History log of /linux-master/arch/arm64/kvm/hyp/nvhe/page_alloc.c
Revision Date Author Comments
# 5e0a760b 28-Dec-2023 Kirill A. Shutemov <kirill.shutemov@linux.intel.com>

mm, treewide: rename MAX_ORDER to MAX_PAGE_ORDER

commit 23baf831a32c ("mm, treewide: redefine MAX_ORDER sanely") has
changed the definition of MAX_ORDER to be inclusive. This has caused
issues with code that was not yet upstream and depended on the previous
definition.

To draw attention to the altered meaning of the define, rename MAX_ORDER
to MAX_PAGE_ORDER.

Link: https://lkml.kernel.org/r/20231228144704.14033-2-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>


# 23baf831 15-Mar-2023 Kirill A. Shutemov <kirill.shutemov@linux.intel.com>

mm, treewide: redefine MAX_ORDER sanely

MAX_ORDER currently defined as number of orders page allocator supports:
user can ask buddy allocator for page order between 0 and MAX_ORDER-1.

This definition is counter-intuitive and lead to number of bugs all over
the kernel.

Change the definition of MAX_ORDER to be inclusive: the range of orders
user can ask from buddy allocator is 0..MAX_ORDER now.

[kirill@shutemov.name: fix min() warning]
Link: https://lkml.kernel.org/r/20230315153800.32wib3n5rickolvh@box
[akpm@linux-foundation.org: fix another min_t warning]
[kirill@shutemov.name: fixups per Zi Yan]
Link: https://lkml.kernel.org/r/20230316232144.b7ic4cif4kjiabws@box.shutemov.name
[akpm@linux-foundation.org: fix underlining in docs]
Link: https://lore.kernel.org/oe-kbuild-all/202303191025.VRCTk6mP-lkp@intel.com/
Link: https://lkml.kernel.org/r/20230315113133.11326-11-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>


# 8e6bcc3a 10-Nov-2022 Quentin Perret <qperret@google.com>

KVM: arm64: Back the hypervisor 'struct hyp_page' array for all memory

The EL2 'vmemmap' array in nVHE Protected mode is currently very sparse:
only memory pages owned by the hypervisor itself have a matching 'struct
hyp_page'. However, as the size of this struct has been reduced
significantly since its introduction, it appears that we can now afford
to back the vmemmap for all of memory.

Having an easily accessible 'struct hyp_page' for every physical page in
memory provides the hypervisor with a simple mechanism to store metadata
(e.g. a refcount) that wouldn't otherwise fit in the very limited number
of software bits available in the host stage-2 page-table entries. This
will be used in subsequent patches when pinning host memory pages for
use by the hypervisor at EL2.

Tested-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110190259.26861-4-will@kernel.org


# 72a5bc0f 10-Nov-2022 Quentin Perret <qperret@google.com>

KVM: arm64: Allow attaching of non-coalescable pages to a hyp pool

All the contiguous pages used to initialize a 'struct hyp_pool' are
considered coalescable, which means that the hyp page allocator will
actively try to merge them with their buddies on the hyp_put_page() path.
However, using hyp_put_page() on a page that is not part of the inital
memory range given to a hyp_pool() is currently unsupported.

In order to allow dynamically extending hyp pools at run-time, add a
check to __hyp_attach_page() to allow inserting 'external' pages into
the free-list of order 0. This will be necessary to allow lazy donation
of pages from the host to the hypervisor when allocating guest stage-2
page-table pages at EL2.

Tested-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110190259.26861-3-will@kernel.org


# 0f4f7ae1 10-Nov-2022 Quentin Perret <qperret@google.com>

KVM: arm64: Move hyp refcount manipulation helpers to common header file

We will soon need to manipulate 'struct hyp_page' refcounts from outside
page_alloc.c, so move the helpers to a common header file to allow them
to be reused easily.

Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Tested-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221110190259.26861-2-will@kernel.org


# 21ea4578 18-Mar-2022 Julia Lawall <Julia.Lawall@inria.fr>

KVM: arm64: fix typos in comments

Various spelling mistakes in comments.
Detected with the help of Coccinelle.

Signed-off-by: Julia Lawall <Julia.Lawall@inria.fr>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220318103729.157574-24-Julia.Lawall@inria.fr


# 34b43a88 08-Dec-2021 Quentin Perret <qperret@google.com>

KVM: arm64: pkvm: Fix hyp_pool max order

The EL2 page allocator in protected mode maintains a per-pool max order
value to optimize allocations when the memory region it covers is small.
However, the max order value is currently under-estimated whenever the
number of pages in the region is a power of two. Fix the estimation.

Signed-off-by: Quentin Perret <qperret@google.com>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211208152300.2478542-2-qperret@google.com


# 7615c2a5 05-Oct-2021 Quentin Perret <qperret@google.com>

KVM: arm64: Report corrupted refcount at EL2

Some of the refcount manipulation helpers used at EL2 are instrumented
to catch a corrupted state, but not all of them are treated equally. Let's
make things more consistent by instrumenting hyp_page_ref_dec_and_test()
as well.

Acked-by: Will Deacon <will@kernel.org>
Suggested-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211005090155.734578-6-qperret@google.com


# 1d58a17e 05-Oct-2021 Quentin Perret <qperret@google.com>

KVM: arm64: Fix host stage-2 PGD refcount

The KVM page-table library refcounts the pages of concatenated stage-2
PGDs individually. However, when running KVM in protected mode, the
host's stage-2 PGD is currently managed by EL2 as a single high-order
compound page, which can cause the refcount of the tail pages to reach 0
when they shouldn't, hence corrupting the page-table.

Fix this by introducing a new hyp_split_page() helper in the EL2 page
allocator (matching the kernel's split_page() function), and make use of
it from host_s2_zalloc_pages_exact().

Fixes: 1025c8c0c6ac ("KVM: arm64: Wrap the host with a stage 2")
Acked-by: Will Deacon <will@kernel.org>
Suggested-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211005090155.734578-5-qperret@google.com


# 6929586d 08-Jun-2021 Quentin Perret <qperret@google.com>

KVM: arm64: Use less bits for hyp_page refcount

The hyp_page refcount is currently encoded on 4 bytes even though we
never need to count that many objects in a page. Make it 2 bytes to save
some space in the vmemmap.

As overflows are more likely to happen as well, make sure to catch those
with a BUG in the increment function.

Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210608114518.748712-8-qperret@google.com


# 87ec0606 08-Jun-2021 Quentin Perret <qperret@google.com>

KVM: arm64: Use less bits for hyp_page order

The hyp_page order is currently encoded on 4 bytes even though it is
guaranteed to be smaller than this. Make it 2 bytes to reduce the hyp
vmemmap overhead.

Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210608114518.748712-7-qperret@google.com


# d978b9cf 08-Jun-2021 Quentin Perret <qperret@google.com>

KVM: arm64: Remove hyp_pool pointer from struct hyp_page

Each struct hyp_page currently contains a pointer to a hyp_pool struct
where the page should be freed if its refcount reaches 0. However, this
information can always be inferred from the context in the EL2 code, so
drop the pointer to save a few bytes in the vmemmap.

Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210608114518.748712-6-qperret@google.com


# 914cde58 08-Jun-2021 Quentin Perret <qperret@google.com>

KVM: arm64: Remove list_head from hyp_page

The list_head member of struct hyp_page is only needed when the page is
attached to a free-list, which by definition implies the page is free.
As such, nothing prevents us from using the page itself to store the
list_head, hence reducing the size of the vmemmap.

Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210608114518.748712-4-qperret@google.com


# 581982de 08-Jun-2021 Quentin Perret <qperret@google.com>

KVM: arm64: Use refcount at hyp to check page availability

The hyp buddy allocator currently checks the struct hyp_page list node
to see if a page is available for allocation or not when trying to
coalesce memory. Now that decrementing the refcount and attaching to
the buddy tree is done in the same critical section, we can rely on the
refcount of the buddy page to be in sync, which allows to replace the
list node check by a refcount check. This will ease removing the list
node from struct hyp_page later on.

Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210608114518.748712-3-qperret@google.com


# 6cbf874e 08-Jun-2021 Quentin Perret <qperret@google.com>

KVM: arm64: Move hyp_pool locking out of refcount helpers

The hyp_page refcount helpers currently rely on the hyp_pool lock for
serialization. However, this means the refcounts can't be changed from
the buddy allocator core as it already holds the lock, which means pages
have to go through odd transient states.

For example, when a page is freed, its refcount is set to 0, and the
lock is transiently released before the page can be attached to a free
list in the buddy tree. This is currently harmless as the allocator
checks the list node of each page to see if it is available for
allocation or not, but it means the page refcount can't be trusted to
represent the state of the page even if the pool lock is held.

In order to fix this, remove the pool locking from the refcount helpers,
and move all the logic to the buddy allocator. This will simplify the
removal of the list node from struct hyp_page in a later patch.

Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210608114518.748712-2-qperret@google.com


# 8e17c662 19-Mar-2021 Quentin Perret <qperret@google.com>

KVM: arm64: Introduce a Hyp buddy page allocator

When memory protection is enabled, the hyp code will require a basic
form of memory management in order to allocate and free memory pages at
EL2. This is needed for various use-cases, including the creation of hyp
mappings or the allocation of stage 2 page tables.

To address these use-case, introduce a simple memory allocator in the
hyp code. The allocator is designed as a conventional 'buddy allocator',
working with a page granularity. It allows to allocate and free
physically contiguous pages from memory 'pools', with a guaranteed order
alignment in the PA space. Each page in a memory pool is associated
with a struct hyp_page which holds the page's metadata, including its
refcount, as well as its current order, hence mimicking the kernel's
buddy system in the GFP infrastructure. The hyp_page metadata are made
accessible through a hyp_vmemmap, following the concept of
SPARSE_VMEMMAP in the kernel.

Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210319100146.1149909-13-qperret@google.com