History log of /linux-master/drivers/crypto/caam/Makefile
Revision Date Author Comments
# 0aa6ac77 29-Apr-2022 Meenakshi Aggarwal <meenakshi.aggarwal@nxp.com>

crypto: caam/rng - Add support for PRNG

Add support for random number generation using PRNG
mode of CAAM and expose the interface through crypto API.

According to the RM, the HW implementation of the DRBG follows
NIST SP 800-90A specification for DRBG_Hash SHA-256 function

Signed-off-by: Meenakshi Aggarwal <meenakshi.aggarwal@nxp.com>
Reviewed-by: Horia Geant <horia.geanta@nxp.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>


# 007c3ff1 13-May-2022 Ahmad Fatoum <a.fatoum@pengutronix.de>

crypto: caam - add in-kernel interface for blob generator

The NXP Cryptographic Acceleration and Assurance Module (CAAM)
can be used to protect user-defined data across system reboot:

- When the system is fused and boots into secure state, the master
key is a unique never-disclosed device-specific key
- random key is encrypted by key derived from master key
- data is encrypted using the random key
- encrypted data and its encrypted random key are stored alongside
- This blob can now be safely stored in non-volatile memory

On next power-on:
- blob is loaded into CAAM
- CAAM writes decrypted data either into memory or key register

Add functions to realize encrypting and decrypting into memory alongside
the CAAM driver.

They will be used in a later commit as a source for the trusted key
seal/unseal mechanism.

Reviewed-by: David Gstir <david@sigma-star.at>
Reviewed-by: Pankaj Gupta <pankaj.gupta@nxp.com>
Tested-by: Tim Harvey <tharvey@gateworks.com>
Tested-by: Matthias Schiffer <matthias.schiffer@ew.tq-group.com>
Tested-by: Pankaj Gupta <pankaj.gupta@nxp.com>
Tested-by: Michael Walle <michael@walle.cc> # on ls1028a (non-E and E)
Tested-by: John Ernberg <john.ernberg@actia.se> # iMX8QXP
Signed-off-by: Steffen Trumtrar <s.trumtrar@pengutronix.de>
Signed-off-by: Ahmad Fatoum <a.fatoum@pengutronix.de>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>


# abd98754 06-Aug-2020 Horia Geantă <horia.geanta@nxp.com>

crypto: caam - Move debugfs fops into standalone file

Currently the debugfs fops are defined in caam/intern.h. This causes
problems because it creates identical static functions and variables
in multiple files. It also creates warnings when those files don't
use the fops.

This patch moves them into a standalone file, debugfs.c.

It also removes unnecessary uses of ifdefs on CONFIG_DEBUG_FS.

Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
[Moved most of debugfs-related operations into debugfs.c.]
Signed-off-by: Horia Geantă <horia.geanta@nxp.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>


# 1c0ab408 23-Jul-2019 Vakul Garg <vakul.garg@nxp.com>

crypto: caam/qi2 - Add printing dpseci fq stats using debugfs

Add support of printing the dpseci frame queue statistics using debugfs.

Signed-off-by: Vakul Garg <vakul.garg@nxp.com>
Reviewed-by: Horia Geantă <horia.geanta@nxp.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>


# 1b46c90c 03-May-2019 Horia Geantă <horia.geanta@nxp.com>

crypto: caam - convert top level drivers to libraries

Currently we allow top level code, i.e. that which sits between the
low level (HW-specific) drivers and crypto API, to be built as several
drivers: caamalg, caamhash, caam_pkc, caamrng, caamalg_qi.

There is no advantage in this, more it interferes with adding support
for deferred probing (there are no corresponding devices and thus
no bus).

Convert these drivers and call init() / exit() manually at the right
time.
Move algorithms initialization at JR probe / remove time:
-the first probed JR registers the crypto algs
-the last removed JR unregisters the crypto algs

Note: caam_qi_init() is called before JR platform devices creation
(of_populate_bus()), such that QI interface is initialized when
the caam/qi algorithms are registered in the JR driver (by calling
caam_qi_algapi_init().

While here, fix the Kconfig entries under CRYPTO_DEV_FSL_CAAM_JR
to be aligned.

Signed-off-by: Horia Geantă <horia.geanta@nxp.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>


# 0efa7579 12-Sep-2018 Horia Geantă <horia.geanta@nxp.com>

crypto: caam - export ahash shared descriptor generation

caam/qi2 driver will support ahash algorithms,
thus move ahash descriptors generation in a shared location.

Signed-off-by: Horia Geantă <horia.geanta@nxp.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>


# 8d818c10 12-Sep-2018 Horia Geantă <horia.geanta@nxp.com>

crypto: caam/qi2 - add DPAA2-CAAM driver

Add CAAM driver that works using the DPSECI backend, i.e. manages
DPSECI DPAA2 objects sitting on the Management Complex (MC) fsl-mc bus.

Data transfers (crypto requests) are sent/received to/from CAAM crypto
engine via Queue Interface (v2), this being similar to existing caam/qi.
OTOH, configuration/setup (obtaining virtual queue IDs, authorization
etc.) is done by sending commands to the MC f/w.

Note that the CAAM accelerator included in DPAA2 platforms still has
Job Rings. However, the driver being added does not handle access
via this backend. Kconfig & Makefile are updated such that DPAA2-CAAM
(a.k.a. "caam/qi2") driver does not depend on caam/jr or caam/qi
backends - which rely on platform bus support (ctrl.c).

Support for the following aead and authenc algorithms is also added
in this patch:
-aead:
gcm(aes)
rfc4106(gcm(aes))
rfc4543(gcm(aes))
-authenc:
authenc(hmac({md5,sha*}),cbc({aes,des,des3_ede}))
echainiv(authenc(hmac({md5,sha*}),cbc({aes,des,des3_ede})))
authenc(hmac({md5,sha*}),rfc3686(ctr(aes))
seqiv(authenc(hmac({md5,sha*}),rfc3686(ctr(aes)))

Signed-off-by: Horia Geantă <horia.geanta@nxp.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>


# b2441318 01-Nov-2017 Greg Kroah-Hartman <gregkh@linuxfoundation.org>

License cleanup: add SPDX GPL-2.0 license identifier to files with no license

Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.

For non */uapi/* files that summary was:

SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139

and resulted in the first patch in this series.

If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:

SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930

and resulted in the second patch in this series.

- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:

SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1

and that resulted in the third patch in this series.

- when the two scanners agreed on the detected license(s), that became
the concluded license(s).

- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.

- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).

- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.

- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct

This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>


# b189817c 16-Mar-2017 Horia Geantă <horia.geanta@nxp.com>

crypto: caam/qi - add ablkcipher and authenc algorithms

Add support to submit ablkcipher and authenc algorithms
via the QI backend:
-ablkcipher:
cbc({aes,des,des3_ede})
ctr(aes), rfc3686(ctr(aes))
xts(aes)
-authenc:
authenc(hmac(md5),cbc({aes,des,des3_ede}))
authenc(hmac(sha*),cbc({aes,des,des3_ede}))

caam/qi being a new driver, let's wait some time to settle down without
interfering with existing caam/jr driver.
Accordingly, for now all caam/qi algorithms (caamalg_qi module) are
marked to be of lower priority than caam/jr ones (caamalg module).

Signed-off-by: Vakul Garg <vakul.garg@nxp.com>
Signed-off-by: Alex Porosanu <alexandru.porosanu@nxp.com>
Signed-off-by: Horia Geantă <horia.geanta@nxp.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>


# 67c2315d 16-Mar-2017 Horia Geantă <horia.geanta@nxp.com>

crypto: caam - add Queue Interface (QI) backend support

CAAM engine supports two interfaces for crypto job submission:
-job ring interface - already existing caam/jr driver
-Queue Interface (QI) - caam/qi driver added in current patch

QI is present in CAAM engines found on DPAA platforms.
QI gets its I/O (frame descriptors) from QMan (Queue Manager) queues.

This patch adds a platform device for accessing CAAM's queue interface.
The requests are submitted to CAAM using one frame queue per
cryptographic context. Each crypto context has one shared descriptor.
This shared descriptor is attached to frame queue associated with
corresponding driver context using context_a.

The driver hides the mechanics of FQ creation, initialisation from its
applications. Each cryptographic context needs to be associated with
driver context which houses the FQ to be used to transport the job to
CAAM. The driver provides API for:
(a) Context creation
(b) Job submission
(c) Context deletion
(d) Congestion indication - whether path to/from CAAM is congested

The driver supports affining its context to a particular CPU.
This means that any responses from CAAM for the context in question
would arrive at the given CPU. This helps in implementing one CPU
per packet round trip in IPsec application.

The driver processes CAAM responses under NAPI contexts.
NAPI contexts are instantiated only on cores with affined portals since
only cores having their own portal can receive responses from DQRR.

The responses from CAAM for all cryptographic contexts ride on a fixed
set of FQs. We use one response FQ per portal owning core. The response
FQ is configured in each core's and thus portal's dedicated channel.
This gives the flexibility to direct CAAM's responses for a crypto
context on a given core.

Signed-off-by: Vakul Garg <vakul.garg@nxp.com>
Signed-off-by: Alex Porosanu <alexandru.porosanu@nxp.com>
Signed-off-by: Horia Geantă <horia.geanta@nxp.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>


# 8cea7b66 22-Nov-2016 Horia Geantă <horia.geanta@nxp.com>

crypto: caam - refactor encryption descriptors generation

Refactor the generation of the authenc, ablkcipher shared descriptors
and exports the functionality, such that they could be shared
with the upcoming caam/qi (Queue Interface) driver.

Signed-off-by: Horia Geantă <horia.geanta@nxp.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>


# 8c419778 04-Jul-2016 Tudor Ambarus <tudor-dan.ambarus@nxp.com>

crypto: caam - add support for RSA algorithm

Add RSA support to caam driver.

Initial author is Yashpal Dutta <yashpal.dutta@freescale.com>.

Signed-off-by: Tudor Ambarus <tudor-dan.ambarus@nxp.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>


# 6999d504 16-Jun-2016 Tudor Ambarus <tudor-dan.ambarus@nxp.com>

crypto: caam - replace deprecated EXTRA_CFLAGS

EXTRA_CFLAGS is still supported but its usage is deprecated.

Signed-off-by: Tudor Ambarus <tudor-dan.ambarus@nxp.com>
Reviewed-by: Horia Geantă <horia.geanta@nxp.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>


# 313ea293 24-Oct-2013 Ruchika Gupta <ruchika.gupta@freescale.com>

crypto: caam - Add Platform driver for Job Ring

The SEC Job Rings are now available as individual devices.
This would enable sharing of job rings between kernel and
user space. Job Rings can now be dynamically bound/unbound
from kernel.

Changes are made in the following layers of CAAM Driver
1. Controller driver
- Does basic initialization of CAAM Block.
- Creates platform devices for Job Rings.
(Earlier the initialization of Job ring was done
by the controller driver)

2. JobRing Platform driver
- Manages the platform Job Ring devices created
by the controller driver

Signed-off-by: Ruchika Gupta <ruchika.gupta@freescale.com>
Reviewed-by: Garg Vakul-B16394 <vakul@freescale.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>


# d4d8edf8 14-Aug-2013 Alex Porosanu <alexandru.porosanu@freescale.com>

crypto: caam - add option for enabling DEBUG mode

This patch adds an option to the Kconfig file for
SEC which enables the user to see the debug messages
that are printed inside the SEC driver.

Signed-off-by: Alex Porosanu <alexandru.porosanu@freescale.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>


# e24f7c9e 22-Jun-2012 Yuan Kang <Yuan.Kang@freescale.com>

crypto: caam - hwrng support

caam_read copies random bytes from two buffers into output.

caam rng can fill empty buffer 0xffff bytes at a time,
but the buffer sizes are rounded down to multiple of cacheline size.

Signed-off-by: Yuan Kang <Yuan.Kang@freescale.com>
Signed-off-by: Kim Phillips <kim.phillips@freescale.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>


# 045e3678 22-Jun-2012 Yuan Kang <Yuan.Kang@freescale.com>

crypto: caam - ahash hmac support

caam supports ahash hmac with sha algorithms and md5.

Signed-off-by: Yuan Kang <Yuan.Kang@freescale.com>
Signed-off-by: Kim Phillips <kim.phillips@freescale.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>


# 4c1ec1f9 22-Jun-2012 Yuan Kang <Yuan.Kang@freescale.com>

crypto: caam - refactor key_gen, sg

create separate files for split key generation and scatterlist functions.

Signed-off-by: Yuan Kang <Yuan.Kang@freescale.com>
Signed-off-by: Kim Phillips <kim.phillips@freescale.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>


# 8e8ec596 13-Mar-2011 Kim Phillips <kim.phillips@freescale.com>

crypto: caam - Add support for the Freescale SEC4/CAAM

The SEC4 supercedes the SEC2.x/3.x as Freescale's
Integrated Security Engine. Its programming model is
incompatible with all prior versions of the SEC (talitos).

The SEC4 is also known as the Cryptographic Accelerator
and Assurance Module (CAAM); this driver is named caam.

This initial submission does not include support for Data Path
mode operation - AEAD descriptors are submitted via the job
ring interface, while the Queue Interface (QI) is enabled
for use by others. Only AEAD algorithms are implemented
at this time, for use with IPsec.

Many thanks to the Freescale STC team for their contributions
to this driver.

Signed-off-by: Steve Cornelius <sec@pobox.com>
Signed-off-by: Kim Phillips <kim.phillips@freescale.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>