History log of /freebsd-current/sys/dev/ic/z8530.h
Revision Date Author Comments
# 95ee2897 16-Aug-2023 Warner Losh <imp@FreeBSD.org>

sys: Remove $FreeBSD$: two-line .h pattern

Remove /^\s*\*\n \*\s+\$FreeBSD\$$\n/


# 4d846d26 10-May-2023 Warner Losh <imp@FreeBSD.org>

spdx: The BSD-2-Clause-FreeBSD identifier is obsolete, drop -FreeBSD

The SPDX folks have obsoleted the BSD-2-Clause-FreeBSD identifier. Catch
up to that fact and revert to their recommended match of BSD-2-Clause.

Discussed with: pfg
MFC After: 3 days
Sponsored by: Netflix


# a4ec123c 14-Jun-2020 Brandon Bergren <bdragon@FreeBSD.org>

[PowerPC] Fix scc z8530 driver

Parts of the z8530 driver were still using the SUN channel spacing.

This was invalid on PowerMac and QEMU, where the attachment was to escc,
not escc-legacy. This means the driver has apparently NEVER worked properly
on Macintosh hardware.

Add documentation for the channel spacing details, and change to using
driver-specific initialization instead of hardcoded spacing so either
spacing can be used.

Fixes boot hang in QEMU when using the serial console, and fixes use on
Xserve serial (and presumably PowerMacs that have a Stealth Serial port
or similar)

Reviewed by: jhibbits
Sponsored by: Tag1 Consulting, Inc.
Differential Revision: https://reviews.freebsd.org/D24661


# 718cf2cc 27-Nov-2017 Pedro F. Giffuni <pfg@FreeBSD.org>

sys/dev: further adoption of SPDX licensing ID tags.

Mainly focus on files that use BSD 2-Clause license, however the tool I
was using misidentified many licenses so this was mostly a manual - error
prone - task.

The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.


# a7d5f7eb 19-Oct-2010 Jamie Gritton <jamie@FreeBSD.org>

A new jail(8) with a configuration file, to replace the work currently done
by /etc/rc.d/jail.


# d7f03759 19-Oct-2008 Ulf Lilleengen <lulf@FreeBSD.org>

- Import the HEAD csup code which is the basis for the cvsmode work.


# 1ba1685b 23-Feb-2006 Marcel Moolenaar <marcel@FreeBSD.org>

MFp4:
Add CHAN_A & CHAN_B for channel register offsets.
While here, fix a comment.


# 098ca2bd 05-Jan-2005 Warner Losh <imp@FreeBSD.org>

Start each of the license/copyright comments with /*-, minor shuffle of lines


# 43f0d570 20-Nov-2004 Marcel Moolenaar <marcel@FreeBSD.org>

This file was repocopied from sys/dev/uart/uart_dev_z8530.h.


# 27d5dc18 06-Sep-2003 Marcel Moolenaar <marcel@FreeBSD.org>

The uart(4) driver is an universal driver for various UART hardware.
It improves on sio(4) in the following areas:
o Fully newbusified to allow for memory mapped I/O. This is a must
for ia64 and sparc64,
o Machine dependent code to take full advantage of machine and firm-
ware specific ways to define serial consoles and/or debug ports.
o Hardware abstraction layer to allow the driver to be used with
various UARTs, such as the well-known ns8250 family of UARTs, the
Siemens sab82532 or the Zilog Z8530. This is especially important
for pc98 and sparc64 where it's common to have different UARTs,
o The notion of system devices to unkludge low-level consoles and
remote gdb ports and provides the mechanics necessary to support
the keyboard on sparc64 (which is UART based).
o The notion of a kernel interface so that a UART can be tied to
something other than the well-known TTY interface. This is needed
on sparc64 to present the user with a device and ioctl handling
suitable for a keyboard, but also allows us to cleanly hide an
UART when used as a debug port.

Following is a list of features and bugs/flaws specific to the ns8250
family of UARTs as compared to their support in sio(4):
o The uart(4) driver determines the FIFO size and automaticly takes
advantages of larger FIFOs and/or additional features. Note that
since I don't have sufficient access to 16[679]5x UARTs, hardware
flow control has not been enabled. This is almost trivial to do,
provided one can test. The downside of this is that broken UARTs
are more likely to not work correctly with uart(4). The need for
tunables or knobs may be large enough to warrant their creation.
o The uart(4) driver does not share the same bumpy history as sio(4)
and will therefore not provide the necessary hooks, tweaks, quirks
or work-arounds to deal with once common hardware. To that extend,
uart(4) supports a subset of the UARTs that sio(4) supports. The
question before us is whether the subset is sufficient for current
hardware.
o There is no support for multiport UARTs in uart(4). The decision
behind this is that uart(4) deals with one EIA RS232-C interface.
Packaging of multiple interfaces in a single chip or on a single
expansion board is beyond the scope of uart(4) and is now mostly
left for puc(4) to deal with. Lack of hardware made it impossible
to actually implement such a dependency other than is present for
the dual channel SAB82532 and Z8350 SCCs.

The current list of missing features is:
o No configuration capabilities. A set of tunables and sysctls is
being worked out. There are likely not going to be any or much
compile-time knobs. Such configuration does not fit well with
current hardware.
o No support for the PPS API. This is partly dependent on the
ability to configure uart(4) and partly dependent on having
sufficient information to implement it properly.

As usual, the manpage is present but lacks the attention the
software has gotten.