoly.trosinenko@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# c3494801 03-Dec-2018 Alexei Starovoitov <ast@kernel.org>

bpf: check pending signals while verifying programs

Malicious user space may try to force the verifier to use as much cpu
time and memory as possible. Hence check for pending signals
while verifying the program.
Note that suspend of sys_bpf(PROG_LOAD) syscall will lead to EAGAIN,
since the kernel has to release the resources used for program verification.

Reported-by: Anatoly Trosinenko <anatoly.trosinenko@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# e9ee9efc 30-Nov-2018 David Miller <davem@davemloft.net>

bpf: Add BPF_F_ANY_ALIGNMENT.

Often we want to write tests cases that check things like bad context
offset accesses. And one way to do this is to use an odd offset on,
for example, a 32-bit load.

This unfortunately triggers the alignment checks first on platforms
that do not set CONFIG_EFFICIENT_UNALIGNED_ACCESS. So the test
case see the alignment failure rather than what it was testing for.

It is often not completely possible to respect the original intention
of the test, or even test the same exact thing, while solving the
alignment issue.

Another option could have been to check the alignment after the
context and other validations are performed by the verifier, but
that is a non-trivial change to the verifier.

Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# ba64e7d8 25-Nov-2018 Yonghong Song <yhs@fb.com>

bpf: btf: support proper non-jit func info

Commit 838e96904ff3 ("bpf: Introduce bpf_func_info")
added bpf func info support. The userspace is able
to get better ksym's for bpf programs with jit, and
is able to print out func prototypes.

For a program containing func-to-func calls, the existing
implementation returns user specified number of function
calls and BTF types if jit is enabled. If the jit is not
enabled, it only returns the type for the main function.

This is undesirable. Interpreter may still be used
and we should keep feature identical regardless of
whether jit is enabled or not.
This patch fixed this discrepancy.

Fixes: 838e96904ff3 ("bpf: Introduce bpf_func_info")
Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 838e9690 19-Nov-2018 Yonghong Song <yhs@fb.com>

bpf: Introduce bpf_func_info

This patch added interface to load a program with the following
additional information:
. prog_btf_fd
. func_info, func_info_rec_size and func_info_cnt
where func_info will provide function range and type_id
corresponding to each function.

The func_info_rec_size is introduced in the UAPI to specify
struct bpf_func_info size passed from user space. This
intends to make bpf_func_info structure growable in the future.
If the kernel gets a different bpf_func_info size from userspace,
it will try to handle user request with part of bpf_func_info
it can understand. In this patch, kernel can understand
struct bpf_func_info {
__u32 insn_offset;
__u32 type_id;
};
If user passed a bpf func_info record size of 16 bytes, the
kernel can still handle part of records with the above definition.

If verifier agrees with function range provided by the user,
the bpf_prog ksym for each function will use the func name
provided in the type_id, which is supposed to provide better
encoding as it is not limited by 16 bytes program name
limitation and this is better for bpf program which contains
multiple subprograms.

The bpf_prog_info interface is also extended to
return btf_id, func_info, func_info_rec_size and func_info_cnt
to userspace, so userspace can print out the function prototype
for each xlated function. The insn_offset in the returned
func_info corresponds to the insn offset for xlated functions.
With other jit related fields in bpf_prog_info, userspace can also
print out function prototypes for each jited function.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# afd59424 15-Nov-2018 Edward Cree <ecree@solarflare.com>

bpf: fix off-by-one error in adjust_subprog_starts

When patching in a new sequence for the first insn of a subprog, the start
of that subprog does not change (it's the first insn of the sequence), so
adjust_subprog_starts should check start <= off (rather than < off).
Also added a test to test_verifier.c (it's essentially the syz reproducer).

Fixes: cc8b0b92a169 ("bpf: introduce function calls (function boundaries)")
Reported-by: syzbot+4fc427c7af994b0948be@syzkaller.appspotmail.com
Signed-off-by: Edward Cree <ecree@solarflare.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 46f53a65 10-Nov-2018 Andrey Ignatov <rdna@fb.com>

bpf: Allow narrow loads with offset > 0

Currently BPF verifier allows narrow loads for a context field only with
offset zero. E.g. if there is a __u32 field then only the following
loads are permitted:
* off=0, size=1 (narrow);
* off=0, size=2 (narrow);
* off=0, size=4 (full).

On the other hand LLVM can generate a load with offset different than
zero that make sense from program logic point of view, but verifier
doesn't accept it.

E.g. tools/testing/selftests/bpf/sendmsg4_prog.c has code:

#define DST_IP4 0xC0A801FEU /* 192.168.1.254 */
...
if ((ctx->user_ip4 >> 24) == (bpf_htonl(DST_IP4) >> 24) &&

where ctx is struct bpf_sock_addr.

Some versions of LLVM can produce the following byte code for it:

8: 71 12 07 00 00 00 00 00 r2 = *(u8 *)(r1 + 7)
9: 67 02 00 00 18 00 00 00 r2 <<= 24
10: 18 03 00 00 00 00 00 fe 00 00 00 00 00 00 00 00 r3 = 4261412864 ll
12: 5d 32 07 00 00 00 00 00 if r2 != r3 goto +7 <LBB0_6>

where `*(u8 *)(r1 + 7)` means narrow load for ctx->user_ip4 with size=1
and offset=3 (7 - sizeof(ctx->user_family) = 3). This load is currently
rejected by verifier.

Verifier code that rejects such loads is in bpf_ctx_narrow_access_ok()
what means any is_valid_access implementation, that uses the function,
works this way, e.g. bpf_skb_is_valid_access() for __sk_buff or
sock_addr_is_valid_access() for bpf_sock_addr.

The patch makes such loads supported. Offset can be in [0; size_default)
but has to be multiple of load size. E.g. for __u32 field the following
loads are supported now:
* off=0, size=1 (narrow);
* off=1, size=1 (narrow);
* off=2, size=1 (narrow);
* off=3, size=1 (narrow);
* off=0, size=2 (narrow);
* off=2, size=2 (narrow);
* off=0, size=4 (full).

Reported-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# a40a2632 09-Nov-2018 Quentin Monnet <quentin@isovalent.com>

bpf: pass prog instead of env to bpf_prog_offload_verifier_prep()

Function bpf_prog_offload_verifier_prep(), called from the kernel BPF
verifier to run a driver-specific callback for preparing for the
verification step for offloaded programs, takes a pointer to a struct
bpf_verifier_env object. However, no driver callback needs the whole
structure at this time: the two drivers supporting this, nfp and
netdevsim, only need a pointer to the struct bpf_prog instance held by
env.

Update the callback accordingly, on kernel side and in these two
drivers.

Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# e647815a 08-Nov-2018 Jiong Wang <jiong.wang@netronome.com>

bpf: let verifier to calculate and record max_pkt_offset

In check_packet_access, update max_pkt_offset after the offset has passed
__check_packet_access.

It should be safe to use u32 for max_pkt_offset as explained in code
comment.

Also, when there is tail call, the max_pkt_offset of the called program is
unknown, so conservatively set max_pkt_offset to MAX_PACKET_OFF for such
case.

Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 4d31f301 31-Oct-2018 Daniel Borkmann <daniel@iogearbox.net>

bpf: don't set id on after map lookup with ptr_to_map_val return

In the verifier there is no such semantics where registers with
PTR_TO_MAP_VALUE type have an id assigned to them. This is only
used in PTR_TO_MAP_VALUE_OR_NULL and later on nullified once the
test against NULL has been pattern matched and type transformed
into PTR_TO_MAP_VALUE.

Fixes: 3e6a4b3e0289 ("bpf/verifier: introduce BPF_PTR_TO_MAP_VALUE")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: Roman Gushchin <guro@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 0962590e 31-Oct-2018 Daniel Borkmann <daniel@iogearbox.net>

bpf: fix partial copy of map_ptr when dst is scalar

ALU operations on pointers such as scalar_reg += map_value_ptr are
handled in adjust_ptr_min_max_vals(). Problem is however that map_ptr
and range in the register state share a union, so transferring state
through dst_reg->range = ptr_reg->range is just buggy as any new
map_ptr in the dst_reg is then truncated (or null) for subsequent
checks. Fix this by adding a raw member and use it for copying state
over to dst_reg.

Fixes: f1174f77b50c ("bpf/verifier: rework value tracking")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: Edward Cree <ecree@solarflare.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# b09928b9 24-Oct-2018 Daniel Borkmann <daniel@iogearbox.net>

bpf: make direct packet write unclone more robust

Given this seems to be quite fragile and can easily slip through the
cracks, lets make direct packet write more robust by requiring that
future program types which allow for such write must provide a prologue
callback. In case of XDP and sk_msg it's noop, thus add a generic noop
handler there. The latter starts out with NULL data/data_end unconditionally
when sg pages are shared.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# d5563d36 24-Oct-2018 Daniel Borkmann <daniel@iogearbox.net>

bpf: fix cg_skb types to hint access type in may_access_direct_pkt_data

Commit b39b5f411dcf ("bpf: add cg_skb_is_valid_access for
BPF_PROG_TYPE_CGROUP_SKB") added direct packet access for skbs in
cg_skb program types, however allowed access type was not added to
the may_access_direct_pkt_data() helper. Therefore the latter always
returns false. This is not directly an issue, it just means writes
are unconditionally disabled (which is correct) but also reads.
Latter is relevant in this function when BPF helpers may read direct
packet data which is unconditionally disabled then. Fix it by properly
adding BPF_PROG_TYPE_CGROUP_SKB to may_access_direct_pkt_data().

Fixes: b39b5f411dcf ("bpf: add cg_skb_is_valid_access for BPF_PROG_TYPE_CGROUP_SKB")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 5d66fa7d 24-Oct-2018 Daniel Borkmann <daniel@iogearbox.net>

bpf: fix direct packet access for flow dissector progs

Commit d58e468b1112 ("flow_dissector: implements flow dissector BPF
hook") added direct packet access for skbs in may_access_direct_pkt_data()
function where this enables read and write access to the skb->data. This
is buggy because without a prologue generator such as bpf_unclone_prologue()
we would allow for writing into cloned skbs. Original intention might have
been to only allow read access where this is not needed (similar as the
flow_dissector_func_proto() indicates which enables only bpf_skb_load_bytes()
as well), therefore this patch fixes it to restrict to read-only.

Fixes: d58e468b1112 ("flow_dissector: implements flow dissector BPF hook")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: Petar Penkov <ppenkov@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 84430d42 20-Oct-2018 Daniel Borkmann <daniel@iogearbox.net>

bpf, verifier: avoid retpoline for map push/pop/peek operation

Extend prior work from 09772d92cd5a ("bpf: avoid retpoline for
lookup/update/delete calls on maps") to also apply to the recently
added map helpers that perform push/pop/peek operations so that
the indirect call can be avoided.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# ad38911d 20-Oct-2018 Daniel Borkmann <daniel@iogearbox.net>

bpf, verifier: remove unneeded flow key in check_helper_mem_access

They PTR_TO_FLOW_KEYS is not used today to be passed into a helper
as memory, so it can be removed from check_helper_mem_access().

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 4b5defde 20-Oct-2018 Daniel Borkmann <daniel@iogearbox.net>

bpf, verifier: reject xadd on flow key memory

We should not enable xadd operation for flow key memory if not
needed there anyway. There is no such issue as described in the
commit f37a8cb84cce ("bpf: reject stores into ctx via st and xadd")
since there's no context rewriter for flow keys today, but it
also shouldn't become part of the user facing behavior to allow
for it. After patch:

0: (79) r7 = *(u64 *)(r1 +144)
1: (b7) r3 = 4096
2: (db) lock *(u64 *)(r7 +0) += r3
BPF_XADD stores into R7 flow_keys is not allowed

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 2a159c6f 20-Oct-2018 Daniel Borkmann <daniel@iogearbox.net>

bpf, verifier: fix register type dump in xadd and st

Using reg_type_str[insn->dst_reg] is incorrect since insn->dst_reg
contains the register number but not the actual register type. Add
a small reg_state() helper and use it to get to the type. Also fix
up the test_verifier test cases that have an incorrect errstr.

Fixes: 9d2be44a7f33 ("bpf: Reuse canonical string formatter for ctx errs")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# f1a2e44a 18-Oct-2018 Mauricio Vasquez B <mauricio.vasquez@polito.it>

bpf: add queue and stack maps

Queue/stack maps implement a FIFO/LIFO data storage for ebpf programs.
These maps support peek, pop and push operations that are exposed to eBPF
programs through the new bpf_map[peek/pop/push] helpers. Those operations
are exposed to userspace applications through the already existing
syscalls in the following way:

BPF_MAP_LOOKUP_ELEM -> peek
BPF_MAP_LOOKUP_AND_DELETE_ELEM -> pop
BPF_MAP_UPDATE_ELEM -> push

Queue/stack maps are implemented using a buffer, tail and head indexes,
hence BPF_F_NO_PREALLOC is not supported.

As opposite to other maps, queue and stack do not use RCU for protecting
maps values, the bpf_map[peek/pop] have a ARG_PTR_TO_UNINIT_MAP_VALUE
argument that is a pointer to a memory zone where to save the value of a
map. Basically the same as ARG_PTR_TO_UNINIT_MEM, but the size has not
be passed as an extra argument.

Our main motivation for implementing queue/stack maps was to keep track
of a pool of elements, like network ports in a SNAT, however we forsee
other use cases, like for exampling saving last N kernel events in a map
and then analysing from userspace.

Signed-off-by: Mauricio Vasquez B <mauricio.vasquez@polito.it>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 2ea864c5 18-Oct-2018 Mauricio Vasquez B <mauricio.vasquez@polito.it>

bpf/verifier: add ARG_PTR_TO_UNINIT_MAP_VALUE

ARG_PTR_TO_UNINIT_MAP_VALUE argument is a pointer to a memory zone
used to save the value of a map. Basically the same as
ARG_PTR_TO_UNINIT_MEM, but the size has not be passed as an extra
argument.

This will be used in the following patch that implements some new
helpers that receive a pointer to be filled with a map value.

Signed-off-by: Mauricio Vasquez B <mauricio.vasquez@polito.it>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# e4052d06 06-Oct-2018 Quentin Monnet <quentin@isovalent.com>

bpf: allow offload of programs with BPF-to-BPF function calls

Now that there is at least one driver supporting BPF-to-BPF function
calls, lift the restriction, in the verifier, on hardware offload of
eBPF programs containing such calls. But prevent jit_subprogs(), still
in the verifier, from being run for offloaded programs.

Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com>
Reviewed-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# c941ce9c 06-Oct-2018 Quentin Monnet <quentin@isovalent.com>

bpf: add verifier callback to get stack usage info for offloaded progs

In preparation for BPF-to-BPF calls in offloaded programs, add a new
function attribute to the struct bpf_prog_offload_ops so that drivers
supporting eBPF offload can hook at the end of program verification, and
potentially extract information collected by the verifier.

Implement a minimal callback (returning 0) in the drivers providing the
structs, namely netdevsim and nfp.

This will be useful in the nfp driver, in later commits, to extract the
number of subprograms as well as the stack depth for those subprograms.

Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com>
Reviewed-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# b799207e 05-Oct-2018 Jann Horn <jannh@google.com>

bpf: 32-bit RSH verification must truncate input before the ALU op

When I wrote commit 468f6eafa6c4 ("bpf: fix 32-bit ALU op verification"), I
assumed that, in order to emulate 64-bit arithmetic with 32-bit logic, it
is sufficient to just truncate the output to 32 bits; and so I just moved
the register size coercion that used to be at the start of the function to
the end of the function.

That assumption is true for almost every op, but not for 32-bit right
shifts, because those can propagate information towards the least
significant bit. Fix it by always truncating inputs for 32-bit ops to 32
bits.

Also get rid of the coerce_reg_to_size() after the ALU op, since that has
no effect.

Fixes: 468f6eafa6c4 ("bpf: fix 32-bit ALU op verification")
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 6acc9b43 02-Oct-2018 Joe Stringer <joe@wand.net.nz>

bpf: Add helper to retrieve socket in BPF

This patch adds new BPF helper functions, bpf_sk_lookup_tcp() and
bpf_sk_lookup_udp() which allows BPF programs to find out if there is a
socket listening on this host, and returns a socket pointer which the
BPF program can then access to determine, for instance, whether to
forward or drop traffic. bpf_sk_lookup_xxx() may take a reference on the
socket, so when a BPF program makes use of this function, it must
subsequently pass the returned pointer into the newly added sk_release()
to return the reference.

By way of example, the following pseudocode would filter inbound
connections at XDP if there is no corresponding service listening for
the traffic:

struct bpf_sock_tuple tuple;
struct bpf_sock_ops *sk;

populate_tuple(ctx, &tuple); // Extract the 5tuple from the packet
sk = bpf_sk_lookup_tcp(ctx, &tuple, sizeof tuple, netns, 0);
if (!sk) {
// Couldn't find a socket listening for this traffic. Drop.
return TC_ACT_SHOT;
}
bpf_sk_release(sk, 0);
return TC_ACT_OK;

Signed-off-by: Joe Stringer <joe@wand.net.nz>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# fd978bf7 02-Oct-2018 Joe Stringer <joe@wand.net.nz>

bpf: Add reference tracking to verifier

Allow helper functions to acquire a reference and return it into a
register. Specific pointer types such as the PTR_TO_SOCKET will
implicitly represent such a reference. The verifier must ensure that
these references are released exactly once in each path through the
program.

To achieve this, this commit assigns an id to the pointer and tracks it
in the 'bpf_func_state', then when the function or program exits,
verifies that all of the acquired references have been freed. When the
pointer is passed to a function that frees the reference, it is removed
from the 'bpf_func_state` and all existing copies of the pointer in
registers are marked invalid.

Signed-off-by: Joe Stringer <joe@wand.net.nz>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 84dbf350 02-Oct-2018 Joe Stringer <joe@wand.net.nz>

bpf: Macrofy stack state copy

An upcoming commit will need very similar copy/realloc boilerplate, so
refactor the existing stack copy/realloc functions into macros to
simplify it.

Signed-off-by: Joe Stringer <joe@wand.net.nz>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# c64b7983 02-Oct-2018 Joe Stringer <joe@wand.net.nz>

bpf: Add PTR_TO_SOCKET verifier type

Teach the verifier a little bit about a new type of pointer, a
PTR_TO_SOCKET. This pointer type is accessed from BPF through the
'struct bpf_sock' structure.

Signed-off-by: Joe Stringer <joe@wand.net.nz>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 840b9615 02-Oct-2018 Joe Stringer <joe@wand.net.nz>

bpf: Generalize ptr_or_null regs check

This check will be reused by an upcoming commit for conditional jump
checks for sockets. Refactor it a bit to simplify the later commit.

Signed-off-by: Joe Stringer <joe@wand.net.nz>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 9d2be44a 02-Oct-2018 Joe Stringer <joe@wand.net.nz>

bpf: Reuse canonical string formatter for ctx errs

The array "reg_type_str" provides canonical formatting of register
types, however a couple of places would previously check whether a
register represented the context and write the name "context" directly.
An upcoming commit will add another pointer type to these statements, so
to provide more accurate error messages in the verifier, update these
error messages to use "reg_type_str" instead.

Signed-off-by: Joe Stringer <joe@wand.net.nz>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# aad2eeaf 02-Oct-2018 Joe Stringer <joe@wand.net.nz>

bpf: Simplify ptr_min_max_vals adjustment

An upcoming commit will add another two pointer types that need very
similar behaviour, so generalise this function now.

Signed-off-by: Joe Stringer <joe@wand.net.nz>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# f3709f69 02-Oct-2018 Joe Stringer <joe@wand.net.nz>

bpf: Add iterator for spilled registers

Add this iterator for spilled registers, it concentrates the details of
how to get the current frame's spilled registers into a single macro
while clarifying the intention of the code which is calling the macro.

Signed-off-by: Joe Stringer <joe@wand.net.nz>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# b741f163 28-Sep-2018 Roman Gushchin <guro@fb.com>

bpf: introduce per-cpu cgroup local storage

This commit introduced per-cpu cgroup local storage.

Per-cpu cgroup local storage is very similar to simple cgroup storage
(let's call it shared), except all the data is per-cpu.

The main goal of per-cpu variant is to implement super fast
counters (e.g. packet counters), which don't require neither
lookups, neither atomic operations.

>From userspace's point of view, accessing a per-cpu cgroup storage
is similar to other per-cpu map types (e.g. per-cpu hashmaps and
arrays).

Writing to a per-cpu cgroup storage is not atomic, but is performed
by copying longs, so some minimal atomicity is here, exactly
as with other per-cpu maps.

Signed-off-by: Roman Gushchin <guro@fb.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 8bad74f9 28-Sep-2018 Roman Gushchin <guro@fb.com>

bpf: extend cgroup bpf core to allow multiple cgroup storage types

In order to introduce per-cpu cgroup storage, let's generalize
bpf cgroup core to support multiple cgroup storage types.
Potentially, per-node cgroup storage can be added later.

This commit is mostly a formal change that replaces
cgroup_storage pointer with a array of cgroup_storage pointers.
It doesn't actually introduce a new storage type,
it will be done later.

Each bpf program is now able to have one cgroup storage of each type.

Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Song Liu <songliubraving@fb.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# d58e468b 14-Sep-2018 Petar Penkov <ppenkov@google.com>

flow_dissector: implements flow dissector BPF hook

Adds a hook for programs of type BPF_PROG_TYPE_FLOW_DISSECTOR and
attach type BPF_FLOW_DISSECTOR that is executed in the flow dissector
path. The BPF program is per-network namespace.

Signed-off-by: Petar Penkov <ppenkov@google.com>
Signed-off-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# dd066823 12-Sep-2018 Alexei Starovoitov <ast@kernel.org>

bpf/verifier: disallow pointer subtraction

Subtraction of pointers was accidentally allowed for unpriv programs
by commit 82abbf8d2fc4. Revert that part of commit.

Fixes: 82abbf8d2fc4 ("bpf: do not allow root to mangle valid pointers")
Reported-by: Jann Horn <jannh@google.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# a9c676bc 04-Sep-2018 Alexei Starovoitov <ast@kernel.org>

bpf/verifier: fix verifier instability

Edward Cree says:
In check_mem_access(), for the PTR_TO_CTX case, after check_ctx_access()
has supplied a reg_type, the other members of the register state are set
appropriately. Previously reg.range was set to 0, but as it is in a
union with reg.map_ptr, which is larger, upper bytes of the latter were
left in place. This then caused the memcmp() in regsafe() to fail,
preventing some branches from being pruned (and occasionally causing the
same program to take a varying number of processed insns on repeated
verifier runs).

Fix the instability by clearing bpf_reg_state in __mark_reg_[un]known()

Fixes: f1174f77b50c ("bpf/verifier: rework value tracking")
Debugged-by: Edward Cree <ecree@solarflare.com>
Acked-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 8efea21d 22-Aug-2018 Edward Cree <ecree@solarflare.com>

bpf/verifier: display non-spill stack slot types in print_verifier_state

If a stack slot does not hold a spilled register (STACK_SPILL), then each
of its eight bytes could potentially have a different slot_type. This
information can be important for debugging, and previously we either did
not print anything for the stack slot, or just printed fp-X=0 in the case
where its first byte was STACK_ZERO.
Instead, print eight characters with either 0 (STACK_ZERO), m (STACK_MISC)
or ? (STACK_INVALID) for any stack slot which is neither STACK_SPILL nor
entirely STACK_INVALID.

Signed-off-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 679c782d 22-Aug-2018 Edward Cree <ecree@solarflare.com>

bpf/verifier: per-register parent pointers

By giving each register its own liveness chain, we elide the skip_callee()
logic. Instead, each register's parent is the state it inherits from;
both check_func_call() and prepare_func_exit() automatically connect
reg states to the correct chain since when they copy the reg state across
(r1-r5 into the callee as args, and r0 out as the return value) they also
copy the parent pointer.

Signed-off-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# f6069b9a 17-Aug-2018 Daniel Borkmann <daniel@iogearbox.net>

bpf: fix redirect to map under tail calls

Commits 109980b894e9 ("bpf: don't select potentially stale ri->map
from buggy xdp progs") and 7c3001313396 ("bpf: fix ri->map_owner
pointer on bpf_prog_realloc") tried to mitigate that buggy programs
using bpf_redirect_map() helper call do not leave stale maps behind.
Idea was to add a map_owner cookie into the per CPU struct redirect_info
which was set to prog->aux by the prog making the helper call as a
proof that the map is not stale since the prog is implicitly holding
a reference to it. This owner cookie could later on get compared with
the program calling into BPF whether they match and therefore the
redirect could proceed with processing the map safely.

In (obvious) hindsight, this approach breaks down when tail calls are
involved since the original caller's prog->aux pointer does not have
to match the one from one of the progs out of the tail call chain,
and therefore the xdp buffer will be dropped instead of redirected.
A way around that would be to fix the issue differently (which also
allows to remove related work in fast path at the same time): once
the life-time of a redirect map has come to its end we use it's map
free callback where we need to wait on synchronize_rcu() for current
outstanding xdp buffers and remove such a map pointer from the
redirect info if found to be present. At that time no program is
using this map anymore so we simply invalidate the map pointers to
NULL iff they previously pointed to that instance while making sure
that the redirect path only reads out the map once.

Fixes: 97f91a7cf04f ("bpf: add bpf_redirect_map helper routine")
Fixes: 109980b894e9 ("bpf: don't select potentially stale ri->map from buggy xdp progs")
Reported-by: Sebastiano Miano <sebastiano.miano@polito.it>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 2dbb9b9e 08-Aug-2018 Martin KaFai Lau <kafai@fb.com>

bpf: Introduce BPF_PROG_TYPE_SK_REUSEPORT

This patch adds a BPF_PROG_TYPE_SK_REUSEPORT which can select
a SO_REUSEPORT sk from a BPF_MAP_TYPE_REUSEPORT_ARRAY. Like other
non SK_FILTER/CGROUP_SKB program, it requires CAP_SYS_ADMIN.

BPF_PROG_TYPE_SK_REUSEPORT introduces "struct sk_reuseport_kern"
to store the bpf context instead of using the skb->cb[48].

At the SO_REUSEPORT sk lookup time, it is in the middle of transiting
from a lower layer (ipv4/ipv6) to a upper layer (udp/tcp). At this
point, it is not always clear where the bpf context can be appended
in the skb->cb[48] to avoid saving-and-restoring cb[]. Even putting
aside the difference between ipv4-vs-ipv6 and udp-vs-tcp. It is not
clear if the lower layer is only ipv4 and ipv6 in the future and
will it not touch the cb[] again before transiting to the upper
layer.

For example, in udp_gro_receive(), it uses the 48 byte NAPI_GRO_CB
instead of IP[6]CB and it may still modify the cb[] after calling
the udp[46]_lib_lookup_skb(). Because of the above reason, if
sk->cb is used for the bpf ctx, saving-and-restoring is needed
and likely the whole 48 bytes cb[] has to be saved and restored.

Instead of saving, setting and restoring the cb[], this patch opts
to create a new "struct sk_reuseport_kern" and setting the needed
values in there.

The new BPF_PROG_TYPE_SK_REUSEPORT and "struct sk_reuseport_(kern|md)"
will serve all ipv4/ipv6 + udp/tcp combinations. There is no protocol
specific usage at this point and it is also inline with the current
sock_reuseport.c implementation (i.e. no protocol specific requirement).

In "struct sk_reuseport_md", this patch exposes data/data_end/len
with semantic similar to other existing usages. Together
with "bpf_skb_load_bytes()" and "bpf_skb_load_bytes_relative()",
the bpf prog can peek anywhere in the skb. The "bind_inany" tells
the bpf prog that the reuseport group is bind-ed to a local
INANY address which cannot be learned from skb.

The new "bind_inany" is added to "struct sock_reuseport" which will be
used when running the new "BPF_PROG_TYPE_SK_REUSEPORT" bpf prog in order
to avoid repeating the "bind INANY" test on
"sk_v6_rcv_saddr/sk->sk_rcv_saddr" every time a bpf prog is run. It can
only be properly initialized when a "sk->sk_reuseport" enabled sk is
adding to a hashtable (i.e. during "reuseport_alloc()" and
"reuseport_add_sock()").

The new "sk_select_reuseport()" is the main helper that the
bpf prog will use to select a SO_REUSEPORT sk. It is the only function
that can use the new BPF_MAP_TYPE_REUSEPORT_ARRAY. As mentioned in
the earlier patch, the validity of a selected sk is checked in
run time in "sk_select_reuseport()". Doing the check in
verification time is difficult and inflexible (consider the map-in-map
use case). The runtime check is to compare the selected sk's reuseport_id
with the reuseport_id that we want. This helper will return -EXXX if the
selected sk cannot serve the incoming request (e.g. reuseport_id
not match). The bpf prog can decide if it wants to do SK_DROP as its
discretion.

When the bpf prog returns SK_PASS, the kernel will check if a
valid sk has been selected (i.e. "reuse_kern->selected_sk != NULL").
If it does , it will use the selected sk. If not, the kernel
will select one from "reuse->socks[]" (as before this patch).

The SK_DROP and SK_PASS handling logic will be in the next patch.

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# cd339431 02-Aug-2018 Roman Gushchin <guro@fb.com>

bpf: introduce the bpf_get_local_storage() helper function

The bpf_get_local_storage() helper function is used
to get a pointer to the bpf local storage from a bpf program.

It takes a pointer to a storage map and flags as arguments.
Right now it accepts only cgroup storage maps, and flags
argument has to be 0. Further it can be extended to support
other types of local storage: e.g. thread local storage etc.

Signed-off-by: Roman Gushchin <guro@fb.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 3e6a4b3e 02-Aug-2018 Roman Gushchin <guro@fb.com>

bpf/verifier: introduce BPF_PTR_TO_MAP_VALUE

BPF_MAP_TYPE_CGROUP_STORAGE maps are special in a way
that the access from the bpf program side is lookup-free.
That means the result is guaranteed to be a valid
pointer to the cgroup storage; no NULL-check is required.

This patch introduces BPF_PTR_TO_MAP_VALUE return type,
which is required to cause the verifier accept programs,
which are not checking the map value pointer for being NULL.

Signed-off-by: Roman Gushchin <guro@fb.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# de9cbbaa 02-Aug-2018 Roman Gushchin <guro@fb.com>

bpf: introduce cgroup storage maps

This commit introduces BPF_MAP_TYPE_CGROUP_STORAGE maps:
a special type of maps which are implementing the cgroup storage.

>From the userspace point of view it's almost a generic
hash map with the (cgroup inode id, attachment type) pair
used as a key.

The only difference is that some operations are restricted:
1) a user can't create new entries,
2) a user can't remove existing entries.

The lookup from userspace is o(log(n)).

Signed-off-by: Roman Gushchin <guro@fb.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# fbeb1603 31-Jul-2018 Arthur Fabre <afabre@cloudflare.com>

bpf: verifier: MOV64 don't mark dst reg unbounded

When check_alu_op() handles a BPF_MOV64 between two registers,
it calls check_reg_arg(DST_OP) on the dst register, marking it
as unbounded. If the src and dst register are the same, this
marks the src as unbounded, which can lead to unexpected errors
for further checks that rely on bounds info. For example:

BPF_MOV64_IMM(BPF_REG_2, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_2),
BPF_ALU64_REG(BPF_ADD, BPF_REG_1, BPF_REG_2),
BPF_MOV64_IMM(BPF_REG_0, 0),
BPF_EXIT_INSN(),

Results in:

"math between ctx pointer and register with unbounded
min value is not allowed"

check_alu_op() now uses check_reg_arg(DST_OP_NO_MARK), and MOVs
that need to mark the dst register (MOVIMM, MOV32) do so.

Added a test case for MOV64 dst == src, and dst != src.

Signed-off-by: Arthur Fabre <afabre@cloudflare.com>
Acked-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 09728266 17-Jul-2018 Jakub Kicinski <kuba@kernel.org>

bpf: offload: rename bpf_offload_dev_match() to bpf_offload_prog_map_match()

A set of new API functions exported for the drivers will soon use
'bpf_offload_dev_' as a prefix. Rename the bpf_offload_dev_match()
which is internal to the core (used by the verifier) to avoid any
confusion.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# c7a89784 12-Jul-2018 Daniel Borkmann <daniel@iogearbox.net>

bpf: don't leave partial mangled prog in jit_subprogs error path

syzkaller managed to trigger the following bug through fault injection:

[...]
[ 141.043668] verifier bug. No program starts at insn 3
[ 141.044648] WARNING: CPU: 3 PID: 4072 at kernel/bpf/verifier.c:1613
get_callee_stack_depth kernel/bpf/verifier.c:1612 [inline]
[ 141.044648] WARNING: CPU: 3 PID: 4072 at kernel/bpf/verifier.c:1613
fixup_call_args kernel/bpf/verifier.c:5587 [inline]
[ 141.044648] WARNING: CPU: 3 PID: 4072 at kernel/bpf/verifier.c:1613
bpf_check+0x525e/0x5e60 kernel/bpf/verifier.c:5952
[ 141.047355] CPU: 3 PID: 4072 Comm: a.out Not tainted 4.18.0-rc4+ #51
[ 141.048446] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996),BIOS 1.10.2-1 04/01/2014
[ 141.049877] Call Trace:
[ 141.050324] __dump_stack lib/dump_stack.c:77 [inline]
[ 141.050324] dump_stack+0x1c9/0x2b4 lib/dump_stack.c:113
[ 141.050950] ? dump_stack_print_info.cold.2+0x52/0x52 lib/dump_stack.c:60
[ 141.051837] panic+0x238/0x4e7 kernel/panic.c:184
[ 141.052386] ? add_taint.cold.5+0x16/0x16 kernel/panic.c:385
[ 141.053101] ? __warn.cold.8+0x148/0x1ba kernel/panic.c:537
[ 141.053814] ? __warn.cold.8+0x117/0x1ba kernel/panic.c:530
[ 141.054506] ? get_callee_stack_depth kernel/bpf/verifier.c:1612 [inline]
[ 141.054506] ? fixup_call_args kernel/bpf/verifier.c:5587 [inline]
[ 141.054506] ? bpf_check+0x525e/0x5e60 kernel/bpf/verifier.c:5952
[ 141.055163] __warn.cold.8+0x163/0x1ba kernel/panic.c:538
[ 141.055820] ? get_callee_stack_depth kernel/bpf/verifier.c:1612 [inline]
[ 141.055820] ? fixup_call_args kernel/bpf/verifier.c:5587 [inline]
[ 141.055820] ? bpf_check+0x525e/0x5e60 kernel/bpf/verifier.c:5952
[...]

What happens in jit_subprogs() is that kcalloc() for the subprog func
buffer is failing with NULL where we then bail out. Latter is a plain
return -ENOMEM, and this is definitely not okay since earlier in the
loop we are walking all subprogs and temporarily rewrite insn->off to
remember the subprog id as well as insn->imm to temporarily point the
call to __bpf_call_base + 1 for the initial JIT pass. Thus, bailing
out in such state and handing this over to the interpreter is troublesome
since later/subsequent e.g. find_subprog() lookups are based on wrong
insn->imm.

Therefore, once we hit this point, we need to jump to out_free path
where we undo all changes from earlier loop, so that interpreter can
work on unmodified insn->{off,imm}.

Another point is that should find_subprog() fail in jit_subprogs() due
to a verifier bug, then we also should not simply defer the program to
the interpreter since also here we did partial modifications. Instead
we should just bail out entirely and return an error to the user who is
trying to load the program.

Fixes: 1c2a088a6626 ("bpf: x64: add JIT support for multi-function programs")
Reported-by: syzbot+7d427828b2ea6e592804@syzkaller.appspotmail.com
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# fad953ce 12-Jun-2018 Kees Cook <keescook@chromium.org>

treewide: Use array_size() in vzalloc()

The vzalloc() function has no 2-factor argument form, so multiplication
factors need to be wrapped in array_size(). This patch replaces cases of:

vzalloc(a * b)

with:
vzalloc(array_size(a, b))

as well as handling cases of:

vzalloc(a * b * c)

with:

vzalloc(array3_size(a, b, c))

This does, however, attempt to ignore constant size factors like:

vzalloc(4 * 1024)

though any constants defined via macros get caught up in the conversion.

Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.

The Coccinelle script used for this was:

// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@

(
vzalloc(
- (sizeof(TYPE)) * E
+ sizeof(TYPE) * E
, ...)
|
vzalloc(
- (sizeof(THING)) * E
+ sizeof(THING) * E
, ...)
)

// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@

(
vzalloc(
- sizeof(u8) * (COUNT)
+ COUNT
, ...)
|
vzalloc(
- sizeof(__u8) * (COUNT)
+ COUNT
, ...)
|
vzalloc(
- sizeof(char) * (COUNT)
+ COUNT
, ...)
|
vzalloc(
- sizeof(unsigned char) * (COUNT)
+ COUNT
, ...)
|
vzalloc(
- sizeof(u8) * COUNT
+ COUNT
, ...)
|
vzalloc(
- sizeof(__u8) * COUNT
+ COUNT
, ...)
|
vzalloc(
- sizeof(char) * COUNT
+ COUNT
, ...)
|
vzalloc(
- sizeof(unsigned char) * COUNT
+ COUNT
, ...)
)

// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@

(
vzalloc(
- sizeof(TYPE) * (COUNT_ID)
+ array_size(COUNT_ID, sizeof(TYPE))
, ...)
|
vzalloc(
- sizeof(TYPE) * COUNT_ID
+ array_size(COUNT_ID, sizeof(TYPE))
, ...)
|
vzalloc(
- sizeof(TYPE) * (COUNT_CONST)
+ array_size(COUNT_CONST, sizeof(TYPE))
, ...)
|
vzalloc(
- sizeof(TYPE) * COUNT_CONST
+ array_size(COUNT_CONST, sizeof(TYPE))
, ...)
|
vzalloc(
- sizeof(THING) * (COUNT_ID)
+ array_size(COUNT_ID, sizeof(THING))
, ...)
|
vzalloc(
- sizeof(THING) * COUNT_ID
+ array_size(COUNT_ID, sizeof(THING))
, ...)
|
vzalloc(
- sizeof(THING) * (COUNT_CONST)
+ array_size(COUNT_CONST, sizeof(THING))
, ...)
|
vzalloc(
- sizeof(THING) * COUNT_CONST
+ array_size(COUNT_CONST, sizeof(THING))
, ...)
)

// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@

vzalloc(
- SIZE * COUNT
+ array_size(COUNT, SIZE)
, ...)

// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@

(
vzalloc(
- sizeof(TYPE) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
vzalloc(
- sizeof(TYPE) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
vzalloc(
- sizeof(TYPE) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
vzalloc(
- sizeof(TYPE) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
vzalloc(
- sizeof(THING) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
vzalloc(
- sizeof(THING) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
vzalloc(
- sizeof(THING) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
vzalloc(
- sizeof(THING) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
)

// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@

(
vzalloc(
- sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
vzalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
vzalloc(
- sizeof(THING1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
vzalloc(
- sizeof(THING1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
vzalloc(
- sizeof(TYPE1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
|
vzalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
)

// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@

(
vzalloc(
- (COUNT) * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
vzalloc(
- COUNT * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
vzalloc(
- COUNT * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
vzalloc(
- (COUNT) * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
vzalloc(
- COUNT * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
vzalloc(
- (COUNT) * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
vzalloc(
- (COUNT) * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
vzalloc(
- COUNT * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
)

// Any remaining multi-factor products, first at least 3-factor products
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@

(
vzalloc(C1 * C2 * C3, ...)
|
vzalloc(
- E1 * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
)

// And then all remaining 2 factors products when they're not all constants.
@@
expression E1, E2;
constant C1, C2;
@@

(
vzalloc(C1 * C2, ...)
|
vzalloc(
- E1 * E2
+ array_size(E1, E2)
, ...)
)

Signed-off-by: Kees Cook <keescook@chromium.org>


# 6396bb22 12-Jun-2018 Kees Cook <keescook@chromium.org>

treewide: kzalloc() -> kcalloc()

The kzalloc() function has a 2-factor argument form, kcalloc(). This
patch replaces cases of:

kzalloc(a * b, gfp)

with:
kcalloc(a * b, gfp)

as well as handling cases of:

kzalloc(a * b * c, gfp)

with:

kzalloc(array3_size(a, b, c), gfp)

as it's slightly less ugly than:

kzalloc_array(array_size(a, b), c, gfp)

This does, however, attempt to ignore constant size factors like:

kzalloc(4 * 1024, gfp)

though any constants defined via macros get caught up in the conversion.

Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.

The Coccinelle script used for this was:

// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@

(
kzalloc(
- (sizeof(TYPE)) * E
+ sizeof(TYPE) * E
, ...)
|
kzalloc(
- (sizeof(THING)) * E
+ sizeof(THING) * E
, ...)
)

// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@

(
kzalloc(
- sizeof(u8) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(__u8) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(char) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(unsigned char) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(u8) * COUNT
+ COUNT
, ...)
|
kzalloc(
- sizeof(__u8) * COUNT
+ COUNT
, ...)
|
kzalloc(
- sizeof(char) * COUNT
+ COUNT
, ...)
|
kzalloc(
- sizeof(unsigned char) * COUNT
+ COUNT
, ...)
)

// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@

(
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * (COUNT_ID)
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * COUNT_ID
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * (COUNT_CONST)
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * COUNT_CONST
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * (COUNT_ID)
+ COUNT_ID, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * COUNT_ID
+ COUNT_ID, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * (COUNT_CONST)
+ COUNT_CONST, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * COUNT_CONST
+ COUNT_CONST, sizeof(THING)
, ...)
)

// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@

- kzalloc
+ kcalloc
(
- SIZE * COUNT
+ COUNT, SIZE
, ...)

// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@

(
kzalloc(
- sizeof(TYPE) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(TYPE) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(TYPE) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(TYPE) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(THING) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kzalloc(
- sizeof(THING) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kzalloc(
- sizeof(THING) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kzalloc(
- sizeof(THING) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
)

// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@

(
kzalloc(
- sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kzalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kzalloc(
- sizeof(THING1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kzalloc(
- sizeof(THING1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kzalloc(
- sizeof(TYPE1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
|
kzalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
)

// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@

(
kzalloc(
- (COUNT) * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- (COUNT) * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- (COUNT) * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- (COUNT) * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
)

// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@

(
kzalloc(C1 * C2 * C3, ...)
|
kzalloc(
- (E1) * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
|
kzalloc(
- (E1) * (E2) * E3
+ array3_size(E1, E2, E3)
, ...)
|
kzalloc(
- (E1) * (E2) * (E3)
+ array3_size(E1, E2, E3)
, ...)
|
kzalloc(
- E1 * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
)

// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@

(
kzalloc(sizeof(THING) * C2, ...)
|
kzalloc(sizeof(TYPE) * C2, ...)
|
kzalloc(C1 * C2 * C3, ...)
|
kzalloc(C1 * C2, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * (E2)
+ E2, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * E2
+ E2, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * (E2)
+ E2, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * E2
+ E2, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- (E1) * E2
+ E1, E2
, ...)
|
- kzalloc
+ kcalloc
(
- (E1) * (E2)
+ E1, E2
, ...)
|
- kzalloc
+ kcalloc
(
- E1 * E2
+ E1, E2
, ...)
)

Signed-off-by: Kees Cook <keescook@chromium.org>


# 58990d1f 07-Jun-2018 Daniel Borkmann <daniel@iogearbox.net>

bpf: reject passing modified ctx to helper functions

As commit 28e33f9d78ee ("bpf: disallow arithmetic operations on
context pointer") already describes, f1174f77b50c ("bpf/verifier:
rework value tracking") removed the specific white-listed cases
we had previously where we would allow for pointer arithmetic in
order to further generalize it, and allow e.g. context access via
modified registers. While the dereferencing of modified context
pointers had been forbidden through 28e33f9d78ee, syzkaller did
recently manage to trigger several KASAN splats for slab out of
bounds access and use after frees by simply passing a modified
context pointer to a helper function which would then do the bad
access since verifier allowed it in adjust_ptr_min_max_vals().

Rejecting arithmetic on ctx pointer in adjust_ptr_min_max_vals()
generally could break existing programs as there's a valid use
case in tracing in combination with passing the ctx to helpers as
bpf_probe_read(), where the register then becomes unknown at
verification time due to adding a non-constant offset to it. An
access sequence may look like the following:

offset = args->filename; /* field __data_loc filename */
bpf_probe_read(&dst, len, (char *)args + offset); // args is ctx

There are two options: i) we could special case the ctx and as
soon as we add a constant or bounded offset to it (hence ctx type
wouldn't change) we could turn the ctx into an unknown scalar, or
ii) we generalize the sanity test for ctx member access into a
small helper and assert it on the ctx register that was passed
as a function argument. Fwiw, latter is more obvious and less
complex at the same time, and one case that may potentially be
legitimate in future for ctx member access at least would be for
ctx to carry a const offset. Therefore, fix follows approach
from ii) and adds test cases to BPF kselftests.

Fixes: f1174f77b50c ("bpf/verifier: rework value tracking")
Reported-by: syzbot+3d0b2441dbb71751615e@syzkaller.appspotmail.com
Reported-by: syzbot+c8504affd4fdd0c1b626@syzkaller.appspotmail.com
Reported-by: syzbot+e5190cb881d8660fb1a3@syzkaller.appspotmail.com
Reported-by: syzbot+efae31b384d5badbd620@syzkaller.appspotmail.com
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# bc23105c 02-Jun-2018 Daniel Borkmann <daniel@iogearbox.net>

bpf: fix context access in tracing progs on 32 bit archs

Wang reported that all the testcases for BPF_PROG_TYPE_PERF_EVENT
program type in test_verifier report the following errors on x86_32:

172/p unpriv: spill/fill of different pointers ldx FAIL
Unexpected error message!
0: (bf) r6 = r10
1: (07) r6 += -8
2: (15) if r1 == 0x0 goto pc+3
R1=ctx(id=0,off=0,imm=0) R6=fp-8,call_-1 R10=fp0,call_-1
3: (bf) r2 = r10
4: (07) r2 += -76
5: (7b) *(u64 *)(r6 +0) = r2
6: (55) if r1 != 0x0 goto pc+1
R1=ctx(id=0,off=0,imm=0) R2=fp-76,call_-1 R6=fp-8,call_-1 R10=fp0,call_-1 fp-8=fp
7: (7b) *(u64 *)(r6 +0) = r1
8: (79) r1 = *(u64 *)(r6 +0)
9: (79) r1 = *(u64 *)(r1 +68)
invalid bpf_context access off=68 size=8

378/p check bpf_perf_event_data->sample_period byte load permitted FAIL
Failed to load prog 'Permission denied'!
0: (b7) r0 = 0
1: (71) r0 = *(u8 *)(r1 +68)
invalid bpf_context access off=68 size=1

379/p check bpf_perf_event_data->sample_period half load permitted FAIL
Failed to load prog 'Permission denied'!
0: (b7) r0 = 0
1: (69) r0 = *(u16 *)(r1 +68)
invalid bpf_context access off=68 size=2

380/p check bpf_perf_event_data->sample_period word load permitted FAIL
Failed to load prog 'Permission denied'!
0: (b7) r0 = 0
1: (61) r0 = *(u32 *)(r1 +68)
invalid bpf_context access off=68 size=4

381/p check bpf_perf_event_data->sample_period dword load permitted FAIL
Failed to load prog 'Permission denied'!
0: (b7) r0 = 0
1: (79) r0 = *(u64 *)(r1 +68)
invalid bpf_context access off=68 size=8

Reason is that struct pt_regs on x86_32 doesn't fully align to 8 byte
boundary due to its size of 68 bytes. Therefore, bpf_ctx_narrow_access_ok()
will then bail out saying that off & (size_default - 1) which is 68 & 7
doesn't cleanly align in the case of sample_period access from struct
bpf_perf_event_data, hence verifier wrongly thinks we might be doing an
unaligned access here though underlying arch can handle it just fine.
Therefore adjust this down to machine size and check and rewrite the
offset for narrow access on that basis. We also need to fix corresponding
pe_prog_is_valid_access(), since we hit the check for off % size != 0
(e.g. 68 % 8 -> 4) in the first and last test. With that in place, progs
for tracing work on x86_32.

Reported-by: Wang YanQing <udknight@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: Wang YanQing <udknight@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 09772d92 02-Jun-2018 Daniel Borkmann <daniel@iogearbox.net>

bpf: avoid retpoline for lookup/update/delete calls on maps

While some of the BPF map lookup helpers provide a ->map_gen_lookup()
callback for inlining the map lookup altogether it is not available
for every map, so the remaining ones have to call bpf_map_lookup_elem()
helper which does a dispatch to map->ops->map_lookup_elem(). In
times of retpolines, this will control and trap speculative execution
rather than letting it do its work for the indirect call and will
therefore cause a slowdown. Likewise, bpf_map_update_elem() and
bpf_map_delete_elem() do not have an inlined version and need to call
into their map->ops->map_update_elem() resp. map->ops->map_delete_elem()
handlers.

Before:

# bpftool prog dump xlated id 1
0: (bf) r2 = r10
1: (07) r2 += -8
2: (7a) *(u64 *)(r2 +0) = 0
3: (18) r1 = map[id:1]
5: (85) call __htab_map_lookup_elem#232656
6: (15) if r0 == 0x0 goto pc+4
7: (71) r1 = *(u8 *)(r0 +35)
8: (55) if r1 != 0x0 goto pc+1
9: (72) *(u8 *)(r0 +35) = 1
10: (07) r0 += 56
11: (15) if r0 == 0x0 goto pc+4
12: (bf) r2 = r0
13: (18) r1 = map[id:1]
15: (85) call bpf_map_delete_elem#215008 <-- indirect call via
16: (95) exit helper

After:

# bpftool prog dump xlated id 1
0: (bf) r2 = r10
1: (07) r2 += -8
2: (7a) *(u64 *)(r2 +0) = 0
3: (18) r1 = map[id:1]
5: (85) call __htab_map_lookup_elem#233328
6: (15) if r0 == 0x0 goto pc+4
7: (71) r1 = *(u8 *)(r0 +35)
8: (55) if r1 != 0x0 goto pc+1
9: (72) *(u8 *)(r0 +35) = 1
10: (07) r0 += 56
11: (15) if r0 == 0x0 goto pc+4
12: (bf) r2 = r0
13: (18) r1 = map[id:1]
15: (85) call htab_lru_map_delete_elem#238240 <-- direct call
16: (95) exit

In all three lookup/update/delete cases however we can use the actual
address of the map callback directly if we find that there's only a
single path with a map pointer leading to the helper call, meaning
when the map pointer has not been poisoned from verifier side.
Example code can be seen above for the delete case.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 3fe2867c 02-Jun-2018 Daniel Borkmann <daniel@iogearbox.net>

bpf: fixup error message from gpl helpers on license mismatch

Stating 'proprietary program' in the error is just silly since it
can also be a different open source license than that which is just
not compatible.

Reference: https://twitter.com/majek04/status/998531268039102465
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# c93552c4 23-May-2018 Daniel Borkmann <daniel@iogearbox.net>

bpf: properly enforce index mask to prevent out-of-bounds speculation

While reviewing the verifier code, I recently noticed that the
following two program variants in relation to tail calls can be
loaded.

Variant 1:

# bpftool p d x i 15
0: (15) if r1 == 0x0 goto pc+3
1: (18) r2 = map[id:5]
3: (05) goto pc+2
4: (18) r2 = map[id:6]
6: (b7) r3 = 7
7: (35) if r3 >= 0xa0 goto pc+2
8: (54) (u32) r3 &= (u32) 255
9: (85) call bpf_tail_call#12
10: (b7) r0 = 1
11: (95) exit

# bpftool m s i 5
5: prog_array flags 0x0
key 4B value 4B max_entries 4 memlock 4096B
# bpftool m s i 6
6: prog_array flags 0x0
key 4B value 4B max_entries 160 memlock 4096B

Variant 2:

# bpftool p d x i 20
0: (15) if r1 == 0x0 goto pc+3
1: (18) r2 = map[id:8]
3: (05) goto pc+2
4: (18) r2 = map[id:7]
6: (b7) r3 = 7
7: (35) if r3 >= 0x4 goto pc+2
8: (54) (u32) r3 &= (u32) 3
9: (85) call bpf_tail_call#12
10: (b7) r0 = 1
11: (95) exit

# bpftool m s i 8
8: prog_array flags 0x0
key 4B value 4B max_entries 160 memlock 4096B
# bpftool m s i 7
7: prog_array flags 0x0
key 4B value 4B max_entries 4 memlock 4096B

In both cases the index masking inserted by the verifier in order
to control out of bounds speculation from a CPU via b2157399cc98
("bpf: prevent out-of-bounds speculation") seems to be incorrect
in what it is enforcing. In the 1st variant, the mask is applied
from the map with the significantly larger number of entries where
we would allow to a certain degree out of bounds speculation for
the smaller map, and in the 2nd variant where the mask is applied
from the map with the smaller number of entries, we get buggy
behavior since we truncate the index of the larger map.

The original intent from commit b2157399cc98 is to reject such
occasions where two or more different tail call maps are used
in the same tail call helper invocation. However, the check on
the BPF_MAP_PTR_POISON is never hit since we never poisoned the
saved pointer in the first place! We do this explicitly for map
lookups but in case of tail calls we basically used the tail
call map in insn_aux_data that was processed in the most recent
path which the verifier walked. Thus any prior path that stored
a pointer in insn_aux_data at the helper location was always
overridden.

Fix it by moving the map pointer poison logic into a small helper
that covers both BPF helpers with the same logic. After that in
fixup_bpf_calls() the poison check is then hit for tail calls
and the program rejected. Latter only happens in unprivileged
case since this is the *only* occasion where a rewrite needs to
happen, and where such rewrite is specific to the map (max_entries,
index_mask). In the privileged case the rewrite is generic for
the insn->imm / insn->code update so multiple maps from different
paths can be handled just fine since all the remaining logic
happens in the instruction processing itself. This is similar
to the case of map lookups: in case there is a collision of
maps in fixup_bpf_calls() we must skip the inlined rewrite since
this will turn the generic instruction sequence into a non-
generic one. Thus the patch_call_imm will simply update the
insn->imm location where the bpf_map_lookup_elem() will later
take care of the dispatch. Given we need this 'poison' state
as a check, the information of whether a map is an unpriv_array
gets lost, so enforcing it prior to that needs an additional
state. In general this check is needed since there are some
complex and tail call intensive BPF programs out there where
LLVM tends to generate such code occasionally. We therefore
convert the map_ptr rather into map_state to store all this
w/o extra memory overhead, and the bit whether one of the maps
involved in the collision was from an unpriv_array thus needs
to be retained as well there.

Fixes: b2157399cc98 ("bpf: prevent out-of-bounds speculation")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 004d4b27 20-May-2018 Mathieu Xhonneux <m.xhonneux@gmail.com>

ipv6: sr: Add seg6local action End.BPF

This patch adds the End.BPF action to the LWT seg6local infrastructure.
This action works like any other seg6local End action, meaning that an IPv6
header with SRH is needed, whose DA has to be equal to the SID of the
action. It will also advance the SRH to the next segment, the BPF program
does not have to take care of this.

Since the BPF program may not be a source of instability in the kernel, it
is important to ensure that the integrity of the packet is maintained
before yielding it back to the IPv6 layer. The hook hence keeps track if
the SRH has been altered through the helpers, and re-validates its
content if needed with seg6_validate_srh. The state kept for validation is
stored in a per-CPU buffer. The BPF program is not allowed to directly
write into the packet, and only some fields of the SRH can be altered
through the helper bpf_lwt_seg6_store_bytes.

Performances profiling has shown that the SRH re-validation does not induce
a significant overhead. If the altered SRH is deemed as invalid, the packet
is dropped.

This validation is also done before executing any action through
bpf_lwt_seg6_action, and will not be performed again if the SRH is not
modified after calling the action.

The BPF program may return 3 types of return codes:
- BPF_OK: the End.BPF action will look up the next destination through
seg6_lookup_nexthop.
- BPF_REDIRECT: if an action has been executed through the
bpf_lwt_seg6_action helper, the BPF program should return this
value, as the skb's destination is already set and the default
lookup should not be performed.
- BPF_DROP : the packet will be dropped.

Signed-off-by: Mathieu Xhonneux <m.xhonneux@gmail.com>
Acked-by: David Lebrun <dlebrun@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# dbecd738 23-May-2018 Sandipan Das <sandipan@linux.vnet.ibm.com>

bpf: get kernel symbol addresses via syscall

This adds new two new fields to struct bpf_prog_info. For
multi-function programs, these fields can be used to pass
a list of kernel symbol addresses for all functions in a
given program to userspace using the bpf system call with
the BPF_OBJ_GET_INFO_BY_FD command.

When bpf_jit_kallsyms is enabled, we can get the address
of the corresponding kernel symbol for a callee function
and resolve the symbol's name. The address is determined
by adding the value of the call instruction's imm field
to __bpf_call_base. This offset gets assigned to the imm
field by the verifier.

For some architectures, such as powerpc64, the imm field
is not large enough to hold this offset.

We resolve this by:

[1] Assigning the subprog id to the imm field of a call
instruction in the verifier instead of the offset of
the callee's symbol's address from __bpf_call_base.

[2] Determining the address of a callee's corresponding
symbol by using the imm field as an index for the
list of kernel symbol addresses now available from
the program info.

Suggested-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Sandipan Das <sandipan@linux.vnet.ibm.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 2162fed4 23-May-2018 Sandipan Das <sandipan@linux.vnet.ibm.com>

bpf: support 64-bit offsets for bpf function calls

The imm field of a bpf instruction is a signed 32-bit integer.
For JITed bpf-to-bpf function calls, it holds the offset of the
start address of the callee's JITed image from __bpf_call_base.

For some architectures, such as powerpc64, this offset may be
as large as 64 bits and cannot be accomodated in the imm field
without truncation.

We resolve this by:

[1] Additionally using the auxiliary data of each function to
keep a list of start addresses of the JITed images for all
functions determined by the verifier.

[2] Retaining the subprog id inside the off field of the call
instructions and using it to index into the list mentioned
above and lookup the callee's address.

To make sure that the existing JIT compilers continue to work
without requiring changes, we keep the imm field as it is.

Signed-off-by: Sandipan Das <sandipan@linux.vnet.ibm.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# af86ca4e 15-May-2018 Alexei Starovoitov <ast@kernel.org>

bpf: Prevent memory disambiguation attack

Detect code patterns where malicious 'speculative store bypass' can be used
and sanitize such patterns.

39: (bf) r3 = r10
40: (07) r3 += -216
41: (79) r8 = *(u64 *)(r7 +0) // slow read
42: (7a) *(u64 *)(r10 -72) = 0 // verifier inserts this instruction
43: (7b) *(u64 *)(r8 +0) = r3 // this store becomes slow due to r8
44: (79) r1 = *(u64 *)(r6 +0) // cpu speculatively executes this load
45: (71) r2 = *(u8 *)(r1 +0) // speculatively arbitrary 'load byte'
// is now sanitized

Above code after x86 JIT becomes:
e5: mov %rbp,%rdx
e8: add $0xffffffffffffff28,%rdx
ef: mov 0x0(%r13),%r14
f3: movq $0x0,-0x48(%rbp)
fb: mov %rdx,0x0(%r14)
ff: mov 0x0(%rbx),%rdi
103: movzbq 0x0(%rdi),%rsi

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>


# 81110384 14-May-2018 John Fastabend <john.fastabend@gmail.com>

bpf: sockmap, add hash map support

Sockmap is currently backed by an array and enforces keys to be
four bytes. This works well for many use cases and was originally
modeled after devmap which also uses four bytes keys. However,
this has become limiting in larger use cases where a hash would
be more appropriate. For example users may want to use the 5-tuple
of the socket as the lookup key.

To support this add hash support.

Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 0d830032 08-May-2018 Jakub Kicinski <kuba@kernel.org>

bpf: xdp: allow offloads to store into rx_queue_index

It's fairly easy for offloaded XDP programs to select the RX queue
packets go to. We need a way of expressing this in the software.
Allow write to the rx_queue_index field of struct xdp_md for
device-bound programs.

Skip convert_ctx_access callback entirely for offloads.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# ab7f5bf0 03-May-2018 Jakub Kicinski <kuba@kernel.org>

bpf: fix references to free_bpf_prog_info() in comments

Comments in the verifier refer to free_bpf_prog_info() which
seems to have never existed in tree. Replace it with
free_used_maps().

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# f4e3ec0d 03-May-2018 Jakub Kicinski <kuba@kernel.org>

bpf: replace map pointer loads before calling into offloads

Offloads may find host map pointers more useful than map fds.
Map pointers can be used to identify the map, while fds are
only valid within the context of loading process.

Jump to skip_full_check on error in case verifier log overflow
has to be handled (replace_map_fd_with_map_ptr() prints to the
log, driver prep may do that too in the future).

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Reviewed-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 4cb3d99c 02-May-2018 Jiong Wang <jiong.wang@netronome.com>

bpf: add faked "ending" subprog

There are quite a few code snippet like the following in verifier:

subprog_start = 0;
if (env->subprog_cnt == cur_subprog + 1)
subprog_end = insn_cnt;
else
subprog_end = env->subprog_info[cur_subprog + 1].start;

The reason is there is no marker in subprog_info array to tell the end of
it.

We could resolve this issue by introducing a faked "ending" subprog.
The special "ending" subprog is with "insn_cnt" as start offset, so it is
serving as the end mark whenever we iterate over all subprogs.

Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 9c8105bd 02-May-2018 Jiong Wang <jiong.wang@netronome.com>

bpf: centre subprog information fields

It is better to centre all subprog information fields into one structure.
This structure could later serve as function node in call graph.

Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# f910cefa 02-May-2018 Jiong Wang <jiong.wang@netronome.com>

bpf: unify main prog and subprog

Currently, verifier treat main prog and subprog differently. All subprogs
detected are kept in env->subprog_starts while main prog is not kept there.
Instead, main prog is implicitly defined as the prog start at 0.

There is actually no difference between main prog and subprog, it is better
to unify them, and register all progs detected into env->subprog_starts.

This could also help simplifying some code logic.

Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# e0cea7ce 03-May-2018 Daniel Borkmann <daniel@iogearbox.net>

bpf: implement ld_abs/ld_ind in native bpf

The main part of this work is to finally allow removal of LD_ABS
and LD_IND from the BPF core by reimplementing them through native
eBPF instead. Both LD_ABS/LD_IND were carried over from cBPF and
keeping them around in native eBPF caused way more trouble than
actually worth it. To just list some of the security issues in
the past:

* fdfaf64e7539 ("x86: bpf_jit: support negative offsets")
* 35607b02dbef ("sparc: bpf_jit: fix loads from negative offsets")
* e0ee9c12157d ("x86: bpf_jit: fix two bugs in eBPF JIT compiler")
* 07aee9439454 ("bpf, sparc: fix usage of wrong reg for load_skb_regs after call")
* 6d59b7dbf72e ("bpf, s390x: do not reload skb pointers in non-skb context")
* 87338c8e2cbb ("bpf, ppc64: do not reload skb pointers in non-skb context")

For programs in native eBPF, LD_ABS/LD_IND are pretty much legacy
these days due to their limitations and more efficient/flexible
alternatives that have been developed over time such as direct
packet access. LD_ABS/LD_IND only cover 1/2/4 byte loads into a
register, the load happens in host endianness and its exception
handling can yield unexpected behavior. The latter is explained
in depth in f6b1b3bf0d5f ("bpf: fix subprog verifier bypass by
div/mod by 0 exception") with similar cases of exceptions we had.
In native eBPF more recent program types will disable LD_ABS/LD_IND
altogether through may_access_skb() in verifier, and given the
limitations in terms of exception handling, it's also disabled
in programs that use BPF to BPF calls.

In terms of cBPF, the LD_ABS/LD_IND is used in networking programs
to access packet data. It is not used in seccomp-BPF but programs
that use it for socket filtering or reuseport for demuxing with
cBPF. This is mostly relevant for applications that have not yet
migrated to native eBPF.

The main complexity and source of bugs in LD_ABS/LD_IND is coming
from their implementation in the various JITs. Most of them keep
the model around from cBPF times by implementing a fastpath written
in asm. They use typically two from the BPF program hidden CPU
registers for caching the skb's headlen (skb->len - skb->data_len)
and skb->data. Throughout the JIT phase this requires to keep track
whether LD_ABS/LD_IND are used and if so, the two registers need
to be recached each time a BPF helper would change the underlying
packet data in native eBPF case. At least in eBPF case, available
CPU registers are rare and the additional exit path out of the
asm written JIT helper makes it also inflexible since not all
parts of the JITer are in control from plain C. A LD_ABS/LD_IND
implementation in eBPF therefore allows to significantly reduce
the complexity in JITs with comparable performance results for
them, e.g.:

test_bpf tcpdump port 22 tcpdump complex
x64 - before 15 21 10 14 19 18
- after 7 10 10 7 10 15
arm64 - before 40 91 92 40 91 151
- after 51 64 73 51 62 113

For cBPF we now track any usage of LD_ABS/LD_IND in bpf_convert_filter()
and cache the skb's headlen and data in the cBPF prologue. The
BPF_REG_TMP gets remapped from R8 to R2 since it's mainly just
used as a local temporary variable. This allows to shrink the
image on x86_64 also for seccomp programs slightly since mapping
to %rsi is not an ereg. In callee-saved R8 and R9 we now track
skb data and headlen, respectively. For normal prologue emission
in the JITs this does not add any extra instructions since R8, R9
are pushed to stack in any case from eBPF side. cBPF uses the
convert_bpf_ld_abs() emitter which probes the fast path inline
already and falls back to bpf_skb_load_helper_{8,16,32}() helper
relying on the cached skb data and headlen as well. R8 and R9
never need to be reloaded due to bpf_helper_changes_pkt_data()
since all skb access in cBPF is read-only. Then, for the case
of native eBPF, we use the bpf_gen_ld_abs() emitter, which calls
the bpf_skb_load_helper_{8,16,32}_no_cache() helper unconditionally,
does neither cache skb data and headlen nor has an inlined fast
path. The reason for the latter is that native eBPF does not have
any extra registers available anyway, but even if there were, it
avoids any reload of skb data and headlen in the first place.
Additionally, for the negative offsets, we provide an alternative
bpf_skb_load_bytes_relative() helper in eBPF which operates
similarly as bpf_skb_load_bytes() and allows for more flexibility.
Tested myself on x64, arm64, s390x, from Sandipan on ppc64.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# fbfc504a 02-May-2018 Björn Töpel <bjorn@kernel.org>

bpf: introduce new bpf AF_XDP map type BPF_MAP_TYPE_XSKMAP

The xskmap is yet another BPF map, very much inspired by
dev/cpu/sockmap, and is a holder of AF_XDP sockets. A user application
adds AF_XDP sockets into the map, and by using the bpf_redirect_map
helper, an XDP program can redirect XDP frames to an AF_XDP socket.

Note that a socket that is bound to certain ifindex/queue index will
*only* accept XDP frames from that netdev/queue index. If an XDP
program tries to redirect from a netdev/queue index other than what
the socket is bound to, the frame will not be received on the socket.

A socket can reside in multiple maps.

v3: Fixed race and simplified code.
v2: Removed one indirection in map lookup.

Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 9cbe1f5a 28-Apr-2018 Yonghong Song <yhs@fb.com>

bpf/verifier: improve register value range tracking with ARSH

When helpers like bpf_get_stack returns an int value
and later on used for arithmetic computation, the LSH and ARSH
operations are often required to get proper sign extension into
64-bit. For example, without this patch:
54: R0=inv(id=0,umax_value=800)
54: (bf) r8 = r0
55: R0=inv(id=0,umax_value=800) R8_w=inv(id=0,umax_value=800)
55: (67) r8 <<= 32
56: R8_w=inv(id=0,umax_value=3435973836800,var_off=(0x0; 0x3ff00000000))
56: (c7) r8 s>>= 32
57: R8=inv(id=0)
With this patch:
54: R0=inv(id=0,umax_value=800)
54: (bf) r8 = r0
55: R0=inv(id=0,umax_value=800) R8_w=inv(id=0,umax_value=800)
55: (67) r8 <<= 32
56: R8_w=inv(id=0,umax_value=3435973836800,var_off=(0x0; 0x3ff00000000))
56: (c7) r8 s>>= 32
57: R8=inv(id=0, umax_value=800,var_off=(0x0; 0x3ff))
With better range of "R8", later on when "R8" is added to other register,
e.g., a map pointer or scalar-value register, the better register
range can be derived and verifier failure may be avoided.

In our later example,
......
usize = bpf_get_stack(ctx, raw_data, max_len, BPF_F_USER_STACK);
if (usize < 0)
return 0;
ksize = bpf_get_stack(ctx, raw_data + usize, max_len - usize, 0);
......
Without improving ARSH value range tracking, the register representing
"max_len - usize" will have smin_value equal to S64_MIN and will be
rejected by verifier.

Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# afbe1a5b 28-Apr-2018 Yonghong Song <yhs@fb.com>

bpf: remove never-hit branches in verifier adjust_scalar_min_max_vals

In verifier function adjust_scalar_min_max_vals,
when src_known is false and the opcode is BPF_LSH/BPF_RSH,
early return will happen in the function. So remove
the branch in handling BPF_LSH/BPF_RSH when src_known is false.

Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 849fa506 28-Apr-2018 Yonghong Song <yhs@fb.com>

bpf/verifier: refine retval R0 state for bpf_get_stack helper

The special property of return values for helpers bpf_get_stack
and bpf_probe_read_str are captured in verifier.
Both helpers return a negative error code or
a length, which is equal to or smaller than the buffer
size argument. This additional information in the
verifier can avoid the condition such as "retval > bufsize"
in the bpf program. For example, for the code blow,
usize = bpf_get_stack(ctx, raw_data, max_len, BPF_F_USER_STACK);
if (usize < 0 || usize > max_len)
return 0;
The verifier may have the following errors:
52: (85) call bpf_get_stack#65
R0=map_value(id=0,off=0,ks=4,vs=1600,imm=0) R1_w=ctx(id=0,off=0,imm=0)
R2_w=map_value(id=0,off=0,ks=4,vs=1600,imm=0) R3_w=inv800 R4_w=inv256
R6=ctx(id=0,off=0,imm=0) R7=map_value(id=0,off=0,ks=4,vs=1600,imm=0)
R9_w=inv800 R10=fp0,call_-1
53: (bf) r8 = r0
54: (bf) r1 = r8
55: (67) r1 <<= 32
56: (bf) r2 = r1
57: (77) r2 >>= 32
58: (25) if r2 > 0x31f goto pc+33
R0=inv(id=0) R1=inv(id=0,smax_value=9223372032559808512,
umax_value=18446744069414584320,
var_off=(0x0; 0xffffffff00000000))
R2=inv(id=0,umax_value=799,var_off=(0x0; 0x3ff))
R6=ctx(id=0,off=0,imm=0) R7=map_value(id=0,off=0,ks=4,vs=1600,imm=0)
R8=inv(id=0) R9=inv800 R10=fp0,call_-1
59: (1f) r9 -= r8
60: (c7) r1 s>>= 32
61: (bf) r2 = r7
62: (0f) r2 += r1
math between map_value pointer and register with unbounded
min value is not allowed
The failure is due to llvm compiler optimization where register "r2",
which is a copy of "r1", is tested for condition while later on "r1"
is used for map_ptr operation. The verifier is not able to track such
inst sequence effectively.

Without the "usize > max_len" condition, there is no llvm optimization
and the below generated code passed verifier:
52: (85) call bpf_get_stack#65
R0=map_value(id=0,off=0,ks=4,vs=1600,imm=0) R1_w=ctx(id=0,off=0,imm=0)
R2_w=map_value(id=0,off=0,ks=4,vs=1600,imm=0) R3_w=inv800 R4_w=inv256
R6=ctx(id=0,off=0,imm=0) R7=map_value(id=0,off=0,ks=4,vs=1600,imm=0)
R9_w=inv800 R10=fp0,call_-1
53: (b7) r1 = 0
54: (bf) r8 = r0
55: (67) r8 <<= 32
56: (c7) r8 s>>= 32
57: (6d) if r1 s> r8 goto pc+24
R0=inv(id=0,umax_value=800,var_off=(0x0; 0x3ff))
R1=inv0 R6=ctx(id=0,off=0,imm=0)
R7=map_value(id=0,off=0,ks=4,vs=1600,imm=0)
R8=inv(id=0,umax_value=800,var_off=(0x0; 0x3ff)) R9=inv800
R10=fp0,call_-1
58: (bf) r2 = r7
59: (0f) r2 += r8
60: (1f) r9 -= r8
61: (bf) r1 = r6

Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# c195651e 28-Apr-2018 Yonghong Song <yhs@fb.com>

bpf: add bpf_get_stack helper

Currently, stackmap and bpf_get_stackid helper are provided
for bpf program to get the stack trace. This approach has
a limitation though. If two stack traces have the same hash,
only one will get stored in the stackmap table,
so some stack traces are missing from user perspective.

This patch implements a new helper, bpf_get_stack, will
send stack traces directly to bpf program. The bpf program
is able to see all stack traces, and then can do in-kernel
processing or send stack traces to user space through
shared map or bpf_perf_event_output.

Acked-by: Alexei Starovoitov <ast@fb.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# d71962f3 24-Apr-2018 Paul Chaignon <paul.chaignon@orange.com>

bpf: allow map helpers access to map values directly

Helpers that expect ARG_PTR_TO_MAP_KEY and ARG_PTR_TO_MAP_VALUE can only
access stack and packet memory. Allow these helpers to directly access
map values by passing registers of type PTR_TO_MAP_VALUE.

This change removes the need for an extra copy to the stack when using a
map value to perform a second map lookup, as in the following:

struct bpf_map_def SEC("maps") infobyreq = {
.type = BPF_MAP_TYPE_HASHMAP,
.key_size = sizeof(struct request *),
.value_size = sizeof(struct info_t),
.max_entries = 1024,
};
struct bpf_map_def SEC("maps") counts = {
.type = BPF_MAP_TYPE_HASHMAP,
.key_size = sizeof(struct info_t),
.value_size = sizeof(u64),
.max_entries = 1024,
};
SEC("kprobe/blk_account_io_start")
int bpf_blk_account_io_start(struct pt_regs *ctx)
{
struct info_t *info = bpf_map_lookup_elem(&infobyreq, &ctx->di);
u64 *count = bpf_map_lookup_elem(&counts, info);
(*count)++;
}

Signed-off-by: Paul Chaignon <paul.chaignon@orange.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 4fbac77d 30-Mar-2018 Andrey Ignatov <rdna@fb.com>

bpf: Hooks for sys_bind

== The problem ==

There is a use-case when all processes inside a cgroup should use one
single IP address on a host that has multiple IP configured. Those
processes should use the IP for both ingress and egress, for TCP and UDP
traffic. So TCP/UDP servers should be bound to that IP to accept
incoming connections on it, and TCP/UDP clients should make outgoing
connections from that IP. It should not require changing application
code since it's often not possible.

Currently it's solved by intercepting glibc wrappers around syscalls
such as `bind(2)` and `connect(2)`. It's done by a shared library that
is preloaded for every process in a cgroup so that whenever TCP/UDP
server calls `bind(2)`, the library replaces IP in sockaddr before
passing arguments to syscall. When application calls `connect(2)` the
library transparently binds the local end of connection to that IP
(`bind(2)` with `IP_BIND_ADDRESS_NO_PORT` to avoid performance penalty).

Shared library approach is fragile though, e.g.:
* some applications clear env vars (incl. `LD_PRELOAD`);
* `/etc/ld.so.preload` doesn't help since some applications are linked
with option `-z nodefaultlib`;
* other applications don't use glibc and there is nothing to intercept.

== The solution ==

The patch provides much more reliable in-kernel solution for the 1st
part of the problem: binding TCP/UDP servers on desired IP. It does not
depend on application environment and implementation details (whether
glibc is used or not).

It adds new eBPF program type `BPF_PROG_TYPE_CGROUP_SOCK_ADDR` and
attach types `BPF_CGROUP_INET4_BIND` and `BPF_CGROUP_INET6_BIND`
(similar to already existing `BPF_CGROUP_INET_SOCK_CREATE`).

The new program type is intended to be used with sockets (`struct sock`)
in a cgroup and provided by user `struct sockaddr`. Pointers to both of
them are parts of the context passed to programs of newly added types.

The new attach types provides hooks in `bind(2)` system call for both
IPv4 and IPv6 so that one can write a program to override IP addresses
and ports user program tries to bind to and apply such a program for
whole cgroup.

== Implementation notes ==

[1]
Separate attach types for `AF_INET` and `AF_INET6` are added
intentionally to prevent reading/writing to offsets that don't make
sense for corresponding socket family. E.g. if user passes `sockaddr_in`
it doesn't make sense to read from / write to `user_ip6[]` context
fields.

[2]
The write access to `struct bpf_sock_addr_kern` is implemented using
special field as an additional "register".

There are just two registers in `sock_addr_convert_ctx_access`: `src`
with value to write and `dst` with pointer to context that can't be
changed not to break later instructions. But the fields, allowed to
write to, are not available directly and to access them address of
corresponding pointer has to be loaded first. To get additional register
the 1st not used by `src` and `dst` one is taken, its content is saved
to `bpf_sock_addr_kern.tmp_reg`, then the register is used to load
address of pointer field, and finally the register's content is restored
from the temporary field after writing `src` value.

Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 5e43f899 30-Mar-2018 Andrey Ignatov <rdna@fb.com>

bpf: Check attach type at prog load time

== The problem ==

There are use-cases when a program of some type can be attached to
multiple attach points and those attach points must have different
permissions to access context or to call helpers.

E.g. context structure may have fields for both IPv4 and IPv6 but it
doesn't make sense to read from / write to IPv6 field when attach point
is somewhere in IPv4 stack.

Same applies to BPF-helpers: it may make sense to call some helper from
some attach point, but not from other for same prog type.

== The solution ==

Introduce `expected_attach_type` field in in `struct bpf_attr` for
`BPF_PROG_LOAD` command. If scenario described in "The problem" section
is the case for some prog type, the field will be checked twice:

1) At load time prog type is checked to see if attach type for it must
be known to validate program permissions correctly. Prog will be
rejected with EINVAL if it's the case and `expected_attach_type` is
not specified or has invalid value.

2) At attach time `attach_type` is compared with `expected_attach_type`,
if prog type requires to have one, and, if they differ, attach will
be rejected with EINVAL.

The `expected_attach_type` is now available as part of `struct bpf_prog`
in both `bpf_verifier_ops->is_valid_access()` and
`bpf_verifier_ops->get_func_proto()` () and can be used to check context
accesses and calls to helpers correspondingly.

Initially the idea was discussed by Alexei Starovoitov <ast@fb.com> and
Daniel Borkmann <daniel@iogearbox.net> here:
https://marc.info/?l=linux-netdev&m=152107378717201&w=2

Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 77d2e05a 24-Mar-2018 Martin KaFai Lau <kafai@fb.com>

bpf: Add bpf_verifier_vlog() and bpf_verifier_log_needed()

The BTF (BPF Type Format) verifier needs to reuse the current
BPF verifier log. Hence, it requires the following changes:

(1) Expose log_write() in verifier.c for other users.
Its name is renamed to bpf_verifier_vlog().

(2) The BTF verifier also needs to check
'log->level && log->ubuf && !bpf_verifier_log_full(log);'
independently outside of the current log_write(). It is
because the BTF verifier will do one-check before
making multiple calls to btf_verifier_vlog to log
the details of a type.

Hence, this check is also re-factored to a new function
bpf_verifier_log_needed(). Since it is re-factored,
we can check it before va_start() in the current
bpf_verifier_log_write() and verbose().

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Alexei Starovoitov <ast@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# b9193c1b 24-Mar-2018 Martin KaFai Lau <kafai@fb.com>

bpf: Rename bpf_verifer_log

bpf_verifer_log =>
bpf_verifier_log

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Alexei Starovoitov <ast@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# abe08840 23-Mar-2018 Jiri Olsa <jolsa@kernel.org>

bpf: Remove struct bpf_verifier_env argument from print_bpf_insn

We use print_bpf_insn in user space (bpftool and soon perf),
so it'd be nice to keep it generic and strip it off the kernel
struct bpf_verifier_env argument.

This argument can be safely removed, because its users can
use the struct bpf_insn_cbs::private_data to pass it.

By changing the argument type we can no longer have clean
'verbose' alias to 'bpf_verifier_log_write' in verifier.c.
Instead we're adding the 'verbose' cb_print callback and
removing the alias.

This way we have new cb_print callback in place, and all
the 'verbose(env, ...) calls in verifier.c will cleanly
cast to 'verbose(void *, ...)' so no other change is
needed.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 4f738adb 18-Mar-2018 John Fastabend <john.fastabend@gmail.com>

bpf: create tcp_bpf_ulp allowing BPF to monitor socket TX/RX data

This implements a BPF ULP layer to allow policy enforcement and
monitoring at the socket layer. In order to support this a new
program type BPF_PROG_TYPE_SK_MSG is used to run the policy at
the sendmsg/sendpage hook. To attach the policy to sockets a
sockmap is used with a new program attach type BPF_SK_MSG_VERDICT.

Similar to previous sockmap usages when a sock is added to a
sockmap, via a map update, if the map contains a BPF_SK_MSG_VERDICT
program type attached then the BPF ULP layer is created on the
socket and the attached BPF_PROG_TYPE_SK_MSG program is run for
every msg in sendmsg case and page/offset in sendpage case.

BPF_PROG_TYPE_SK_MSG Semantics/API:

BPF_PROG_TYPE_SK_MSG supports only two return codes SK_PASS and
SK_DROP. Returning SK_DROP free's the copied data in the sendmsg
case and in the sendpage case leaves the data untouched. Both cases
return -EACESS to the user. Returning SK_PASS will allow the msg to
be sent.

In the sendmsg case data is copied into kernel space buffers before
running the BPF program. The kernel space buffers are stored in a
scatterlist object where each element is a kernel memory buffer.
Some effort is made to coalesce data from the sendmsg call here.
For example a sendmsg call with many one byte iov entries will
likely be pushed into a single entry. The BPF program is run with
data pointers (start/end) pointing to the first sg element.

In the sendpage case data is not copied. We opt not to copy the
data by default here, because the BPF infrastructure does not
know what bytes will be needed nor when they will be needed. So
copying all bytes may be wasteful. Because of this the initial
start/end data pointers are (0,0). Meaning no data can be read or
written. This avoids reading data that may be modified by the
user. A new helper is added later in this series if reading and
writing the data is needed. The helper call will do a copy by
default so that the page is exclusively owned by the BPF call.

The verdict from the BPF_PROG_TYPE_SK_MSG applies to the entire msg
in the sendmsg() case and the entire page/offset in the sendpage case.
This avoids ambiguity on how to handle mixed return codes in the
sendmsg case. Again a helper is added later in the series if
a verdict needs to apply to multiple system calls and/or only
a subpart of the currently being processed message.

The helper msg_redirect_map() can be used to select the socket to
send the data on. This is used similar to existing redirect use
cases. This allows policy to redirect msgs.

Pseudo code simple example:

The basic logic to attach a program to a socket is as follows,

// load the programs
bpf_prog_load(SOCKMAP_TCP_MSG_PROG, BPF_PROG_TYPE_SK_MSG,
&obj, &msg_prog);

// lookup the sockmap
bpf_map_msg = bpf_object__find_map_by_name(obj, "my_sock_map");

// get fd for sockmap
map_fd_msg = bpf_map__fd(bpf_map_msg);

// attach program to sockmap
bpf_prog_attach(msg_prog, map_fd_msg, BPF_SK_MSG_VERDICT, 0);

Adding sockets to the map is done in the normal way,

// Add a socket 'fd' to sockmap at location 'i'
bpf_map_update_elem(map_fd_msg, &i, fd, BPF_ANY);

After the above any socket attached to "my_sock_map", in this case
'fd', will run the BPF msg verdict program (msg_prog) on every
sendmsg and sendpage system call.

For a complete example see BPF selftests or sockmap samples.

Implementation notes:

It seemed the simplest, to me at least, to use a refcnt to ensure
psock is not lost across the sendmsg copy into the sg, the bpf program
running on the data in sg_data, and the final pass to the TCP stack.
Some performance testing may show a better method to do this and avoid
the refcnt cost, but for now use the simpler method.

Another item that will come after basic support is in place is
supporting MSG_MORE flag. At the moment we call sendpages even if
the MSG_MORE flag is set. An enhancement would be to collect the
pages into a larger scatterlist and pass down the stack. Notice that
bpf_tcp_sendmsg() could support this with some additional state saved
across sendmsg calls. I built the code to support this without having
to do refactoring work. Other features TBD include ZEROCOPY and the
TCP_RECV_QUEUE/TCP_NO_QUEUE support. This will follow initial series
shortly.

Future work could improve size limits on the scatterlist rings used
here. Currently, we use MAX_SKB_FRAGS simply because this was being
used already in the TLS case. Future work could extend the kernel sk
APIs to tune this depending on workload. This is a trade-off
between memory usage and throughput performance.

Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: David S. Miller <davem@davemloft.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# ca369602 23-Feb-2018 Daniel Borkmann <daniel@iogearbox.net>

bpf: allow xadd only on aligned memory

The requirements around atomic_add() / atomic64_add() resp. their
JIT implementations differ across architectures. E.g. while x86_64
seems just fine with BPF's xadd on unaligned memory, on arm64 it
triggers via interpreter but also JIT the following crash:

[ 830.864985] Unable to handle kernel paging request at virtual address ffff8097d7ed6703
[...]
[ 830.916161] Internal error: Oops: 96000021 [#1] SMP
[ 830.984755] CPU: 37 PID: 2788 Comm: test_verifier Not tainted 4.16.0-rc2+ #8
[ 830.991790] Hardware name: Huawei TaiShan 2280 /BC11SPCD, BIOS 1.29 07/17/2017
[ 830.998998] pstate: 80400005 (Nzcv daif +PAN -UAO)
[ 831.003793] pc : __ll_sc_atomic_add+0x4/0x18
[ 831.008055] lr : ___bpf_prog_run+0x1198/0x1588
[ 831.012485] sp : ffff00001ccabc20
[ 831.015786] x29: ffff00001ccabc20 x28: ffff8017d56a0f00
[ 831.021087] x27: 0000000000000001 x26: 0000000000000000
[ 831.026387] x25: 000000c168d9db98 x24: 0000000000000000
[ 831.031686] x23: ffff000008203878 x22: ffff000009488000
[ 831.036986] x21: ffff000008b14e28 x20: ffff00001ccabcb0
[ 831.042286] x19: ffff0000097b5080 x18: 0000000000000a03
[ 831.047585] x17: 0000000000000000 x16: 0000000000000000
[ 831.052885] x15: 0000ffffaeca8000 x14: 0000000000000000
[ 831.058184] x13: 0000000000000000 x12: 0000000000000000
[ 831.063484] x11: 0000000000000001 x10: 0000000000000000
[ 831.068783] x9 : 0000000000000000 x8 : 0000000000000000
[ 831.074083] x7 : 0000000000000000 x6 : 000580d428000000
[ 831.079383] x5 : 0000000000000018 x4 : 0000000000000000
[ 831.084682] x3 : ffff00001ccabcb0 x2 : 0000000000000001
[ 831.089982] x1 : ffff8097d7ed6703 x0 : 0000000000000001
[ 831.095282] Process test_verifier (pid: 2788, stack limit = 0x0000000018370044)
[ 831.102577] Call trace:
[ 831.105012] __ll_sc_atomic_add+0x4/0x18
[ 831.108923] __bpf_prog_run32+0x4c/0x70
[ 831.112748] bpf_test_run+0x78/0xf8
[ 831.116224] bpf_prog_test_run_xdp+0xb4/0x120
[ 831.120567] SyS_bpf+0x77c/0x1110
[ 831.123873] el0_svc_naked+0x30/0x34
[ 831.127437] Code: 97fffe97 17ffffec 00000000 f9800031 (885f7c31)

Reason for this is because memory is required to be aligned. In
case of BPF, we always enforce alignment in terms of stack access,
but not when accessing map values or packet data when the underlying
arch (e.g. arm64) has CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS set.

xadd on packet data that is local to us anyway is just wrong, so
forbid this case entirely. The only place where xadd makes sense in
fact are map values; xadd on stack is wrong as well, but it's been
around for much longer. Specifically enforce strict alignment in case
of xadd, so that we handle this case generically and avoid such crashes
in the first place.

Fixes: 17a5267067f3 ("bpf: verifier (add verifier core)")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 544bdebc 14-Feb-2018 Joe Stringer <joe@wand.net.nz>

bpf: Remove unused callee_saved array

This array appears to be completely unused, remove it.

Signed-off-by: Joe Stringer <joe@wand.net.nz>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# f6b1b3bf 26-Jan-2018 Daniel Borkmann <daniel@iogearbox.net>

bpf: fix subprog verifier bypass by div/mod by 0 exception

One of the ugly leftovers from the early eBPF days is that div/mod
operations based on registers have a hard-coded src_reg == 0 test
in the interpreter as well as in JIT code generators that would
return from the BPF program with exit code 0. This was basically
adopted from cBPF interpreter for historical reasons.

There are multiple reasons why this is very suboptimal and prone
to bugs. To name one: the return code mapping for such abnormal
program exit of 0 does not always match with a suitable program
type's exit code mapping. For example, '0' in tc means action 'ok'
where the packet gets passed further up the stack, which is just
undesirable for such cases (e.g. when implementing policy) and
also does not match with other program types.

While trying to work out an exception handling scheme, I also
noticed that programs crafted like the following will currently
pass the verifier:

0: (bf) r6 = r1
1: (85) call pc+8
caller:
R6=ctx(id=0,off=0,imm=0) R10=fp0,call_-1
callee:
frame1: R1=ctx(id=0,off=0,imm=0) R10=fp0,call_1
10: (b4) (u32) r2 = (u32) 0
11: (b4) (u32) r3 = (u32) 1
12: (3c) (u32) r3 /= (u32) r2
13: (61) r0 = *(u32 *)(r1 +76)
14: (95) exit
returning from callee:
frame1: R0_w=pkt(id=0,off=0,r=0,imm=0)
R1=ctx(id=0,off=0,imm=0) R2_w=inv0
R3_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff))
R10=fp0,call_1
to caller at 2:
R0_w=pkt(id=0,off=0,r=0,imm=0) R6=ctx(id=0,off=0,imm=0)
R10=fp0,call_-1

from 14 to 2: R0=pkt(id=0,off=0,r=0,imm=0)
R6=ctx(id=0,off=0,imm=0) R10=fp0,call_-1
2: (bf) r1 = r6
3: (61) r1 = *(u32 *)(r1 +80)
4: (bf) r2 = r0
5: (07) r2 += 8
6: (2d) if r2 > r1 goto pc+1
R0=pkt(id=0,off=0,r=8,imm=0) R1=pkt_end(id=0,off=0,imm=0)
R2=pkt(id=0,off=8,r=8,imm=0) R6=ctx(id=0,off=0,imm=0)
R10=fp0,call_-1
7: (71) r0 = *(u8 *)(r0 +0)
8: (b7) r0 = 1
9: (95) exit

from 6 to 8: safe
processed 16 insns (limit 131072), stack depth 0+0

Basically what happens is that in the subprog we make use of a
div/mod by 0 exception and in the 'normal' subprog's exit path
we just return skb->data back to the main prog. This has the
implication that the verifier thinks we always get a pkt pointer
in R0 while we still have the implicit 'return 0' from the div
as an alternative unconditional return path earlier. Thus, R0
then contains 0, meaning back in the parent prog we get the
address range of [0x0, skb->data_end] as read and writeable.
Similar can be crafted with other pointer register types.

Since i) BPF_ABS/IND is not allowed in programs that contain
BPF to BPF calls (and generally it's also disadvised to use in
native eBPF context), ii) unknown opcodes don't return zero
anymore, iii) we don't return an exception code in dead branches,
the only last missing case affected and to fix is the div/mod
handling.

What we would really need is some infrastructure to propagate
exceptions all the way to the original prog unwinding the
current stack and returning that code to the caller of the
BPF program. In user space such exception handling for similar
runtimes is typically implemented with setjmp(3) and longjmp(3)
as one possibility which is not available in the kernel,
though (kgdb used to implement it in kernel long time ago). I
implemented a PoC exception handling mechanism into the BPF
interpreter with porting setjmp()/longjmp() into x86_64 and
adding a new internal BPF_ABRT opcode that can use a program
specific exception code for all exception cases we have (e.g.
div/mod by 0, unknown opcodes, etc). While this seems to work
in the constrained BPF environment (meaning, here, we don't
need to deal with state e.g. from memory allocations that we
would need to undo before going into exception state), it still
has various drawbacks: i) we would need to implement the
setjmp()/longjmp() for every arch supported in the kernel and
for x86_64, arm64, sparc64 JITs currently supporting calls,
ii) it has unconditional additional cost on main program
entry to store CPU register state in initial setjmp() call,
and we would need some way to pass the jmp_buf down into
___bpf_prog_run() for main prog and all subprogs, but also
storing on stack is not really nice (other option would be
per-cpu storage for this, but it also has the drawback that
we need to disable preemption for every BPF program types).
All in all this approach would add a lot of complexity.

Another poor-man's solution would be to have some sort of
additional shared register or scratch buffer to hold state
for exceptions, and test that after every call return to
chain returns and pass R0 all the way down to BPF prog caller.
This is also problematic in various ways: i) an additional
register doesn't map well into JITs, and some other scratch
space could only be on per-cpu storage, which, again has the
side-effect that this only works when we disable preemption,
or somewhere in the input context which is not available
everywhere either, and ii) this adds significant runtime
overhead by putting conditionals after each and every call,
as well as implementation complexity.

Yet another option is to teach verifier that div/mod can
return an integer, which however is also complex to implement
as verifier would need to walk such fake 'mov r0,<code>; exit;'
sequeuence and there would still be no guarantee for having
propagation of this further down to the BPF caller as proper
exception code. For parent prog, it is also is not distinguishable
from a normal return of a constant scalar value.

The approach taken here is a completely different one with
little complexity and no additional overhead involved in
that we make use of the fact that a div/mod by 0 is undefined
behavior. Instead of bailing out, we adapt the same behavior
as on some major archs like ARMv8 [0] into eBPF as well:
X div 0 results in 0, and X mod 0 results in X. aarch64 and
aarch32 ISA do not generate any traps or otherwise aborts
of program execution for unsigned divides. I verified this
also with a test program compiled by gcc and clang, and the
behavior matches with the spec. Going forward we adapt the
eBPF verifier to emit such rewrites once div/mod by register
was seen. cBPF is not touched and will keep existing 'return 0'
semantics. Given the options, it seems the most suitable from
all of them, also since major archs have similar schemes in
place. Given this is all in the realm of undefined behavior,
we still have the option to adapt if deemed necessary and
this way we would also have the option of more flexibility
from LLVM code generation side (which is then fully visible
to verifier). Thus, this patch i) fixes the panic seen in
above program and ii) doesn't bypass the verifier observations.

[0] ARM Architecture Reference Manual, ARMv8 [ARM DDI 0487B.b]
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0487b.b/DDI0487B_b_armv8_arm.pdf
1) aarch64 instruction set: section C3.4.7 and C6.2.279 (UDIV)
"A division by zero results in a zero being written to
the destination register, without any indication that
the division by zero occurred."
2) aarch32 instruction set: section F1.4.8 and F5.1.263 (UDIV)
"For the SDIV and UDIV instructions, division by zero
always returns a zero result."

Fixes: f4d7e40a5b71 ("bpf: introduce function calls (verification)")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 5e581dad 26-Jan-2018 Daniel Borkmann <daniel@iogearbox.net>

bpf: make unknown opcode handling more robust

Recent findings by syzcaller fixed in 7891a87efc71 ("bpf: arsh is
not supported in 32 bit alu thus reject it") triggered a warning
in the interpreter due to unknown opcode not being rejected by
the verifier. The 'return 0' for an unknown opcode is really not
optimal, since with BPF to BPF calls, this would go untracked by
the verifier.

Do two things here to improve the situation: i) perform basic insn
sanity check early on in the verification phase and reject every
non-uapi insn right there. The bpf_opcode_in_insntable() table
reuses the same mapping as the jumptable in ___bpf_prog_run() sans
the non-public mappings. And ii) in ___bpf_prog_run() we do need
to BUG in the case where the verifier would ever create an unknown
opcode due to some rewrites.

Note that JITs do not have such issues since they would punt to
interpreter in these situations. Moreover, the BPF_JIT_ALWAYS_ON
would also help to avoid such unknown opcodes in the first place.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 2a5418a1 26-Jan-2018 Daniel Borkmann <daniel@iogearbox.net>

bpf: improve dead code sanitizing

Given we recently had c131187db2d3 ("bpf: fix branch pruning
logic") and 95a762e2c8c9 ("bpf: fix incorrect sign extension in
check_alu_op()") in particular where before verifier skipped
verification of the wrongly assumed dead branch, we should not
just replace the dead code parts with nops (mov r0,r0). If there
is a bug such as fixed in 95a762e2c8c9 in future again, where
runtime could execute those insns, then one of the potential
issues with the current setting would be that given the nops
would be at the end of the program, we could execute out of
bounds at some point.

The best in such case would be to just exit the BPF program
altogether and return an exception code. However, given this
would require two instructions, and such a dead code gap could
just be a single insn long, we would need to place 'r0 = X; ret'
snippet at the very end after the user program or at the start
before the program (where we'd skip that region on prog entry),
and then place unconditional ja's into the dead code gap.

While more complex but possible, there's still another block
in the road that currently prevents from this, namely BPF to
BPF calls. The issue here is that such exception could be
returned from a callee, but the caller would not know that
it's an exception that needs to be propagated further down.
Alternative that has little complexity is to just use a ja-1
code for now which will trap the execution here instead of
silently doing bad things if we ever get there due to bugs.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 4bd95f4b 19-Jan-2018 Daniel Borkmann <daniel@iogearbox.net>

bpf: add upper complexity limit to verifier log

Given the limit could potentially get further adjustments in the
future, add it to the log so it becomes obvious what the current
limit is w/o having to check the source first. This may also be
helpful for debugging complexity related issues on kernels that
backport from upstream.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 90133415 19-Jan-2018 Daniel Borkmann <daniel@iogearbox.net>

bpf, verifier: detect misconfigured mem, size argument pair

I've seen two patch proposals now for helper additions that used
ARG_PTR_TO_MEM or similar in reg_X but no corresponding ARG_CONST_SIZE
in reg_X+1. Verifier won't complain in such case, but it will omit
verifying the memory passed to the helper thus ending up badly.
Detect such buggy helper function signature and bail out during
verification rather than finding them through review.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 6f16101e 17-Jan-2018 Daniel Borkmann <daniel@iogearbox.net>

bpf: mark dst unknown on inconsistent {s, u}bounds adjustments

syzkaller generated a BPF proglet and triggered a warning with
the following:

0: (b7) r0 = 0
1: (d5) if r0 s<= 0x0 goto pc+0
R0=inv0 R1=ctx(id=0,off=0,imm=0) R10=fp0
2: (1f) r0 -= r1
R0=inv0 R1=ctx(id=0,off=0,imm=0) R10=fp0
verifier internal error: known but bad sbounds

What happens is that in the first insn, r0's min/max value
are both 0 due to the immediate assignment, later in the jsle
test the bounds are updated for the min value in the false
path, meaning, they yield smin_val = 1, smax_val = 0, and when
ctx pointer is subtracted from r0, verifier bails out with the
internal error and throwing a WARN since smin_val != smax_val
for the known constant.

For min_val > max_val scenario it means that reg_set_min_max()
and reg_set_min_max_inv() (which both refine existing bounds)
demonstrated that such branch cannot be taken at runtime.

In above scenario for the case where it will be taken, the
existing [0, 0] bounds are kept intact. Meaning, the rejection
is not due to a verifier internal error, and therefore the
WARN() is not necessary either.

We could just reject such cases in adjust_{ptr,scalar}_min_max_vals()
when either known scalars have smin_val != smax_val or
umin_val != umax_val or any scalar reg with bounds
smin_val > smax_val or umin_val > umax_val. However, there
may be a small risk of breakage of buggy programs, so handle
this more gracefully and in adjust_{ptr,scalar}_min_max_vals()
just taint the dst reg as unknown scalar when we see ops with
such kind of src reg.

Reported-by: syzbot+6d362cadd45dc0a12ba4@syzkaller.appspotmail.com
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# f37a8cb8 16-Jan-2018 Daniel Borkmann <daniel@iogearbox.net>

bpf: reject stores into ctx via st and xadd

Alexei found that verifier does not reject stores into context
via BPF_ST instead of BPF_STX. And while looking at it, we
also should not allow XADD variant of BPF_STX.

The context rewriter is only assuming either BPF_LDX_MEM- or
BPF_STX_MEM-type operations, thus reject anything other than
that so that assumptions in the rewriter properly hold. Add
test cases as well for BPF selftests.

Fixes: d691f9e8d440 ("bpf: allow programs to write to certain skb fields")
Reported-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# a3884572 11-Jan-2018 Jakub Kicinski <kuba@kernel.org>

bpf: offload: add map offload infrastructure

BPF map offload follow similar path to program offload. At creation
time users may specify ifindex of the device on which they want to
create the map. Map will be validated by the kernel's
.map_alloc_check callback and device driver will be called for the
actual allocation. Map will have an empty set of operations
associated with it (save for alloc and free callbacks). The real
device callbacks are kept in map->offload->dev_ops because they
have slightly different signatures. Map operations are called in
process context so the driver may communicate with HW freely,
msleep(), wait() etc.

Map alloc and free callbacks are muxed via existing .ndo_bpf, and
are always called with rtnl lock held. Maps and programs are
guaranteed to be destroyed before .ndo_uninit (i.e. before
unregister_netdev() returns). Map callbacks are invoked with
bpf_devs_lock *read* locked, drivers must take care of exclusive
locking if necessary.

All offload-specific branches are marked with unlikely() (through
bpf_map_is_dev_bound()), given that branch penalty will be
negligible compared to IO anyway, and we don't want to penalize
SW path unnecessarily.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 68fda450 12-Jan-2018 Alexei Starovoitov <ast@kernel.org>

bpf: fix 32-bit divide by zero

due to some JITs doing if (src_reg == 0) check in 64-bit mode
for div/mod operations mask upper 32-bits of src register
before doing the check

Fixes: 622582786c9e ("net: filter: x86: internal BPF JIT")
Fixes: 7a12b5031c6b ("sparc64: Add eBPF JIT.")
Reported-by: syzbot+48340bb518e88849e2e3@syzkaller.appspotmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 7891a87e 10-Jan-2018 Daniel Borkmann <daniel@iogearbox.net>

bpf: arsh is not supported in 32 bit alu thus reject it

The following snippet was throwing an 'unknown opcode cc' warning
in BPF interpreter:

0: (18) r0 = 0x0
2: (7b) *(u64 *)(r10 -16) = r0
3: (cc) (u32) r0 s>>= (u32) r0
4: (95) exit

Although a number of JITs do support BPF_ALU | BPF_ARSH | BPF_{K,X}
generation, not all of them do and interpreter does neither. We can
leave existing ones and implement it later in bpf-next for the
remaining ones, but reject this properly in verifier for the time
being.

Fixes: 17a5267067f3 ("bpf: verifier (add verifier core)")
Reported-by: syzbot+93c4904c5c70348a6890@syzkaller.appspotmail.com
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 40950343 10-Jan-2018 Colin Ian King <colin.king@canonical.com>

bpf: fix spelling mistake: "obusing" -> "abusing"

Trivial fix to spelling mistake in error message text.

Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 430e68d1 09-Jan-2018 Quentin Monnet <quentin@isovalent.com>

bpf: export function to write into verifier log buffer

Rename the BPF verifier `verbose()` to `bpf_verifier_log_write()` and
export it, so that other components (in particular, drivers for BPF
offload) can reuse the user buffer log to dump error messages at
verification time.

Renaming `verbose()` was necessary in order to avoid a name so generic
to be exported to the global namespace. However to prevent too much pain
for backports, the calls to `verbose()` in the kernel BPF verifier were
not changed. Instead, use function aliasing to make `verbose` point to
`bpf_verifier_log_write`. Another solution could consist in making a
wrapper around `verbose()`, but since it is a variadic function, I don't
see a clean way without creating two identical wrappers, one for the
verifier and one to export.

Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# b2157399 07-Jan-2018 Alexei Starovoitov <ast@kernel.org>

bpf: prevent out-of-bounds speculation

Under speculation, CPUs may mis-predict branches in bounds checks. Thus,
memory accesses under a bounds check may be speculated even if the
bounds check fails, providing a primitive for building a side channel.

To avoid leaking kernel data round up array-based maps and mask the index
after bounds check, so speculated load with out of bounds index will load
either valid value from the array or zero from the padded area.

Unconditionally mask index for all array types even when max_entries
are not rounded to power of 2 for root user.
When map is created by unpriv user generate a sequence of bpf insns
that includes AND operation to make sure that JITed code includes
the same 'index & index_mask' operation.

If prog_array map is created by unpriv user replace
bpf_tail_call(ctx, map, index);
with
if (index >= max_entries) {
index &= map->index_mask;
bpf_tail_call(ctx, map, index);
}
(along with roundup to power 2) to prevent out-of-bounds speculation.
There is secondary redundant 'if (index >= max_entries)' in the interpreter
and in all JITs, but they can be optimized later if necessary.

Other array-like maps (cpumap, devmap, sockmap, perf_event_array, cgroup_array)
cannot be used by unpriv, so no changes there.

That fixes bpf side of "Variant 1: bounds check bypass (CVE-2017-5753)" on
all architectures with and without JIT.

v2->v3:
Daniel noticed that attack potentially can be crafted via syscall commands
without loading the program, so add masking to those paths as well.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 5896351e 08-Jan-2018 Alexei Starovoitov <ast@kernel.org>

bpf: fix verifier GPF in kmalloc failure path

syzbot reported the following panic in the verifier triggered
by kmalloc error injection:

kasan: GPF could be caused by NULL-ptr deref or user memory access
RIP: 0010:copy_func_state kernel/bpf/verifier.c:403 [inline]
RIP: 0010:copy_verifier_state+0x364/0x590 kernel/bpf/verifier.c:431
Call Trace:
pop_stack+0x8c/0x270 kernel/bpf/verifier.c:449
push_stack kernel/bpf/verifier.c:491 [inline]
check_cond_jmp_op kernel/bpf/verifier.c:3598 [inline]
do_check+0x4b60/0xa050 kernel/bpf/verifier.c:4731
bpf_check+0x3296/0x58c0 kernel/bpf/verifier.c:5489
bpf_prog_load+0xa2a/0x1b00 kernel/bpf/syscall.c:1198
SYSC_bpf kernel/bpf/syscall.c:1807 [inline]
SyS_bpf+0x1044/0x4420 kernel/bpf/syscall.c:1769

when copy_verifier_state() aborts in the middle due to kmalloc failure
some of the frames could have been partially copied while
current free_verifier_state() loop
for (i = 0; i <= state->curframe; i++)
assumed that all frames are non-null.
Simply fix it by adding 'if (!state)' to free_func_state().
Also avoid stressing copy frame logic more if kzalloc fails
in push_stack() free env->cur_state right away.

Fixes: f4d7e40a5b71 ("bpf: introduce function calls (verification)")
Reported-by: syzbot+32ac5a3e473f2e01cfc7@syzkaller.appspotmail.com
Reported-by: syzbot+fa99e24f3c29d269a7d5@syzkaller.appspotmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# cae1927c 27-Dec-2017 Jakub Kicinski <kuba@kernel.org>

bpf: offload: allow netdev to disappear while verifier is running

To allow verifier instruction callbacks without any extra locking
NETDEV_UNREGISTER notification would wait on a waitqueue for verifier
to finish. This design decision was made when rtnl lock was providing
all the locking. Use the read/write lock instead and remove the
workqueue.

Verifier will now call into the offload code, so dev_ops are moved
to offload structure. Since verifier calls are all under
bpf_prog_is_dev_bound() we no longer need static inline implementations
to please builds with CONFIG_NET=n.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# aada9ce6 25-Dec-2017 Alexei Starovoitov <ast@kernel.org>

bpf: fix max call depth check

fix off by one error in max call depth check
and add a test

Fixes: f4d7e40a5b71 ("bpf: introduce function calls (verification)")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 70a87ffe 25-Dec-2017 Alexei Starovoitov <ast@kernel.org>

bpf: fix maximum stack depth tracking logic

Instead of computing max stack depth for current call chain
during the main verifier pass track stack depth of each
function independently and after do_check() is done do
another pass over all instructions analyzing depth
of all possible call stacks.

Fixes: f4d7e40a5b71 ("bpf: introduce function calls (verification)")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# fd05e57b 23-Dec-2017 Gianluca Borello <g.borello@gmail.com>

bpf: fix stacksafe exploration when comparing states

Commit cc2b14d51053 ("bpf: teach verifier to recognize zero initialized
stack") introduced a very relaxed check when comparing stacks of different
states, effectively returning a positive result in many cases where it
shouldn't.

This can create problems in cases such as this following C pseudocode:

long var;
long *x = bpf_map_lookup(...);
if (!x)
return;

if (*x != 0xbeef)
var = 0;
else
var = 1;

/* This is the key part, calling a helper causes an explored state
* to be saved with the information that "var" is on the stack as
* STACK_ZERO, since the helper is first met by the verifier after
* the "var = 0" assignment. This state will however be wrongly used
* also for the "var = 1" case, so the verifier assumes "var" is always
* 0 and will replace the NULL assignment with nops, because the
* search pruning prevents it from exploring the faulty branch.
*/
bpf_ktime_get_ns();

if (var)
*(long *)0 = 0xbeef;

Fix the issue by making sure that the stack is fully explored before
returning a positive comparison result.

Also attach a couple tests that highlight the bad behavior. In the first
test, without this fix instructions 16 and 17 are replaced with nops
instead of being rejected by the verifier.

The second test, instead, allows a program to make a potentially illegal
read from the stack.

Fixes: cc2b14d51053 ("bpf: teach verifier to recognize zero initialized stack")
Signed-off-by: Gianluca Borello <g.borello@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 7105e828 20-Dec-2017 Daniel Borkmann <daniel@iogearbox.net>

bpf: allow for correlation of maps and helpers in dump

Currently a dump of an xlated prog (post verifier stage) doesn't
correlate used helpers as well as maps. The prog info lists
involved map ids, however there's no correlation of where in the
program they are used as of today. Likewise, bpftool does not
correlate helper calls with the target functions.

The latter can be done w/o any kernel changes through kallsyms,
and also has the advantage that this works with inlined helpers
and BPF calls.

Example, via interpreter:

# tc filter show dev foo ingress
filter protocol all pref 49152 bpf chain 0
filter protocol all pref 49152 bpf chain 0 handle 0x1 foo.o:[ingress] \
direct-action not_in_hw id 1 tag c74773051b364165 <-- prog id:1

* Output before patch (calls/maps remain unclear):

# bpftool prog dump xlated id 1 <-- dump prog id:1
0: (b7) r1 = 2
1: (63) *(u32 *)(r10 -4) = r1
2: (bf) r2 = r10
3: (07) r2 += -4
4: (18) r1 = 0xffff95c47a8d4800
6: (85) call unknown#73040
7: (15) if r0 == 0x0 goto pc+18
8: (bf) r2 = r10
9: (07) r2 += -4
10: (bf) r1 = r0
11: (85) call unknown#73040
12: (15) if r0 == 0x0 goto pc+23
[...]

* Output after patch:

# bpftool prog dump xlated id 1
0: (b7) r1 = 2
1: (63) *(u32 *)(r10 -4) = r1
2: (bf) r2 = r10
3: (07) r2 += -4
4: (18) r1 = map[id:2] <-- map id:2
6: (85) call bpf_map_lookup_elem#73424 <-- helper call
7: (15) if r0 == 0x0 goto pc+18
8: (bf) r2 = r10
9: (07) r2 += -4
10: (bf) r1 = r0
11: (85) call bpf_map_lookup_elem#73424
12: (15) if r0 == 0x0 goto pc+23
[...]

# bpftool map show id 2 <-- show/dump/etc map id:2
2: hash_of_maps flags 0x0
key 4B value 4B max_entries 3 memlock 4096B

Example, JITed, same prog:

# tc filter show dev foo ingress
filter protocol all pref 49152 bpf chain 0
filter protocol all pref 49152 bpf chain 0 handle 0x1 foo.o:[ingress] \
direct-action not_in_hw id 3 tag c74773051b364165 jited

# bpftool prog show id 3
3: sched_cls tag c74773051b364165
loaded_at Dec 19/13:48 uid 0
xlated 384B jited 257B memlock 4096B map_ids 2

# bpftool prog dump xlated id 3
0: (b7) r1 = 2
1: (63) *(u32 *)(r10 -4) = r1
2: (bf) r2 = r10
3: (07) r2 += -4
4: (18) r1 = map[id:2] <-- map id:2
6: (85) call __htab_map_lookup_elem#77408 <-+ inlined rewrite
7: (15) if r0 == 0x0 goto pc+2 |
8: (07) r0 += 56 |
9: (79) r0 = *(u64 *)(r0 +0) <-+
10: (15) if r0 == 0x0 goto pc+24
11: (bf) r2 = r10
12: (07) r2 += -4
[...]

Example, same prog, but kallsyms disabled (in that case we are
also not allowed to pass any relative offsets, etc, so prog
becomes pointer sanitized on dump):

# sysctl kernel.kptr_restrict=2
kernel.kptr_restrict = 2

# bpftool prog dump xlated id 3
0: (b7) r1 = 2
1: (63) *(u32 *)(r10 -4) = r1
2: (bf) r2 = r10
3: (07) r2 += -4
4: (18) r1 = map[id:2]
6: (85) call bpf_unspec#0
7: (15) if r0 == 0x0 goto pc+2
[...]

Example, BPF calls via interpreter:

# bpftool prog dump xlated id 1
0: (85) call pc+2#__bpf_prog_run_args32
1: (b7) r0 = 1
2: (95) exit
3: (b7) r0 = 2
4: (95) exit

Example, BPF calls via JIT:

# sysctl net.core.bpf_jit_enable=1
net.core.bpf_jit_enable = 1
# sysctl net.core.bpf_jit_kallsyms=1
net.core.bpf_jit_kallsyms = 1

# bpftool prog dump xlated id 1
0: (85) call pc+2#bpf_prog_3b185187f1855c4c_F
1: (b7) r0 = 1
2: (95) exit
3: (b7) r0 = 2
4: (95) exit

And finally, an example for tail calls that is now working
as well wrt correlation:

# bpftool prog dump xlated id 2
[...]
10: (b7) r2 = 8
11: (85) call bpf_trace_printk#-41312
12: (bf) r1 = r6
13: (18) r2 = map[id:1]
15: (b7) r3 = 0
16: (85) call bpf_tail_call#12
17: (b7) r1 = 42
18: (6b) *(u16 *)(r6 +46) = r1
19: (b7) r0 = 0
20: (95) exit

# bpftool map show id 1
1: prog_array flags 0x0
key 4B value 4B max_entries 1 memlock 4096B

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 4f74d809 20-Dec-2017 Daniel Borkmann <daniel@iogearbox.net>

bpf: fix kallsyms handling for subprogs

Right now kallsyms handling is not working with JITed subprogs.
The reason is that when in 1c2a088a6626 ("bpf: x64: add JIT support
for multi-function programs") in jit_subprogs() they are passed
to bpf_prog_kallsyms_add(), then their prog type is 0, which BPF
core will think it's a cBPF program as only cBPF programs have a
0 type. Thus, they need to inherit the type from the main prog.

Once that is fixed, they are indeed added to the BPF kallsyms
infra, but their tag is 0. Therefore, since intention is to add
them as bpf_prog_F_<tag>, we need to pass them to bpf_prog_calc_tag()
first. And once this is resolved, there is a use-after-free on
prog cleanup: we remove the kallsyms entry from the main prog,
later walk all subprogs and call bpf_jit_free() on them. However,
the kallsyms linkage was never released on them. Thus, do that
for all subprogs right in __bpf_prog_put() when refcount hits 0.

Fixes: 1c2a088a6626 ("bpf: x64: add JIT support for multi-function programs")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 82abbf8d 18-Dec-2017 Alexei Starovoitov <ast@kernel.org>

bpf: do not allow root to mangle valid pointers

Do not allow root to convert valid pointers into unknown scalars.
In particular disallow:
ptr &= reg
ptr <<= reg
ptr += ptr
and explicitly allow:
ptr -= ptr
since pkt_end - pkt == length

1.
This minimizes amount of address leaks root can do.
In the future may need to further tighten the leaks with kptr_restrict.

2.
If program has such pointer math it's likely a user mistake and
when verifier complains about it right away instead of many instructions
later on invalid memory access it's easier for users to fix their progs.

3.
when register holding a pointer cannot change to scalar it allows JITs to
optimize better. Like 32-bit archs could use single register for pointers
instead of a pair required to hold 64-bit scalars.

4.
reduces architecture dependent behavior. Since code:
r1 = r10;
r1 &= 0xff;
if (r1 ...)
will behave differently arm64 vs x64 and offloaded vs native.

A significant chunk of ptr mangling was allowed by
commit f1174f77b50c ("bpf/verifier: rework value tracking")
yet some of it was allowed even earlier.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# bb7f0f98 18-Dec-2017 Alexei Starovoitov <ast@kernel.org>

bpf: fix integer overflows

There were various issues related to the limited size of integers used in
the verifier:
- `off + size` overflow in __check_map_access()
- `off + reg->off` overflow in check_mem_access()
- `off + reg->var_off.value` overflow or 32-bit truncation of
`reg->var_off.value` in check_mem_access()
- 32-bit truncation in check_stack_boundary()

Make sure that any integer math cannot overflow by not allowing
pointer math with large values.

Also reduce the scope of "scalar op scalar" tracking.

Fixes: f1174f77b50c ("bpf/verifier: rework value tracking")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 179d1c56 18-Dec-2017 Jann Horn <jannh@google.com>

bpf: don't prune branches when a scalar is replaced with a pointer

This could be made safe by passing through a reference to env and checking
for env->allow_ptr_leaks, but it would only work one way and is probably
not worth the hassle - not doing it will not directly lead to program
rejection.

Fixes: f1174f77b50c ("bpf/verifier: rework value tracking")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# a5ec6ae1 18-Dec-2017 Jann Horn <jannh@google.com>

bpf: force strict alignment checks for stack pointers

Force strict alignment checks for stack pointers because the tracking of
stack spills relies on it; unaligned stack accesses can lead to corruption
of spilled registers, which is exploitable.

Fixes: f1174f77b50c ("bpf/verifier: rework value tracking")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# ea25f914 18-Dec-2017 Jann Horn <jannh@google.com>

bpf: fix missing error return in check_stack_boundary()

Prevent indirect stack accesses at non-constant addresses, which would
permit reading and corrupting spilled pointers.

Fixes: f1174f77b50c ("bpf/verifier: rework value tracking")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 468f6eaf 18-Dec-2017 Jann Horn <jannh@google.com>

bpf: fix 32-bit ALU op verification

32-bit ALU ops operate on 32-bit values and have 32-bit outputs.
Adjust the verifier accordingly.

Fixes: f1174f77b50c ("bpf/verifier: rework value tracking")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 0c17d1d2 18-Dec-2017 Jann Horn <jannh@google.com>

bpf: fix incorrect tracking of register size truncation

Properly handle register truncation to a smaller size.

The old code first mirrors the clearing of the high 32 bits in the bitwise
tristate representation, which is correct. But then, it computes the new
arithmetic bounds as the intersection between the old arithmetic bounds and
the bounds resulting from the bitwise tristate representation. Therefore,
when coerce_reg_to_32() is called on a number with bounds
[0xffff'fff8, 0x1'0000'0007], the verifier computes
[0xffff'fff8, 0xffff'ffff] as bounds of the truncated number.
This is incorrect: The truncated number could also be in the range [0, 7],
and no meaningful arithmetic bounds can be computed in that case apart from
the obvious [0, 0xffff'ffff].

Starting with v4.14, this is exploitable by unprivileged users as long as
the unprivileged_bpf_disabled sysctl isn't set.

Debian assigned CVE-2017-16996 for this issue.

v2:
- flip the mask during arithmetic bounds calculation (Ben Hutchings)
v3:
- add CVE number (Ben Hutchings)

Fixes: b03c9f9fdc37 ("bpf/verifier: track signed and unsigned min/max values")
Signed-off-by: Jann Horn <jannh@google.com>
Acked-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 95a762e2 18-Dec-2017 Jann Horn <jannh@google.com>

bpf: fix incorrect sign extension in check_alu_op()

Distinguish between
BPF_ALU64|BPF_MOV|BPF_K (load 32-bit immediate, sign-extended to 64-bit)
and BPF_ALU|BPF_MOV|BPF_K (load 32-bit immediate, zero-padded to 64-bit);
only perform sign extension in the first case.

Starting with v4.14, this is exploitable by unprivileged users as long as
the unprivileged_bpf_disabled sysctl isn't set.

Debian assigned CVE-2017-16995 for this issue.

v3:
- add CVE number (Ben Hutchings)

Fixes: 484611357c19 ("bpf: allow access into map value arrays")
Signed-off-by: Jann Horn <jannh@google.com>
Acked-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 4374f256 18-Dec-2017 Edward Cree <ecree@solarflare.com>

bpf/verifier: fix bounds calculation on BPF_RSH

Incorrect signed bounds were being computed.
If the old upper signed bound was positive and the old lower signed bound was
negative, this could cause the new upper signed bound to be too low,
leading to security issues.

Fixes: b03c9f9fdc37 ("bpf/verifier: track signed and unsigned min/max values")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Edward Cree <ecree@solarflare.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
[jannh@google.com: changed description to reflect bug impact]
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# fa2d41ad 18-Dec-2017 Colin Ian King <colin.king@canonical.com>

bpf: make function skip_callee static and return NULL rather than 0

Function skip_callee is local to the source and does not need to
be in global scope, so make it static. Also return NULL rather than 0.
Cleans up two sparse warnings:

symbol 'skip_callee' was not declared. Should it be static?
Using plain integer as NULL pointer

Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# e90004d5 18-Dec-2017 Colin Ian King <colin.king@canonical.com>

bpf: fix spelling mistake: "funcation"-> "function"

Trivial fix to spelling mistake in error message text.

Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 1c2a088a 14-Dec-2017 Alexei Starovoitov <ast@kernel.org>

bpf: x64: add JIT support for multi-function programs

Typical JIT does several passes over bpf instructions to
compute total size and relative offsets of jumps and calls.
With multitple bpf functions calling each other all relative calls
will have invalid offsets intially therefore we need to additional
last pass over the program to emit calls with correct offsets.
For example in case of three bpf functions:
main:
call foo
call bpf_map_lookup
exit
foo:
call bar
exit
bar:
exit

We will call bpf_int_jit_compile() indepedently for main(), foo() and bar()
x64 JIT typically does 4-5 passes to converge.
After these initial passes the image for these 3 functions
will be good except call targets, since start addresses of
foo() and bar() are unknown when we were JITing main()
(note that call bpf_map_lookup will be resolved properly
during initial passes).
Once start addresses of 3 functions are known we patch
call_insn->imm to point to right functions and call
bpf_int_jit_compile() again which needs only one pass.
Additional safety checks are done to make sure this
last pass doesn't produce image that is larger or smaller
than previous pass.

When constant blinding is on it's applied to all functions
at the first pass, since doing it once again at the last
pass can change size of the JITed code.

Tested on x64 and arm64 hw with JIT on/off, blinding on/off.
x64 jits bpf-to-bpf calls correctly while arm64 falls back to interpreter.
All other JITs that support normal BPF_CALL will behave the same way
since bpf-to-bpf call is equivalent to bpf-to-kernel call from
JITs point of view.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 60b58afc 14-Dec-2017 Alexei Starovoitov <ast@kernel.org>

bpf: fix net.core.bpf_jit_enable race

global bpf_jit_enable variable is tested multiple times in JITs,
blinding and verifier core. The malicious root can try to toggle
it while loading the programs. This race condition was accounted
for and there should be no issues, but it's safer to avoid
this race condition.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 1ea47e01 14-Dec-2017 Alexei Starovoitov <ast@kernel.org>

bpf: add support for bpf_call to interpreter

though bpf_call is still the same call instruction and
calling convention 'bpf to bpf' and 'bpf to helper' is the same
the interpreter has to oparate on 'struct bpf_insn *'.
To distinguish these two cases add a kernel internal opcode and
mark call insns with it.
This opcode is seen by interpreter only. JITs will never see it.
Also add tiny bit of debug code to aid interpreter debugging.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# cc2b14d5 14-Dec-2017 Alexei Starovoitov <ast@kernel.org>

bpf: teach verifier to recognize zero initialized stack

programs with function calls are often passing various
pointers via stack. When all calls are inlined llvm
flattens stack accesses and optimizes away extra branches.
When functions are not inlined it becomes the job of
the verifier to recognize zero initialized stack to avoid
exploring paths that program will not take.
The following program would fail otherwise:

ptr = &buffer_on_stack;
*ptr = 0;
...
func_call(.., ptr, ...) {
if (..)
*ptr = bpf_map_lookup();
}
...
if (*ptr != 0) {
// Access (*ptr)->field is valid.
// Without stack_zero tracking such (*ptr)->field access
// will be rejected
}

since stack slots are no longer uniform invalid | spill | misc
add liveness marking to all slots, but do it in 8 byte chunks.
So if nothing was read or written in [fp-16, fp-9] range
it will be marked as LIVE_NONE.
If any byte in that range was read, it will be marked LIVE_READ
and stacksafe() check will perform byte-by-byte verification.
If all bytes in the range were written the slot will be
marked as LIVE_WRITTEN.
This significantly speeds up state equality comparison
and reduces total number of states processed.

before after
bpf_lb-DLB_L3.o 2051 2003
bpf_lb-DLB_L4.o 3287 3164
bpf_lb-DUNKNOWN.o 1080 1080
bpf_lxc-DDROP_ALL.o 24980 12361
bpf_lxc-DUNKNOWN.o 34308 16605
bpf_netdev.o 15404 10962
bpf_overlay.o 7191 6679

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# f4d7e40a 14-Dec-2017 Alexei Starovoitov <ast@kernel.org>

bpf: introduce function calls (verification)

Allow arbitrary function calls from bpf function to another bpf function.

To recognize such set of bpf functions the verifier does:
1. runs control flow analysis to detect function boundaries
2. proceeds with verification of all functions starting from main(root) function
It recognizes that the stack of the caller can be accessed by the callee
(if the caller passed a pointer to its stack to the callee) and the callee
can store map_value and other pointers into the stack of the caller.
3. keeps track of the stack_depth of each function to make sure that total
stack depth is still less than 512 bytes
4. disallows pointers to the callee stack to be stored into the caller stack,
since they will be invalid as soon as the callee returns
5. to reuse all of the existing state_pruning logic each function call
is considered to be independent call from the verifier point of view.
The verifier pretends to inline all function calls it sees are being called.
It stores the callsite instruction index as part of the state to make sure
that two calls to the same callee from two different places in the caller
will be different from state pruning point of view
6. more safety checks are added to liveness analysis

Implementation details:
. struct bpf_verifier_state is now consists of all stack frames that
led to this function
. struct bpf_func_state represent one stack frame. It consists of
registers in the given frame and its stack
. propagate_liveness() logic had a premature optimization where
mark_reg_read() and mark_stack_slot_read() were manually inlined
with loop iterating over parents for each register or stack slot.
Undo this optimization to reuse more complex mark_*_read() logic
. skip_callee() logic is not necessary from safety point of view,
but without it mark_*_read() markings become too conservative,
since after returning from the funciton call a read of r6-r9
will incorrectly propagate the read marks into callee causing
inefficient pruning later
. mark_*_read() logic is now aware of control flow which makes it
more complex. In the future the plan is to rewrite liveness
to be hierarchical. So that liveness can be done within
basic block only and control flow will be responsible for
propagation of liveness information along cfg and between calls.
. tail_calls and ld_abs insns are not allowed in the programs with
bpf-to-bpf calls
. returning stack pointers to the caller or storing them into stack
frame of the caller is not allowed

Testing:
. no difference in cilium processed_insn numbers
. large number of tests follows in next patches

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# cc8b0b92 14-Dec-2017 Alexei Starovoitov <ast@kernel.org>

bpf: introduce function calls (function boundaries)

Allow arbitrary function calls from bpf function to another bpf function.

Since the beginning of bpf all bpf programs were represented as a single function
and program authors were forced to use always_inline for all functions
in their C code. That was causing llvm to unnecessary inflate the code size
and forcing developers to move code to header files with little code reuse.

With a bit of additional complexity teach verifier to recognize
arbitrary function calls from one bpf function to another as long as
all of functions are presented to the verifier as a single bpf program.
New program layout:
r6 = r1 // some code
..
r1 = .. // arg1
r2 = .. // arg2
call pc+1 // function call pc-relative
exit
.. = r1 // access arg1
.. = r2 // access arg2
..
call pc+20 // second level of function call
...

It allows for better optimized code and finally allows to introduce
the core bpf libraries that can be reused in different projects,
since programs are no longer limited by single elf file.
With function calls bpf can be compiled into multiple .o files.

This patch is the first step. It detects programs that contain
multiple functions and checks that calls between them are valid.
It splits the sequence of bpf instructions (one program) into a set
of bpf functions that call each other. Calls to only known
functions are allowed. In the future the verifier may allow
calls to unresolved functions and will do dynamic linking.
This logic supports statically linked bpf functions only.

Such function boundary detection could have been done as part of
control flow graph building in check_cfg(), but it's cleaner to
separate function boundary detection vs control flow checks within
a subprogram (function) into logically indepedent steps.
Follow up patches may split check_cfg() further, but not check_subprogs().

Only allow bpf-to-bpf calls for root only and for non-hw-offloaded programs.
These restrictions can be relaxed in the future.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 04514d13 14-Dec-2017 Daniel Borkmann <daniel@iogearbox.net>

bpf: guarantee r1 to be ctx in case of bpf_helper_changes_pkt_data

Some JITs don't cache skb context on stack in prologue, so when
LD_ABS/IND is used and helper calls yield bpf_helper_changes_pkt_data()
as true, then they temporarily save/restore skb pointer. However,
the assumption that skb always has to be in r1 is a bit of a
gamble. Right now it turned out to be true for all helpers listed
in bpf_helper_changes_pkt_data(), but lets enforce that from verifier
side, so that we make this a guarantee and bail out if the func
proto is misconfigured in future helpers.

In case of BPF helper calls from cBPF, bpf_helper_changes_pkt_data()
is completely unrelevant here (since cBPF is context read-only) and
therefore always false.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 9802d865 11-Dec-2017 Josef Bacik <jbacik@fb.com>

bpf: add a bpf_override_function helper

Error injection is sloppy and very ad-hoc. BPF could fill this niche
perfectly with it's kprobe functionality. We could make sure errors are
only triggered in specific call chains that we care about with very
specific situations. Accomplish this with the bpf_override_funciton
helper. This will modify the probe'd callers return value to the
specified value and set the PC to an override function that simply
returns, bypassing the originally probed function. This gives us a nice
clean way to implement systematic error injection for all of our code
paths.

Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 914cb781 30-Nov-2017 Alexei Starovoitov <ast@kernel.org>

bpf: cleanup register_is_null()

don't pass large struct bpf_reg_state by value.
Instead pass it by pointer.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 3bf15921 30-Nov-2017 Alexei Starovoitov <ast@kernel.org>

bpf: improve JEQ/JNE path walking

verifier knows how to trim paths that are known not to be
taken at run-time when register containing run-time constant
is compared with another constant.
It was done only for JEQ comparison.
Extend it to include JNE as well.
More cases can be added in the future.

before after
bpf_lb-DLB_L3.o 2270 2051
bpf_lb-DLB_L4.o 3682 3287
bpf_lb-DUNKNOWN.o 1110 1080
bpf_lxc-DDROP_ALL.o 27876 24980
bpf_lxc-DUNKNOWN.o 38780 34308
bpf_netdev.o 16937 15404
bpf_overlay.o 7929 7191

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 2f18f62e 30-Nov-2017 Alexei Starovoitov <ast@kernel.org>

bpf: improve verifier liveness marks

registers with pointers filled from stack were missing live_written marks
which caused liveness propagation to unnecessary mark more registers as
live_read and miss state pruning opportunities later on.

before after
bpf_lb-DLB_L3.o 2285 2270
bpf_lb-DLB_L4.o 3723 3682
bpf_lb-DUNKNOWN.o 1110 1110
bpf_lxc-DDROP_ALL.o 27954 27876
bpf_lxc-DUNKNOWN.o 38954 38780
bpf_netdev.o 16943 16937
bpf_overlay.o 7929 7929

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 19ceb417 30-Nov-2017 Alexei Starovoitov <ast@kernel.org>

bpf: don't mark FP reg as uninit

when verifier hits an internal bug don't mark register R10==FP as uninit,
since it's read only register and it's not technically correct to let
verifier run further, since it may assume that R10 has valid auxiliary state.

While developing subsequent patches this issue was discovered,
though the code eventually changed that aux reg state doesn't have
pointers any more it is still safer to avoid clearing readonly register.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 4e92024a 30-Nov-2017 Alexei Starovoitov <ast@kernel.org>

bpf: print liveness info to verifier log

let verifier print register and stack liveness information
into verifier log

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 12a3cc84 30-Nov-2017 Alexei Starovoitov <ast@kernel.org>

bpf: fix stack state printing in verifier log

fix incorrect stack state prints in print_verifier_state()

Fixes: 638f5b90d460 ("bpf: reduce verifier memory consumption")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# c131187d 22-Nov-2017 Alexei Starovoitov <ast@kernel.org>

bpf: fix branch pruning logic

when the verifier detects that register contains a runtime constant
and it's compared with another constant it will prune exploration
of the branch that is guaranteed not to be taken at runtime.
This is all correct, but malicious program may be constructed
in such a way that it always has a constant comparison and
the other branch is never taken under any conditions.
In this case such path through the program will not be explored
by the verifier. It won't be taken at run-time either, but since
all instructions are JITed the malicious program may cause JITs
to complain about using reserved fields, etc.
To fix the issue we have to track the instructions explored by
the verifier and sanitize instructions that are dead at run time
with NOPs. We cannot reject such dead code, since llvm generates
it for valid C code, since it doesn't do as much data flow
analysis as the verifier does.

Fixes: 17a5267067f3 ("bpf: verifier (add verifier core)")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# db1ac496 22-Nov-2017 Gianluca Borello <g.borello@gmail.com>

bpf: introduce ARG_PTR_TO_MEM_OR_NULL

With the current ARG_PTR_TO_MEM/ARG_PTR_TO_UNINIT_MEM semantics, an helper
argument can be NULL when the next argument type is ARG_CONST_SIZE_OR_ZERO
and the verifier can prove the value of this next argument is 0. However,
most helpers are just interested in handling <!NULL, 0>, so forcing them to
deal with <NULL, 0> makes the implementation of those helpers more
complicated for no apparent benefits, requiring them to explicitly handle
those corner cases with checks that bpf programs could start relying upon,
preventing the possibility of removing them later.

Solve this by making ARG_PTR_TO_MEM/ARG_PTR_TO_UNINIT_MEM never accept NULL
even when ARG_CONST_SIZE_OR_ZERO is set, and introduce a new argument type
ARG_PTR_TO_MEM_OR_NULL to explicitly deal with the NULL case.

Currently, the only helper that needs this is bpf_csum_diff_proto(), so
change arg1 and arg3 to this new type as well.

Also add a new battery of tests that explicitly test the
!ARG_PTR_TO_MEM_OR_NULL combination: all the current ones testing the
various <NULL, 0> variations are focused on bpf_csum_diff, so cover also
other helpers.

Signed-off-by: Gianluca Borello <g.borello@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# 9fd29c08 12-Nov-2017 Yonghong Song <yhs@fb.com>

bpf: improve verifier ARG_CONST_SIZE_OR_ZERO semantics

For helpers, the argument type ARG_CONST_SIZE_OR_ZERO permits the
access size to be 0 when accessing the previous argument (arg).
Right now, it requires the arg needs to be NULL when size passed
is 0 or could be 0. It also requires a non-NULL arg when the size
is proved to be non-0.

This patch changes verifier ARG_CONST_SIZE_OR_ZERO behavior
such that for size-0 or possible size-0, it is not required
the arg equal to NULL.

There are a couple of reasons for this semantics change, and
all of them intends to simplify user bpf programs which
may improve user experience and/or increase chances of
verifier acceptance. Together with the next patch which
changes bpf_probe_read arg2 type from ARG_CONST_SIZE to
ARG_CONST_SIZE_OR_ZERO, the following two examples, which
fail the verifier currently, are able to get verifier acceptance.

Example 1:
unsigned long len = pend - pstart;
len = len > MAX_PAYLOAD_LEN ? MAX_PAYLOAD_LEN : len;
len &= MAX_PAYLOAD_LEN;
bpf_probe_read(data->payload, len, pstart);

It does not have test for "len > 0" and it failed the verifier.
Users may not be aware that they have to add this test.
Converting the bpf_probe_read helper to have
ARG_CONST_SIZE_OR_ZERO helps the above code get
verifier acceptance.

Example 2:
Here is one example where llvm "messed up" the code and
the verifier fails.

......
unsigned long len = pend - pstart;
if (len > 0 && len <= MAX_PAYLOAD_LEN)
bpf_probe_read(data->payload, len, pstart);
......

The compiler generates the following code and verifier fails:
......
39: (79) r2 = *(u64 *)(r10 -16)
40: (1f) r2 -= r8
41: (bf) r1 = r2
42: (07) r1 += -1
43: (25) if r1 > 0xffe goto pc+3
R0=inv(id=0) R1=inv(id=0,umax_value=4094,var_off=(0x0; 0xfff))
R2=inv(id=0) R6=map_value(id=0,off=0,ks=4,vs=4095,imm=0) R7=inv(id=0)
R8=inv(id=0) R9=inv0 R10=fp0
44: (bf) r1 = r6
45: (bf) r3 = r8
46: (85) call bpf_probe_read#45
R2 min value is negative, either use unsigned or 'var &= const'
......

The compiler optimization is correct. If r1 = 0,
r1 - 1 = 0xffffffffffffffff > 0xffe. If r1 != 0, r1 - 1 will not wrap.
r1 > 0xffe at insn #43 can actually capture
both "r1 > 0" and "len <= MAX_PAYLOAD_LEN".
This however causes an issue in verifier as the value range of arg2
"r2" does not properly get refined and lead to verification failure.

Relaxing bpf_prog_read arg2 from ARG_CONST_SIZE to ARG_CONST_SIZE_OR_ZERO
allows the following simplied code:
unsigned long len = pend - pstart;
if (len <= MAX_PAYLOAD_LEN)
bpf_probe_read(data->payload, len, pstart);

The llvm compiler will generate less complex code and the
verifier is able to verify that the program is okay.

Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# f3edacbd 11-Nov-2017 David S. Miller <davem@davemloft.net>

bpf: Revert bpf_overrid_function() helper changes.

NACK'd by x86 maintainer.

Signed-off-by: David S. Miller <davem@davemloft.net>


# dd0bb688 07-Nov-2017 Josef Bacik <jbacik@fb.com>

bpf: add a bpf_override_function helper

Error injection is sloppy and very ad-hoc. BPF could fill this niche
perfectly with it's kprobe functionality. We could make sure errors are
only triggered in specific call chains that we care about with very
specific situations. Accomplish this with the bpf_override_funciton
helper. This will modify the probe'd callers return value to the
specified value and set the PC to an override function that simply
returns, bypassing the originally probed function. This gives us a nice
clean way to implement systematic error injection for all of our code
paths.

Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# ebc614f6 05-Nov-2017 Roman Gushchin <guro@fb.com>

bpf, cgroup: implement eBPF-based device controller for cgroup v2

Cgroup v2 lacks the device controller, provided by cgroup v1.
This patch adds a new eBPF program type, which in combination
of previously added ability to attach multiple eBPF programs
to a cgroup, will provide a similar functionality, but with some
additional flexibility.

This patch introduces a BPF_PROG_TYPE_CGROUP_DEVICE program type.
A program takes major and minor device numbers, device type
(block/character) and access type (mknod/read/write) as parameters
and returns an integer which defines if the operation should be
allowed or terminated with -EPERM.

Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# b37a5306 03-Nov-2017 Jakub Kicinski <kuba@kernel.org>

bpf: remove old offload/analyzer

Thanks to the ability to load a program for a specific device,
running verifier twice is no longer needed.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# ab3f0063 03-Nov-2017 Jakub Kicinski <kuba@kernel.org>

bpf: offload: add infrastructure for loading programs for a specific netdev

The fact that we don't know which device the program is going
to be used on is quite limiting in current eBPF infrastructure.
We have to reverse or limit the changes which kernel makes to
the loaded bytecode if we want it to be offloaded to a networking
device. We also have to invent new APIs for debugging and
troubleshooting support.

Make it possible to load programs for a specific netdev. This
helps us to bring the debug information closer to the core
eBPF infrastructure (e.g. we will be able to reuse the verifer
log in device JIT). It allows device JITs to perform translation
on the original bytecode.

__bpf_prog_get() when called to get a reference for an attachment
point will now refuse to give it if program has a device assigned.
Following patches will add a version of that function which passes
the expected netdev in. @type argument in __bpf_prog_get() is
renamed to attach_type to make it clearer that it's only set on
attachment.

All calls to ndo_bpf are protected by rtnl, only verifier callbacks
are not. We need a wait queue to make sure netdev doesn't get
destroyed while verifier is still running and calling its driver.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Simon Horman <simon.horman@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 8c01c4f8 02-Nov-2017 Craig Gallek <kraig@google.com>

bpf: fix verifier NULL pointer dereference

do_check() can fail early without allocating env->cur_state under
memory pressure. Syzkaller found the stack below on the linux-next
tree because of this.

kasan: CONFIG_KASAN_INLINE enabled
kasan: GPF could be caused by NULL-ptr deref or user memory access
general protection fault: 0000 [#1] SMP KASAN
Dumping ftrace buffer:
(ftrace buffer empty)
Modules linked in:
CPU: 1 PID: 27062 Comm: syz-executor5 Not tainted 4.14.0-rc7+ #106
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
task: ffff8801c2c74700 task.stack: ffff8801c3e28000
RIP: 0010:free_verifier_state kernel/bpf/verifier.c:347 [inline]
RIP: 0010:bpf_check+0xcf4/0x19c0 kernel/bpf/verifier.c:4533
RSP: 0018:ffff8801c3e2f5c8 EFLAGS: 00010202
RAX: dffffc0000000000 RBX: 00000000fffffff4 RCX: 0000000000000000
RDX: 0000000000000070 RSI: ffffffff817d5aa9 RDI: 0000000000000380
RBP: ffff8801c3e2f668 R08: 0000000000000000 R09: 1ffff100387c5d9f
R10: 00000000218c4e80 R11: ffffffff85b34380 R12: ffff8801c4dc6a28
R13: 0000000000000000 R14: ffff8801c4dc6a00 R15: ffff8801c4dc6a20
FS: 00007f311079b700(0000) GS:ffff8801db300000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000004d4a24 CR3: 00000001cbcd0000 CR4: 00000000001406e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
bpf_prog_load+0xcbb/0x18e0 kernel/bpf/syscall.c:1166
SYSC_bpf kernel/bpf/syscall.c:1690 [inline]
SyS_bpf+0xae9/0x4620 kernel/bpf/syscall.c:1652
entry_SYSCALL_64_fastpath+0x1f/0xbe
RIP: 0033:0x452869
RSP: 002b:00007f311079abe8 EFLAGS: 00000212 ORIG_RAX: 0000000000000141
RAX: ffffffffffffffda RBX: 0000000000758020 RCX: 0000000000452869
RDX: 0000000000000030 RSI: 0000000020168000 RDI: 0000000000000005
RBP: 00007f311079aa20 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000212 R12: 00000000004b7550
R13: 00007f311079ab58 R14: 00000000004b7560 R15: 0000000000000000
Code: df 48 c1 ea 03 80 3c 02 00 0f 85 e6 0b 00 00 4d 8b 6e 20 48 b8 00 00 00 00 00 fc ff df 49 8d bd 80 03 00 00 48 89 fa 48 c1 ea 03 <80> 3c 02 00 0f 85 b6 0b 00 00 49 8b bd 80 03 00 00 e8 d6 0c 26
RIP: free_verifier_state kernel/bpf/verifier.c:347 [inline] RSP: ffff8801c3e2f5c8
RIP: bpf_check+0xcf4/0x19c0 kernel/bpf/verifier.c:4533 RSP: ffff8801c3e2f5c8
---[ end trace c8d37f339dc64004 ]---

Fixes: 638f5b90d460 ("bpf: reduce verifier memory consumption")
Fixes: 1969db47f8d0 ("bpf: fix verifier memory leaks")
Signed-off-by: Craig Gallek <kraig@google.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# eba0c929 01-Nov-2017 Arnd Bergmann <arnd@arndb.de>

bpf: fix out-of-bounds access warning in bpf_check

The bpf_verifer_ops array is generated dynamically and may be
empty depending on configuration, which then causes an out
of bounds access:

kernel/bpf/verifier.c: In function 'bpf_check':
kernel/bpf/verifier.c:4320:29: error: array subscript is above array bounds [-Werror=array-bounds]

This adds a check to the start of the function as a workaround.
I would assume that the function is never called in that configuration,
so the warning is probably harmless.

Fixes: 00176a34d9e2 ("bpf: remove the verifier ops from program structure")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 7cce782e 01-Nov-2017 Arnd Bergmann <arnd@arndb.de>

bpf: fix link error without CONFIG_NET

I ran into this link error with the latest net-next plus linux-next
trees when networking is disabled:

kernel/bpf/verifier.o:(.rodata+0x2958): undefined reference to `tc_cls_act_analyzer_ops'
kernel/bpf/verifier.o:(.rodata+0x2970): undefined reference to `xdp_analyzer_ops'

It seems that the code was written to deal with varying contents of
the arrray, but the actual #ifdef was missing. Both tc_cls_act_analyzer_ops
and xdp_analyzer_ops are defined in the core networking code, so adding
a check for CONFIG_NET seems appropriate here, and I've verified this with
many randconfig builds

Fixes: 4f9218aaf8a4 ("bpf: move knowledge about post-translation offsets out of verifier")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 5beca081 01-Nov-2017 Daniel Borkmann <daniel@iogearbox.net>

bpf: also improve pattern matches for meta access

Follow-up to 0fd4759c5515 ("bpf: fix pattern matches for direct
packet access") to cover also the remaining data_meta/data matches
in the verifier. The matches are also refactored a bit to simplify
handling of all the cases.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# b06723da 01-Nov-2017 Daniel Borkmann <daniel@iogearbox.net>

bpf: minor cleanups after merge

Two minor cleanups after Dave's recent merge in f8ddadc4db6c
("Merge git://git.kernel.org...") of net into net-next in
order to get the code in line with what was done originally
in the net tree: i) use max() instead of max_t() since both
ranges are u16, ii) don't split the direct access test cases
in the middle with bpf_exit test cases from 390ee7e29fc
("bpf: enforce return code for cgroup-bpf programs").

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 1969db47 01-Nov-2017 Alexei Starovoitov <ast@kernel.org>

bpf: fix verifier memory leaks

fix verifier memory leaks

Fixes: 638f5b90d460 ("bpf: reduce verifier memory consumption")
Signed-off-by: Alexei Starovoitov <ast@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 638f5b90 31-Oct-2017 Alexei Starovoitov <ast@kernel.org>

bpf: reduce verifier memory consumption

the verifier got progressively smarter over time and size of its internal
state grew as well. Time to reduce the memory consumption.

Before:
sizeof(struct bpf_verifier_state) = 6520
After:
sizeof(struct bpf_verifier_state) = 896

It's done by observing that majority of BPF programs use little to
no stack whereas verifier kept all of 512 stack slots ready always.
Instead dynamically reallocate struct verifier state when stack
access is detected.
Runtime difference before vs after is within a noise.
The number of processed instructions stays the same.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 0fd4759c 20-Oct-2017 Daniel Borkmann <daniel@iogearbox.net>

bpf: fix pattern matches for direct packet access

Alexander had a test program with direct packet access, where
the access test was in the form of data + X > data_end. In an
unrelated change to the program LLVM decided to swap the branches
and emitted code for the test in form of data + X <= data_end.
We hadn't seen these being generated previously, thus verifier
would reject the program. Therefore, fix up the verifier to
detect all test cases, so we don't run into such issues in the
future.

Fixes: b4e432f1000a ("bpf: enable BPF_J{LT, LE, SLT, SLE} opcodes in verifier")
Reported-by: Alexander Alemayhu <alexander@alemayhu.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# fb2a311a 20-Oct-2017 Daniel Borkmann <daniel@iogearbox.net>

bpf: fix off by one for range markings with L{T, E} patterns

During review I noticed that the current logic for direct packet
access marking in check_cond_jmp_op() has an off by one for the
upper right range border when marking in find_good_pkt_pointers()
with BPF_JLT and BPF_JLE. It's not really harmful given access
up to pkt_end is always safe, but we should nevertheless correct
the range marking before it becomes ABI. If pkt_data' denotes a
pkt_data derived pointer (pkt_data + X), then for pkt_data' < pkt_end
in the true branch as well as for pkt_end <= pkt_data' in the false
branch we mark the range with X although it should really be X - 1
in these cases. For example, X could be pkt_end - pkt_data, then
when testing for pkt_data' < pkt_end the verifier simulation cannot
deduce that a byte load of pkt_data' - 1 would succeed in this
branch.

Fixes: b4e432f1000a ("bpf: enable BPF_J{LT, LE, SLT, SLE} opcodes in verifier")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 4f9218aa 16-Oct-2017 Jakub Kicinski <kuba@kernel.org>

bpf: move knowledge about post-translation offsets out of verifier

Use the fact that verifier ops are now separate from program
ops to define a separate set of callbacks for verification of
already translated programs.

Since we expect the analyzer ops to be defined only for
a small subset of all program types initialize their array
by hand (don't use linux/bpf_types.h).

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 00176a34 16-Oct-2017 Jakub Kicinski <kuba@kernel.org>

bpf: remove the verifier ops from program structure

Since the verifier ops don't have to be associated with
the program for its entire lifetime we can move it to
verifier's struct bpf_verifier_env.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 7de16e3a 16-Oct-2017 Jakub Kicinski <kuba@kernel.org>

bpf: split verifier and program ops

struct bpf_verifier_ops contains both verifier ops and operations
used later during program's lifetime (test_run). Split the runtime
ops into a different structure.

BPF_PROG_TYPE() will now append ## _prog_ops or ## _verifier_ops
to the names.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 28e33f9d 16-Oct-2017 Jakub Kicinski <kuba@kernel.org>

bpf: disallow arithmetic operations on context pointer

Commit f1174f77b50c ("bpf/verifier: rework value tracking")
removed the crafty selection of which pointer types are
allowed to be modified. This is OK for most pointer types
since adjust_ptr_min_max_vals() will catch operations on
immutable pointers. One exception is PTR_TO_CTX which is
now allowed to be offseted freely.

The intent of aforementioned commit was to allow context
access via modified registers. The offset passed to
->is_valid_access() verifier callback has been adjusted
by the value of the variable offset.

What is missing, however, is taking the variable offset
into account when the context register is used. Or in terms
of the code adding the offset to the value passed to the
->convert_ctx_access() callback. This leads to the following
eBPF user code:

r1 += 68
r0 = *(u32 *)(r1 + 8)
exit

being translated to this in kernel space:

0: (07) r1 += 68
1: (61) r0 = *(u32 *)(r1 +180)
2: (95) exit

Offset 8 is corresponding to 180 in the kernel, but offset
76 is valid too. Verifier will "accept" access to offset
68+8=76 but then "convert" access to offset 8 as 180.
Effective access to offset 248 is beyond the kernel context.
(This is a __sk_buff example on a debug-heavy kernel -
packet mark is 8 -> 180, 76 would be data.)

Dereferencing the modified context pointer is not as easy
as dereferencing other types, because we have to translate
the access to reading a field in kernel structures which is
usually at a different offset and often of a different size.
To allow modifying the pointer we would have to make sure
that given eBPF instruction will always access the same
field or the fields accessed are "compatible" in terms of
offset and size...

Disallow dereferencing modified context pointers and add
to selftests the test case described here.

Fixes: f1174f77b50c ("bpf/verifier: rework value tracking")
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 9c270af3 15-Oct-2017 Jesper Dangaard Brouer <brouer@redhat.com>

bpf: XDP_REDIRECT enable use of cpumap

This patch connects cpumap to the xdp_do_redirect_map infrastructure.

Still no SKB allocation are done yet. The XDP frames are transferred
to the other CPU, but they are simply refcnt decremented on the remote
CPU. This served as a good benchmark for measuring the overhead of
remote refcnt decrement. If driver page recycle cache is not
efficient then this, exposes a bottleneck in the page allocator.

A shout-out to MST's ptr_ring, which is the secret behind is being so
efficient to transfer memory pointers between CPUs, without constantly
bouncing cache-lines between CPUs.

V3: Handle !CONFIG_BPF_SYSCALL pointed out by kbuild test robot.

V4: Make Generic-XDP aware of cpumap type, but don't allow redirect yet,
as implementation require a separate upstream discussion.

V5:
- Fix a maybe-uninitialized pointed out by kbuild test robot.
- Restrict bpf-prog side access to cpumap, open when use-cases appear
- Implement cpu_map_enqueue() as a more simple void pointer enqueue

V6:
- Allow cpumap type for usage in helper bpf_redirect_map,
general bpf-prog side restriction moved to earlier patch.

Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 6710e112 15-Oct-2017 Jesper Dangaard Brouer <brouer@redhat.com>

bpf: introduce new bpf cpu map type BPF_MAP_TYPE_CPUMAP

The 'cpumap' is primarily used as a backend map for XDP BPF helper
call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.

This patch implement the main part of the map. It is not connected to
the XDP redirect system yet, and no SKB allocation are done yet.

The main concern in this patch is to ensure the datapath can run
without any locking. This adds complexity to the setup and tear-down
procedure, which assumptions are extra carefully documented in the
code comments.

V2:
- make sure array isn't larger than NR_CPUS
- make sure CPUs added is a valid possible CPU

V3: fix nitpicks from Jakub Kicinski <kubakici@wp.pl>

V5:
- Restrict map allocation to root / CAP_SYS_ADMIN
- WARN_ON_ONCE if queue is not empty on tear-down
- Return -EPERM on memlock limit instead of -ENOMEM
- Error code in __cpu_map_entry_alloc() also handle ptr_ring_cleanup()
- Moved cpu_map_enqueue() to next patch

V6: all notice by Daniel Borkmann
- Fix err return code in cpu_map_alloc() introduced in V5
- Move cpu_possible() check after max_entries boundary check
- Forbid usage initially in check_map_func_compatibility()

V7:
- Fix alloc error path spotted by Daniel Borkmann
- Did stress test adding+removing CPUs from the map concurrently
- Fixed refcnt issue on cpu_map_entry, kthread started too soon
- Make sure packets are flushed during tear-down, involved use of
rcu_barrier() and kthread_run only exit after queue is empty
- Fix alloc error path in __cpu_map_entry_alloc() for ptr_ring

V8:
- Nitpicking comments and gramma by Edward Cree
- Fix missing semi-colon introduced in V7 due to rebasing
- Move struct bpf_cpu_map_entry members cpu+map_id to tracepoint patch

Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 1bdec449 12-Oct-2017 Jakub Kicinski <kuba@kernel.org>

bpf: verifier: set reg_type on context accesses in second pass

Use a simplified is_valid_access() callback when verifier
is used for program analysis by non-host JITs. This allows
us to teach the verifier about packet start and packet end
offsets for direct packet access.

We can extend the callback as needed but for most packet
processing needs there isn't much more the offloads may
require.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Simon Horman <simon.horman@netronome.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# a2a7d570 09-Oct-2017 Jakub Kicinski <kuba@kernel.org>

bpf: write back the verifier log buffer as it gets filled

Verifier log buffer can be quite large (up to 16MB currently).
As Eric Dumazet points out if we allow multiple verification
requests to proceed simultaneously, malicious user may use the
verifier as a way of allocating large amounts of unswappable
memory to OOM the host.

Switch to a strategy of allocating a smaller buffer (1024B)
and writing it out into the user buffer after every print.

While at it remove the old BUG_ON().

This is in preparation of the global verifier lock removal.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Simon Horman <simon.horman@netronome.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# f4ac7e0b 09-Oct-2017 Jakub Kicinski <kuba@kernel.org>

bpf: move instruction printing into a separate file

Separate the instruction printing into a standalone source file.
This way sneaky code from tools/ can compile it in directly.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Simon Horman <simon.horman@netronome.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 61bd5218 09-Oct-2017 Jakub Kicinski <kuba@kernel.org>

bpf: move global verifier log into verifier environment

The biggest piece of global state protected by the verifier lock
is the verifier_log. Move that log to struct bpf_verifier_env.
struct bpf_verifier_env has to be passed now to all invocations
of verbose().

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Simon Horman <simon.horman@netronome.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# e7bf8249 09-Oct-2017 Jakub Kicinski <kuba@kernel.org>

bpf: encapsulate verifier log state into a structure

Put the loose log_* variables into a structure. This will make
it simpler to remove the global verifier state in following patches.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Simon Horman <simon.horman@netronome.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 8fe2d6cc 05-Oct-2017 Alexei Starovoitov <ast@kernel.org>

bpf: fix liveness marking

while processing Rx = Ry instruction the verifier does
regs[insn->dst_reg] = regs[insn->src_reg]
which often clears write mark (when Ry doesn't have it)
that was just set by check_reg_arg(Rx) prior to the assignment.
That causes mark_reg_read() to keep marking Rx in this block as
REG_LIVE_READ (since the logic incorrectly misses that it's
screened by the write) and in many of its parents (until lucky
write into the same Rx or beginning of the program).
That causes is_state_visited() logic to miss many pruning opportunities.

Furthermore mark_reg_read() logic propagates the read mark
for BPF_REG_FP as well (though it's readonly) which causes
harmless but unnecssary work during is_state_visited().
Note that do_propagate_liveness() skips FP correctly,
so do the same in mark_reg_read() as well.
It saves 0.2 seconds for the test below

program before after
bpf_lb-DLB_L3.o 2604 2304
bpf_lb-DLB_L4.o 11159 3723
bpf_lb-DUNKNOWN.o 1116 1110
bpf_lxc-DDROP_ALL.o 34566 28004
bpf_lxc-DUNKNOWN.o 53267 39026
bpf_netdev.o 17843 16943
bpf_overlay.o 8672 7929
time ~11 sec ~4 sec

Fixes: dc503a8ad984 ("bpf/verifier: track liveness for pruning")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Edward Cree <ecree@solarflare.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 908432ca 05-Oct-2017 Yonghong Song <yhs@fb.com>

bpf: add helper bpf_perf_event_read_value for perf event array map

Hardware pmu counters are limited resources. When there are more
pmu based perf events opened than available counters, kernel will
multiplex these events so each event gets certain percentage
(but not 100%) of the pmu time. In case that multiplexing happens,
the number of samples or counter value will not reflect the
case compared to no multiplexing. This makes comparison between
different runs difficult.

Typically, the number of samples or counter value should be
normalized before comparing to other experiments. The typical
normalization is done like:
normalized_num_samples = num_samples * time_enabled / time_running
normalized_counter_value = counter_value * time_enabled / time_running
where time_enabled is the time enabled for event and time_running is
the time running for event since last normalization.

This patch adds helper bpf_perf_event_read_value for kprobed based perf
event array map, to read perf counter and enabled/running time.
The enabled/running time is accumulated since the perf event open.
To achieve scaling factor between two bpf invocations, users
can can use cpu_id as the key (which is typical for perf array usage model)
to remember the previous value and do the calculation inside the
bpf program.

Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Alexei Starovoitov <ast@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 390ee7e2 02-Oct-2017 Alexei Starovoitov <ast@kernel.org>

bpf: enforce return code for cgroup-bpf programs

with addition of tnum logic the verifier got smart enough and
we can enforce return codes at program load time.
For now do so for cgroup-bpf program types.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 73c864b3 26-Sep-2017 Edward Cree <ecree@solarflare.com>

bpf/verifier: improve disassembly of BPF_NEG instructions

BPF_NEG takes only one operand, unlike the bulk of BPF_ALU[64] which are
compound-assignments. So give it its own format in print_bpf_insn().

Signed-off-by: Edward Cree <ecree@solarflare.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 2b7c6ba9 26-Sep-2017 Edward Cree <ecree@solarflare.com>

bpf/verifier: improve disassembly of BPF_END instructions

print_bpf_insn() was treating all BPF_ALU[64] the same, but BPF_END has a
different structure: it has a size in insn->imm (even if it's BPF_X) and
uses the BPF_SRC (X or K) to indicate which endianness to use. So it
needs different code to print it.

Signed-off-by: Edward Cree <ecree@solarflare.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# de8f3a83 24-Sep-2017 Daniel Borkmann <daniel@iogearbox.net>

bpf: add meta pointer for direct access

This work enables generic transfer of metadata from XDP into skb. The
basic idea is that we can make use of the fact that the resulting skb
must be linear and already comes with a larger headroom for supporting
bpf_xdp_adjust_head(), which mangles xdp->data. Here, we base our work
on a similar principle and introduce a small helper bpf_xdp_adjust_meta()
for adjusting a new pointer called xdp->data_meta. Thus, the packet has
a flexible and programmable room for meta data, followed by the actual
packet data. struct xdp_buff is therefore laid out that we first point
to data_hard_start, then data_meta directly prepended to data followed
by data_end marking the end of packet. bpf_xdp_adjust_head() takes into
account whether we have meta data already prepended and if so, memmove()s
this along with the given offset provided there's enough room.

xdp->data_meta is optional and programs are not required to use it. The
rationale is that when we process the packet in XDP (e.g. as DoS filter),
we can push further meta data along with it for the XDP_PASS case, and
give the guarantee that a clsact ingress BPF program on the same device
can pick this up for further post-processing. Since we work with skb
there, we can also set skb->mark, skb->priority or other skb meta data
out of BPF, thus having this scratch space generic and programmable
allows for more flexibility than defining a direct 1:1 transfer of
potentially new XDP members into skb (it's also more efficient as we
don't need to initialize/handle each of such new members). The facility
also works together with GRO aggregation. The scratch space at the head
of the packet can be multiple of 4 byte up to 32 byte large. Drivers not
yet supporting xdp->data_meta can simply be set up with xdp->data_meta
as xdp->data + 1 as bpf_xdp_adjust_meta() will detect this and bail out,
such that the subsequent match against xdp->data for later access is
guaranteed to fail.

The verifier treats xdp->data_meta/xdp->data the same way as we treat
xdp->data/xdp->data_end pointer comparisons. The requirement for doing
the compare against xdp->data is that it hasn't been modified from it's
original address we got from ctx access. It may have a range marking
already from prior successful xdp->data/xdp->data_end pointer comparisons
though.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 7c300131 19-Sep-2017 Daniel Borkmann <daniel@iogearbox.net>

bpf: fix ri->map_owner pointer on bpf_prog_realloc

Commit 109980b894e9 ("bpf: don't select potentially stale
ri->map from buggy xdp progs") passed the pointer to the prog
itself to be loaded into r4 prior on bpf_redirect_map() helper
call, so that we can store the owner into ri->map_owner out of
the helper.

Issue with that is that the actual address of the prog is still
subject to change when subsequent rewrites occur that require
slow path in bpf_prog_realloc() to alloc more memory, e.g. from
patching inlining helper functions or constant blinding. Thus,
we really need to take prog->aux as the address we're holding,
which also works with prog clones as they share the same aux
object.

Instead of then fetching aux->prog during runtime, which could
potentially incur cache misses due to false sharing, we are
going to just use aux for comparison on the map owner. This
will also keep the patchlet of the same size, and later check
in xdp_map_invalid() only accesses read-only aux pointer from
the prog, it's also in the same cacheline already from prior
access when calling bpf_func.

Fixes: 109980b894e9 ("bpf: don't select potentially stale ri->map from buggy xdp progs")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# e67b8a68 15-Sep-2017 Edward Cree <ecree@solarflare.com>

bpf/verifier: reject BPF_ALU64|BPF_END

Neither ___bpf_prog_run nor the JITs accept it.
Also adds a new test case.

Fixes: 17a5267067f3 ("bpf: verifier (add verifier core)")
Signed-off-by: Edward Cree <ecree@solarflare.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 109980b8 07-Sep-2017 Daniel Borkmann <daniel@iogearbox.net>

bpf: don't select potentially stale ri->map from buggy xdp progs

We can potentially run into a couple of issues with the XDP
bpf_redirect_map() helper. The ri->map in the per CPU storage
can become stale in several ways, mostly due to misuse, where
we can then trigger a use after free on the map:

i) prog A is calling bpf_redirect_map(), returning XDP_REDIRECT
and running on a driver not supporting XDP_REDIRECT yet. The
ri->map on that CPU becomes stale when the XDP program is unloaded
on the driver, and a prog B loaded on a different driver which
supports XDP_REDIRECT return code. prog B would have to omit
calling to bpf_redirect_map() and just return XDP_REDIRECT, which
would then access the freed map in xdp_do_redirect() since not
cleared for that CPU.

ii) prog A is calling bpf_redirect_map(), returning a code other
than XDP_REDIRECT. prog A is then detached, which triggers release
of the map. prog B is attached which, similarly as in i), would
just return XDP_REDIRECT without having called bpf_redirect_map()
and thus be accessing the freed map in xdp_do_redirect() since
not cleared for that CPU.

iii) prog A is attached to generic XDP, calling the bpf_redirect_map()
helper and returning XDP_REDIRECT. xdp_do_generic_redirect() is
currently not handling ri->map (will be fixed by Jesper), so it's
not being reset. Later loading a e.g. native prog B which would,
say, call bpf_xdp_redirect() and then returns XDP_REDIRECT would
find in xdp_do_redirect() that a map was set and uses that causing
use after free on map access.

Fix thus needs to avoid accessing stale ri->map pointers, naive
way would be to call a BPF function from drivers that just resets
it to NULL for all XDP return codes but XDP_REDIRECT and including
XDP_REDIRECT for drivers not supporting it yet (and let ri->map
being handled in xdp_do_generic_redirect()). There is a less
intrusive way w/o letting drivers call a reset for each BPF run.

The verifier knows we're calling into bpf_xdp_redirect_map()
helper, so it can do a small insn rewrite transparent to the prog
itself in the sense that it fills R4 with a pointer to the own
bpf_prog. We have that pointer at verification time anyway and
R4 is allowed to be used as per calling convention we scratch
R0 to R5 anyway, so they become inaccessible and program cannot
read them prior to a write. Then, the helper would store the prog
pointer in the current CPUs struct redirect_info. Later in
xdp_do_*_redirect() we check whether the redirect_info's prog
pointer is the same as passed xdp_prog pointer, and if that's
the case then all good, since the prog holds a ref on the map
anyway, so it is always valid at that point in time and must
have a reference count of at least 1. If in the unlikely case
they are not equal, it means we got a stale pointer, so we clear
and bail out right there. Also do reset map and the owning prog
in bpf_xdp_redirect(), so that bpf_xdp_redirect_map() and
bpf_xdp_redirect() won't get mixed up, only the last call should
take precedence. A tc bpf_redirect() doesn't use map anywhere
yet, so no need to clear it there since never accessed in that
layer.

Note that in case the prog is released, and thus the map as
well we're still under RCU read critical section at that time
and have preemption disabled as well. Once we commit with the
__dev_map_insert_ctx() from xdp_do_redirect_map() and set the
map to ri->map_to_flush, we still wait for a xdp_do_flush_map()
to finish in devmap dismantle time once flush_needed bit is set,
so that is fine.

Fixes: 97f91a7cf04f ("bpf: add bpf_redirect_map helper routine")
Reported-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 8e9cd9ce 23-Aug-2017 Edward Cree <ecree@solarflare.com>

bpf/verifier: document liveness analysis

The liveness tracking algorithm is quite subtle; add comments to explain it.

Signed-off-by: Edward Cree <ecree@solarflare.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 1b688a19 23-Aug-2017 Edward Cree <ecree@solarflare.com>

bpf/verifier: remove varlen_map_value_access flag

The optimisation it does is broken when the 'new' register value has a
variable offset and the 'old' was constant. I broke it with my pointer
types unification (see Fixes tag below), before which the 'new' value
would have type PTR_TO_MAP_VALUE_ADJ and would thus not compare equal;
other changes in that patch mean that its original behaviour (ignore
min/max values) cannot be restored.
Tests on a sample set of cilium programs show no change in count of
processed instructions.

Fixes: f1174f77b50c ("bpf/verifier: rework value tracking")
Signed-off-by: Edward Cree <ecree@solarflare.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 63f45f84 23-Aug-2017 Edward Cree <ecree@solarflare.com>

bpf/verifier: when pruning a branch, ignore its write marks

The fact that writes occurred in reaching the continuation state does
not screen off its reads from us, because we're not really its parent.
So detect 'not really the parent' in do_propagate_liveness, and ignore
write marks in that case.

Fixes: dc503a8ad984 ("bpf/verifier: track liveness for pruning")
Signed-off-by: Edward Cree <ecree@solarflare.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 89c63074 18-Aug-2017 Daniel Borkmann <daniel@iogearbox.net>

bpf: make htab inlining more robust wrt assumptions

Commit 9015d2f59535 ("bpf: inline htab_map_lookup_elem()") was
making the assumption that a direct call emission to the function
__htab_map_lookup_elem() will always work out for JITs.

This is currently true since all JITs we have are for 64 bit archs,
but in case of 32 bit JITs like upcoming arm32, we get a NULL pointer
dereference when executing the call to __htab_map_lookup_elem()
since passed arguments are of a different size (due to pointer args)
than what we do out of BPF. Guard and thus limit this for now for
the current 64 bit JITs only.

Reported-by: Shubham Bansal <illusionist.neo@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 16a43625 17-Aug-2017 Martin KaFai Lau <kafai@fb.com>

bpf: Fix map-in-map checking in the verifier

In check_map_func_compatibility(), a 'break' has been accidentally
removed for the BPF_MAP_TYPE_ARRAY_OF_MAPS and BPF_MAP_TYPE_HASH_OF_MAPS
cases. This patch adds it back.

Fixes: 174a79ff9515 ("bpf: sockmap with sk redirect support")
Cc: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 1ab2de2b 17-Aug-2017 Daniel Borkmann <daniel@iogearbox.net>

bpf: fix liveness propagation to parent in spilled stack slots

Using parent->regs[] when propagating REG_LIVE_READ for spilled regs
doesn't work since parent->regs[] denote the set of normal registers
but not spilled ones. Propagate to the correct regs.

Fixes: dc503a8ad984 ("bpf/verifier: track liveness for pruning")
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 8a31db56 15-Aug-2017 John Fastabend <john.fastabend@gmail.com>

bpf: add access to sock fields and pkt data from sk_skb programs

Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 174a79ff 15-Aug-2017 John Fastabend <john.fastabend@gmail.com>

bpf: sockmap with sk redirect support

Recently we added a new map type called dev map used to forward XDP
packets between ports (6093ec2dc313). This patches introduces a
similar notion for sockets.

A sockmap allows users to add participating sockets to a map. When
sockets are added to the map enough context is stored with the
map entry to use the entry with a new helper

bpf_sk_redirect_map(map, key, flags)

This helper (analogous to bpf_redirect_map in XDP) is given the map
and an entry in the map. When called from a sockmap program, discussed
below, the skb will be sent on the socket using skb_send_sock().

With the above we need a bpf program to call the helper from that will
then implement the send logic. The initial site implemented in this
series is the recv_sock hook. For this to work we implemented a map
attach command to add attributes to a map. In sockmap we add two
programs a parse program and a verdict program. The parse program
uses strparser to build messages and pass them to the verdict program.
The parse programs use the normal strparser semantics. The verdict
program is of type SK_SKB.

The verdict program returns a verdict SK_DROP, or SK_REDIRECT for
now. Additional actions may be added later. When SK_REDIRECT is
returned, expected when bpf program uses bpf_sk_redirect_map(), the
sockmap logic will consult per cpu variables set by the helper routine
and pull the sock entry out of the sock map. This pattern follows the
existing redirect logic in cls and xdp programs.

This gives the flow,

recv_sock -> str_parser (parse_prog) -> verdict_prog -> skb_send_sock
\
-> kfree_skb

As an example use case a message based load balancer may use specific
logic in the verdict program to select the sock to send on.

Sample programs are provided in future patches that hopefully illustrate
the user interfaces. Also selftests are in follow-on patches.

Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# dc503a8a 15-Aug-2017 Edward Cree <ecree@solarflare.com>

bpf/verifier: track liveness for pruning

State of a register doesn't matter if it wasn't read in reaching an exit;
a write screens off all reads downstream of it from all explored_states
upstream of it.
This allows us to prune many more branches; here are some processed insn
counts for some Cilium programs:
Program before after
bpf_lb_opt_-DLB_L3.o 6515 3361
bpf_lb_opt_-DLB_L4.o 8976 5176
bpf_lb_opt_-DUNKNOWN.o 2960 1137
bpf_lxc_opt_-DDROP_ALL.o 95412 48537
bpf_lxc_opt_-DUNKNOWN.o 141706 78718
bpf_netdev.o 24251 17995
bpf_overlay.o 10999 9385

The runtime is also improved; here are 'time' results in ms:
Program before after
bpf_lb_opt_-DLB_L3.o 24 6
bpf_lb_opt_-DLB_L4.o 26 11
bpf_lb_opt_-DUNKNOWN.o 11 2
bpf_lxc_opt_-DDROP_ALL.o 1288 139
bpf_lxc_opt_-DUNKNOWN.o 1768 234
bpf_netdev.o 62 31
bpf_overlay.o 15 13

Signed-off-by: Edward Cree <ecree@solarflare.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# b4e432f1 09-Aug-2017 Daniel Borkmann <daniel@iogearbox.net>

bpf: enable BPF_J{LT, LE, SLT, SLE} opcodes in verifier

Enable the newly added jump opcodes, main parts are in two
different areas, namely direct packet access and dynamic map
value access. For the direct packet access, we now allow for
the following two new patterns to match in order to trigger
markings with find_good_pkt_pointers():

Variant 1 (access ok when taking the branch):

0: (61) r2 = *(u32 *)(r1 +76)
1: (61) r3 = *(u32 *)(r1 +80)
2: (bf) r0 = r2
3: (07) r0 += 8
4: (ad) if r0 < r3 goto pc+2
R0=pkt(id=0,off=8,r=0) R1=ctx R2=pkt(id=0,off=0,r=0)
R3=pkt_end R10=fp
5: (b7) r0 = 0
6: (95) exit

from 4 to 7: R0=pkt(id=0,off=8,r=8) R1=ctx
R2=pkt(id=0,off=0,r=8) R3=pkt_end R10=fp
7: (71) r0 = *(u8 *)(r2 +0)
8: (05) goto pc-4
5: (b7) r0 = 0
6: (95) exit
processed 11 insns, stack depth 0

Variant 2 (access ok on fall-through):

0: (61) r2 = *(u32 *)(r1 +76)
1: (61) r3 = *(u32 *)(r1 +80)
2: (bf) r0 = r2
3: (07) r0 += 8
4: (bd) if r3 <= r0 goto pc+1
R0=pkt(id=0,off=8,r=8) R1=ctx R2=pkt(id=0,off=0,r=8)
R3=pkt_end R10=fp
5: (71) r0 = *(u8 *)(r2 +0)
6: (b7) r0 = 1
7: (95) exit

from 4 to 6: R0=pkt(id=0,off=8,r=0) R1=ctx
R2=pkt(id=0,off=0,r=0) R3=pkt_end R10=fp
6: (b7) r0 = 1
7: (95) exit
processed 10 insns, stack depth 0

The above two basically just swap the branches where we need
to handle an exception and allow packet access compared to the
two already existing variants for find_good_pkt_pointers().

For the dynamic map value access, we add the new instructions
to reg_set_min_max() and reg_set_min_max_inv() in order to
learn bounds. Verifier test cases for both are added in a
follow-up patch.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 8e17c1b1 07-Aug-2017 Edward Cree <ecree@solarflare.com>

bpf/verifier: increase complexity limit to 128k

The more detailed value tracking can reduce the effectiveness of pruning
for some programs. So, to avoid rejecting previously valid programs, up
the limit to 128kinsns. Hopefully we will be able to bring this back
down later by improving pruning performance.

Signed-off-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 7d1238f2 07-Aug-2017 Edward Cree <ecree@solarflare.com>

bpf/verifier: more concise register state logs for constant var_off

Signed-off-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# b03c9f9f 07-Aug-2017 Edward Cree <ecree@solarflare.com>

bpf/verifier: track signed and unsigned min/max values

Allows us to, sometimes, combine information from a signed check of one
bound and an unsigned check of the other.
We now track the full range of possible values, rather than restricting
ourselves to [0, 1<<30) and considering anything beyond that as
unknown. While this is probably not necessary, it makes the code more
straightforward and symmetrical between signed and unsigned bounds.

Signed-off-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# f1174f77 07-Aug-2017 Edward Cree <ecree@solarflare.com>

bpf/verifier: rework value tracking

Unifies adjusted and unadjusted register value types (e.g. FRAME_POINTER is
now just a PTR_TO_STACK with zero offset).
Tracks value alignment by means of tracking known & unknown bits. This
also replaces the 'reg->imm' (leading zero bits) calculations for (what
were) UNKNOWN_VALUEs.
If pointer leaks are allowed, and adjust_ptr_min_max_vals returns -EACCES,
treat the pointer as an unknown scalar and try again, because we might be
able to conclude something about the result (e.g. pointer & 0x40 is either
0 or 0x40).
Verifier hooks in the netronome/nfp driver were changed to match the new
data structures.

Signed-off-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 9305706c 21-Jul-2017 Edward Cree <ecree@solarflare.com>

bpf/verifier: fix min/max handling in BPF_SUB

We have to subtract the src max from the dst min, and vice-versa, since
(e.g.) the smallest result comes from the largest subtrahend.

Fixes: 484611357c19 ("bpf: allow access into map value arrays")
Signed-off-by: Edward Cree <ecree@solarflare.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 4cabc5b1 20-Jul-2017 Daniel Borkmann <daniel@iogearbox.net>

bpf: fix mixed signed/unsigned derived min/max value bounds

Edward reported that there's an issue in min/max value bounds
tracking when signed and unsigned compares both provide hints
on limits when having unknown variables. E.g. a program such
as the following should have been rejected:

0: (7a) *(u64 *)(r10 -8) = 0
1: (bf) r2 = r10
2: (07) r2 += -8
3: (18) r1 = 0xffff8a94cda93400
5: (85) call bpf_map_lookup_elem#1
6: (15) if r0 == 0x0 goto pc+7
R0=map_value(ks=8,vs=8,id=0),min_value=0,max_value=0 R10=fp
7: (7a) *(u64 *)(r10 -16) = -8
8: (79) r1 = *(u64 *)(r10 -16)
9: (b7) r2 = -1
10: (2d) if r1 > r2 goto pc+3
R0=map_value(ks=8,vs=8,id=0),min_value=0,max_value=0 R1=inv,min_value=0
R2=imm-1,max_value=18446744073709551615,min_align=1 R10=fp
11: (65) if r1 s> 0x1 goto pc+2
R0=map_value(ks=8,vs=8,id=0),min_value=0,max_value=0 R1=inv,min_value=0,max_value=1
R2=imm-1,max_value=18446744073709551615,min_align=1 R10=fp
12: (0f) r0 += r1
13: (72) *(u8 *)(r0 +0) = 0
R0=map_value_adj(ks=8,vs=8,id=0),min_value=0,max_value=1 R1=inv,min_value=0,max_value=1
R2=imm-1,max_value=18446744073709551615,min_align=1 R10=fp
14: (b7) r0 = 0
15: (95) exit

What happens is that in the first part ...

8: (79) r1 = *(u64 *)(r10 -16)
9: (b7) r2 = -1
10: (2d) if r1 > r2 goto pc+3

... r1 carries an unsigned value, and is compared as unsigned
against a register carrying an immediate. Verifier deduces in
reg_set_min_max() that since the compare is unsigned and operation
is greater than (>), that in the fall-through/false case, r1's
minimum bound must be 0 and maximum bound must be r2. Latter is
larger than the bound and thus max value is reset back to being
'invalid' aka BPF_REGISTER_MAX_RANGE. Thus, r1 state is now
'R1=inv,min_value=0'. The subsequent test ...

11: (65) if r1 s> 0x1 goto pc+2

... is a signed compare of r1 with immediate value 1. Here,
verifier deduces in reg_set_min_max() that since the compare
is signed this time and operation is greater than (>), that
in the fall-through/false case, we can deduce that r1's maximum
bound must be 1, meaning with prior test, we result in r1 having
the following state: R1=inv,min_value=0,max_value=1. Given that
the actual value this holds is -8, the bounds are wrongly deduced.
When this is being added to r0 which holds the map_value(_adj)
type, then subsequent store access in above case will go through
check_mem_access() which invokes check_map_access_adj(), that
will then probe whether the map memory is in bounds based
on the min_value and max_value as well as access size since
the actual unknown value is min_value <= x <= max_value; commit
fce366a9dd0d ("bpf, verifier: fix alu ops against map_value{,
_adj} register types") provides some more explanation on the
semantics.

It's worth to note in this context that in the current code,
min_value and max_value tracking are used for two things, i)
dynamic map value access via check_map_access_adj() and since
commit 06c1c049721a ("bpf: allow helpers access to variable memory")
ii) also enforced at check_helper_mem_access() when passing a
memory address (pointer to packet, map value, stack) and length
pair to a helper and the length in this case is an unknown value
defining an access range through min_value/max_value in that
case. The min_value/max_value tracking is /not/ used in the
direct packet access case to track ranges. However, the issue
also affects case ii), for example, the following crafted program
based on the same principle must be rejected as well:

0: (b7) r2 = 0
1: (bf) r3 = r10
2: (07) r3 += -512
3: (7a) *(u64 *)(r10 -16) = -8
4: (79) r4 = *(u64 *)(r10 -16)
5: (b7) r6 = -1
6: (2d) if r4 > r6 goto pc+5
R1=ctx R2=imm0,min_value=0,max_value=0,min_align=2147483648 R3=fp-512
R4=inv,min_value=0 R6=imm-1,max_value=18446744073709551615,min_align=1 R10=fp
7: (65) if r4 s> 0x1 goto pc+4
R1=ctx R2=imm0,min_value=0,max_value=0,min_align=2147483648 R3=fp-512
R4=inv,min_value=0,max_value=1 R6=imm-1,max_value=18446744073709551615,min_align=1
R10=fp
8: (07) r4 += 1
9: (b7) r5 = 0
10: (6a) *(u16 *)(r10 -512) = 0
11: (85) call bpf_skb_load_bytes#26
12: (b7) r0 = 0
13: (95) exit

Meaning, while we initialize the max_value stack slot that the
verifier thinks we access in the [1,2] range, in reality we
pass -7 as length which is interpreted as u32 in the helper.
Thus, this issue is relevant also for the case of helper ranges.
Resetting both bounds in check_reg_overflow() in case only one
of them exceeds limits is also not enough as similar test can be
created that uses values which are within range, thus also here
learned min value in r1 is incorrect when mixed with later signed
test to create a range:

0: (7a) *(u64 *)(r10 -8) = 0
1: (bf) r2 = r10
2: (07) r2 += -8
3: (18) r1 = 0xffff880ad081fa00
5: (85) call bpf_map_lookup_elem#1
6: (15) if r0 == 0x0 goto pc+7
R0=map_value(ks=8,vs=8,id=0),min_value=0,max_value=0 R10=fp
7: (7a) *(u64 *)(r10 -16) = -8
8: (79) r1 = *(u64 *)(r10 -16)
9: (b7) r2 = 2
10: (3d) if r2 >= r1 goto pc+3
R0=map_value(ks=8,vs=8,id=0),min_value=0,max_value=0 R1=inv,min_value=3
R2=imm2,min_value=2,max_value=2,min_align=2 R10=fp
11: (65) if r1 s> 0x4 goto pc+2
R0=map_value(ks=8,vs=8,id=0),min_value=0,max_value=0
R1=inv,min_value=3,max_value=4 R2=imm2,min_value=2,max_value=2,min_align=2 R10=fp
12: (0f) r0 += r1
13: (72) *(u8 *)(r0 +0) = 0
R0=map_value_adj(ks=8,vs=8,id=0),min_value=3,max_value=4
R1=inv,min_value=3,max_value=4 R2=imm2,min_value=2,max_value=2,min_align=2 R10=fp
14: (b7) r0 = 0
15: (95) exit

This leaves us with two options for fixing this: i) to invalidate
all prior learned information once we switch signed context, ii)
to track min/max signed and unsigned boundaries separately as
done in [0]. (Given latter introduces major changes throughout
the whole verifier, it's rather net-next material, thus this
patch follows option i), meaning we can derive bounds either
from only signed tests or only unsigned tests.) There is still the
case of adjust_reg_min_max_vals(), where we adjust bounds on ALU
operations, meaning programs like the following where boundaries
on the reg get mixed in context later on when bounds are merged
on the dst reg must get rejected, too:

0: (7a) *(u64 *)(r10 -8) = 0
1: (bf) r2 = r10
2: (07) r2 += -8
3: (18) r1 = 0xffff89b2bf87ce00
5: (85) call bpf_map_lookup_elem#1
6: (15) if r0 == 0x0 goto pc+6
R0=map_value(ks=8,vs=8,id=0),min_value=0,max_value=0 R10=fp
7: (7a) *(u64 *)(r10 -16) = -8
8: (79) r1 = *(u64 *)(r10 -16)
9: (b7) r2 = 2
10: (3d) if r2 >= r1 goto pc+2
R0=map_value(ks=8,vs=8,id=0),min_value=0,max_value=0 R1=inv,min_value=3
R2=imm2,min_value=2,max_value=2,min_align=2 R10=fp
11: (b7) r7 = 1
12: (65) if r7 s> 0x0 goto pc+2
R0=map_value(ks=8,vs=8,id=0),min_value=0,max_value=0 R1=inv,min_value=3
R2=imm2,min_value=2,max_value=2,min_align=2 R7=imm1,max_value=0 R10=fp
13: (b7) r0 = 0
14: (95) exit

from 12 to 15: R0=map_value(ks=8,vs=8,id=0),min_value=0,max_value=0
R1=inv,min_value=3 R2=imm2,min_value=2,max_value=2,min_align=2 R7=imm1,min_value=1 R10=fp
15: (0f) r7 += r1
16: (65) if r7 s> 0x4 goto pc+2
R0=map_value(ks=8,vs=8,id=0),min_value=0,max_value=0 R1=inv,min_value=3
R2=imm2,min_value=2,max_value=2,min_align=2 R7=inv,min_value=4,max_value=4 R10=fp
17: (0f) r0 += r7
18: (72) *(u8 *)(r0 +0) = 0
R0=map_value_adj(ks=8,vs=8,id=0),min_value=4,max_value=4 R1=inv,min_value=3
R2=imm2,min_value=2,max_value=2,min_align=2 R7=inv,min_value=4,max_value=4 R10=fp
19: (b7) r0 = 0
20: (95) exit

Meaning, in adjust_reg_min_max_vals() we must also reset range
values on the dst when src/dst registers have mixed signed/
unsigned derived min/max value bounds with one unbounded value
as otherwise they can be added together deducing false boundaries.
Once both boundaries are established from either ALU ops or
compare operations w/o mixing signed/unsigned insns, then they
can safely be added to other regs also having both boundaries
established. Adding regs with one unbounded side to a map value
where the bounded side has been learned w/o mixing ops is
possible, but the resulting map value won't recover from that,
meaning such op is considered invalid on the time of actual
access. Invalid bounds are set on the dst reg in case i) src reg,
or ii) in case dst reg already had them. The only way to recover
would be to perform i) ALU ops but only 'add' is allowed on map
value types or ii) comparisons, but these are disallowed on
pointers in case they span a range. This is fine as only BPF_JEQ
and BPF_JNE may be performed on PTR_TO_MAP_VALUE_OR_NULL registers
which potentially turn them into PTR_TO_MAP_VALUE type depending
on the branch, so only here min/max value cannot be invalidated
for them.

In terms of state pruning, value_from_signed is considered
as well in states_equal() when dealing with adjusted map values.
With regards to breaking existing programs, there is a small
risk, but use-cases are rather quite narrow where this could
occur and mixing compares probably unlikely.

Joint work with Josef and Edward.

[0] https://lists.iovisor.org/pipermail/iovisor-dev/2017-June/000822.html

Fixes: 484611357c19 ("bpf: allow access into map value arrays")
Reported-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 2ddf71e2 17-Jul-2017 John Fastabend <john.fastabend@gmail.com>

net: add notifier hooks for devmap bpf map

The BPF map devmap holds a refcnt on the net_device structure when
it is in the map. We need to do this to ensure on driver unload we
don't lose a dev reference.

However, its not very convenient to have to manually unload the map
when destroying a net device so add notifier handlers to do the cleanup
automatically. But this creates a race between update/destroy BPF
syscall and programs and the unregister netdev hook.

Unfortunately, the best I could come up with is either to live with
requiring manual removal of net devices from the map before removing
the net device OR to add a mutex in devmap to ensure the map is not
modified while we are removing a device. The fallout also requires
that BPF programs no longer update/delete the map from the BPF program
side because the mutex may sleep and this can not be done from inside
an rcu critical section. This is not a real problem though because I
have not come up with any use cases where this is actually useful in
practice. If/when we come up with a compelling user for this we may
need to revisit this.

Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 97f91a7c 17-Jul-2017 John Fastabend <john.fastabend@gmail.com>

bpf: add bpf_redirect_map helper routine

BPF programs can use the devmap with a bpf_redirect_map() helper
routine to forward packets to netdevice in map.

Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 546ac1ff 17-Jul-2017 John Fastabend <john.fastabend@gmail.com>

bpf: add devmap, a map for storing net device references

Device map (devmap) is a BPF map, primarily useful for networking
applications, that uses a key to lookup a reference to a netdevice.

The map provides a clean way for BPF programs to build virtual port
to physical port maps. Additionally, it provides a scoping function
for the redirect action itself allowing multiple optimizations. Future
patches will leverage the map to provide batching at the XDP layer.

Another optimization/feature, that is not yet implemented, would be
to support multiple netdevices per key to support efficient multicast
and broadcast support.

Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 43188702 01-Jul-2017 John Fastabend <john.fastabend@gmail.com>

bpf, verifier: add additional patterns to evaluate_reg_imm_alu

Currently the verifier does not track imm across alu operations when
the source register is of unknown type. This adds additional pattern
matching to catch this and track imm. We've seen LLVM generating this
pattern while working on cilium.

Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# f96da094 01-Jul-2017 Daniel Borkmann <daniel@iogearbox.net>

bpf: simplify narrower ctx access

This work tries to make the semantics and code around the
narrower ctx access a bit easier to follow. Right now
everything is done inside the .is_valid_access(). Offset
matching is done differently for read/write types, meaning
writes don't support narrower access and thus matching only
on offsetof(struct foo, bar) is enough whereas for read
case that supports narrower access we must check for
offsetof(struct foo, bar) + offsetof(struct foo, bar) +
sizeof(<bar>) - 1 for each of the cases. For read cases of
individual members that don't support narrower access (like
packet pointers or skb->cb[] case which has its own narrow
access logic), we check as usual only offsetof(struct foo,
bar) like in write case. Then, for the case where narrower
access is allowed, we also need to set the aux info for the
access. Meaning, ctx_field_size and converted_op_size have
to be set. First is the original field size e.g. sizeof(<bar>)
as in above example from the user facing ctx, and latter
one is the target size after actual rewrite happened, thus
for the kernel facing ctx. Also here we need the range match
and we need to keep track changing convert_ctx_access() and
converted_op_size from is_valid_access() as both are not at
the same location.

We can simplify the code a bit: check_ctx_access() becomes
simpler in that we only store ctx_field_size as a meta data
and later in convert_ctx_accesses() we fetch the target_size
right from the location where we do convert. Should the verifier
be misconfigured we do reject for BPF_WRITE cases or target_size
that are not provided. For the subsystems, we always work on
ranges in is_valid_access() and add small helpers for ranges
and narrow access, convert_ctx_accesses() sets target_size
for the relevant instruction.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Cc: Yonghong Song <yhs@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 6bdf6abc 28-Jun-2017 Daniel Borkmann <daniel@iogearbox.net>

bpf: prevent leaking pointer via xadd on unpriviledged

Leaking kernel addresses on unpriviledged is generally disallowed,
for example, verifier rejects the following:

0: (b7) r0 = 0
1: (18) r2 = 0xffff897e82304400
3: (7b) *(u64 *)(r1 +48) = r2
R2 leaks addr into ctx

Doing pointer arithmetic on them is also forbidden, so that they
don't turn into unknown value and then get leaked out. However,
there's xadd as a special case, where we don't check the src reg
for being a pointer register, e.g. the following will pass:

0: (b7) r0 = 0
1: (7b) *(u64 *)(r1 +48) = r0
2: (18) r2 = 0xffff897e82304400 ; map
4: (db) lock *(u64 *)(r1 +48) += r2
5: (95) exit

We could store the pointer into skb->cb, loose the type context,
and then read it out from there again to leak it eventually out
of a map value. Or more easily in a different variant, too:

0: (bf) r6 = r1
1: (7a) *(u64 *)(r10 -8) = 0
2: (bf) r2 = r10
3: (07) r2 += -8
4: (18) r1 = 0x0
6: (85) call bpf_map_lookup_elem#1
7: (15) if r0 == 0x0 goto pc+3
R0=map_value(ks=8,vs=8,id=0),min_value=0,max_value=0 R6=ctx R10=fp
8: (b7) r3 = 0
9: (7b) *(u64 *)(r0 +0) = r3
10: (db) lock *(u64 *)(r0 +0) += r6
11: (b7) r0 = 0
12: (95) exit

from 7 to 11: R0=inv,min_value=0,max_value=0 R6=ctx R10=fp
11: (b7) r0 = 0
12: (95) exit

Prevent this by checking xadd src reg for pointer types. Also
add a couple of test cases related to this.

Fixes: 1be7f75d1668 ("bpf: enable non-root eBPF programs")
Fixes: 17a5267067f3 ("bpf: verifier (add verifier core)")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 23994631 22-Jun-2017 Yonghong Song <yhs@fb.com>

bpf: possibly avoid extra masking for narrower load in verifier

Commit 31fd85816dbe ("bpf: permits narrower load from bpf program
context fields") permits narrower load for certain ctx fields.
The commit however will already generate a masking even if
the prog-specific ctx conversion produces the result with
narrower size.

For example, for __sk_buff->protocol, the ctx conversion
loads the data into register with 2-byte load.
A narrower 2-byte load should not generate masking.
For __sk_buff->vlan_present, the conversion function
set the result as either 0 or 1, essentially a byte.
The narrower 2-byte or 1-byte load should not generate masking.

To avoid unnecessary masking, prog-specific *_is_valid_access
now passes converted_op_size back to verifier, which indicates
the valid data width after perceived future conversion.
Based on this information, verifier is able to avoid
unnecessary marking.

Since we want more information back from prog-specific
*_is_valid_access checking, all of them are packed into
one data structure for more clarity.

Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 31fd8581 13-Jun-2017 Yonghong Song <yhs@fb.com>

bpf: permits narrower load from bpf program context fields

Currently, verifier will reject a program if it contains an
narrower load from the bpf context structure. For example,
__u8 h = __sk_buff->hash, or
__u16 p = __sk_buff->protocol
__u32 sample_period = bpf_perf_event_data->sample_period
which are narrower loads of 4-byte or 8-byte field.

This patch solves the issue by:
. Introduce a new parameter ctx_field_size to carry the
field size of narrower load from prog type
specific *__is_valid_access validator back to verifier.
. The non-zero ctx_field_size for a memory access indicates
(1). underlying prog type specific convert_ctx_accesses
supporting non-whole-field access
(2). the current insn is a narrower or whole field access.
. In verifier, for such loads where load memory size is
less than ctx_field_size, verifier transforms it
to a full field load followed by proper masking.
. Currently, __sk_buff and bpf_perf_event_data->sample_period
are supporting narrowing loads.
. Narrower stores are still not allowed as typical ctx stores
are just normal stores.

Because of this change, some tests in verifier will fail and
these tests are removed. As a bonus, rename some out of bound
__sk_buff->cb access to proper field name and remove two
redundant "skb cb oob" tests.

Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 36e24c00 10-Jun-2017 Daniel Borkmann <daniel@iogearbox.net>

bpf: reset id on spilled regs in clear_all_pkt_pointers

Right now, we don't reset the id of spilled registers in case of
clear_all_pkt_pointers(). Given pkt_pointers are highly likely to
contain an id, do so by reusing __mark_reg_unknown_value().

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 4a2ff55a 10-Jun-2017 Daniel Borkmann <daniel@iogearbox.net>

bpf: reset id on CONST_IMM transition

Whenever we set the register to the type CONST_IMM, we currently don't
reset the id to 0. id member is not used in CONST_IMM case, so don't
let it become stale, where pruning won't be able to match later on.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# d25da6ca 10-Jun-2017 Daniel Borkmann <daniel@iogearbox.net>

bpf: don't check spilled reg state for non-STACK_SPILLed type slots

spilled_regs[] state is only used for stack slots of type STACK_SPILL,
never for STACK_MISC. Right now, in states_equal(), even if we have
old and current stack state of type STACK_MISC, we compare spilled_regs[]
for that particular offset. Just skip these like we do everywhere else.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 92046578 06-Jun-2017 Daniel Borkmann <daniel@iogearbox.net>

bpf: cgroup skb progs cannot access ld_abs/ind

Commit fb9a307d11d6 ("bpf: Allow CGROUP_SKB eBPF program to
access sk_buff") enabled programs of BPF_PROG_TYPE_CGROUP_SKB
type to use ld_abs/ind instructions. However, at this point,
we cannot use them, since offsets relative to SKF_LL_OFF will
end up pointing skb_mac_header(skb) out of bounds since in the
egress path it is not yet set at that point in time, but only
after __dev_queue_xmit() did a general reset on the mac header.
bpf_internal_load_pointer_neg_helper() will then end up reading
data from a wrong offset.

BPF_PROG_TYPE_CGROUP_SKB programs can use bpf_skb_load_bytes()
already to access packet data, which is also more flexible than
the insns carried over from cBPF.

Fixes: fb9a307d11d6 ("bpf: Allow CGROUP_SKB eBPF program to access sk_buff")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: Chenbo Feng <fengc@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# fb9a307d 31-May-2017 Chenbo Feng <fengc@google.com>

bpf: Allow CGROUP_SKB eBPF program to access sk_buff

This allows cgroup eBPF program to classify packet based on their
protocol or other detail information. Currently program need
CAP_NET_ADMIN privilege to attach a cgroup eBPF program, and A
process with CAP_NET_ADMIN can already see all packets on the system,
for example, by creating an iptables rules that causes the packet to
be passed to userspace via NFLOG.

Signed-off-by: Chenbo Feng <fengc@google.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 80a58d02 30-May-2017 Alexei Starovoitov <ast@kernel.org>

bpf: reconcile bpf_tail_call and stack_depth

The next set of patches will take advantage of stack_depth tracking,
so make sure that the program that does bpf_tail_call() has
stack depth large enough for the callee.
We could have tracked the stack depth of the prog_array owner program
and only allow insertion of the programs with stack depth less
than the owner, but it will break existing applications.
Some of them have trivial root bpf program that only does
multiple bpf_tail_calls and at init time the prog array is empty.
In the future we may add a flag to do such tracking optionally,
but for now play simple and safe.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 8726679a 30-May-2017 Alexei Starovoitov <ast@kernel.org>

bpf: teach verifier to track stack depth

teach verifier to track bpf program stack depth

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 71189fa9 30-May-2017 Alexei Starovoitov <ast@kernel.org>

bpf: free up BPF_JMP | BPF_CALL | BPF_X opcode

free up BPF_JMP | BPF_CALL | BPF_X opcode to be used by actual
indirect call by register and use kernel internal opcode to
mark call instruction into bpf_tail_call() helper.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# a9789ef9 24-May-2017 Daniel Borkmann <daniel@iogearbox.net>

bpf: properly reset caller saved regs after helper call and ld_abs/ind

Currently, after performing helper calls, we clear all caller saved
registers, that is r0 - r5 and fill r0 depending on struct bpf_func_proto
specification. The way we reset these regs can affect pruning decisions
in later paths, since we only reset register's imm to 0 and type to
NOT_INIT. However, we leave out clearing of other variables such as id,
min_value, max_value, etc, which can later on lead to pruning mismatches
due to stale data.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 1ad2f583 24-May-2017 Daniel Borkmann <daniel@iogearbox.net>

bpf: fix incorrect pruning decision when alignment must be tracked

Currently, when we enforce alignment tracking on direct packet access,
the verifier lets the following program pass despite doing a packet
write with unaligned access:

0: (61) r2 = *(u32 *)(r1 +76)
1: (61) r3 = *(u32 *)(r1 +80)
2: (61) r7 = *(u32 *)(r1 +8)
3: (bf) r0 = r2
4: (07) r0 += 14
5: (25) if r7 > 0x1 goto pc+4
R0=pkt(id=0,off=14,r=0) R1=ctx R2=pkt(id=0,off=0,r=0)
R3=pkt_end R7=inv,min_value=0,max_value=1 R10=fp
6: (2d) if r0 > r3 goto pc+1
R0=pkt(id=0,off=14,r=14) R1=ctx R2=pkt(id=0,off=0,r=14)
R3=pkt_end R7=inv,min_value=0,max_value=1 R10=fp
7: (63) *(u32 *)(r0 -4) = r0
8: (b7) r0 = 0
9: (95) exit

from 6 to 8:
R0=pkt(id=0,off=14,r=0) R1=ctx R2=pkt(id=0,off=0,r=0)
R3=pkt_end R7=inv,min_value=0,max_value=1 R10=fp
8: (b7) r0 = 0
9: (95) exit

from 5 to 10:
R0=pkt(id=0,off=14,r=0) R1=ctx R2=pkt(id=0,off=0,r=0)
R3=pkt_end R7=inv,min_value=2 R10=fp
10: (07) r0 += 1
11: (05) goto pc-6
6: safe <----- here, wrongly found safe
processed 15 insns

However, if we enforce a pruning mismatch by adding state into r8
which is then being mismatched in states_equal(), we find that for
the otherwise same program, the verifier detects a misaligned packet
access when actually walking that path:

0: (61) r2 = *(u32 *)(r1 +76)
1: (61) r3 = *(u32 *)(r1 +80)
2: (61) r7 = *(u32 *)(r1 +8)
3: (b7) r8 = 1
4: (bf) r0 = r2
5: (07) r0 += 14
6: (25) if r7 > 0x1 goto pc+4
R0=pkt(id=0,off=14,r=0) R1=ctx R2=pkt(id=0,off=0,r=0)
R3=pkt_end R7=inv,min_value=0,max_value=1
R8=imm1,min_value=1,max_value=1,min_align=1 R10=fp
7: (2d) if r0 > r3 goto pc+1
R0=pkt(id=0,off=14,r=14) R1=ctx R2=pkt(id=0,off=0,r=14)
R3=pkt_end R7=inv,min_value=0,max_value=1
R8=imm1,min_value=1,max_value=1,min_align=1 R10=fp
8: (63) *(u32 *)(r0 -4) = r0
9: (b7) r0 = 0
10: (95) exit

from 7 to 9:
R0=pkt(id=0,off=14,r=0) R1=ctx R2=pkt(id=0,off=0,r=0)
R3=pkt_end R7=inv,min_value=0,max_value=1
R8=imm1,min_value=1,max_value=1,min_align=1 R10=fp
9: (b7) r0 = 0
10: (95) exit

from 6 to 11:
R0=pkt(id=0,off=14,r=0) R1=ctx R2=pkt(id=0,off=0,r=0)
R3=pkt_end R7=inv,min_value=2
R8=imm1,min_value=1,max_value=1,min_align=1 R10=fp
11: (07) r0 += 1
12: (b7) r8 = 0
13: (05) goto pc-7 <----- mismatch due to r8
7: (2d) if r0 > r3 goto pc+1
R0=pkt(id=0,off=15,r=15) R1=ctx R2=pkt(id=0,off=0,r=15)
R3=pkt_end R7=inv,min_value=2
R8=imm0,min_value=0,max_value=0,min_align=2147483648 R10=fp
8: (63) *(u32 *)(r0 -4) = r0
misaligned packet access off 2+15+-4 size 4

The reason why we fail to see it in states_equal() is that the
third test in compare_ptrs_to_packet() ...

if (old->off <= cur->off &&
old->off >= old->range && cur->off >= cur->range)
return true;

... will let the above pass. The situation we run into is that
old->off <= cur->off (14 <= 15), meaning that prior walked paths
went with smaller offset, which was later used in the packet
access after successful packet range check and found to be safe
already.

For example: Given is R0=pkt(id=0,off=0,r=0). Adding offset 14
as in above program to it, results in R0=pkt(id=0,off=14,r=0)
before the packet range test. Now, testing this against R3=pkt_end
with 'if r0 > r3 goto out' will transform R0 into R0=pkt(id=0,off=14,r=14)
for the case when we're within bounds. A write into the packet
at offset *(u32 *)(r0 -4), that is, 2 + 14 -4, is valid and
aligned (2 is for NET_IP_ALIGN). After processing this with
all fall-through paths, we later on check paths from branches.
When the above skb->mark test is true, then we jump near the
end of the program, perform r0 += 1, and jump back to the
'if r0 > r3 goto out' test we've visited earlier already. This
time, R0 is of type R0=pkt(id=0,off=15,r=0), and we'll prune
that part because this time we'll have a larger safe packet
range, and we already found that with off=14 all further insn
were already safe, so it's safe as well with a larger off.
However, the problem is that the subsequent write into the packet
with 2 + 15 -4 is then unaligned, and not caught by the alignment
tracking. Note that min_align, aux_off, and aux_off_align were
all 0 in this example.

Since we cannot tell at this time what kind of packet access was
performed in the prior walk and what minimal requirements it has
(we might do so in the future, but that requires more complexity),
fix it to disable this pruning case for strict alignment for now,
and let the verifier do check such paths instead. With that applied,
the test cases pass and reject the program due to misalignment.

Fixes: d1174416747d ("bpf: Track alignment of register values in the verifier.")
Reference: http://patchwork.ozlabs.org/patch/761909/
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# e4eda884 21-May-2017 David S. Miller <davem@davemloft.net>

net: Make IP alignment calulations clearer.

The assignmnet:

ip_align = strict ? 2 : NET_IP_ALIGN;

in compare_pkt_ptr_alignment() trips up Coverity because we can only
get to this code when strict is true, therefore ip_align will always
be 2 regardless of NET_IP_ALIGN's value.

So just assign directly to '2' and explain the situation in the
comment above.

Reported-by: "Gustavo A. R. Silva" <garsilva@embeddedor.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 3c2ce60b 17-May-2017 Daniel Borkmann <daniel@iogearbox.net>

bpf: adjust verifier heuristics

Current limits with regards to processing program paths do not
really reflect today's needs anymore due to programs becoming
more complex and verifier smarter, keeping track of more data
such as const ALU operations, alignment tracking, spilling of
PTR_TO_MAP_VALUE_ADJ registers, and other features allowing for
smarter matching of what LLVM generates.

This also comes with the side-effect that we result in fewer
opportunities to prune search states and thus often need to do
more work to prove safety than in the past due to different
register states and stack layout where we mismatch. Generally,
it's quite hard to determine what caused a sudden increase in
complexity, it could be caused by something as trivial as a
single branch somewhere at the beginning of the program where
LLVM assigned a stack slot that is marked differently throughout
other branches and thus causing a mismatch, where verifier
then needs to prove safety for the whole rest of the program.
Subsequently, programs with even less than half the insn size
limit can get rejected. We noticed that while some programs
load fine under pre 4.11, they get rejected due to hitting
limits on more recent kernels. We saw that in the vast majority
of cases (90+%) pruning failed due to register mismatches. In
case of stack mismatches, majority of cases failed due to
different stack slot types (invalid, spill, misc) rather than
differences in spilled registers.

This patch makes pruning more aggressive by also adding markers
that sit at conditional jumps as well. Currently, we only mark
jump targets for pruning. For example in direct packet access,
these are usually error paths where we bail out. We found that
adding these markers, it can reduce number of processed insns
by up to 30%. Another option is to ignore reg->id in probing
PTR_TO_MAP_VALUE_OR_NULL registers, which can help pruning
slightly as well by up to 7% observed complexity reduction as
stand-alone. Meaning, if a previous path with register type
PTR_TO_MAP_VALUE_OR_NULL for map X was found to be safe, then
in the current state a PTR_TO_MAP_VALUE_OR_NULL register for
the same map X must be safe as well. Last but not least the
patch also adds a scheduling point and bumps the current limit
for instructions to be processed to a more adequate value.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 6832a333 11-May-2017 David S. Miller <davem@davemloft.net>

bpf: Handle multiple variable additions into packet pointers in verifier.

We must accumulate into reg->aux_off rather than use a plain assignment.

Add a test for this situation to test_align.

Reported-by: Alexei Starovoitov <ast@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# e07b98d9 10-May-2017 David S. Miller <davem@davemloft.net>

bpf: Add strict alignment flag for BPF_PROG_LOAD.

Add a new field, "prog_flags", and an initial flag value
BPF_F_STRICT_ALIGNMENT.

When set, the verifier will enforce strict pointer alignment
regardless of the setting of CONFIG_EFFICIENT_UNALIGNED_ACCESS.

The verifier, in this mode, will also use a fixed value of "2" in
place of NET_IP_ALIGN.

This facilitates test cases that will exercise and validate this part
of the verifier even when run on architectures where alignment doesn't
matter.

Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>


# c5fc9692 10-May-2017 David S. Miller <davem@davemloft.net>

bpf: Do per-instruction state dumping in verifier when log_level > 1.

If log_level > 1, do a state dump every instruction and emit it in
a more compact way (without a leading newline).

This will facilitate more sophisticated test cases which inspect the
verifier log for register state.

Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>


# d1174416 10-May-2017 David S. Miller <davem@davemloft.net>

bpf: Track alignment of register values in the verifier.

Currently if we add only constant values to pointers we can fully
validate the alignment, and properly check if we need to reject the
program on !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS architectures.

However, once an unknown value is introduced we only allow byte sized
memory accesses which is too restrictive.

Add logic to track the known minimum alignment of register values,
and propagate this state into registers containing pointers.

The most common paradigm that makes use of this new logic is computing
the transport header using the IP header length field. For example:

struct ethhdr *ep = skb->data;
struct iphdr *iph = (struct iphdr *) (ep + 1);
struct tcphdr *th;
...
n = iph->ihl;
th = ((void *)iph + (n * 4));
port = th->dest;

The existing code will reject the load of th->dest because it cannot
validate that the alignment is at least 2 once "n * 4" is added the
the packet pointer.

In the new code, the register holding "n * 4" will have a reg->min_align
value of 4, because any value multiplied by 4 will be at least 4 byte
aligned. (actually, the eBPF code emitted by the compiler in this case
is most likely to use a shift left by 2, but the end result is identical)

At the critical addition:

th = ((void *)iph + (n * 4));

The register holding 'th' will start with reg->off value of 14. The
pointer addition will transform that reg into something that looks like:

reg->aux_off = 14
reg->aux_off_align = 4

Next, the verifier will look at the th->dest load, and it will see
a load offset of 2, and first check:

if (reg->aux_off_align % size)

which will pass because aux_off_align is 4. reg_off will be computed:

reg_off = reg->off;
...
reg_off += reg->aux_off;

plus we have off==2, and it will thus check:

if ((NET_IP_ALIGN + reg_off + off) % size != 0)

which evaluates to:

if ((NET_IP_ALIGN + 14 + 2) % size != 0)

On strict alignment architectures, NET_IP_ALIGN is 2, thus:

if ((2 + 14 + 2) % size != 0)

which passes.

These pointer transformations and checks work regardless of whether
the constant offset or the variable with known alignment is added
first to the pointer register.

Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>


# 0d0e5769 07-May-2017 Daniel Borkmann <daniel@iogearbox.net>

bpf: don't let ldimm64 leak map addresses on unprivileged

The patch fixes two things at once:

1) It checks the env->allow_ptr_leaks and only prints the map address to
the log if we have the privileges to do so, otherwise it just dumps 0
as we would when kptr_restrict is enabled on %pK. Given the latter is
off by default and not every distro sets it, I don't want to rely on
this, hence the 0 by default for unprivileged.

2) Printing of ldimm64 in the verifier log is currently broken in that
we don't print the full immediate, but only the 32 bit part of the
first insn part for ldimm64. Thus, fix this up as well; it's okay to
access, since we verified all ldimm64 earlier already (including just
constants) through replace_map_fd_with_map_ptr().

Fixes: 1be7f75d1668 ("bpf: enable non-root eBPF programs")
Fixes: cbd357008604 ("bpf: verifier (add ability to receive verification log)")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 332270fd 29-Apr-2017 Yonghong Song <yhs@fb.com>

bpf: enhance verifier to understand stack pointer arithmetic

llvm 4.0 and above generates the code like below:
....
440: (b7) r1 = 15
441: (05) goto pc+73
515: (79) r6 = *(u64 *)(r10 -152)
516: (bf) r7 = r10
517: (07) r7 += -112
518: (bf) r2 = r7
519: (0f) r2 += r1
520: (71) r1 = *(u8 *)(r8 +0)
521: (73) *(u8 *)(r2 +45) = r1
....
and the verifier complains "R2 invalid mem access 'inv'" for insn #521.
This is because verifier marks register r2 as unknown value after #519
where r2 is a stack pointer and r1 holds a constant value.

Teach verifier to recognize "stack_ptr + imm" and
"stack_ptr + reg with const val" as valid stack_ptr with new offset.

Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# e390b55d 24-Apr-2017 Daniel Borkmann <daniel@iogearbox.net>

bpf: make bpf_xdp_adjust_head support mandatory

Now that also the last in-tree user of the xdp_adjust_head bit has
been removed, we can remove the flag from struct bpf_prog altogether.

This, at the same time, also makes sure that any future driver for
XDP comes with bpf_xdp_adjust_head() support right away.

A rejection based on this flag would also mean that tail calls
couldn't be used with such driver as per c2002f983767 ("bpf: fix
checking xdp_adjust_head on tail calls") fix, thus lets not allow
for it in the first place.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 79adffcd 30-Mar-2017 Daniel Borkmann <daniel@iogearbox.net>

bpf, verifier: fix rejection of unaligned access checks for map_value_adj

Currently, the verifier doesn't reject unaligned access for map_value_adj
register types. Commit 484611357c19 ("bpf: allow access into map value
arrays") added logic to check_ptr_alignment() extending it from PTR_TO_PACKET
to also PTR_TO_MAP_VALUE_ADJ, but for PTR_TO_MAP_VALUE_ADJ no enforcement
is in place, because reg->id for PTR_TO_MAP_VALUE_ADJ reg types is never
non-zero, meaning, we can cause BPF_H/_W/_DW-based unaligned access for
architectures not supporting efficient unaligned access, and thus worst
case could raise exceptions on some archs that are unable to correct the
unaligned access or perform a different memory access to the actual
requested one and such.

i) Unaligned load with !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
on r0 (map_value_adj):

0: (bf) r2 = r10
1: (07) r2 += -8
2: (7a) *(u64 *)(r2 +0) = 0
3: (18) r1 = 0x42533a00
5: (85) call bpf_map_lookup_elem#1
6: (15) if r0 == 0x0 goto pc+11
R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R10=fp
7: (61) r1 = *(u32 *)(r0 +0)
8: (35) if r1 >= 0xb goto pc+9
R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R1=inv,min_value=0,max_value=10 R10=fp
9: (07) r0 += 3
10: (79) r7 = *(u64 *)(r0 +0)
R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R1=inv,min_value=0,max_value=10 R10=fp
11: (79) r7 = *(u64 *)(r0 +2)
R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R1=inv,min_value=0,max_value=10 R7=inv R10=fp
[...]

ii) Unaligned store with !CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
on r0 (map_value_adj):

0: (bf) r2 = r10
1: (07) r2 += -8
2: (7a) *(u64 *)(r2 +0) = 0
3: (18) r1 = 0x4df16a00
5: (85) call bpf_map_lookup_elem#1
6: (15) if r0 == 0x0 goto pc+19
R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R10=fp
7: (07) r0 += 3
8: (7a) *(u64 *)(r0 +0) = 42
R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R10=fp
9: (7a) *(u64 *)(r0 +2) = 43
R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R10=fp
10: (7a) *(u64 *)(r0 -2) = 44
R0=map_value_adj(ks=8,vs=48,id=0),min_value=3,max_value=3 R10=fp
[...]

For the PTR_TO_PACKET type, reg->id is initially zero when skb->data
was fetched, it later receives a reg->id from env->id_gen generator
once another register with UNKNOWN_VALUE type was added to it via
check_packet_ptr_add(). The purpose of this reg->id is twofold: i) it
is used in find_good_pkt_pointers() for setting the allowed access
range for regs with PTR_TO_PACKET of same id once verifier matched
on data/data_end tests, and ii) for check_ptr_alignment() to determine
that when not having efficient unaligned access and register with
UNKNOWN_VALUE was added to PTR_TO_PACKET, that we're only allowed
to access the content bytewise due to unknown unalignment. reg->id
was never intended for PTR_TO_MAP_VALUE{,_ADJ} types and thus is
always zero, the only marking is in PTR_TO_MAP_VALUE_OR_NULL that
was added after 484611357c19 via 57a09bf0a416 ("bpf: Detect identical
PTR_TO_MAP_VALUE_OR_NULL registers"). Above tests will fail for
non-root environment due to prohibited pointer arithmetic.

The fix splits register-type specific checks into their own helper
instead of keeping them combined, so we don't run into a similar
issue in future once we extend check_ptr_alignment() further and
forget to add reg->type checks for some of the checks.

Fixes: 484611357c19 ("bpf: allow access into map value arrays")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# fce366a9 30-Mar-2017 Daniel Borkmann <daniel@iogearbox.net>

bpf, verifier: fix alu ops against map_value{, _adj} register types

While looking into map_value_adj, I noticed that alu operations
directly on the map_value() resp. map_value_adj() register (any
alu operation on a map_value() register will turn it into a
map_value_adj() typed register) are not sufficiently protected
against some of the operations. Two non-exhaustive examples are
provided that the verifier needs to reject:

i) BPF_AND on r0 (map_value_adj):

0: (bf) r2 = r10
1: (07) r2 += -8
2: (7a) *(u64 *)(r2 +0) = 0
3: (18) r1 = 0xbf842a00
5: (85) call bpf_map_lookup_elem#1
6: (15) if r0 == 0x0 goto pc+2
R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R10=fp
7: (57) r0 &= 8
8: (7a) *(u64 *)(r0 +0) = 22
R0=map_value_adj(ks=8,vs=48,id=0),min_value=0,max_value=8 R10=fp
9: (95) exit

from 6 to 9: R0=inv,min_value=0,max_value=0 R10=fp
9: (95) exit
processed 10 insns

ii) BPF_ADD in 32 bit mode on r0 (map_value_adj):

0: (bf) r2 = r10
1: (07) r2 += -8
2: (7a) *(u64 *)(r2 +0) = 0
3: (18) r1 = 0xc24eee00
5: (85) call bpf_map_lookup_elem#1
6: (15) if r0 == 0x0 goto pc+2
R0=map_value(ks=8,vs=48,id=0),min_value=0,max_value=0 R10=fp
7: (04) (u32) r0 += (u32) 0
8: (7a) *(u64 *)(r0 +0) = 22
R0=map_value_adj(ks=8,vs=48,id=0),min_value=0,max_value=0 R10=fp
9: (95) exit

from 6 to 9: R0=inv,min_value=0,max_value=0 R10=fp
9: (95) exit
processed 10 insns

Issue is, while min_value / max_value boundaries for the access
are adjusted appropriately, we change the pointer value in a way
that cannot be sufficiently tracked anymore from its origin.
Operations like BPF_{AND,OR,DIV,MUL,etc} on a destination register
that is PTR_TO_MAP_VALUE{,_ADJ} was probably unintended, in fact,
all the test cases coming with 484611357c19 ("bpf: allow access
into map value arrays") perform BPF_ADD only on the destination
register that is PTR_TO_MAP_VALUE_ADJ.

Only for UNKNOWN_VALUE register types such operations make sense,
f.e. with unknown memory content fetched initially from a constant
offset from the map value memory into a register. That register is
then later tested against lower / upper bounds, so that the verifier
can then do the tracking of min_value / max_value, and properly
check once that UNKNOWN_VALUE register is added to the destination
register with type PTR_TO_MAP_VALUE{,_ADJ}. This is also what the
original use-case is solving. Note, tracking on what is being
added is done through adjust_reg_min_max_vals() and later access
to the map value enforced with these boundaries and the given offset
from the insn through check_map_access_adj().

Tests will fail for non-root environment due to prohibited pointer
arithmetic, in particular in check_alu_op(), we bail out on the
is_pointer_value() check on the dst_reg (which is false in root
case as we allow for pointer arithmetic via env->allow_ptr_leaks).

Similarly to PTR_TO_PACKET, one way to fix it is to restrict the
allowed operations on PTR_TO_MAP_VALUE{,_ADJ} registers to 64 bit
mode BPF_ADD. The test_verifier suite runs fine after the patch
and it also rejects mentioned test cases.

Fixes: 484611357c19 ("bpf: allow access into map value arrays")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# b1977682 24-Mar-2017 Alexei Starovoitov <ast@kernel.org>

bpf: improve verifier packet range checks

llvm can optimize the 'if (ptr > data_end)' checks to be in the order
slightly different than the original C code which will confuse verifier.
Like:
if (ptr + 16 > data_end)
return TC_ACT_SHOT;
// may be followed by
if (ptr + 14 > data_end)
return TC_ACT_SHOT;
while llvm can see that 'ptr' is valid for all 16 bytes,
the verifier could not.
Fix verifier logic to account for such case and add a test.

Reported-by: Huapeng Zhou <hzhou@fb.com>
Fixes: 969bf05eb3ce ("bpf: direct packet access")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# bcc6b1b7 22-Mar-2017 Martin KaFai Lau <kafai@fb.com>

bpf: Add hash of maps support

This patch adds hash of maps support (hashmap->bpf_map).
BPF_MAP_TYPE_HASH_OF_MAPS is added.

A map-in-map contains a pointer to another map and lets call
this pointer 'inner_map_ptr'.

Notes on deleting inner_map_ptr from a hash map:

1. For BPF_F_NO_PREALLOC map-in-map, when deleting
an inner_map_ptr, the htab_elem itself will go through
a rcu grace period and the inner_map_ptr resides
in the htab_elem.

2. For pre-allocated htab_elem (!BPF_F_NO_PREALLOC),
when deleting an inner_map_ptr, the htab_elem may
get reused immediately. This situation is similar
to the existing prealloc-ated use cases.

However, the bpf_map_fd_put_ptr() calls bpf_map_put() which calls
inner_map->ops->map_free(inner_map) which will go
through a rcu grace period (i.e. all bpf_map's map_free
currently goes through a rcu grace period). Hence,
the inner_map_ptr is still safe for the rcu reader side.

This patch also includes BPF_MAP_TYPE_HASH_OF_MAPS to the
check_map_prealloc() in the verifier. preallocation is a
must for BPF_PROG_TYPE_PERF_EVENT. Hence, even we don't expect
heavy updates to map-in-map, enforcing BPF_F_NO_PREALLOC for map-in-map
is impossible without disallowing BPF_PROG_TYPE_PERF_EVENT from using
map-in-map first.

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 56f668df 22-Mar-2017 Martin KaFai Lau <kafai@fb.com>

bpf: Add array of maps support

This patch adds a few helper funcs to enable map-in-map
support (i.e. outer_map->inner_map). The first outer_map type
BPF_MAP_TYPE_ARRAY_OF_MAPS is also added in this patch.
The next patch will introduce a hash of maps type.

Any bpf map type can be acted as an inner_map. The exception
is BPF_MAP_TYPE_PROG_ARRAY because the extra level of
indirection makes it harder to verify the owner_prog_type
and owner_jited.

Multi-level map-in-map is not supported (i.e. map->map is ok
but not map->map->map).

When adding an inner_map to an outer_map, it currently checks the
map_type, key_size, value_size, map_flags, max_entries and ops.
The verifier also uses those map's properties to do static analysis.
map_flags is needed because we need to ensure BPF_PROG_TYPE_PERF_EVENT
is using a preallocated hashtab for the inner_hash also. ops and
max_entries are needed to generate inlined map-lookup instructions.
For simplicity reason, a simple '==' test is used for both map_flags
and max_entries. The equality of ops is implied by the equality of
map_type.

During outer_map creation time, an inner_map_fd is needed to create an
outer_map. However, the inner_map_fd's life time does not depend on the
outer_map. The inner_map_fd is merely used to initialize
the inner_map_meta of the outer_map.

Also, for the outer_map:

* It allows element update and delete from syscall
* It allows element lookup from bpf_prog

The above is similar to the current fd_array pattern.

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# fad73a1a 22-Mar-2017 Martin KaFai Lau <kafai@fb.com>

bpf: Fix and simplifications on inline map lookup

Fix in verifier:
For the same bpf_map_lookup_elem() instruction (i.e. "call 1"),
a broken case is "a different type of map could be used for the
same lookup instruction". For example, an array in one case and a
hashmap in another. We have to resort to the old dynamic call behavior
in this case. The fix is to check for collision on insn_aux->map_ptr.
If there is collision, don't inline the map lookup.

Please see the "do_reg_lookup()" in test_map_in_map_kern.c in the later
patch for how-to trigger the above case.

Simplifications on array_map_gen_lookup():
1. Calculate elem_size from map->value_size. It removes the
need for 'struct bpf_array' which makes the later map-in-map
implementation easier.
2. Remove the 'elem_size == 1' test

Fixes: 81ed18ab3098 ("bpf: add helper inlining infra and optimize map_array lookup")
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 81ed18ab 15-Mar-2017 Alexei Starovoitov <ast@kernel.org>

bpf: add helper inlining infra and optimize map_array lookup

Optimize bpf_call -> bpf_map_lookup_elem() -> array_map_lookup_elem()
into a sequence of bpf instructions.
When JIT is on the sequence of bpf instructions is the sequence
of native cpu instructions with significantly faster performance
than indirect call and two function's prologue/epilogue.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 8041902d 15-Mar-2017 Alexei Starovoitov <ast@kernel.org>

bpf: adjust insn_aux_data when patching insns

convert_ctx_accesses() replaces single bpf instruction with a set of
instructions. Adjust corresponding insn_aux_data while patching.
It's needed to make sure subsequent 'for(all insn)' loops
have matching insn and insn_aux_data.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 79741b3b 15-Mar-2017 Alexei Starovoitov <ast@kernel.org>

bpf: refactor fixup_bpf_calls()

reduce indent and make it iterate over instructions similar to
convert_ctx_accesses(). Also convert hard BUG_ON into soft verifier error.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# e245c5c6 15-Mar-2017 Alexei Starovoitov <ast@kernel.org>

bpf: move fixup_bpf_calls() function

no functional change.
move fixup_bpf_calls() to verifier.c
it's being refactored in the next patch

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# eba38a96 01-Mar-2017 Gary Lin <glin@suse.com>

bpf: update the comment about the length of analysis

Commit 07016151a446 ("bpf, verifier: further improve search
pruning") increased the limit of processed instructions from
32k to 64k, but the comment still mentioned the 32k limit.
This commit updates the comment to reflect the change.

Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Gary Lin <glin@suse.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# bc1750f3 22-Feb-2017 Colin Ian King <colin.king@canonical.com>

bpf: fix spelling mistake: "proccessed" -> "processed"

trivial fix to spelling mistake in verbose log message

Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 7e57fbb2 13-Feb-2017 Alexander Alemayhu <alexander@alemayhu.com>

bpf: reduce compiler warnings by adding fallthrough comments

Fixes the following warnings:

kernel/bpf/verifier.c: In function ‘may_access_direct_pkt_data’:
kernel/bpf/verifier.c:702:6: warning: this statement may fall through [-Wimplicit-fallthrough=]
if (t == BPF_WRITE)
^
kernel/bpf/verifier.c:704:2: note: here
case BPF_PROG_TYPE_SCHED_CLS:
^~~~
kernel/bpf/verifier.c: In function ‘reg_set_min_max_inv’:
kernel/bpf/verifier.c:2057:23: warning: this statement may fall through [-Wimplicit-fallthrough=]
true_reg->min_value = 0;
~~~~~~~~~~~~~~~~~~~~^~~
kernel/bpf/verifier.c:2058:2: note: here
case BPF_JSGT:
^~~~
kernel/bpf/verifier.c:2068:23: warning: this statement may fall through [-Wimplicit-fallthrough=]
true_reg->min_value = 0;
~~~~~~~~~~~~~~~~~~~~^~~
kernel/bpf/verifier.c:2069:2: note: here
case BPF_JSGE:
^~~~
kernel/bpf/verifier.c: In function ‘reg_set_min_max’:
kernel/bpf/verifier.c:2009:24: warning: this statement may fall through [-Wimplicit-fallthrough=]
false_reg->min_value = 0;
~~~~~~~~~~~~~~~~~~~~~^~~
kernel/bpf/verifier.c:2010:2: note: here
case BPF_JSGT:
^~~~
kernel/bpf/verifier.c:2019:24: warning: this statement may fall through [-Wimplicit-fallthrough=]
false_reg->min_value = 0;
~~~~~~~~~~~~~~~~~~~~~^~~
kernel/bpf/verifier.c:2020:2: note: here
case BPF_JSGE:
^~~~

Reported-by: David Binderman <dcb314@hotmail.com>
Signed-off-by: Alexander Alemayhu <alexander@alemayhu.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 63dfef75 04-Feb-2017 William Tu <u9012063@gmail.com>

bpf: enable verifier to add 0 to packet ptr

The patch fixes the case when adding a zero value to the packet
pointer. The zero value could come from src_reg equals type
BPF_K or CONST_IMM. The patch fixes both, otherwise the verifer
reports the following error:
[...]
R0=imm0,min_value=0,max_value=0
R1=pkt(id=0,off=0,r=4)
R2=pkt_end R3=fp-12
R4=imm4,min_value=4,max_value=4
R5=pkt(id=0,off=4,r=4)
269: (bf) r2 = r0 // r2 becomes imm0
270: (77) r2 >>= 3
271: (bf) r4 = r1 // r4 becomes pkt ptr
272: (0f) r4 += r2 // r4 += 0
addition of negative constant to packet pointer is not allowed

Signed-off-by: William Tu <u9012063@gmail.com>
Signed-off-by: Mihai Budiu <mbudiu@vmware.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 3fadc801 23-Jan-2017 Daniel Borkmann <daniel@iogearbox.net>

bpf: enable verifier to better track const alu ops

William reported couple of issues in relation to direct packet
access. Typical scheme is to check for data + [off] <= data_end,
where [off] can be either immediate or coming from a tracked
register that contains an immediate, depending on the branch, we
can then access the data. However, in case of calculating [off]
for either the mentioned test itself or for access after the test
in a more "complex" way, then the verifier will stop tracking the
CONST_IMM marked register and will mark it as UNKNOWN_VALUE one.

Adding that UNKNOWN_VALUE typed register to a pkt() marked
register, the verifier then bails out in check_packet_ptr_add()
as it finds the registers imm value below 48. In the first below
example, that is due to evaluate_reg_imm_alu() not handling right
shifts and thus marking the register as UNKNOWN_VALUE via helper
__mark_reg_unknown_value() that resets imm to 0.

In the second case the same happens at the time when r4 is set
to r4 &= r5, where it transitions to UNKNOWN_VALUE from
evaluate_reg_imm_alu(). Later on r4 we shift right by 3 inside
evaluate_reg_alu(), where the register's imm turns into 3. That
is, for registers with type UNKNOWN_VALUE, imm of 0 means that
we don't know what value the register has, and for imm > 0 it
means that the value has [imm] upper zero bits. F.e. when shifting
an UNKNOWN_VALUE register by 3 to the right, no matter what value
it had, we know that the 3 upper most bits must be zero now.
This is to make sure that ALU operations with unknown registers
don't overflow. Meaning, once we know that we have more than 48
upper zero bits, or, in other words cannot go beyond 0xffff offset
with ALU ops, such an addition will track the target register
as a new pkt() register with a new id, but 0 offset and 0 range,
so for that a new data/data_end test will be required. Is the source
register a CONST_IMM one that is to be added to the pkt() register,
or the source instruction is an add instruction with immediate
value, then it will get added if it stays within max 0xffff bounds.
>From there, pkt() type, can be accessed should reg->off + imm be
within the access range of pkt().

[...]
from 28 to 30: R0=imm1,min_value=1,max_value=1
R1=pkt(id=0,off=0,r=22) R2=pkt_end
R3=imm144,min_value=144,max_value=144
R4=imm0,min_value=0,max_value=0
R5=inv48,min_value=2054,max_value=2054 R10=fp
30: (bf) r5 = r3
31: (07) r5 += 23
32: (77) r5 >>= 3
33: (bf) r6 = r1
34: (0f) r6 += r5
cannot add integer value with 0 upper zero bits to ptr_to_packet

[...]
from 52 to 80: R0=imm1,min_value=1,max_value=1
R1=pkt(id=0,off=0,r=34) R2=pkt_end R3=inv
R4=imm272 R5=inv56,min_value=17,max_value=17
R6=pkt(id=0,off=26,r=34) R10=fp
80: (07) r4 += 71
81: (18) r5 = 0xfffffff8
83: (5f) r4 &= r5
84: (77) r4 >>= 3
85: (0f) r1 += r4
cannot add integer value with 3 upper zero bits to ptr_to_packet

Thus to get above use-cases working, evaluate_reg_imm_alu() has
been extended for further ALU ops. This is fine, because we only
operate strictly within realm of CONST_IMM types, so here we don't
care about overflows as they will happen in the simulated but also
real execution and interaction with pkt() in check_packet_ptr_add()
will check actual imm value once added to pkt(), but it's irrelevant
before.

With regards to 06c1c049721a ("bpf: allow helpers access to variable
memory") that works on UNKNOWN_VALUE registers, the verifier becomes
now a bit smarter as it can better resolve ALU ops, so we need to
adapt two test cases there, as min/max bound tracking only becomes
necessary when registers were spilled to stack. So while mask was
set before to track upper bound for UNKNOWN_VALUE case, it's now
resolved directly as CONST_IMM, and such contructs are only necessary
when f.e. registers are spilled.

For commit 6b17387307ba ("bpf: recognize 64bit immediate loads as
consts") that initially enabled dw load tracking only for nfp jit/
analyzer, I did couple of tests on large, complex programs and we
don't increase complexity badly (my tests were in ~3% range on avg).
I've added a couple of tests similar to affected code above, and
it works fine with verifier now.

Reported-by: William Tu <u9012063@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: Gianluca Borello <g.borello@gmail.com>
Cc: William Tu <u9012063@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# f1f7714e 13-Jan-2017 Daniel Borkmann <daniel@iogearbox.net>

bpf: rework prog_digest into prog_tag

Commit 7bd509e311f4 ("bpf: add prog_digest and expose it via
fdinfo/netlink") was recently discussed, partially due to
admittedly suboptimal name of "prog_digest" in combination
with sha1 hash usage, thus inevitably and rightfully concerns
about its security in terms of collision resistance were
raised with regards to use-cases.

The intended use cases are for debugging resp. introspection
only for providing a stable "tag" over the instruction sequence
that both kernel and user space can calculate independently.
It's not usable at all for making a security relevant decision.
So collisions where two different instruction sequences generate
the same tag can happen, but ideally at a rather low rate. The
"tag" will be dumped in hex and is short enough to introspect
in tracepoints or kallsyms output along with other data such
as stack trace, etc. Thus, this patch performs a rename into
prog_tag and truncates the tag to a short output (64 bits) to
make it obvious it's not collision-free.

Should in future a hash or facility be needed with a security
relevant focus, then we can think about requirements, constraints,
etc that would fit to that situation. For now, rework the exposed
parts for the current use cases as long as nothing has been
released yet. Tested on x86_64 and s390x.

Fixes: 7bd509e311f4 ("bpf: add prog_digest and expose it via fdinfo/netlink")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 62c7989b 12-Jan-2017 Daniel Borkmann <daniel@iogearbox.net>

bpf: allow b/h/w/dw access for bpf's cb in ctx

When structs are used to store temporary state in cb[] buffer that is
used with programs and among tail calls, then the generated code will
not always access the buffer in bpf_w chunks. We can ease programming
of it and let this act more natural by allowing for aligned b/h/w/dw
sized access for cb[] ctx member. Various test cases are attached as
well for the selftest suite. Potentially, this can also be reused for
other program types to pass data around.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 6b8cc1d1 12-Jan-2017 Daniel Borkmann <daniel@iogearbox.net>

bpf: pass original insn directly to convert_ctx_access

Currently, when calling convert_ctx_access() callback for the various
program types, we pass in insn->dst_reg, insn->src_reg, insn->off from
the original instruction. This information is needed to rewrite the
instruction that is based on the user ctx structure into a kernel
representation for the ctx. As we'd like to allow access size beyond
just BPF_W, we'd need also insn->code for that in order to decode the
original access size. Given that, lets just pass insn directly to the
convert_ctx_access() callback and work on that to not clutter the
callback with even more arguments we need to pass when everything is
already contained in insn. So lets go through that once, no functional
change.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 39f19ebb 09-Jan-2017 Alexei Starovoitov <ast@kernel.org>

bpf: rename ARG_PTR_TO_STACK

since ARG_PTR_TO_STACK is no longer just pointer to stack
rename it to ARG_PTR_TO_MEM and adjust comment.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 06c1c049 09-Jan-2017 Gianluca Borello <g.borello@gmail.com>

bpf: allow helpers access to variable memory

Currently, helpers that read and write from/to the stack can do so using
a pair of arguments of type ARG_PTR_TO_STACK and ARG_CONST_STACK_SIZE.
ARG_CONST_STACK_SIZE accepts a constant register of type CONST_IMM, so
that the verifier can safely check the memory access. However, requiring
the argument to be a constant can be limiting in some circumstances.

Since the current logic keeps track of the minimum and maximum value of
a register throughout the simulated execution, ARG_CONST_STACK_SIZE can
be changed to also accept an UNKNOWN_VALUE register in case its
boundaries have been set and the range doesn't cause invalid memory
accesses.

One common situation when this is useful:

int len;
char buf[BUFSIZE]; /* BUFSIZE is 128 */

if (some_condition)
len = 42;
else
len = 84;

some_helper(..., buf, len & (BUFSIZE - 1));

The compiler can often decide to assign the constant values 42 or 48
into a variable on the stack, instead of keeping it in a register. When
the variable is then read back from stack into the register in order to
be passed to the helper, the verifier will not be able to recognize the
register as constant (the verifier is not currently tracking all
constant writes into memory), and the program won't be valid.

However, by allowing the helper to accept an UNKNOWN_VALUE register,
this program will work because the bitwise AND operation will set the
range of possible values for the UNKNOWN_VALUE register to [0, BUFSIZE),
so the verifier can guarantee the helper call will be safe (assuming the
argument is of type ARG_CONST_STACK_SIZE_OR_ZERO, otherwise one more
check against 0 would be needed). Custom ranges can be set not only with
ALU operations, but also by explicitly comparing the UNKNOWN_VALUE
register with constants.

Another very common example happens when intercepting system call
arguments and accessing user-provided data of variable size using
bpf_probe_read(). One can load at runtime the user-provided length in an
UNKNOWN_VALUE register, and then read that exact amount of data up to a
compile-time determined limit in order to fit into the proper local
storage allocated on the stack, without having to guess a suboptimal
access size at compile time.

Also, in case the helpers accepting the UNKNOWN_VALUE register operate
in raw mode, disable the raw mode so that the program is required to
initialize all memory, since there is no guarantee the helper will fill
it completely, leaving possibilities for data leak (just relevant when
the memory used by the helper is the stack, not when using a pointer to
map element value or packet). In other words, ARG_PTR_TO_RAW_STACK will
be treated as ARG_PTR_TO_STACK.

Signed-off-by: Gianluca Borello <g.borello@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# f0318d01 09-Jan-2017 Gianluca Borello <g.borello@gmail.com>

bpf: allow adjusted map element values to spill

commit 484611357c19 ("bpf: allow access into map value arrays")
introduces the ability to do pointer math inside a map element value via
the PTR_TO_MAP_VALUE_ADJ register type.

The current support doesn't handle the case where a PTR_TO_MAP_VALUE_ADJ
is spilled into the stack, limiting several use cases, especially when
generating bpf code from a compiler.

Handle this case by explicitly enabling the register type
PTR_TO_MAP_VALUE_ADJ to be spilled. Also, make sure that min_value and
max_value are reset just for BPF_LDX operations that don't result in a
restore of a spilled register from stack.

Signed-off-by: Gianluca Borello <g.borello@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 5722569b 09-Jan-2017 Gianluca Borello <g.borello@gmail.com>

bpf: allow helpers access to map element values

Enable helpers to directly access a map element value by passing a
register type PTR_TO_MAP_VALUE (or PTR_TO_MAP_VALUE_ADJ) to helper
arguments ARG_PTR_TO_STACK or ARG_PTR_TO_RAW_STACK.

This enables several use cases. For example, a typical tracing program
might want to capture pathnames passed to sys_open() with:

struct trace_data {
char pathname[PATHLEN];
};

SEC("kprobe/sys_open")
void bpf_sys_open(struct pt_regs *ctx)
{
struct trace_data data;
bpf_probe_read(data.pathname, sizeof(data.pathname), ctx->di);

/* consume data.pathname, for example via
* bpf_trace_printk() or bpf_perf_event_output()
*/
}

Such a program could easily hit the stack limit in case PATHLEN needs to
be large or more local variables need to exist, both of which are quite
common scenarios. Allowing direct helper access to map element values,
one could do:

struct bpf_map_def SEC("maps") scratch_map = {
.type = BPF_MAP_TYPE_PERCPU_ARRAY,
.key_size = sizeof(u32),
.value_size = sizeof(struct trace_data),
.max_entries = 1,
};

SEC("kprobe/sys_open")
int bpf_sys_open(struct pt_regs *ctx)
{
int id = 0;
struct trace_data *p = bpf_map_lookup_elem(&scratch_map, &id);
if (!p)
return;
bpf_probe_read(p->pathname, sizeof(p->pathname), ctx->di);

/* consume p->pathname, for example via
* bpf_trace_printk() or bpf_perf_event_output()
*/
}

And wouldn't risk exhausting the stack.

Code changes are loosely modeled after commit 6841de8b0d03 ("bpf: allow
helpers access the packet directly"). Unlike with PTR_TO_PACKET, these
changes just work with ARG_PTR_TO_STACK and ARG_PTR_TO_RAW_STACK (not
ARG_PTR_TO_MAP_KEY, ARG_PTR_TO_MAP_VALUE, ...): adding those would be
trivial, but since there is not currently a use case for that, it's
reasonable to limit the set of changes.

Also, add new tests to make sure accesses to map element values from
helpers never go out of boundary, even when adjusted.

Signed-off-by: Gianluca Borello <g.borello@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# dbcfe5f7 09-Jan-2017 Gianluca Borello <g.borello@gmail.com>

bpf: split check_mem_access logic for map values

Move the logic to check memory accesses to a PTR_TO_MAP_VALUE_ADJ from
check_mem_access() to a separate helper check_map_access_adj(). This
enables to use those checks in other parts of the verifier as well,
where boundaries on PTR_TO_MAP_VALUE_ADJ might need to be checked, for
example when checking helper function arguments. The same thing is
already happening for other types such as PTR_TO_PACKET and its
check_packet_access() helper.

The code has been copied verbatim, with the only difference of removing
the "off += reg->max_value" statement and moving the sum into the call
statement to check_map_access(), as that was only needed due to the
earlier common check_map_access() call.

Signed-off-by: Gianluca Borello <g.borello@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 6760bf2d 17-Dec-2016 Daniel Borkmann <daniel@iogearbox.net>

bpf: fix mark_reg_unknown_value for spilled regs on map value marking

Martin reported a verifier issue that hit the BUG_ON() for his
test case in the mark_reg_unknown_value() function:

[ 202.861380] kernel BUG at kernel/bpf/verifier.c:467!
[...]
[ 203.291109] Call Trace:
[ 203.296501] [<ffffffff811364d5>] mark_map_reg+0x45/0x50
[ 203.308225] [<ffffffff81136558>] mark_map_regs+0x78/0x90
[ 203.320140] [<ffffffff8113938d>] do_check+0x226d/0x2c90
[ 203.331865] [<ffffffff8113a6ab>] bpf_check+0x48b/0x780
[ 203.343403] [<ffffffff81134c8e>] bpf_prog_load+0x27e/0x440
[ 203.355705] [<ffffffff8118a38f>] ? handle_mm_fault+0x11af/0x1230
[ 203.369158] [<ffffffff812d8188>] ? security_capable+0x48/0x60
[ 203.382035] [<ffffffff811351a4>] SyS_bpf+0x124/0x960
[ 203.393185] [<ffffffff810515f6>] ? __do_page_fault+0x276/0x490
[ 203.406258] [<ffffffff816db320>] entry_SYSCALL_64_fastpath+0x13/0x94

This issue got uncovered after the fix in a08dd0da5307 ("bpf: fix
regression on verifier pruning wrt map lookups"). The reason why it
wasn't noticed before was, because as mentioned in a08dd0da5307,
mark_map_regs() was doing the id matching incorrectly based on the
uncached regs[regno].id. So, in the first loop, we walked all regs
and as soon as we found regno == i, then this reg's id was cleared
when calling mark_reg_unknown_value() thus that every subsequent
register was probed against id of 0 (which, in combination with the
PTR_TO_MAP_VALUE_OR_NULL type is an invalid condition that no other
register state can hold), and therefore wasn't type transitioned such
as in the spilled register case for the second loop.

Now since that got fixed, it turned out that 57a09bf0a416 ("bpf:
Detect identical PTR_TO_MAP_VALUE_OR_NULL registers") used
mark_reg_unknown_value() incorrectly for the spilled regs, and thus
hitting the BUG_ON() in some cases due to regno >= MAX_BPF_REG.

Although spilled regs have the same type as the non-spilled regs
for the verifier state, that is, struct bpf_reg_state, they are
semantically different from the non-spilled regs. In other words,
there can be up to 64 (MAX_BPF_STACK / BPF_REG_SIZE) spilled regs
in the stack, for example, register R<x> could have been spilled by
the program to stack location X, Y, Z, and in mark_map_regs() we
need to scan these stack slots of type STACK_SPILL for potential
registers that we have to transition from PTR_TO_MAP_VALUE_OR_NULL.
Therefore, depending on the location, the spilled_regs regno can
be a lot higher than just MAX_BPF_REG's value since we operate on
stack instead. The reset in mark_reg_unknown_value() itself is
just fine, only that the BUG_ON() was inappropriate for this. Fix
it by making a __mark_reg_unknown_value() version that can be
called from mark_map_reg() generically; we know for the non-spilled
case that the regno is always < MAX_BPF_REG anyway.

Fixes: 57a09bf0a416 ("bpf: Detect identical PTR_TO_MAP_VALUE_OR_NULL registers")
Reported-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# aafe6ae9 17-Dec-2016 Daniel Borkmann <daniel@iogearbox.net>

bpf: dynamically allocate digest scratch buffer

Geert rightfully complained that 7bd509e311f4 ("bpf: add prog_digest
and expose it via fdinfo/netlink") added a too large allocation of
variable 'raw' from bss section, and should instead be done dynamically:

# ./scripts/bloat-o-meter kernel/bpf/core.o.1 kernel/bpf/core.o.2
add/remove: 3/0 grow/shrink: 0/0 up/down: 33291/0 (33291)
function old new delta
raw - 32832 +32832
[...]

Since this is only relevant during program creation path, which can be
considered slow-path anyway, lets allocate that dynamically and be not
implicitly dependent on verifier mutex. Move bpf_prog_calc_digest() at
the beginning of replace_map_fd_with_map_ptr() and also error handling
stays straight forward.

Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# a08dd0da 14-Dec-2016 Daniel Borkmann <daniel@iogearbox.net>

bpf: fix regression on verifier pruning wrt map lookups

Commit 57a09bf0a416 ("bpf: Detect identical PTR_TO_MAP_VALUE_OR_NULL
registers") introduced a regression where existing programs stopped
loading due to reaching the verifier's maximum complexity limit,
whereas prior to this commit they were loading just fine; the affected
program has roughly 2k instructions.

What was found is that state pruning couldn't be performed effectively
anymore due to mismatches of the verifier's register state, in particular
in the id tracking. It doesn't mean that 57a09bf0a416 is incorrect per
se, but rather that verifier needs to perform a lot more work for the
same program with regards to involved map lookups.

Since commit 57a09bf0a416 is only about tracking registers with type
PTR_TO_MAP_VALUE_OR_NULL, the id is only needed to follow registers
until they are promoted through pattern matching with a NULL check to
either PTR_TO_MAP_VALUE or UNKNOWN_VALUE type. After that point, the
id becomes irrelevant for the transitioned types.

For UNKNOWN_VALUE, id is already reset to 0 via mark_reg_unknown_value(),
but not so for PTR_TO_MAP_VALUE where id is becoming stale. It's even
transferred further into other types that don't make use of it. Among
others, one example is where UNKNOWN_VALUE is set on function call
return with RET_INTEGER return type.

states_equal() will then fall through the memcmp() on register state;
note that the second memcmp() uses offsetofend(), so the id is part of
that since d2a4dd37f6b4 ("bpf: fix state equivalence"). But the bisect
pointed already to 57a09bf0a416, where we really reach beyond complexity
limit. What I found was that states_equal() often failed in this
case due to id mismatches in spilled regs with registers in type
PTR_TO_MAP_VALUE. Unlike non-spilled regs, spilled regs just perform
a memcmp() on their reg state and don't have any other optimizations
in place, therefore also id was relevant in this case for making a
pruning decision.

We can safely reset id to 0 as well when converting to PTR_TO_MAP_VALUE.
For the affected program, it resulted in a ~17 fold reduction of
complexity and let the program load fine again. Selftest suite also
runs fine. The only other place where env->id_gen is used currently is
through direct packet access, but for these cases id is long living, thus
a different scenario.

Also, the current logic in mark_map_regs() is not fully correct when
marking NULL branch with UNKNOWN_VALUE. We need to cache the destination
reg's id in any case. Otherwise, once we marked that reg as UNKNOWN_VALUE,
it's id is reset and any subsequent registers that hold the original id
and are of type PTR_TO_MAP_VALUE_OR_NULL won't be marked UNKNOWN_VALUE
anymore, since mark_map_reg() reuses the uncached regs[regno].id that
was just overridden. Note, we don't need to cache it outside of
mark_map_regs(), since it's called once on this_branch and the other
time on other_branch, which are both two independent verifier states.
A test case for this is added here, too.

Fixes: 57a09bf0a416 ("bpf: Detect identical PTR_TO_MAP_VALUE_OR_NULL registers")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Thomas Graf <tgraf@suug.ch>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 17bedab2 07-Dec-2016 Martin KaFai Lau <kafai@fb.com>

bpf: xdp: Allow head adjustment in XDP prog

This patch allows XDP prog to extend/remove the packet
data at the head (like adding or removing header). It is
done by adding a new XDP helper bpf_xdp_adjust_head().

It also renames bpf_helper_changes_skb_data() to
bpf_helper_changes_pkt_data() to better reflect
that XDP prog does not work on skb.

This patch adds one "xdp_adjust_head" bit to bpf_prog for the
XDP-capable driver to check if the XDP prog requires
bpf_xdp_adjust_head() support. The driver can then decide
to error out during XDP_SETUP_PROG.

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.r.fastabend@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# d2a4dd37 07-Dec-2016 Alexei Starovoitov <ast@kernel.org>

bpf: fix state equivalence

Commmits 57a09bf0a416 ("bpf: Detect identical PTR_TO_MAP_VALUE_OR_NULL registers")
and 484611357c19 ("bpf: allow access into map value arrays") by themselves
are correct, but in combination they make state equivalence ignore 'id' field
of the register state which can lead to accepting invalid program.

Fixes: 57a09bf0a416 ("bpf: Detect identical PTR_TO_MAP_VALUE_OR_NULL registers")
Fixes: 484611357c19 ("bpf: allow access into map value arrays")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Thomas Graf <tgraf@suug.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>


# ef0915ca 06-Dec-2016 Daniel Borkmann <daniel@iogearbox.net>

bpf: fix loading of BPF_MAXINSNS sized programs

General assumption is that single program can hold up to BPF_MAXINSNS,
that is, 4096 number of instructions. It is the case with cBPF and
that limit was carried over to eBPF. When recently testing digest, I
noticed that it's actually not possible to feed 4096 instructions
via bpf(2).

The check for > BPF_MAXINSNS was added back then to bpf_check() in
cbd357008604 ("bpf: verifier (add ability to receive verification log)").
However, 09756af46893 ("bpf: expand BPF syscall with program load/unload")
added yet another check that comes before that into bpf_prog_load(),
but this time bails out already in case of >= BPF_MAXINSNS.

Fix it up and perform the check early in bpf_prog_load(), so we can drop
the second one in bpf_check(). It makes sense, because also a 0 insn
program is useless and we don't want to waste any resources doing work
up to bpf_check() point. The existing bpf(2) man page documents E2BIG
as the official error for such cases, so just stick with it as well.

Fixes: 09756af46893 ("bpf: expand BPF syscall with program load/unload")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 7bd509e3 04-Dec-2016 Daniel Borkmann <daniel@iogearbox.net>

bpf: add prog_digest and expose it via fdinfo/netlink

When loading a BPF program via bpf(2), calculate the digest over
the program's instruction stream and store it in struct bpf_prog's
digest member. This is done at a point in time before any instructions
are rewritten by the verifier. Any unstable map file descriptor
number part of the imm field will be zeroed for the hash.

fdinfo example output for progs:

# cat /proc/1590/fdinfo/5
pos: 0
flags: 02000002
mnt_id: 11
prog_type: 1
prog_jited: 1
prog_digest: b27e8b06da22707513aa97363dfb11c7c3675d28
memlock: 4096

When programs are pinned and retrieved by an ELF loader, the loader
can check the program's digest through fdinfo and compare it against
one that was generated over the ELF file's program section to see
if the program needs to be reloaded. Furthermore, this can also be
exposed through other means such as netlink in case of a tc cls/act
dump (or xdp in future), but also through tracepoints or other
facilities to identify the program. Other than that, the digest can
also serve as a base name for the work in progress kallsyms support
of programs. The digest doesn't depend/select the crypto layer, since
we need to keep dependencies to a minimum. iproute2 will get support
for this facility.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 3c839744 03-Dec-2016 Gianluca Borello <g.borello@gmail.com>

bpf: Preserve const register type on const OR alu ops

Occasionally, clang (e.g. version 3.8.1) translates a sum between two
constant operands using a BPF_OR instead of a BPF_ADD. The verifier is
currently not handling this scenario, and the destination register type
becomes UNKNOWN_VALUE even if it's still storing a constant. As a result,
the destination register cannot be used as argument to a helper function
expecting a ARG_CONST_STACK_*, limiting some use cases.

Modify the verifier to handle this case, and add a few tests to make sure
all combinations are supported, and stack boundaries are still verified
even with BPF_OR.

Signed-off-by: Gianluca Borello <g.borello@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 3a0af8fd 30-Nov-2016 Thomas Graf <tgraf@suug.ch>

bpf: BPF for lightweight tunnel infrastructure

Registers new BPF program types which correspond to the LWT hooks:
- BPF_PROG_TYPE_LWT_IN => dst_input()
- BPF_PROG_TYPE_LWT_OUT => dst_output()
- BPF_PROG_TYPE_LWT_XMIT => lwtunnel_xmit()

The separate program types are required to differentiate between the
capabilities each LWT hook allows:

* Programs attached to dst_input() or dst_output() are restricted and
may only read the data of an skb. This prevent modification and
possible invalidation of already validated packet headers on receive
and the construction of illegal headers while the IP headers are
still being assembled.

* Programs attached to lwtunnel_xmit() are allowed to modify packet
content as well as prepending an L2 header via a newly introduced
helper bpf_skb_change_head(). This is safe as lwtunnel_xmit() is
invoked after the IP header has been assembled completely.

All BPF programs receive an skb with L3 headers attached and may return
one of the following error codes:

BPF_OK - Continue routing as per nexthop
BPF_DROP - Drop skb and return EPERM
BPF_REDIRECT - Redirect skb to device as per redirect() helper.
(Only valid in lwtunnel_xmit() context)

The return codes are binary compatible with their TC_ACT_
relatives to ease compatibility.

Signed-off-by: Thomas Graf <tgraf@suug.ch>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# e2d2afe1 28-Nov-2016 Josef Bacik <jbacik@fb.com>

bpf: fix states equal logic for varlen access

If we have a branch that looks something like this

int foo = map->value;
if (condition) {
foo += blah;
} else {
foo = bar;
}
map->array[foo] = baz;

We will incorrectly assume that the !condition branch is equal to the condition
branch as the register for foo will be UNKNOWN_VALUE in both cases. We need to
adjust this logic to only do this if we didn't do a varlen access after we
processed the !condition branch, otherwise we have different ranges and need to
check the other branch as well.

Fixes: 484611357c19 ("bpf: allow access into map value arrays")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# f23cc643 14-Nov-2016 Josef Bacik <jbacik@fb.com>

bpf: fix range arithmetic for bpf map access

I made some invalid assumptions with BPF_AND and BPF_MOD that could result in
invalid accesses to bpf map entries. Fix this up by doing a few things

1) Kill BPF_MOD support. This doesn't actually get used by the compiler in real
life and just adds extra complexity.

2) Fix the logic for BPF_AND, don't allow AND of negative numbers and set the
minimum value to 0 for positive AND's.

3) Don't do operations on the ranges if they are set to the limits, as they are
by definition undefined, and allowing arithmetic operations on those values
could make them appear valid when they really aren't.

This fixes the testcase provided by Jann as well as a few other theoretical
problems.

Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# de464375 08-Nov-2016 Tobias Klauser <tklauser@distanz.ch>

bpf: Remove unused but set variables

Remove the unused but set variables min_set and max_set in
adjust_reg_min_max_vals to fix the following warning when building with
'W=1':

kernel/bpf/verifier.c:1483:7: warning: variable ‘min_set’ set but not used [-Wunused-but-set-variable]

There is no warning about max_set being unused, but since it is only
used in the assignment of min_set it can be removed as well.

They were introduced in commit 484611357c19 ("bpf: allow access into map
value arrays") but seem to have never been used.

Cc: Josef Bacik <jbacik@fb.com>
Signed-off-by: Tobias Klauser <tklauser@distanz.ch>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# ebb676da 27-Oct-2016 Thomas Graf <tgraf@suug.ch>

bpf: Print function name in addition to function id

The verifier currently prints raw function ids when printing CALL
instructions or when complaining:

5: (85) call 23
unknown func 23

print a meaningful function name instead:

5: (85) call bpf_redirect#23
unknown func bpf_redirect#23

Moves the function documentation to a single comment and renames all
helpers names in the list to conform to the bpf_ prefix notation so
they can be greped in the kernel source.

Signed-off-by: Thomas Graf <tgraf@suug.ch>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 57a09bf0 18-Oct-2016 Thomas Graf <tgraf@suug.ch>

bpf: Detect identical PTR_TO_MAP_VALUE_OR_NULL registers

A BPF program is required to check the return register of a
map_elem_lookup() call before accessing memory. The verifier keeps
track of this by converting the type of the result register from
PTR_TO_MAP_VALUE_OR_NULL to PTR_TO_MAP_VALUE after a conditional
jump ensures safety. This check is currently exclusively performed
for the result register 0.

In the event the compiler reorders instructions, BPF_MOV64_REG
instructions may be moved before the conditional jump which causes
them to keep their type PTR_TO_MAP_VALUE_OR_NULL to which the
verifier objects when the register is accessed:

0: (b7) r1 = 10
1: (7b) *(u64 *)(r10 -8) = r1
2: (bf) r2 = r10
3: (07) r2 += -8
4: (18) r1 = 0x59c00000
6: (85) call 1
7: (bf) r4 = r0
8: (15) if r0 == 0x0 goto pc+1
R0=map_value(ks=8,vs=8) R4=map_value_or_null(ks=8,vs=8) R10=fp
9: (7a) *(u64 *)(r4 +0) = 0
R4 invalid mem access 'map_value_or_null'

This commit extends the verifier to keep track of all identical
PTR_TO_MAP_VALUE_OR_NULL registers after a map_elem_lookup() by
assigning them an ID and then marking them all when the conditional
jump is observed.

Signed-off-by: Thomas Graf <tgraf@suug.ch>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 48461135 28-Sep-2016 Josef Bacik <jbacik@fb.com>

bpf: allow access into map value arrays

Suppose you have a map array value that is something like this

struct foo {
unsigned iter;
int array[SOME_CONSTANT];
};

You can easily insert this into an array, but you cannot modify the contents of
foo->array[] after the fact. This is because we have no way to verify we won't
go off the end of the array at verification time. This patch provides a start
for this work. We accomplish this by keeping track of a minimum and maximum
value a register could be while we're checking the code. Then at the time we
try to do an access into a MAP_VALUE we verify that the maximum offset into that
region is a valid access into that memory region. So in practice, code such as
this

unsigned index = 0;

if (foo->iter >= SOME_CONSTANT)
foo->iter = index;
else
index = foo->iter++;
foo->array[index] = bar;

would be allowed, as we can verify that index will always be between 0 and
SOME_CONSTANT-1. If you wish to use signed values you'll have to have an extra
check to make sure the index isn't less than 0, or do something like index %=
SOME_CONSTANT.

Signed-off-by: Josef Bacik <jbacik@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 1955351d 24-Sep-2016 Mickaël Salaün <mic@digikod.net>

bpf: Set register type according to is_valid_access()

This prevent future potential pointer leaks when an unprivileged eBPF
program will read a pointer value from its context. Even if
is_valid_access() returns a pointer type, the eBPF verifier replace it
with UNKNOWN_VALUE. The register value that contains a kernel address is
then allowed to leak. Moreover, this fix allows unprivileged eBPF
programs to use functions with (legitimate) pointer arguments.

Not an issue currently since reg_type is only set for PTR_TO_PACKET or
PTR_TO_PACKET_END in XDP and TC programs that can only be loaded as
privileged. For now, the only unprivileged eBPF program allowed is for
socket filtering and all the types from its context are UNKNOWN_VALUE.
However, this fix is important for future unprivileged eBPF programs
which could use pointers in their context.

Signed-off-by: Mickaël Salaün <mic@digikod.net>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 6b173873 21-Sep-2016 Jakub Kicinski <kuba@kernel.org>

bpf: recognize 64bit immediate loads as consts

When running as parser interpret BPF_LD | BPF_IMM | BPF_DW
instructions as loading CONST_IMM with the value stored
in imm. The verifier will continue not recognizing those
due to concerns about search space/program complexity
increase.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 13a27dfc 21-Sep-2016 Jakub Kicinski <kuba@kernel.org>

bpf: enable non-core use of the verfier

Advanced JIT compilers and translators may want to use
eBPF verifier as a base for parsers or to perform custom
checks and validations.

Add ability for external users to invoke the verifier
and provide callbacks to be invoked for every intruction
checked. For now only add most basic callback for
per-instruction pre-interpretation checks is added. More
advanced users may also like to have per-instruction post
callback and state comparison callback.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 58e2af8b 21-Sep-2016 Jakub Kicinski <kuba@kernel.org>

bpf: expose internal verfier structures

Move verifier's internal structures to a header file and
prefix their names with bpf_ to avoid potential namespace
conflicts. Those structures will soon be used by external
analyzers.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 3df126f3 21-Sep-2016 Jakub Kicinski <kuba@kernel.org>

bpf: don't (ab)use instructions to store state

Storing state in reserved fields of instructions makes
it impossible to run verifier on programs already
marked as read-only. Allocate and use an array of
per-instruction state instead.

While touching the error path rename and move existing
jump target.

Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 36bbef52 19-Sep-2016 Daniel Borkmann <daniel@iogearbox.net>

bpf: direct packet write and access for helpers for clsact progs

This work implements direct packet access for helpers and direct packet
write in a similar fashion as already available for XDP types via commits
4acf6c0b84c9 ("bpf: enable direct packet data write for xdp progs") and
6841de8b0d03 ("bpf: allow helpers access the packet directly"), and as a
complementary feature to the already available direct packet read for tc
(cls/act) programs.

For enabling this, we need to introduce two helpers, bpf_skb_pull_data()
and bpf_csum_update(). The first is generally needed for both, read and
write, because they would otherwise only be limited to the current linear
skb head. Usually, when the data_end test fails, programs just bail out,
or, in the direct read case, use bpf_skb_load_bytes() as an alternative
to overcome this limitation. If such data sits in non-linear parts, we
can just pull them in once with the new helper, retest and eventually
access them.

At the same time, this also makes sure the skb is uncloned, which is, of
course, a necessary condition for direct write. As this needs to be an
invariant for the write part only, the verifier detects writes and adds
a prologue that is calling bpf_skb_pull_data() to effectively unclone the
skb from the very beginning in case it is indeed cloned. The heuristic
makes use of a similar trick that was done in 233577a22089 ("net: filter:
constify detection of pkt_type_offset"). This comes at zero cost for other
programs that do not use the direct write feature. Should a program use
this feature only sparsely and has read access for the most parts with,
for example, drop return codes, then such write action can be delegated
to a tail called program for mitigating this cost of potential uncloning
to a late point in time where it would have been paid similarly with the
bpf_skb_store_bytes() as well. Advantage of direct write is that the
writes are inlined whereas the helper cannot make any length assumptions
and thus needs to generate a call to memcpy() also for small sizes, as well
as cost of helper call itself with sanity checks are avoided. Plus, when
direct read is already used, we don't need to cache or perform rechecks
on the data boundaries (due to verifier invalidating previous checks for
helpers that change skb->data), so more complex programs using rewrites
can benefit from switching to direct read plus write.

For direct packet access to helpers, we save the otherwise needed copy into
a temp struct sitting on stack memory when use-case allows. Both facilities
are enabled via may_access_direct_pkt_data() in verifier. For now, we limit
this to map helpers and csum_diff, and can successively enable other helpers
where we find it makes sense. Helpers that definitely cannot be allowed for
this are those part of bpf_helper_changes_skb_data() since they can change
underlying data, and those that write into memory as this could happen for
packet typed args when still cloned. bpf_csum_update() helper accommodates
for the fact that we need to fixup checksum_complete when using direct write
instead of bpf_skb_store_bytes(), meaning the programs can use available
helpers like bpf_csum_diff(), and implement csum_add(), csum_sub(),
csum_block_add(), csum_block_sub() equivalents in eBPF together with the
new helper. A usage example will be provided for iproute2's examples/bpf/
directory.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# b399cf64 19-Sep-2016 Daniel Borkmann <daniel@iogearbox.net>

bpf, verifier: enforce larger zero range for pkt on overloading stack buffs

Current contract for the following two helper argument types is:

* ARG_CONST_STACK_SIZE: passed argument pair must be (ptr, >0).
* ARG_CONST_STACK_SIZE_OR_ZERO: passed argument pair can be either
(NULL, 0) or (ptr, >0).

With 6841de8b0d03 ("bpf: allow helpers access the packet directly"), we can
pass also raw packet data to helpers, so depending on the argument type
being PTR_TO_PACKET, we now either assert memory via check_packet_access()
or check_stack_boundary(). As a result, the tests in check_packet_access()
currently allow more than intended with regards to reg->imm.

Back in 969bf05eb3ce ("bpf: direct packet access"), check_packet_access()
was fine to ignore size argument since in check_mem_access() size was
bpf_size_to_bytes() derived and prior to the call to check_packet_access()
guaranteed to be larger than zero.

However, for the above two argument types, it currently means, we can have
a <= 0 size and thus breaking current guarantees for helpers. Enforce a
check for size <= 0 and bail out if so.

check_stack_boundary() doesn't have such an issue since it already tests
for access_size <= 0 and bails out, resp. access_size == 0 in case of NULL
pointer passed when allowed.

Fixes: 6841de8b0d03 ("bpf: allow helpers access the packet directly")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 2d2be8ca 07-Sep-2016 Daniel Borkmann <daniel@iogearbox.net>

bpf: fix range propagation on direct packet access

LLVM can generate code that tests for direct packet access via
skb->data/data_end in a way that currently gets rejected by the
verifier, example:

[...]
7: (61) r3 = *(u32 *)(r6 +80)
8: (61) r9 = *(u32 *)(r6 +76)
9: (bf) r2 = r9
10: (07) r2 += 54
11: (3d) if r3 >= r2 goto pc+12
R1=inv R2=pkt(id=0,off=54,r=0) R3=pkt_end R4=inv R6=ctx
R9=pkt(id=0,off=0,r=0) R10=fp
12: (18) r4 = 0xffffff7a
14: (05) goto pc+430
[...]

from 11 to 24: R1=inv R2=pkt(id=0,off=54,r=0) R3=pkt_end R4=inv
R6=ctx R9=pkt(id=0,off=0,r=0) R10=fp
24: (7b) *(u64 *)(r10 -40) = r1
25: (b7) r1 = 0
26: (63) *(u32 *)(r6 +56) = r1
27: (b7) r2 = 40
28: (71) r8 = *(u8 *)(r9 +20)
invalid access to packet, off=20 size=1, R9(id=0,off=0,r=0)

The reason why this gets rejected despite a proper test is that we
currently call find_good_pkt_pointers() only in case where we detect
tests like rX > pkt_end, where rX is of type pkt(id=Y,off=Z,r=0) and
derived, for example, from a register of type pkt(id=Y,off=0,r=0)
pointing to skb->data. find_good_pkt_pointers() then fills the range
in the current branch to pkt(id=Y,off=0,r=Z) on success.

For above case, we need to extend that to recognize pkt_end >= rX
pattern and mark the other branch that is taken on success with the
appropriate pkt(id=Y,off=0,r=Z) type via find_good_pkt_pointers().
Since eBPF operates on BPF_JGT (>) and BPF_JGE (>=), these are the
only two practical options to test for from what LLVM could have
generated, since there's no such thing as BPF_JLT (<) or BPF_JLE (<=)
that we would need to take into account as well.

After the fix:

[...]
7: (61) r3 = *(u32 *)(r6 +80)
8: (61) r9 = *(u32 *)(r6 +76)
9: (bf) r2 = r9
10: (07) r2 += 54
11: (3d) if r3 >= r2 goto pc+12
R1=inv R2=pkt(id=0,off=54,r=0) R3=pkt_end R4=inv R6=ctx
R9=pkt(id=0,off=0,r=0) R10=fp
12: (18) r4 = 0xffffff7a
14: (05) goto pc+430
[...]

from 11 to 24: R1=inv R2=pkt(id=0,off=54,r=54) R3=pkt_end R4=inv
R6=ctx R9=pkt(id=0,off=0,r=54) R10=fp
24: (7b) *(u64 *)(r10 -40) = r1
25: (b7) r1 = 0
26: (63) *(u32 *)(r6 +56) = r1
27: (b7) r2 = 40
28: (71) r8 = *(u8 *)(r9 +20)
29: (bf) r1 = r8
30: (25) if r8 > 0x3c goto pc+47
R1=inv56 R2=imm40 R3=pkt_end R4=inv R6=ctx R8=inv56
R9=pkt(id=0,off=0,r=54) R10=fp
31: (b7) r1 = 1
[...]

Verifier test cases are also added in this work, one that demonstrates
the mentioned example here and one that tries a bad packet access for
the current/fall-through branch (the one with types pkt(id=X,off=Y,r=0),
pkt(id=X,off=0,r=0)), then a case with good and bad accesses, and two
with both test variants (>, >=).

Fixes: 969bf05eb3ce ("bpf: direct packet access")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# fdc15d38 01-Sep-2016 Alexei Starovoitov <ast@kernel.org>

bpf: perf_event progs should only use preallocated maps

Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
preallocated hash maps, since doing memory allocation
in overflow_handler can crash depending on where nmi got triggered.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# ea2e7ce5 01-Sep-2016 Alexei Starovoitov <ast@kernel.org>

bpf: support 8-byte metafield access

The verifier supported only 4-byte metafields in
struct __sk_buff and struct xdp_md. The metafields in upcoming
struct bpf_perf_event are 8-byte to match register width in struct pt_regs.
Teach verifier to recognize 8-byte metafield access.
The patch doesn't affect safety of sockets and xdp programs.
They check for 4-byte only ctx access before these conditions are hit.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 6841de8b 11-Aug-2016 Alexei Starovoitov <ast@kernel.org>

bpf: allow helpers access the packet directly

The helper functions like bpf_map_lookup_elem(map, key) were only
allowing 'key' to point to the initialized stack area.
That is causing performance degradation when programs need to process
millions of packets per second and need to copy contents of the packet
into the stack just to pass the stack pointer into the lookup() function.
Allow such helpers read from the packet directly.
All helpers that expect ARG_PTR_TO_MAP_KEY, ARG_PTR_TO_MAP_VALUE,
ARG_PTR_TO_STACK assume byte aligned pointer, so no alignment concerns,
only need to check that helper will not be accessing beyond
the packet range verified by the prior 'if (ptr < data_end)' condition.
For now allow this feature for XDP programs only. Later it can be
relaxed for the clsact programs as well.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 747ea55e 12-Aug-2016 Daniel Borkmann <daniel@iogearbox.net>

bpf: fix bpf_skb_in_cgroup helper naming

While hashing out BPF's current_task_under_cgroup helper bits, it came
to discussion that the skb_in_cgroup helper name was suboptimally chosen.

Tejun says:

So, I think in_cgroup should mean that the object is in that
particular cgroup while under_cgroup in the subhierarchy of that
cgroup. Let's rename the other subhierarchy test to under too. I
think that'd be a lot less confusing going forward.

[...]

It's more intuitive and gives us the room to implement the real
"in" test if ever necessary in the future.

Since this touches uapi bits, we need to change this as long as v4.8
is not yet officially released. Thus, change the helper enum and rename
related bits.

Fixes: 4a482f34afcc ("cgroup: bpf: Add bpf_skb_in_cgroup_proto")
Reference: http://patchwork.ozlabs.org/patch/658500/
Suggested-by: Sargun Dhillon <sargun@sargun.me>
Suggested-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>


# 60d20f91 12-Aug-2016 Sargun Dhillon <sargun@sargun.me>

bpf: Add bpf_current_task_under_cgroup helper

This adds a bpf helper that's similar to the skb_in_cgroup helper to check
whether the probe is currently executing in the context of a specific
subset of the cgroupsv2 hierarchy. It does this based on membership test
for a cgroup arraymap. It is invalid to call this in an interrupt, and
it'll return an error. The helper is primarily to be used in debugging
activities for containers, where you may have multiple programs running in
a given top-level "container".

Signed-off-by: Sargun Dhillon <sargun@sargun.me>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Tejun Heo <tj@kernel.org>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 1f415a74 02-Aug-2016 Jakub Kicinski <kuba@kernel.org>

bpf: fix method of PTR_TO_PACKET reg id generation

Using per-register incrementing ID can lead to
find_good_pkt_pointers() confusing registers which
have completely different values. Consider example:

0: (bf) r6 = r1
1: (61) r8 = *(u32 *)(r6 +76)
2: (61) r0 = *(u32 *)(r6 +80)
3: (bf) r7 = r8
4: (07) r8 += 32
5: (2d) if r8 > r0 goto pc+9
R0=pkt_end R1=ctx R6=ctx R7=pkt(id=0,off=0,r=32) R8=pkt(id=0,off=32,r=32) R10=fp
6: (bf) r8 = r7
7: (bf) r9 = r7
8: (71) r1 = *(u8 *)(r7 +0)
9: (0f) r8 += r1
10: (71) r1 = *(u8 *)(r7 +1)
11: (0f) r9 += r1
12: (07) r8 += 32
13: (2d) if r8 > r0 goto pc+1
R0=pkt_end R1=inv56 R6=ctx R7=pkt(id=0,off=0,r=32) R8=pkt(id=1,off=32,r=32) R9=pkt(id=1,off=0,r=32) R10=fp
14: (71) r1 = *(u8 *)(r9 +16)
15: (b7) r7 = 0
16: (bf) r0 = r7
17: (95) exit

We need to get a UNKNOWN_VALUE with imm to force id
generation so lines 0-5 make r7 a valid packet pointer.
We then read two different bytes from the packet and
add them to copies of the constructed packet pointer.
r8 (line 9) and r9 (line 11) will get the same id of 1,
independently. When either of them is validated (line
13) - find_good_pkt_pointers() will also mark the other
as safe. This leads to access on line 14 being mistakenly
considered safe.

Fixes: 969bf05eb3ce ("bpf: direct packet access")
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 4acf6c0b 19-Jul-2016 Brenden Blanco <bblanco@plumgrid.com>

bpf: enable direct packet data write for xdp progs

For forwarding to be effective, XDP programs should be allowed to
rewrite packet data.

This requires that the drivers supporting XDP must all map the packet
memory as TODEVICE or BIDIRECTIONAL before invoking the program.

Signed-off-by: Brenden Blanco <bblanco@plumgrid.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 6a773a15 19-Jul-2016 Brenden Blanco <bblanco@plumgrid.com>

bpf: add XDP prog type for early driver filter

Add a new bpf prog type that is intended to run in early stages of the
packet rx path. Only minimal packet metadata will be available, hence a
new context type, struct xdp_md, is exposed to userspace. So far only
expose the packet start and end pointers, and only in read mode.

An XDP program must return one of the well known enum values, all other
return codes are reserved for future use. Unfortunately, this
restriction is hard to enforce at verification time, so take the
approach of warning at runtime when such programs are encountered. Out
of bounds return codes should alias to XDP_ABORTED.

Signed-off-by: Brenden Blanco <bblanco@plumgrid.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 4a482f34 30-Jun-2016 Martin KaFai Lau <kafai@fb.com>

cgroup: bpf: Add bpf_skb_in_cgroup_proto

Adds a bpf helper, bpf_skb_in_cgroup, to decide if a skb->sk
belongs to a descendant of a cgroup2. It is similar to the
feature added in netfilter:
commit c38c4597e4bf ("netfilter: implement xt_cgroup cgroup2 path match")

The user is expected to populate a BPF_MAP_TYPE_CGROUP_ARRAY
which will be used by the bpf_skb_in_cgroup.

Modifications to the bpf verifier is to ensure BPF_MAP_TYPE_CGROUP_ARRAY
and bpf_skb_in_cgroup() are always used together.

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Cc: Alexei Starovoitov <ast@fb.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Tejun Heo <tj@kernel.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 4ed8ec52 30-Jun-2016 Martin KaFai Lau <kafai@fb.com>

cgroup: bpf: Add BPF_MAP_TYPE_CGROUP_ARRAY

Add a BPF_MAP_TYPE_CGROUP_ARRAY and its bpf_map_ops's implementations.
To update an element, the caller is expected to obtain a cgroup2 backed
fd by open(cgroup2_dir) and then update the array with that fd.

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Cc: Alexei Starovoitov <ast@fb.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Tejun Heo <tj@kernel.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 19de99f7 15-Jun-2016 Alexei Starovoitov <ast@kernel.org>

bpf: fix matching of data/data_end in verifier

The ctx structure passed into bpf programs is different depending on bpf
program type. The verifier incorrectly marked ctx->data and ctx->data_end
access based on ctx offset only. That caused loads in tracing programs
int bpf_prog(struct pt_regs *ctx) { .. ctx->ax .. }
to be incorrectly marked as PTR_TO_PACKET which later caused verifier
to reject the program that was actually valid in tracing context.
Fix this by doing program type specific matching of ctx offsets.

Fixes: 969bf05eb3ce ("bpf: direct packet access")
Reported-by: Sasha Goldshtein <goldshtn@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 1b9b69ec 19-May-2016 Alexei Starovoitov <ast@kernel.org>

bpf: teach verifier to recognize imm += ptr pattern

Humans don't write C code like:
u8 *ptr = skb->data;
int imm = 4;
imm += ptr;
but from llvm backend point of view 'imm' and 'ptr' are registers and
imm += ptr may be preferred vs ptr += imm depending which register value
will be used further in the code, while verifier can only recognize ptr += imm.
That caused small unrelated changes in the C code of the bpf program to
trigger rejection by the verifier. Therefore teach the verifier to recognize
both ptr += imm and imm += ptr.
For example:
when R6=pkt(id=0,off=0,r=62) R7=imm22
after r7 += r6 instruction
will be R6=pkt(id=0,off=0,r=62) R7=pkt(id=0,off=22,r=62)

Fixes: 969bf05eb3ce ("bpf: direct packet access")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# d91b28ed 19-May-2016 Alexei Starovoitov <ast@kernel.org>

bpf: support decreasing order in direct packet access

when packet headers are accessed in 'decreasing' order (like TCP port
may be fetched before the program reads IP src) the llvm may generate
the following code:
[...] // R7=pkt(id=0,off=22,r=70)
r2 = *(u32 *)(r7 +0) // good access
[...]
r7 += 40 // R7=pkt(id=0,off=62,r=70)
r8 = *(u32 *)(r7 +0) // good access
[...]
r1 = *(u32 *)(r7 -20) // this one will fail though it's within a safe range
// it's doing *(u32*)(skb->data + 42)
Fix verifier to recognize such code pattern

Alos turned out that 'off > range' condition is not a verifier bug.
It's a buggy program that may do something like:
if (ptr + 50 > data_end)
return 0;
ptr += 60;
*(u32*)ptr;
in such case emit
"invalid access to packet, off=0 size=4, R1(id=0,off=60,r=50)" error message,
so all information is available for the program author to fix the program.

Fixes: 969bf05eb3ce ("bpf: direct packet access")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# c237ee5e 13-May-2016 Daniel Borkmann <daniel@iogearbox.net>

bpf: add bpf_patch_insn_single helper

Move the functionality to patch instructions out of the verifier
code and into the core as the new bpf_patch_insn_single() helper
will be needed later on for blinding as well. No changes in
functionality.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 735b4333 05-May-2016 Alexei Starovoitov <ast@kernel.org>

bpf: improve verifier state equivalence

since UNKNOWN_VALUE type is weaker than CONST_IMM we can un-teach
verifier its recognition of constants in conditional branches
without affecting safety.
Ex:
if (reg == 123) {
.. here verifier was marking reg->type as CONST_IMM
instead keep reg as UNKNOWN_VALUE
}

Two verifier states with UNKNOWN_VALUE are equivalent, whereas
CONST_IMM_X != CONST_IMM_Y, since CONST_IMM is used for stack range
verification and other cases.
So help search pruning by marking registers as UNKNOWN_VALUE
where possible instead of CONST_IMM.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 969bf05e 05-May-2016 Alexei Starovoitov <ast@kernel.org>

bpf: direct packet access

Extended BPF carried over two instructions from classic to access
packet data: LD_ABS and LD_IND. They're highly optimized in JITs,
but due to their design they have to do length check for every access.
When BPF is processing 20M packets per second single LD_ABS after JIT
is consuming 3% cpu. Hence the need to optimize it further by amortizing
the cost of 'off < skb_headlen' over multiple packet accesses.
One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW
with similar usage as skb_header_pointer().
The kernel part for interpreter and x64 JIT was implemented in [1], but such
new insns behave like old ld_abs and abort the program with 'return 0' if
access is beyond linear data. Such hidden control flow is hard to workaround
plus changing JITs and rolling out new llvm is incovenient.

Therefore allow cls_bpf/act_bpf program access skb->data directly:
int bpf_prog(struct __sk_buff *skb)
{
struct iphdr *ip;

if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end)
/* packet too small */
return 0;

ip = skb->data + ETH_HLEN;

/* access IP header fields with direct loads */
if (ip->version != 4 || ip->saddr == 0x7f000001)
return 1;
[...]
}

This solution avoids introduction of new instructions. llvm stays
the same and all JITs stay the same, but verifier has to work extra hard
to prove safety of the above program.

For XDP the direct store instructions can be allowed as well.

The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check
the alignment. The complex packet parsers where packet pointer is adjusted
incrementally cannot be tracked for alignment, so allow byte access in such cases
and misaligned access on architectures that define efficient_unaligned_access

[1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 1a0dc1ac 05-May-2016 Alexei Starovoitov <ast@kernel.org>

bpf: cleanup verifier code

cleanup verifier code and prepare it for addition of "pointer to packet" logic

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 6aff67c8 27-Apr-2016 Alexei Starovoitov <ast@kernel.org>

bpf: fix check_map_func_compatibility logic

The commit 35578d798400 ("bpf: Implement function bpf_perf_event_read() that get the selected hardware PMU conuter")
introduced clever way to check bpf_helper<->map_type compatibility.
Later on commit a43eec304259 ("bpf: introduce bpf_perf_event_output() helper") adjusted
the logic and inadvertently broke it.
Get rid of the clever bool compare and go back to two-way check
from map and from helper perspective.

Fixes: a43eec304259 ("bpf: introduce bpf_perf_event_output() helper")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 92117d84 27-Apr-2016 Alexei Starovoitov <ast@kernel.org>

bpf: fix refcnt overflow

On a system with >32Gbyte of phyiscal memory and infinite RLIMIT_MEMLOCK,
the malicious application may overflow 32-bit bpf program refcnt.
It's also possible to overflow map refcnt on 1Tb system.
Impose 32k hard limit which means that the same bpf program or
map cannot be shared by more than 32k processes.

Fixes: 1be7f75d1668 ("bpf: enable non-root eBPF programs")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 8358b02b 26-Apr-2016 Jann Horn <jannh@google.com>

bpf: fix double-fdput in replace_map_fd_with_map_ptr()

When bpf(BPF_PROG_LOAD, ...) was invoked with a BPF program whose bytecode
references a non-map file descriptor as a map file descriptor, the error
handling code called fdput() twice instead of once (in __bpf_map_get() and
in replace_map_fd_with_map_ptr()). If the file descriptor table of the
current task is shared, this causes f_count to be decremented too much,
allowing the struct file to be freed while it is still in use
(use-after-free). This can be exploited to gain root privileges by an
unprivileged user.

This bug was introduced in
commit 0246e64d9a5f ("bpf: handle pseudo BPF_LD_IMM64 insn"), but is only
exploitable since
commit 1be7f75d1668 ("bpf: enable non-root eBPF programs") because
previously, CAP_SYS_ADMIN was required to reach the vulnerable code.

(posted publicly according to request by maintainer)

Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 435faee1 12-Apr-2016 Daniel Borkmann <daniel@iogearbox.net>

bpf, verifier: add ARG_PTR_TO_RAW_STACK type

When passing buffers from eBPF stack space into a helper function, we have
ARG_PTR_TO_STACK argument type for helpers available. The verifier makes sure
that such buffers are initialized, within boundaries, etc.

However, the downside with this is that we have a couple of helper functions
such as bpf_skb_load_bytes() that fill out the passed buffer in the expected
success case anyway, so zero initializing them prior to the helper call is
unneeded/wasted instructions in the eBPF program that can be avoided.

Therefore, add a new helper function argument type called ARG_PTR_TO_RAW_STACK.
The idea is to skip the STACK_MISC check in check_stack_boundary() and color
the related stack slots as STACK_MISC after we checked all call arguments.

Helper functions using ARG_PTR_TO_RAW_STACK must make sure that every path of
the helper function will fill the provided buffer area, so that we cannot leak
any uninitialized stack memory. This f.e. means that error paths need to
memset() the buffers, but the expected fast-path doesn't have to do this
anymore.

Since there's no such helper needing more than at most one ARG_PTR_TO_RAW_STACK
argument, we can keep it simple and don't need to check for multiple areas.
Should in future such a use-case really appear, we have check_raw_mode() that
will make sure we implement support for it first.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 33ff9823 12-Apr-2016 Daniel Borkmann <daniel@iogearbox.net>

bpf, verifier: add bpf_call_arg_meta for passing meta data

Currently, when the verifier checks calls in check_call() function, we
call check_func_arg() for all 5 arguments e.g. to make sure expected types
are correct. In some cases, we collect meta data (here: map pointer) to
perform additional checks such as checking stack boundary on key/value
sizes for subsequent arguments. As we're going to extend the meta data,
add a generic struct bpf_call_arg_meta that we can use for passing into
check_func_arg().

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# d82bccc6 12-Apr-2016 Alexei Starovoitov <ast@kernel.org>

bpf/verifier: reject invalid LD_ABS | BPF_DW instruction

verifier must check for reserved size bits in instruction opcode and
reject BPF_LD | BPF_ABS | BPF_DW and BPF_LD | BPF_IND | BPF_DW instructions,
otherwise interpreter will WARN_RATELIMIT on them during execution.

Fixes: ddd872bc3098 ("bpf: verifier: add checks for BPF_ABS | BPF_IND instructions")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 4923ec0b 06-Apr-2016 Alexei Starovoitov <ast@kernel.org>

bpf: simplify verifier register state assignments

verifier is using the following structure to track the state of registers:
struct reg_state {
enum bpf_reg_type type;
union {
int imm;
struct bpf_map *map_ptr;
};
};
and later on in states_equal() does memcmp(&old->regs[i], &cur->regs[i],..)
to find equivalent states.
Throughout the code of verifier there are assignements to 'imm' and 'map_ptr'
fields and it's not obvious that most of the assignments into 'imm' don't
need to clear extra 4 bytes (like mark_reg_unknown_value() does) to make sure
that memcmp doesn't go over junk left from 'map_ptr' assignment.

Simplify the code by converting 'int' into 'long'

Suggested-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 07016151 05-Apr-2016 Daniel Borkmann <daniel@iogearbox.net>

bpf, verifier: further improve search pruning

The verifier needs to go through every path of the program in
order to check that it terminates safely, which can be quite a
lot of instructions that need to be processed f.e. in cases with
more branchy programs. With search pruning from f1bca824dabb ("bpf:
add search pruning optimization to verifier") the search space can
already be reduced significantly when the verifier detects that
a previously walked path with same register and stack contents
terminated already (see verifier's states_equal()), so the search
can skip walking those states.

When working with larger programs of > ~2000 (out of max 4096)
insns, we found that the current limit of 32k instructions is easily
hit. For example, a case we ran into is that the search space cannot
be pruned due to branches at the beginning of the program that make
use of certain stack space slots (STACK_MISC), which are never used
in the remaining program (STACK_INVALID). Therefore, the verifier
needs to walk paths for the slots in STACK_INVALID state, but also
all remaining paths with a stack structure, where the slots are in
STACK_MISC, which can nearly double the search space needed. After
various experiments, we find that a limit of 64k processed insns is
a more reasonable choice when dealing with larger programs in practice.
This still allows to reject extreme crafted cases that can have a
much higher complexity (f.e. > ~300k) within the 4096 insns limit
due to search pruning not being able to take effect.

Furthermore, we found that a lot of states can be pruned after a
call instruction, f.e. we were able to reduce the search state by
~35% in some cases with this heuristic, trade-off is to keep a bit
more states in env->explored_states. Usually, call instructions
have a number of preceding register assignments and/or stack stores,
where search pruning has a better chance to suceed in states_equal()
test. The current code marks the branch targets with STATE_LIST_MARK
in case of conditional jumps, and the next (t + 1) instruction in
case of unconditional jump so that f.e. a backjump will walk it. We
also did experiments with using t + insns[t].off + 1 as a marker in
the unconditionally jump case instead of t + 1 with the rationale
that these two branches of execution that converge after the label
might have more potential of pruning. We found that it was a bit
better, but not necessarily significantly better than the current
state, perhaps also due to clang not generating back jumps often.
Hence, we left that as is for now.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 32bbe007 06-Apr-2016 Alexei Starovoitov <ast@kernel.org>

bpf: sanitize bpf tracepoint access

during bpf program loading remember the last byte of ctx access
and at the time of attaching the program to tracepoint check that
the program doesn't access bytes beyond defined in tracepoint fields

This also disallows access to __dynamic_array fields, but can be
relaxed in the future.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 8e2fe1d9 19-Feb-2016 Daniel Borkmann <daniel@iogearbox.net>

bpf: add new arg_type that allows for 0 sized stack buffer

Currently, when we pass a buffer from the eBPF stack into a helper
function, the function proto indicates argument types as ARG_PTR_TO_STACK
and ARG_CONST_STACK_SIZE pair. If R<X> contains the former, then R<X+1>
must be of the latter type. Then, verifier checks whether the buffer
points into eBPF stack, is initialized, etc. The verifier also guarantees
that the constant value passed in R<X+1> is greater than 0, so helper
functions don't need to test for it and can always assume a non-NULL
initialized buffer as well as non-0 buffer size.

This patch adds a new argument types ARG_CONST_STACK_SIZE_OR_ZERO that
allows to also pass NULL as R<X> and 0 as R<X+1> into the helper function.
Such helper functions, of course, need to be able to handle these cases
internally then. Verifier guarantees that either R<X> == NULL && R<X+1> == 0
or R<X> != NULL && R<X+1> != 0 (like the case of ARG_CONST_STACK_SIZE), any
other combinations are not possible to load.

I went through various options of extending the verifier, and introducing
the type ARG_CONST_STACK_SIZE_OR_ZERO seems to have most minimal changes
needed to the verifier.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# d5a3b1f6 17-Feb-2016 Alexei Starovoitov <ast@kernel.org>

bpf: introduce BPF_MAP_TYPE_STACK_TRACE

add new map type to store stack traces and corresponding helper
bpf_get_stackid(ctx, map, flags) - walk user or kernel stack and return id
@ctx: struct pt_regs*
@map: pointer to stack_trace map
@flags: bits 0-7 - numer of stack frames to skip
bit 8 - collect user stack instead of kernel
bit 9 - compare stacks by hash only
bit 10 - if two different stacks hash into the same stackid
discard old
other bits - reserved
Return: >= 0 stackid on success or negative error

stackid is a 32-bit integer handle that can be further combined with
other data (including other stackid) and used as a key into maps.

Userspace will access stackmap using standard lookup/delete syscall commands to
retrieve full stack trace for given stackid.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# a1b14d27 10-Feb-2016 Daniel Borkmann <daniel@iogearbox.net>

bpf: fix branch offset adjustment on backjumps after patching ctx expansion

When ctx access is used, the kernel often needs to expand/rewrite
instructions, so after that patching, branch offsets have to be
adjusted for both forward and backward jumps in the new eBPF program,
but for backward jumps it fails to account the delta. Meaning, for
example, if the expansion happens exactly on the insn that sits at
the jump target, it doesn't fix up the back jump offset.

Analysis on what the check in adjust_branches() is currently doing:

/* adjust offset of jmps if necessary */
if (i < pos && i + insn->off + 1 > pos)
insn->off += delta;
else if (i > pos && i + insn->off + 1 < pos)
insn->off -= delta;

First condition (forward jumps):

Before: After:

insns[0] insns[0]
insns[1] <--- i/insn insns[1] <--- i/insn
insns[2] <--- pos insns[P] <--- pos
insns[3] insns[P] `------| delta
insns[4] <--- target_X insns[P] `-----|
insns[5] insns[3]
insns[4] <--- target_X
insns[5]

First case is if we cross pos-boundary and the jump instruction was
before pos. This is handeled correctly. I.e. if i == pos, then this
would mean our jump that we currently check was the patchlet itself
that we just injected. Since such patchlets are self-contained and
have no awareness of any insns before or after the patched one, the
delta is correctly not adjusted. Also, for the second condition in
case of i + insn->off + 1 == pos, means we jump to that newly patched
instruction, so no offset adjustment are needed. That part is correct.

Second condition (backward jumps):

Before: After:

insns[0] insns[0]
insns[1] <--- target_X insns[1] <--- target_X
insns[2] <--- pos <-- target_Y insns[P] <--- pos <-- target_Y
insns[3] insns[P] `------| delta
insns[4] <--- i/insn insns[P] `-----|
insns[5] insns[3]
insns[4] <--- i/insn
insns[5]

Second interesting case is where we cross pos-boundary and the jump
instruction was after pos. Backward jump with i == pos would be
impossible and pose a bug somewhere in the patchlet, so the first
condition checking i > pos is okay only by itself. However, i +
insn->off + 1 < pos does not always work as intended to trigger the
adjustment. It works when jump targets would be far off where the
delta wouldn't matter. But, for example, where the fixed insn->off
before pointed to pos (target_Y), it now points to pos + delta, so
that additional room needs to be taken into account for the check.
This means that i) both tests here need to be adjusted into pos + delta,
and ii) for the second condition, the test needs to be <= as pos
itself can be a target in the backjump, too.

Fixes: 9bac3d6d548e ("bpf: allow extended BPF programs access skb fields")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 229394e8 12-Jan-2016 Rabin Vincent <rabin@rab.in>

net: bpf: reject invalid shifts

On ARM64, a BUG() is triggered in the eBPF JIT if a filter with a
constant shift that can't be encoded in the immediate field of the
UBFM/SBFM instructions is passed to the JIT. Since these shifts
amounts, which are negative or >= regsize, are invalid, reject them in
the eBPF verifier and the classic BPF filter checker, for all
architectures.

Signed-off-by: Rabin Vincent <rabin@rab.in>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 06928b38 12-Jan-2016 Rabin Vincent <rabin@rab.in>

net: bpf: reject invalid shifts

On ARM64, a BUG() is triggered in the eBPF JIT if a filter with a
constant shift that can't be encoded in the immediate field of the
UBFM/SBFM instructions is passed to the JIT. Since these shifts
amounts, which are negative or >= regsize, are invalid, reject them in
the eBPF verifier and the classic BPF filter checker, for all
architectures.

Signed-off-by: Rabin Vincent <rabin@rab.in>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# c9da161c 24-Nov-2015 Daniel Borkmann <daniel@iogearbox.net>

bpf: fix clearing on persistent program array maps

Currently, when having map file descriptors pointing to program arrays,
there's still the issue that we unconditionally flush program array
contents via bpf_fd_array_map_clear() in bpf_map_release(). This happens
when such a file descriptor is released and is independent of the map's
refcount.

Having this flush independent of the refcount is for a reason: there
can be arbitrary complex dependency chains among tail calls, also circular
ones (direct or indirect, nesting limit determined during runtime), and
we need to make sure that the map drops all references to eBPF programs
it holds, so that the map's refcount can eventually drop to zero and
initiate its freeing. Btw, a walk of the whole dependency graph would
not be possible for various reasons, one being complexity and another
one inconsistency, i.e. new programs can be added to parts of the graph
at any time, so there's no guaranteed consistent state for the time of
such a walk.

Now, the program array pinning itself works, but the issue is that each
derived file descriptor on close would nevertheless call unconditionally
into bpf_fd_array_map_clear(). Instead, keep track of users and postpone
this flush until the last reference to a user is dropped. As this only
concerns a subset of references (f.e. a prog array could hold a program
that itself has reference on the prog array holding it, etc), we need to
track them separately.

Short analysis on the refcounting: on map creation time usercnt will be
one, so there's no change in behaviour for bpf_map_release(), if unpinned.
If we already fail in map_create(), we are immediately freed, and no
file descriptor has been made public yet. In bpf_obj_pin_user(), we need
to probe for a possible map in bpf_fd_probe_obj() already with a usercnt
reference, so before we drop the reference on the fd with fdput().
Therefore, if actual pinning fails, we need to drop that reference again
in bpf_any_put(), otherwise we keep holding it. When last reference
drops on the inode, the bpf_any_put() in bpf_evict_inode() will take
care of dropping the usercnt again. In the bpf_obj_get_user() case, the
bpf_any_get() will grab a reference on the usercnt, still at a time when
we have the reference on the path. Should we later on fail to grab a new
file descriptor, bpf_any_put() will drop it, otherwise we hold it until
bpf_map_release() time.

Joint work with Alexei.

Fixes: b2197755b263 ("bpf: add support for persistent maps/progs")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 1d056d9c 03-Nov-2015 Daniel Borkmann <daniel@iogearbox.net>

bpf, verifier: annotate verbose printer with __printf

The verbose() printer dumps the verifier state to user space, so let gcc
take care to check calls to verbose() for (future) errors. make with W=1
correctly suggests: function might be possible candidate for 'gnu_printf'
format attribute [-Wsuggest-attribute=format].

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# c2101297 29-Oct-2015 Daniel Borkmann <daniel@iogearbox.net>

bpf: align and clean bpf_{map,prog}_get helpers

Add a bpf_map_get() function that we're going to use later on and
align/clean the remaining helpers a bit so that we have them a bit
more consistent:

- __bpf_map_get() and __bpf_prog_get() that both work on the fd
struct, check whether the descriptor is eBPF and return the
pointer to the map/prog stored in the private data.

Also, we can return f.file->private_data directly, the function
signature is enough of a documentation already.

- bpf_map_get() and bpf_prog_get() that both work on u32 user fd,
call their respective __bpf_map_get()/__bpf_prog_get() variants,
and take a reference.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# a43eec30 20-Oct-2015 Alexei Starovoitov <ast@kernel.org>

bpf: introduce bpf_perf_event_output() helper

This helper is used to send raw data from eBPF program into
special PERF_TYPE_SOFTWARE/PERF_COUNT_SW_BPF_OUTPUT perf_event.
User space needs to perf_event_open() it (either for one or all cpus) and
store FD into perf_event_array (similar to bpf_perf_event_read() helper)
before eBPF program can send data into it.

Today the programs triggered by kprobe collect the data and either store
it into the maps or print it via bpf_trace_printk() where latter is the debug
facility and not suitable to stream the data. This new helper replaces
such bpf_trace_printk() usage and allows programs to have dedicated
channel into user space for post-processing of the raw data collected.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 1be7f75d 07-Oct-2015 Alexei Starovoitov <ast@kernel.org>

bpf: enable non-root eBPF programs

In order to let unprivileged users load and execute eBPF programs
teach verifier to prevent pointer leaks.
Verifier will prevent
- any arithmetic on pointers
(except R10+Imm which is used to compute stack addresses)
- comparison of pointers
(except if (map_value_ptr == 0) ... )
- passing pointers to helper functions
- indirectly passing pointers in stack to helper functions
- returning pointer from bpf program
- storing pointers into ctx or maps

Spill/fill of pointers into stack is allowed, but mangling
of pointers stored in the stack or reading them byte by byte is not.

Within bpf programs the pointers do exist, since programs need to
be able to access maps, pass skb pointer to LD_ABS insns, etc
but programs cannot pass such pointer values to the outside
or obfuscate them.

Only allow BPF_PROG_TYPE_SOCKET_FILTER unprivileged programs,
so that socket filters (tcpdump), af_packet (quic acceleration)
and future kcm can use it.
tracing and tc cls/act program types still require root permissions,
since tracing actually needs to be able to see all kernel pointers
and tc is for root only.

For example, the following unprivileged socket filter program is allowed:
int bpf_prog1(struct __sk_buff *skb)
{
u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol));
u64 *value = bpf_map_lookup_elem(&my_map, &index);

if (value)
*value += skb->len;
return 0;
}

but the following program is not:
int bpf_prog1(struct __sk_buff *skb)
{
u32 index = load_byte(skb, ETH_HLEN + offsetof(struct iphdr, protocol));
u64 *value = bpf_map_lookup_elem(&my_map, &index);

if (value)
*value += (u64) skb;
return 0;
}
since it would leak the kernel address into the map.

Unprivileged socket filter bpf programs have access to the
following helper functions:
- map lookup/update/delete (but they cannot store kernel pointers into them)
- get_random (it's already exposed to unprivileged user space)
- get_smp_processor_id
- tail_call into another socket filter program
- ktime_get_ns

The feature is controlled by sysctl kernel.unprivileged_bpf_disabled.
This toggle defaults to off (0), but can be set true (1). Once true,
bpf programs and maps cannot be accessed from unprivileged process,
and the toggle cannot be set back to false.

Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# ff936a04 07-Oct-2015 Alexei Starovoitov <ast@kernel.org>

bpf: fix cb access in socket filter programs

eBPF socket filter programs may see junk in 'u32 cb[5]' area,
since it could have been used by protocol layers earlier.

For socket filter programs used in af_packet we need to clean
20 bytes of skb->cb area if it could be used by the program.
For programs attached to TCP/UDP sockets we need to save/restore
these 20 bytes, since it's used by protocol layers.

Remove SK_RUN_FILTER macro, since it's no longer used.

Long term we may move this bpf cb area to per-cpu scratch, but that
requires addition of new 'per-cpu load/store' instructions,
so not suitable as a short term fix.

Fixes: d691f9e8d440 ("bpf: allow programs to write to certain skb fields")
Reported-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 687f0715 08-Sep-2015 Alexei Starovoitov <ast@kernel.org>

bpf: fix out of bounds access in verifier log

when the verifier log is enabled the print_bpf_insn() is doing
bpf_alu_string[BPF_OP(insn->code) >> 4]
and
bpf_jmp_string[BPF_OP(insn->code) >> 4]
where BPF_OP is a 4-bit instruction opcode.
Malformed insns can cause out of bounds access.
Fix it by sizing arrays appropriately.

The bug was found by clang address sanitizer with libfuzzer.

Reported-by: Yonghong Song <yhs@plumgrid.com>
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 140d8b33 12-Aug-2015 Wei-Chun Chao <weichunc@plumgrid.com>

bpf: fix bpf_perf_event_read() loop upper bound

Verifier rejects programs incorrectly.

Fixes: 35578d798400 ("bpf: Implement function bpf_perf_event_read()")
Cc: Kaixu Xia <xiakaixu@huawei.com>
Cc: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: Wei-Chun Chao <weichunc@plumgrid.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 35578d79 06-Aug-2015 Kaixu Xia <xiakaixu@huawei.com>

bpf: Implement function bpf_perf_event_read() that get the selected hardware PMU conuter

According to the perf_event_map_fd and index, the function
bpf_perf_event_read() can convert the corresponding map
value to the pointer to struct perf_event and return the
Hardware PMU counter value.

Signed-off-by: Kaixu Xia <xiakaixu@huawei.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 24b4d2ab 23-Jul-2015 Alex Gartrell <agartrell@fb.com>

ebpf: Allow dereferences of PTR_TO_STACK registers

mov %rsp, %r1 ; r1 = rsp
add $-8, %r1 ; r1 = rsp - 8
store_q $123, -8(%rsp) ; *(u64*)r1 = 123 <- valid
store_q $123, (%r1) ; *(u64*)r1 = 123 <- previously invalid
mov $0, %r0
exit ; Always need to exit

And we'd get the following error:

0: (bf) r1 = r10
1: (07) r1 += -8
2: (7a) *(u64 *)(r10 -8) = 999
3: (7a) *(u64 *)(r1 +0) = 999
R1 invalid mem access 'fp'

Unable to load program

We already know that a register is a stack address and the appropriate
offset, so we should be able to validate those references as well.

Signed-off-by: Alex Gartrell <agartrell@fb.com>
Acked-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# d691f9e8 04-Jun-2015 Alexei Starovoitov <ast@kernel.org>

bpf: allow programs to write to certain skb fields

allow programs read/write skb->mark, tc_index fields and
((struct qdisc_skb_cb *)cb)->data.

mark and tc_index are generically useful in TC.
cb[0]-cb[4] are primarily used to pass arguments from one
program to another called via bpf_tail_call() which can
be seen in sockex3_kern.c example.

All fields of 'struct __sk_buff' are readable to socket and tc_cls_act progs.
mark, tc_index are writeable from tc_cls_act only.
cb[0]-cb[4] are writeable by both sockets and tc_cls_act.

Add verifier tests and improve sample code.

Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 04fd61ab 19-May-2015 Alexei Starovoitov <ast@kernel.org>

bpf: allow bpf programs to tail-call other bpf programs

introduce bpf_tail_call(ctx, &jmp_table, index) helper function
which can be used from BPF programs like:
int bpf_prog(struct pt_regs *ctx)
{
...
bpf_tail_call(ctx, &jmp_table, index);
...
}
that is roughly equivalent to:
int bpf_prog(struct pt_regs *ctx)
{
...
if (jmp_table[index])
return (*jmp_table[index])(ctx);
...
}
The important detail that it's not a normal call, but a tail call.
The kernel stack is precious, so this helper reuses the current
stack frame and jumps into another BPF program without adding
extra call frame.
It's trivially done in interpreter and a bit trickier in JITs.
In case of x64 JIT the bigger part of generated assembler prologue
is common for all programs, so it is simply skipped while jumping.
Other JITs can do similar prologue-skipping optimization or
do stack unwind before jumping into the next program.

bpf_tail_call() arguments:
ctx - context pointer
jmp_table - one of BPF_MAP_TYPE_PROG_ARRAY maps used as the jump table
index - index in the jump table

Since all BPF programs are idenitified by file descriptor, user space
need to populate the jmp_table with FDs of other BPF programs.
If jmp_table[index] is empty the bpf_tail_call() doesn't jump anywhere
and program execution continues as normal.

New BPF_MAP_TYPE_PROG_ARRAY map type is introduced so that user space can
populate this jmp_table array with FDs of other bpf programs.
Programs can share the same jmp_table array or use multiple jmp_tables.

The chain of tail calls can form unpredictable dynamic loops therefore
tail_call_cnt is used to limit the number of calls and currently is set to 32.

Use cases:
Acked-by: Daniel Borkmann <daniel@iogearbox.net>

==========
- simplify complex programs by splitting them into a sequence of small programs

- dispatch routine
For tracing and future seccomp the program may be triggered on all system
calls, but processing of syscall arguments will be different. It's more
efficient to implement them as:
int syscall_entry(struct seccomp_data *ctx)
{
bpf_tail_call(ctx, &syscall_jmp_table, ctx->nr /* syscall number */);
... default: process unknown syscall ...
}
int sys_write_event(struct seccomp_data *ctx) {...}
int sys_read_event(struct seccomp_data *ctx) {...}
syscall_jmp_table[__NR_write] = sys_write_event;
syscall_jmp_table[__NR_read] = sys_read_event;

For networking the program may call into different parsers depending on
packet format, like:
int packet_parser(struct __sk_buff *skb)
{
... parse L2, L3 here ...
__u8 ipproto = load_byte(skb, ... offsetof(struct iphdr, protocol));
bpf_tail_call(skb, &ipproto_jmp_table, ipproto);
... default: process unknown protocol ...
}
int parse_tcp(struct __sk_buff *skb) {...}
int parse_udp(struct __sk_buff *skb) {...}
ipproto_jmp_table[IPPROTO_TCP] = parse_tcp;
ipproto_jmp_table[IPPROTO_UDP] = parse_udp;

- for TC use case, bpf_tail_call() allows to implement reclassify-like logic

- bpf_map_update_elem/delete calls into BPF_MAP_TYPE_PROG_ARRAY jump table
are atomic, so user space can build chains of BPF programs on the fly

Implementation details:
=======================
- high performance of bpf_tail_call() is the goal.
It could have been implemented without JIT changes as a wrapper on top of
BPF_PROG_RUN() macro, but with two downsides:
. all programs would have to pay performance penalty for this feature and
tail call itself would be slower, since mandatory stack unwind, return,
stack allocate would be done for every tailcall.
. tailcall would be limited to programs running preempt_disabled, since
generic 'void *ctx' doesn't have room for 'tail_call_cnt' and it would
need to be either global per_cpu variable accessed by helper and by wrapper
or global variable protected by locks.

In this implementation x64 JIT bypasses stack unwind and jumps into the
callee program after prologue.

- bpf_prog_array_compatible() ensures that prog_type of callee and caller
are the same and JITed/non-JITed flag is the same, since calling JITed
program from non-JITed is invalid, since stack frames are different.
Similarly calling kprobe type program from socket type program is invalid.

- jump table is implemented as BPF_MAP_TYPE_PROG_ARRAY to reuse 'map'
abstraction, its user space API and all of verifier logic.
It's in the existing arraymap.c file, since several functions are
shared with regular array map.

Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 725f9dcd 15-Apr-2015 Alexei Starovoitov <ast@kernel.org>

bpf: fix two bugs in verification logic when accessing 'ctx' pointer

1.
first bug is a silly mistake. It broke tracing examples and prevented
simple bpf programs from loading.

In the following code:
if (insn->imm == 0 && BPF_SIZE(insn->code) == BPF_W) {
} else if (...) {
// this part should have been executed when
// insn->code == BPF_W and insn->imm != 0
}

Obviously it's not doing that. So simple instructions like:
r2 = *(u64 *)(r1 + 8)
will be rejected. Note the comments in the code around these branches
were and still valid and indicate the true intent.

Replace it with:
if (BPF_SIZE(insn->code) != BPF_W)
continue;

if (insn->imm == 0) {
} else if (...) {
// now this code will be executed when
// insn->code == BPF_W and insn->imm != 0
}

2.
second bug is more subtle.
If malicious code is using the same dest register as source register,
the checks designed to prevent the same instruction to be used with different
pointer types will fail to trigger, since we were assigning src_reg_type
when it was already overwritten by check_mem_access().
The fix is trivial. Just move line:
src_reg_type = regs[insn->src_reg].type;
before check_mem_access().
Add new 'access skb fields bad4' test to check this case.

Fixes: 9bac3d6d548e ("bpf: allow extended BPF programs access skb fields")
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# c3de6317 14-Apr-2015 Alexei Starovoitov <ast@kernel.org>

bpf: fix verifier memory corruption

Due to missing bounds check the DAG pass of the BPF verifier can corrupt
the memory which can cause random crashes during program loading:

[8.449451] BUG: unable to handle kernel paging request at ffffffffffffffff
[8.451293] IP: [<ffffffff811de33d>] kmem_cache_alloc_trace+0x8d/0x2f0
[8.452329] Oops: 0000 [#1] SMP
[8.452329] Call Trace:
[8.452329] [<ffffffff8116cc82>] bpf_check+0x852/0x2000
[8.452329] [<ffffffff8116b7e4>] bpf_prog_load+0x1e4/0x310
[8.452329] [<ffffffff811b190f>] ? might_fault+0x5f/0xb0
[8.452329] [<ffffffff8116c206>] SyS_bpf+0x806/0xa30

Fixes: f1bca824dabb ("bpf: add search pruning optimization to verifier")
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 608cd71a 26-Mar-2015 Alexei Starovoitov <ast@kernel.org>

tc: bpf: generalize pedit action

existing TC action 'pedit' can munge any bits of the packet.
Generalize it for use in bpf programs attached as cls_bpf and act_bpf via
bpf_skb_store_bytes() helper function.

Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Reviewed-by: Jiri Pirko <jiri@resnulli.us>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 94caee8c 20-Mar-2015 Daniel Borkmann <daniel@iogearbox.net>

ebpf: add sched_act_type and map it to sk_filter's verifier ops

In order to prepare eBPF support for tc action, we need to add
sched_act_type, so that the eBPF verifier is aware of what helper
function act_bpf may use, that it can load skb data and read out
currently available skb fields.

This is bascially analogous to 96be4325f443 ("ebpf: add sched_cls_type
and map it to sk_filter's verifier ops").

BPF_PROG_TYPE_SCHED_CLS and BPF_PROG_TYPE_SCHED_ACT need to be
separate since both will have a different set of functionality in
future (classifier vs action), thus we won't run into ABI troubles
when the point in time comes to diverge functionality from the
classifier.

The future plan for act_bpf would be that it will be able to write
into skb->data and alter selected fields mirrored in struct __sk_buff.

For an initial support, it's sufficient to map it to sk_filter_ops.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: Jiri Pirko <jiri@resnulli.us>
Reviewed-by: Jiri Pirko <jiri@resnulli.us>
Acked-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 9bac3d6d 13-Mar-2015 Alexei Starovoitov <ast@kernel.org>

bpf: allow extended BPF programs access skb fields

introduce user accessible mirror of in-kernel 'struct sk_buff':
struct __sk_buff {
__u32 len;
__u32 pkt_type;
__u32 mark;
__u32 queue_mapping;
};

bpf programs can do:

int bpf_prog(struct __sk_buff *skb)
{
__u32 var = skb->pkt_type;

which will be compiled to bpf assembler as:

dst_reg = *(u32 *)(src_reg + 4) // 4 == offsetof(struct __sk_buff, pkt_type)

bpf verifier will check validity of access and will convert it to:

dst_reg = *(u8 *)(src_reg + offsetof(struct sk_buff, __pkt_type_offset))
dst_reg &= 7

since skb->pkt_type is a bitfield.

Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 80f1d68c 12-Mar-2015 Daniel Borkmann <daniel@iogearbox.net>

ebpf: verifier: check that call reg with ARG_ANYTHING is initialized

I noticed that a helper function with argument type ARG_ANYTHING does
not need to have an initialized value (register).

This can worst case lead to unintented stack memory leakage in future
helper functions if they are not carefully designed, or unintended
application behaviour in case the application developer was not careful
enough to match a correct helper function signature in the API.

The underlying issue is that ARG_ANYTHING should actually be split
into two different semantics:

1) ARG_DONTCARE for function arguments that the helper function
does not care about (in other words: the default for unused
function arguments), and

2) ARG_ANYTHING that is an argument actually being used by a
helper function and *guaranteed* to be an initialized register.

The current risk is low: ARG_ANYTHING is only used for the 'flags'
argument (r4) in bpf_map_update_elem() that internally does strict
checking.

Fixes: 17a5267067f3 ("bpf: verifier (add verifier core)")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 24701ece 28-Feb-2015 Daniel Borkmann <daniel@iogearbox.net>

ebpf: move read-only fields to bpf_prog and shrink bpf_prog_aux

is_gpl_compatible and prog_type should be moved directly into bpf_prog
as they stay immutable during bpf_prog's lifetime, are core attributes
and they can be locked as read-only later on via bpf_prog_select_runtime().

With a bit of rearranging, this also allows us to shrink bpf_prog_aux
to exactly 1 cacheline.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 96be4325 28-Feb-2015 Daniel Borkmann <daniel@iogearbox.net>

ebpf: add sched_cls_type and map it to sk_filter's verifier ops

As discussed recently and at netconf/netdev01, we want to prevent making
bpf_verifier_ops registration available for modules, but have them at a
controlled place inside the kernel instead.

The reason for this is, that out-of-tree modules can go crazy and define
and register any verfifier ops they want, doing all sorts of crap, even
bypassing available GPLed eBPF helper functions. We don't want to offer
such a shiny playground, of course, but keep strict control to ourselves
inside the core kernel.

This also encourages us to design eBPF user helpers carefully and
generically, so they can be shared among various subsystems using eBPF.

For the eBPF traffic classifier (cls_bpf), it's a good start to share
the same helper facilities as we currently do in eBPF for socket filters.

That way, we have BPF_PROG_TYPE_SCHED_CLS look like it's own type, thus
one day if there's a good reason to diverge the set of helper functions
from the set available to socket filters, we keep ABI compatibility.

In future, we could place all bpf_prog_type_list at a central place,
perhaps.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# ddd872bc 01-Dec-2014 Alexei Starovoitov <ast@kernel.org>

bpf: verifier: add checks for BPF_ABS | BPF_IND instructions

introduce program type BPF_PROG_TYPE_SOCKET_FILTER that is used
for attaching programs to sockets where ctx == skb.

add verifier checks for ABS/IND instructions which can only be seen
in socket filters, therefore the check:
if (env->prog->aux->prog_type != BPF_PROG_TYPE_SOCKET_FILTER)
verbose("BPF_LD_ABS|IND instructions are only allowed in socket filters\n");

Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 9c399760 28-Oct-2014 Alexei Starovoitov <ast@kernel.org>

bpf: reduce verifier memory consumption

verifier keeps track of register state spilled to stack.
registers are 8-byte wide and always aligned, so instead of tracking them
in every byte-sized stack slot, use MAX_BPF_STACK / 8 array to track
spilled register state.
Though verifier runs in user context and its state freed immediately
after verification, it makes sense to reduce its memory usage.
This optimization reduces sizeof(struct verifier_state)
from 12464 to 1712 on 64-bit and from 6232 to 1112 on 32-bit.

Note, this patch doesn't change existing limits, which are there to bound
time and memory during verification: 4k total number of insns in a program,
1k number of jumps (states to visit) and 32k number of processed insn
(since an insn may be visited multiple times). Theoretical worst case memory
during verification is 1712 * 1k = 17Mbyte. Out-of-memory situation triggers
cleanup and rejects the program.

Suggested-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 32bf08a6 20-Oct-2014 Alexei Starovoitov <ast@kernel.org>

bpf: fix bug in eBPF verifier

while comparing for verifier state equivalency the comparison
was missing a check for uninitialized register.
Make sure it does so and add a testcase.

Fixes: f1bca824dabb ("bpf: add search pruning optimization to verifier")
Cc: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: David S. Miller <davem@davemloft.net>


# f1bca824 29-Sep-2014 Alexei Starovoitov <ast@kernel.org>

bpf: add search pruning optimization to verifier

consider C program represented in eBPF:
int filter(int arg)
{
int a, b, c, *ptr;

if (arg == 1)
ptr = &a;
else if (arg == 2)
ptr = &b;
else
ptr = &c;

*ptr = 0;
return 0;
}
eBPF verifier has to follow all possible paths through the program
to recognize that '*ptr = 0' instruction would be safe to execute
in all situations.
It's doing it by picking a path towards the end and observes changes
to registers and stack at every insn until it reaches bpf_exit.
Then it comes back to one of the previous branches and goes towards
the end again with potentially different values in registers.
When program has a lot of branches, the number of possible combinations
of branches is huge, so verifer has a hard limit of walking no more
than 32k instructions. This limit can be reached and complex (but valid)
programs could be rejected. Therefore it's important to recognize equivalent
verifier states to prune this depth first search.

Basic idea can be illustrated by the program (where .. are some eBPF insns):
1: ..
2: if (rX == rY) goto 4
3: ..
4: ..
5: ..
6: bpf_exit
In the first pass towards bpf_exit the verifier will walk insns: 1, 2, 3, 4, 5, 6
Since insn#2 is a branch the verifier will remember its state in verifier stack
to come back to it later.
Since insn#4 is marked as 'branch target', the verifier will remember its state
in explored_states[4] linked list.
Once it reaches insn#6 successfully it will pop the state recorded at insn#2 and
will continue.
Without search pruning optimization verifier would have to walk 4, 5, 6 again,
effectively simulating execution of insns 1, 2, 4, 5, 6
With search pruning it will check whether state at #4 after jumping from #2
is equivalent to one recorded in explored_states[4] during first pass.
If there is an equivalent state, verifier can prune the search at #4 and declare
this path to be safe as well.
In other words two states at #4 are equivalent if execution of 1, 2, 3, 4 insns
and 1, 2, 4 insns produces equivalent registers and stack.

Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 17a52670 26-Sep-2014 Alexei Starovoitov <ast@kernel.org>

bpf: verifier (add verifier core)

This patch adds verifier core which simulates execution of every insn and
records the state of registers and program stack. Every branch instruction seen
during simulation is pushed into state stack. When verifier reaches BPF_EXIT,
it pops the state from the stack and continues until it reaches BPF_EXIT again.
For program:
1: bpf_mov r1, xxx
2: if (r1 == 0) goto 5
3: bpf_mov r0, 1
4: goto 6
5: bpf_mov r0, 2
6: bpf_exit
The verifier will walk insns: 1, 2, 3, 4, 6
then it will pop the state recorded at insn#2 and will continue: 5, 6

This way it walks all possible paths through the program and checks all
possible values of registers. While doing so, it checks for:
- invalid instructions
- uninitialized register access
- uninitialized stack access
- misaligned stack access
- out of range stack access
- invalid calling convention
- instruction encoding is not using reserved fields

Kernel subsystem configures the verifier with two callbacks:

- bool (*is_valid_access)(int off, int size, enum bpf_access_type type);
that provides information to the verifer which fields of 'ctx'
are accessible (remember 'ctx' is the first argument to eBPF program)

- const struct bpf_func_proto *(*get_func_proto)(enum bpf_func_id func_id);
returns argument constraints of kernel helper functions that eBPF program
may call, so that verifier can checks that R1-R5 types match the prototype

More details in Documentation/networking/filter.txt and in kernel/bpf/verifier.c

Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 475fb78f 26-Sep-2014 Alexei Starovoitov <ast@kernel.org>

bpf: verifier (add branch/goto checks)

check that control flow graph of eBPF program is a directed acyclic graph

check_cfg() does:
- detect loops
- detect unreachable instructions
- check that program terminates with BPF_EXIT insn
- check that all branches are within program boundary

Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 0246e64d 26-Sep-2014 Alexei Starovoitov <ast@kernel.org>

bpf: handle pseudo BPF_LD_IMM64 insn

eBPF programs passed from userspace are using pseudo BPF_LD_IMM64 instructions
to refer to process-local map_fd. Scan the program for such instructions and
if FDs are valid, convert them to 'struct bpf_map' pointers which will be used
by verifier to check access to maps in bpf_map_lookup/update() calls.
If program passes verifier, convert pseudo BPF_LD_IMM64 into generic by dropping
BPF_PSEUDO_MAP_FD flag.

Note that eBPF interpreter is generic and knows nothing about pseudo insns.

Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# cbd35700 26-Sep-2014 Alexei Starovoitov <ast@kernel.org>

bpf: verifier (add ability to receive verification log)

add optional attributes for BPF_PROG_LOAD syscall:
union bpf_attr {
struct {
...
__u32 log_level; /* verbosity level of eBPF verifier */
__u32 log_size; /* size of user buffer */
__aligned_u64 log_buf; /* user supplied 'char *buffer' */
};
};

when log_level > 0 the verifier will return its verification log in the user
supplied buffer 'log_buf' which can be used by program author to analyze why
verifier rejected given program.

'Understanding eBPF verifier messages' section of Documentation/networking/filter.txt
provides several examples of these messages, like the program:

BPF_ST_MEM(BPF_DW, BPF_REG_10, -8, 0),
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -8),
BPF_LD_MAP_FD(BPF_REG_1, 0),
BPF_CALL_FUNC(BPF_FUNC_map_lookup_elem),
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 1),
BPF_ST_MEM(BPF_DW, BPF_REG_0, 4, 0),
BPF_EXIT_INSN(),

will be rejected with the following multi-line message in log_buf:

0: (7a) *(u64 *)(r10 -8) = 0
1: (bf) r2 = r10
2: (07) r2 += -8
3: (b7) r1 = 0
4: (85) call 1
5: (15) if r0 == 0x0 goto pc+1
R0=map_ptr R10=fp
6: (7a) *(u64 *)(r0 +4) = 0
misaligned access off 4 size 8

The format of the output can change at any time as verifier evolves.

Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>


# 51580e79 26-Sep-2014 Alexei Starovoitov <ast@kernel.org>

bpf: verifier (add docs)

this patch adds all of eBPF verfier documentation and empty bpf_check()

The end goal for the verifier is to statically check safety of the program.

Verifier will catch:
- loops
- out of range jumps
- unreachable instructions
- invalid instructions
- uninitialized register access
- uninitialized stack access
- misaligned stack access
- out of range stack access
- invalid calling convention

More details in Documentation/networking/filter.txt

Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>