History log of /linux-master/kernel/bpf/queue_stack_maps.c
Revision Date Author Comments
# a34a9f1a 11-Sep-2023 Toke Høiland-Jørgensen <toke@redhat.com>

bpf: Avoid deadlock when using queue and stack maps from NMI

Sysbot discovered that the queue and stack maps can deadlock if they are
being used from a BPF program that can be called from NMI context (such as
one that is attached to a perf HW counter event). To fix this, add an
in_nmi() check and use raw_spin_trylock() in NMI context, erroring out if
grabbing the lock fails.

Fixes: f1a2e44a3aec ("bpf: add queue and stack maps")
Reported-by: Hsin-Wei Hung <hsinweih@uci.edu>
Tested-by: Hsin-Wei Hung <hsinweih@uci.edu>
Co-developed-by: Hsin-Wei Hung <hsinweih@uci.edu>
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/r/20230911132815.717240-1-toke@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 6c3eba1c 13-Jun-2023 Andrii Nakryiko <andrii@kernel.org>

bpf: Centralize permissions checks for all BPF map types

This allows to do more centralized decisions later on, and generally
makes it very explicit which maps are privileged and which are not
(e.g., LRU_HASH and LRU_PERCPU_HASH, which are privileged HASH variants,
as opposed to unprivileged HASH and HASH_PERCPU; now this is explicit
and easy to verify).

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/bpf/20230613223533.3689589-4-andrii@kernel.org


# d7ba4cc9 22-Mar-2023 JP Kobryn <inwardvessel@gmail.com>

bpf: return long from bpf_map_ops funcs

This patch changes the return types of bpf_map_ops functions to long, where
previously int was returned. Using long allows for bpf programs to maintain
the sign bit in the absence of sign extension during situations where
inlined bpf helper funcs make calls to the bpf_map_ops funcs and a negative
error is returned.

The definitions of the helper funcs are generated from comments in the bpf
uapi header at `include/uapi/linux/bpf.h`. The return type of these
helpers was previously changed from int to long in commit bdb7b79b4ce8. For
any case where one of the map helpers call the bpf_map_ops funcs that are
still returning 32-bit int, a compiler might not include sign extension
instructions to properly convert the 32-bit negative value a 64-bit
negative value.

For example:
bpf assembly excerpt of an inlined helper calling a kernel function and
checking for a specific error:

; err = bpf_map_update_elem(&mymap, &key, &val, BPF_NOEXIST);
...
46: call 0xffffffffe103291c ; htab_map_update_elem
; if (err && err != -EEXIST) {
4b: cmp $0xffffffffffffffef,%rax ; cmp -EEXIST,%rax

kernel function assembly excerpt of return value from
`htab_map_update_elem` returning 32-bit int:

movl $0xffffffef, %r9d
...
movl %r9d, %eax

...results in the comparison:
cmp $0xffffffffffffffef, $0x00000000ffffffef

Fixes: bdb7b79b4ce8 ("bpf: Switch most helper return values from 32-bit int to 64-bit long")
Tested-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: JP Kobryn <inwardvessel@gmail.com>
Link: https://lore.kernel.org/r/20230322194754.185781-3-inwardvessel@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# c6e66b42 04-Mar-2023 Yafang Shao <laoar.shao@gmail.com>

bpf: queue_stack_maps memory usage

A new helper is introduced to calculate queue_stack_maps memory usage.

The result as follows,

- before
20: queue name count_map flags 0x0
key 0B value 4B max_entries 65536 memlock 266240B
21: stack name count_map flags 0x0
key 0B value 4B max_entries 65536 memlock 266240B

- after
20: queue name count_map flags 0x0
key 0B value 4B max_entries 65536 memlock 524288B
21: stack name count_map flags 0x0
key 0B value 4B max_entries 65536 memlock 524288B

Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Link: https://lore.kernel.org/r/20230305124615.12358-12-laoar.shao@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 08381815 10-Aug-2022 Yafang Shao <laoar.shao@gmail.com>

bpf: Remove unneeded memset in queue_stack_map creation

__GFP_ZERO will clear the memory, so we don't need to memset it.

Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Link: https://lore.kernel.org/r/20220810151840.16394-2-laoar.shao@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# c317ab71 25-Apr-2022 Menglong Dong <imagedong@tencent.com>

bpf: Compute map_btf_id during build time

For now, the field 'map_btf_id' in 'struct bpf_map_ops' for all map
types are computed during vmlinux-btf init:

btf_parse_vmlinux() -> btf_vmlinux_map_ids_init()

It will lookup the btf_type according to the 'map_btf_name' field in
'struct bpf_map_ops'. This process can be done during build time,
thanks to Jiri's resolve_btfids.

selftest of map_ptr has passed:

$96 map_ptr:OK
Summary: 1/0 PASSED, 0 SKIPPED, 0 FAILED

Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Menglong Dong <imagedong@tencent.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# a37fb7ef 01-Dec-2020 Roman Gushchin <guro@fb.com>

bpf: Eliminate rlimit-based memory accounting for queue_stack_maps maps

Do not use rlimit-based memory accounting for queue_stack maps.
It has been replaced with the memcg-based memory accounting.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20201201215900.3569844-26-guro@fb.com


# f4d05259 27-Aug-2020 Martin KaFai Lau <kafai@fb.com>

bpf: Add map_meta_equal map ops

Some properties of the inner map is used in the verification time.
When an inner map is inserted to an outer map at runtime,
bpf_map_meta_equal() is currently used to ensure those properties
of the inserting inner map stays the same as the verification
time.

In particular, the current bpf_map_meta_equal() checks max_entries which
turns out to be too restrictive for most of the maps which do not use
max_entries during the verification time. It limits the use case that
wants to replace a smaller inner map with a larger inner map. There are
some maps do use max_entries during verification though. For example,
the map_gen_lookup in array_map_ops uses the max_entries to generate
the inline lookup code.

To accommodate differences between maps, the map_meta_equal is added
to bpf_map_ops. Each map-type can decide what to check when its
map is used as an inner map during runtime.

Also, some map types cannot be used as an inner map and they are
currently black listed in bpf_map_meta_alloc() in map_in_map.c.
It is not unusual that the new map types may not aware that such
blacklist exists. This patch enforces an explicit opt-in
and only allows a map to be used as an inner map if it has
implemented the map_meta_equal ops. It is based on the
discussion in [1].

All maps that support inner map has its map_meta_equal points
to bpf_map_meta_equal in this patch. A later patch will
relax the max_entries check for most maps. bpf_types.h
counts 28 map types. This patch adds 23 ".map_meta_equal"
by using coccinelle. -5 for
BPF_MAP_TYPE_PROG_ARRAY
BPF_MAP_TYPE_(PERCPU)_CGROUP_STORAGE
BPF_MAP_TYPE_STRUCT_OPS
BPF_MAP_TYPE_ARRAY_OF_MAPS
BPF_MAP_TYPE_HASH_OF_MAPS

The "if (inner_map->inner_map_meta)" check in bpf_map_meta_alloc()
is moved such that the same error is returned.

[1]: https://lore.kernel.org/bpf/20200522022342.899756-1-kafai@fb.com/

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200828011806.1970400-1-kafai@fb.com


# bba1dc0b 29-Jun-2020 Alexei Starovoitov <ast@kernel.org>

bpf: Remove redundant synchronize_rcu.

bpf_free_used_maps() or close(map_fd) will trigger map_free callback.
bpf_free_used_maps() is called after bpf prog is no longer executing:
bpf_prog_put->call_rcu->bpf_prog_free->bpf_free_used_maps.
Hence there is no need to call synchronize_rcu() to protect map elements.

Note that hash_of_maps and array_of_maps update/delete inner maps via
sys_bpf() that calls maybe_wait_bpf_programs() and synchronize_rcu().

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/bpf/20200630043343.53195-2-alexei.starovoitov@gmail.com


# 2872e9ac 19-Jun-2020 Andrey Ignatov <rdna@fb.com>

bpf: Set map_btf_{name, id} for all map types

Set map_btf_name and map_btf_id for all map types so that map fields can
be accessed by bpf programs.

Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/a825f808f22af52b018dbe82f1c7d29dab5fc978.1592600985.git.rdna@fb.com


# 2c78ee89 13-May-2020 Alexei Starovoitov <ast@kernel.org>

bpf: Implement CAP_BPF

Implement permissions as stated in uapi/linux/capability.h
In order to do that the verifier allow_ptr_leaks flag is split
into four flags and they are set as:
env->allow_ptr_leaks = bpf_allow_ptr_leaks();
env->bypass_spec_v1 = bpf_bypass_spec_v1();
env->bypass_spec_v4 = bpf_bypass_spec_v4();
env->bpf_capable = bpf_capable();

The first three currently equivalent to perfmon_capable(), since leaking kernel
pointers and reading kernel memory via side channel attacks is roughly
equivalent to reading kernel memory with cap_perfmon.

'bpf_capable' enables bounded loops, precision tracking, bpf to bpf calls and
other verifier features. 'allow_ptr_leaks' enable ptr leaks, ptr conversions,
subtraction of pointers. 'bypass_spec_v1' disables speculative analysis in the
verifier, run time mitigations in bpf array, and enables indirect variable
access in bpf programs. 'bypass_spec_v4' disables emission of sanitation code
by the verifier.

That means that the networking BPF program loaded with CAP_BPF + CAP_NET_ADMIN
will have speculative checks done by the verifier and other spectre mitigation
applied. Such networking BPF program will not be able to leak kernel pointers
and will not be able to access arbitrary kernel memory.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200513230355.7858-3-alexei.starovoitov@gmail.com


# 385bbf7b 07-May-2020 Gustavo A. R. Silva <gustavoars@kernel.org>

bpf, libbpf: Replace zero-length array with flexible-array

The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:

struct foo {
int stuff;
struct boo array[];
};

By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.

Also, notice that, dynamic memory allocations won't be affected by
this change:

"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]

sizeof(flexible-array-member) triggers a warning because flexible array
members have incomplete type[1]. There are some instances of code in
which the sizeof operator is being incorrectly/erroneously applied to
zero-length arrays and the result is zero. Such instances may be hiding
some bugs. So, this work (flexible-array member conversions) will also
help to get completely rid of those sorts of issues.

This issue was found with the help of Coccinelle.

[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 76497732932f ("cxgb3/l2t: Fix undefined behaviour")

Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200507185057.GA13981@embeddedor


# c85d6913 29-May-2019 Roman Gushchin <guro@fb.com>

bpf: move memory size checks to bpf_map_charge_init()

Most bpf map types doing similar checks and bytes to pages
conversion during memory allocation and charging.

Let's unify these checks by moving them into bpf_map_charge_init().

Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# b936ca64 29-May-2019 Roman Gushchin <guro@fb.com>

bpf: rework memlock-based memory accounting for maps

In order to unify the existing memlock charging code with the
memcg-based memory accounting, which will be added later, let's
rework the current scheme.

Currently the following design is used:
1) .alloc() callback optionally checks if the allocation will likely
succeed using bpf_map_precharge_memlock()
2) .alloc() performs actual allocations
3) .alloc() callback calculates map cost and sets map.memory.pages
4) map_create() calls bpf_map_init_memlock() which sets map.memory.user
and performs actual charging; in case of failure the map is
destroyed
<map is in use>
1) bpf_map_free_deferred() calls bpf_map_release_memlock(), which
performs uncharge and releases the user
2) .map_free() callback releases the memory

The scheme can be simplified and made more robust:
1) .alloc() calculates map cost and calls bpf_map_charge_init()
2) bpf_map_charge_init() sets map.memory.user and performs actual
charge
3) .alloc() performs actual allocations
<map is in use>
1) .map_free() callback releases the memory
2) bpf_map_charge_finish() performs uncharge and releases the user

The new scheme also allows to reuse bpf_map_charge_init()/finish()
functions for memcg-based accounting. Because charges are performed
before actual allocations and uncharges after freeing the memory,
no bogus memory pressure can be created.

In cases when the map structure is not available (e.g. it's not
created yet, or is already destroyed), on-stack bpf_map_memory
structure is used. The charge can be transferred with the
bpf_map_charge_move() function.

Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 3539b96e 29-May-2019 Roman Gushchin <guro@fb.com>

bpf: group memory related fields in struct bpf_map_memory

Group "user" and "pages" fields of bpf_map into the bpf_map_memory
structure. Later it can be extended with "memcg" and other related
information.

The main reason for a such change (beside cosmetics) is to pass
bpf_map_memory structure to charging functions before the actual
allocation of bpf_map.

Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 591fe988 09-Apr-2019 Daniel Borkmann <daniel@iogearbox.net>

bpf: add program side {rd, wr}only support for maps

This work adds two new map creation flags BPF_F_RDONLY_PROG
and BPF_F_WRONLY_PROG in order to allow for read-only or
write-only BPF maps from a BPF program side.

Today we have BPF_F_RDONLY and BPF_F_WRONLY, but this only
applies to system call side, meaning the BPF program has full
read/write access to the map as usual while bpf(2) calls with
map fd can either only read or write into the map depending
on the flags. BPF_F_RDONLY_PROG and BPF_F_WRONLY_PROG allows
for the exact opposite such that verifier is going to reject
program loads if write into a read-only map or a read into a
write-only map is detected. For read-only map case also some
helpers are forbidden for programs that would alter the map
state such as map deletion, update, etc. As opposed to the two
BPF_F_RDONLY / BPF_F_WRONLY flags, BPF_F_RDONLY_PROG as well
as BPF_F_WRONLY_PROG really do correspond to the map lifetime.

We've enabled this generic map extension to various non-special
maps holding normal user data: array, hash, lru, lpm, local
storage, queue and stack. Further generic map types could be
followed up in future depending on use-case. Main use case
here is to forbid writes into .rodata map values from verifier
side.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# 813961de 22-Nov-2018 Alexei Starovoitov <ast@kernel.org>

bpf: fix integer overflow in queue_stack_map

Fix the following issues:

- allow queue_stack_map for root only
- fix u32 max_entries overflow
- disallow value_size == 0

Fixes: f1a2e44a3aec ("bpf: add queue and stack maps")
Reported-by: Wei Wu <ww9210@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Cc: Mauricio Vasquez B <mauricio.vasquez@polito.it>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>


# d3f66e41 24-Oct-2018 Daniel Borkmann <daniel@iogearbox.net>

bpf: fix leaking uninitialized memory on pop/peek helpers

Commit f1a2e44a3aec ("bpf: add queue and stack maps") added helpers
with ARG_PTR_TO_UNINIT_MAP_VALUE. Meaning, the helper is supposed to
fill the map value buffer with data instead of reading from it like
in other helpers such as map update. However, given the buffer is
allowed to be uninitialized (since we fill it in the helper anyway),
it also means that the helper is obliged to wipe the memory in case
of an error in order to not allow for leaking uninitialized memory.
Given pop/peek is both handled inside __{stack,queue}_map_get(),
lets wipe it there on error case, that is, empty stack/queue.

Fixes: f1a2e44a3aec ("bpf: add queue and stack maps")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: Mauricio Vasquez B <mauricio.vasquez@polito.it>
Acked-by: Mauricio Vasquez B<mauricio.vasquez@polito.it>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>


# f1a2e44a 18-Oct-2018 Mauricio Vasquez B <mauricio.vasquez@polito.it>

bpf: add queue and stack maps

Queue/stack maps implement a FIFO/LIFO data storage for ebpf programs.
These maps support peek, pop and push operations that are exposed to eBPF
programs through the new bpf_map[peek/pop/push] helpers. Those operations
are exposed to userspace applications through the already existing
syscalls in the following way:

BPF_MAP_LOOKUP_ELEM -> peek
BPF_MAP_LOOKUP_AND_DELETE_ELEM -> pop
BPF_MAP_UPDATE_ELEM -> push

Queue/stack maps are implemented using a buffer, tail and head indexes,
hence BPF_F_NO_PREALLOC is not supported.

As opposite to other maps, queue and stack do not use RCU for protecting
maps values, the bpf_map[peek/pop] have a ARG_PTR_TO_UNINIT_MAP_VALUE
argument that is a pointer to a memory zone where to save the value of a
map. Basically the same as ARG_PTR_TO_UNINIT_MEM, but the size has not
be passed as an extra argument.

Our main motivation for implementing queue/stack maps was to keep track
of a pool of elements, like network ports in a SNAT, however we forsee
other use cases, like for exampling saving last N kernel events in a map
and then analysing from userspace.

Signed-off-by: Mauricio Vasquez B <mauricio.vasquez@polito.it>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>