History log of /freebsd-10.1-release/sys/cam/ctl/ctl_io.h
Revision Date Author Comments
(<<< Hide modified files)
(Show modified files >>>)
# 272461 02-Oct-2014 gjb

Copy stable/10@r272459 to releng/10.1 as part of
the 10.1-RELEASE process.

Approved by: re (implicit)
Sponsored by: The FreeBSD Foundation

# 269298 30-Jul-2014 mav

MFC r268808:
Increase maximal number of SCSI ports in CTL from 32 to 128.

After I gave each iSCSI target its own port, the old limit appeared to be
not so big. This change almost proportionally increases per-LUN memory
use, but it is still three times better then it was before r268807.


# 268697 15-Jul-2014 mav

MFC r268418:
Enable TAS feature: notify initiator if its command was aborted by other.

That should make operation more kind to multi-initiator environment.
Without this, other initiators may find out that something bad happened
to their commands only via command timeout.


# 268690 15-Jul-2014 mav

MFC r268353:
Implement ABORT TASK SET and I_T NEXUS RESET task management functions.

Use the last one to terminate active commands on iSCSI session termination.
Previous code was aborting only commands doing some data moves.


# 268685 15-Jul-2014 mav

MFC r268307:
Move lun_map() method from command nexus to port.

Previous implementation made impossible to do some things, such as calling
it for ports other then one through which command arrived.


# 268556 12-Jul-2014 mav

MFC r267643, r267873, r268391, r268398:
Introduce fine-grained CTL locking to improve SMP scalability.

Split global ctl_lock, historically protecting most of CTL context:
- remaining ctl_lock now protects lists of fronends and backends;
- per-LUN lun_lock(s) protect LUN-specific information;
- per-thread queue_lock(s) protect request queues.
This allows to radically reduce congestion on ctl_lock.

Create multiple worker threads, depending on number of CPUs, and assign
each LUN to one of them. This allows to spread load between multiple CPUs,
still avoiging congestion on queues and LUNs locks.

On 40-core server, exporting 5 LUNs, each backed by gstripe of SATA SSDs,
accessed via 6 iSCSI connections, this change improves peak request rate
from 250K to 680K IOPS.

Sponsored by: iXsystems, Inc.


# 268151 02-Jul-2014 mav

MFC r267537:
Add support for VERIFY(10/12/16) and COMPARE AND WRITE SCSI commands.

Make data_submit backends method support not only read and write requests,
but also two new ones: verify and compare. Verify just checks readability
of the data in specified location without transferring them outside.
Compare reads the specified data and compares them to received data,
returning error if they are different.

VERIFY(10/12/16) commands request either verify or compare from backend,
depending on BYTCHK CDB field. COMPARE AND WRITE command executed in two
stages: first it requests compare, and then, if succeesed, requests write.
Atomicity of operation is guarantied by CTL request ordering code.

Sponsored by: iXsystems, Inc.


# 268142 02-Jul-2014 mav

MFC r265323 (by trasz):
Provide better descriptions for 'struct ctl_scsiio' fields; based mostly
on emails from ken@.


# 265634 08-May-2014 mav

MFC r264274, r264279, r264283, r264296, r264297:
Add support for SCSI UNMAP commands to CTL.

This patch adds support for three new SCSI commands: UNMAP, WRITE SAME(10)
and WRITE SAME(16). WRITE SAME commands support both normal write mode
and UNMAP flag. To properly report UNMAP capabilities this patch also adds
support for reporting two new VPD pages: Block limits and Logical Block
Provisioning.

UNMAP support can be enabled per-LUN by adding "-o unmap=on" to `ctladm
create` command line or "option unmap on" to lun sections of /etc/ctl.conf.

At this moment UNMAP supported for ramdisks and device-backed block LUNs.
It was tested to work great with ZFS ZVOLs. For file-backed LUNs UNMAP
support is unfortunately missing due to absence of respective VFS KPI.

Sponsored by: iXsystems, Inc


# 256281 10-Oct-2013 gjb

Copy head (r256279) to stable/10 as part of the 10.0-RELEASE cycle.

Approved by: re (implicit)
Sponsored by: The FreeBSD Foundation


# 254759 23-Aug-2013 trasz

CTL changes required for iSCSI target, most notably LUN remapping
and a mechanism to allow CTL frontends for retrieving LUN options.

Reviewed by: ken (earlier version)


# 229997 11-Jan-2012 ken

Add the CAM Target Layer (CTL).

CTL is a disk and processor device emulation subsystem originally written
for Copan Systems under Linux starting in 2003. It has been shipping in
Copan (now SGI) products since 2005.

It was ported to FreeBSD in 2008, and thanks to an agreement between SGI
(who acquired Copan's assets in 2010) and Spectra Logic in 2010, CTL is
available under a BSD-style license. The intent behind the agreement was
that Spectra would work to get CTL into the FreeBSD tree.

Some CTL features:

- Disk and processor device emulation.
- Tagged queueing
- SCSI task attribute support (ordered, head of queue, simple tags)
- SCSI implicit command ordering support. (e.g. if a read follows a mode
select, the read will be blocked until the mode select completes.)
- Full task management support (abort, LUN reset, target reset, etc.)
- Support for multiple ports
- Support for multiple simultaneous initiators
- Support for multiple simultaneous backing stores
- Persistent reservation support
- Mode sense/select support
- Error injection support
- High Availability support (1)
- All I/O handled in-kernel, no userland context switch overhead.

(1) HA Support is just an API stub, and needs much more to be fully
functional.

ctl.c: The core of CTL. Command handlers and processing,
character driver, and HA support are here.

ctl.h: Basic function declarations and data structures.

ctl_backend.c,
ctl_backend.h: The basic CTL backend API.

ctl_backend_block.c,
ctl_backend_block.h: The block and file backend. This allows for using
a disk or a file as the backing store for a LUN.
Multiple threads are started to do I/O to the
backing device, primarily because the VFS API
requires that to get any concurrency.

ctl_backend_ramdisk.c: A "fake" ramdisk backend. It only allocates a
small amount of memory to act as a source and sink
for reads and writes from an initiator. Therefore
it cannot be used for any real data, but it can be
used to test for throughput. It can also be used
to test initiators' support for extremely large LUNs.

ctl_cmd_table.c: This is a table with all 256 possible SCSI opcodes,
and command handler functions defined for supported
opcodes.

ctl_debug.h: Debugging support.

ctl_error.c,
ctl_error.h: CTL-specific wrappers around the CAM sense building
functions.

ctl_frontend.c,
ctl_frontend.h: These files define the basic CTL frontend port API.

ctl_frontend_cam_sim.c: This is a CTL frontend port that is also a CAM SIM.
This frontend allows for using CTL without any
target-capable hardware. So any LUNs you create in
CTL are visible in CAM via this port.

ctl_frontend_internal.c,
ctl_frontend_internal.h:
This is a frontend port written for Copan to do
some system-specific tasks that required sending
commands into CTL from inside the kernel. This
isn't entirely relevant to FreeBSD in general,
but can perhaps be repurposed.

ctl_ha.h: This is a stubbed-out High Availability API. Much
more is needed for full HA support. See the
comments in the header and the description of what
is needed in the README.ctl.txt file for more
details.

ctl_io.h: This defines most of the core CTL I/O structures.
union ctl_io is conceptually very similar to CAM's
union ccb.

ctl_ioctl.h: This defines all ioctls available through the CTL
character device, and the data structures needed
for those ioctls.

ctl_mem_pool.c,
ctl_mem_pool.h: Generic memory pool implementation used by the
internal frontend.

ctl_private.h: Private data structres (e.g. CTL softc) and
function prototypes. This also includes the SCSI
vendor and product names used by CTL.

ctl_scsi_all.c,
ctl_scsi_all.h: CTL wrappers around CAM sense printing functions.

ctl_ser_table.c: Command serialization table. This defines what
happens when one type of command is followed by
another type of command.

ctl_util.c,
ctl_util.h: CTL utility functions, primarily designed to be
used from userland. See ctladm for the primary
consumer of these functions. These include CDB
building functions.

scsi_ctl.c: CAM target peripheral driver and CTL frontend port.
This is the path into CTL for commands from
target-capable hardware/SIMs.

README.ctl.txt: CTL code features, roadmap, to-do list.

usr.sbin/Makefile: Add ctladm.

ctladm/Makefile,
ctladm/ctladm.8,
ctladm/ctladm.c,
ctladm/ctladm.h,
ctladm/util.c: ctladm(8) is the CTL management utility.
It fills a role similar to camcontrol(8).
It allow configuring LUNs, issuing commands,
injecting errors and various other control
functions.

usr.bin/Makefile: Add ctlstat.

ctlstat/Makefile
ctlstat/ctlstat.8,
ctlstat/ctlstat.c: ctlstat(8) fills a role similar to iostat(8).
It reports I/O statistics for CTL.

sys/conf/files: Add CTL files.

sys/conf/NOTES: Add device ctl.

sys/cam/scsi_all.h: To conform to more recent specs, the inquiry CDB
length field is now 2 bytes long.

Add several mode page definitions for CTL.

sys/cam/scsi_all.c: Handle the new 2 byte inquiry length.

sys/dev/ciss/ciss.c,
sys/dev/ata/atapi-cam.c,
sys/cam/scsi/scsi_targ_bh.c,
scsi_target/scsi_cmds.c,
mlxcontrol/interface.c: Update for 2 byte inquiry length field.

scsi_da.h: Add versions of the format and rigid disk pages
that are in a more reasonable format for CTL.

amd64/conf/GENERIC,
i386/conf/GENERIC,
ia64/conf/GENERIC,
sparc64/conf/GENERIC: Add device ctl.

i386/conf/PAE: The CTL frontend SIM at least does not compile
cleanly on PAE.

Sponsored by: Copan Systems, SGI and Spectra Logic
MFC after: 1 month