Deleted Added
full compact
rtsock.c (178888) rtsock.c (180239)
1/*-
2 * Copyright (c) 1988, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95
1/*-
2 * Copyright (c) 1988, 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95
30 * $FreeBSD: head/sys/net/rtsock.c 178888 2008-05-09 23:03:00Z julian $
30 * $FreeBSD: head/sys/net/rtsock.c 180239 2008-07-04 00:21:38Z rwatson $
31 */
32#include "opt_sctp.h"
33#include "opt_mpath.h"
34
35#include <sys/param.h>
36#include <sys/domain.h>
37#include <sys/kernel.h>
38#include <sys/jail.h>
39#include <sys/malloc.h>
40#include <sys/mbuf.h>
41#include <sys/priv.h>
42#include <sys/proc.h>
43#include <sys/protosw.h>
44#include <sys/signalvar.h>
45#include <sys/socket.h>
46#include <sys/socketvar.h>
47#include <sys/sysctl.h>
48#include <sys/systm.h>
49
50#include <net/if.h>
51#include <net/netisr.h>
52#include <net/raw_cb.h>
53#include <net/route.h>
54
55#include <netinet/in.h>
56
57#ifdef SCTP
58extern void sctp_addr_change(struct ifaddr *ifa, int cmd);
59#endif /* SCTP */
60
61MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
62
63/* NB: these are not modified */
64static struct sockaddr route_dst = { 2, PF_ROUTE, };
65static struct sockaddr route_src = { 2, PF_ROUTE, };
66static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, };
67
68static struct {
69 int ip_count; /* attached w/ AF_INET */
70 int ip6_count; /* attached w/ AF_INET6 */
71 int ipx_count; /* attached w/ AF_IPX */
72 int any_count; /* total attached */
73} route_cb;
74
75struct mtx rtsock_mtx;
76MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF);
77
78#define RTSOCK_LOCK() mtx_lock(&rtsock_mtx)
79#define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx)
80#define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED)
81
82static struct ifqueue rtsintrq;
83
84SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, "");
85SYSCTL_INT(_net_route, OID_AUTO, netisr_maxqlen, CTLFLAG_RW,
86 &rtsintrq.ifq_maxlen, 0, "maximum routing socket dispatch queue length");
87
88struct walkarg {
89 int w_tmemsize;
90 int w_op, w_arg;
91 caddr_t w_tmem;
92 struct sysctl_req *w_req;
93};
94
95static void rts_input(struct mbuf *m);
96static struct mbuf *rt_msg1(int type, struct rt_addrinfo *rtinfo);
97static int rt_msg2(int type, struct rt_addrinfo *rtinfo,
98 caddr_t cp, struct walkarg *w);
99static int rt_xaddrs(caddr_t cp, caddr_t cplim,
100 struct rt_addrinfo *rtinfo);
101static int sysctl_dumpentry(struct radix_node *rn, void *vw);
102static int sysctl_iflist(int af, struct walkarg *w);
103static int sysctl_ifmalist(int af, struct walkarg *w);
104static int route_output(struct mbuf *m, struct socket *so);
105static void rt_setmetrics(u_long which, const struct rt_metrics *in,
106 struct rt_metrics_lite *out);
107static void rt_getmetrics(const struct rt_metrics_lite *in,
108 struct rt_metrics *out);
109static void rt_dispatch(struct mbuf *, const struct sockaddr *);
110
111static void
112rts_init(void)
113{
114 int tmp;
115
116 rtsintrq.ifq_maxlen = 256;
117 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp))
118 rtsintrq.ifq_maxlen = tmp;
119 mtx_init(&rtsintrq.ifq_mtx, "rts_inq", NULL, MTX_DEF);
31 */
32#include "opt_sctp.h"
33#include "opt_mpath.h"
34
35#include <sys/param.h>
36#include <sys/domain.h>
37#include <sys/kernel.h>
38#include <sys/jail.h>
39#include <sys/malloc.h>
40#include <sys/mbuf.h>
41#include <sys/priv.h>
42#include <sys/proc.h>
43#include <sys/protosw.h>
44#include <sys/signalvar.h>
45#include <sys/socket.h>
46#include <sys/socketvar.h>
47#include <sys/sysctl.h>
48#include <sys/systm.h>
49
50#include <net/if.h>
51#include <net/netisr.h>
52#include <net/raw_cb.h>
53#include <net/route.h>
54
55#include <netinet/in.h>
56
57#ifdef SCTP
58extern void sctp_addr_change(struct ifaddr *ifa, int cmd);
59#endif /* SCTP */
60
61MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables");
62
63/* NB: these are not modified */
64static struct sockaddr route_dst = { 2, PF_ROUTE, };
65static struct sockaddr route_src = { 2, PF_ROUTE, };
66static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, };
67
68static struct {
69 int ip_count; /* attached w/ AF_INET */
70 int ip6_count; /* attached w/ AF_INET6 */
71 int ipx_count; /* attached w/ AF_IPX */
72 int any_count; /* total attached */
73} route_cb;
74
75struct mtx rtsock_mtx;
76MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF);
77
78#define RTSOCK_LOCK() mtx_lock(&rtsock_mtx)
79#define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx)
80#define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED)
81
82static struct ifqueue rtsintrq;
83
84SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD, 0, "");
85SYSCTL_INT(_net_route, OID_AUTO, netisr_maxqlen, CTLFLAG_RW,
86 &rtsintrq.ifq_maxlen, 0, "maximum routing socket dispatch queue length");
87
88struct walkarg {
89 int w_tmemsize;
90 int w_op, w_arg;
91 caddr_t w_tmem;
92 struct sysctl_req *w_req;
93};
94
95static void rts_input(struct mbuf *m);
96static struct mbuf *rt_msg1(int type, struct rt_addrinfo *rtinfo);
97static int rt_msg2(int type, struct rt_addrinfo *rtinfo,
98 caddr_t cp, struct walkarg *w);
99static int rt_xaddrs(caddr_t cp, caddr_t cplim,
100 struct rt_addrinfo *rtinfo);
101static int sysctl_dumpentry(struct radix_node *rn, void *vw);
102static int sysctl_iflist(int af, struct walkarg *w);
103static int sysctl_ifmalist(int af, struct walkarg *w);
104static int route_output(struct mbuf *m, struct socket *so);
105static void rt_setmetrics(u_long which, const struct rt_metrics *in,
106 struct rt_metrics_lite *out);
107static void rt_getmetrics(const struct rt_metrics_lite *in,
108 struct rt_metrics *out);
109static void rt_dispatch(struct mbuf *, const struct sockaddr *);
110
111static void
112rts_init(void)
113{
114 int tmp;
115
116 rtsintrq.ifq_maxlen = 256;
117 if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp))
118 rtsintrq.ifq_maxlen = tmp;
119 mtx_init(&rtsintrq.ifq_mtx, "rts_inq", NULL, MTX_DEF);
120 netisr_register(NETISR_ROUTE, rts_input, &rtsintrq, NETISR_MPSAFE);
120 netisr_register(NETISR_ROUTE, rts_input, &rtsintrq, 0);
121}
122SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0);
123
124static void
125rts_input(struct mbuf *m)
126{
127 struct sockproto route_proto;
128 unsigned short *family;
129 struct m_tag *tag;
130
131 route_proto.sp_family = PF_ROUTE;
132 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL);
133 if (tag != NULL) {
134 family = (unsigned short *)(tag + 1);
135 route_proto.sp_protocol = *family;
136 m_tag_delete(m, tag);
137 } else
138 route_proto.sp_protocol = 0;
139
140 raw_input(m, &route_proto, &route_src, &route_dst);
141}
142
143/*
144 * It really doesn't make any sense at all for this code to share much
145 * with raw_usrreq.c, since its functionality is so restricted. XXX
146 */
147static void
148rts_abort(struct socket *so)
149{
150
151 raw_usrreqs.pru_abort(so);
152}
153
154static void
155rts_close(struct socket *so)
156{
157
158 raw_usrreqs.pru_close(so);
159}
160
161/* pru_accept is EOPNOTSUPP */
162
163static int
164rts_attach(struct socket *so, int proto, struct thread *td)
165{
166 struct rawcb *rp;
167 int s, error;
168
169 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL"));
170
171 /* XXX */
172 MALLOC(rp, struct rawcb *, sizeof *rp, M_PCB, M_WAITOK | M_ZERO);
173 if (rp == NULL)
174 return ENOBUFS;
175
176 /*
177 * The splnet() is necessary to block protocols from sending
178 * error notifications (like RTM_REDIRECT or RTM_LOSING) while
179 * this PCB is extant but incompletely initialized.
180 * Probably we should try to do more of this work beforehand and
181 * eliminate the spl.
182 */
183 s = splnet();
184 so->so_pcb = (caddr_t)rp;
185 so->so_fibnum = td->td_proc->p_fibnum;
186 error = raw_attach(so, proto);
187 rp = sotorawcb(so);
188 if (error) {
189 splx(s);
190 so->so_pcb = NULL;
191 free(rp, M_PCB);
192 return error;
193 }
194 RTSOCK_LOCK();
195 switch(rp->rcb_proto.sp_protocol) {
196 case AF_INET:
197 route_cb.ip_count++;
198 break;
199 case AF_INET6:
200 route_cb.ip6_count++;
201 break;
202 case AF_IPX:
203 route_cb.ipx_count++;
204 break;
205 }
206 rp->rcb_faddr = &route_src;
207 route_cb.any_count++;
208 RTSOCK_UNLOCK();
209 soisconnected(so);
210 so->so_options |= SO_USELOOPBACK;
211 splx(s);
212 return 0;
213}
214
215static int
216rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
217{
218
219 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */
220}
221
222static int
223rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
224{
225
226 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */
227}
228
229/* pru_connect2 is EOPNOTSUPP */
230/* pru_control is EOPNOTSUPP */
231
232static void
233rts_detach(struct socket *so)
234{
235 struct rawcb *rp = sotorawcb(so);
236
237 KASSERT(rp != NULL, ("rts_detach: rp == NULL"));
238
239 RTSOCK_LOCK();
240 switch(rp->rcb_proto.sp_protocol) {
241 case AF_INET:
242 route_cb.ip_count--;
243 break;
244 case AF_INET6:
245 route_cb.ip6_count--;
246 break;
247 case AF_IPX:
248 route_cb.ipx_count--;
249 break;
250 }
251 route_cb.any_count--;
252 RTSOCK_UNLOCK();
253 raw_usrreqs.pru_detach(so);
254}
255
256static int
257rts_disconnect(struct socket *so)
258{
259
260 return (raw_usrreqs.pru_disconnect(so));
261}
262
263/* pru_listen is EOPNOTSUPP */
264
265static int
266rts_peeraddr(struct socket *so, struct sockaddr **nam)
267{
268
269 return (raw_usrreqs.pru_peeraddr(so, nam));
270}
271
272/* pru_rcvd is EOPNOTSUPP */
273/* pru_rcvoob is EOPNOTSUPP */
274
275static int
276rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
277 struct mbuf *control, struct thread *td)
278{
279
280 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td));
281}
282
283/* pru_sense is null */
284
285static int
286rts_shutdown(struct socket *so)
287{
288
289 return (raw_usrreqs.pru_shutdown(so));
290}
291
292static int
293rts_sockaddr(struct socket *so, struct sockaddr **nam)
294{
295
296 return (raw_usrreqs.pru_sockaddr(so, nam));
297}
298
299static struct pr_usrreqs route_usrreqs = {
300 .pru_abort = rts_abort,
301 .pru_attach = rts_attach,
302 .pru_bind = rts_bind,
303 .pru_connect = rts_connect,
304 .pru_detach = rts_detach,
305 .pru_disconnect = rts_disconnect,
306 .pru_peeraddr = rts_peeraddr,
307 .pru_send = rts_send,
308 .pru_shutdown = rts_shutdown,
309 .pru_sockaddr = rts_sockaddr,
310 .pru_close = rts_close,
311};
312
313/*ARGSUSED*/
314static int
315route_output(struct mbuf *m, struct socket *so)
316{
317#define sa_equal(a1, a2) (bcmp((a1), (a2), (a1)->sa_len) == 0)
318 struct rt_msghdr *rtm = NULL;
319 struct rtentry *rt = NULL;
320 struct radix_node_head *rnh;
321 struct rt_addrinfo info;
322 int len, error = 0;
323 struct ifnet *ifp = NULL;
324 struct sockaddr_in jail;
325
326#define senderr(e) { error = e; goto flush;}
327 if (m == NULL || ((m->m_len < sizeof(long)) &&
328 (m = m_pullup(m, sizeof(long))) == NULL))
329 return (ENOBUFS);
330 if ((m->m_flags & M_PKTHDR) == 0)
331 panic("route_output");
332 len = m->m_pkthdr.len;
333 if (len < sizeof(*rtm) ||
334 len != mtod(m, struct rt_msghdr *)->rtm_msglen) {
335 info.rti_info[RTAX_DST] = NULL;
336 senderr(EINVAL);
337 }
338 R_Malloc(rtm, struct rt_msghdr *, len);
339 if (rtm == NULL) {
340 info.rti_info[RTAX_DST] = NULL;
341 senderr(ENOBUFS);
342 }
343 m_copydata(m, 0, len, (caddr_t)rtm);
344 if (rtm->rtm_version != RTM_VERSION) {
345 info.rti_info[RTAX_DST] = NULL;
346 senderr(EPROTONOSUPPORT);
347 }
348 rtm->rtm_pid = curproc->p_pid;
349 bzero(&info, sizeof(info));
350 info.rti_addrs = rtm->rtm_addrs;
351 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) {
352 info.rti_info[RTAX_DST] = NULL;
353 senderr(EINVAL);
354 }
355 info.rti_flags = rtm->rtm_flags;
356 if (info.rti_info[RTAX_DST] == NULL ||
357 info.rti_info[RTAX_DST]->sa_family >= AF_MAX ||
358 (info.rti_info[RTAX_GATEWAY] != NULL &&
359 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX))
360 senderr(EINVAL);
361 if (info.rti_info[RTAX_GENMASK]) {
362 struct radix_node *t;
363 t = rn_addmask((caddr_t) info.rti_info[RTAX_GENMASK], 0, 1);
364 if (t != NULL &&
365 bcmp((char *)(void *)info.rti_info[RTAX_GENMASK] + 1,
366 (char *)(void *)t->rn_key + 1,
367 ((struct sockaddr *)t->rn_key)->sa_len - 1) == 0)
368 info.rti_info[RTAX_GENMASK] =
369 (struct sockaddr *)t->rn_key;
370 else
371 senderr(ENOBUFS);
372 }
373
374 /*
375 * Verify that the caller has the appropriate privilege; RTM_GET
376 * is the only operation the non-superuser is allowed.
377 */
378 if (rtm->rtm_type != RTM_GET) {
379 error = priv_check(curthread, PRIV_NET_ROUTE);
380 if (error)
381 senderr(error);
382 }
383
384 switch (rtm->rtm_type) {
385 struct rtentry *saved_nrt;
386
387 case RTM_ADD:
388 if (info.rti_info[RTAX_GATEWAY] == NULL)
389 senderr(EINVAL);
390 saved_nrt = NULL;
391 error = rtrequest1_fib(RTM_ADD, &info, &saved_nrt,
392 so->so_fibnum);
393 if (error == 0 && saved_nrt) {
394 RT_LOCK(saved_nrt);
395 rt_setmetrics(rtm->rtm_inits,
396 &rtm->rtm_rmx, &saved_nrt->rt_rmx);
397 rtm->rtm_index = saved_nrt->rt_ifp->if_index;
398 RT_REMREF(saved_nrt);
399 saved_nrt->rt_genmask = info.rti_info[RTAX_GENMASK];
400 RT_UNLOCK(saved_nrt);
401 }
402 break;
403
404 case RTM_DELETE:
405 saved_nrt = NULL;
406 error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt,
407 so->so_fibnum);
408 if (error == 0) {
409 RT_LOCK(saved_nrt);
410 rt = saved_nrt;
411 goto report;
412 }
413 break;
414
415 case RTM_GET:
416 case RTM_CHANGE:
417 case RTM_LOCK:
418 rnh = rt_tables[so->so_fibnum][info.rti_info[RTAX_DST]->sa_family];
419 if (rnh == NULL)
420 senderr(EAFNOSUPPORT);
421 RADIX_NODE_HEAD_LOCK(rnh);
422 rt = (struct rtentry *) rnh->rnh_lookup(info.rti_info[RTAX_DST],
423 info.rti_info[RTAX_NETMASK], rnh);
424 if (rt == NULL) { /* XXX looks bogus */
425 RADIX_NODE_HEAD_UNLOCK(rnh);
426 senderr(ESRCH);
427 }
428#ifdef RADIX_MPATH
429 /*
430 * for RTM_CHANGE/LOCK, if we got multipath routes,
431 * we require users to specify a matching RTAX_GATEWAY.
432 *
433 * for RTM_GET, gate is optional even with multipath.
434 * if gate == NULL the first match is returned.
435 * (no need to call rt_mpath_matchgate if gate == NULL)
436 */
437 if (rn_mpath_capable(rnh) &&
438 (rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) {
439 rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]);
440 if (!rt) {
441 RADIX_NODE_HEAD_UNLOCK(rnh);
442 senderr(ESRCH);
443 }
444 }
445#endif
446 RT_LOCK(rt);
447 RT_ADDREF(rt);
448 RADIX_NODE_HEAD_UNLOCK(rnh);
449
450 /*
451 * Fix for PR: 82974
452 *
453 * RTM_CHANGE/LOCK need a perfect match, rn_lookup()
454 * returns a perfect match in case a netmask is
455 * specified. For host routes only a longest prefix
456 * match is returned so it is necessary to compare the
457 * existence of the netmask. If both have a netmask
458 * rnh_lookup() did a perfect match and if none of them
459 * have a netmask both are host routes which is also a
460 * perfect match.
461 */
462
463 if (rtm->rtm_type != RTM_GET &&
464 (!rt_mask(rt) != !info.rti_info[RTAX_NETMASK])) {
465 RT_UNLOCK(rt);
466 senderr(ESRCH);
467 }
468
469 switch(rtm->rtm_type) {
470
471 case RTM_GET:
472 report:
473 RT_LOCK_ASSERT(rt);
474 info.rti_info[RTAX_DST] = rt_key(rt);
475 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
476 info.rti_info[RTAX_NETMASK] = rt_mask(rt);
477 info.rti_info[RTAX_GENMASK] = rt->rt_genmask;
478 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
479 ifp = rt->rt_ifp;
480 if (ifp) {
481 info.rti_info[RTAX_IFP] =
482 ifp->if_addr->ifa_addr;
483 if (jailed(so->so_cred)) {
484 bzero(&jail, sizeof(jail));
485 jail.sin_family = PF_INET;
486 jail.sin_len = sizeof(jail);
487 jail.sin_addr.s_addr =
488 htonl(prison_getip(so->so_cred));
489 info.rti_info[RTAX_IFA] =
490 (struct sockaddr *)&jail;
491 } else
492 info.rti_info[RTAX_IFA] =
493 rt->rt_ifa->ifa_addr;
494 if (ifp->if_flags & IFF_POINTOPOINT)
495 info.rti_info[RTAX_BRD] =
496 rt->rt_ifa->ifa_dstaddr;
497 rtm->rtm_index = ifp->if_index;
498 } else {
499 info.rti_info[RTAX_IFP] = NULL;
500 info.rti_info[RTAX_IFA] = NULL;
501 }
502 } else if ((ifp = rt->rt_ifp) != NULL) {
503 rtm->rtm_index = ifp->if_index;
504 }
505 len = rt_msg2(rtm->rtm_type, &info, NULL, NULL);
506 if (len > rtm->rtm_msglen) {
507 struct rt_msghdr *new_rtm;
508 R_Malloc(new_rtm, struct rt_msghdr *, len);
509 if (new_rtm == NULL) {
510 RT_UNLOCK(rt);
511 senderr(ENOBUFS);
512 }
513 bcopy(rtm, new_rtm, rtm->rtm_msglen);
514 Free(rtm); rtm = new_rtm;
515 }
516 (void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, NULL);
517 rtm->rtm_flags = rt->rt_flags;
518 rtm->rtm_use = 0;
519 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx);
520 rtm->rtm_addrs = info.rti_addrs;
521 break;
522
523 case RTM_CHANGE:
524 /*
525 * New gateway could require new ifaddr, ifp;
526 * flags may also be different; ifp may be specified
527 * by ll sockaddr when protocol address is ambiguous
528 */
529 if (((rt->rt_flags & RTF_GATEWAY) &&
530 info.rti_info[RTAX_GATEWAY] != NULL) ||
531 info.rti_info[RTAX_IFP] != NULL ||
532 (info.rti_info[RTAX_IFA] != NULL &&
533 !sa_equal(info.rti_info[RTAX_IFA],
534 rt->rt_ifa->ifa_addr))) {
535 RT_UNLOCK(rt);
536 if ((error = rt_getifa_fib(&info,
537 rt->rt_fibnum)) != 0)
538 senderr(error);
539 RT_LOCK(rt);
540 }
541 if (info.rti_ifa != NULL &&
542 info.rti_ifa != rt->rt_ifa &&
543 rt->rt_ifa != NULL &&
544 rt->rt_ifa->ifa_rtrequest != NULL) {
545 rt->rt_ifa->ifa_rtrequest(RTM_DELETE, rt,
546 &info);
547 IFAFREE(rt->rt_ifa);
548 }
549 if (info.rti_info[RTAX_GATEWAY] != NULL) {
550 if ((error = rt_setgate(rt, rt_key(rt),
551 info.rti_info[RTAX_GATEWAY])) != 0) {
552 RT_UNLOCK(rt);
553 senderr(error);
554 }
555 if (!(rt->rt_flags & RTF_LLINFO))
556 rt->rt_flags |= RTF_GATEWAY;
557 }
558 if (info.rti_ifa != NULL &&
559 info.rti_ifa != rt->rt_ifa) {
560 IFAREF(info.rti_ifa);
561 rt->rt_ifa = info.rti_ifa;
562 rt->rt_ifp = info.rti_ifp;
563 }
564 /* Allow some flags to be toggled on change. */
565 if (rtm->rtm_fmask & RTF_FMASK)
566 rt->rt_flags = (rt->rt_flags &
567 ~rtm->rtm_fmask) |
568 (rtm->rtm_flags & rtm->rtm_fmask);
569 rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx,
570 &rt->rt_rmx);
571 rtm->rtm_index = rt->rt_ifp->if_index;
572 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest)
573 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info);
574 if (info.rti_info[RTAX_GENMASK])
575 rt->rt_genmask = info.rti_info[RTAX_GENMASK];
576 /* FALLTHROUGH */
577 case RTM_LOCK:
578 /* We don't support locks anymore */
579 break;
580 }
581 RT_UNLOCK(rt);
582 break;
583
584 default:
585 senderr(EOPNOTSUPP);
586 }
587
588flush:
589 if (rtm) {
590 if (error)
591 rtm->rtm_errno = error;
592 else
593 rtm->rtm_flags |= RTF_DONE;
594 }
595 if (rt) /* XXX can this be true? */
596 RTFREE(rt);
597 {
598 struct rawcb *rp = NULL;
599 /*
600 * Check to see if we don't want our own messages.
601 */
602 if ((so->so_options & SO_USELOOPBACK) == 0) {
603 if (route_cb.any_count <= 1) {
604 if (rtm)
605 Free(rtm);
606 m_freem(m);
607 return (error);
608 }
609 /* There is another listener, so construct message */
610 rp = sotorawcb(so);
611 }
612 if (rtm) {
613 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
614 if (m->m_pkthdr.len < rtm->rtm_msglen) {
615 m_freem(m);
616 m = NULL;
617 } else if (m->m_pkthdr.len > rtm->rtm_msglen)
618 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
619 Free(rtm);
620 }
621 if (m) {
622 if (rp) {
623 /*
624 * XXX insure we don't get a copy by
625 * invalidating our protocol
626 */
627 unsigned short family = rp->rcb_proto.sp_family;
628 rp->rcb_proto.sp_family = 0;
629 rt_dispatch(m, info.rti_info[RTAX_DST]);
630 rp->rcb_proto.sp_family = family;
631 } else
632 rt_dispatch(m, info.rti_info[RTAX_DST]);
633 }
634 }
635 return (error);
636#undef sa_equal
637}
638
639static void
640rt_setmetrics(u_long which, const struct rt_metrics *in,
641 struct rt_metrics_lite *out)
642{
643#define metric(f, e) if (which & (f)) out->e = in->e;
644 /*
645 * Only these are stored in the routing entry since introduction
646 * of tcp hostcache. The rest is ignored.
647 */
648 metric(RTV_MTU, rmx_mtu);
649 /* Userland -> kernel timebase conversion. */
650 if (which & RTV_EXPIRE)
651 out->rmx_expire = in->rmx_expire ?
652 in->rmx_expire - time_second + time_uptime : 0;
653#undef metric
654}
655
656static void
657rt_getmetrics(const struct rt_metrics_lite *in, struct rt_metrics *out)
658{
659#define metric(e) out->e = in->e;
660 bzero(out, sizeof(*out));
661 metric(rmx_mtu);
662 /* Kernel -> userland timebase conversion. */
663 out->rmx_expire = in->rmx_expire ?
664 in->rmx_expire - time_uptime + time_second : 0;
665#undef metric
666}
667
668/*
669 * Extract the addresses of the passed sockaddrs.
670 * Do a little sanity checking so as to avoid bad memory references.
671 * This data is derived straight from userland.
672 */
673static int
674rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo)
675{
676 struct sockaddr *sa;
677 int i;
678
679 for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
680 if ((rtinfo->rti_addrs & (1 << i)) == 0)
681 continue;
682 sa = (struct sockaddr *)cp;
683 /*
684 * It won't fit.
685 */
686 if (cp + sa->sa_len > cplim)
687 return (EINVAL);
688 /*
689 * there are no more.. quit now
690 * If there are more bits, they are in error.
691 * I've seen this. route(1) can evidently generate these.
692 * This causes kernel to core dump.
693 * for compatibility, If we see this, point to a safe address.
694 */
695 if (sa->sa_len == 0) {
696 rtinfo->rti_info[i] = &sa_zero;
697 return (0); /* should be EINVAL but for compat */
698 }
699 /* accept it */
700 rtinfo->rti_info[i] = sa;
701 cp += SA_SIZE(sa);
702 }
703 return (0);
704}
705
706static struct mbuf *
707rt_msg1(int type, struct rt_addrinfo *rtinfo)
708{
709 struct rt_msghdr *rtm;
710 struct mbuf *m;
711 int i;
712 struct sockaddr *sa;
713 int len, dlen;
714
715 switch (type) {
716
717 case RTM_DELADDR:
718 case RTM_NEWADDR:
719 len = sizeof(struct ifa_msghdr);
720 break;
721
722 case RTM_DELMADDR:
723 case RTM_NEWMADDR:
724 len = sizeof(struct ifma_msghdr);
725 break;
726
727 case RTM_IFINFO:
728 len = sizeof(struct if_msghdr);
729 break;
730
731 case RTM_IFANNOUNCE:
732 case RTM_IEEE80211:
733 len = sizeof(struct if_announcemsghdr);
734 break;
735
736 default:
737 len = sizeof(struct rt_msghdr);
738 }
739 if (len > MCLBYTES)
740 panic("rt_msg1");
741 m = m_gethdr(M_DONTWAIT, MT_DATA);
742 if (m && len > MHLEN) {
743 MCLGET(m, M_DONTWAIT);
744 if ((m->m_flags & M_EXT) == 0) {
745 m_free(m);
746 m = NULL;
747 }
748 }
749 if (m == NULL)
750 return (m);
751 m->m_pkthdr.len = m->m_len = len;
752 m->m_pkthdr.rcvif = NULL;
753 rtm = mtod(m, struct rt_msghdr *);
754 bzero((caddr_t)rtm, len);
755 for (i = 0; i < RTAX_MAX; i++) {
756 if ((sa = rtinfo->rti_info[i]) == NULL)
757 continue;
758 rtinfo->rti_addrs |= (1 << i);
759 dlen = SA_SIZE(sa);
760 m_copyback(m, len, dlen, (caddr_t)sa);
761 len += dlen;
762 }
763 if (m->m_pkthdr.len != len) {
764 m_freem(m);
765 return (NULL);
766 }
767 rtm->rtm_msglen = len;
768 rtm->rtm_version = RTM_VERSION;
769 rtm->rtm_type = type;
770 return (m);
771}
772
773static int
774rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w)
775{
776 int i;
777 int len, dlen, second_time = 0;
778 caddr_t cp0;
779
780 rtinfo->rti_addrs = 0;
781again:
782 switch (type) {
783
784 case RTM_DELADDR:
785 case RTM_NEWADDR:
786 len = sizeof(struct ifa_msghdr);
787 break;
788
789 case RTM_IFINFO:
790 len = sizeof(struct if_msghdr);
791 break;
792
793 case RTM_NEWMADDR:
794 len = sizeof(struct ifma_msghdr);
795 break;
796
797 default:
798 len = sizeof(struct rt_msghdr);
799 }
800 cp0 = cp;
801 if (cp0)
802 cp += len;
803 for (i = 0; i < RTAX_MAX; i++) {
804 struct sockaddr *sa;
805
806 if ((sa = rtinfo->rti_info[i]) == NULL)
807 continue;
808 rtinfo->rti_addrs |= (1 << i);
809 dlen = SA_SIZE(sa);
810 if (cp) {
811 bcopy((caddr_t)sa, cp, (unsigned)dlen);
812 cp += dlen;
813 }
814 len += dlen;
815 }
816 len = ALIGN(len);
817 if (cp == NULL && w != NULL && !second_time) {
818 struct walkarg *rw = w;
819
820 if (rw->w_req) {
821 if (rw->w_tmemsize < len) {
822 if (rw->w_tmem)
823 free(rw->w_tmem, M_RTABLE);
824 rw->w_tmem = (caddr_t)
825 malloc(len, M_RTABLE, M_NOWAIT);
826 if (rw->w_tmem)
827 rw->w_tmemsize = len;
828 }
829 if (rw->w_tmem) {
830 cp = rw->w_tmem;
831 second_time = 1;
832 goto again;
833 }
834 }
835 }
836 if (cp) {
837 struct rt_msghdr *rtm = (struct rt_msghdr *)cp0;
838
839 rtm->rtm_version = RTM_VERSION;
840 rtm->rtm_type = type;
841 rtm->rtm_msglen = len;
842 }
843 return (len);
844}
845
846/*
847 * This routine is called to generate a message from the routing
848 * socket indicating that a redirect has occured, a routing lookup
849 * has failed, or that a protocol has detected timeouts to a particular
850 * destination.
851 */
852void
853rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
854{
855 struct rt_msghdr *rtm;
856 struct mbuf *m;
857 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
858
859 if (route_cb.any_count == 0)
860 return;
861 m = rt_msg1(type, rtinfo);
862 if (m == NULL)
863 return;
864 rtm = mtod(m, struct rt_msghdr *);
865 rtm->rtm_flags = RTF_DONE | flags;
866 rtm->rtm_errno = error;
867 rtm->rtm_addrs = rtinfo->rti_addrs;
868 rt_dispatch(m, sa);
869}
870
871/*
872 * This routine is called to generate a message from the routing
873 * socket indicating that the status of a network interface has changed.
874 */
875void
876rt_ifmsg(struct ifnet *ifp)
877{
878 struct if_msghdr *ifm;
879 struct mbuf *m;
880 struct rt_addrinfo info;
881
882 if (route_cb.any_count == 0)
883 return;
884 bzero((caddr_t)&info, sizeof(info));
885 m = rt_msg1(RTM_IFINFO, &info);
886 if (m == NULL)
887 return;
888 ifm = mtod(m, struct if_msghdr *);
889 ifm->ifm_index = ifp->if_index;
890 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
891 ifm->ifm_data = ifp->if_data;
892 ifm->ifm_addrs = 0;
893 rt_dispatch(m, NULL);
894}
895
896/*
897 * This is called to generate messages from the routing socket
898 * indicating a network interface has had addresses associated with it.
899 * if we ever reverse the logic and replace messages TO the routing
900 * socket indicate a request to configure interfaces, then it will
901 * be unnecessary as the routing socket will automatically generate
902 * copies of it.
903 */
904void
905rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt)
906{
907 struct rt_addrinfo info;
908 struct sockaddr *sa = NULL;
909 int pass;
910 struct mbuf *m = NULL;
911 struct ifnet *ifp = ifa->ifa_ifp;
912
913 KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE,
914 ("unexpected cmd %u", cmd));
915#ifdef SCTP
916 /*
917 * notify the SCTP stack
918 * this will only get called when an address is added/deleted
919 * XXX pass the ifaddr struct instead if ifa->ifa_addr...
920 */
921 sctp_addr_change(ifa, cmd);
922#endif /* SCTP */
923 if (route_cb.any_count == 0)
924 return;
925 for (pass = 1; pass < 3; pass++) {
926 bzero((caddr_t)&info, sizeof(info));
927 if ((cmd == RTM_ADD && pass == 1) ||
928 (cmd == RTM_DELETE && pass == 2)) {
929 struct ifa_msghdr *ifam;
930 int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
931
932 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
933 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
934 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
935 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
936 if ((m = rt_msg1(ncmd, &info)) == NULL)
937 continue;
938 ifam = mtod(m, struct ifa_msghdr *);
939 ifam->ifam_index = ifp->if_index;
940 ifam->ifam_metric = ifa->ifa_metric;
941 ifam->ifam_flags = ifa->ifa_flags;
942 ifam->ifam_addrs = info.rti_addrs;
943 }
944 if ((cmd == RTM_ADD && pass == 2) ||
945 (cmd == RTM_DELETE && pass == 1)) {
946 struct rt_msghdr *rtm;
947
948 if (rt == NULL)
949 continue;
950 info.rti_info[RTAX_NETMASK] = rt_mask(rt);
951 info.rti_info[RTAX_DST] = sa = rt_key(rt);
952 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
953 if ((m = rt_msg1(cmd, &info)) == NULL)
954 continue;
955 rtm = mtod(m, struct rt_msghdr *);
956 rtm->rtm_index = ifp->if_index;
957 rtm->rtm_flags |= rt->rt_flags;
958 rtm->rtm_errno = error;
959 rtm->rtm_addrs = info.rti_addrs;
960 }
961 rt_dispatch(m, sa);
962 }
963}
964
965/*
966 * This is the analogue to the rt_newaddrmsg which performs the same
967 * function but for multicast group memberhips. This is easier since
968 * there is no route state to worry about.
969 */
970void
971rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
972{
973 struct rt_addrinfo info;
974 struct mbuf *m = NULL;
975 struct ifnet *ifp = ifma->ifma_ifp;
976 struct ifma_msghdr *ifmam;
977
978 if (route_cb.any_count == 0)
979 return;
980
981 bzero((caddr_t)&info, sizeof(info));
982 info.rti_info[RTAX_IFA] = ifma->ifma_addr;
983 info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL;
984 /*
985 * If a link-layer address is present, present it as a ``gateway''
986 * (similarly to how ARP entries, e.g., are presented).
987 */
988 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr;
989 m = rt_msg1(cmd, &info);
990 if (m == NULL)
991 return;
992 ifmam = mtod(m, struct ifma_msghdr *);
993 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n",
994 __func__));
995 ifmam->ifmam_index = ifp->if_index;
996 ifmam->ifmam_addrs = info.rti_addrs;
997 rt_dispatch(m, ifma->ifma_addr);
998}
999
1000static struct mbuf *
1001rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
1002 struct rt_addrinfo *info)
1003{
1004 struct if_announcemsghdr *ifan;
1005 struct mbuf *m;
1006
1007 if (route_cb.any_count == 0)
1008 return NULL;
1009 bzero((caddr_t)info, sizeof(*info));
1010 m = rt_msg1(type, info);
1011 if (m != NULL) {
1012 ifan = mtod(m, struct if_announcemsghdr *);
1013 ifan->ifan_index = ifp->if_index;
1014 strlcpy(ifan->ifan_name, ifp->if_xname,
1015 sizeof(ifan->ifan_name));
1016 ifan->ifan_what = what;
1017 }
1018 return m;
1019}
1020
1021/*
1022 * This is called to generate routing socket messages indicating
1023 * IEEE80211 wireless events.
1024 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
1025 */
1026void
1027rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
1028{
1029 struct mbuf *m;
1030 struct rt_addrinfo info;
1031
1032 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
1033 if (m != NULL) {
1034 /*
1035 * Append the ieee80211 data. Try to stick it in the
1036 * mbuf containing the ifannounce msg; otherwise allocate
1037 * a new mbuf and append.
1038 *
1039 * NB: we assume m is a single mbuf.
1040 */
1041 if (data_len > M_TRAILINGSPACE(m)) {
1042 struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
1043 if (n == NULL) {
1044 m_freem(m);
1045 return;
1046 }
1047 bcopy(data, mtod(n, void *), data_len);
1048 n->m_len = data_len;
1049 m->m_next = n;
1050 } else if (data_len > 0) {
1051 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len);
1052 m->m_len += data_len;
1053 }
1054 if (m->m_flags & M_PKTHDR)
1055 m->m_pkthdr.len += data_len;
1056 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
1057 rt_dispatch(m, NULL);
1058 }
1059}
1060
1061/*
1062 * This is called to generate routing socket messages indicating
1063 * network interface arrival and departure.
1064 */
1065void
1066rt_ifannouncemsg(struct ifnet *ifp, int what)
1067{
1068 struct mbuf *m;
1069 struct rt_addrinfo info;
1070
1071 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
1072 if (m != NULL)
1073 rt_dispatch(m, NULL);
1074}
1075
1076static void
1077rt_dispatch(struct mbuf *m, const struct sockaddr *sa)
1078{
1079 struct m_tag *tag;
1080
1081 /*
1082 * Preserve the family from the sockaddr, if any, in an m_tag for
1083 * use when injecting the mbuf into the routing socket buffer from
1084 * the netisr.
1085 */
1086 if (sa != NULL) {
1087 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short),
1088 M_NOWAIT);
1089 if (tag == NULL) {
1090 m_freem(m);
1091 return;
1092 }
1093 *(unsigned short *)(tag + 1) = sa->sa_family;
1094 m_tag_prepend(m, tag);
1095 }
1096 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */
1097}
1098
1099/*
1100 * This is used in dumping the kernel table via sysctl().
1101 */
1102static int
1103sysctl_dumpentry(struct radix_node *rn, void *vw)
1104{
1105 struct walkarg *w = vw;
1106 struct rtentry *rt = (struct rtentry *)rn;
1107 int error = 0, size;
1108 struct rt_addrinfo info;
1109
1110 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
1111 return 0;
1112 bzero((caddr_t)&info, sizeof(info));
1113 info.rti_info[RTAX_DST] = rt_key(rt);
1114 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1115 info.rti_info[RTAX_NETMASK] = rt_mask(rt);
1116 info.rti_info[RTAX_GENMASK] = rt->rt_genmask;
1117 if (rt->rt_ifp) {
1118 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr;
1119 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
1120 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
1121 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr;
1122 }
1123 size = rt_msg2(RTM_GET, &info, NULL, w);
1124 if (w->w_req && w->w_tmem) {
1125 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
1126
1127 rtm->rtm_flags = rt->rt_flags;
1128 rtm->rtm_use = rt->rt_rmx.rmx_pksent;
1129 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx);
1130 rtm->rtm_index = rt->rt_ifp->if_index;
1131 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
1132 rtm->rtm_addrs = info.rti_addrs;
1133 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size);
1134 return (error);
1135 }
1136 return (error);
1137}
1138
1139static int
1140sysctl_iflist(int af, struct walkarg *w)
1141{
1142 struct ifnet *ifp;
1143 struct ifaddr *ifa;
1144 struct rt_addrinfo info;
1145 int len, error = 0;
1146
1147 bzero((caddr_t)&info, sizeof(info));
1148 IFNET_RLOCK();
1149 TAILQ_FOREACH(ifp, &ifnet, if_link) {
1150 if (w->w_arg && w->w_arg != ifp->if_index)
1151 continue;
1152 ifa = ifp->if_addr;
1153 info.rti_info[RTAX_IFP] = ifa->ifa_addr;
1154 len = rt_msg2(RTM_IFINFO, &info, NULL, w);
1155 info.rti_info[RTAX_IFP] = NULL;
1156 if (w->w_req && w->w_tmem) {
1157 struct if_msghdr *ifm;
1158
1159 ifm = (struct if_msghdr *)w->w_tmem;
1160 ifm->ifm_index = ifp->if_index;
1161 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1162 ifm->ifm_data = ifp->if_data;
1163 ifm->ifm_addrs = info.rti_addrs;
1164 error = SYSCTL_OUT(w->w_req,(caddr_t)ifm, len);
1165 if (error)
1166 goto done;
1167 }
1168 while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) {
1169 if (af && af != ifa->ifa_addr->sa_family)
1170 continue;
1171 if (jailed(curthread->td_ucred) &&
1172 prison_if(curthread->td_ucred, ifa->ifa_addr))
1173 continue;
1174 info.rti_info[RTAX_IFA] = ifa->ifa_addr;
1175 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
1176 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1177 len = rt_msg2(RTM_NEWADDR, &info, NULL, w);
1178 if (w->w_req && w->w_tmem) {
1179 struct ifa_msghdr *ifam;
1180
1181 ifam = (struct ifa_msghdr *)w->w_tmem;
1182 ifam->ifam_index = ifa->ifa_ifp->if_index;
1183 ifam->ifam_flags = ifa->ifa_flags;
1184 ifam->ifam_metric = ifa->ifa_metric;
1185 ifam->ifam_addrs = info.rti_addrs;
1186 error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
1187 if (error)
1188 goto done;
1189 }
1190 }
1191 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] =
1192 info.rti_info[RTAX_BRD] = NULL;
1193 }
1194done:
1195 IFNET_RUNLOCK();
1196 return (error);
1197}
1198
1199int
1200sysctl_ifmalist(int af, struct walkarg *w)
1201{
1202 struct ifnet *ifp;
1203 struct ifmultiaddr *ifma;
1204 struct rt_addrinfo info;
1205 int len, error = 0;
1206 struct ifaddr *ifa;
1207
1208 bzero((caddr_t)&info, sizeof(info));
1209 IFNET_RLOCK();
1210 TAILQ_FOREACH(ifp, &ifnet, if_link) {
1211 if (w->w_arg && w->w_arg != ifp->if_index)
1212 continue;
1213 ifa = ifp->if_addr;
1214 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL;
1215 IF_ADDR_LOCK(ifp);
1216 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1217 if (af && af != ifma->ifma_addr->sa_family)
1218 continue;
1219 if (jailed(curproc->p_ucred) &&
1220 prison_if(curproc->p_ucred, ifma->ifma_addr))
1221 continue;
1222 info.rti_info[RTAX_IFA] = ifma->ifma_addr;
1223 info.rti_info[RTAX_GATEWAY] =
1224 (ifma->ifma_addr->sa_family != AF_LINK) ?
1225 ifma->ifma_lladdr : NULL;
1226 len = rt_msg2(RTM_NEWMADDR, &info, NULL, w);
1227 if (w->w_req && w->w_tmem) {
1228 struct ifma_msghdr *ifmam;
1229
1230 ifmam = (struct ifma_msghdr *)w->w_tmem;
1231 ifmam->ifmam_index = ifma->ifma_ifp->if_index;
1232 ifmam->ifmam_flags = 0;
1233 ifmam->ifmam_addrs = info.rti_addrs;
1234 error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
1235 if (error) {
1236 IF_ADDR_UNLOCK(ifp);
1237 goto done;
1238 }
1239 }
1240 }
1241 IF_ADDR_UNLOCK(ifp);
1242 }
1243done:
1244 IFNET_RUNLOCK();
1245 return (error);
1246}
1247
1248static int
1249sysctl_rtsock(SYSCTL_HANDLER_ARGS)
1250{
1251 int *name = (int *)arg1;
1252 u_int namelen = arg2;
1253 struct radix_node_head *rnh;
1254 int i, lim, error = EINVAL;
1255 u_char af;
1256 struct walkarg w;
1257
1258 name ++;
1259 namelen--;
1260 if (req->newptr)
1261 return (EPERM);
1262 if (namelen != 3)
1263 return ((namelen < 3) ? EISDIR : ENOTDIR);
1264 af = name[0];
1265 if (af > AF_MAX)
1266 return (EINVAL);
1267 bzero(&w, sizeof(w));
1268 w.w_op = name[1];
1269 w.w_arg = name[2];
1270 w.w_req = req;
1271
1272 error = sysctl_wire_old_buffer(req, 0);
1273 if (error)
1274 return (error);
1275 switch (w.w_op) {
1276
1277 case NET_RT_DUMP:
1278 case NET_RT_FLAGS:
1279 if (af == 0) { /* dump all tables */
1280 i = 1;
1281 lim = AF_MAX;
1282 } else /* dump only one table */
1283 i = lim = af;
1284 for (error = 0; error == 0 && i <= lim; i++)
1285 if ((rnh = rt_tables[curthread->td_proc->p_fibnum][i]) != NULL) {
1286 RADIX_NODE_HEAD_LOCK(rnh);
1287 error = rnh->rnh_walktree(rnh,
1288 sysctl_dumpentry, &w);
1289 RADIX_NODE_HEAD_UNLOCK(rnh);
1290 } else if (af != 0)
1291 error = EAFNOSUPPORT;
1292 break;
1293
1294 case NET_RT_IFLIST:
1295 error = sysctl_iflist(af, &w);
1296 break;
1297
1298 case NET_RT_IFMALIST:
1299 error = sysctl_ifmalist(af, &w);
1300 break;
1301 }
1302 if (w.w_tmem)
1303 free(w.w_tmem, M_RTABLE);
1304 return (error);
1305}
1306
1307SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, "");
1308
1309/*
1310 * Definitions of protocols supported in the ROUTE domain.
1311 */
1312
1313static struct domain routedomain; /* or at least forward */
1314
1315static struct protosw routesw[] = {
1316{
1317 .pr_type = SOCK_RAW,
1318 .pr_domain = &routedomain,
1319 .pr_flags = PR_ATOMIC|PR_ADDR,
1320 .pr_output = route_output,
1321 .pr_ctlinput = raw_ctlinput,
1322 .pr_init = raw_init,
1323 .pr_usrreqs = &route_usrreqs
1324}
1325};
1326
1327static struct domain routedomain = {
1328 .dom_family = PF_ROUTE,
1329 .dom_name = "route",
1330 .dom_protosw = routesw,
1331 .dom_protoswNPROTOSW = &routesw[sizeof(routesw)/sizeof(routesw[0])]
1332};
1333
1334DOMAIN_SET(route);
121}
122SYSINIT(rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rts_init, 0);
123
124static void
125rts_input(struct mbuf *m)
126{
127 struct sockproto route_proto;
128 unsigned short *family;
129 struct m_tag *tag;
130
131 route_proto.sp_family = PF_ROUTE;
132 tag = m_tag_find(m, PACKET_TAG_RTSOCKFAM, NULL);
133 if (tag != NULL) {
134 family = (unsigned short *)(tag + 1);
135 route_proto.sp_protocol = *family;
136 m_tag_delete(m, tag);
137 } else
138 route_proto.sp_protocol = 0;
139
140 raw_input(m, &route_proto, &route_src, &route_dst);
141}
142
143/*
144 * It really doesn't make any sense at all for this code to share much
145 * with raw_usrreq.c, since its functionality is so restricted. XXX
146 */
147static void
148rts_abort(struct socket *so)
149{
150
151 raw_usrreqs.pru_abort(so);
152}
153
154static void
155rts_close(struct socket *so)
156{
157
158 raw_usrreqs.pru_close(so);
159}
160
161/* pru_accept is EOPNOTSUPP */
162
163static int
164rts_attach(struct socket *so, int proto, struct thread *td)
165{
166 struct rawcb *rp;
167 int s, error;
168
169 KASSERT(so->so_pcb == NULL, ("rts_attach: so_pcb != NULL"));
170
171 /* XXX */
172 MALLOC(rp, struct rawcb *, sizeof *rp, M_PCB, M_WAITOK | M_ZERO);
173 if (rp == NULL)
174 return ENOBUFS;
175
176 /*
177 * The splnet() is necessary to block protocols from sending
178 * error notifications (like RTM_REDIRECT or RTM_LOSING) while
179 * this PCB is extant but incompletely initialized.
180 * Probably we should try to do more of this work beforehand and
181 * eliminate the spl.
182 */
183 s = splnet();
184 so->so_pcb = (caddr_t)rp;
185 so->so_fibnum = td->td_proc->p_fibnum;
186 error = raw_attach(so, proto);
187 rp = sotorawcb(so);
188 if (error) {
189 splx(s);
190 so->so_pcb = NULL;
191 free(rp, M_PCB);
192 return error;
193 }
194 RTSOCK_LOCK();
195 switch(rp->rcb_proto.sp_protocol) {
196 case AF_INET:
197 route_cb.ip_count++;
198 break;
199 case AF_INET6:
200 route_cb.ip6_count++;
201 break;
202 case AF_IPX:
203 route_cb.ipx_count++;
204 break;
205 }
206 rp->rcb_faddr = &route_src;
207 route_cb.any_count++;
208 RTSOCK_UNLOCK();
209 soisconnected(so);
210 so->so_options |= SO_USELOOPBACK;
211 splx(s);
212 return 0;
213}
214
215static int
216rts_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
217{
218
219 return (raw_usrreqs.pru_bind(so, nam, td)); /* xxx just EINVAL */
220}
221
222static int
223rts_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
224{
225
226 return (raw_usrreqs.pru_connect(so, nam, td)); /* XXX just EINVAL */
227}
228
229/* pru_connect2 is EOPNOTSUPP */
230/* pru_control is EOPNOTSUPP */
231
232static void
233rts_detach(struct socket *so)
234{
235 struct rawcb *rp = sotorawcb(so);
236
237 KASSERT(rp != NULL, ("rts_detach: rp == NULL"));
238
239 RTSOCK_LOCK();
240 switch(rp->rcb_proto.sp_protocol) {
241 case AF_INET:
242 route_cb.ip_count--;
243 break;
244 case AF_INET6:
245 route_cb.ip6_count--;
246 break;
247 case AF_IPX:
248 route_cb.ipx_count--;
249 break;
250 }
251 route_cb.any_count--;
252 RTSOCK_UNLOCK();
253 raw_usrreqs.pru_detach(so);
254}
255
256static int
257rts_disconnect(struct socket *so)
258{
259
260 return (raw_usrreqs.pru_disconnect(so));
261}
262
263/* pru_listen is EOPNOTSUPP */
264
265static int
266rts_peeraddr(struct socket *so, struct sockaddr **nam)
267{
268
269 return (raw_usrreqs.pru_peeraddr(so, nam));
270}
271
272/* pru_rcvd is EOPNOTSUPP */
273/* pru_rcvoob is EOPNOTSUPP */
274
275static int
276rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
277 struct mbuf *control, struct thread *td)
278{
279
280 return (raw_usrreqs.pru_send(so, flags, m, nam, control, td));
281}
282
283/* pru_sense is null */
284
285static int
286rts_shutdown(struct socket *so)
287{
288
289 return (raw_usrreqs.pru_shutdown(so));
290}
291
292static int
293rts_sockaddr(struct socket *so, struct sockaddr **nam)
294{
295
296 return (raw_usrreqs.pru_sockaddr(so, nam));
297}
298
299static struct pr_usrreqs route_usrreqs = {
300 .pru_abort = rts_abort,
301 .pru_attach = rts_attach,
302 .pru_bind = rts_bind,
303 .pru_connect = rts_connect,
304 .pru_detach = rts_detach,
305 .pru_disconnect = rts_disconnect,
306 .pru_peeraddr = rts_peeraddr,
307 .pru_send = rts_send,
308 .pru_shutdown = rts_shutdown,
309 .pru_sockaddr = rts_sockaddr,
310 .pru_close = rts_close,
311};
312
313/*ARGSUSED*/
314static int
315route_output(struct mbuf *m, struct socket *so)
316{
317#define sa_equal(a1, a2) (bcmp((a1), (a2), (a1)->sa_len) == 0)
318 struct rt_msghdr *rtm = NULL;
319 struct rtentry *rt = NULL;
320 struct radix_node_head *rnh;
321 struct rt_addrinfo info;
322 int len, error = 0;
323 struct ifnet *ifp = NULL;
324 struct sockaddr_in jail;
325
326#define senderr(e) { error = e; goto flush;}
327 if (m == NULL || ((m->m_len < sizeof(long)) &&
328 (m = m_pullup(m, sizeof(long))) == NULL))
329 return (ENOBUFS);
330 if ((m->m_flags & M_PKTHDR) == 0)
331 panic("route_output");
332 len = m->m_pkthdr.len;
333 if (len < sizeof(*rtm) ||
334 len != mtod(m, struct rt_msghdr *)->rtm_msglen) {
335 info.rti_info[RTAX_DST] = NULL;
336 senderr(EINVAL);
337 }
338 R_Malloc(rtm, struct rt_msghdr *, len);
339 if (rtm == NULL) {
340 info.rti_info[RTAX_DST] = NULL;
341 senderr(ENOBUFS);
342 }
343 m_copydata(m, 0, len, (caddr_t)rtm);
344 if (rtm->rtm_version != RTM_VERSION) {
345 info.rti_info[RTAX_DST] = NULL;
346 senderr(EPROTONOSUPPORT);
347 }
348 rtm->rtm_pid = curproc->p_pid;
349 bzero(&info, sizeof(info));
350 info.rti_addrs = rtm->rtm_addrs;
351 if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info)) {
352 info.rti_info[RTAX_DST] = NULL;
353 senderr(EINVAL);
354 }
355 info.rti_flags = rtm->rtm_flags;
356 if (info.rti_info[RTAX_DST] == NULL ||
357 info.rti_info[RTAX_DST]->sa_family >= AF_MAX ||
358 (info.rti_info[RTAX_GATEWAY] != NULL &&
359 info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX))
360 senderr(EINVAL);
361 if (info.rti_info[RTAX_GENMASK]) {
362 struct radix_node *t;
363 t = rn_addmask((caddr_t) info.rti_info[RTAX_GENMASK], 0, 1);
364 if (t != NULL &&
365 bcmp((char *)(void *)info.rti_info[RTAX_GENMASK] + 1,
366 (char *)(void *)t->rn_key + 1,
367 ((struct sockaddr *)t->rn_key)->sa_len - 1) == 0)
368 info.rti_info[RTAX_GENMASK] =
369 (struct sockaddr *)t->rn_key;
370 else
371 senderr(ENOBUFS);
372 }
373
374 /*
375 * Verify that the caller has the appropriate privilege; RTM_GET
376 * is the only operation the non-superuser is allowed.
377 */
378 if (rtm->rtm_type != RTM_GET) {
379 error = priv_check(curthread, PRIV_NET_ROUTE);
380 if (error)
381 senderr(error);
382 }
383
384 switch (rtm->rtm_type) {
385 struct rtentry *saved_nrt;
386
387 case RTM_ADD:
388 if (info.rti_info[RTAX_GATEWAY] == NULL)
389 senderr(EINVAL);
390 saved_nrt = NULL;
391 error = rtrequest1_fib(RTM_ADD, &info, &saved_nrt,
392 so->so_fibnum);
393 if (error == 0 && saved_nrt) {
394 RT_LOCK(saved_nrt);
395 rt_setmetrics(rtm->rtm_inits,
396 &rtm->rtm_rmx, &saved_nrt->rt_rmx);
397 rtm->rtm_index = saved_nrt->rt_ifp->if_index;
398 RT_REMREF(saved_nrt);
399 saved_nrt->rt_genmask = info.rti_info[RTAX_GENMASK];
400 RT_UNLOCK(saved_nrt);
401 }
402 break;
403
404 case RTM_DELETE:
405 saved_nrt = NULL;
406 error = rtrequest1_fib(RTM_DELETE, &info, &saved_nrt,
407 so->so_fibnum);
408 if (error == 0) {
409 RT_LOCK(saved_nrt);
410 rt = saved_nrt;
411 goto report;
412 }
413 break;
414
415 case RTM_GET:
416 case RTM_CHANGE:
417 case RTM_LOCK:
418 rnh = rt_tables[so->so_fibnum][info.rti_info[RTAX_DST]->sa_family];
419 if (rnh == NULL)
420 senderr(EAFNOSUPPORT);
421 RADIX_NODE_HEAD_LOCK(rnh);
422 rt = (struct rtentry *) rnh->rnh_lookup(info.rti_info[RTAX_DST],
423 info.rti_info[RTAX_NETMASK], rnh);
424 if (rt == NULL) { /* XXX looks bogus */
425 RADIX_NODE_HEAD_UNLOCK(rnh);
426 senderr(ESRCH);
427 }
428#ifdef RADIX_MPATH
429 /*
430 * for RTM_CHANGE/LOCK, if we got multipath routes,
431 * we require users to specify a matching RTAX_GATEWAY.
432 *
433 * for RTM_GET, gate is optional even with multipath.
434 * if gate == NULL the first match is returned.
435 * (no need to call rt_mpath_matchgate if gate == NULL)
436 */
437 if (rn_mpath_capable(rnh) &&
438 (rtm->rtm_type != RTM_GET || info.rti_info[RTAX_GATEWAY])) {
439 rt = rt_mpath_matchgate(rt, info.rti_info[RTAX_GATEWAY]);
440 if (!rt) {
441 RADIX_NODE_HEAD_UNLOCK(rnh);
442 senderr(ESRCH);
443 }
444 }
445#endif
446 RT_LOCK(rt);
447 RT_ADDREF(rt);
448 RADIX_NODE_HEAD_UNLOCK(rnh);
449
450 /*
451 * Fix for PR: 82974
452 *
453 * RTM_CHANGE/LOCK need a perfect match, rn_lookup()
454 * returns a perfect match in case a netmask is
455 * specified. For host routes only a longest prefix
456 * match is returned so it is necessary to compare the
457 * existence of the netmask. If both have a netmask
458 * rnh_lookup() did a perfect match and if none of them
459 * have a netmask both are host routes which is also a
460 * perfect match.
461 */
462
463 if (rtm->rtm_type != RTM_GET &&
464 (!rt_mask(rt) != !info.rti_info[RTAX_NETMASK])) {
465 RT_UNLOCK(rt);
466 senderr(ESRCH);
467 }
468
469 switch(rtm->rtm_type) {
470
471 case RTM_GET:
472 report:
473 RT_LOCK_ASSERT(rt);
474 info.rti_info[RTAX_DST] = rt_key(rt);
475 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
476 info.rti_info[RTAX_NETMASK] = rt_mask(rt);
477 info.rti_info[RTAX_GENMASK] = rt->rt_genmask;
478 if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
479 ifp = rt->rt_ifp;
480 if (ifp) {
481 info.rti_info[RTAX_IFP] =
482 ifp->if_addr->ifa_addr;
483 if (jailed(so->so_cred)) {
484 bzero(&jail, sizeof(jail));
485 jail.sin_family = PF_INET;
486 jail.sin_len = sizeof(jail);
487 jail.sin_addr.s_addr =
488 htonl(prison_getip(so->so_cred));
489 info.rti_info[RTAX_IFA] =
490 (struct sockaddr *)&jail;
491 } else
492 info.rti_info[RTAX_IFA] =
493 rt->rt_ifa->ifa_addr;
494 if (ifp->if_flags & IFF_POINTOPOINT)
495 info.rti_info[RTAX_BRD] =
496 rt->rt_ifa->ifa_dstaddr;
497 rtm->rtm_index = ifp->if_index;
498 } else {
499 info.rti_info[RTAX_IFP] = NULL;
500 info.rti_info[RTAX_IFA] = NULL;
501 }
502 } else if ((ifp = rt->rt_ifp) != NULL) {
503 rtm->rtm_index = ifp->if_index;
504 }
505 len = rt_msg2(rtm->rtm_type, &info, NULL, NULL);
506 if (len > rtm->rtm_msglen) {
507 struct rt_msghdr *new_rtm;
508 R_Malloc(new_rtm, struct rt_msghdr *, len);
509 if (new_rtm == NULL) {
510 RT_UNLOCK(rt);
511 senderr(ENOBUFS);
512 }
513 bcopy(rtm, new_rtm, rtm->rtm_msglen);
514 Free(rtm); rtm = new_rtm;
515 }
516 (void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm, NULL);
517 rtm->rtm_flags = rt->rt_flags;
518 rtm->rtm_use = 0;
519 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx);
520 rtm->rtm_addrs = info.rti_addrs;
521 break;
522
523 case RTM_CHANGE:
524 /*
525 * New gateway could require new ifaddr, ifp;
526 * flags may also be different; ifp may be specified
527 * by ll sockaddr when protocol address is ambiguous
528 */
529 if (((rt->rt_flags & RTF_GATEWAY) &&
530 info.rti_info[RTAX_GATEWAY] != NULL) ||
531 info.rti_info[RTAX_IFP] != NULL ||
532 (info.rti_info[RTAX_IFA] != NULL &&
533 !sa_equal(info.rti_info[RTAX_IFA],
534 rt->rt_ifa->ifa_addr))) {
535 RT_UNLOCK(rt);
536 if ((error = rt_getifa_fib(&info,
537 rt->rt_fibnum)) != 0)
538 senderr(error);
539 RT_LOCK(rt);
540 }
541 if (info.rti_ifa != NULL &&
542 info.rti_ifa != rt->rt_ifa &&
543 rt->rt_ifa != NULL &&
544 rt->rt_ifa->ifa_rtrequest != NULL) {
545 rt->rt_ifa->ifa_rtrequest(RTM_DELETE, rt,
546 &info);
547 IFAFREE(rt->rt_ifa);
548 }
549 if (info.rti_info[RTAX_GATEWAY] != NULL) {
550 if ((error = rt_setgate(rt, rt_key(rt),
551 info.rti_info[RTAX_GATEWAY])) != 0) {
552 RT_UNLOCK(rt);
553 senderr(error);
554 }
555 if (!(rt->rt_flags & RTF_LLINFO))
556 rt->rt_flags |= RTF_GATEWAY;
557 }
558 if (info.rti_ifa != NULL &&
559 info.rti_ifa != rt->rt_ifa) {
560 IFAREF(info.rti_ifa);
561 rt->rt_ifa = info.rti_ifa;
562 rt->rt_ifp = info.rti_ifp;
563 }
564 /* Allow some flags to be toggled on change. */
565 if (rtm->rtm_fmask & RTF_FMASK)
566 rt->rt_flags = (rt->rt_flags &
567 ~rtm->rtm_fmask) |
568 (rtm->rtm_flags & rtm->rtm_fmask);
569 rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx,
570 &rt->rt_rmx);
571 rtm->rtm_index = rt->rt_ifp->if_index;
572 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest)
573 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info);
574 if (info.rti_info[RTAX_GENMASK])
575 rt->rt_genmask = info.rti_info[RTAX_GENMASK];
576 /* FALLTHROUGH */
577 case RTM_LOCK:
578 /* We don't support locks anymore */
579 break;
580 }
581 RT_UNLOCK(rt);
582 break;
583
584 default:
585 senderr(EOPNOTSUPP);
586 }
587
588flush:
589 if (rtm) {
590 if (error)
591 rtm->rtm_errno = error;
592 else
593 rtm->rtm_flags |= RTF_DONE;
594 }
595 if (rt) /* XXX can this be true? */
596 RTFREE(rt);
597 {
598 struct rawcb *rp = NULL;
599 /*
600 * Check to see if we don't want our own messages.
601 */
602 if ((so->so_options & SO_USELOOPBACK) == 0) {
603 if (route_cb.any_count <= 1) {
604 if (rtm)
605 Free(rtm);
606 m_freem(m);
607 return (error);
608 }
609 /* There is another listener, so construct message */
610 rp = sotorawcb(so);
611 }
612 if (rtm) {
613 m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
614 if (m->m_pkthdr.len < rtm->rtm_msglen) {
615 m_freem(m);
616 m = NULL;
617 } else if (m->m_pkthdr.len > rtm->rtm_msglen)
618 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
619 Free(rtm);
620 }
621 if (m) {
622 if (rp) {
623 /*
624 * XXX insure we don't get a copy by
625 * invalidating our protocol
626 */
627 unsigned short family = rp->rcb_proto.sp_family;
628 rp->rcb_proto.sp_family = 0;
629 rt_dispatch(m, info.rti_info[RTAX_DST]);
630 rp->rcb_proto.sp_family = family;
631 } else
632 rt_dispatch(m, info.rti_info[RTAX_DST]);
633 }
634 }
635 return (error);
636#undef sa_equal
637}
638
639static void
640rt_setmetrics(u_long which, const struct rt_metrics *in,
641 struct rt_metrics_lite *out)
642{
643#define metric(f, e) if (which & (f)) out->e = in->e;
644 /*
645 * Only these are stored in the routing entry since introduction
646 * of tcp hostcache. The rest is ignored.
647 */
648 metric(RTV_MTU, rmx_mtu);
649 /* Userland -> kernel timebase conversion. */
650 if (which & RTV_EXPIRE)
651 out->rmx_expire = in->rmx_expire ?
652 in->rmx_expire - time_second + time_uptime : 0;
653#undef metric
654}
655
656static void
657rt_getmetrics(const struct rt_metrics_lite *in, struct rt_metrics *out)
658{
659#define metric(e) out->e = in->e;
660 bzero(out, sizeof(*out));
661 metric(rmx_mtu);
662 /* Kernel -> userland timebase conversion. */
663 out->rmx_expire = in->rmx_expire ?
664 in->rmx_expire - time_uptime + time_second : 0;
665#undef metric
666}
667
668/*
669 * Extract the addresses of the passed sockaddrs.
670 * Do a little sanity checking so as to avoid bad memory references.
671 * This data is derived straight from userland.
672 */
673static int
674rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo)
675{
676 struct sockaddr *sa;
677 int i;
678
679 for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
680 if ((rtinfo->rti_addrs & (1 << i)) == 0)
681 continue;
682 sa = (struct sockaddr *)cp;
683 /*
684 * It won't fit.
685 */
686 if (cp + sa->sa_len > cplim)
687 return (EINVAL);
688 /*
689 * there are no more.. quit now
690 * If there are more bits, they are in error.
691 * I've seen this. route(1) can evidently generate these.
692 * This causes kernel to core dump.
693 * for compatibility, If we see this, point to a safe address.
694 */
695 if (sa->sa_len == 0) {
696 rtinfo->rti_info[i] = &sa_zero;
697 return (0); /* should be EINVAL but for compat */
698 }
699 /* accept it */
700 rtinfo->rti_info[i] = sa;
701 cp += SA_SIZE(sa);
702 }
703 return (0);
704}
705
706static struct mbuf *
707rt_msg1(int type, struct rt_addrinfo *rtinfo)
708{
709 struct rt_msghdr *rtm;
710 struct mbuf *m;
711 int i;
712 struct sockaddr *sa;
713 int len, dlen;
714
715 switch (type) {
716
717 case RTM_DELADDR:
718 case RTM_NEWADDR:
719 len = sizeof(struct ifa_msghdr);
720 break;
721
722 case RTM_DELMADDR:
723 case RTM_NEWMADDR:
724 len = sizeof(struct ifma_msghdr);
725 break;
726
727 case RTM_IFINFO:
728 len = sizeof(struct if_msghdr);
729 break;
730
731 case RTM_IFANNOUNCE:
732 case RTM_IEEE80211:
733 len = sizeof(struct if_announcemsghdr);
734 break;
735
736 default:
737 len = sizeof(struct rt_msghdr);
738 }
739 if (len > MCLBYTES)
740 panic("rt_msg1");
741 m = m_gethdr(M_DONTWAIT, MT_DATA);
742 if (m && len > MHLEN) {
743 MCLGET(m, M_DONTWAIT);
744 if ((m->m_flags & M_EXT) == 0) {
745 m_free(m);
746 m = NULL;
747 }
748 }
749 if (m == NULL)
750 return (m);
751 m->m_pkthdr.len = m->m_len = len;
752 m->m_pkthdr.rcvif = NULL;
753 rtm = mtod(m, struct rt_msghdr *);
754 bzero((caddr_t)rtm, len);
755 for (i = 0; i < RTAX_MAX; i++) {
756 if ((sa = rtinfo->rti_info[i]) == NULL)
757 continue;
758 rtinfo->rti_addrs |= (1 << i);
759 dlen = SA_SIZE(sa);
760 m_copyback(m, len, dlen, (caddr_t)sa);
761 len += dlen;
762 }
763 if (m->m_pkthdr.len != len) {
764 m_freem(m);
765 return (NULL);
766 }
767 rtm->rtm_msglen = len;
768 rtm->rtm_version = RTM_VERSION;
769 rtm->rtm_type = type;
770 return (m);
771}
772
773static int
774rt_msg2(int type, struct rt_addrinfo *rtinfo, caddr_t cp, struct walkarg *w)
775{
776 int i;
777 int len, dlen, second_time = 0;
778 caddr_t cp0;
779
780 rtinfo->rti_addrs = 0;
781again:
782 switch (type) {
783
784 case RTM_DELADDR:
785 case RTM_NEWADDR:
786 len = sizeof(struct ifa_msghdr);
787 break;
788
789 case RTM_IFINFO:
790 len = sizeof(struct if_msghdr);
791 break;
792
793 case RTM_NEWMADDR:
794 len = sizeof(struct ifma_msghdr);
795 break;
796
797 default:
798 len = sizeof(struct rt_msghdr);
799 }
800 cp0 = cp;
801 if (cp0)
802 cp += len;
803 for (i = 0; i < RTAX_MAX; i++) {
804 struct sockaddr *sa;
805
806 if ((sa = rtinfo->rti_info[i]) == NULL)
807 continue;
808 rtinfo->rti_addrs |= (1 << i);
809 dlen = SA_SIZE(sa);
810 if (cp) {
811 bcopy((caddr_t)sa, cp, (unsigned)dlen);
812 cp += dlen;
813 }
814 len += dlen;
815 }
816 len = ALIGN(len);
817 if (cp == NULL && w != NULL && !second_time) {
818 struct walkarg *rw = w;
819
820 if (rw->w_req) {
821 if (rw->w_tmemsize < len) {
822 if (rw->w_tmem)
823 free(rw->w_tmem, M_RTABLE);
824 rw->w_tmem = (caddr_t)
825 malloc(len, M_RTABLE, M_NOWAIT);
826 if (rw->w_tmem)
827 rw->w_tmemsize = len;
828 }
829 if (rw->w_tmem) {
830 cp = rw->w_tmem;
831 second_time = 1;
832 goto again;
833 }
834 }
835 }
836 if (cp) {
837 struct rt_msghdr *rtm = (struct rt_msghdr *)cp0;
838
839 rtm->rtm_version = RTM_VERSION;
840 rtm->rtm_type = type;
841 rtm->rtm_msglen = len;
842 }
843 return (len);
844}
845
846/*
847 * This routine is called to generate a message from the routing
848 * socket indicating that a redirect has occured, a routing lookup
849 * has failed, or that a protocol has detected timeouts to a particular
850 * destination.
851 */
852void
853rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
854{
855 struct rt_msghdr *rtm;
856 struct mbuf *m;
857 struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
858
859 if (route_cb.any_count == 0)
860 return;
861 m = rt_msg1(type, rtinfo);
862 if (m == NULL)
863 return;
864 rtm = mtod(m, struct rt_msghdr *);
865 rtm->rtm_flags = RTF_DONE | flags;
866 rtm->rtm_errno = error;
867 rtm->rtm_addrs = rtinfo->rti_addrs;
868 rt_dispatch(m, sa);
869}
870
871/*
872 * This routine is called to generate a message from the routing
873 * socket indicating that the status of a network interface has changed.
874 */
875void
876rt_ifmsg(struct ifnet *ifp)
877{
878 struct if_msghdr *ifm;
879 struct mbuf *m;
880 struct rt_addrinfo info;
881
882 if (route_cb.any_count == 0)
883 return;
884 bzero((caddr_t)&info, sizeof(info));
885 m = rt_msg1(RTM_IFINFO, &info);
886 if (m == NULL)
887 return;
888 ifm = mtod(m, struct if_msghdr *);
889 ifm->ifm_index = ifp->if_index;
890 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
891 ifm->ifm_data = ifp->if_data;
892 ifm->ifm_addrs = 0;
893 rt_dispatch(m, NULL);
894}
895
896/*
897 * This is called to generate messages from the routing socket
898 * indicating a network interface has had addresses associated with it.
899 * if we ever reverse the logic and replace messages TO the routing
900 * socket indicate a request to configure interfaces, then it will
901 * be unnecessary as the routing socket will automatically generate
902 * copies of it.
903 */
904void
905rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt)
906{
907 struct rt_addrinfo info;
908 struct sockaddr *sa = NULL;
909 int pass;
910 struct mbuf *m = NULL;
911 struct ifnet *ifp = ifa->ifa_ifp;
912
913 KASSERT(cmd == RTM_ADD || cmd == RTM_DELETE,
914 ("unexpected cmd %u", cmd));
915#ifdef SCTP
916 /*
917 * notify the SCTP stack
918 * this will only get called when an address is added/deleted
919 * XXX pass the ifaddr struct instead if ifa->ifa_addr...
920 */
921 sctp_addr_change(ifa, cmd);
922#endif /* SCTP */
923 if (route_cb.any_count == 0)
924 return;
925 for (pass = 1; pass < 3; pass++) {
926 bzero((caddr_t)&info, sizeof(info));
927 if ((cmd == RTM_ADD && pass == 1) ||
928 (cmd == RTM_DELETE && pass == 2)) {
929 struct ifa_msghdr *ifam;
930 int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
931
932 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
933 info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr;
934 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
935 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
936 if ((m = rt_msg1(ncmd, &info)) == NULL)
937 continue;
938 ifam = mtod(m, struct ifa_msghdr *);
939 ifam->ifam_index = ifp->if_index;
940 ifam->ifam_metric = ifa->ifa_metric;
941 ifam->ifam_flags = ifa->ifa_flags;
942 ifam->ifam_addrs = info.rti_addrs;
943 }
944 if ((cmd == RTM_ADD && pass == 2) ||
945 (cmd == RTM_DELETE && pass == 1)) {
946 struct rt_msghdr *rtm;
947
948 if (rt == NULL)
949 continue;
950 info.rti_info[RTAX_NETMASK] = rt_mask(rt);
951 info.rti_info[RTAX_DST] = sa = rt_key(rt);
952 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
953 if ((m = rt_msg1(cmd, &info)) == NULL)
954 continue;
955 rtm = mtod(m, struct rt_msghdr *);
956 rtm->rtm_index = ifp->if_index;
957 rtm->rtm_flags |= rt->rt_flags;
958 rtm->rtm_errno = error;
959 rtm->rtm_addrs = info.rti_addrs;
960 }
961 rt_dispatch(m, sa);
962 }
963}
964
965/*
966 * This is the analogue to the rt_newaddrmsg which performs the same
967 * function but for multicast group memberhips. This is easier since
968 * there is no route state to worry about.
969 */
970void
971rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma)
972{
973 struct rt_addrinfo info;
974 struct mbuf *m = NULL;
975 struct ifnet *ifp = ifma->ifma_ifp;
976 struct ifma_msghdr *ifmam;
977
978 if (route_cb.any_count == 0)
979 return;
980
981 bzero((caddr_t)&info, sizeof(info));
982 info.rti_info[RTAX_IFA] = ifma->ifma_addr;
983 info.rti_info[RTAX_IFP] = ifp ? ifp->if_addr->ifa_addr : NULL;
984 /*
985 * If a link-layer address is present, present it as a ``gateway''
986 * (similarly to how ARP entries, e.g., are presented).
987 */
988 info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr;
989 m = rt_msg1(cmd, &info);
990 if (m == NULL)
991 return;
992 ifmam = mtod(m, struct ifma_msghdr *);
993 KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n",
994 __func__));
995 ifmam->ifmam_index = ifp->if_index;
996 ifmam->ifmam_addrs = info.rti_addrs;
997 rt_dispatch(m, ifma->ifma_addr);
998}
999
1000static struct mbuf *
1001rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
1002 struct rt_addrinfo *info)
1003{
1004 struct if_announcemsghdr *ifan;
1005 struct mbuf *m;
1006
1007 if (route_cb.any_count == 0)
1008 return NULL;
1009 bzero((caddr_t)info, sizeof(*info));
1010 m = rt_msg1(type, info);
1011 if (m != NULL) {
1012 ifan = mtod(m, struct if_announcemsghdr *);
1013 ifan->ifan_index = ifp->if_index;
1014 strlcpy(ifan->ifan_name, ifp->if_xname,
1015 sizeof(ifan->ifan_name));
1016 ifan->ifan_what = what;
1017 }
1018 return m;
1019}
1020
1021/*
1022 * This is called to generate routing socket messages indicating
1023 * IEEE80211 wireless events.
1024 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
1025 */
1026void
1027rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
1028{
1029 struct mbuf *m;
1030 struct rt_addrinfo info;
1031
1032 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
1033 if (m != NULL) {
1034 /*
1035 * Append the ieee80211 data. Try to stick it in the
1036 * mbuf containing the ifannounce msg; otherwise allocate
1037 * a new mbuf and append.
1038 *
1039 * NB: we assume m is a single mbuf.
1040 */
1041 if (data_len > M_TRAILINGSPACE(m)) {
1042 struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
1043 if (n == NULL) {
1044 m_freem(m);
1045 return;
1046 }
1047 bcopy(data, mtod(n, void *), data_len);
1048 n->m_len = data_len;
1049 m->m_next = n;
1050 } else if (data_len > 0) {
1051 bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len);
1052 m->m_len += data_len;
1053 }
1054 if (m->m_flags & M_PKTHDR)
1055 m->m_pkthdr.len += data_len;
1056 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
1057 rt_dispatch(m, NULL);
1058 }
1059}
1060
1061/*
1062 * This is called to generate routing socket messages indicating
1063 * network interface arrival and departure.
1064 */
1065void
1066rt_ifannouncemsg(struct ifnet *ifp, int what)
1067{
1068 struct mbuf *m;
1069 struct rt_addrinfo info;
1070
1071 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
1072 if (m != NULL)
1073 rt_dispatch(m, NULL);
1074}
1075
1076static void
1077rt_dispatch(struct mbuf *m, const struct sockaddr *sa)
1078{
1079 struct m_tag *tag;
1080
1081 /*
1082 * Preserve the family from the sockaddr, if any, in an m_tag for
1083 * use when injecting the mbuf into the routing socket buffer from
1084 * the netisr.
1085 */
1086 if (sa != NULL) {
1087 tag = m_tag_get(PACKET_TAG_RTSOCKFAM, sizeof(unsigned short),
1088 M_NOWAIT);
1089 if (tag == NULL) {
1090 m_freem(m);
1091 return;
1092 }
1093 *(unsigned short *)(tag + 1) = sa->sa_family;
1094 m_tag_prepend(m, tag);
1095 }
1096 netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */
1097}
1098
1099/*
1100 * This is used in dumping the kernel table via sysctl().
1101 */
1102static int
1103sysctl_dumpentry(struct radix_node *rn, void *vw)
1104{
1105 struct walkarg *w = vw;
1106 struct rtentry *rt = (struct rtentry *)rn;
1107 int error = 0, size;
1108 struct rt_addrinfo info;
1109
1110 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
1111 return 0;
1112 bzero((caddr_t)&info, sizeof(info));
1113 info.rti_info[RTAX_DST] = rt_key(rt);
1114 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1115 info.rti_info[RTAX_NETMASK] = rt_mask(rt);
1116 info.rti_info[RTAX_GENMASK] = rt->rt_genmask;
1117 if (rt->rt_ifp) {
1118 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_addr->ifa_addr;
1119 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
1120 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
1121 info.rti_info[RTAX_BRD] = rt->rt_ifa->ifa_dstaddr;
1122 }
1123 size = rt_msg2(RTM_GET, &info, NULL, w);
1124 if (w->w_req && w->w_tmem) {
1125 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
1126
1127 rtm->rtm_flags = rt->rt_flags;
1128 rtm->rtm_use = rt->rt_rmx.rmx_pksent;
1129 rt_getmetrics(&rt->rt_rmx, &rtm->rtm_rmx);
1130 rtm->rtm_index = rt->rt_ifp->if_index;
1131 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
1132 rtm->rtm_addrs = info.rti_addrs;
1133 error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size);
1134 return (error);
1135 }
1136 return (error);
1137}
1138
1139static int
1140sysctl_iflist(int af, struct walkarg *w)
1141{
1142 struct ifnet *ifp;
1143 struct ifaddr *ifa;
1144 struct rt_addrinfo info;
1145 int len, error = 0;
1146
1147 bzero((caddr_t)&info, sizeof(info));
1148 IFNET_RLOCK();
1149 TAILQ_FOREACH(ifp, &ifnet, if_link) {
1150 if (w->w_arg && w->w_arg != ifp->if_index)
1151 continue;
1152 ifa = ifp->if_addr;
1153 info.rti_info[RTAX_IFP] = ifa->ifa_addr;
1154 len = rt_msg2(RTM_IFINFO, &info, NULL, w);
1155 info.rti_info[RTAX_IFP] = NULL;
1156 if (w->w_req && w->w_tmem) {
1157 struct if_msghdr *ifm;
1158
1159 ifm = (struct if_msghdr *)w->w_tmem;
1160 ifm->ifm_index = ifp->if_index;
1161 ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags;
1162 ifm->ifm_data = ifp->if_data;
1163 ifm->ifm_addrs = info.rti_addrs;
1164 error = SYSCTL_OUT(w->w_req,(caddr_t)ifm, len);
1165 if (error)
1166 goto done;
1167 }
1168 while ((ifa = TAILQ_NEXT(ifa, ifa_link)) != NULL) {
1169 if (af && af != ifa->ifa_addr->sa_family)
1170 continue;
1171 if (jailed(curthread->td_ucred) &&
1172 prison_if(curthread->td_ucred, ifa->ifa_addr))
1173 continue;
1174 info.rti_info[RTAX_IFA] = ifa->ifa_addr;
1175 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
1176 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1177 len = rt_msg2(RTM_NEWADDR, &info, NULL, w);
1178 if (w->w_req && w->w_tmem) {
1179 struct ifa_msghdr *ifam;
1180
1181 ifam = (struct ifa_msghdr *)w->w_tmem;
1182 ifam->ifam_index = ifa->ifa_ifp->if_index;
1183 ifam->ifam_flags = ifa->ifa_flags;
1184 ifam->ifam_metric = ifa->ifa_metric;
1185 ifam->ifam_addrs = info.rti_addrs;
1186 error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
1187 if (error)
1188 goto done;
1189 }
1190 }
1191 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] =
1192 info.rti_info[RTAX_BRD] = NULL;
1193 }
1194done:
1195 IFNET_RUNLOCK();
1196 return (error);
1197}
1198
1199int
1200sysctl_ifmalist(int af, struct walkarg *w)
1201{
1202 struct ifnet *ifp;
1203 struct ifmultiaddr *ifma;
1204 struct rt_addrinfo info;
1205 int len, error = 0;
1206 struct ifaddr *ifa;
1207
1208 bzero((caddr_t)&info, sizeof(info));
1209 IFNET_RLOCK();
1210 TAILQ_FOREACH(ifp, &ifnet, if_link) {
1211 if (w->w_arg && w->w_arg != ifp->if_index)
1212 continue;
1213 ifa = ifp->if_addr;
1214 info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL;
1215 IF_ADDR_LOCK(ifp);
1216 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1217 if (af && af != ifma->ifma_addr->sa_family)
1218 continue;
1219 if (jailed(curproc->p_ucred) &&
1220 prison_if(curproc->p_ucred, ifma->ifma_addr))
1221 continue;
1222 info.rti_info[RTAX_IFA] = ifma->ifma_addr;
1223 info.rti_info[RTAX_GATEWAY] =
1224 (ifma->ifma_addr->sa_family != AF_LINK) ?
1225 ifma->ifma_lladdr : NULL;
1226 len = rt_msg2(RTM_NEWMADDR, &info, NULL, w);
1227 if (w->w_req && w->w_tmem) {
1228 struct ifma_msghdr *ifmam;
1229
1230 ifmam = (struct ifma_msghdr *)w->w_tmem;
1231 ifmam->ifmam_index = ifma->ifma_ifp->if_index;
1232 ifmam->ifmam_flags = 0;
1233 ifmam->ifmam_addrs = info.rti_addrs;
1234 error = SYSCTL_OUT(w->w_req, w->w_tmem, len);
1235 if (error) {
1236 IF_ADDR_UNLOCK(ifp);
1237 goto done;
1238 }
1239 }
1240 }
1241 IF_ADDR_UNLOCK(ifp);
1242 }
1243done:
1244 IFNET_RUNLOCK();
1245 return (error);
1246}
1247
1248static int
1249sysctl_rtsock(SYSCTL_HANDLER_ARGS)
1250{
1251 int *name = (int *)arg1;
1252 u_int namelen = arg2;
1253 struct radix_node_head *rnh;
1254 int i, lim, error = EINVAL;
1255 u_char af;
1256 struct walkarg w;
1257
1258 name ++;
1259 namelen--;
1260 if (req->newptr)
1261 return (EPERM);
1262 if (namelen != 3)
1263 return ((namelen < 3) ? EISDIR : ENOTDIR);
1264 af = name[0];
1265 if (af > AF_MAX)
1266 return (EINVAL);
1267 bzero(&w, sizeof(w));
1268 w.w_op = name[1];
1269 w.w_arg = name[2];
1270 w.w_req = req;
1271
1272 error = sysctl_wire_old_buffer(req, 0);
1273 if (error)
1274 return (error);
1275 switch (w.w_op) {
1276
1277 case NET_RT_DUMP:
1278 case NET_RT_FLAGS:
1279 if (af == 0) { /* dump all tables */
1280 i = 1;
1281 lim = AF_MAX;
1282 } else /* dump only one table */
1283 i = lim = af;
1284 for (error = 0; error == 0 && i <= lim; i++)
1285 if ((rnh = rt_tables[curthread->td_proc->p_fibnum][i]) != NULL) {
1286 RADIX_NODE_HEAD_LOCK(rnh);
1287 error = rnh->rnh_walktree(rnh,
1288 sysctl_dumpentry, &w);
1289 RADIX_NODE_HEAD_UNLOCK(rnh);
1290 } else if (af != 0)
1291 error = EAFNOSUPPORT;
1292 break;
1293
1294 case NET_RT_IFLIST:
1295 error = sysctl_iflist(af, &w);
1296 break;
1297
1298 case NET_RT_IFMALIST:
1299 error = sysctl_ifmalist(af, &w);
1300 break;
1301 }
1302 if (w.w_tmem)
1303 free(w.w_tmem, M_RTABLE);
1304 return (error);
1305}
1306
1307SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD, sysctl_rtsock, "");
1308
1309/*
1310 * Definitions of protocols supported in the ROUTE domain.
1311 */
1312
1313static struct domain routedomain; /* or at least forward */
1314
1315static struct protosw routesw[] = {
1316{
1317 .pr_type = SOCK_RAW,
1318 .pr_domain = &routedomain,
1319 .pr_flags = PR_ATOMIC|PR_ADDR,
1320 .pr_output = route_output,
1321 .pr_ctlinput = raw_ctlinput,
1322 .pr_init = raw_init,
1323 .pr_usrreqs = &route_usrreqs
1324}
1325};
1326
1327static struct domain routedomain = {
1328 .dom_family = PF_ROUTE,
1329 .dom_name = "route",
1330 .dom_protosw = routesw,
1331 .dom_protoswNPROTOSW = &routesw[sizeof(routesw)/sizeof(routesw[0])]
1332};
1333
1334DOMAIN_SET(route);