History log of /linux-master/arch/s390/include/asm/futex.h
Revision Date Author Comments
# a262d3ad 18-Oct-2022 Heiko Carstens <hca@linux.ibm.com>

s390/futex: add missing EX_TABLE entry to __futex_atomic_op()

For some exception types the instruction address points behind the
instruction that caused the exception. Take that into account and add
the missing exception table entry.

Cc: <stable@vger.kernel.org>
Reviewed-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>


# d09a307f 28-Feb-2022 Heiko Carstens <hca@linux.ibm.com>

s390/extable: move EX_TABLE define to asm-extable.h

Follow arm64 and riscv and move the EX_TABLE define to asm-extable.h
which is a lot less generic than the current linkage.h.

Also make sure that all files which contain EX_TABLE usages actually
include the new header file. This should make sure that the files
always compile and there won't be any random compile breakage due to
other header file dependencies.

Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>


# 87d59863 16-Nov-2020 Heiko Carstens <hca@linux.ibm.com>

s390/mm: remove set_fs / rework address space handling

Remove set_fs support from s390. With doing this rework address space
handling and simplify it. As a result address spaces are now setup
like this:

CPU running in | %cr1 ASCE | %cr7 ASCE | %cr13 ASCE
----------------------------|-----------|-----------|-----------
user space | user | user | kernel
kernel, normal execution | kernel | user | kernel
kernel, kvm guest execution | gmap | user | kernel

To achieve this the getcpu vdso syscall is removed in order to avoid
secondary address mode and a separate vdso address space in for user
space. The getcpu vdso syscall will be implemented differently with a
subsequent patch.

The kernel accesses user space always via secondary address space.
This happens in different ways:
- with mvcos in home space mode and directly read/write to secondary
address space
- with mvcs/mvcp in primary space mode and copy from primary space to
secondary space or vice versa
- with e.g. cs in secondary space mode and access secondary space

Switching translation modes happens with sacf before and after
instructions which access user space, like before.

Lazy handling of control register reloading is removed in the hope to
make everything simpler, but at the cost of making kernel entry and
exit a bit slower. That is: on kernel entry the primary asce is always
changed to contain the kernel asce, and on kernel exit the primary
asce is changed again so it contains the user asce.

In kernel mode there is only one exception to the primary asce: when
kvm guests are executed the primary asce contains the gmap asce (which
describes the guest address space). The primary asce is reset to
kernel asce whenever kvm guest execution is interrupted, so that this
doesn't has to be taken into account for any user space accesses.

Reviewed-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# dc885889 16-Feb-2020 Al Viro <viro@zeniv.linux.org.uk>

[parisc, s390, sparc64] no need for access_ok() in futex handling

access_ok() is always true on those

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>


# a08971e9 16-Feb-2020 Al Viro <viro@zeniv.linux.org.uk>

futex: arch_futex_atomic_op_inuser() calling conventions change

Move access_ok() in and pagefault_enable()/pagefault_disable() out.
Mechanical conversion only - some instances don't really need
a separate access_ok() at all (e.g. the ones only using
get_user()/put_user(), or architectures where access_ok()
is always true); we'll deal with that in followups.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>


# 0aaba41b 21-Aug-2017 Martin Schwidefsky <schwidefsky@de.ibm.com>

s390: remove all code using the access register mode

The vdso code for the getcpu() and the clock_gettime() call use the access
register mode to access the per-CPU vdso data page with the current code.

An alternative to the complicated AR mode is to use the secondary space
mode. This makes the vdso faster and quite a bit simpler. The downside is
that the uaccess code has to be changed quite a bit.

Which instructions are used depends on the machine and what kind of uaccess
operation is requested. The instruction dictates which ASCE value needs
to be loaded into %cr1 and %cr7.

The different cases:

* User copy with MVCOS for z10 and newer machines
The MVCOS instruction can copy between the primary space (aka user) and
the home space (aka kernel) directly. For set_fs(KERNEL_DS) the kernel
ASCE is loaded into %cr1. For set_fs(USER_DS) the user space is already
loaded in %cr1.

* User copy with MVCP/MVCS for older machines
To be able to execute the MVCP/MVCS instructions the kernel needs to
switch to primary mode. The control register %cr1 has to be set to the
kernel ASCE and %cr7 to either the kernel ASCE or the user ASCE dependent
on set_fs(KERNEL_DS) vs set_fs(USER_DS).

* Data access in the user address space for strnlen / futex
To use "normal" instruction with data from the user address space the
secondary space mode is used. The kernel needs to switch to primary mode,
%cr1 has to contain the kernel ASCE and %cr7 either the user ASCE or the
kernel ASCE, dependent on set_fs.

To load a new value into %cr1 or %cr7 is an expensive operation, the kernel
tries to be lazy about it. E.g. for multiple user copies in a row with
MVCP/MVCS the replacement of the vdso ASCE in %cr7 with the user ASCE is
done only once. On return to user space a CPU bit is checked that loads the
vdso ASCE again.

To enable and disable the data access via the secondary space two new
functions are added, enable_sacf_uaccess and disable_sacf_uaccess. The fact
that a context is in secondary space uaccess mode is stored in the
mm_segment_t value for the task. The code of an interrupt may use set_fs
as long as it returns to the previous state it got with get_fs with another
call to set_fs. The code in finish_arch_post_lock_switch simply has to do a
set_fs with the current mm_segment_t value for the task.

For CPUs with MVCOS:

CPU running in | %cr1 ASCE | %cr7 ASCE |
--------------------------------------|-----------|-----------|
user space | user | vdso |
kernel, USER_DS, normal-mode | user | vdso |
kernel, USER_DS, normal-mode, lazy | user | user |
kernel, USER_DS, sacf-mode | kernel | user |
kernel, KERNEL_DS, normal-mode | kernel | vdso |
kernel, KERNEL_DS, normal-mode, lazy | kernel | kernel |
kernel, KERNEL_DS, sacf-mode | kernel | kernel |

For CPUs without MVCOS:

CPU running in | %cr1 ASCE | %cr7 ASCE |
--------------------------------------|-----------|-----------|
user space | user | vdso |
kernel, USER_DS, normal-mode | user | vdso |
kernel, USER_DS, normal-mode lazy | kernel | user |
kernel, USER_DS, sacf-mode | kernel | user |
kernel, KERNEL_DS, normal-mode | kernel | vdso |
kernel, KERNEL_DS, normal-mode, lazy | kernel | kernel |
kernel, KERNEL_DS, sacf-mode | kernel | kernel |

The lines with "lazy" refer to the state after a copy via the secondary
space with a delayed reload of %cr1 and %cr7.

There are three hardware address spaces that can cause a DAT exception,
primary, secondary and home space. The exception can be related to
four different fault types: user space fault, vdso fault, kernel fault,
and the gmap faults.

Dependent on the set_fs state and normal vs. sacf mode there are a number
of fault combinations:

1) user address space fault via the primary ASCE
2) gmap address space fault via the primary ASCE
3) kernel address space fault via the primary ASCE for machines with
MVCOS and set_fs(KERNEL_DS)
4) vdso address space faults via the secondary ASCE with an invalid
address while running in secondary space in problem state
5) user address space fault via the secondary ASCE for user-copy
based on the secondary space mode, e.g. futex_ops or strnlen_user
6) kernel address space fault via the secondary ASCE for user-copy
with secondary space mode with set_fs(KERNEL_DS)
7) kernel address space fault via the primary ASCE for user-copy
with secondary space mode with set_fs(USER_DS) on machines without
MVCOS.
8) kernel address space fault via the home space ASCE

Replace user_space_fault() with a new function get_fault_type() that
can distinguish all four different fault types.

With these changes the futex atomic ops from the kernel and the
strnlen_user will get a little bit slower, as well as the old style
uaccess with MVCP/MVCS. All user accesses based on MVCOS will be as
fast as before. On the positive side, the user space vdso code is a
lot faster and Linux ceases to use the complicated AR mode.

Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>


# b2441318 01-Nov-2017 Greg Kroah-Hartman <gregkh@linuxfoundation.org>

License cleanup: add SPDX GPL-2.0 license identifier to files with no license

Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.

For non */uapi/* files that summary was:

SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139

and resulted in the first patch in this series.

If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:

SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930

and resulted in the second patch in this series.

- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:

SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1

and that resulted in the third patch in this series.

- when the two scanners agreed on the detected license(s), that became
the concluded license(s).

- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.

- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).

- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.

- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct

This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>


# 30d6e0a4 24-Aug-2017 Jiri Slaby <jirislaby@kernel.org>

futex: Remove duplicated code and fix undefined behaviour

There is code duplicated over all architecture's headers for
futex_atomic_op_inuser. Namely op decoding, access_ok check for uaddr,
and comparison of the result.

Remove this duplication and leave up to the arches only the needed
assembly which is now in arch_futex_atomic_op_inuser.

This effectively distributes the Will Deacon's arm64 fix for undefined
behaviour reported by UBSAN to all architectures. The fix was done in
commit 5f16a046f8e1 (arm64: futex: Fix undefined behaviour with
FUTEX_OP_OPARG_SHIFT usage). Look there for an example dump.

And as suggested by Thomas, check for negative oparg too, because it was
also reported to cause undefined behaviour report.

Note that s390 removed access_ok check in d12a29703 ("s390/uaccess:
remove pointless access_ok() checks") as access_ok there returns true.
We introduce it back to the helper for the sake of simplicity (it gets
optimized away anyway).

Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Russell King <rmk+kernel@armlinux.org.uk>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> [s390]
Acked-by: Chris Metcalf <cmetcalf@mellanox.com> [for tile]
Reviewed-by: Darren Hart (VMware) <dvhart@infradead.org>
Reviewed-by: Will Deacon <will.deacon@arm.com> [core/arm64]
Cc: linux-mips@linux-mips.org
Cc: Rich Felker <dalias@libc.org>
Cc: linux-ia64@vger.kernel.org
Cc: linux-sh@vger.kernel.org
Cc: peterz@infradead.org
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: sparclinux@vger.kernel.org
Cc: Jonas Bonn <jonas@southpole.se>
Cc: linux-s390@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: linux-hexagon@vger.kernel.org
Cc: Helge Deller <deller@gmx.de>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: linux-snps-arc@lists.infradead.org
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: linux-xtensa@linux-xtensa.org
Cc: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi>
Cc: openrisc@lists.librecores.org
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Stafford Horne <shorne@gmail.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: Richard Henderson <rth@twiddle.net>
Cc: Chris Zankel <chris@zankel.net>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-parisc@vger.kernel.org
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: linux-alpha@vger.kernel.org
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: "David S. Miller" <davem@davemloft.net>
Link: http://lkml.kernel.org/r/20170824073105.3901-1-jslaby@suse.cz


# beef560b 14-Apr-2014 Martin Schwidefsky <schwidefsky@de.ibm.com>

s390/uaccess: simplify control register updates

Always switch to the kernel ASCE in switch_mm. Load the secondary
space ASCE in finish_arch_post_lock_switch after checking that
any pending page table operations have completed. The primary
ASCE is loaded in entry[64].S. With this the update_primary_asce
call can be removed from the switch_to macro and from the start
of switch_mm function. Remove the load_primary argument from
update_user_asce/clear_user_asce, rename update_user_asce to
set_user_asce and rename update_primary_asce to load_kernel_asce.

Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>


# 457f2180 21-Mar-2014 Heiko Carstens <hca@linux.ibm.com>

s390/uaccess: rework uaccess code - fix locking issues

The current uaccess code uses a page table walk in some circumstances,
e.g. in case of the in atomic futex operations or if running on old
hardware which doesn't support the mvcos instruction.

However it turned out that the page table walk code does not correctly
lock page tables when accessing page table entries.
In other words: a different cpu may invalidate a page table entry while
the current cpu inspects the pte. This may lead to random data corruption.

Adding correct locking however isn't trivial for all uaccess operations.
Especially copy_in_user() is problematic since that requires to hold at
least two locks, but must be protected against ABBA deadlock when a
different cpu also performs a copy_in_user() operation.

So the solution is a different approach where we change address spaces:

User space runs in primary address mode, or access register mode within
vdso code, like it currently already does.

The kernel usually also runs in home space mode, however when accessing
user space the kernel switches to primary or secondary address mode if
the mvcos instruction is not available or if a compare-and-swap (futex)
instruction on a user space address is performed.
KVM however is special, since that requires the kernel to run in home
address space while implicitly accessing user space with the sie
instruction.

So we end up with:

User space:
- runs in primary or access register mode
- cr1 contains the user asce
- cr7 contains the user asce
- cr13 contains the kernel asce

Kernel space:
- runs in home space mode
- cr1 contains the user or kernel asce
-> the kernel asce is loaded when a uaccess requires primary or
secondary address mode
- cr7 contains the user or kernel asce, (changed with set_fs())
- cr13 contains the kernel asce

In case of uaccess the kernel changes to:
- primary space mode in case of a uaccess (copy_to_user) and uses
e.g. the mvcp instruction to access user space. However the kernel
will stay in home space mode if the mvcos instruction is available
- secondary space mode in case of futex atomic operations, so that the
instructions come from primary address space and data from secondary
space

In case of kvm the kernel runs in home space mode, but cr1 gets switched
to contain the gmap asce before the sie instruction gets executed. When
the sie instruction is finished cr1 will be switched back to contain the
user asce.

A context switch between two processes will always load the kernel asce
for the next process in cr1. So the first exit to user space is a bit
more expensive (one extra load control register instruction) than before,
however keeps the code rather simple.

In sum this means there is no need to perform any error prone page table
walks anymore when accessing user space.

The patch seems to be rather large, however it mainly removes the
the page table walk code and restores the previously deleted "standard"
uaccess code, with a couple of changes.

The uaccess without mvcos mode can be enforced with the "uaccess_primary"
kernel parameter.

Reported-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>


# 4f41c2b4 23-Jan-2014 Heiko Carstens <hca@linux.ibm.com>

s390/uaccess: get rid of indirect function calls

There are only two uaccess variants on s390 left: the version that is used
if the mvcos instruction is available, and the page table walk variant.
So there is no need for expensive indirect function calls.

By default the mvcos variant will be called. If the mvcos instruction is not
available it will call the page table walk variant.

For minimal performance impact the "if (mvcos_is_available)" is implemented
with a jump label, which will be a six byte nop on machines with mvcos.

Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>


# d12a2970 21-Feb-2013 Heiko Carstens <hca@linux.ibm.com>

s390/uaccess: remove pointless access_ok() checks

access_ok() always returns 'true' on s390. Therefore all calls
are quite pointless and can be removed.

Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>


# da477737 23-May-2012 Heiko Carstens <hca@linux.ibm.com>

s390/headers: remove #ifdef __KERNEL__ from not exported headers

Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>


# 8d7718aa 10-Mar-2011 Michel Lespinasse <walken@google.com>

futex: Sanitize futex ops argument types

Change futex_atomic_op_inuser and futex_atomic_cmpxchg_inatomic
prototypes to use u32 types for the futex as this is the data type the
futex core code uses all over the place.

Signed-off-by: Michel Lespinasse <walken@google.com>
Cc: Darren Hart <darren@dvhart.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: David Howells <dhowells@redhat.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
LKML-Reference: <20110311025058.GD26122@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>


# 37a9d912 10-Mar-2011 Michel Lespinasse <walken@google.com>

futex: Sanitize cmpxchg_futex_value_locked API

The cmpxchg_futex_value_locked API was funny in that it returned either
the original, user-exposed futex value OR an error code such as -EFAULT.
This was confusing at best, and could be a source of livelocks in places
that retry the cmpxchg_futex_value_locked after trying to fix the issue
by running fault_in_user_writeable().

This change makes the cmpxchg_futex_value_locked API more similar to the
get_futex_value_locked one, returning an error code and updating the
original value through a reference argument.

Signed-off-by: Michel Lespinasse <walken@google.com>
Acked-by: Chris Metcalf <cmetcalf@tilera.com> [tile]
Acked-by: Tony Luck <tony.luck@intel.com> [ia64]
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michal Simek <monstr@monstr.eu> [microblaze]
Acked-by: David Howells <dhowells@redhat.com> [frv]
Cc: Darren Hart <darren@dvhart.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
LKML-Reference: <20110311024851.GC26122@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>


# c6557e7f 01-Aug-2008 Martin Schwidefsky <schwidefsky@de.ibm.com>

[S390] move include/asm-s390 to arch/s390/include/asm

Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>