History log of /linux-master/arch/s390/boot/startup.c
Revision Date Author Comments
# 13ff094d 21-Feb-2024 Alexander Gordeev <agordeev@linux.ibm.com>

s390/boot: fix minor comment style damages

Acked-by: Sumanth Korikkar <sumanthk@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# 923d48e4 21-Feb-2024 Alexander Gordeev <agordeev@linux.ibm.com>

s390/boot: do not check for zero-termination relocation entry

The relocation table is not expected to contain a zero-termination
entry. The existing check is likely a left-over from similar x86
code that uses zero-entries as delimiters. s390 does not have ones
and therefore the check could be avoided.

Suggested-by: Ilya Leoshkevich <iii@linux.ibm.com>
Acked-by: Sumanth Korikkar <sumanthk@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# 4394a507 21-Feb-2024 Alexander Gordeev <agordeev@linux.ibm.com>

s390/boot: make type of __vmlinux_relocs_64_start|end consistent

Make the type of __vmlinux_relocs_64_start|end symbols as
char array, just like it is done for all other sections.
Function rescue_relocs() is simplified as result.

Suggested-by: Heiko Carstens <hca@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# 8495fd4d 21-Feb-2024 Alexander Gordeev <agordeev@linux.ibm.com>

s390/boot: sanitize kaslr_adjust_relocs() function prototype

Do not use vmlinux.image_size within kaslr_adjust_relocs() function
to calculate the upper relocation table boundary. Instead, make both
lower and upper boundaries the function input parameters.

Acked-by: Sumanth Korikkar <sumanthk@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# 3334fda6 21-Feb-2024 Alexander Gordeev <agordeev@linux.ibm.com>

s390/boot: simplify GOT handling

The end of GOT is calculated dynamically on boot. The size of GOT
is calculated on build from the start and end of GOT. Avoid both
calculations and use the end of GOT directly.

Acked-by: Sumanth Korikkar <sumanthk@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# 778666df 19-Feb-2024 Josh Poimboeuf <jpoimboe@kernel.org>

s390: compile relocatable kernel without -fPIE

On s390, currently kernel uses the '-fPIE' compiler flag for compiling
vmlinux. This has a few problems:

- It uses dynamic symbols (.dynsym), for which the linker refuses to
allow more than 64k sections. This can break features which use
'-ffunction-sections' and '-fdata-sections', including kpatch-build
[1] and Function Granular KASLR.

- It unnecessarily uses GOT relocations, adding an extra layer of
indirection for many memory accesses.

Instead of using '-fPIE', resolve all the relocations at link time and
then manually adjust any absolute relocations (R_390_64) during boot.

This is done by first telling the linker to preserve all relocations
during the vmlinux link. (Note this is harmless: they are later
stripped in the vmlinux.bin link.)

Then use the 'relocs' tool to find all absolute relocations (R_390_64)
which apply to allocatable sections. The offsets of those relocations
are saved in a special section which is then used to adjust the
relocations during boot.

(Note: For some reason, Clang occasionally creates a GOT reference, even
without '-fPIE'. So Clang-compiled kernels have a GOT, which needs to
be adjusted.)

On my mostly-defconfig kernel, this reduces kernel text size by ~1.3%.

[1] https://github.com/dynup/kpatch/issues/1284
[2] https://gcc.gnu.org/pipermail/gcc-patches/2023-June/622872.html
[3] https://gcc.gnu.org/pipermail/gcc-patches/2023-August/625986.html

Compiler consideration:

Gcc recently implemented an optimization [2] for loading symbols without
explicit alignment, aligning with the IBM Z ELF ABI. This ABI mandates
symbols to reside on a 2-byte boundary, enabling the use of the larl
instruction. However, kernel linker scripts may still generate unaligned
symbols. To address this, a new -munaligned-symbols option has been
introduced [3] in recent gcc versions. This option has to be used with
future gcc versions.

Older Clang lacks support for handling unaligned symbols generated
by kernel linker scripts when the kernel is built without -fPIE. However,
future versions of Clang will include support for the -munaligned-symbols
option. When the support is unavailable, compile the kernel with -fPIE
to maintain the existing behavior.

In addition to it:
move vmlinux.relocs to safe relocation

When the kernel is built with CONFIG_KERNEL_UNCOMPRESSED, the entire
uncompressed vmlinux.bin is positioned in the bzImage decompressor
image at the default kernel LMA of 0x100000, enabling it to be executed
in-place. However, the size of .vmlinux.relocs could be large enough to
cause an overlap with the uncompressed kernel at the address 0x100000.
To address this issue, .vmlinux.relocs is positioned after the
.rodata.compressed in the bzImage. Nevertheless, in this configuration,
vmlinux.relocs will overlap with the .bss section of vmlinux.bin. To
overcome that, move vmlinux.relocs to a safe location before clearing
.bss and handling relocs.

Compile warning fix from Sumanth Korikkar:

When kernel is built with CONFIG_LD_ORPHAN_WARN and -fno-PIE, there are
several warnings:

ld: warning: orphan section `.rela.iplt' from
`arch/s390/kernel/head64.o' being placed in section `.rela.dyn'
ld: warning: orphan section `.rela.head.text' from
`arch/s390/kernel/head64.o' being placed in section `.rela.dyn'
ld: warning: orphan section `.rela.init.text' from
`arch/s390/kernel/head64.o' being placed in section `.rela.dyn'
ld: warning: orphan section `.rela.rodata.cst8' from
`arch/s390/kernel/head64.o' being placed in section `.rela.dyn'

Orphan sections are sections that exist in an object file but don't have
a corresponding output section in the final executable. ld raises a
warning when it identifies such sections.

Eliminate the warning by placing all .rela orphan sections in .rela.dyn
and raise an error when size of .rela.dyn is greater than zero. i.e.
Dont just neglect orphan sections.

This is similar to adjustment performed in x86, where kernel is built
with -fno-PIE.
commit 5354e84598f2 ("x86/build: Add asserts for unwanted sections")

[sumanthk@linux.ibm.com: rebased Josh Poimboeuf patches and move
vmlinux.relocs to safe location]
[hca@linux.ibm.com: merged compile warning fix from Sumanth]
Tested-by: Sumanth Korikkar <sumanthk@linux.ibm.com>
Acked-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Sumanth Korikkar <sumanthk@linux.ibm.com>
Link: https://lore.kernel.org/r/20240219132734.22881-4-sumanthk@linux.ibm.com
Link: https://lore.kernel.org/r/20240219132734.22881-5-sumanthk@linux.ibm.com
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# 65f8780e 16-Jul-2023 Alexander Gordeev <agordeev@linux.ibm.com>

s390/boot: always align vmalloc area on segment boundary

The size of vmalloc area depends from various factors
on boot and could be set to:

1. Default size as determined by VMALLOC_DEFAULT_SIZE macro;
2. One half of the virtual address space not occupied by
modules and fixed mappings;
3. The size provided by user with vmalloc= kernel command
line parameter;

In cases [1] and [2] the vmalloc area base address is aligned
on Region3 table type boundary, while in case [3] in might get
aligned on page boundary.

Limit the waste of page tables and always align vmalloc area
size and base address on segment boundary.

Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>


# 468a3bc2 27-Oct-2023 Heiko Carstens <hca@linux.ibm.com>

s390/cmma: move parsing of cmma kernel parameter to early boot code

The "cmma=" kernel command line parameter needs to be parsed early for
upcoming changes. Therefore move the parsing code.

Note that EX_TABLE handling of cmma_test_essa() needs to be open-coded,
since the early boot code doesn't have infrastructure for handling expected
exceptions.

Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>


# 99441a38 11-Sep-2023 Heiko Carstens <hca@linux.ibm.com>

s390: use control register bit defines

Use control register bit defines instead of plain numbers where
possible.

Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>


# 8d5e98f8 11-Sep-2023 Heiko Carstens <hca@linux.ibm.com>

s390/ctlreg: add local and system prefix to some functions

Add local and system prefix to some functions to clarify they change
control register contents on either the local CPU or the on all CPUs.

This results in the following API:

Two defines which load and save multiple control registers.
The defines correlate with the following C prototypes:

void __local_ctl_load(unsigned long *, unsigned int cr_low, unsigned int cr_high);
void __local_ctl_store(unsigned long *, unsigned int cr_low, unsigned int cr_high);

Two functions which locally set or clear one bit for a specified
control register:

void local_ctl_set_bit(unsigned int cr, unsigned int bit);
void local_ctl_clear_bit(unsigned int cr, unsigned int bit);

Two functions which set or clear one bit for a specified control
register on all CPUs:

void system_ctl_set_bit(unsigned int cr, unsigned int bit);
void system_ctl_clear_bit(unsigend int cr, unsigned int bit);

Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>


# c0f1d478 25-Aug-2023 Heiko Carstens <hca@linux.ibm.com>

s390/mm: simplify kernel mapping setup

The kernel mapping is setup in two stages: in the decompressor map all
pages with RWX permissions, and within the kernel change all mappings to
their final permissions, where most of the mappings are changed from RWX to
RWNX.

Change this and map all pages RWNX from the beginning, however without
enabling noexec via control register modification. This means that
effectively all pages are used with RWX permissions like before. When the
final permissions have been applied to the kernel mapping enable noexec via
control register modification.

This allows to remove quite a bit of non-obvious code.

Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# b6f10e2f 25-Aug-2023 Heiko Carstens <hca@linux.ibm.com>

s390: remove "noexec" option

Do the same like x86 with commit 76ea0025a214 ("x86/cpu: Remove "noexec"")
and remove the "noexec" kernel command line option.

Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# 5cfdff02 05-Aug-2023 Alexander Gordeev <agordeev@linux.ibm.com>

s390/boot: fix multi-line comments style

Make multi-line comment style consistent across the source.

Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# 09cd4ffa 04-Aug-2023 Alexander Gordeev <agordeev@linux.ibm.com>

s390/boot: account Real Memory Copy and Lowcore areas

Real Memory Copy and (absolute) Lowcore areas are
not accounted when virtual memory layout is set up.

Fixes: 4df29d2b9024 ("s390/smp: rework absolute lowcore access")
Fixes: 2f0e8aae26a2 ("s390/mm: rework memcpy_real() to avoid DAT-off mode")
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# a984f27e 04-Aug-2023 Alexander Gordeev <agordeev@linux.ibm.com>

s390/mm: define Real Memory Copy size and mask macros

Make Real Memory Copy area size and mask explicit.
This does not bring any functional change and only
needed for clarity.

Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# 8ddccc8a 05-Jul-2023 Alexander Gordeev <agordeev@linux.ibm.com>

s390/boot: cleanup number of page table levels setup

The separate vmalloc area size check against _REGION2_SIZE
is needed in case user provided insanely large value using
vmalloc= kernel command line parameter. That could lead to
overflow and selecting 3 page table levels instead of 4.

Use size_add() for the overflow check and get rid of the
extra vmalloc area check.

With the current values of CONFIG_MAX_PHYSMEM_BITS and
PAGES_PER_SECTION the sum of maximal possible size of
identity mapping and vmemmap area (derived from these
macros) plus modules area size MODULES_LEN can not
overflow. Thus, that sum is used as first addend while
vmalloc area size is second addend for size_add().

Suggested-by: Heiko Carstens <hca@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# e7e828eb 05-Jul-2023 Alexander Gordeev <agordeev@linux.ibm.com>

s390/mm: get rid of VMEM_MAX_PHYS macro

There are no users of VMEM_MAX_PHYS macro left, remove it.

Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# 94fd5220 02-Jul-2023 Alexander Gordeev <agordeev@linux.ibm.com>

s390/mm: rework arch_get_mappable_range() callback

As per description in mm/memory_hotplug.c platforms should define
arch_get_mappable_range() that provides maximum possible addressable
physical memory range for which the linear mapping could be created.

The current implementation uses VMEM_MAX_PHYS macro as the maximum
mappable physical address and it is simply a cast to vmemmap. Since
the address is in physical address space the natural upper limit of
MAX_PHYSMEM_BITS is honoured:

vmemmap_start = min(vmemmap_start, 1UL << MAX_PHYSMEM_BITS);

Further, to make sure the identity mapping would not overlay with
vmemmap, the size of identity mapping could be stripped like this:

ident_map_size = min(ident_map_size, vmemmap_start);

Similarily, any other memory that could be added (e.g DCSS segment)
should not overlay with vmemmap as well and that is prevented by
using vmemmap (VMEM_MAX_PHYS macro) as the upper limit.

However, while the use of VMEM_MAX_PHYS brings the desired result
it actually poses two issues:

1. As described, vmemmap is handled as a physical address, although
it is actually a pointer to struct page in virtual address space.

2. As vmemmap is a virtual address it could have been located
anywhere in the virtual address space. However, the desired
necessity to honour MAX_PHYSMEM_BITS limit prevents that.

Rework arch_get_mappable_range() callback in a way it does not
use VMEM_MAX_PHYS macro and does not confuse the notion of virtual
vs physical address spacees as result. That paves the way for moving
vmemmap elsewhere and optimizing the virtual address space layout.

Introduce max_mappable preserved boot variable and let function
setup_kernel_memory_layout() set it up. As result, the rest of the
code is does not need to know the virtual memory layout specifics.

Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# 54372cf0 03-Jul-2023 Alexander Gordeev <agordeev@linux.ibm.com>

Revert "s390/mm: get rid of VMEM_MAX_PHYS macro"

This reverts commit 456be42aa713e7f83b467db66ceae779431c7d9d.

The assumption VMEM_MAX_PHYS should match ident_map_size
is wrong. At least discontiguous saved segments (DCSS)
could be loaded at addresses beyond ident_map_size and
dcssblk device driver might fail as result.

Reported-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>


# 456be42a 17-Jun-2023 Alexander Gordeev <agordeev@linux.ibm.com>

s390/mm: get rid of VMEM_MAX_PHYS macro

VMEM_MAX_PHYS is supposed to be the highest physical
address that can be added to the identity mapping.
It should match ident_map_size, which has the same
meaning. However, unlike ident_map_size it is not
adjusted against various limiting factors (see the
comment to setup_ident_map_size() function). That
renders all checks against VMEM_MAX_PHYS invalid.

Further, VMEM_MAX_PHYS is currently set to vmemmap,
which is an address in virtual memory space. However,
it gets compared against physical addresses in various
locations. That works, because both address spaces
are the same on s390, but otherwise it is wrong.

Instead of fixing VMEM_MAX_PHYS misuse and semantics
just remove it.

Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>


# b3e0423c 15-Mar-2023 Vasily Gorbik <gor@linux.ibm.com>

s390/kaslr: randomize amode31 base address

When the KASLR is enabled, randomize the base address of the amode31 image
within the first 2 GB, similar to the approach taken for the vmlinux
image. This makes it harder to predict the location of amode31 data
and code.

Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>


# 6e259bc5 21-Feb-2023 Vasily Gorbik <gor@linux.ibm.com>

s390/kaslr: generalize and improve random base distribution

Improve the distribution algorithm of random base address to ensure
a uniformity among all suitable addresses. To generate a random value
once, and to build a continuous range in which every value is suitable,
count all the suitable addresses (referred to as positions) that can be
used as a base address. The positions are counted by iterating over the
usable memory ranges. For each range that is big enough to accommodate
the image, count all the suitable addresses where the image can be placed,
while taking reserved memory ranges into consideration.

A new function "iterate_valid_positions()" has dual purpose. Firstly, it
is called to count the positions in a given memory range, and secondly,
to convert a random position back to an address.

"get_random_base()" has been replaced with more generic
"randomize_within_range()" which now could be called for randomizing
base addresses not just for the kernel image.

Acked-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>


# 89843520 15-Mar-2023 Vasily Gorbik <gor@linux.ibm.com>

s390/boot: pin amode31 default lma

The special amode31 part of the kernel must always remain below 2Gb. Place
it just under vmlinux.default_lma by default, which makes it easier to
debug amode31 as its default lma is known 0x10000 - 0x3000 (currently,
amode31's size is 3 pages). This location is always available as it is
originally occupied by the vmlinux archive.

Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>


# a1d2d9cb 15-Mar-2023 Vasily Gorbik <gor@linux.ibm.com>

s390/boot: do not change default_lma

The current modification of the default_lma is illogical and should be
avoided. It would be more appropriate to introduce and utilize a new
variable vmlinux_lma instead, so that default_lma remains unchanged and
at its original "default" value of 0x100000.

Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>


# bb87190c 31-Mar-2023 Heiko Carstens <hca@linux.ibm.com>

s390/kaslr: provide kaslr_enabled() function

Just like other architectures provide a kaslr_enabled() function, instead
of directly accessing a global variable.

Also pass the renamed __kaslr_enabled variable from the decompressor to the
kernel, so that kalsr_enabled() is available there too. This will be used
by a subsequent patch which randomizes the module base load address.

Reviewed-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>


# 557b1970 09-Feb-2023 Vasily Gorbik <gor@linux.ibm.com>

s390/kasan: move shadow mapping to decompressor

Since regular paging structs are initialized in decompressor already
move KASAN shadow mapping to decompressor as well. This helps to avoid
allocating KASAN required memory in 1 large chunk, de-duplicate paging
structs creation code and start the uncompressed kernel with KASAN
instrumentation right away. This also allows to avoid all pitfalls
accidentally calling KASAN instrumented code during KASAN initialization.

Acked-by: Heiko Carstens <hca@linux.ibm.com>
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# f913a660 02-Feb-2023 Vasily Gorbik <gor@linux.ibm.com>

s390/boot: rework decompressor reserved tracking

Currently several approaches for finding unused memory in decompressor
are utilized. While "safe_addr" grows towards higher addresses, vmem
code allocates paging structures top down. The former requires careful
ordering. In addition to that ipl report handling code verifies potential
intersections with secure boot certificates on its own. Neither of two
approaches are memory holes aware and consistent with each other in low
memory conditions.

To solve that, existing approaches are generalized and combined
together, as well as online memory ranges are now taken into
consideration.

physmem_info has been extended to contain reserved memory ranges. New
set of functions allow to handle reserves and find unused memory.
All reserves and memory allocations are "typed". In case of out of
memory condition decompressor fails with detailed info on current
reserved ranges and usable online memory.

Linux version 6.2.0 ...
Kernel command line: ... mem=100M
Our of memory allocating 100000 bytes 100000 aligned in range 0:5800000
Reserved memory ranges:
0000000000000000 0000000003e33000 DECOMPRESSOR
0000000003f00000 00000000057648a3 INITRD
00000000063e0000 00000000063e8000 VMEM
00000000063eb000 00000000063f4000 VMEM
00000000063f7800 0000000006400000 VMEM
0000000005800000 0000000006300000 KASAN
Usable online memory ranges (info source: sclp read info [3]):
0000000000000000 0000000006400000
Usable online memory total: 6400000 Reserved: 61b10a3 Free: 24ef5d
Call Trace:
(sp:000000000002bd58 [<0000000000012a70>] physmem_alloc_top_down+0x60/0x14c)
sp:000000000002bdc8 [<0000000000013756>] _pa+0x56/0x6a
sp:000000000002bdf0 [<0000000000013bcc>] pgtable_populate+0x45c/0x65e
sp:000000000002be90 [<00000000000140aa>] setup_vmem+0x2da/0x424
sp:000000000002bec8 [<0000000000011c20>] startup_kernel+0x428/0x8b4
sp:000000000002bf60 [<00000000000100f4>] startup_normal+0xd4/0xd4

physmem_alloc_range allows to find free memory in specified range. It
should be used for one time allocations only like finding position for
amode31 and vmlinux.
physmem_alloc_top_down can be used just like physmem_alloc_range, but
it also allows multiple allocations per type and tries to merge sequential
allocations together. Which is useful for paging structures allocations.
If sequential allocations cannot be merged together they are "chained",
allowing easy per type reserved ranges enumeration and migration to
memblock later. Extra "struct reserved_range" allocated for chaining are
not tracked or reserved but rely on the fact that both
physmem_alloc_range and physmem_alloc_top_down search for free memory
only below current top down allocator position. All reserved ranges
should be transferred to memblock before memblock allocations are
enabled.

The startup code has been reordered to delay any memory allocations until
online memory ranges are detected and occupied memory ranges are marked as
reserved to be excluded from follow-up allocations.
Ipl report certificates are a special case, ipl report certificates list
is checked together with other memory reserves until certificates are
saved elsewhere.
KASAN required memory for shadow memory allocation and mapping is reserved
as 1 large chunk which is later passed to KASAN early initialization code.

Acked-by: Heiko Carstens <hca@linux.ibm.com>
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# 8c37cb7d 08-Feb-2023 Vasily Gorbik <gor@linux.ibm.com>

s390/boot: rename mem_detect to physmem_info

In preparation to extending mem_detect with additional information like
reserved ranges rename it to more generic physmem_info. This new naming
also help to avoid confusion by using more exact terms like "physmem
online ranges", etc.

Acked-by: Heiko Carstens <hca@linux.ibm.com>
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# 53fcc7db 15-Feb-2023 Vasily Gorbik <gor@linux.ibm.com>

s390/boot: remove non-functioning image bootable check

check_image_bootable() has been introduced with commit 627c9b62058e
("s390/boot: block uncompressed vmlinux booting attempts") to make sure
that users don't try to boot uncompressed vmlinux ELF image in qemu. It
used to be possible quite some time ago. That commit prevented confusion
with uncompressed vmlinux image starting to boot and even printing
kernel messages until it crashed. Users might have tried to report the
problem without realizing they are doing something which was not intended.
Since commit f1d3c5323772 ("s390/boot: move sclp early buffer from fixed
address in asm to C") check_image_bootable() doesn't function properly
anymore, as well as booting uncompressed vmlinux image in qemu doesn't
really produce any output and crashes. Moving forward it doesn't make
sense to fix check_image_bootable() anymore, so simply remove it.

Acked-by: Alexander Gordeev <agordeev@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# af073526 10-Feb-2023 Vasily Gorbik <gor@linux.ibm.com>

s390/mem_detect: do not truncate online memory ranges info

Commit bf64f0517e5d ("s390/mem_detect: handle online memory limit
just once") introduced truncation of mem_detect online ranges
based on identity mapping size. For kdump case however the full
set of online memory ranges has to be feed into memblock_physmem_add
so that crashed system memory could be extracted.

Instead of truncating introduce a "usable limit" which is respected by
mem_detect api. Also add extra online memory ranges iterator which still
provides full set of online memory ranges disregarding the "usable limit".

Fixes: bf64f0517e5d ("s390/mem_detect: handle online memory limit just once")
Reported-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Tested-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# 6bddf115 02-Feb-2023 Vasily Gorbik <gor@linux.ibm.com>

s390/boot: avoid potential amode31 truncation

Fixes: bb1520d581a3 ("s390/mm: start kernel with DAT enabled")
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# d1725ca6 02-Feb-2023 Vasily Gorbik <gor@linux.ibm.com>

s390/boot: move detect_facilities() after cmd line parsing

Facilities setup has to be done after "facilities" command line option
parsing, it might set extra or remove existing facilities bits for
testing purposes.

Fixes: bb1520d581a3 ("s390/mm: start kernel with DAT enabled")
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# bf64f051 28-Jan-2023 Vasily Gorbik <gor@linux.ibm.com>

s390/mem_detect: handle online memory limit just once

Introduce mem_detect_truncate() to cut any online memory ranges above
established identity mapping size, so that mem_detect users wouldn't
have to do it over and over again.

Suggested-by: Alexander Gordeev <agordeev@linux.ibm.com>
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# 22476f47 22-Jan-2023 Vasily Gorbik <gor@linux.ibm.com>

s390/boot: fix mem_detect extended area allocation

Allocation of mem_detect extended area was not considered neither
in commit 9641b8cc733f ("s390/ipl: read IPL report at early boot")
nor in commit b2d24b97b2a9 ("s390/kernel: add support for kernel address
space layout randomization (KASLR)"). As a result mem_detect extended
theoretically may overlap with ipl report or randomized kernel image
position. But as mem_detect code will allocate extended area only
upon exceeding 255 online regions (which should alternate with offline
memory regions) it is not seen in practice.

To make sure mem_detect extended area does not overlap with ipl report
or randomized kernel position extend usage of "safe_addr". Make initrd
handling and mem_detect extended area allocation code move it further
right and make KASLR takes in into consideration as well.

Fixes: 9641b8cc733f ("s390/ipl: read IPL report at early boot")
Fixes: b2d24b97b2a9 ("s390/kernel: add support for kernel address space layout randomization (KASLR)")
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# e966ccf8 23-Jan-2023 Vasily Gorbik <gor@linux.ibm.com>

s390/boot: avoid mapping standby memory

Commit bb1520d581a3 ("s390/mm: start kernel with DAT enabled")
doesn't consider online memory holes due to potential memory offlining
and erroneously creates pgtables for stand-by memory, which bear RW+X
attribute and trigger a warning:

RANGE SIZE STATE REMOVABLE BLOCK
0x0000000000000000-0x0000000c3fffffff 49G online yes 0-48
0x0000000c40000000-0x0000000c7fffffff 1G offline 49
0x0000000c80000000-0x0000000fffffffff 14G online yes 50-63
0x0000001000000000-0x00000013ffffffff 16G offline 64-79

s390/mm: Found insecure W+X mapping at address 0xc40000000
WARNING: CPU: 14 PID: 1 at arch/s390/mm/dump_pagetables.c:142 note_page+0x2cc/0x2d8

Map only online memory ranges which fit within identity mapping limit.

Fixes: bb1520d581a3 ("s390/mm: start kernel with DAT enabled")
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# 8e9205d2 11-Dec-2022 Alexander Gordeev <agordeev@linux.ibm.com>

s390/mm: allocate Real Memory Copy Area in decompressor

Move Real Memory Copy Area allocation to the decompressor.
As result, memcpy_real() and memcpy_real_iter() movers
become usable since the very moment the kernel starts.

Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# bb1520d5 13-Dec-2022 Alexander Gordeev <agordeev@linux.ibm.com>

s390/mm: start kernel with DAT enabled

The setup of the kernel virtual address space is spread
throughout the sources, boot stages and config options
like this:

1. The available physical memory regions are queried
and stored as mem_detect information for later use
in the decompressor.

2. Based on the physical memory availability the virtual
memory layout is established in the decompressor;

3. If CONFIG_KASAN is disabled the kernel paging setup
code populates kernel pgtables and turns DAT mode on.
It uses the information stored at step [1].

4. If CONFIG_KASAN is enabled the kernel early boot
kasan setup populates kernel pgtables and turns DAT
mode on. It uses the information stored at step [1].

The kasan setup creates early_pg_dir directory and
directly overwrites swapper_pg_dir entries to make
shadow memory pages available.

Move the kernel virtual memory setup to the decompressor
and start the kernel with DAT turned on right from the
very first istruction. That completely eliminates the
boot phase when the kernel runs in DAT-off mode, simplies
the overall design and consolidates pgtables setup.

The identity mapping is created in the decompressor, while
kasan shadow mappings are still created by the early boot
kernel code.

Share with decompressor the existing kasan memory allocator.
It decreases the size of a newly requested memory block from
pgalloc_pos and ensures that kernel image is not overwritten.
pgalloc_low and pgalloc_pos pointers are made preserved boot
variables for that.

Use the bootdata infrastructure to setup swapper_pg_dir
and invalid_pg_dir directories used by the kernel later.
The interim early_pg_dir directory established by the
kasan initialization code gets eliminated as result.

As the kernel runs in DAT-on mode only the PSW_KERNEL_BITS
define gets PSW_MASK_DAT bit by default. Additionally, the
setup_lowcore_dat_off() and setup_lowcore_dat_on() routines
get merged, since there is no DAT-off mode stage anymore.

The memory mappings are created with RW+X protection that
allows the early boot code setting up all necessary data
and services for the kernel being booted. Just before the
paging is enabled the memory protection is changed to
RO+X for text, RO+NX for read-only data and RW+NX for
kernel data and the identity mapping.

Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# bd50b743 04-Dec-2022 Alexander Gordeev <agordeev@linux.ibm.com>

s390/boot: detect and enable memory facilities

Detect and enable memory facilities which is a
prerequisite for pgtables setup in the decompressor.

Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# 80ddf5ce 30-Oct-2022 Heiko Carstens <hca@linux.ibm.com>

s390: always build relocatable kernel

Nathan Chancellor reported several link errors on s390 with
CONFIG_RELOCATABLE disabled, after binutils commit 906f69cf65da ("IBM
zSystems: Issue error for *DBL relocs on misaligned symbols"). The binutils
commit reveals potential miscompiles that might have happened already
before with linker script defined symbols at odd addresses.

A similar bug was recently fixed in the kernel with commit c9305b6c1f52
("s390: fix nospec table alignments").

See https://github.com/ClangBuiltLinux/linux/issues/1747 for an analysis
from Ulich Weigand.

Therefore always build a relocatable kernel to avoid this problem. There is
hardly any use-case for non-relocatable kernels, so this shouldn't be
controversial.

Link: https://github.com/ClangBuiltLinux/linux/issues/1747
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Reported-by: Nathan Chancellor <nathan@kernel.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Link: https://lore.kernel.org/r/20221030182202.2062705-1-hca@linux.ibm.com
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>


# 2f0e8aae 24-Jul-2022 Alexander Gordeev <agordeev@linux.ibm.com>

s390/mm: rework memcpy_real() to avoid DAT-off mode

Function memcpy_real() is an univeral data mover that does not
require DAT mode to be able reading from a physical address.
Its advantage is an ability to read from any address, even
those for which no kernel virtual mapping exists.

Although memcpy_real() is interrupt-safe, there are no handlers
that make use of this function. The compiler instrumentation
have to be disabled and separate no-DAT stack used to allow
execution of the function once DAT mode is disabled.

Rework memcpy_real() to overcome these shortcomings. As result,
data copying (which is primarily reading out a crashed system
memory by a user process) is executed on a regular stack with
enabled interrupts. Also, use of memcpy_real_buf swap buffer
becomes unnecessary and the swapping is eliminated.

The above is achieved by using a fixed virtual address range
that spans a single page and remaps that page repeatedly when
memcpy_real() is called for a particular physical address.

Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>


# 4df29d2b 20-Jul-2022 Alexander Gordeev <agordeev@linux.ibm.com>

s390/smp: rework absolute lowcore access

Temporary unsetting of the prefix page in memcpy_absolute() routine
poses a risk of executing code path with unexpectedly disabled prefix
page. This rework avoids the prefix page uninstalling and disabling
of normal and machine check interrupts when accessing the absolute
zero memory.

Although memcpy_absolute() routine can access the whole memory, it is
only used to update the absolute zero lowcore. This rework therefore
introduces a new mechanism for the absolute zero lowcore access and
scraps memcpy_absolute() routine for good.

Instead, an area is reserved in the virtual memory that is used for
the absolute lowcore access only. That area holds an array of 8KB
virtual mappings - one per CPU. Whenever a CPU is brought online, the
corresponding item is mapped to the real address of the previously
installed prefix page.

The absolute zero lowcore access works like this: a CPU calls the
new primitive get_abs_lowcore() to obtain its 8KB mapping as a
pointer to the struct lowcore. Virtual address references to that
pointer get translated to the real addresses of the prefix page,
which in turn gets swapped with the absolute zero memory addresses
due to prefixing. Once the pointer is not needed it must be released
with put_abs_lowcore() primitive:

struct lowcore *abs_lc;
unsigned long flags;

abs_lc = get_abs_lowcore(&flags);
abs_lc->... = ...;
put_abs_lowcore(abs_lc, flags);

To ensure the described mechanism works large segment- and region-
table entries must be avoided for the 8KB mappings. Failure to do
so results in usage of Region-Frame Absolute Address (RFAA) or
Segment-Frame Absolute Address (SFAA) large page fields. In that
case absolute addresses would be used to address the prefix page
instead of the real ones and the prefixing would get bypassed.

Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>


# 5e441f61 06-Aug-2022 Alexander Gordeev <agordeev@linux.ibm.com>

Revert "s390/smp: rework absolute lowcore access"

This reverts commit 7d06fed77b7d8fc9f6cc41b4e3f2823d32532ad8.

This introduced vmem_mutex locking from vmem_map_4k_page()
function called from smp_reinit_ipl_cpu() with interrupts
disabled. While it is a pre-SMP early initcall no other CPUs
running in parallel nor other code taking vmem_mutex on this
boot stage - it still needs to be fixed.

Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>


# 7d06fed7 20-Jul-2022 Alexander Gordeev <agordeev@linux.ibm.com>

s390/smp: rework absolute lowcore access

Temporary unsetting of the prefix page in memcpy_absolute() routine
poses a risk of executing code path with unexpectedly disabled prefix
page. This rework avoids the prefix page uninstalling and disabling
of normal and machine check interrupts when accessing the absolute
zero memory.

Although memcpy_absolute() routine can access the whole memory, it is
only used to update the absolute zero lowcore. This rework therefore
introduces a new mechanism for the absolute zero lowcore access and
scraps memcpy_absolute() routine for good.

Instead, an area is reserved in the virtual memory that is used for
the absolute lowcore access only. That area holds an array of 8KB
virtual mappings - one per CPU. Whenever a CPU is brought online, the
corresponding item is mapped to the real address of the previously
installed prefix page.

The absolute zero lowcore access works like this: a CPU calls the
new primitive get_abs_lowcore() to obtain its 8KB mapping as a
pointer to the struct lowcore. Virtual address references to that
pointer get translated to the real addresses of the prefix page,
which in turn gets swapped with the absolute zero memory addresses
due to prefixing. Once the pointer is not needed it must be released
with put_abs_lowcore() primitive:

struct lowcore *abs_lc;
unsigned long flags;

abs_lc = get_abs_lowcore(&flags);
abs_lc->... = ...;
put_abs_lowcore(abs_lc, flags);

To ensure the described mechanism works large segment- and region-
table entries must be avoided for the 8KB mappings. Failure to do
so results in usage of Region-Frame Absolute Address (RFAA) or
Segment-Frame Absolute Address (SFAA) large page fields. In that
case absolute addresses would be used to address the prefix page
instead of the real ones and the prefixing would get bypassed.

Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>


# 57ad19bc 25-May-2022 Alexander Gordeev <agordeev@linux.ibm.com>

s390/boot: cleanup adjust_to_uv_max() function

Uncouple input and output arguments by making the latter
the function return value.

Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>


# edd4a866 23-Apr-2022 Heiko Carstens <hca@linux.ibm.com>

s390/boot: get rid of startup archive

The final kernel image is created by linking decompressor object files with
a startup archive. The startup archive file however does not contain only
optional code and data which can be discarded if not referenced. It also
contains mandatory object data like head.o which must never be discarded,
even if not referenced.

Move the decompresser code and linker script to the boot directory and get
rid of the startup archive so everything is kept during link time.

Acked-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# 9a39abb7 14-Oct-2021 Vasily Gorbik <gor@linux.ibm.com>

s390/boot: simplify and fix kernel memory layout setup

Initial KASAN shadow memory range was picked to preserve original kernel
modules area position. With protected execution support, which might
impose addressing limitation on vmalloc area and hence affect modules
area position, current fixed KASAN shadow memory range is only making
kernel memory layout setup more complex. So move it to the very end of
available virtual space and simplify calculations.

At the same time return to previous kernel address space split. In
particular commit 0c4f2623b957 ("s390: setup kernel memory layout
early") introduced precise identity map size calculation and keeping
vmemmap left most starting from a fresh region table entry. This didn't
take into account additional mapping region requirement for potential
DCSS mapping above available physical memory. So go back to virtual
space split between 1:1 mapping & vmemmap array once vmalloc area size
is subtracted.

Cc: stable@vger.kernel.org
Fixes: 0c4f2623b957 ("s390: setup kernel memory layout early")
Reported-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# e3ec8e0f 27-Sep-2021 Alexander Gordeev <agordeev@linux.ibm.com>

s390/boot: allocate amode31 section in decompressor

The memory for amode31 section is allocated from the decompressed
kernel. Instead, allocate that memory from the decompressor. This
is a prerequisite to allow initialization of the virtual memory
before the decompressed kernel takes over.

Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>


# e8f06683 05-Aug-2021 Alexander Gordeev <agordeev@linux.ibm.com>

s390/boot: factor out offset_vmlinux_info() function

Move offsetting all of vmlinux_info fields to a separate
function for better readability.

Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# 6ab02364 25-Jul-2021 Heiko Carstens <hca@linux.ibm.com>

s390/boot: get rid of arithmetics on function pointers

sparse warning:
CHECK arch/s390/boot/startup.c
arch/s390/boot/startup.c:283:39: error: arithmetics on pointers to functions

Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# 6bda6670 15-Jun-2021 Alexander Egorenkov <egorenar@linux.ibm.com>

s390/boot: move dma sections from decompressor to decompressed kernel

This change simplifies the task of making the decompressor relocatable.

The decompressor's image contains special DMA sections between _sdma and
_edma. This DMA segment is loaded at boot as part of the decompressor and
then simply handed over to the decompressed kernel. The decompressor itself
never uses it in any way. The primary reason for this is the need to keep
the aforementioned DMA segment below 2GB which is required by architecture,
and because the decompressor is always loaded at a fixed low physical
address, it is guaranteed that the DMA region will not cross the 2GB
memory limit. If the DMA region had been placed in the decompressed kernel,
then KASLR would make this guarantee impossible to fulfill or it would
be restricted to the first 2GB of memory address space.

This commit moves all DMA sections between _sdma and _edma from
the decompressor's image to the decompressed kernel's image. The complete
DMA region is placed in the init section of the decompressed kernel and
immediately relocated below 2GB at start-up before it is needed by other
parts of the decompressed kernel. The relocation of the DMA region happens
even if the decompressed kernel is already located below 2GB in order
to keep the first implementation simple. The relocation should not have
any noticeable impact on boot time because the DMA segment is only a couple
of pages.

After relocating the DMA sections, the kernel has to fix all references
which point into it. In order to automate this, place all variables
pointing into the DMA sections in a special .dma.refs section. All such
variables must be defined using the new __dma_ref macro. Only variables
containing addresses within the DMA sections must be placed in the new
.dma.refs section.

Furthermore, move the initialization of control registers from
the decompressor to the decompressed kernel because some control registers
reference tables that must be placed in the DMA data section to
guarantee that their addresses are below 2G. Because the decompressed
kernel relocates the DMA sections at startup, the content of control
registers CR2, CR5 and CR15 must be updated with new addresses after
the relocation. The decompressed kernel initializes all control registers
early at boot and then updates the content of CR2, CR5 and CR15
as soon as the DMA relocation has occurred. This practically reverts
the commit a80313ff91ab ("s390/kernel: introduce .dma sections").

Signed-off-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# e9e7870f 15-Jun-2021 Alexander Egorenkov <egorenar@linux.ibm.com>

s390/dump: introduce boot data 'oldmem_data'

The new boot data struct shall replace global variables OLDMEM_BASE and
OLDMEM_SIZE. It is initialized in the decompressor and passed
to the decompressed kernel. In comparison to the old solution, this one
doesn't access data at fixed physical addresses which will become important
when the decompressor becomes relocatable.

Signed-off-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# 84733284 15-Jun-2021 Alexander Egorenkov <egorenar@linux.ibm.com>

s390/boot: introduce boot data 'initrd_data'

The new boot data struct shall replace global variables INITRD_START and
INITRD_SIZE. It is initialized in the decompressor and passed
to the decompressed kernel. In comparison to the old solution, this one
doesn't access data at fixed physical addresses which will become important
when the decompressor becomes relocatable.

Signed-off-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# 42c89439 05-Jul-2021 Alexander Egorenkov <egorenar@linux.ibm.com>

s390/boot: disable Secure Execution in dump mode

A dump kernel is neither required nor able to support Secure Execution.

Signed-off-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Reviewed-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# c5cf5054 05-Jul-2021 Alexander Egorenkov <egorenar@linux.ibm.com>

s390/boot: move uv function declarations to boot/uv.h

The functions adjust_to_uv_max() and uv_query_info() are used only
in the decompressor. Therefore, move the function declarations from
the global arch/s390/include/asm/uv.h to arch/s390/boot/uv.h.

Signed-off-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Reviewed-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# 7fadcc07 30-Jun-2021 Alexander Egorenkov <egorenar@linux.ibm.com>

s390/boot: move all linker symbol declarations from c to h files

To prevent multiple incompatible declarations of symbols and to catch
such mistakes at compile time.

Signed-off-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Acked-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# 9f744abb 24-Mar-2021 Alexander Egorenkov <egorenar@linux.ibm.com>

s390/boot: replace magic string check with a bootdata flag

The magic string "S390EP" at offset 0x10008 indicated to the decompressed
kernel that it was booted by the decompressor. Introduce a new bootdata
flag instead which conveys the same information in an explicit and
a cleaner way. But keep the magic string because it is a kernel ABI.

Signed-off-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Reviewed-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>


# 0c4f2623 06-Oct-2020 Vasily Gorbik <gor@linux.ibm.com>

s390: setup kernel memory layout early

Currently there are two separate places where kernel memory layout has
to be known and adjusted:
1. early kasan setup.
2. paging setup later.

Those 2 places had to be kept in sync and adjusted to reflect peculiar
technical details of one another. With additional factors which influence
kernel memory layout like ultravisor secure storage limit, complexity
of keeping two things in sync grew up even more.

Besides that if we look forward towards creating identity mapping and
enabling DAT before jumping into uncompressed kernel - that would also
require full knowledge of and control over kernel memory layout.

So, de-duplicate and move kernel memory layout setup logic into
the decompressor.

Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>


# 17e89e13 05-May-2021 Sven Schnelle <svens@linux.ibm.com>

s390/facilities: move stfl information from lowcore to global data

With gcc-11, there are a lot of warnings because the facility functions
are accessing lowcore through a null pointer. Fix this by moving the
facility arrays away from lowcore.

Signed-off-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>


# 73045a08 19-Oct-2020 Vasily Gorbik <gor@linux.ibm.com>

s390: unify identity mapping limits handling

Currently we have to consider too many different values which
in the end only affect identity mapping size. These are:
1. max_physmem_end - end of physical memory online or standby.
Always <= end of the last online memory block (get_mem_detect_end()).
2. CONFIG_MAX_PHYSMEM_BITS - the maximum size of physical memory the
kernel is able to support.
3. "mem=" kernel command line option which limits physical memory usage.
4. OLDMEM_BASE which is a kdump memory limit when the kernel is executed as
crash kernel.
5. "hsa" size which is a memory limit when the kernel is executed during
zfcp/nvme dump.

Through out kernel startup and run we juggle all those values at once
but that does not bring any amusement, only confusion and complexity.

Unify all those values to a single one we should really care, that is
our identity mapping size.

Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# d7e7fbba 09-Oct-2020 Vasily Gorbik <gor@linux.ibm.com>

s390/early: rewrite program parameter setup in C

And move it earlier in the decompressor.

Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# 90178c19 17-Sep-2020 Heiko Carstens <hca@linux.ibm.com>

s390/mm: let vmalloc area size depend on physical memory size

To make sure that the vmalloc area size is for almost all cases large
enough let it depend on the (potential) physical memory size. There is
still the possibility to override this with the vmalloc kernel command
line parameter.

Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Reviewed-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>


# 33def849 21-Oct-2020 Joe Perches <joe@perches.com>

treewide: Convert macro and uses of __section(foo) to __section("foo")

Use a more generic form for __section that requires quotes to avoid
complications with clang and gcc differences.

Remove the quote operator # from compiler_attributes.h __section macro.

Convert all unquoted __section(foo) uses to quoted __section("foo").
Also convert __attribute__((section("foo"))) uses to __section("foo")
even if the __attribute__ has multiple list entry forms.

Conversion done using the script at:

https://lore.kernel.org/lkml/75393e5ddc272dc7403de74d645e6c6e0f4e70eb.camel@perches.com/2-convert_section.pl

Signed-off-by: Joe Perches <joe@perches.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@gooogle.com>
Reviewed-by: Miguel Ojeda <ojeda@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>


# 1c7c83e8 24-Sep-2020 Vasily Gorbik <gor@linux.ibm.com>

s390: remove unused _swsusp_reset_dma

Since commit 394216275c7d ("s390: remove broken hibernate / power
management support") _swsusp_reset_dma is unused and could be safely
removed.

Reviewed-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>


# 980d5f9a 02-Sep-2020 Alexander Egorenkov <egorenar@linux.ibm.com>

s390/boot: enable .bss section for compressed kernel

- Support static uninitialized variables in compressed kernel.
- Remove chkbss script
- Get rid of workarounds for not having .bss section

Signed-off-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Reviewed-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>


# a9f2f686 18-Nov-2019 Gerald Schaefer <gerald.schaefer@linux.ibm.com>

s390/kaslr: store KASLR offset for early dumps

The KASLR offset is added to vmcoreinfo in arch_crash_save_vmcoreinfo(),
so that it can be found by crash when processing kernel dumps.

However, arch_crash_save_vmcoreinfo() is called during a subsys_initcall,
so if the kernel crashes before that, we have no vmcoreinfo and no KASLR
offset.

Fix this by storing the KASLR offset in the lowcore, where the vmcore_info
pointer will be stored, and where it can be found by crash. In order to
make it distinguishable from a real vmcore_info pointer, mark it as uneven
(KASLR offset itself is aligned to THREAD_SIZE).

When arch_crash_save_vmcoreinfo() stores the real vmcore_info pointer in
the lowcore, it overwrites the KASLR offset. At that point, the KASLR
offset is not yet added to vmcoreinfo, so we also need to move the
mem_assign_absolute() behind the vmcoreinfo_append_str().

Fixes: b2d24b97b2a9 ("s390/kernel: add support for kernel address space layout randomization (KASLR)")
Cc: <stable@vger.kernel.org> # v5.2+
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>


# 4f84b383 12-Aug-2019 Nick Desaulniers <ndesaulniers@google.com>

s390/boot: fix section name escaping

GCC unescapes escaped string section names while Clang does not. Because
__section uses the `#` stringification operator for the section name, it
doesn't need to be escaped.

This antipattern was found with:
$ grep -e __section\(\" -e __section__\(\" -r

Reported-by: Sedat Dilek <sedat.dilek@gmail.com>
Suggested-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Message-Id: <20190812215052.71840-1-ndesaulniers@google.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>


# ac49303d 21-Oct-2019 Gerald Schaefer <gerald.schaefer@linux.ibm.com>

s390/kaslr: add support for R_390_GLOB_DAT relocation type

Commit "bpf: Process in-kernel BTF" in linux-next introduced an undefined
__weak symbol, which results in an R_390_GLOB_DAT relocation type. That
is not yet handled by the KASLR relocation code, and the kernel stops with
the message "Unknown relocation type".

Add code to detect and handle R_390_GLOB_DAT relocation types and undefined
symbols.

Fixes: 805bc0bc238f ("s390/kernel: build a relocatable kernel")
Cc: <stable@vger.kernel.org> # v5.2+
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>


# 2e83e0eb 11-Aug-2019 Vasily Gorbik <gor@linux.ibm.com>

s390: clean .bss before running uncompressed kernel

Clean uncompressed kernel .bss section in the startup code before
the uncompressed kernel is executed. At this point of time initrd and
certificates have been already rescued. Uncompressed kernel .bss size
is known from vmlinux_info. It is also taken into consideration during
uncompressed kernel positioning by kaslr (so it is safe to clean it).

With that uncompressed kernel is starting with .bss section zeroed and
no .bss section usage restrictions apply. Which makes chkbss checks for
uncompressed kernel objects obsolete and they can be removed.

early_nobss.c is also not needed anymore. Parts of it which are still
relevant are moved to early.c. Kasan initialization code is now called
directly from head64 (early.c is instrumented and should not be
executed before kasan shadow memory is set up).

Reviewed-by: Philipp Rudo <prudo@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>


# 98587c2d 29-Apr-2019 Martin Schwidefsky <schwidefsky@de.ibm.com>

s390: simplify disabled_wait

The disabled_wait() function uses its argument as the PSW address when
it stops the CPU with a wait PSW that is disabled for interrupts.
The different callers sometimes use a specific number like 0xdeadbeef
to indicate a specific failure, the early boot code uses 0 and some
other calls sites use __builtin_return_address(0).

At the time a dump is created the current PSW and the registers of a
CPU are written to lowcore to make them avaiable to the dump analysis
tool. For a CPU stopped with disabled_wait the PSW and the registers
do not really make sense together, the PSW address does not point to
the function the registers belong to.

Simplify disabled_wait() by using _THIS_IP_ for the PSW address and
drop the argument to the function.

Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>


# b2d24b97 03-Feb-2019 Gerald Schaefer <gerald.schaefer@linux.ibm.com>

s390/kernel: add support for kernel address space layout randomization (KASLR)

This patch adds support for relocating the kernel to a random address.
The random kernel offset is obtained from cpacf, using either TRNG, PRNO,
or KMC_PRNG, depending on supported MSA level.

KERNELOFFSET is added to vmcoreinfo, for crash --kaslr support.

Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Reviewed-by: Philipp Rudo <prudo@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>


# a80313ff 03-Feb-2019 Gerald Schaefer <gerald.schaefer@linux.ibm.com>

s390/kernel: introduce .dma sections

With a relocatable kernel that could reside at any place in memory, code
and data that has to stay below 2 GB needs special handling.

This patch introduces .dma sections for such text, data and ex_table.
The sections will be part of the decompressor kernel, so they will not
be relocated and stay below 2 GB. Their location is passed over to the
decompressed / relocated kernel via the .boot.preserved.data section.

The duald and aste for control register setup also need to stay below
2 GB, so move the setup code from arch/s390/kernel/head64.S to
arch/s390/boot/head.S. The duct and linkage_stack could reside above
2 GB, but their content has to be preserved for the decompresed kernel,
so they are also moved into the .dma section.

The start and end address of the .dma sections is added to vmcoreinfo,
for crash support, to help debugging in case the kernel crashed there.

Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Reviewed-by: Philipp Rudo <prudo@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>


# 805bc0bc 03-Feb-2019 Gerald Schaefer <gerald.schaefer@linux.ibm.com>

s390/kernel: build a relocatable kernel

This patch adds support for building a relocatable kernel with -fPIE.
The kernel will be relocated to 0 early in the boot process.

Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Reviewed-by: Philipp Rudo <prudo@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>


# 9641b8cc 21-Feb-2019 Martin Schwidefsky <schwidefsky@de.ibm.com>

s390/ipl: read IPL report at early boot

Read the IPL Report block provided by secure-boot, add the entries
of the certificate list to the system key ring and print the list
of components.

PR: Adjust to Vasilys bootdata_preserved patch set. Preserve ipl_cert_list
for later use in kexec_file.

Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Philipp Rudo <prudo@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>


# 5abb9351 01-Apr-2019 Vasily Gorbik <gor@linux.ibm.com>

s390/uv: introduce guest side ultravisor code

The Ultravisor Call Facility (stfle bit 158) defines an API to the
Ultravisor (UV calls), a mini hypervisor located at machine
level. With help of the Ultravisor, KVM will be able to run
"protected" VMs, special VMs whose memory and management data are
unavailable to KVM.

The protected VMs can also request services from the Ultravisor.
The guest api consists of UV calls to share and unshare memory with the
kvm hypervisor.

To enable this feature support PROTECTED_VIRTUALIZATION_GUEST kconfig
option has been introduced.

Co-developed-by: Janosch Frank <frankja@de.ibm.com>
Signed-off-by: Janosch Frank <frankja@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>


# bf9921a9 01-Apr-2019 Gerald Schaefer <gerald.schaefer@linux.ibm.com>

s390: introduce .boot.preserved.data section

Introduce .boot.preserve.data section which is similar to .boot.data and
"shared" between the decompressor code and the decompressed kernel. The
decompressor will store values in it, and copy over to the decompressed
image before starting it. This method allows to avoid using pre-defined
addresses and other hacks to pass values between those boot phases.

Unlike .boot.data section .boot.preserved.data is NOT a part of init data,
and hence will be preserved for the kernel life time.

Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>


# b5e80459 27-Feb-2019 Vasily Gorbik <gor@linux.ibm.com>

s390: allow overriding facilities via command line

Add "facilities=" command line option which allows to override
facility bits returned by stfle. The main purpose of that is debugging
aids which allows to test specific kernel behaviour depending on
specific facilities presence. It also affects CPU alternatives.

"facilities=" command line option format is comma separated list of
integer values to be additionally set or cleared (if value is starting
with "!"). Values ranges are also supported. e.g.:

facilities=!130-160,159,167-169

Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>


# 49698745 15-May-2018 Vasily Gorbik <gor@linux.ibm.com>

s390: move ipl block and cmd line handling to early boot phase

To distinguish zfcpdump case and to be able to parse some of the kernel
command line arguments early (e.g. mem=) ipl block retrieval and command
line construction code is moved to the early boot phase.

"memory_end" is set up correctly respecting "mem=" and hsa_size in case
of the zfcpdump.

arch/s390/boot/string.c is introduced to provide string handling and
command line parsing functions to early boot phase code for the compressed
kernel image case.

Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>


# 6966d604 11-Apr-2018 Vasily Gorbik <gor@linux.ibm.com>

s390/mem_detect: move tprot loop to early boot phase

Move memory detection to early boot phase. To store online memory
regions "struct mem_detect_info" has been introduced together with
for_each_mem_detect_block iterator. mem_detect_info is later converted
to memblock.

Also introduces sclp_early_get_meminfo function to get maximum physical
memory and maximum increment number.

Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Reviewed-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>


# 17aacfbf 23-May-2018 Vasily Gorbik <gor@linux.ibm.com>

s390/sclp: move sclp_early_read_info to sclp_early_core.c

To enable early online memory detection sclp_early_read_info has
been moved to sclp_early_core.c. sclp_info_sccb has been made a part
of .boot.data, which allows to reuse it later during early kernel
startup and make sclp_early_read_info call just once.

Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Reviewed-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>


# d1b52a43 10-Apr-2018 Vasily Gorbik <gor@linux.ibm.com>

s390: introduce .boot.data section

Introduce .boot.data section which is "shared" between the decompressor
code and the decompressed kernel. The decompressor will store values in
it, and copy over to the decompressed image before starting it. This
method allows to avoid using pre-defined addresses and other hacks to
pass values between those boot phases.

.boot.data section is a part of init data, and will be freed after kernel
initialization is complete.

For uncompressed kernel image, .boot.data section is basically the same
as .init.data

Reviewed-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>


# 7516fc11 25-Jul-2018 Vasily Gorbik <gor@linux.ibm.com>

s390/decompressor: clean up and rename compressed/misc.c

Since compressed/misc.c is conditionally compiled move error reporting
code to boot/main.c. With that being done compressed/misc.c has no
"miscellaneous" functions left and is all about plain decompression
now. Rename it accordingly.

Reviewed-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>


# 15426ca4 11-Apr-2018 Vasily Gorbik <gor@linux.ibm.com>

s390: rescue initrd as early as possible

To avoid multi-stage initrd rescue operation and to simplify
assumptions during early memory allocations move initrd at some final
safe destination as early as possible. This would also allow us to
drop .bss usage restrictions for some files.

Reviewed-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>


# 369f91c3 19-Jul-2018 Vasily Gorbik <gor@linux.ibm.com>

s390/decompressor: rework uncompressed image info collection

The kernel decompressor has to know several bits of information about
uncompressed image. Currently this info is collected by running "nm" on
uncompressed vmlinux + "sed" and producing sizes.h file. This method
worked well, but it has several disadvantages. Obscure symbols name
pattern matching is fragile. Adding new values makes pattern even
longer. Logic is spread across code and make file. Limited ability to
adjust symbols values (currently magic lma value of 0x100000 is always
subtracted). Apart from that same pieces of information (and more)
would be needed for early memory detection and features like KASLR
outside of boot/compressed/ folder where sizes.h is generated.

To overcome limitations new "struct vmlinux_info" has been introduced
to include values needed for the decompressor and the rest of the
boot code. The only static instance of vmlinux_info is produced during
vmlinux link step by filling in struct fields by the linker (like it is
done with input_data in boot/compressed/vmlinux.scr.lds.S). This way
individual values could be adjusted with all the knowledge linker has
and arithmetic it supports. Later .vmlinux.info section (which contains
struct vmlinux_info) is transplanted into the decompressor image and
dropped from uncompressed image altogether.

While doing that replace "compressed/vmlinux.scr.lds.S" linker
script (whose purpose is to rename .data section in piggy.o to
.rodata.compressed) with plain objcopy command. And simplify
decompressor's linker script.

Reviewed-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>


# 8f75582a 19-Jul-2018 Vasily Gorbik <gor@linux.ibm.com>

s390: remove decompressor's head.S

Decompressor's head.S provided "data mover" sole purpose of which has
been to safely move uncompressed kernel at 0x100000 and jump to it.

With current bzImage layout entire decompressor's code guaranteed to be
in a safe location under 0x100000, and hence could not be overwritten
during kernel move. For that reason head.S could be replaced with simple
memmove function. To do so introduce early boot code phase which is
executed from arch/s390/boot/head.S after "verify_facilities" and takes
care of optional kernel image decompression and transition to it.

Reviewed-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>