History log of /linux-master/arch/mips/net/Makefile
Revision Date Author Comments
# 307d149d 10-Oct-2021 Tiezhu Yang <yangtiezhu@loongson.cn>

bpf, mips: Clean up config options about JIT

The config options MIPS_CBPF_JIT and MIPS_EBPF_JIT are useless, remove
them in arch/mips/Kconfig, and then modify arch/mips/net/Makefile.

Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Johan Almbladh <johan.almbladh@anyfinetworks.com>
Link: https://lore.kernel.org/bpf/1633915150-13220-2-git-send-email-yangtiezhu@loongson.cn


# e5c15a36 07-Oct-2021 Johan Almbladh <johan.almbladh@anyfinetworks.com>

mips, bpf: Fix Makefile that referenced a removed file

This patch removes a stale Makefile reference to the cBPF JIT that was
removed.

Fixes: ebcbacfa50ec ("mips, bpf: Remove old BPF JIT implementations")
Signed-off-by: Johan Almbladh <johan.almbladh@anyfinetworks.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20211007142339.633899-1-johan.almbladh@anyfinetworks.com


# 01bdc58e 05-Oct-2021 Johan Almbladh <johan.almbladh@anyfinetworks.com>

mips, bpf: Enable eBPF JITs

This patch enables the new eBPF JITs for 32-bit and 64-bit MIPS. It also
disables the old cBPF JIT to so cBPF programs are converted to use the
new JIT.

Workarounds for R4000 CPU errata are not implemented by the JIT, so the
JIT is disabled if any of those workarounds are configured.

Signed-off-by: Johan Almbladh <johan.almbladh@anyfinetworks.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20211005165408.2305108-7-johan.almbladh@anyfinetworks.com


# eb63cfcd 05-Oct-2021 Johan Almbladh <johan.almbladh@anyfinetworks.com>

mips, bpf: Add eBPF JIT for 32-bit MIPS

This is an implementation of an eBPF JIT for 32-bit MIPS I-V and MIPS32.
The implementation supports all 32-bit and 64-bit ALU and JMP operations,
including the recently-added atomics. 64-bit div/mod and 64-bit atomics
are implemented using function calls to math64 and atomic64 functions,
respectively. All 32-bit operations are implemented natively by the JIT,
except if the CPU lacks ll/sc instructions.

Register mapping
================
All 64-bit eBPF registers are mapped to native 32-bit MIPS register pairs,
and does not use any stack scratch space for register swapping. This means
that all eBPF register data is kept in CPU registers all the time, and
this simplifies the register management a lot. It also reduces the JIT's
pressure on temporary registers since we do not have to move data around.

Native register pairs are ordered according to CPU endiannes, following
the O32 calling convention for passing 64-bit arguments and return values.
The eBPF return value, arguments and callee-saved registers are mapped to
their native MIPS equivalents.

Since the 32 highest bits in the eBPF FP (frame pointer) register are
always zero, only one general-purpose register is actually needed for the
mapping. The MIPS fp register is used for this purpose. The high bits are
mapped to MIPS register r0. This saves us one CPU register, which is much
needed for temporaries, while still allowing us to treat the R10 (FP)
register just like any other eBPF register in the JIT.

The MIPS gp (global pointer) and at (assembler temporary) registers are
used as internal temporary registers for constant blinding. CPU registers
t6-t9 are used internally by the JIT when constructing more complex 64-bit
operations. This is precisely what is needed - two registers to store an
operand value, and two more as scratch registers when performing the
operation.

The register mapping is shown below.

R0 - $v1, $v0 return value
R1 - $a1, $a0 argument 1, passed in registers
R2 - $a3, $a2 argument 2, passed in registers
R3 - $t1, $t0 argument 3, passed on stack
R4 - $t3, $t2 argument 4, passed on stack
R5 - $t4, $t3 argument 5, passed on stack
R6 - $s1, $s0 callee-saved
R7 - $s3, $s2 callee-saved
R8 - $s5, $s4 callee-saved
R9 - $s7, $s6 callee-saved
FP - $r0, $fp 32-bit frame pointer
AX - $gp, $at constant-blinding
$t6 - $t9 unallocated, JIT temporaries

Jump offsets
============
The JIT tries to map all conditional JMP operations to MIPS conditional
PC-relative branches. The MIPS branch offset field is 18 bits, in bytes,
which is equivalent to the eBPF 16-bit instruction offset. However, since
the JIT may emit more than one CPU instruction per eBPF instruction, the
field width may overflow. If that happens, the JIT converts the long
conditional jump to a short PC-relative branch with the condition
inverted, jumping over a long unconditional absolute jmp (j).

This conversion will change the instruction offset mapping used for jumps,
and may in turn result in more branch offset overflows. The JIT therefore
dry-runs the translation until no more branches are converted and the
offsets do not change anymore. There is an upper bound on this of course,
and if the JIT hits that limit, the last two iterations are run with all
branches being converted.

Tail call count
===============
The current tail call count is stored in the 16-byte area of the caller's
stack frame that is reserved for the callee in the o32 ABI. The value is
initialized in the prologue, and propagated to the tail-callee by skipping
the initialization instructions when emitting the tail call.

Signed-off-by: Johan Almbladh <johan.almbladh@anyfinetworks.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20211005165408.2305108-4-johan.almbladh@anyfinetworks.com


# 36366e36 05-Dec-2019 Paul Burton <paulburton@kernel.org>

MIPS: BPF: Restore MIPS32 cBPF JIT

Commit 716850ab104d ("MIPS: eBPF: Initial eBPF support for MIPS32
architecture.") enabled our eBPF JIT for MIPS32 kernels, whereas it has
previously only been availailable for MIPS64. It was my understanding at
the time that the BPF test suite was passing & JITing a comparable
number of tests to our cBPF JIT [1], but it turns out that was not the
case.

The eBPF JIT has a number of problems on MIPS32:

- Most notably various code paths still result in emission of MIPS64
instructions which will cause reserved instruction exceptions & kernel
panics when run on MIPS32 CPUs.

- The eBPF JIT doesn't account for differences between the O32 ABI used
by MIPS32 kernels versus the N64 ABI used by MIPS64 kernels. Notably
arguments beyond the first 4 are passed on the stack in O32, and this
is entirely unhandled when JITing a BPF_CALL instruction. Stack space
must be reserved for arguments even if they all fit in registers, and
the callee is free to assume that stack space has been reserved for
its use - with the eBPF JIT this is not the case, so calling any
function can result in clobbering values on the stack & unpredictable
behaviour. Function arguments in eBPF are always 64-bit values which
is also entirely unhandled - the JIT still uses a single (32-bit)
register per argument. As a result all function arguments are always
passed incorrectly when JITing a BPF_CALL instruction, leading to
kernel crashes or strange behavior.

- The JIT attempts to bail our on use of ALU64 instructions or 64-bit
memory access instructions. The code doing this at the start of
build_one_insn() incorrectly checks whether BPF_OP() equals BPF_DW,
when it should really be checking BPF_SIZE() & only doing so when
BPF_CLASS() is one of BPF_{LD,LDX,ST,STX}. This results in false
positives that cause more bailouts than intended, and that in turns
hides some of the problems described above.

- The kernel's cBPF->eBPF translation makes heavy use of 64-bit eBPF
instructions that the MIPS32 eBPF JIT bails out on, leading to most
cBPF programs not being JITed at all.

Until these problems are resolved, revert the removal of the cBPF JIT
performed by commit 716850ab104d ("MIPS: eBPF: Initial eBPF support for
MIPS32 architecture."). Together with commit f8fffebdea75 ("MIPS: BPF:
Disable MIPS32 eBPF JIT") this restores MIPS32 BPF JIT behavior back to
the same state it was prior to the introduction of the broken eBPF JIT
support.

[1] https://lore.kernel.org/linux-mips/MWHPR2201MB13583388481F01A422CE7D66D4410@MWHPR2201MB1358.namprd22.prod.outlook.com/

Signed-off-by: Paul Burton <paulburton@kernel.org>
Fixes: 716850ab104d ("MIPS: eBPF: Initial eBPF support for MIPS32 architecture.")
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Hassan Naveed <hnaveed@wavecomp.com>
Cc: Tony Ambardar <itugrok@yahoo.com>
Cc: bpf@vger.kernel.org
Cc: netdev@vger.kernel.org
Cc: linux-mips@vger.kernel.org
Cc: linux-kernel@vger.kernel.org


# ec8f24b7 19-May-2019 Thomas Gleixner <tglx@linutronix.de>

treewide: Add SPDX license identifier - Makefile/Kconfig

Add SPDX license identifiers to all Make/Kconfig files which:

- Have no license information of any form

These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:

GPL-2.0-only

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>


# 716850ab 12-Mar-2019 Hassan Naveed <hnaveed@wavecomp.com>

MIPS: eBPF: Initial eBPF support for MIPS32 architecture.

Currently MIPS32 supports a JIT for classic BPF only, not extended BPF.
This patch adds JIT support for extended BPF on MIPS32, so code is
actually JIT'ed instead of being only interpreted. Instructions with
64-bit operands are not supported at this point.
We can delete classic BPF because the kernel will translate classic BPF
programs into extended BPF and JIT them, eliminating the need for
classic BPF.

Signed-off-by: Hassan Naveed <hnaveed@wavecomp.com>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: kafai@fb.com
Cc: songliubraving@fb.com
Cc: yhs@fb.com
Cc: netdev@vger.kernel.org
Cc: bpf@vger.kernel.org
Cc: linux-mips@vger.kernel.org
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: open list:MIPS <linux-mips@linux-mips.org>
Cc: open list <linux-kernel@vger.kernel.org>


# f381bf6d 13-Jun-2017 David Daney <david.daney@cavium.com>

MIPS: Add support for eBPF JIT.

Since the eBPF machine has 64-bit registers, we only support this in
64-bit kernels. As of the writing of this commit log test-bpf is showing:

test_bpf: Summary: 316 PASSED, 0 FAILED, [308/308 JIT'ed]

All current test cases are successfully compiled.

Many examples in samples/bpf are usable, specifically tracex5 which
uses tail calls works.

Signed-off-by: David Daney <david.daney@cavium.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Markos Chandras <markos.chandras@imgtec.com>
Cc: Matt Redfearn <matt.redfearn@imgtec.com>
Cc: netdev@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/16369/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>


# 266a88e2 04-Jun-2015 Markos Chandras <markos.chandras@imgtec.com>

MIPS: BPF: Introduce BPF ASM helpers

This commit introduces BPF ASM helpers for MIPS and MIPS64 kernels.
The purpose of this patch is to twofold:

1) We are now able to handle negative offsets instead of either
falling back to the interpreter or to simply not do anything and
bail out.

2) Optimize reads from the packet header instead of calling the C
helpers

Because of this patch, we are now able to get rid of quite a bit of
code in the JIT generation process by using MIPS optimized assembly
code. The new assembly code makes the test_bpf testsuite happy with
all 60 test passing successfully compared to the previous
implementation where 2 tests were failing.
Doing some basic analysis in the results between the old
implementation and the new one we can obtain the following
summary running current mainline on an ER8 board (+/- 30us delta is
ignored to prevent noise from kernel scheduling or IRQ latencies):

Summary: 22 tests are faster, 7 are slower and 47 saw no improvement

with the most notable improvement being the tcpdump tests. The 7 tests
that seem to be a bit slower is because they all follow the slow path
(bpf_internal_load_pointer_neg_helper) which is meant to be slow so
that's not a problem.

Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
Cc: netdev@vger.kernel.org
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Alexei Starovoitov <ast@plumgrid.com>
Cc: Daniel Borkmann <dborkman@redhat.com>
Cc: Hannes Frederic Sowa <hannes@stressinduktion.org>
Cc: linux-kernel@vger.kernel.org
Cc: linux-mips@linux-mips.org
Cc: netdev@vger.kernel.org
Patchwork: http://patchwork.linux-mips.org/patch/10530/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>


# c6610de3 07-Apr-2014 Markos Chandras <markos.chandras@imgtec.com>

MIPS: net: Add BPF JIT

This adds initial support for BPF-JIT on MIPS

Tested on mips32 LE/BE and mips64 BE/n64 using
dhcp, ping and various tcpdump filters.

Benchmarking:

Assuming the remote MIPS target uses 192.168.154.181
as its IP address, and the local host uses 192.168.154.136,
the following results can be obtained using the following
tcpdump filter (catches no frames) and a simple
'time ping -f -c 1000000' command.

[root@(none) ~]# tcpdump -p -n -s 0 -i eth0 net 10.0.0.0/24 -d
(000) ldh [12]
(001) jeq #0x800 jt 2 jf 8
(002) ld [26]
(003) and #0xffffff00
(004) jeq #0xa000000 jt 16 jf 5
(005) ld [30]
(006) and #0xffffff00
(007) jeq #0xa000000 jt 16 jf 17
(008) jeq #0x806 jt 10 jf 9
(009) jeq #0x8035 jt 10 jf 17
(010) ld [28]
(011) and #0xffffff00
(012) jeq #0xa000000 jt 16 jf 13
(013) ld [38]
(014) and #0xffffff00
(015) jeq #0xa000000 jt 16 jf 17
(016) ret #65535

- BPF-JIT Disabled

real 1m38.005s
user 0m1.510s
sys 0m6.710s

- BPF-JIT Enabled

real 1m35.215s
user 0m1.200s
sys 0m4.140s

[ralf@linux-mips.org: Resolved conflict.]

Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>