Deleted Added
sdiff udiff text old ( 225736 ) new ( 229057 )
full compact
1/*-
2 * Copyright (c) 2004
3 * Bill Paul <wpaul@windriver.com>. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: stable/9/sys/dev/vge/if_vge.c 225440 2011-09-07 16:57:43Z yongari $");
35
36/*
37 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46 * combines a tri-speed ethernet MAC and PHY, with the following
47 * features:
48 *
49 * o Jumbo frame support up to 16K
50 * o Transmit and receive flow control
51 * o IPv4 checksum offload
52 * o VLAN tag insertion and stripping
53 * o TCP large send
54 * o 64-bit multicast hash table filter
55 * o 64 entry CAM filter
56 * o 16K RX FIFO and 48K TX FIFO memory
57 * o Interrupt moderation
58 *
59 * The VT6122 supports up to four transmit DMA queues. The descriptors
60 * in the transmit ring can address up to 7 data fragments; frames which
61 * span more than 7 data buffers must be coalesced, but in general the
62 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63 * long. The receive descriptors address only a single buffer.
64 *
65 * There are two peculiar design issues with the VT6122. One is that
66 * receive data buffers must be aligned on a 32-bit boundary. This is
67 * not a problem where the VT6122 is used as a LOM device in x86-based
68 * systems, but on architectures that generate unaligned access traps, we
69 * have to do some copying.
70 *
71 * The other issue has to do with the way 64-bit addresses are handled.
72 * The DMA descriptors only allow you to specify 48 bits of addressing
73 * information. The remaining 16 bits are specified using one of the
74 * I/O registers. If you only have a 32-bit system, then this isn't
75 * an issue, but if you have a 64-bit system and more than 4GB of
76 * memory, you must have to make sure your network data buffers reside
77 * in the same 48-bit 'segment.'
78 *
79 * Special thanks to Ryan Fu at VIA Networking for providing documentation
80 * and sample NICs for testing.
81 */
82
83#ifdef HAVE_KERNEL_OPTION_HEADERS
84#include "opt_device_polling.h"
85#endif
86
87#include <sys/param.h>
88#include <sys/endian.h>
89#include <sys/systm.h>
90#include <sys/sockio.h>
91#include <sys/mbuf.h>
92#include <sys/malloc.h>
93#include <sys/module.h>
94#include <sys/kernel.h>
95#include <sys/socket.h>
96#include <sys/sysctl.h>
97
98#include <net/if.h>
99#include <net/if_arp.h>
100#include <net/ethernet.h>
101#include <net/if_dl.h>
102#include <net/if_media.h>
103#include <net/if_types.h>
104#include <net/if_vlan_var.h>
105
106#include <net/bpf.h>
107
108#include <machine/bus.h>
109#include <machine/resource.h>
110#include <sys/bus.h>
111#include <sys/rman.h>
112
113#include <dev/mii/mii.h>
114#include <dev/mii/miivar.h>
115
116#include <dev/pci/pcireg.h>
117#include <dev/pci/pcivar.h>
118
119MODULE_DEPEND(vge, pci, 1, 1, 1);
120MODULE_DEPEND(vge, ether, 1, 1, 1);
121MODULE_DEPEND(vge, miibus, 1, 1, 1);
122
123/* "device miibus" required. See GENERIC if you get errors here. */
124#include "miibus_if.h"
125
126#include <dev/vge/if_vgereg.h>
127#include <dev/vge/if_vgevar.h>
128
129#define VGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
130
131/* Tunables */
132static int msi_disable = 0;
133TUNABLE_INT("hw.vge.msi_disable", &msi_disable);
134
135/*
136 * The SQE error counter of MIB seems to report bogus value.
137 * Vendor's workaround does not seem to work on PCIe based
138 * controllers. Disable it until we find better workaround.
139 */
140#undef VGE_ENABLE_SQEERR
141
142/*
143 * Various supported device vendors/types and their names.
144 */
145static struct vge_type vge_devs[] = {
146 { VIA_VENDORID, VIA_DEVICEID_61XX,
147 "VIA Networking Velocity Gigabit Ethernet" },
148 { 0, 0, NULL }
149};
150
151static int vge_attach(device_t);
152static int vge_detach(device_t);
153static int vge_probe(device_t);
154static int vge_resume(device_t);
155static int vge_shutdown(device_t);
156static int vge_suspend(device_t);
157
158static void vge_cam_clear(struct vge_softc *);
159static int vge_cam_set(struct vge_softc *, uint8_t *);
160static void vge_clrwol(struct vge_softc *);
161static void vge_discard_rxbuf(struct vge_softc *, int);
162static int vge_dma_alloc(struct vge_softc *);
163static void vge_dma_free(struct vge_softc *);
164static void vge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
165#ifdef VGE_EEPROM
166static void vge_eeprom_getword(struct vge_softc *, int, uint16_t *);
167#endif
168static int vge_encap(struct vge_softc *, struct mbuf **);
169#ifndef __NO_STRICT_ALIGNMENT
170static __inline void
171 vge_fixup_rx(struct mbuf *);
172#endif
173static void vge_freebufs(struct vge_softc *);
174static void vge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
175static int vge_ifmedia_upd(struct ifnet *);
176static void vge_init(void *);
177static void vge_init_locked(struct vge_softc *);
178static void vge_intr(void *);
179static void vge_intr_holdoff(struct vge_softc *);
180static int vge_ioctl(struct ifnet *, u_long, caddr_t);
181static void vge_link_statchg(void *);
182static int vge_miibus_readreg(device_t, int, int);
183static void vge_miibus_statchg(device_t);
184static int vge_miibus_writereg(device_t, int, int, int);
185static void vge_miipoll_start(struct vge_softc *);
186static void vge_miipoll_stop(struct vge_softc *);
187static int vge_newbuf(struct vge_softc *, int);
188static void vge_read_eeprom(struct vge_softc *, caddr_t, int, int, int);
189static void vge_reset(struct vge_softc *);
190static int vge_rx_list_init(struct vge_softc *);
191static int vge_rxeof(struct vge_softc *, int);
192static void vge_rxfilter(struct vge_softc *);
193static void vge_setvlan(struct vge_softc *);
194static void vge_setwol(struct vge_softc *);
195static void vge_start(struct ifnet *);
196static void vge_start_locked(struct ifnet *);
197static void vge_stats_clear(struct vge_softc *);
198static void vge_stats_update(struct vge_softc *);
199static void vge_stop(struct vge_softc *);
200static void vge_sysctl_node(struct vge_softc *);
201static int vge_tx_list_init(struct vge_softc *);
202static void vge_txeof(struct vge_softc *);
203static void vge_watchdog(void *);
204
205static device_method_t vge_methods[] = {
206 /* Device interface */
207 DEVMETHOD(device_probe, vge_probe),
208 DEVMETHOD(device_attach, vge_attach),
209 DEVMETHOD(device_detach, vge_detach),
210 DEVMETHOD(device_suspend, vge_suspend),
211 DEVMETHOD(device_resume, vge_resume),
212 DEVMETHOD(device_shutdown, vge_shutdown),
213
214 /* bus interface */
215 DEVMETHOD(bus_print_child, bus_generic_print_child),
216 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
217
218 /* MII interface */
219 DEVMETHOD(miibus_readreg, vge_miibus_readreg),
220 DEVMETHOD(miibus_writereg, vge_miibus_writereg),
221 DEVMETHOD(miibus_statchg, vge_miibus_statchg),
222
223 { 0, 0 }
224};
225
226static driver_t vge_driver = {
227 "vge",
228 vge_methods,
229 sizeof(struct vge_softc)
230};
231
232static devclass_t vge_devclass;
233
234DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
235DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
236
237#ifdef VGE_EEPROM
238/*
239 * Read a word of data stored in the EEPROM at address 'addr.'
240 */
241static void
242vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t *dest)
243{
244 int i;
245 uint16_t word = 0;
246
247 /*
248 * Enter EEPROM embedded programming mode. In order to
249 * access the EEPROM at all, we first have to set the
250 * EELOAD bit in the CHIPCFG2 register.
251 */
252 CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
253 CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
254
255 /* Select the address of the word we want to read */
256 CSR_WRITE_1(sc, VGE_EEADDR, addr);
257
258 /* Issue read command */
259 CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
260
261 /* Wait for the done bit to be set. */
262 for (i = 0; i < VGE_TIMEOUT; i++) {
263 if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
264 break;
265 }
266
267 if (i == VGE_TIMEOUT) {
268 device_printf(sc->vge_dev, "EEPROM read timed out\n");
269 *dest = 0;
270 return;
271 }
272
273 /* Read the result */
274 word = CSR_READ_2(sc, VGE_EERDDAT);
275
276 /* Turn off EEPROM access mode. */
277 CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
278 CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
279
280 *dest = word;
281}
282#endif
283
284/*
285 * Read a sequence of words from the EEPROM.
286 */
287static void
288vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt, int swap)
289{
290 int i;
291#ifdef VGE_EEPROM
292 uint16_t word = 0, *ptr;
293
294 for (i = 0; i < cnt; i++) {
295 vge_eeprom_getword(sc, off + i, &word);
296 ptr = (uint16_t *)(dest + (i * 2));
297 if (swap)
298 *ptr = ntohs(word);
299 else
300 *ptr = word;
301 }
302#else
303 for (i = 0; i < ETHER_ADDR_LEN; i++)
304 dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
305#endif
306}
307
308static void
309vge_miipoll_stop(struct vge_softc *sc)
310{
311 int i;
312
313 CSR_WRITE_1(sc, VGE_MIICMD, 0);
314
315 for (i = 0; i < VGE_TIMEOUT; i++) {
316 DELAY(1);
317 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
318 break;
319 }
320
321 if (i == VGE_TIMEOUT)
322 device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
323}
324
325static void
326vge_miipoll_start(struct vge_softc *sc)
327{
328 int i;
329
330 /* First, make sure we're idle. */
331
332 CSR_WRITE_1(sc, VGE_MIICMD, 0);
333 CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
334
335 for (i = 0; i < VGE_TIMEOUT; i++) {
336 DELAY(1);
337 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
338 break;
339 }
340
341 if (i == VGE_TIMEOUT) {
342 device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
343 return;
344 }
345
346 /* Now enable auto poll mode. */
347
348 CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
349
350 /* And make sure it started. */
351
352 for (i = 0; i < VGE_TIMEOUT; i++) {
353 DELAY(1);
354 if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
355 break;
356 }
357
358 if (i == VGE_TIMEOUT)
359 device_printf(sc->vge_dev, "failed to start MII autopoll\n");
360}
361
362static int
363vge_miibus_readreg(device_t dev, int phy, int reg)
364{
365 struct vge_softc *sc;
366 int i;
367 uint16_t rval = 0;
368
369 sc = device_get_softc(dev);
370
371 vge_miipoll_stop(sc);
372
373 /* Specify the register we want to read. */
374 CSR_WRITE_1(sc, VGE_MIIADDR, reg);
375
376 /* Issue read command. */
377 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
378
379 /* Wait for the read command bit to self-clear. */
380 for (i = 0; i < VGE_TIMEOUT; i++) {
381 DELAY(1);
382 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
383 break;
384 }
385
386 if (i == VGE_TIMEOUT)
387 device_printf(sc->vge_dev, "MII read timed out\n");
388 else
389 rval = CSR_READ_2(sc, VGE_MIIDATA);
390
391 vge_miipoll_start(sc);
392
393 return (rval);
394}
395
396static int
397vge_miibus_writereg(device_t dev, int phy, int reg, int data)
398{
399 struct vge_softc *sc;
400 int i, rval = 0;
401
402 sc = device_get_softc(dev);
403
404 vge_miipoll_stop(sc);
405
406 /* Specify the register we want to write. */
407 CSR_WRITE_1(sc, VGE_MIIADDR, reg);
408
409 /* Specify the data we want to write. */
410 CSR_WRITE_2(sc, VGE_MIIDATA, data);
411
412 /* Issue write command. */
413 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
414
415 /* Wait for the write command bit to self-clear. */
416 for (i = 0; i < VGE_TIMEOUT; i++) {
417 DELAY(1);
418 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
419 break;
420 }
421
422 if (i == VGE_TIMEOUT) {
423 device_printf(sc->vge_dev, "MII write timed out\n");
424 rval = EIO;
425 }
426
427 vge_miipoll_start(sc);
428
429 return (rval);
430}
431
432static void
433vge_cam_clear(struct vge_softc *sc)
434{
435 int i;
436
437 /*
438 * Turn off all the mask bits. This tells the chip
439 * that none of the entries in the CAM filter are valid.
440 * desired entries will be enabled as we fill the filter in.
441 */
442
443 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
444 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
445 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
446 for (i = 0; i < 8; i++)
447 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
448
449 /* Clear the VLAN filter too. */
450
451 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
452 for (i = 0; i < 8; i++)
453 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
454
455 CSR_WRITE_1(sc, VGE_CAMADDR, 0);
456 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
457 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
458
459 sc->vge_camidx = 0;
460}
461
462static int
463vge_cam_set(struct vge_softc *sc, uint8_t *addr)
464{
465 int i, error = 0;
466
467 if (sc->vge_camidx == VGE_CAM_MAXADDRS)
468 return (ENOSPC);
469
470 /* Select the CAM data page. */
471 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
472 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
473
474 /* Set the filter entry we want to update and enable writing. */
475 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
476
477 /* Write the address to the CAM registers */
478 for (i = 0; i < ETHER_ADDR_LEN; i++)
479 CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
480
481 /* Issue a write command. */
482 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
483
484 /* Wake for it to clear. */
485 for (i = 0; i < VGE_TIMEOUT; i++) {
486 DELAY(1);
487 if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
488 break;
489 }
490
491 if (i == VGE_TIMEOUT) {
492 device_printf(sc->vge_dev, "setting CAM filter failed\n");
493 error = EIO;
494 goto fail;
495 }
496
497 /* Select the CAM mask page. */
498 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
499 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
500
501 /* Set the mask bit that enables this filter. */
502 CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
503 1<<(sc->vge_camidx & 7));
504
505 sc->vge_camidx++;
506
507fail:
508 /* Turn off access to CAM. */
509 CSR_WRITE_1(sc, VGE_CAMADDR, 0);
510 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
511 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
512
513 return (error);
514}
515
516static void
517vge_setvlan(struct vge_softc *sc)
518{
519 struct ifnet *ifp;
520 uint8_t cfg;
521
522 VGE_LOCK_ASSERT(sc);
523
524 ifp = sc->vge_ifp;
525 cfg = CSR_READ_1(sc, VGE_RXCFG);
526 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
527 cfg |= VGE_VTAG_OPT2;
528 else
529 cfg &= ~VGE_VTAG_OPT2;
530 CSR_WRITE_1(sc, VGE_RXCFG, cfg);
531}
532
533/*
534 * Program the multicast filter. We use the 64-entry CAM filter
535 * for perfect filtering. If there's more than 64 multicast addresses,
536 * we use the hash filter instead.
537 */
538static void
539vge_rxfilter(struct vge_softc *sc)
540{
541 struct ifnet *ifp;
542 struct ifmultiaddr *ifma;
543 uint32_t h, hashes[2];
544 uint8_t rxcfg;
545 int error = 0;
546
547 VGE_LOCK_ASSERT(sc);
548
549 /* First, zot all the multicast entries. */
550 hashes[0] = 0;
551 hashes[1] = 0;
552
553 rxcfg = CSR_READ_1(sc, VGE_RXCTL);
554 rxcfg &= ~(VGE_RXCTL_RX_MCAST | VGE_RXCTL_RX_BCAST |
555 VGE_RXCTL_RX_PROMISC);
556 /*
557 * Always allow VLAN oversized frames and frames for
558 * this host.
559 */
560 rxcfg |= VGE_RXCTL_RX_GIANT | VGE_RXCTL_RX_UCAST;
561
562 ifp = sc->vge_ifp;
563 if ((ifp->if_flags & IFF_BROADCAST) != 0)
564 rxcfg |= VGE_RXCTL_RX_BCAST;
565 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
566 if ((ifp->if_flags & IFF_PROMISC) != 0)
567 rxcfg |= VGE_RXCTL_RX_PROMISC;
568 if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
569 hashes[0] = 0xFFFFFFFF;
570 hashes[1] = 0xFFFFFFFF;
571 }
572 goto done;
573 }
574
575 vge_cam_clear(sc);
576 /* Now program new ones */
577 if_maddr_rlock(ifp);
578 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
579 if (ifma->ifma_addr->sa_family != AF_LINK)
580 continue;
581 error = vge_cam_set(sc,
582 LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
583 if (error)
584 break;
585 }
586
587 /* If there were too many addresses, use the hash filter. */
588 if (error) {
589 vge_cam_clear(sc);
590
591 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
592 if (ifma->ifma_addr->sa_family != AF_LINK)
593 continue;
594 h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
595 ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
596 if (h < 32)
597 hashes[0] |= (1 << h);
598 else
599 hashes[1] |= (1 << (h - 32));
600 }
601 }
602 if_maddr_runlock(ifp);
603
604done:
605 if (hashes[0] != 0 || hashes[1] != 0)
606 rxcfg |= VGE_RXCTL_RX_MCAST;
607 CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
608 CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
609 CSR_WRITE_1(sc, VGE_RXCTL, rxcfg);
610}
611
612static void
613vge_reset(struct vge_softc *sc)
614{
615 int i;
616
617 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
618
619 for (i = 0; i < VGE_TIMEOUT; i++) {
620 DELAY(5);
621 if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
622 break;
623 }
624
625 if (i == VGE_TIMEOUT) {
626 device_printf(sc->vge_dev, "soft reset timed out\n");
627 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
628 DELAY(2000);
629 }
630
631 DELAY(5000);
632}
633
634/*
635 * Probe for a VIA gigabit chip. Check the PCI vendor and device
636 * IDs against our list and return a device name if we find a match.
637 */
638static int
639vge_probe(device_t dev)
640{
641 struct vge_type *t;
642
643 t = vge_devs;
644
645 while (t->vge_name != NULL) {
646 if ((pci_get_vendor(dev) == t->vge_vid) &&
647 (pci_get_device(dev) == t->vge_did)) {
648 device_set_desc(dev, t->vge_name);
649 return (BUS_PROBE_DEFAULT);
650 }
651 t++;
652 }
653
654 return (ENXIO);
655}
656
657/*
658 * Map a single buffer address.
659 */
660
661struct vge_dmamap_arg {
662 bus_addr_t vge_busaddr;
663};
664
665static void
666vge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
667{
668 struct vge_dmamap_arg *ctx;
669
670 if (error != 0)
671 return;
672
673 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
674
675 ctx = (struct vge_dmamap_arg *)arg;
676 ctx->vge_busaddr = segs[0].ds_addr;
677}
678
679static int
680vge_dma_alloc(struct vge_softc *sc)
681{
682 struct vge_dmamap_arg ctx;
683 struct vge_txdesc *txd;
684 struct vge_rxdesc *rxd;
685 bus_addr_t lowaddr, tx_ring_end, rx_ring_end;
686 int error, i;
687
688 /*
689 * It seems old PCI controllers do not support DAC. DAC
690 * configuration can be enabled by accessing VGE_CHIPCFG3
691 * register but honor EEPROM configuration instead of
692 * blindly overriding DAC configuration. PCIe based
693 * controllers are supposed to support 64bit DMA so enable
694 * 64bit DMA on these controllers.
695 */
696 if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
697 lowaddr = BUS_SPACE_MAXADDR;
698 else
699 lowaddr = BUS_SPACE_MAXADDR_32BIT;
700
701again:
702 /* Create parent ring tag. */
703 error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
704 1, 0, /* algnmnt, boundary */
705 lowaddr, /* lowaddr */
706 BUS_SPACE_MAXADDR, /* highaddr */
707 NULL, NULL, /* filter, filterarg */
708 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
709 0, /* nsegments */
710 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
711 0, /* flags */
712 NULL, NULL, /* lockfunc, lockarg */
713 &sc->vge_cdata.vge_ring_tag);
714 if (error != 0) {
715 device_printf(sc->vge_dev,
716 "could not create parent DMA tag.\n");
717 goto fail;
718 }
719
720 /* Create tag for Tx ring. */
721 error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
722 VGE_TX_RING_ALIGN, 0, /* algnmnt, boundary */
723 BUS_SPACE_MAXADDR, /* lowaddr */
724 BUS_SPACE_MAXADDR, /* highaddr */
725 NULL, NULL, /* filter, filterarg */
726 VGE_TX_LIST_SZ, /* maxsize */
727 1, /* nsegments */
728 VGE_TX_LIST_SZ, /* maxsegsize */
729 0, /* flags */
730 NULL, NULL, /* lockfunc, lockarg */
731 &sc->vge_cdata.vge_tx_ring_tag);
732 if (error != 0) {
733 device_printf(sc->vge_dev,
734 "could not allocate Tx ring DMA tag.\n");
735 goto fail;
736 }
737
738 /* Create tag for Rx ring. */
739 error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
740 VGE_RX_RING_ALIGN, 0, /* algnmnt, boundary */
741 BUS_SPACE_MAXADDR, /* lowaddr */
742 BUS_SPACE_MAXADDR, /* highaddr */
743 NULL, NULL, /* filter, filterarg */
744 VGE_RX_LIST_SZ, /* maxsize */
745 1, /* nsegments */
746 VGE_RX_LIST_SZ, /* maxsegsize */
747 0, /* flags */
748 NULL, NULL, /* lockfunc, lockarg */
749 &sc->vge_cdata.vge_rx_ring_tag);
750 if (error != 0) {
751 device_printf(sc->vge_dev,
752 "could not allocate Rx ring DMA tag.\n");
753 goto fail;
754 }
755
756 /* Allocate DMA'able memory and load the DMA map for Tx ring. */
757 error = bus_dmamem_alloc(sc->vge_cdata.vge_tx_ring_tag,
758 (void **)&sc->vge_rdata.vge_tx_ring,
759 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
760 &sc->vge_cdata.vge_tx_ring_map);
761 if (error != 0) {
762 device_printf(sc->vge_dev,
763 "could not allocate DMA'able memory for Tx ring.\n");
764 goto fail;
765 }
766
767 ctx.vge_busaddr = 0;
768 error = bus_dmamap_load(sc->vge_cdata.vge_tx_ring_tag,
769 sc->vge_cdata.vge_tx_ring_map, sc->vge_rdata.vge_tx_ring,
770 VGE_TX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
771 if (error != 0 || ctx.vge_busaddr == 0) {
772 device_printf(sc->vge_dev,
773 "could not load DMA'able memory for Tx ring.\n");
774 goto fail;
775 }
776 sc->vge_rdata.vge_tx_ring_paddr = ctx.vge_busaddr;
777
778 /* Allocate DMA'able memory and load the DMA map for Rx ring. */
779 error = bus_dmamem_alloc(sc->vge_cdata.vge_rx_ring_tag,
780 (void **)&sc->vge_rdata.vge_rx_ring,
781 BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
782 &sc->vge_cdata.vge_rx_ring_map);
783 if (error != 0) {
784 device_printf(sc->vge_dev,
785 "could not allocate DMA'able memory for Rx ring.\n");
786 goto fail;
787 }
788
789 ctx.vge_busaddr = 0;
790 error = bus_dmamap_load(sc->vge_cdata.vge_rx_ring_tag,
791 sc->vge_cdata.vge_rx_ring_map, sc->vge_rdata.vge_rx_ring,
792 VGE_RX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
793 if (error != 0 || ctx.vge_busaddr == 0) {
794 device_printf(sc->vge_dev,
795 "could not load DMA'able memory for Rx ring.\n");
796 goto fail;
797 }
798 sc->vge_rdata.vge_rx_ring_paddr = ctx.vge_busaddr;
799
800 /* Tx/Rx descriptor queue should reside within 4GB boundary. */
801 tx_ring_end = sc->vge_rdata.vge_tx_ring_paddr + VGE_TX_LIST_SZ;
802 rx_ring_end = sc->vge_rdata.vge_rx_ring_paddr + VGE_RX_LIST_SZ;
803 if ((VGE_ADDR_HI(tx_ring_end) !=
804 VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr)) ||
805 (VGE_ADDR_HI(rx_ring_end) !=
806 VGE_ADDR_HI(sc->vge_rdata.vge_rx_ring_paddr)) ||
807 VGE_ADDR_HI(tx_ring_end) != VGE_ADDR_HI(rx_ring_end)) {
808 device_printf(sc->vge_dev, "4GB boundary crossed, "
809 "switching to 32bit DMA address mode.\n");
810 vge_dma_free(sc);
811 /* Limit DMA address space to 32bit and try again. */
812 lowaddr = BUS_SPACE_MAXADDR_32BIT;
813 goto again;
814 }
815
816 if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
817 lowaddr = VGE_BUF_DMA_MAXADDR;
818 else
819 lowaddr = BUS_SPACE_MAXADDR_32BIT;
820 /* Create parent buffer tag. */
821 error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
822 1, 0, /* algnmnt, boundary */
823 lowaddr, /* lowaddr */
824 BUS_SPACE_MAXADDR, /* highaddr */
825 NULL, NULL, /* filter, filterarg */
826 BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
827 0, /* nsegments */
828 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
829 0, /* flags */
830 NULL, NULL, /* lockfunc, lockarg */
831 &sc->vge_cdata.vge_buffer_tag);
832 if (error != 0) {
833 device_printf(sc->vge_dev,
834 "could not create parent buffer DMA tag.\n");
835 goto fail;
836 }
837
838 /* Create tag for Tx buffers. */
839 error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
840 1, 0, /* algnmnt, boundary */
841 BUS_SPACE_MAXADDR, /* lowaddr */
842 BUS_SPACE_MAXADDR, /* highaddr */
843 NULL, NULL, /* filter, filterarg */
844 MCLBYTES * VGE_MAXTXSEGS, /* maxsize */
845 VGE_MAXTXSEGS, /* nsegments */
846 MCLBYTES, /* maxsegsize */
847 0, /* flags */
848 NULL, NULL, /* lockfunc, lockarg */
849 &sc->vge_cdata.vge_tx_tag);
850 if (error != 0) {
851 device_printf(sc->vge_dev, "could not create Tx DMA tag.\n");
852 goto fail;
853 }
854
855 /* Create tag for Rx buffers. */
856 error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
857 VGE_RX_BUF_ALIGN, 0, /* algnmnt, boundary */
858 BUS_SPACE_MAXADDR, /* lowaddr */
859 BUS_SPACE_MAXADDR, /* highaddr */
860 NULL, NULL, /* filter, filterarg */
861 MCLBYTES, /* maxsize */
862 1, /* nsegments */
863 MCLBYTES, /* maxsegsize */
864 0, /* flags */
865 NULL, NULL, /* lockfunc, lockarg */
866 &sc->vge_cdata.vge_rx_tag);
867 if (error != 0) {
868 device_printf(sc->vge_dev, "could not create Rx DMA tag.\n");
869 goto fail;
870 }
871
872 /* Create DMA maps for Tx buffers. */
873 for (i = 0; i < VGE_TX_DESC_CNT; i++) {
874 txd = &sc->vge_cdata.vge_txdesc[i];
875 txd->tx_m = NULL;
876 txd->tx_dmamap = NULL;
877 error = bus_dmamap_create(sc->vge_cdata.vge_tx_tag, 0,
878 &txd->tx_dmamap);
879 if (error != 0) {
880 device_printf(sc->vge_dev,
881 "could not create Tx dmamap.\n");
882 goto fail;
883 }
884 }
885 /* Create DMA maps for Rx buffers. */
886 if ((error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
887 &sc->vge_cdata.vge_rx_sparemap)) != 0) {
888 device_printf(sc->vge_dev,
889 "could not create spare Rx dmamap.\n");
890 goto fail;
891 }
892 for (i = 0; i < VGE_RX_DESC_CNT; i++) {
893 rxd = &sc->vge_cdata.vge_rxdesc[i];
894 rxd->rx_m = NULL;
895 rxd->rx_dmamap = NULL;
896 error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
897 &rxd->rx_dmamap);
898 if (error != 0) {
899 device_printf(sc->vge_dev,
900 "could not create Rx dmamap.\n");
901 goto fail;
902 }
903 }
904
905fail:
906 return (error);
907}
908
909static void
910vge_dma_free(struct vge_softc *sc)
911{
912 struct vge_txdesc *txd;
913 struct vge_rxdesc *rxd;
914 int i;
915
916 /* Tx ring. */
917 if (sc->vge_cdata.vge_tx_ring_tag != NULL) {
918 if (sc->vge_cdata.vge_tx_ring_map)
919 bus_dmamap_unload(sc->vge_cdata.vge_tx_ring_tag,
920 sc->vge_cdata.vge_tx_ring_map);
921 if (sc->vge_cdata.vge_tx_ring_map &&
922 sc->vge_rdata.vge_tx_ring)
923 bus_dmamem_free(sc->vge_cdata.vge_tx_ring_tag,
924 sc->vge_rdata.vge_tx_ring,
925 sc->vge_cdata.vge_tx_ring_map);
926 sc->vge_rdata.vge_tx_ring = NULL;
927 sc->vge_cdata.vge_tx_ring_map = NULL;
928 bus_dma_tag_destroy(sc->vge_cdata.vge_tx_ring_tag);
929 sc->vge_cdata.vge_tx_ring_tag = NULL;
930 }
931 /* Rx ring. */
932 if (sc->vge_cdata.vge_rx_ring_tag != NULL) {
933 if (sc->vge_cdata.vge_rx_ring_map)
934 bus_dmamap_unload(sc->vge_cdata.vge_rx_ring_tag,
935 sc->vge_cdata.vge_rx_ring_map);
936 if (sc->vge_cdata.vge_rx_ring_map &&
937 sc->vge_rdata.vge_rx_ring)
938 bus_dmamem_free(sc->vge_cdata.vge_rx_ring_tag,
939 sc->vge_rdata.vge_rx_ring,
940 sc->vge_cdata.vge_rx_ring_map);
941 sc->vge_rdata.vge_rx_ring = NULL;
942 sc->vge_cdata.vge_rx_ring_map = NULL;
943 bus_dma_tag_destroy(sc->vge_cdata.vge_rx_ring_tag);
944 sc->vge_cdata.vge_rx_ring_tag = NULL;
945 }
946 /* Tx buffers. */
947 if (sc->vge_cdata.vge_tx_tag != NULL) {
948 for (i = 0; i < VGE_TX_DESC_CNT; i++) {
949 txd = &sc->vge_cdata.vge_txdesc[i];
950 if (txd->tx_dmamap != NULL) {
951 bus_dmamap_destroy(sc->vge_cdata.vge_tx_tag,
952 txd->tx_dmamap);
953 txd->tx_dmamap = NULL;
954 }
955 }
956 bus_dma_tag_destroy(sc->vge_cdata.vge_tx_tag);
957 sc->vge_cdata.vge_tx_tag = NULL;
958 }
959 /* Rx buffers. */
960 if (sc->vge_cdata.vge_rx_tag != NULL) {
961 for (i = 0; i < VGE_RX_DESC_CNT; i++) {
962 rxd = &sc->vge_cdata.vge_rxdesc[i];
963 if (rxd->rx_dmamap != NULL) {
964 bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
965 rxd->rx_dmamap);
966 rxd->rx_dmamap = NULL;
967 }
968 }
969 if (sc->vge_cdata.vge_rx_sparemap != NULL) {
970 bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
971 sc->vge_cdata.vge_rx_sparemap);
972 sc->vge_cdata.vge_rx_sparemap = NULL;
973 }
974 bus_dma_tag_destroy(sc->vge_cdata.vge_rx_tag);
975 sc->vge_cdata.vge_rx_tag = NULL;
976 }
977
978 if (sc->vge_cdata.vge_buffer_tag != NULL) {
979 bus_dma_tag_destroy(sc->vge_cdata.vge_buffer_tag);
980 sc->vge_cdata.vge_buffer_tag = NULL;
981 }
982 if (sc->vge_cdata.vge_ring_tag != NULL) {
983 bus_dma_tag_destroy(sc->vge_cdata.vge_ring_tag);
984 sc->vge_cdata.vge_ring_tag = NULL;
985 }
986}
987
988/*
989 * Attach the interface. Allocate softc structures, do ifmedia
990 * setup and ethernet/BPF attach.
991 */
992static int
993vge_attach(device_t dev)
994{
995 u_char eaddr[ETHER_ADDR_LEN];
996 struct vge_softc *sc;
997 struct ifnet *ifp;
998 int error = 0, cap, i, msic, rid;
999
1000 sc = device_get_softc(dev);
1001 sc->vge_dev = dev;
1002
1003 mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1004 MTX_DEF);
1005 callout_init_mtx(&sc->vge_watchdog, &sc->vge_mtx, 0);
1006
1007 /*
1008 * Map control/status registers.
1009 */
1010 pci_enable_busmaster(dev);
1011
1012 rid = PCIR_BAR(1);
1013 sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1014 RF_ACTIVE);
1015
1016 if (sc->vge_res == NULL) {
1017 device_printf(dev, "couldn't map ports/memory\n");
1018 error = ENXIO;
1019 goto fail;
1020 }
1021
1022 if (pci_find_cap(dev, PCIY_EXPRESS, &cap) == 0) {
1023 sc->vge_flags |= VGE_FLAG_PCIE;
1024 sc->vge_expcap = cap;
1025 } else
1026 sc->vge_flags |= VGE_FLAG_JUMBO;
1027 if (pci_find_cap(dev, PCIY_PMG, &cap) == 0) {
1028 sc->vge_flags |= VGE_FLAG_PMCAP;
1029 sc->vge_pmcap = cap;
1030 }
1031 rid = 0;
1032 msic = pci_msi_count(dev);
1033 if (msi_disable == 0 && msic > 0) {
1034 msic = 1;
1035 if (pci_alloc_msi(dev, &msic) == 0) {
1036 if (msic == 1) {
1037 sc->vge_flags |= VGE_FLAG_MSI;
1038 device_printf(dev, "Using %d MSI message\n",
1039 msic);
1040 rid = 1;
1041 } else
1042 pci_release_msi(dev);
1043 }
1044 }
1045
1046 /* Allocate interrupt */
1047 sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1048 ((sc->vge_flags & VGE_FLAG_MSI) ? 0 : RF_SHAREABLE) | RF_ACTIVE);
1049 if (sc->vge_irq == NULL) {
1050 device_printf(dev, "couldn't map interrupt\n");
1051 error = ENXIO;
1052 goto fail;
1053 }
1054
1055 /* Reset the adapter. */
1056 vge_reset(sc);
1057 /* Reload EEPROM. */
1058 CSR_WRITE_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
1059 for (i = 0; i < VGE_TIMEOUT; i++) {
1060 DELAY(5);
1061 if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
1062 break;
1063 }
1064 if (i == VGE_TIMEOUT)
1065 device_printf(dev, "EEPROM reload timed out\n");
1066 /*
1067 * Clear PACPI as EEPROM reload will set the bit. Otherwise
1068 * MAC will receive magic packet which in turn confuses
1069 * controller.
1070 */
1071 CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
1072
1073 /*
1074 * Get station address from the EEPROM.
1075 */
1076 vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
1077 /*
1078 * Save configured PHY address.
1079 * It seems the PHY address of PCIe controllers just
1080 * reflects media jump strapping status so we assume the
1081 * internal PHY address of PCIe controller is at 1.
1082 */
1083 if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
1084 sc->vge_phyaddr = 1;
1085 else
1086 sc->vge_phyaddr = CSR_READ_1(sc, VGE_MIICFG) &
1087 VGE_MIICFG_PHYADDR;
1088 /* Clear WOL and take hardware from powerdown. */
1089 vge_clrwol(sc);
1090 vge_sysctl_node(sc);
1091 error = vge_dma_alloc(sc);
1092 if (error)
1093 goto fail;
1094
1095 ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
1096 if (ifp == NULL) {
1097 device_printf(dev, "can not if_alloc()\n");
1098 error = ENOSPC;
1099 goto fail;
1100 }
1101
1102 /* Do MII setup */
1103 error = mii_attach(dev, &sc->vge_miibus, ifp, vge_ifmedia_upd,
1104 vge_ifmedia_sts, BMSR_DEFCAPMASK, sc->vge_phyaddr, MII_OFFSET_ANY,
1105 0);
1106 if (error != 0) {
1107 device_printf(dev, "attaching PHYs failed\n");
1108 goto fail;
1109 }
1110
1111 ifp->if_softc = sc;
1112 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1113 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1114 ifp->if_ioctl = vge_ioctl;
1115 ifp->if_capabilities = IFCAP_VLAN_MTU;
1116 ifp->if_start = vge_start;
1117 ifp->if_hwassist = VGE_CSUM_FEATURES;
1118 ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM |
1119 IFCAP_VLAN_HWTAGGING;
1120 if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0)
1121 ifp->if_capabilities |= IFCAP_WOL;
1122 ifp->if_capenable = ifp->if_capabilities;
1123#ifdef DEVICE_POLLING
1124 ifp->if_capabilities |= IFCAP_POLLING;
1125#endif
1126 ifp->if_init = vge_init;
1127 IFQ_SET_MAXLEN(&ifp->if_snd, VGE_TX_DESC_CNT - 1);
1128 ifp->if_snd.ifq_drv_maxlen = VGE_TX_DESC_CNT - 1;
1129 IFQ_SET_READY(&ifp->if_snd);
1130
1131 /*
1132 * Call MI attach routine.
1133 */
1134 ether_ifattach(ifp, eaddr);
1135
1136 /* Tell the upper layer(s) we support long frames. */
1137 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1138
1139 /* Hook interrupt last to avoid having to lock softc */
1140 error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1141 NULL, vge_intr, sc, &sc->vge_intrhand);
1142
1143 if (error) {
1144 device_printf(dev, "couldn't set up irq\n");
1145 ether_ifdetach(ifp);
1146 goto fail;
1147 }
1148
1149fail:
1150 if (error)
1151 vge_detach(dev);
1152
1153 return (error);
1154}
1155
1156/*
1157 * Shutdown hardware and free up resources. This can be called any
1158 * time after the mutex has been initialized. It is called in both
1159 * the error case in attach and the normal detach case so it needs
1160 * to be careful about only freeing resources that have actually been
1161 * allocated.
1162 */
1163static int
1164vge_detach(device_t dev)
1165{
1166 struct vge_softc *sc;
1167 struct ifnet *ifp;
1168
1169 sc = device_get_softc(dev);
1170 KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1171 ifp = sc->vge_ifp;
1172
1173#ifdef DEVICE_POLLING
1174 if (ifp->if_capenable & IFCAP_POLLING)
1175 ether_poll_deregister(ifp);
1176#endif
1177
1178 /* These should only be active if attach succeeded */
1179 if (device_is_attached(dev)) {
1180 ether_ifdetach(ifp);
1181 VGE_LOCK(sc);
1182 vge_stop(sc);
1183 VGE_UNLOCK(sc);
1184 callout_drain(&sc->vge_watchdog);
1185 }
1186 if (sc->vge_miibus)
1187 device_delete_child(dev, sc->vge_miibus);
1188 bus_generic_detach(dev);
1189
1190 if (sc->vge_intrhand)
1191 bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1192 if (sc->vge_irq)
1193 bus_release_resource(dev, SYS_RES_IRQ,
1194 sc->vge_flags & VGE_FLAG_MSI ? 1 : 0, sc->vge_irq);
1195 if (sc->vge_flags & VGE_FLAG_MSI)
1196 pci_release_msi(dev);
1197 if (sc->vge_res)
1198 bus_release_resource(dev, SYS_RES_MEMORY,
1199 PCIR_BAR(1), sc->vge_res);
1200 if (ifp)
1201 if_free(ifp);
1202
1203 vge_dma_free(sc);
1204 mtx_destroy(&sc->vge_mtx);
1205
1206 return (0);
1207}
1208
1209static void
1210vge_discard_rxbuf(struct vge_softc *sc, int prod)
1211{
1212 struct vge_rxdesc *rxd;
1213 int i;
1214
1215 rxd = &sc->vge_cdata.vge_rxdesc[prod];
1216 rxd->rx_desc->vge_sts = 0;
1217 rxd->rx_desc->vge_ctl = 0;
1218
1219 /*
1220 * Note: the manual fails to document the fact that for
1221 * proper opration, the driver needs to replentish the RX
1222 * DMA ring 4 descriptors at a time (rather than one at a
1223 * time, like most chips). We can allocate the new buffers
1224 * but we should not set the OWN bits until we're ready
1225 * to hand back 4 of them in one shot.
1226 */
1227 if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1228 for (i = VGE_RXCHUNK; i > 0; i--) {
1229 rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1230 rxd = rxd->rxd_prev;
1231 }
1232 sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1233 }
1234}
1235
1236static int
1237vge_newbuf(struct vge_softc *sc, int prod)
1238{
1239 struct vge_rxdesc *rxd;
1240 struct mbuf *m;
1241 bus_dma_segment_t segs[1];
1242 bus_dmamap_t map;
1243 int i, nsegs;
1244
1245 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1246 if (m == NULL)
1247 return (ENOBUFS);
1248 /*
1249 * This is part of an evil trick to deal with strict-alignment
1250 * architectures. The VIA chip requires RX buffers to be aligned
1251 * on 32-bit boundaries, but that will hose strict-alignment
1252 * architectures. To get around this, we leave some empty space
1253 * at the start of each buffer and for non-strict-alignment hosts,
1254 * we copy the buffer back two bytes to achieve word alignment.
1255 * This is slightly more efficient than allocating a new buffer,
1256 * copying the contents, and discarding the old buffer.
1257 */
1258 m->m_len = m->m_pkthdr.len = MCLBYTES;
1259 m_adj(m, VGE_RX_BUF_ALIGN);
1260
1261 if (bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_rx_tag,
1262 sc->vge_cdata.vge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1263 m_freem(m);
1264 return (ENOBUFS);
1265 }
1266 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1267
1268 rxd = &sc->vge_cdata.vge_rxdesc[prod];
1269 if (rxd->rx_m != NULL) {
1270 bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1271 BUS_DMASYNC_POSTREAD);
1272 bus_dmamap_unload(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap);
1273 }
1274 map = rxd->rx_dmamap;
1275 rxd->rx_dmamap = sc->vge_cdata.vge_rx_sparemap;
1276 sc->vge_cdata.vge_rx_sparemap = map;
1277 bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1278 BUS_DMASYNC_PREREAD);
1279 rxd->rx_m = m;
1280
1281 rxd->rx_desc->vge_sts = 0;
1282 rxd->rx_desc->vge_ctl = 0;
1283 rxd->rx_desc->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
1284 rxd->rx_desc->vge_addrhi = htole32(VGE_ADDR_HI(segs[0].ds_addr) |
1285 (VGE_BUFLEN(segs[0].ds_len) << 16) | VGE_RXDESC_I);
1286
1287 /*
1288 * Note: the manual fails to document the fact that for
1289 * proper operation, the driver needs to replenish the RX
1290 * DMA ring 4 descriptors at a time (rather than one at a
1291 * time, like most chips). We can allocate the new buffers
1292 * but we should not set the OWN bits until we're ready
1293 * to hand back 4 of them in one shot.
1294 */
1295 if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1296 for (i = VGE_RXCHUNK; i > 0; i--) {
1297 rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1298 rxd = rxd->rxd_prev;
1299 }
1300 sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1301 }
1302
1303 return (0);
1304}
1305
1306static int
1307vge_tx_list_init(struct vge_softc *sc)
1308{
1309 struct vge_ring_data *rd;
1310 struct vge_txdesc *txd;
1311 int i;
1312
1313 VGE_LOCK_ASSERT(sc);
1314
1315 sc->vge_cdata.vge_tx_prodidx = 0;
1316 sc->vge_cdata.vge_tx_considx = 0;
1317 sc->vge_cdata.vge_tx_cnt = 0;
1318
1319 rd = &sc->vge_rdata;
1320 bzero(rd->vge_tx_ring, VGE_TX_LIST_SZ);
1321 for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1322 txd = &sc->vge_cdata.vge_txdesc[i];
1323 txd->tx_m = NULL;
1324 txd->tx_desc = &rd->vge_tx_ring[i];
1325 }
1326
1327 bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1328 sc->vge_cdata.vge_tx_ring_map,
1329 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1330
1331 return (0);
1332}
1333
1334static int
1335vge_rx_list_init(struct vge_softc *sc)
1336{
1337 struct vge_ring_data *rd;
1338 struct vge_rxdesc *rxd;
1339 int i;
1340
1341 VGE_LOCK_ASSERT(sc);
1342
1343 sc->vge_cdata.vge_rx_prodidx = 0;
1344 sc->vge_cdata.vge_head = NULL;
1345 sc->vge_cdata.vge_tail = NULL;
1346 sc->vge_cdata.vge_rx_commit = 0;
1347
1348 rd = &sc->vge_rdata;
1349 bzero(rd->vge_rx_ring, VGE_RX_LIST_SZ);
1350 for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1351 rxd = &sc->vge_cdata.vge_rxdesc[i];
1352 rxd->rx_m = NULL;
1353 rxd->rx_desc = &rd->vge_rx_ring[i];
1354 if (i == 0)
1355 rxd->rxd_prev =
1356 &sc->vge_cdata.vge_rxdesc[VGE_RX_DESC_CNT - 1];
1357 else
1358 rxd->rxd_prev = &sc->vge_cdata.vge_rxdesc[i - 1];
1359 if (vge_newbuf(sc, i) != 0)
1360 return (ENOBUFS);
1361 }
1362
1363 bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1364 sc->vge_cdata.vge_rx_ring_map,
1365 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1366
1367 sc->vge_cdata.vge_rx_commit = 0;
1368
1369 return (0);
1370}
1371
1372static void
1373vge_freebufs(struct vge_softc *sc)
1374{
1375 struct vge_txdesc *txd;
1376 struct vge_rxdesc *rxd;
1377 struct ifnet *ifp;
1378 int i;
1379
1380 VGE_LOCK_ASSERT(sc);
1381
1382 ifp = sc->vge_ifp;
1383 /*
1384 * Free RX and TX mbufs still in the queues.
1385 */
1386 for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1387 rxd = &sc->vge_cdata.vge_rxdesc[i];
1388 if (rxd->rx_m != NULL) {
1389 bus_dmamap_sync(sc->vge_cdata.vge_rx_tag,
1390 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
1391 bus_dmamap_unload(sc->vge_cdata.vge_rx_tag,
1392 rxd->rx_dmamap);
1393 m_freem(rxd->rx_m);
1394 rxd->rx_m = NULL;
1395 }
1396 }
1397
1398 for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1399 txd = &sc->vge_cdata.vge_txdesc[i];
1400 if (txd->tx_m != NULL) {
1401 bus_dmamap_sync(sc->vge_cdata.vge_tx_tag,
1402 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1403 bus_dmamap_unload(sc->vge_cdata.vge_tx_tag,
1404 txd->tx_dmamap);
1405 m_freem(txd->tx_m);
1406 txd->tx_m = NULL;
1407 ifp->if_oerrors++;
1408 }
1409 }
1410}
1411
1412#ifndef __NO_STRICT_ALIGNMENT
1413static __inline void
1414vge_fixup_rx(struct mbuf *m)
1415{
1416 int i;
1417 uint16_t *src, *dst;
1418
1419 src = mtod(m, uint16_t *);
1420 dst = src - 1;
1421
1422 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1423 *dst++ = *src++;
1424
1425 m->m_data -= ETHER_ALIGN;
1426}
1427#endif
1428
1429/*
1430 * RX handler. We support the reception of jumbo frames that have
1431 * been fragmented across multiple 2K mbuf cluster buffers.
1432 */
1433static int
1434vge_rxeof(struct vge_softc *sc, int count)
1435{
1436 struct mbuf *m;
1437 struct ifnet *ifp;
1438 int prod, prog, total_len;
1439 struct vge_rxdesc *rxd;
1440 struct vge_rx_desc *cur_rx;
1441 uint32_t rxstat, rxctl;
1442
1443 VGE_LOCK_ASSERT(sc);
1444
1445 ifp = sc->vge_ifp;
1446
1447 bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1448 sc->vge_cdata.vge_rx_ring_map,
1449 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1450
1451 prod = sc->vge_cdata.vge_rx_prodidx;
1452 for (prog = 0; count > 0 &&
1453 (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1454 VGE_RX_DESC_INC(prod)) {
1455 cur_rx = &sc->vge_rdata.vge_rx_ring[prod];
1456 rxstat = le32toh(cur_rx->vge_sts);
1457 if ((rxstat & VGE_RDSTS_OWN) != 0)
1458 break;
1459 count--;
1460 prog++;
1461 rxctl = le32toh(cur_rx->vge_ctl);
1462 total_len = VGE_RXBYTES(rxstat);
1463 rxd = &sc->vge_cdata.vge_rxdesc[prod];
1464 m = rxd->rx_m;
1465
1466 /*
1467 * If the 'start of frame' bit is set, this indicates
1468 * either the first fragment in a multi-fragment receive,
1469 * or an intermediate fragment. Either way, we want to
1470 * accumulate the buffers.
1471 */
1472 if ((rxstat & VGE_RXPKT_SOF) != 0) {
1473 if (vge_newbuf(sc, prod) != 0) {
1474 ifp->if_iqdrops++;
1475 VGE_CHAIN_RESET(sc);
1476 vge_discard_rxbuf(sc, prod);
1477 continue;
1478 }
1479 m->m_len = MCLBYTES - VGE_RX_BUF_ALIGN;
1480 if (sc->vge_cdata.vge_head == NULL) {
1481 sc->vge_cdata.vge_head = m;
1482 sc->vge_cdata.vge_tail = m;
1483 } else {
1484 m->m_flags &= ~M_PKTHDR;
1485 sc->vge_cdata.vge_tail->m_next = m;
1486 sc->vge_cdata.vge_tail = m;
1487 }
1488 continue;
1489 }
1490
1491 /*
1492 * Bad/error frames will have the RXOK bit cleared.
1493 * However, there's one error case we want to allow:
1494 * if a VLAN tagged frame arrives and the chip can't
1495 * match it against the CAM filter, it considers this
1496 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1497 * We don't want to drop the frame though: our VLAN
1498 * filtering is done in software.
1499 * We also want to receive bad-checksummed frames and
1500 * and frames with bad-length.
1501 */
1502 if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
1503 (rxstat & (VGE_RDSTS_VIDM | VGE_RDSTS_RLERR |
1504 VGE_RDSTS_CSUMERR)) == 0) {
1505 ifp->if_ierrors++;
1506 /*
1507 * If this is part of a multi-fragment packet,
1508 * discard all the pieces.
1509 */
1510 VGE_CHAIN_RESET(sc);
1511 vge_discard_rxbuf(sc, prod);
1512 continue;
1513 }
1514
1515 if (vge_newbuf(sc, prod) != 0) {
1516 ifp->if_iqdrops++;
1517 VGE_CHAIN_RESET(sc);
1518 vge_discard_rxbuf(sc, prod);
1519 continue;
1520 }
1521
1522 /* Chain received mbufs. */
1523 if (sc->vge_cdata.vge_head != NULL) {
1524 m->m_len = total_len % (MCLBYTES - VGE_RX_BUF_ALIGN);
1525 /*
1526 * Special case: if there's 4 bytes or less
1527 * in this buffer, the mbuf can be discarded:
1528 * the last 4 bytes is the CRC, which we don't
1529 * care about anyway.
1530 */
1531 if (m->m_len <= ETHER_CRC_LEN) {
1532 sc->vge_cdata.vge_tail->m_len -=
1533 (ETHER_CRC_LEN - m->m_len);
1534 m_freem(m);
1535 } else {
1536 m->m_len -= ETHER_CRC_LEN;
1537 m->m_flags &= ~M_PKTHDR;
1538 sc->vge_cdata.vge_tail->m_next = m;
1539 }
1540 m = sc->vge_cdata.vge_head;
1541 m->m_flags |= M_PKTHDR;
1542 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1543 } else {
1544 m->m_flags |= M_PKTHDR;
1545 m->m_pkthdr.len = m->m_len =
1546 (total_len - ETHER_CRC_LEN);
1547 }
1548
1549#ifndef __NO_STRICT_ALIGNMENT
1550 vge_fixup_rx(m);
1551#endif
1552 m->m_pkthdr.rcvif = ifp;
1553
1554 /* Do RX checksumming if enabled */
1555 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
1556 (rxctl & VGE_RDCTL_FRAG) == 0) {
1557 /* Check IP header checksum */
1558 if ((rxctl & VGE_RDCTL_IPPKT) != 0)
1559 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1560 if ((rxctl & VGE_RDCTL_IPCSUMOK) != 0)
1561 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1562
1563 /* Check TCP/UDP checksum */
1564 if (rxctl & (VGE_RDCTL_TCPPKT | VGE_RDCTL_UDPPKT) &&
1565 rxctl & VGE_RDCTL_PROTOCSUMOK) {
1566 m->m_pkthdr.csum_flags |=
1567 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1568 m->m_pkthdr.csum_data = 0xffff;
1569 }
1570 }
1571
1572 if ((rxstat & VGE_RDSTS_VTAG) != 0) {
1573 /*
1574 * The 32-bit rxctl register is stored in little-endian.
1575 * However, the 16-bit vlan tag is stored in big-endian,
1576 * so we have to byte swap it.
1577 */
1578 m->m_pkthdr.ether_vtag =
1579 bswap16(rxctl & VGE_RDCTL_VLANID);
1580 m->m_flags |= M_VLANTAG;
1581 }
1582
1583 VGE_UNLOCK(sc);
1584 (*ifp->if_input)(ifp, m);
1585 VGE_LOCK(sc);
1586 sc->vge_cdata.vge_head = NULL;
1587 sc->vge_cdata.vge_tail = NULL;
1588 }
1589
1590 if (prog > 0) {
1591 sc->vge_cdata.vge_rx_prodidx = prod;
1592 bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1593 sc->vge_cdata.vge_rx_ring_map,
1594 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1595 /* Update residue counter. */
1596 if (sc->vge_cdata.vge_rx_commit != 0) {
1597 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT,
1598 sc->vge_cdata.vge_rx_commit);
1599 sc->vge_cdata.vge_rx_commit = 0;
1600 }
1601 }
1602 return (prog);
1603}
1604
1605static void
1606vge_txeof(struct vge_softc *sc)
1607{
1608 struct ifnet *ifp;
1609 struct vge_tx_desc *cur_tx;
1610 struct vge_txdesc *txd;
1611 uint32_t txstat;
1612 int cons, prod;
1613
1614 VGE_LOCK_ASSERT(sc);
1615
1616 ifp = sc->vge_ifp;
1617
1618 if (sc->vge_cdata.vge_tx_cnt == 0)
1619 return;
1620
1621 bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1622 sc->vge_cdata.vge_tx_ring_map,
1623 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1624
1625 /*
1626 * Go through our tx list and free mbufs for those
1627 * frames that have been transmitted.
1628 */
1629 cons = sc->vge_cdata.vge_tx_considx;
1630 prod = sc->vge_cdata.vge_tx_prodidx;
1631 for (; cons != prod; VGE_TX_DESC_INC(cons)) {
1632 cur_tx = &sc->vge_rdata.vge_tx_ring[cons];
1633 txstat = le32toh(cur_tx->vge_sts);
1634 if ((txstat & VGE_TDSTS_OWN) != 0)
1635 break;
1636 sc->vge_cdata.vge_tx_cnt--;
1637 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1638
1639 txd = &sc->vge_cdata.vge_txdesc[cons];
1640 bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1641 BUS_DMASYNC_POSTWRITE);
1642 bus_dmamap_unload(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap);
1643
1644 KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1645 __func__));
1646 m_freem(txd->tx_m);
1647 txd->tx_m = NULL;
1648 txd->tx_desc->vge_frag[0].vge_addrhi = 0;
1649 }
1650 bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1651 sc->vge_cdata.vge_tx_ring_map,
1652 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1653 sc->vge_cdata.vge_tx_considx = cons;
1654 if (sc->vge_cdata.vge_tx_cnt == 0)
1655 sc->vge_timer = 0;
1656}
1657
1658static void
1659vge_link_statchg(void *xsc)
1660{
1661 struct vge_softc *sc;
1662 struct ifnet *ifp;
1663 struct mii_data *mii;
1664
1665 sc = xsc;
1666 ifp = sc->vge_ifp;
1667 VGE_LOCK_ASSERT(sc);
1668 mii = device_get_softc(sc->vge_miibus);
1669
1670 mii_pollstat(mii);
1671 if ((sc->vge_flags & VGE_FLAG_LINK) != 0) {
1672 if (!(mii->mii_media_status & IFM_ACTIVE)) {
1673 sc->vge_flags &= ~VGE_FLAG_LINK;
1674 if_link_state_change(sc->vge_ifp,
1675 LINK_STATE_DOWN);
1676 }
1677 } else {
1678 if (mii->mii_media_status & IFM_ACTIVE &&
1679 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1680 sc->vge_flags |= VGE_FLAG_LINK;
1681 if_link_state_change(sc->vge_ifp,
1682 LINK_STATE_UP);
1683 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1684 vge_start_locked(ifp);
1685 }
1686 }
1687}
1688
1689#ifdef DEVICE_POLLING
1690static int
1691vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1692{
1693 struct vge_softc *sc = ifp->if_softc;
1694 int rx_npkts = 0;
1695
1696 VGE_LOCK(sc);
1697 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1698 goto done;
1699
1700 rx_npkts = vge_rxeof(sc, count);
1701 vge_txeof(sc);
1702
1703 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1704 vge_start_locked(ifp);
1705
1706 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1707 uint32_t status;
1708 status = CSR_READ_4(sc, VGE_ISR);
1709 if (status == 0xFFFFFFFF)
1710 goto done;
1711 if (status)
1712 CSR_WRITE_4(sc, VGE_ISR, status);
1713
1714 /*
1715 * XXX check behaviour on receiver stalls.
1716 */
1717
1718 if (status & VGE_ISR_TXDMA_STALL ||
1719 status & VGE_ISR_RXDMA_STALL) {
1720 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1721 vge_init_locked(sc);
1722 }
1723
1724 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1725 vge_rxeof(sc, count);
1726 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1727 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1728 }
1729 }
1730done:
1731 VGE_UNLOCK(sc);
1732 return (rx_npkts);
1733}
1734#endif /* DEVICE_POLLING */
1735
1736static void
1737vge_intr(void *arg)
1738{
1739 struct vge_softc *sc;
1740 struct ifnet *ifp;
1741 uint32_t status;
1742
1743 sc = arg;
1744 VGE_LOCK(sc);
1745
1746 ifp = sc->vge_ifp;
1747 if ((sc->vge_flags & VGE_FLAG_SUSPENDED) != 0 ||
1748 (ifp->if_flags & IFF_UP) == 0) {
1749 VGE_UNLOCK(sc);
1750 return;
1751 }
1752
1753#ifdef DEVICE_POLLING
1754 if (ifp->if_capenable & IFCAP_POLLING) {
1755 status = CSR_READ_4(sc, VGE_ISR);
1756 CSR_WRITE_4(sc, VGE_ISR, status);
1757 if (status != 0xFFFFFFFF && (status & VGE_ISR_LINKSTS) != 0)
1758 vge_link_statchg(sc);
1759 VGE_UNLOCK(sc);
1760 return;
1761 }
1762#endif
1763
1764 /* Disable interrupts */
1765 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1766 status = CSR_READ_4(sc, VGE_ISR);
1767 CSR_WRITE_4(sc, VGE_ISR, status | VGE_ISR_HOLDOFF_RELOAD);
1768 /* If the card has gone away the read returns 0xffff. */
1769 if (status == 0xFFFFFFFF || (status & VGE_INTRS) == 0)
1770 goto done;
1771 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1772 if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1773 vge_rxeof(sc, VGE_RX_DESC_CNT);
1774 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1775 vge_rxeof(sc, VGE_RX_DESC_CNT);
1776 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1777 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1778 }
1779
1780 if (status & (VGE_ISR_TXOK0|VGE_ISR_TXOK_HIPRIO))
1781 vge_txeof(sc);
1782
1783 if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
1784 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1785 vge_init_locked(sc);
1786 }
1787
1788 if (status & VGE_ISR_LINKSTS)
1789 vge_link_statchg(sc);
1790 }
1791done:
1792 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1793 /* Re-enable interrupts */
1794 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1795
1796 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1797 vge_start_locked(ifp);
1798 }
1799 VGE_UNLOCK(sc);
1800}
1801
1802static int
1803vge_encap(struct vge_softc *sc, struct mbuf **m_head)
1804{
1805 struct vge_txdesc *txd;
1806 struct vge_tx_frag *frag;
1807 struct mbuf *m;
1808 bus_dma_segment_t txsegs[VGE_MAXTXSEGS];
1809 int error, i, nsegs, padlen;
1810 uint32_t cflags;
1811
1812 VGE_LOCK_ASSERT(sc);
1813
1814 M_ASSERTPKTHDR((*m_head));
1815
1816 /* Argh. This chip does not autopad short frames. */
1817 if ((*m_head)->m_pkthdr.len < VGE_MIN_FRAMELEN) {
1818 m = *m_head;
1819 padlen = VGE_MIN_FRAMELEN - m->m_pkthdr.len;
1820 if (M_WRITABLE(m) == 0) {
1821 /* Get a writable copy. */
1822 m = m_dup(*m_head, M_DONTWAIT);
1823 m_freem(*m_head);
1824 if (m == NULL) {
1825 *m_head = NULL;
1826 return (ENOBUFS);
1827 }
1828 *m_head = m;
1829 }
1830 if (M_TRAILINGSPACE(m) < padlen) {
1831 m = m_defrag(m, M_DONTWAIT);
1832 if (m == NULL) {
1833 m_freem(*m_head);
1834 *m_head = NULL;
1835 return (ENOBUFS);
1836 }
1837 }
1838 /*
1839 * Manually pad short frames, and zero the pad space
1840 * to avoid leaking data.
1841 */
1842 bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1843 m->m_pkthdr.len += padlen;
1844 m->m_len = m->m_pkthdr.len;
1845 *m_head = m;
1846 }
1847
1848 txd = &sc->vge_cdata.vge_txdesc[sc->vge_cdata.vge_tx_prodidx];
1849
1850 error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1851 txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1852 if (error == EFBIG) {
1853 m = m_collapse(*m_head, M_DONTWAIT, VGE_MAXTXSEGS);
1854 if (m == NULL) {
1855 m_freem(*m_head);
1856 *m_head = NULL;
1857 return (ENOMEM);
1858 }
1859 *m_head = m;
1860 error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1861 txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1862 if (error != 0) {
1863 m_freem(*m_head);
1864 *m_head = NULL;
1865 return (error);
1866 }
1867 } else if (error != 0)
1868 return (error);
1869 bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1870 BUS_DMASYNC_PREWRITE);
1871
1872 m = *m_head;
1873 cflags = 0;
1874
1875 /* Configure checksum offload. */
1876 if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1877 cflags |= VGE_TDCTL_IPCSUM;
1878 if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1879 cflags |= VGE_TDCTL_TCPCSUM;
1880 if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1881 cflags |= VGE_TDCTL_UDPCSUM;
1882
1883 /* Configure VLAN. */
1884 if ((m->m_flags & M_VLANTAG) != 0)
1885 cflags |= m->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG;
1886 txd->tx_desc->vge_sts = htole32(m->m_pkthdr.len << 16);
1887 /*
1888 * XXX
1889 * Velocity family seems to support TSO but no information
1890 * for MSS configuration is available. Also the number of
1891 * fragments supported by a descriptor is too small to hold
1892 * entire 64KB TCP/IP segment. Maybe VGE_TD_LS_MOF,
1893 * VGE_TD_LS_SOF and VGE_TD_LS_EOF could be used to build
1894 * longer chain of buffers but no additional information is
1895 * available.
1896 *
1897 * When telling the chip how many segments there are, we
1898 * must use nsegs + 1 instead of just nsegs. Darned if I
1899 * know why. This also means we can't use the last fragment
1900 * field of Tx descriptor.
1901 */
1902 txd->tx_desc->vge_ctl = htole32(cflags | ((nsegs + 1) << 28) |
1903 VGE_TD_LS_NORM);
1904 for (i = 0; i < nsegs; i++) {
1905 frag = &txd->tx_desc->vge_frag[i];
1906 frag->vge_addrlo = htole32(VGE_ADDR_LO(txsegs[i].ds_addr));
1907 frag->vge_addrhi = htole32(VGE_ADDR_HI(txsegs[i].ds_addr) |
1908 (VGE_BUFLEN(txsegs[i].ds_len) << 16));
1909 }
1910
1911 sc->vge_cdata.vge_tx_cnt++;
1912 VGE_TX_DESC_INC(sc->vge_cdata.vge_tx_prodidx);
1913
1914 /*
1915 * Finally request interrupt and give the first descriptor
1916 * ownership to hardware.
1917 */
1918 txd->tx_desc->vge_ctl |= htole32(VGE_TDCTL_TIC);
1919 txd->tx_desc->vge_sts |= htole32(VGE_TDSTS_OWN);
1920 txd->tx_m = m;
1921
1922 return (0);
1923}
1924
1925/*
1926 * Main transmit routine.
1927 */
1928
1929static void
1930vge_start(struct ifnet *ifp)
1931{
1932 struct vge_softc *sc;
1933
1934 sc = ifp->if_softc;
1935 VGE_LOCK(sc);
1936 vge_start_locked(ifp);
1937 VGE_UNLOCK(sc);
1938}
1939
1940
1941static void
1942vge_start_locked(struct ifnet *ifp)
1943{
1944 struct vge_softc *sc;
1945 struct vge_txdesc *txd;
1946 struct mbuf *m_head;
1947 int enq, idx;
1948
1949 sc = ifp->if_softc;
1950
1951 VGE_LOCK_ASSERT(sc);
1952
1953 if ((sc->vge_flags & VGE_FLAG_LINK) == 0 ||
1954 (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1955 IFF_DRV_RUNNING)
1956 return;
1957
1958 idx = sc->vge_cdata.vge_tx_prodidx;
1959 VGE_TX_DESC_DEC(idx);
1960 for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1961 sc->vge_cdata.vge_tx_cnt < VGE_TX_DESC_CNT - 1; ) {
1962 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1963 if (m_head == NULL)
1964 break;
1965 /*
1966 * Pack the data into the transmit ring. If we
1967 * don't have room, set the OACTIVE flag and wait
1968 * for the NIC to drain the ring.
1969 */
1970 if (vge_encap(sc, &m_head)) {
1971 if (m_head == NULL)
1972 break;
1973 IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1974 ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1975 break;
1976 }
1977
1978 txd = &sc->vge_cdata.vge_txdesc[idx];
1979 txd->tx_desc->vge_frag[0].vge_addrhi |= htole32(VGE_TXDESC_Q);
1980 VGE_TX_DESC_INC(idx);
1981
1982 enq++;
1983 /*
1984 * If there's a BPF listener, bounce a copy of this frame
1985 * to him.
1986 */
1987 ETHER_BPF_MTAP(ifp, m_head);
1988 }
1989
1990 if (enq > 0) {
1991 bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1992 sc->vge_cdata.vge_tx_ring_map,
1993 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1994 /* Issue a transmit command. */
1995 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1996 /*
1997 * Set a timeout in case the chip goes out to lunch.
1998 */
1999 sc->vge_timer = 5;
2000 }
2001}
2002
2003static void
2004vge_init(void *xsc)
2005{
2006 struct vge_softc *sc = xsc;
2007
2008 VGE_LOCK(sc);
2009 vge_init_locked(sc);
2010 VGE_UNLOCK(sc);
2011}
2012
2013static void
2014vge_init_locked(struct vge_softc *sc)
2015{
2016 struct ifnet *ifp = sc->vge_ifp;
2017 struct mii_data *mii;
2018 int error, i;
2019
2020 VGE_LOCK_ASSERT(sc);
2021 mii = device_get_softc(sc->vge_miibus);
2022
2023 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2024 return;
2025
2026 /*
2027 * Cancel pending I/O and free all RX/TX buffers.
2028 */
2029 vge_stop(sc);
2030 vge_reset(sc);
2031
2032 /*
2033 * Initialize the RX and TX descriptors and mbufs.
2034 */
2035
2036 error = vge_rx_list_init(sc);
2037 if (error != 0) {
2038 device_printf(sc->vge_dev, "no memory for Rx buffers.\n");
2039 return;
2040 }
2041 vge_tx_list_init(sc);
2042 /* Clear MAC statistics. */
2043 vge_stats_clear(sc);
2044 /* Set our station address */
2045 for (i = 0; i < ETHER_ADDR_LEN; i++)
2046 CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
2047
2048 /*
2049 * Set receive FIFO threshold. Also allow transmission and
2050 * reception of VLAN tagged frames.
2051 */
2052 CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
2053 CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES);
2054
2055 /* Set DMA burst length */
2056 CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
2057 CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
2058
2059 CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
2060
2061 /* Set collision backoff algorithm */
2062 CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
2063 VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
2064 CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
2065
2066 /* Disable LPSEL field in priority resolution */
2067 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
2068
2069 /*
2070 * Load the addresses of the DMA queues into the chip.
2071 * Note that we only use one transmit queue.
2072 */
2073
2074 CSR_WRITE_4(sc, VGE_TXDESC_HIADDR,
2075 VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr));
2076 CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2077 VGE_ADDR_LO(sc->vge_rdata.vge_tx_ring_paddr));
2078 CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2079
2080 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2081 VGE_ADDR_LO(sc->vge_rdata.vge_rx_ring_paddr));
2082 CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2083 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2084
2085 /* Configure interrupt moderation. */
2086 vge_intr_holdoff(sc);
2087
2088 /* Enable and wake up the RX descriptor queue */
2089 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2090 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2091
2092 /* Enable the TX descriptor queue */
2093 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2094
2095 /* Init the cam filter. */
2096 vge_cam_clear(sc);
2097
2098 /* Set up receiver filter. */
2099 vge_rxfilter(sc);
2100 vge_setvlan(sc);
2101
2102 /* Enable flow control */
2103
2104 CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
2105
2106 /* Enable jumbo frame reception (if desired) */
2107
2108 /* Start the MAC. */
2109 CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2110 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2111 CSR_WRITE_1(sc, VGE_CRS0,
2112 VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2113
2114#ifdef DEVICE_POLLING
2115 /*
2116 * Disable interrupts except link state change if we are polling.
2117 */
2118 if (ifp->if_capenable & IFCAP_POLLING) {
2119 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2120 } else /* otherwise ... */
2121#endif
2122 {
2123 /*
2124 * Enable interrupts.
2125 */
2126 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2127 }
2128 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2129 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2130
2131 sc->vge_flags &= ~VGE_FLAG_LINK;
2132 mii_mediachg(mii);
2133
2134 ifp->if_drv_flags |= IFF_DRV_RUNNING;
2135 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2136 callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2137}
2138
2139/*
2140 * Set media options.
2141 */
2142static int
2143vge_ifmedia_upd(struct ifnet *ifp)
2144{
2145 struct vge_softc *sc;
2146 struct mii_data *mii;
2147 int error;
2148
2149 sc = ifp->if_softc;
2150 VGE_LOCK(sc);
2151 mii = device_get_softc(sc->vge_miibus);
2152 error = mii_mediachg(mii);
2153 VGE_UNLOCK(sc);
2154
2155 return (error);
2156}
2157
2158/*
2159 * Report current media status.
2160 */
2161static void
2162vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2163{
2164 struct vge_softc *sc;
2165 struct mii_data *mii;
2166
2167 sc = ifp->if_softc;
2168 mii = device_get_softc(sc->vge_miibus);
2169
2170 VGE_LOCK(sc);
2171 if ((ifp->if_flags & IFF_UP) == 0) {
2172 VGE_UNLOCK(sc);
2173 return;
2174 }
2175 mii_pollstat(mii);
2176 VGE_UNLOCK(sc);
2177 ifmr->ifm_active = mii->mii_media_active;
2178 ifmr->ifm_status = mii->mii_media_status;
2179}
2180
2181static void
2182vge_miibus_statchg(device_t dev)
2183{
2184 struct vge_softc *sc;
2185 struct mii_data *mii;
2186 struct ifmedia_entry *ife;
2187
2188 sc = device_get_softc(dev);
2189 mii = device_get_softc(sc->vge_miibus);
2190 ife = mii->mii_media.ifm_cur;
2191
2192 /*
2193 * If the user manually selects a media mode, we need to turn
2194 * on the forced MAC mode bit in the DIAGCTL register. If the
2195 * user happens to choose a full duplex mode, we also need to
2196 * set the 'force full duplex' bit. This applies only to
2197 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2198 * mode is disabled, and in 1000baseT mode, full duplex is
2199 * always implied, so we turn on the forced mode bit but leave
2200 * the FDX bit cleared.
2201 */
2202
2203 switch (IFM_SUBTYPE(ife->ifm_media)) {
2204 case IFM_AUTO:
2205 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2206 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2207 break;
2208 case IFM_1000_T:
2209 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2210 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2211 break;
2212 case IFM_100_TX:
2213 case IFM_10_T:
2214 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2215 if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2216 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2217 } else {
2218 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2219 }
2220 break;
2221 default:
2222 device_printf(dev, "unknown media type: %x\n",
2223 IFM_SUBTYPE(ife->ifm_media));
2224 break;
2225 }
2226}
2227
2228static int
2229vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2230{
2231 struct vge_softc *sc = ifp->if_softc;
2232 struct ifreq *ifr = (struct ifreq *) data;
2233 struct mii_data *mii;
2234 int error = 0, mask;
2235
2236 switch (command) {
2237 case SIOCSIFMTU:
2238 VGE_LOCK(sc);
2239 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > VGE_JUMBO_MTU)
2240 error = EINVAL;
2241 else if (ifp->if_mtu != ifr->ifr_mtu) {
2242 if (ifr->ifr_mtu > ETHERMTU &&
2243 (sc->vge_flags & VGE_FLAG_JUMBO) == 0)
2244 error = EINVAL;
2245 else
2246 ifp->if_mtu = ifr->ifr_mtu;
2247 }
2248 VGE_UNLOCK(sc);
2249 break;
2250 case SIOCSIFFLAGS:
2251 VGE_LOCK(sc);
2252 if ((ifp->if_flags & IFF_UP) != 0) {
2253 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2254 ((ifp->if_flags ^ sc->vge_if_flags) &
2255 (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2256 vge_rxfilter(sc);
2257 else
2258 vge_init_locked(sc);
2259 } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2260 vge_stop(sc);
2261 sc->vge_if_flags = ifp->if_flags;
2262 VGE_UNLOCK(sc);
2263 break;
2264 case SIOCADDMULTI:
2265 case SIOCDELMULTI:
2266 VGE_LOCK(sc);
2267 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2268 vge_rxfilter(sc);
2269 VGE_UNLOCK(sc);
2270 break;
2271 case SIOCGIFMEDIA:
2272 case SIOCSIFMEDIA:
2273 mii = device_get_softc(sc->vge_miibus);
2274 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2275 break;
2276 case SIOCSIFCAP:
2277 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2278#ifdef DEVICE_POLLING
2279 if (mask & IFCAP_POLLING) {
2280 if (ifr->ifr_reqcap & IFCAP_POLLING) {
2281 error = ether_poll_register(vge_poll, ifp);
2282 if (error)
2283 return (error);
2284 VGE_LOCK(sc);
2285 /* Disable interrupts */
2286 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2287 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2288 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2289 ifp->if_capenable |= IFCAP_POLLING;
2290 VGE_UNLOCK(sc);
2291 } else {
2292 error = ether_poll_deregister(ifp);
2293 /* Enable interrupts. */
2294 VGE_LOCK(sc);
2295 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2296 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2297 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2298 ifp->if_capenable &= ~IFCAP_POLLING;
2299 VGE_UNLOCK(sc);
2300 }
2301 }
2302#endif /* DEVICE_POLLING */
2303 VGE_LOCK(sc);
2304 if ((mask & IFCAP_TXCSUM) != 0 &&
2305 (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2306 ifp->if_capenable ^= IFCAP_TXCSUM;
2307 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2308 ifp->if_hwassist |= VGE_CSUM_FEATURES;
2309 else
2310 ifp->if_hwassist &= ~VGE_CSUM_FEATURES;
2311 }
2312 if ((mask & IFCAP_RXCSUM) != 0 &&
2313 (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2314 ifp->if_capenable ^= IFCAP_RXCSUM;
2315 if ((mask & IFCAP_WOL_UCAST) != 0 &&
2316 (ifp->if_capabilities & IFCAP_WOL_UCAST) != 0)
2317 ifp->if_capenable ^= IFCAP_WOL_UCAST;
2318 if ((mask & IFCAP_WOL_MCAST) != 0 &&
2319 (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2320 ifp->if_capenable ^= IFCAP_WOL_MCAST;
2321 if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2322 (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2323 ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2324 if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2325 (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2326 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2327 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2328 (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
2329 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2330 vge_setvlan(sc);
2331 }
2332 VGE_UNLOCK(sc);
2333 VLAN_CAPABILITIES(ifp);
2334 break;
2335 default:
2336 error = ether_ioctl(ifp, command, data);
2337 break;
2338 }
2339
2340 return (error);
2341}
2342
2343static void
2344vge_watchdog(void *arg)
2345{
2346 struct vge_softc *sc;
2347 struct ifnet *ifp;
2348
2349 sc = arg;
2350 VGE_LOCK_ASSERT(sc);
2351 vge_stats_update(sc);
2352 callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2353 if (sc->vge_timer == 0 || --sc->vge_timer > 0)
2354 return;
2355
2356 ifp = sc->vge_ifp;
2357 if_printf(ifp, "watchdog timeout\n");
2358 ifp->if_oerrors++;
2359
2360 vge_txeof(sc);
2361 vge_rxeof(sc, VGE_RX_DESC_CNT);
2362
2363 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2364 vge_init_locked(sc);
2365}
2366
2367/*
2368 * Stop the adapter and free any mbufs allocated to the
2369 * RX and TX lists.
2370 */
2371static void
2372vge_stop(struct vge_softc *sc)
2373{
2374 struct ifnet *ifp;
2375
2376 VGE_LOCK_ASSERT(sc);
2377 ifp = sc->vge_ifp;
2378 sc->vge_timer = 0;
2379 callout_stop(&sc->vge_watchdog);
2380
2381 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2382
2383 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2384 CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2385 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2386 CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2387 CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2388 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2389
2390 vge_stats_update(sc);
2391 VGE_CHAIN_RESET(sc);
2392 vge_txeof(sc);
2393 vge_freebufs(sc);
2394}
2395
2396/*
2397 * Device suspend routine. Stop the interface and save some PCI
2398 * settings in case the BIOS doesn't restore them properly on
2399 * resume.
2400 */
2401static int
2402vge_suspend(device_t dev)
2403{
2404 struct vge_softc *sc;
2405
2406 sc = device_get_softc(dev);
2407
2408 VGE_LOCK(sc);
2409 vge_stop(sc);
2410 vge_setwol(sc);
2411 sc->vge_flags |= VGE_FLAG_SUSPENDED;
2412 VGE_UNLOCK(sc);
2413
2414 return (0);
2415}
2416
2417/*
2418 * Device resume routine. Restore some PCI settings in case the BIOS
2419 * doesn't, re-enable busmastering, and restart the interface if
2420 * appropriate.
2421 */
2422static int
2423vge_resume(device_t dev)
2424{
2425 struct vge_softc *sc;
2426 struct ifnet *ifp;
2427 uint16_t pmstat;
2428
2429 sc = device_get_softc(dev);
2430 VGE_LOCK(sc);
2431 if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0) {
2432 /* Disable PME and clear PME status. */
2433 pmstat = pci_read_config(sc->vge_dev,
2434 sc->vge_pmcap + PCIR_POWER_STATUS, 2);
2435 if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2436 pmstat &= ~PCIM_PSTAT_PMEENABLE;
2437 pci_write_config(sc->vge_dev,
2438 sc->vge_pmcap + PCIR_POWER_STATUS, pmstat, 2);
2439 }
2440 }
2441 vge_clrwol(sc);
2442 /* Restart MII auto-polling. */
2443 vge_miipoll_start(sc);
2444 ifp = sc->vge_ifp;
2445 /* Reinitialize interface if necessary. */
2446 if ((ifp->if_flags & IFF_UP) != 0) {
2447 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2448 vge_init_locked(sc);
2449 }
2450 sc->vge_flags &= ~VGE_FLAG_SUSPENDED;
2451 VGE_UNLOCK(sc);
2452
2453 return (0);
2454}
2455
2456/*
2457 * Stop all chip I/O so that the kernel's probe routines don't
2458 * get confused by errant DMAs when rebooting.
2459 */
2460static int
2461vge_shutdown(device_t dev)
2462{
2463
2464 return (vge_suspend(dev));
2465}
2466
2467#define VGE_SYSCTL_STAT_ADD32(c, h, n, p, d) \
2468 SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2469
2470static void
2471vge_sysctl_node(struct vge_softc *sc)
2472{
2473 struct sysctl_ctx_list *ctx;
2474 struct sysctl_oid_list *child, *parent;
2475 struct sysctl_oid *tree;
2476 struct vge_hw_stats *stats;
2477
2478 stats = &sc->vge_stats;
2479 ctx = device_get_sysctl_ctx(sc->vge_dev);
2480 child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vge_dev));
2481
2482 SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_holdoff",
2483 CTLFLAG_RW, &sc->vge_int_holdoff, 0, "interrupt holdoff");
2484 SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_coal_pkt",
2485 CTLFLAG_RW, &sc->vge_rx_coal_pkt, 0, "rx coalescing packet");
2486 SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_coal_pkt",
2487 CTLFLAG_RW, &sc->vge_tx_coal_pkt, 0, "tx coalescing packet");
2488
2489 /* Pull in device tunables. */
2490 sc->vge_int_holdoff = VGE_INT_HOLDOFF_DEFAULT;
2491 resource_int_value(device_get_name(sc->vge_dev),
2492 device_get_unit(sc->vge_dev), "int_holdoff", &sc->vge_int_holdoff);
2493 sc->vge_rx_coal_pkt = VGE_RX_COAL_PKT_DEFAULT;
2494 resource_int_value(device_get_name(sc->vge_dev),
2495 device_get_unit(sc->vge_dev), "rx_coal_pkt", &sc->vge_rx_coal_pkt);
2496 sc->vge_tx_coal_pkt = VGE_TX_COAL_PKT_DEFAULT;
2497 resource_int_value(device_get_name(sc->vge_dev),
2498 device_get_unit(sc->vge_dev), "tx_coal_pkt", &sc->vge_tx_coal_pkt);
2499
2500 tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2501 NULL, "VGE statistics");
2502 parent = SYSCTL_CHILDREN(tree);
2503
2504 /* Rx statistics. */
2505 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
2506 NULL, "RX MAC statistics");
2507 child = SYSCTL_CHILDREN(tree);
2508 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames",
2509 &stats->rx_frames, "frames");
2510 VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2511 &stats->rx_good_frames, "Good frames");
2512 VGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2513 &stats->rx_fifo_oflows, "FIFO overflows");
2514 VGE_SYSCTL_STAT_ADD32(ctx, child, "runts",
2515 &stats->rx_runts, "Too short frames");
2516 VGE_SYSCTL_STAT_ADD32(ctx, child, "runts_errs",
2517 &stats->rx_runts_errs, "Too short frames with errors");
2518 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2519 &stats->rx_pkts_64, "64 bytes frames");
2520 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2521 &stats->rx_pkts_65_127, "65 to 127 bytes frames");
2522 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2523 &stats->rx_pkts_128_255, "128 to 255 bytes frames");
2524 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2525 &stats->rx_pkts_256_511, "256 to 511 bytes frames");
2526 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2527 &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
2528 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2529 &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
2530 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
2531 &stats->rx_pkts_1519_max, "1519 to max frames");
2532 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max_errs",
2533 &stats->rx_pkts_1519_max_errs, "1519 to max frames with error");
2534 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2535 &stats->rx_jumbos, "Jumbo frames");
2536 VGE_SYSCTL_STAT_ADD32(ctx, child, "crcerrs",
2537 &stats->rx_crcerrs, "CRC errors");
2538 VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2539 &stats->rx_pause_frames, "CRC errors");
2540 VGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2541 &stats->rx_alignerrs, "Alignment errors");
2542 VGE_SYSCTL_STAT_ADD32(ctx, child, "nobufs",
2543 &stats->rx_nobufs, "Frames with no buffer event");
2544 VGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2545 &stats->rx_symerrs, "Frames with symbol errors");
2546 VGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2547 &stats->rx_lenerrs, "Frames with length mismatched");
2548
2549 /* Tx statistics. */
2550 tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
2551 NULL, "TX MAC statistics");
2552 child = SYSCTL_CHILDREN(tree);
2553 VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2554 &stats->tx_good_frames, "Good frames");
2555 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2556 &stats->tx_pkts_64, "64 bytes frames");
2557 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2558 &stats->tx_pkts_65_127, "65 to 127 bytes frames");
2559 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2560 &stats->tx_pkts_128_255, "128 to 255 bytes frames");
2561 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2562 &stats->tx_pkts_256_511, "256 to 511 bytes frames");
2563 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2564 &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
2565 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2566 &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
2567 VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2568 &stats->tx_jumbos, "Jumbo frames");
2569 VGE_SYSCTL_STAT_ADD32(ctx, child, "colls",
2570 &stats->tx_colls, "Collisions");
2571 VGE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2572 &stats->tx_latecolls, "Late collisions");
2573 VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2574 &stats->tx_pause, "Pause frames");
2575#ifdef VGE_ENABLE_SQEERR
2576 VGE_SYSCTL_STAT_ADD32(ctx, child, "sqeerrs",
2577 &stats->tx_sqeerrs, "SQE errors");
2578#endif
2579 /* Clear MAC statistics. */
2580 vge_stats_clear(sc);
2581}
2582
2583#undef VGE_SYSCTL_STAT_ADD32
2584
2585static void
2586vge_stats_clear(struct vge_softc *sc)
2587{
2588 int i;
2589
2590 CSR_WRITE_1(sc, VGE_MIBCSR,
2591 CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FREEZE);
2592 CSR_WRITE_1(sc, VGE_MIBCSR,
2593 CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_CLR);
2594 for (i = VGE_TIMEOUT; i > 0; i--) {
2595 DELAY(1);
2596 if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_CLR) == 0)
2597 break;
2598 }
2599 if (i == 0)
2600 device_printf(sc->vge_dev, "MIB clear timed out!\n");
2601 CSR_WRITE_1(sc, VGE_MIBCSR, CSR_READ_1(sc, VGE_MIBCSR) &
2602 ~VGE_MIBCSR_FREEZE);
2603}
2604
2605static void
2606vge_stats_update(struct vge_softc *sc)
2607{
2608 struct vge_hw_stats *stats;
2609 struct ifnet *ifp;
2610 uint32_t mib[VGE_MIB_CNT], val;
2611 int i;
2612
2613 VGE_LOCK_ASSERT(sc);
2614
2615 stats = &sc->vge_stats;
2616 ifp = sc->vge_ifp;
2617
2618 CSR_WRITE_1(sc, VGE_MIBCSR,
2619 CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FLUSH);
2620 for (i = VGE_TIMEOUT; i > 0; i--) {
2621 DELAY(1);
2622 if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_FLUSH) == 0)
2623 break;
2624 }
2625 if (i == 0) {
2626 device_printf(sc->vge_dev, "MIB counter dump timed out!\n");
2627 vge_stats_clear(sc);
2628 return;
2629 }
2630
2631 bzero(mib, sizeof(mib));
2632reset_idx:
2633 /* Set MIB read index to 0. */
2634 CSR_WRITE_1(sc, VGE_MIBCSR,
2635 CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_RINI);
2636 for (i = 0; i < VGE_MIB_CNT; i++) {
2637 val = CSR_READ_4(sc, VGE_MIBDATA);
2638 if (i != VGE_MIB_DATA_IDX(val)) {
2639 /* Reading interrupted. */
2640 goto reset_idx;
2641 }
2642 mib[i] = val & VGE_MIB_DATA_MASK;
2643 }
2644
2645 /* Rx stats. */
2646 stats->rx_frames += mib[VGE_MIB_RX_FRAMES];
2647 stats->rx_good_frames += mib[VGE_MIB_RX_GOOD_FRAMES];
2648 stats->rx_fifo_oflows += mib[VGE_MIB_RX_FIFO_OVERRUNS];
2649 stats->rx_runts += mib[VGE_MIB_RX_RUNTS];
2650 stats->rx_runts_errs += mib[VGE_MIB_RX_RUNTS_ERRS];
2651 stats->rx_pkts_64 += mib[VGE_MIB_RX_PKTS_64];
2652 stats->rx_pkts_65_127 += mib[VGE_MIB_RX_PKTS_65_127];
2653 stats->rx_pkts_128_255 += mib[VGE_MIB_RX_PKTS_128_255];
2654 stats->rx_pkts_256_511 += mib[VGE_MIB_RX_PKTS_256_511];
2655 stats->rx_pkts_512_1023 += mib[VGE_MIB_RX_PKTS_512_1023];
2656 stats->rx_pkts_1024_1518 += mib[VGE_MIB_RX_PKTS_1024_1518];
2657 stats->rx_pkts_1519_max += mib[VGE_MIB_RX_PKTS_1519_MAX];
2658 stats->rx_pkts_1519_max_errs += mib[VGE_MIB_RX_PKTS_1519_MAX_ERRS];
2659 stats->rx_jumbos += mib[VGE_MIB_RX_JUMBOS];
2660 stats->rx_crcerrs += mib[VGE_MIB_RX_CRCERRS];
2661 stats->rx_pause_frames += mib[VGE_MIB_RX_PAUSE];
2662 stats->rx_alignerrs += mib[VGE_MIB_RX_ALIGNERRS];
2663 stats->rx_nobufs += mib[VGE_MIB_RX_NOBUFS];
2664 stats->rx_symerrs += mib[VGE_MIB_RX_SYMERRS];
2665 stats->rx_lenerrs += mib[VGE_MIB_RX_LENERRS];
2666
2667 /* Tx stats. */
2668 stats->tx_good_frames += mib[VGE_MIB_TX_GOOD_FRAMES];
2669 stats->tx_pkts_64 += mib[VGE_MIB_TX_PKTS_64];
2670 stats->tx_pkts_65_127 += mib[VGE_MIB_TX_PKTS_65_127];
2671 stats->tx_pkts_128_255 += mib[VGE_MIB_TX_PKTS_128_255];
2672 stats->tx_pkts_256_511 += mib[VGE_MIB_TX_PKTS_256_511];
2673 stats->tx_pkts_512_1023 += mib[VGE_MIB_TX_PKTS_512_1023];
2674 stats->tx_pkts_1024_1518 += mib[VGE_MIB_TX_PKTS_1024_1518];
2675 stats->tx_jumbos += mib[VGE_MIB_TX_JUMBOS];
2676 stats->tx_colls += mib[VGE_MIB_TX_COLLS];
2677 stats->tx_pause += mib[VGE_MIB_TX_PAUSE];
2678#ifdef VGE_ENABLE_SQEERR
2679 stats->tx_sqeerrs += mib[VGE_MIB_TX_SQEERRS];
2680#endif
2681 stats->tx_latecolls += mib[VGE_MIB_TX_LATECOLLS];
2682
2683 /* Update counters in ifnet. */
2684 ifp->if_opackets += mib[VGE_MIB_TX_GOOD_FRAMES];
2685
2686 ifp->if_collisions += mib[VGE_MIB_TX_COLLS] +
2687 mib[VGE_MIB_TX_LATECOLLS];
2688
2689 ifp->if_oerrors += mib[VGE_MIB_TX_COLLS] +
2690 mib[VGE_MIB_TX_LATECOLLS];
2691
2692 ifp->if_ipackets += mib[VGE_MIB_RX_GOOD_FRAMES];
2693
2694 ifp->if_ierrors += mib[VGE_MIB_RX_FIFO_OVERRUNS] +
2695 mib[VGE_MIB_RX_RUNTS] +
2696 mib[VGE_MIB_RX_RUNTS_ERRS] +
2697 mib[VGE_MIB_RX_CRCERRS] +
2698 mib[VGE_MIB_RX_ALIGNERRS] +
2699 mib[VGE_MIB_RX_NOBUFS] +
2700 mib[VGE_MIB_RX_SYMERRS] +
2701 mib[VGE_MIB_RX_LENERRS];
2702}
2703
2704static void
2705vge_intr_holdoff(struct vge_softc *sc)
2706{
2707 uint8_t intctl;
2708
2709 VGE_LOCK_ASSERT(sc);
2710
2711 /*
2712 * Set Tx interrupt supression threshold.
2713 * It's possible to use single-shot timer in VGE_CRS1 register
2714 * in Tx path such that driver can remove most of Tx completion
2715 * interrupts. However this requires additional access to
2716 * VGE_CRS1 register to reload the timer in addintion to
2717 * activating Tx kick command. Another downside is we don't know
2718 * what single-shot timer value should be used in advance so
2719 * reclaiming transmitted mbufs could be delayed a lot which in
2720 * turn slows down Tx operation.
2721 */
2722 CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_TXSUPPTHR);
2723 CSR_WRITE_1(sc, VGE_TXSUPPTHR, sc->vge_tx_coal_pkt);
2724
2725 /* Set Rx interrupt suppresion threshold. */
2726 CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2727 CSR_WRITE_1(sc, VGE_RXSUPPTHR, sc->vge_rx_coal_pkt);
2728
2729 intctl = CSR_READ_1(sc, VGE_INTCTL1);
2730 intctl &= ~VGE_INTCTL_SC_RELOAD;
2731 intctl |= VGE_INTCTL_HC_RELOAD;
2732 if (sc->vge_tx_coal_pkt <= 0)
2733 intctl |= VGE_INTCTL_TXINTSUP_DISABLE;
2734 else
2735 intctl &= ~VGE_INTCTL_TXINTSUP_DISABLE;
2736 if (sc->vge_rx_coal_pkt <= 0)
2737 intctl |= VGE_INTCTL_RXINTSUP_DISABLE;
2738 else
2739 intctl &= ~VGE_INTCTL_RXINTSUP_DISABLE;
2740 CSR_WRITE_1(sc, VGE_INTCTL1, intctl);
2741 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_HOLDOFF);
2742 if (sc->vge_int_holdoff > 0) {
2743 /* Set interrupt holdoff timer. */
2744 CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2745 CSR_WRITE_1(sc, VGE_INTHOLDOFF,
2746 VGE_INT_HOLDOFF_USEC(sc->vge_int_holdoff));
2747 /* Enable holdoff timer. */
2748 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2749 }
2750}
2751
2752static void
2753vge_setlinkspeed(struct vge_softc *sc)
2754{
2755 struct mii_data *mii;
2756 int aneg, i;
2757
2758 VGE_LOCK_ASSERT(sc);
2759
2760 mii = device_get_softc(sc->vge_miibus);
2761 mii_pollstat(mii);
2762 aneg = 0;
2763 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
2764 (IFM_ACTIVE | IFM_AVALID)) {
2765 switch IFM_SUBTYPE(mii->mii_media_active) {
2766 case IFM_10_T:
2767 case IFM_100_TX:
2768 return;
2769 case IFM_1000_T:
2770 aneg++;
2771 default:
2772 break;
2773 }
2774 }
2775 vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_100T2CR, 0);
2776 vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_ANAR,
2777 ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
2778 vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2779 BMCR_AUTOEN | BMCR_STARTNEG);
2780 DELAY(1000);
2781 if (aneg != 0) {
2782 /* Poll link state until vge(4) get a 10/100 link. */
2783 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
2784 mii_pollstat(mii);
2785 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
2786 == (IFM_ACTIVE | IFM_AVALID)) {
2787 switch (IFM_SUBTYPE(mii->mii_media_active)) {
2788 case IFM_10_T:
2789 case IFM_100_TX:
2790 return;
2791 default:
2792 break;
2793 }
2794 }
2795 VGE_UNLOCK(sc);
2796 pause("vgelnk", hz);
2797 VGE_LOCK(sc);
2798 }
2799 if (i == MII_ANEGTICKS_GIGE)
2800 device_printf(sc->vge_dev, "establishing link failed, "
2801 "WOL may not work!");
2802 }
2803 /*
2804 * No link, force MAC to have 100Mbps, full-duplex link.
2805 * This is the last resort and may/may not work.
2806 */
2807 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
2808 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
2809}
2810
2811static void
2812vge_setwol(struct vge_softc *sc)
2813{
2814 struct ifnet *ifp;
2815 uint16_t pmstat;
2816 uint8_t val;
2817
2818 VGE_LOCK_ASSERT(sc);
2819
2820 if ((sc->vge_flags & VGE_FLAG_PMCAP) == 0) {
2821 /* No PME capability, PHY power down. */
2822 vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2823 BMCR_PDOWN);
2824 vge_miipoll_stop(sc);
2825 return;
2826 }
2827
2828 ifp = sc->vge_ifp;
2829
2830 /* Clear WOL on pattern match. */
2831 CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2832 /* Disable WOL on magic/unicast packet. */
2833 CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2834 CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2835 VGE_WOLCFG_PMEOVR);
2836 if ((ifp->if_capenable & IFCAP_WOL) != 0) {
2837 vge_setlinkspeed(sc);
2838 val = 0;
2839 if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2840 val |= VGE_WOLCR1_UCAST;
2841 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2842 val |= VGE_WOLCR1_MAGIC;
2843 CSR_WRITE_1(sc, VGE_WOLCR1S, val);
2844 val = 0;
2845 if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2846 val |= VGE_WOLCFG_SAM | VGE_WOLCFG_SAB;
2847 CSR_WRITE_1(sc, VGE_WOLCFGS, val | VGE_WOLCFG_PMEOVR);
2848 /* Disable MII auto-polling. */
2849 vge_miipoll_stop(sc);
2850 }
2851 CSR_SETBIT_1(sc, VGE_DIAGCTL,
2852 VGE_DIAGCTL_MACFORCE | VGE_DIAGCTL_FDXFORCE);
2853 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2854
2855 /* Clear WOL status on pattern match. */
2856 CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2857 CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2858
2859 val = CSR_READ_1(sc, VGE_PWRSTAT);
2860 val |= VGE_STICKHW_SWPTAG;
2861 CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2862 /* Put hardware into sleep. */
2863 val = CSR_READ_1(sc, VGE_PWRSTAT);
2864 val |= VGE_STICKHW_DS0 | VGE_STICKHW_DS1;
2865 CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2866 /* Request PME if WOL is requested. */
2867 pmstat = pci_read_config(sc->vge_dev, sc->vge_pmcap +
2868 PCIR_POWER_STATUS, 2);
2869 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2870 if ((ifp->if_capenable & IFCAP_WOL) != 0)
2871 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2872 pci_write_config(sc->vge_dev, sc->vge_pmcap + PCIR_POWER_STATUS,
2873 pmstat, 2);
2874}
2875
2876static void
2877vge_clrwol(struct vge_softc *sc)
2878{
2879 uint8_t val;
2880
2881 val = CSR_READ_1(sc, VGE_PWRSTAT);
2882 val &= ~VGE_STICKHW_SWPTAG;
2883 CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2884 /* Disable WOL and clear power state indicator. */
2885 val = CSR_READ_1(sc, VGE_PWRSTAT);
2886 val &= ~(VGE_STICKHW_DS0 | VGE_STICKHW_DS1);
2887 CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2888
2889 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2890 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2891
2892 /* Clear WOL on pattern match. */
2893 CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2894 /* Disable WOL on magic/unicast packet. */
2895 CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2896 CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2897 VGE_WOLCFG_PMEOVR);
2898 /* Clear WOL status on pattern match. */
2899 CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2900 CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2901}