Deleted Added
full compact
e1000_ich8lan.c (267935) e1000_ich8lan.c (286833)
1/******************************************************************************
2
1/******************************************************************************
2
3 Copyright (c) 2001-2014, Intel Corporation
3 Copyright (c) 2001-2015, Intel Corporation
4 All rights reserved.
5
6 Redistribution and use in source and binary forms, with or without
7 modification, are permitted provided that the following conditions are met:
8
9 1. Redistributions of source code must retain the above copyright notice,
10 this list of conditions and the following disclaimer.
11
12 2. Redistributions in binary form must reproduce the above copyright
13 notice, this list of conditions and the following disclaimer in the
14 documentation and/or other materials provided with the distribution.
15
16 3. Neither the name of the Intel Corporation nor the names of its
17 contributors may be used to endorse or promote products derived from
18 this software without specific prior written permission.
19
20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 POSSIBILITY OF SUCH DAMAGE.
31
32******************************************************************************/
4 All rights reserved.
5
6 Redistribution and use in source and binary forms, with or without
7 modification, are permitted provided that the following conditions are met:
8
9 1. Redistributions of source code must retain the above copyright notice,
10 this list of conditions and the following disclaimer.
11
12 2. Redistributions in binary form must reproduce the above copyright
13 notice, this list of conditions and the following disclaimer in the
14 documentation and/or other materials provided with the distribution.
15
16 3. Neither the name of the Intel Corporation nor the names of its
17 contributors may be used to endorse or promote products derived from
18 this software without specific prior written permission.
19
20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 POSSIBILITY OF SUCH DAMAGE.
31
32******************************************************************************/
33/*$FreeBSD: head/sys/dev/e1000/e1000_ich8lan.c 267935 2014-06-26 21:33:32Z jfv $*/
33/*$FreeBSD: head/sys/dev/e1000/e1000_ich8lan.c 286833 2015-08-16 20:13:58Z sbruno $*/
34
35/* 82562G 10/100 Network Connection
36 * 82562G-2 10/100 Network Connection
37 * 82562GT 10/100 Network Connection
38 * 82562GT-2 10/100 Network Connection
39 * 82562V 10/100 Network Connection
40 * 82562V-2 10/100 Network Connection
41 * 82566DC-2 Gigabit Network Connection
42 * 82566DC Gigabit Network Connection
43 * 82566DM-2 Gigabit Network Connection
44 * 82566DM Gigabit Network Connection
45 * 82566MC Gigabit Network Connection
46 * 82566MM Gigabit Network Connection
47 * 82567LM Gigabit Network Connection
48 * 82567LF Gigabit Network Connection
49 * 82567V Gigabit Network Connection
50 * 82567LM-2 Gigabit Network Connection
51 * 82567LF-2 Gigabit Network Connection
52 * 82567V-2 Gigabit Network Connection
53 * 82567LF-3 Gigabit Network Connection
54 * 82567LM-3 Gigabit Network Connection
55 * 82567LM-4 Gigabit Network Connection
56 * 82577LM Gigabit Network Connection
57 * 82577LC Gigabit Network Connection
58 * 82578DM Gigabit Network Connection
59 * 82578DC Gigabit Network Connection
60 * 82579LM Gigabit Network Connection
61 * 82579V Gigabit Network Connection
62 * Ethernet Connection I217-LM
63 * Ethernet Connection I217-V
64 * Ethernet Connection I218-V
65 * Ethernet Connection I218-LM
66 * Ethernet Connection (2) I218-LM
67 * Ethernet Connection (2) I218-V
68 * Ethernet Connection (3) I218-LM
69 * Ethernet Connection (3) I218-V
70 */
71
72#include "e1000_api.h"
73
74static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw);
75static void e1000_release_swflag_ich8lan(struct e1000_hw *hw);
76static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw);
77static void e1000_release_nvm_ich8lan(struct e1000_hw *hw);
78static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
79static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
80static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
81static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
82static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw);
83static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
84 u8 *mc_addr_list,
85 u32 mc_addr_count);
86static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw);
87static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw);
88static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
89static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw,
90 bool active);
91static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw,
92 bool active);
93static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
94 u16 words, u16 *data);
95static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
96 u16 words, u16 *data);
97static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw);
98static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw);
99static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw,
100 u16 *data);
101static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
102static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw);
103static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw);
104static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw);
105static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
106static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
107static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
108static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw,
109 u16 *speed, u16 *duplex);
110static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
111static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
112static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
113static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
114static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
115static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
116static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
117static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
118static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
119static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
120static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
121static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
122static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw,
123 u32 offset, u8 *data);
124static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
125 u8 size, u16 *data);
126static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw,
127 u32 offset, u16 *data);
128static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
129 u32 offset, u8 byte);
130static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
131static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
132static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw);
133static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
134static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
135static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
136static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr);
137
138/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
139/* Offset 04h HSFSTS */
140union ich8_hws_flash_status {
141 struct ich8_hsfsts {
142 u16 flcdone:1; /* bit 0 Flash Cycle Done */
143 u16 flcerr:1; /* bit 1 Flash Cycle Error */
144 u16 dael:1; /* bit 2 Direct Access error Log */
145 u16 berasesz:2; /* bit 4:3 Sector Erase Size */
146 u16 flcinprog:1; /* bit 5 flash cycle in Progress */
147 u16 reserved1:2; /* bit 13:6 Reserved */
148 u16 reserved2:6; /* bit 13:6 Reserved */
149 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
150 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
151 } hsf_status;
152 u16 regval;
153};
154
155/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
156/* Offset 06h FLCTL */
157union ich8_hws_flash_ctrl {
158 struct ich8_hsflctl {
159 u16 flcgo:1; /* 0 Flash Cycle Go */
160 u16 flcycle:2; /* 2:1 Flash Cycle */
161 u16 reserved:5; /* 7:3 Reserved */
162 u16 fldbcount:2; /* 9:8 Flash Data Byte Count */
163 u16 flockdn:6; /* 15:10 Reserved */
164 } hsf_ctrl;
165 u16 regval;
166};
167
168/* ICH Flash Region Access Permissions */
169union ich8_hws_flash_regacc {
170 struct ich8_flracc {
171 u32 grra:8; /* 0:7 GbE region Read Access */
172 u32 grwa:8; /* 8:15 GbE region Write Access */
173 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
174 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
175 } hsf_flregacc;
176 u16 regval;
177};
178
179/**
180 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
181 * @hw: pointer to the HW structure
182 *
183 * Test access to the PHY registers by reading the PHY ID registers. If
184 * the PHY ID is already known (e.g. resume path) compare it with known ID,
185 * otherwise assume the read PHY ID is correct if it is valid.
186 *
187 * Assumes the sw/fw/hw semaphore is already acquired.
188 **/
189static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
190{
191 u16 phy_reg = 0;
192 u32 phy_id = 0;
193 s32 ret_val = 0;
194 u16 retry_count;
195 u32 mac_reg = 0;
196
197 for (retry_count = 0; retry_count < 2; retry_count++) {
198 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_reg);
199 if (ret_val || (phy_reg == 0xFFFF))
200 continue;
201 phy_id = (u32)(phy_reg << 16);
202
203 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_reg);
204 if (ret_val || (phy_reg == 0xFFFF)) {
205 phy_id = 0;
206 continue;
207 }
208 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
209 break;
210 }
211
212 if (hw->phy.id) {
213 if (hw->phy.id == phy_id)
214 goto out;
215 } else if (phy_id) {
216 hw->phy.id = phy_id;
217 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
218 goto out;
219 }
220
221 /* In case the PHY needs to be in mdio slow mode,
222 * set slow mode and try to get the PHY id again.
223 */
224 if (hw->mac.type < e1000_pch_lpt) {
225 hw->phy.ops.release(hw);
226 ret_val = e1000_set_mdio_slow_mode_hv(hw);
227 if (!ret_val)
228 ret_val = e1000_get_phy_id(hw);
229 hw->phy.ops.acquire(hw);
230 }
231
232 if (ret_val)
233 return FALSE;
234out:
235 if (hw->mac.type == e1000_pch_lpt) {
236 /* Unforce SMBus mode in PHY */
237 hw->phy.ops.read_reg_locked(hw, CV_SMB_CTRL, &phy_reg);
238 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
239 hw->phy.ops.write_reg_locked(hw, CV_SMB_CTRL, phy_reg);
240
241 /* Unforce SMBus mode in MAC */
242 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
243 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
244 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
245 }
246
247 return TRUE;
248}
249
250/**
251 * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
252 * @hw: pointer to the HW structure
253 *
254 * Toggling the LANPHYPC pin value fully power-cycles the PHY and is
255 * used to reset the PHY to a quiescent state when necessary.
256 **/
257static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
258{
259 u32 mac_reg;
260
261 DEBUGFUNC("e1000_toggle_lanphypc_pch_lpt");
262
263 /* Set Phy Config Counter to 50msec */
264 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
265 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
266 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
267 E1000_WRITE_REG(hw, E1000_FEXTNVM3, mac_reg);
268
269 /* Toggle LANPHYPC Value bit */
270 mac_reg = E1000_READ_REG(hw, E1000_CTRL);
271 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
272 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
273 E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
274 E1000_WRITE_FLUSH(hw);
275 usec_delay(10);
276 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
277 E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
278 E1000_WRITE_FLUSH(hw);
279
280 if (hw->mac.type < e1000_pch_lpt) {
281 msec_delay(50);
282 } else {
283 u16 count = 20;
284
285 do {
286 msec_delay(5);
287 } while (!(E1000_READ_REG(hw, E1000_CTRL_EXT) &
288 E1000_CTRL_EXT_LPCD) && count--);
289
290 msec_delay(30);
291 }
292}
293
294/**
295 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
296 * @hw: pointer to the HW structure
297 *
298 * Workarounds/flow necessary for PHY initialization during driver load
299 * and resume paths.
300 **/
301static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
302{
303 u32 mac_reg, fwsm = E1000_READ_REG(hw, E1000_FWSM);
304 s32 ret_val;
305
306 DEBUGFUNC("e1000_init_phy_workarounds_pchlan");
307
308 /* Gate automatic PHY configuration by hardware on managed and
309 * non-managed 82579 and newer adapters.
310 */
311 e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
312
313 /* It is not possible to be certain of the current state of ULP
314 * so forcibly disable it.
315 */
316 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
317 e1000_disable_ulp_lpt_lp(hw, TRUE);
318
319 ret_val = hw->phy.ops.acquire(hw);
320 if (ret_val) {
321 DEBUGOUT("Failed to initialize PHY flow\n");
322 goto out;
323 }
324
325 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is
326 * inaccessible and resetting the PHY is not blocked, toggle the
327 * LANPHYPC Value bit to force the interconnect to PCIe mode.
328 */
329 switch (hw->mac.type) {
330 case e1000_pch_lpt:
331 if (e1000_phy_is_accessible_pchlan(hw))
332 break;
333
334 /* Before toggling LANPHYPC, see if PHY is accessible by
335 * forcing MAC to SMBus mode first.
336 */
337 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
338 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
339 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
340
341 /* Wait 50 milliseconds for MAC to finish any retries
342 * that it might be trying to perform from previous
343 * attempts to acknowledge any phy read requests.
344 */
345 msec_delay(50);
346
347 /* fall-through */
348 case e1000_pch2lan:
349 if (e1000_phy_is_accessible_pchlan(hw))
350 break;
351
352 /* fall-through */
353 case e1000_pchlan:
354 if ((hw->mac.type == e1000_pchlan) &&
355 (fwsm & E1000_ICH_FWSM_FW_VALID))
356 break;
357
358 if (hw->phy.ops.check_reset_block(hw)) {
359 DEBUGOUT("Required LANPHYPC toggle blocked by ME\n");
360 ret_val = -E1000_ERR_PHY;
361 break;
362 }
363
364 /* Toggle LANPHYPC Value bit */
365 e1000_toggle_lanphypc_pch_lpt(hw);
366 if (hw->mac.type >= e1000_pch_lpt) {
367 if (e1000_phy_is_accessible_pchlan(hw))
368 break;
369
370 /* Toggling LANPHYPC brings the PHY out of SMBus mode
371 * so ensure that the MAC is also out of SMBus mode
372 */
373 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
374 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
375 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
376
377 if (e1000_phy_is_accessible_pchlan(hw))
378 break;
379
380 ret_val = -E1000_ERR_PHY;
381 }
382 break;
383 default:
384 break;
385 }
386
387 hw->phy.ops.release(hw);
388 if (!ret_val) {
389
390 /* Check to see if able to reset PHY. Print error if not */
391 if (hw->phy.ops.check_reset_block(hw)) {
392 ERROR_REPORT("Reset blocked by ME\n");
393 goto out;
394 }
395
396 /* Reset the PHY before any access to it. Doing so, ensures
397 * that the PHY is in a known good state before we read/write
398 * PHY registers. The generic reset is sufficient here,
399 * because we haven't determined the PHY type yet.
400 */
401 ret_val = e1000_phy_hw_reset_generic(hw);
402 if (ret_val)
403 goto out;
404
405 /* On a successful reset, possibly need to wait for the PHY
406 * to quiesce to an accessible state before returning control
407 * to the calling function. If the PHY does not quiesce, then
408 * return E1000E_BLK_PHY_RESET, as this is the condition that
409 * the PHY is in.
410 */
411 ret_val = hw->phy.ops.check_reset_block(hw);
412 if (ret_val)
413 ERROR_REPORT("ME blocked access to PHY after reset\n");
414 }
415
416out:
417 /* Ungate automatic PHY configuration on non-managed 82579 */
418 if ((hw->mac.type == e1000_pch2lan) &&
419 !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
420 msec_delay(10);
421 e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
422 }
423
424 return ret_val;
425}
426
427/**
428 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
429 * @hw: pointer to the HW structure
430 *
431 * Initialize family-specific PHY parameters and function pointers.
432 **/
433static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
434{
435 struct e1000_phy_info *phy = &hw->phy;
436 s32 ret_val;
437
438 DEBUGFUNC("e1000_init_phy_params_pchlan");
439
440 phy->addr = 1;
441 phy->reset_delay_us = 100;
442
443 phy->ops.acquire = e1000_acquire_swflag_ich8lan;
444 phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
445 phy->ops.get_cfg_done = e1000_get_cfg_done_ich8lan;
446 phy->ops.set_page = e1000_set_page_igp;
447 phy->ops.read_reg = e1000_read_phy_reg_hv;
448 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
449 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
450 phy->ops.release = e1000_release_swflag_ich8lan;
451 phy->ops.reset = e1000_phy_hw_reset_ich8lan;
452 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
453 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
454 phy->ops.write_reg = e1000_write_phy_reg_hv;
455 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
456 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
457 phy->ops.power_up = e1000_power_up_phy_copper;
458 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
459 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
460
461 phy->id = e1000_phy_unknown;
462
463 ret_val = e1000_init_phy_workarounds_pchlan(hw);
464 if (ret_val)
465 return ret_val;
466
467 if (phy->id == e1000_phy_unknown)
468 switch (hw->mac.type) {
469 default:
470 ret_val = e1000_get_phy_id(hw);
471 if (ret_val)
472 return ret_val;
473 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
474 break;
475 /* fall-through */
476 case e1000_pch2lan:
477 case e1000_pch_lpt:
478 /* In case the PHY needs to be in mdio slow mode,
479 * set slow mode and try to get the PHY id again.
480 */
481 ret_val = e1000_set_mdio_slow_mode_hv(hw);
482 if (ret_val)
483 return ret_val;
484 ret_val = e1000_get_phy_id(hw);
485 if (ret_val)
486 return ret_val;
487 break;
488 }
489 phy->type = e1000_get_phy_type_from_id(phy->id);
490
491 switch (phy->type) {
492 case e1000_phy_82577:
493 case e1000_phy_82579:
494 case e1000_phy_i217:
495 phy->ops.check_polarity = e1000_check_polarity_82577;
496 phy->ops.force_speed_duplex =
497 e1000_phy_force_speed_duplex_82577;
498 phy->ops.get_cable_length = e1000_get_cable_length_82577;
499 phy->ops.get_info = e1000_get_phy_info_82577;
500 phy->ops.commit = e1000_phy_sw_reset_generic;
501 break;
502 case e1000_phy_82578:
503 phy->ops.check_polarity = e1000_check_polarity_m88;
504 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
505 phy->ops.get_cable_length = e1000_get_cable_length_m88;
506 phy->ops.get_info = e1000_get_phy_info_m88;
507 break;
508 default:
509 ret_val = -E1000_ERR_PHY;
510 break;
511 }
512
513 return ret_val;
514}
515
516/**
517 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
518 * @hw: pointer to the HW structure
519 *
520 * Initialize family-specific PHY parameters and function pointers.
521 **/
522static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
523{
524 struct e1000_phy_info *phy = &hw->phy;
525 s32 ret_val;
526 u16 i = 0;
527
528 DEBUGFUNC("e1000_init_phy_params_ich8lan");
529
530 phy->addr = 1;
531 phy->reset_delay_us = 100;
532
533 phy->ops.acquire = e1000_acquire_swflag_ich8lan;
534 phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
535 phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
536 phy->ops.get_cfg_done = e1000_get_cfg_done_ich8lan;
537 phy->ops.read_reg = e1000_read_phy_reg_igp;
538 phy->ops.release = e1000_release_swflag_ich8lan;
539 phy->ops.reset = e1000_phy_hw_reset_ich8lan;
540 phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan;
541 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan;
542 phy->ops.write_reg = e1000_write_phy_reg_igp;
543 phy->ops.power_up = e1000_power_up_phy_copper;
544 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
545
546 /* We may need to do this twice - once for IGP and if that fails,
547 * we'll set BM func pointers and try again
548 */
549 ret_val = e1000_determine_phy_address(hw);
550 if (ret_val) {
551 phy->ops.write_reg = e1000_write_phy_reg_bm;
552 phy->ops.read_reg = e1000_read_phy_reg_bm;
553 ret_val = e1000_determine_phy_address(hw);
554 if (ret_val) {
555 DEBUGOUT("Cannot determine PHY addr. Erroring out\n");
556 return ret_val;
557 }
558 }
559
560 phy->id = 0;
561 while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) &&
562 (i++ < 100)) {
563 msec_delay(1);
564 ret_val = e1000_get_phy_id(hw);
565 if (ret_val)
566 return ret_val;
567 }
568
569 /* Verify phy id */
570 switch (phy->id) {
571 case IGP03E1000_E_PHY_ID:
572 phy->type = e1000_phy_igp_3;
573 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
574 phy->ops.read_reg_locked = e1000_read_phy_reg_igp_locked;
575 phy->ops.write_reg_locked = e1000_write_phy_reg_igp_locked;
576 phy->ops.get_info = e1000_get_phy_info_igp;
577 phy->ops.check_polarity = e1000_check_polarity_igp;
578 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
579 break;
580 case IFE_E_PHY_ID:
581 case IFE_PLUS_E_PHY_ID:
582 case IFE_C_E_PHY_ID:
583 phy->type = e1000_phy_ife;
584 phy->autoneg_mask = E1000_ALL_NOT_GIG;
585 phy->ops.get_info = e1000_get_phy_info_ife;
586 phy->ops.check_polarity = e1000_check_polarity_ife;
587 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
588 break;
589 case BME1000_E_PHY_ID:
590 phy->type = e1000_phy_bm;
591 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
592 phy->ops.read_reg = e1000_read_phy_reg_bm;
593 phy->ops.write_reg = e1000_write_phy_reg_bm;
594 phy->ops.commit = e1000_phy_sw_reset_generic;
595 phy->ops.get_info = e1000_get_phy_info_m88;
596 phy->ops.check_polarity = e1000_check_polarity_m88;
597 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
598 break;
599 default:
600 return -E1000_ERR_PHY;
601 break;
602 }
603
604 return E1000_SUCCESS;
605}
606
607/**
608 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
609 * @hw: pointer to the HW structure
610 *
611 * Initialize family-specific NVM parameters and function
612 * pointers.
613 **/
614static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
615{
616 struct e1000_nvm_info *nvm = &hw->nvm;
617 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
618 u32 gfpreg, sector_base_addr, sector_end_addr;
619 u16 i;
620
621 DEBUGFUNC("e1000_init_nvm_params_ich8lan");
622
623 /* Can't read flash registers if the register set isn't mapped. */
624 nvm->type = e1000_nvm_flash_sw;
625 if (!hw->flash_address) {
626 DEBUGOUT("ERROR: Flash registers not mapped\n");
627 return -E1000_ERR_CONFIG;
628 }
629
630 gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG);
631
632 /* sector_X_addr is a "sector"-aligned address (4096 bytes)
633 * Add 1 to sector_end_addr since this sector is included in
634 * the overall size.
635 */
636 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
637 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
638
639 /* flash_base_addr is byte-aligned */
640 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
641
642 /* find total size of the NVM, then cut in half since the total
643 * size represents two separate NVM banks.
644 */
645 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
646 << FLASH_SECTOR_ADDR_SHIFT);
647 nvm->flash_bank_size /= 2;
648 /* Adjust to word count */
649 nvm->flash_bank_size /= sizeof(u16);
650
651 nvm->word_size = E1000_SHADOW_RAM_WORDS;
652
653 /* Clear shadow ram */
654 for (i = 0; i < nvm->word_size; i++) {
655 dev_spec->shadow_ram[i].modified = FALSE;
656 dev_spec->shadow_ram[i].value = 0xFFFF;
657 }
658
659 E1000_MUTEX_INIT(&dev_spec->nvm_mutex);
660 E1000_MUTEX_INIT(&dev_spec->swflag_mutex);
661
662 /* Function Pointers */
663 nvm->ops.acquire = e1000_acquire_nvm_ich8lan;
664 nvm->ops.release = e1000_release_nvm_ich8lan;
665 nvm->ops.read = e1000_read_nvm_ich8lan;
666 nvm->ops.update = e1000_update_nvm_checksum_ich8lan;
667 nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan;
668 nvm->ops.validate = e1000_validate_nvm_checksum_ich8lan;
669 nvm->ops.write = e1000_write_nvm_ich8lan;
670
671 return E1000_SUCCESS;
672}
673
674/**
675 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
676 * @hw: pointer to the HW structure
677 *
678 * Initialize family-specific MAC parameters and function
679 * pointers.
680 **/
681static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
682{
683 struct e1000_mac_info *mac = &hw->mac;
684#if defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT)
685 u16 pci_cfg;
686#endif /* QV_RELEASE || !defined(NO_PCH_LPT_B0_SUPPORT) */
687
688 DEBUGFUNC("e1000_init_mac_params_ich8lan");
689
690 /* Set media type function pointer */
691 hw->phy.media_type = e1000_media_type_copper;
692
693 /* Set mta register count */
694 mac->mta_reg_count = 32;
695 /* Set rar entry count */
696 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
697 if (mac->type == e1000_ich8lan)
698 mac->rar_entry_count--;
699 /* Set if part includes ASF firmware */
700 mac->asf_firmware_present = TRUE;
701 /* FWSM register */
702 mac->has_fwsm = TRUE;
703 /* ARC subsystem not supported */
704 mac->arc_subsystem_valid = FALSE;
705 /* Adaptive IFS supported */
706 mac->adaptive_ifs = TRUE;
707
708 /* Function pointers */
709
710 /* bus type/speed/width */
711 mac->ops.get_bus_info = e1000_get_bus_info_ich8lan;
712 /* function id */
713 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
714 /* reset */
715 mac->ops.reset_hw = e1000_reset_hw_ich8lan;
716 /* hw initialization */
717 mac->ops.init_hw = e1000_init_hw_ich8lan;
718 /* link setup */
719 mac->ops.setup_link = e1000_setup_link_ich8lan;
720 /* physical interface setup */
721 mac->ops.setup_physical_interface = e1000_setup_copper_link_ich8lan;
722 /* check for link */
723 mac->ops.check_for_link = e1000_check_for_copper_link_ich8lan;
724 /* link info */
725 mac->ops.get_link_up_info = e1000_get_link_up_info_ich8lan;
726 /* multicast address update */
727 mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
728 /* clear hardware counters */
729 mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan;
730
731 /* LED and other operations */
732 switch (mac->type) {
733 case e1000_ich8lan:
734 case e1000_ich9lan:
735 case e1000_ich10lan:
736 /* check management mode */
737 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
738 /* ID LED init */
739 mac->ops.id_led_init = e1000_id_led_init_generic;
740 /* blink LED */
741 mac->ops.blink_led = e1000_blink_led_generic;
742 /* setup LED */
743 mac->ops.setup_led = e1000_setup_led_generic;
744 /* cleanup LED */
745 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
746 /* turn on/off LED */
747 mac->ops.led_on = e1000_led_on_ich8lan;
748 mac->ops.led_off = e1000_led_off_ich8lan;
749 break;
750 case e1000_pch2lan:
751 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
752 mac->ops.rar_set = e1000_rar_set_pch2lan;
753 /* fall-through */
754 case e1000_pch_lpt:
755 /* multicast address update for pch2 */
756 mac->ops.update_mc_addr_list =
757 e1000_update_mc_addr_list_pch2lan;
758 case e1000_pchlan:
759#if defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT)
760 /* save PCH revision_id */
761 e1000_read_pci_cfg(hw, E1000_PCI_REVISION_ID_REG, &pci_cfg);
762 hw->revision_id = (u8)(pci_cfg &= 0x000F);
763#endif /* QV_RELEASE || !defined(NO_PCH_LPT_B0_SUPPORT) */
764 /* check management mode */
765 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
766 /* ID LED init */
767 mac->ops.id_led_init = e1000_id_led_init_pchlan;
768 /* setup LED */
769 mac->ops.setup_led = e1000_setup_led_pchlan;
770 /* cleanup LED */
771 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
772 /* turn on/off LED */
773 mac->ops.led_on = e1000_led_on_pchlan;
774 mac->ops.led_off = e1000_led_off_pchlan;
775 break;
776 default:
777 break;
778 }
779
780 if (mac->type == e1000_pch_lpt) {
781 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
782 mac->ops.rar_set = e1000_rar_set_pch_lpt;
783 mac->ops.setup_physical_interface = e1000_setup_copper_link_pch_lpt;
784 mac->ops.set_obff_timer = e1000_set_obff_timer_pch_lpt;
785 }
786
787 /* Enable PCS Lock-loss workaround for ICH8 */
788 if (mac->type == e1000_ich8lan)
789 e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, TRUE);
790
791 return E1000_SUCCESS;
792}
793
794/**
795 * __e1000_access_emi_reg_locked - Read/write EMI register
796 * @hw: pointer to the HW structure
797 * @addr: EMI address to program
798 * @data: pointer to value to read/write from/to the EMI address
799 * @read: boolean flag to indicate read or write
800 *
801 * This helper function assumes the SW/FW/HW Semaphore is already acquired.
802 **/
803static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
804 u16 *data, bool read)
805{
806 s32 ret_val;
807
808 DEBUGFUNC("__e1000_access_emi_reg_locked");
809
810 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, address);
811 if (ret_val)
812 return ret_val;
813
814 if (read)
815 ret_val = hw->phy.ops.read_reg_locked(hw, I82579_EMI_DATA,
816 data);
817 else
818 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
819 *data);
820
821 return ret_val;
822}
823
824/**
825 * e1000_read_emi_reg_locked - Read Extended Management Interface register
826 * @hw: pointer to the HW structure
827 * @addr: EMI address to program
828 * @data: value to be read from the EMI address
829 *
830 * Assumes the SW/FW/HW Semaphore is already acquired.
831 **/
832s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
833{
834 DEBUGFUNC("e1000_read_emi_reg_locked");
835
836 return __e1000_access_emi_reg_locked(hw, addr, data, TRUE);
837}
838
839/**
840 * e1000_write_emi_reg_locked - Write Extended Management Interface register
841 * @hw: pointer to the HW structure
842 * @addr: EMI address to program
843 * @data: value to be written to the EMI address
844 *
845 * Assumes the SW/FW/HW Semaphore is already acquired.
846 **/
847s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
848{
849 DEBUGFUNC("e1000_read_emi_reg_locked");
850
851 return __e1000_access_emi_reg_locked(hw, addr, &data, FALSE);
852}
853
854/**
855 * e1000_set_eee_pchlan - Enable/disable EEE support
856 * @hw: pointer to the HW structure
857 *
858 * Enable/disable EEE based on setting in dev_spec structure, the duplex of
859 * the link and the EEE capabilities of the link partner. The LPI Control
860 * register bits will remain set only if/when link is up.
861 *
862 * EEE LPI must not be asserted earlier than one second after link is up.
863 * On 82579, EEE LPI should not be enabled until such time otherwise there
864 * can be link issues with some switches. Other devices can have EEE LPI
865 * enabled immediately upon link up since they have a timer in hardware which
866 * prevents LPI from being asserted too early.
867 **/
868s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
869{
870 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
871 s32 ret_val;
872 u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
873
874 DEBUGFUNC("e1000_set_eee_pchlan");
875
876 switch (hw->phy.type) {
877 case e1000_phy_82579:
878 lpa = I82579_EEE_LP_ABILITY;
879 pcs_status = I82579_EEE_PCS_STATUS;
880 adv_addr = I82579_EEE_ADVERTISEMENT;
881 break;
882 case e1000_phy_i217:
883 lpa = I217_EEE_LP_ABILITY;
884 pcs_status = I217_EEE_PCS_STATUS;
885 adv_addr = I217_EEE_ADVERTISEMENT;
886 break;
887 default:
888 return E1000_SUCCESS;
889 }
890
891 ret_val = hw->phy.ops.acquire(hw);
892 if (ret_val)
893 return ret_val;
894
895 ret_val = hw->phy.ops.read_reg_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
896 if (ret_val)
897 goto release;
898
899 /* Clear bits that enable EEE in various speeds */
900 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
901
902 /* Enable EEE if not disabled by user */
903 if (!dev_spec->eee_disable) {
904 /* Save off link partner's EEE ability */
905 ret_val = e1000_read_emi_reg_locked(hw, lpa,
906 &dev_spec->eee_lp_ability);
907 if (ret_val)
908 goto release;
909
910 /* Read EEE advertisement */
911 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
912 if (ret_val)
913 goto release;
914
915 /* Enable EEE only for speeds in which the link partner is
916 * EEE capable and for which we advertise EEE.
917 */
918 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
919 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
920
921 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
922 hw->phy.ops.read_reg_locked(hw, PHY_LP_ABILITY, &data);
923 if (data & NWAY_LPAR_100TX_FD_CAPS)
924 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
925 else
926 /* EEE is not supported in 100Half, so ignore
927 * partner's EEE in 100 ability if full-duplex
928 * is not advertised.
929 */
930 dev_spec->eee_lp_ability &=
931 ~I82579_EEE_100_SUPPORTED;
932 }
933 }
934
935 if (hw->phy.type == e1000_phy_82579) {
936 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
937 &data);
938 if (ret_val)
939 goto release;
940
941 data &= ~I82579_LPI_100_PLL_SHUT;
942 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
943 data);
944 }
945
946 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
947 ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
948 if (ret_val)
949 goto release;
950
951 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
952release:
953 hw->phy.ops.release(hw);
954
955 return ret_val;
956}
957
958/**
959 * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
960 * @hw: pointer to the HW structure
961 * @link: link up bool flag
962 *
963 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
964 * preventing further DMA write requests. Workaround the issue by disabling
965 * the de-assertion of the clock request when in 1Gpbs mode.
966 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
967 * speeds in order to avoid Tx hangs.
968 **/
969static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
970{
971 u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
972 u32 status = E1000_READ_REG(hw, E1000_STATUS);
973 s32 ret_val = E1000_SUCCESS;
974 u16 reg;
975
976 if (link && (status & E1000_STATUS_SPEED_1000)) {
977 ret_val = hw->phy.ops.acquire(hw);
978 if (ret_val)
979 return ret_val;
980
981 ret_val =
982 e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
983 &reg);
984 if (ret_val)
985 goto release;
986
987 ret_val =
988 e1000_write_kmrn_reg_locked(hw,
989 E1000_KMRNCTRLSTA_K1_CONFIG,
990 reg &
991 ~E1000_KMRNCTRLSTA_K1_ENABLE);
992 if (ret_val)
993 goto release;
994
995 usec_delay(10);
996
997 E1000_WRITE_REG(hw, E1000_FEXTNVM6,
998 fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
999
1000 ret_val =
1001 e1000_write_kmrn_reg_locked(hw,
1002 E1000_KMRNCTRLSTA_K1_CONFIG,
1003 reg);
1004release:
1005 hw->phy.ops.release(hw);
1006 } else {
1007 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
1008 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
1009
1010 if (!link || ((status & E1000_STATUS_SPEED_100) &&
1011 (status & E1000_STATUS_FD)))
1012 goto update_fextnvm6;
1013
1014 ret_val = hw->phy.ops.read_reg(hw, I217_INBAND_CTRL, &reg);
1015 if (ret_val)
1016 return ret_val;
1017
1018 /* Clear link status transmit timeout */
1019 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
1020
1021 if (status & E1000_STATUS_SPEED_100) {
1022 /* Set inband Tx timeout to 5x10us for 100Half */
1023 reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1024
1025 /* Do not extend the K1 entry latency for 100Half */
1026 fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1027 } else {
1028 /* Set inband Tx timeout to 50x10us for 10Full/Half */
1029 reg |= 50 <<
1030 I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1031
1032 /* Extend the K1 entry latency for 10 Mbps */
1033 fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1034 }
1035
1036 ret_val = hw->phy.ops.write_reg(hw, I217_INBAND_CTRL, reg);
1037 if (ret_val)
1038 return ret_val;
1039
1040update_fextnvm6:
1041 E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1042 }
1043
1044 return ret_val;
1045}
1046
1047static u64 e1000_ltr2ns(u16 ltr)
1048{
1049 u32 value, scale;
1050
1051 /* Determine the latency in nsec based on the LTR value & scale */
1052 value = ltr & E1000_LTRV_VALUE_MASK;
1053 scale = (ltr & E1000_LTRV_SCALE_MASK) >> E1000_LTRV_SCALE_SHIFT;
1054
1055 return value * (1 << (scale * E1000_LTRV_SCALE_FACTOR));
1056}
1057
1058/**
1059 * e1000_platform_pm_pch_lpt - Set platform power management values
1060 * @hw: pointer to the HW structure
1061 * @link: bool indicating link status
1062 *
1063 * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1064 * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1065 * when link is up (which must not exceed the maximum latency supported
1066 * by the platform), otherwise specify there is no LTR requirement.
1067 * Unlike TRUE-PCIe devices which set the LTR maximum snoop/no-snoop
1068 * latencies in the LTR Extended Capability Structure in the PCIe Extended
1069 * Capability register set, on this device LTR is set by writing the
1070 * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1071 * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1072 * message to the PMC.
1073 *
1074 * Use the LTR value to calculate the Optimized Buffer Flush/Fill (OBFF)
1075 * high-water mark.
1076 **/
1077static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1078{
1079 u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1080 link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1081 u16 lat_enc = 0; /* latency encoded */
1082 s32 obff_hwm = 0;
1083
1084 DEBUGFUNC("e1000_platform_pm_pch_lpt");
1085
1086 if (link) {
1087 u16 speed, duplex, scale = 0;
1088 u16 max_snoop, max_nosnoop;
1089 u16 max_ltr_enc; /* max LTR latency encoded */
1090 s64 lat_ns; /* latency (ns) */
1091 s64 value;
1092 u32 rxa;
1093
1094 if (!hw->mac.max_frame_size) {
1095 DEBUGOUT("max_frame_size not set.\n");
1096 return -E1000_ERR_CONFIG;
1097 }
1098
1099 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1100 if (!speed) {
1101 DEBUGOUT("Speed not set.\n");
1102 return -E1000_ERR_CONFIG;
1103 }
1104
1105 /* Rx Packet Buffer Allocation size (KB) */
1106 rxa = E1000_READ_REG(hw, E1000_PBA) & E1000_PBA_RXA_MASK;
1107
1108 /* Determine the maximum latency tolerated by the device.
1109 *
1110 * Per the PCIe spec, the tolerated latencies are encoded as
1111 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1112 * a 10-bit value (0-1023) to provide a range from 1 ns to
1113 * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns,
1114 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1115 */
1116 lat_ns = ((s64)rxa * 1024 -
1117 (2 * (s64)hw->mac.max_frame_size)) * 8 * 1000;
1118 if (lat_ns < 0)
1119 lat_ns = 0;
1120 else
1121 lat_ns /= speed;
1122
1123 value = lat_ns;
1124 while (value > E1000_LTRV_VALUE_MASK) {
1125 scale++;
1126 value = E1000_DIVIDE_ROUND_UP(value, (1 << 5));
1127 }
1128 if (scale > E1000_LTRV_SCALE_MAX) {
1129 DEBUGOUT1("Invalid LTR latency scale %d\n", scale);
1130 return -E1000_ERR_CONFIG;
1131 }
1132 lat_enc = (u16)((scale << E1000_LTRV_SCALE_SHIFT) | value);
1133
1134 /* Determine the maximum latency tolerated by the platform */
1135 e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT, &max_snoop);
1136 e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1137 max_ltr_enc = E1000_MAX(max_snoop, max_nosnoop);
1138
1139 if (lat_enc > max_ltr_enc) {
1140 lat_enc = max_ltr_enc;
1141 lat_ns = e1000_ltr2ns(max_ltr_enc);
1142 }
1143
1144 if (lat_ns) {
1145 lat_ns *= speed * 1000;
1146 lat_ns /= 8;
1147 lat_ns /= 1000000000;
1148 obff_hwm = (s32)(rxa - lat_ns);
1149 }
1150 if ((obff_hwm < 0) || (obff_hwm > E1000_SVT_OFF_HWM_MASK)) {
1151 DEBUGOUT1("Invalid high water mark %d\n", obff_hwm);
1152 return -E1000_ERR_CONFIG;
1153 }
1154 }
1155
1156 /* Set Snoop and No-Snoop latencies the same */
1157 reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1158 E1000_WRITE_REG(hw, E1000_LTRV, reg);
1159
1160 /* Set OBFF high water mark */
1161 reg = E1000_READ_REG(hw, E1000_SVT) & ~E1000_SVT_OFF_HWM_MASK;
1162 reg |= obff_hwm;
1163 E1000_WRITE_REG(hw, E1000_SVT, reg);
1164
1165 /* Enable OBFF */
1166 reg = E1000_READ_REG(hw, E1000_SVCR);
1167 reg |= E1000_SVCR_OFF_EN;
1168 /* Always unblock interrupts to the CPU even when the system is
1169 * in OBFF mode. This ensures that small round-robin traffic
1170 * (like ping) does not get dropped or experience long latency.
1171 */
1172 reg |= E1000_SVCR_OFF_MASKINT;
1173 E1000_WRITE_REG(hw, E1000_SVCR, reg);
1174
1175 return E1000_SUCCESS;
1176}
1177
1178/**
1179 * e1000_set_obff_timer_pch_lpt - Update Optimized Buffer Flush/Fill timer
1180 * @hw: pointer to the HW structure
1181 * @itr: interrupt throttling rate
1182 *
1183 * Configure OBFF with the updated interrupt rate.
1184 **/
1185static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr)
1186{
1187 u32 svcr;
1188 s32 timer;
1189
1190 DEBUGFUNC("e1000_set_obff_timer_pch_lpt");
1191
1192 /* Convert ITR value into microseconds for OBFF timer */
1193 timer = itr & E1000_ITR_MASK;
1194 timer = (timer * E1000_ITR_MULT) / 1000;
1195
1196 if ((timer < 0) || (timer > E1000_ITR_MASK)) {
1197 DEBUGOUT1("Invalid OBFF timer %d\n", timer);
1198 return -E1000_ERR_CONFIG;
1199 }
1200
1201 svcr = E1000_READ_REG(hw, E1000_SVCR);
1202 svcr &= ~E1000_SVCR_OFF_TIMER_MASK;
1203 svcr |= timer << E1000_SVCR_OFF_TIMER_SHIFT;
1204 E1000_WRITE_REG(hw, E1000_SVCR, svcr);
1205
1206 return E1000_SUCCESS;
1207}
1208
1209/**
1210 * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1211 * @hw: pointer to the HW structure
1212 * @to_sx: boolean indicating a system power state transition to Sx
1213 *
1214 * When link is down, configure ULP mode to significantly reduce the power
1215 * to the PHY. If on a Manageability Engine (ME) enabled system, tell the
1216 * ME firmware to start the ULP configuration. If not on an ME enabled
1217 * system, configure the ULP mode by software.
1218 */
1219s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1220{
1221 u32 mac_reg;
1222 s32 ret_val = E1000_SUCCESS;
1223 u16 phy_reg;
1224
1225 if ((hw->mac.type < e1000_pch_lpt) ||
1226 (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1227 (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1228 (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1229 (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1230 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1231 return 0;
1232
1233 if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1234 /* Request ME configure ULP mode in the PHY */
1235 mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1236 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1237 E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1238
1239 goto out;
1240 }
1241
1242 if (!to_sx) {
1243 int i = 0;
1244
1245 /* Poll up to 5 seconds for Cable Disconnected indication */
1246 while (!(E1000_READ_REG(hw, E1000_FEXT) &
1247 E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1248 /* Bail if link is re-acquired */
1249 if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)
1250 return -E1000_ERR_PHY;
1251
1252 if (i++ == 100)
1253 break;
1254
1255 msec_delay(50);
1256 }
1257 DEBUGOUT2("CABLE_DISCONNECTED %s set after %dmsec\n",
1258 (E1000_READ_REG(hw, E1000_FEXT) &
1259 E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not",
1260 i * 50);
1261 }
1262
1263 ret_val = hw->phy.ops.acquire(hw);
1264 if (ret_val)
1265 goto out;
1266
1267 /* Force SMBus mode in PHY */
1268 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1269 if (ret_val)
1270 goto release;
1271 phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1272 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1273
1274 /* Force SMBus mode in MAC */
1275 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1276 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1277 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1278
1279 /* Set Inband ULP Exit, Reset to SMBus mode and
1280 * Disable SMBus Release on PERST# in PHY
1281 */
1282 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1283 if (ret_val)
1284 goto release;
1285 phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1286 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1287 if (to_sx) {
1288 if (E1000_READ_REG(hw, E1000_WUFC) & E1000_WUFC_LNKC)
1289 phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1290
1291 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1292 } else {
1293 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1294 }
1295 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1296
1297 /* Set Disable SMBus Release on PERST# in MAC */
1298 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1299 mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1300 E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1301
1302 /* Commit ULP changes in PHY by starting auto ULP configuration */
1303 phy_reg |= I218_ULP_CONFIG1_START;
1304 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1305release:
1306 hw->phy.ops.release(hw);
1307out:
1308 if (ret_val)
1309 DEBUGOUT1("Error in ULP enable flow: %d\n", ret_val);
1310 else
1311 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1312
1313 return ret_val;
1314}
1315
1316/**
1317 * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1318 * @hw: pointer to the HW structure
1319 * @force: boolean indicating whether or not to force disabling ULP
1320 *
1321 * Un-configure ULP mode when link is up, the system is transitioned from
1322 * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled
1323 * system, poll for an indication from ME that ULP has been un-configured.
1324 * If not on an ME enabled system, un-configure the ULP mode by software.
1325 *
1326 * During nominal operation, this function is called when link is acquired
1327 * to disable ULP mode (force=FALSE); otherwise, for example when unloading
1328 * the driver or during Sx->S0 transitions, this is called with force=TRUE
1329 * to forcibly disable ULP.
1330 */
1331s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1332{
1333 s32 ret_val = E1000_SUCCESS;
1334 u32 mac_reg;
1335 u16 phy_reg;
1336 int i = 0;
1337
1338 if ((hw->mac.type < e1000_pch_lpt) ||
1339 (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1340 (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1341 (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1342 (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1343 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1344 return 0;
1345
1346 if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1347 if (force) {
1348 /* Request ME un-configure ULP mode in the PHY */
1349 mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1350 mac_reg &= ~E1000_H2ME_ULP;
1351 mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1352 E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1353 }
1354
1355 /* Poll up to 100msec for ME to clear ULP_CFG_DONE */
1356 while (E1000_READ_REG(hw, E1000_FWSM) &
1357 E1000_FWSM_ULP_CFG_DONE) {
1358 if (i++ == 10) {
1359 ret_val = -E1000_ERR_PHY;
1360 goto out;
1361 }
1362
1363 msec_delay(10);
1364 }
1365 DEBUGOUT1("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1366
1367 if (force) {
1368 mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1369 mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1370 E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1371 } else {
1372 /* Clear H2ME.ULP after ME ULP configuration */
1373 mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1374 mac_reg &= ~E1000_H2ME_ULP;
1375 E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1376 }
1377
1378 goto out;
1379 }
1380
1381 ret_val = hw->phy.ops.acquire(hw);
1382 if (ret_val)
1383 goto out;
1384
1385 if (force)
1386 /* Toggle LANPHYPC Value bit */
1387 e1000_toggle_lanphypc_pch_lpt(hw);
1388
1389 /* Unforce SMBus mode in PHY */
1390 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1391 if (ret_val) {
1392 /* The MAC might be in PCIe mode, so temporarily force to
1393 * SMBus mode in order to access the PHY.
1394 */
1395 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1396 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1397 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1398
1399 msec_delay(50);
1400
1401 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1402 &phy_reg);
1403 if (ret_val)
1404 goto release;
1405 }
1406 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1407 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1408
1409 /* Unforce SMBus mode in MAC */
1410 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1411 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1412 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1413
1414 /* When ULP mode was previously entered, K1 was disabled by the
1415 * hardware. Re-Enable K1 in the PHY when exiting ULP.
1416 */
1417 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1418 if (ret_val)
1419 goto release;
1420 phy_reg |= HV_PM_CTRL_K1_ENABLE;
1421 e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1422
1423 /* Clear ULP enabled configuration */
1424 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1425 if (ret_val)
1426 goto release;
1427 phy_reg &= ~(I218_ULP_CONFIG1_IND |
1428 I218_ULP_CONFIG1_STICKY_ULP |
1429 I218_ULP_CONFIG1_RESET_TO_SMBUS |
1430 I218_ULP_CONFIG1_WOL_HOST |
1431 I218_ULP_CONFIG1_INBAND_EXIT |
1432 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1433 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1434
1435 /* Commit ULP changes by starting auto ULP configuration */
1436 phy_reg |= I218_ULP_CONFIG1_START;
1437 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1438
1439 /* Clear Disable SMBus Release on PERST# in MAC */
1440 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1441 mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1442 E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1443
1444release:
1445 hw->phy.ops.release(hw);
1446 if (force) {
1447 hw->phy.ops.reset(hw);
1448 msec_delay(50);
1449 }
1450out:
1451 if (ret_val)
1452 DEBUGOUT1("Error in ULP disable flow: %d\n", ret_val);
1453 else
1454 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1455
1456 return ret_val;
1457}
1458
1459/**
1460 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1461 * @hw: pointer to the HW structure
1462 *
1463 * Checks to see of the link status of the hardware has changed. If a
1464 * change in link status has been detected, then we read the PHY registers
1465 * to get the current speed/duplex if link exists.
1466 **/
1467static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1468{
1469 struct e1000_mac_info *mac = &hw->mac;
1470 s32 ret_val;
1471 bool link;
1472 u16 phy_reg;
1473
1474 DEBUGFUNC("e1000_check_for_copper_link_ich8lan");
1475
1476 /* We only want to go out to the PHY registers to see if Auto-Neg
1477 * has completed and/or if our link status has changed. The
1478 * get_link_status flag is set upon receiving a Link Status
1479 * Change or Rx Sequence Error interrupt.
1480 */
1481 if (!mac->get_link_status)
1482 return E1000_SUCCESS;
1483
1484 /* First we want to see if the MII Status Register reports
1485 * link. If so, then we want to get the current speed/duplex
1486 * of the PHY.
1487 */
1488 ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
1489 if (ret_val)
1490 return ret_val;
1491
1492 if (hw->mac.type == e1000_pchlan) {
1493 ret_val = e1000_k1_gig_workaround_hv(hw, link);
1494 if (ret_val)
1495 return ret_val;
1496 }
1497
1498 /* When connected at 10Mbps half-duplex, some parts are excessively
1499 * aggressive resulting in many collisions. To avoid this, increase
1500 * the IPG and reduce Rx latency in the PHY.
1501 */
1502 if (((hw->mac.type == e1000_pch2lan) ||
1503 (hw->mac.type == e1000_pch_lpt)) && link) {
1504 u32 reg;
1505 reg = E1000_READ_REG(hw, E1000_STATUS);
1506 if (!(reg & (E1000_STATUS_FD | E1000_STATUS_SPEED_MASK))) {
1507 u16 emi_addr;
1508
1509 reg = E1000_READ_REG(hw, E1000_TIPG);
1510 reg &= ~E1000_TIPG_IPGT_MASK;
1511 reg |= 0xFF;
1512 E1000_WRITE_REG(hw, E1000_TIPG, reg);
1513
1514 /* Reduce Rx latency in analog PHY */
1515 ret_val = hw->phy.ops.acquire(hw);
1516 if (ret_val)
1517 return ret_val;
1518
1519 if (hw->mac.type == e1000_pch2lan)
1520 emi_addr = I82579_RX_CONFIG;
1521 else
1522 emi_addr = I217_RX_CONFIG;
1523 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, 0);
1524
1525 hw->phy.ops.release(hw);
1526
1527 if (ret_val)
1528 return ret_val;
1529 }
1530 }
1531
1532 /* Work-around I218 hang issue */
1533 if ((hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1534 (hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1535 (hw->device_id == E1000_DEV_ID_PCH_I218_LM3) ||
1536 (hw->device_id == E1000_DEV_ID_PCH_I218_V3)) {
1537 ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1538 if (ret_val)
1539 return ret_val;
1540 }
1541 if (hw->mac.type == e1000_pch_lpt) {
1542 /* Set platform power management values for
1543 * Latency Tolerance Reporting (LTR)
1544 * Optimized Buffer Flush/Fill (OBFF)
1545 */
1546 ret_val = e1000_platform_pm_pch_lpt(hw, link);
1547 if (ret_val)
1548 return ret_val;
1549 }
1550
1551 /* Clear link partner's EEE ability */
1552 hw->dev_spec.ich8lan.eee_lp_ability = 0;
1553
1554 if (!link)
1555 return E1000_SUCCESS; /* No link detected */
1556
1557 mac->get_link_status = FALSE;
1558
1559 switch (hw->mac.type) {
1560 case e1000_pch2lan:
1561 ret_val = e1000_k1_workaround_lv(hw);
1562 if (ret_val)
1563 return ret_val;
1564 /* fall-thru */
1565 case e1000_pchlan:
1566 if (hw->phy.type == e1000_phy_82578) {
1567 ret_val = e1000_link_stall_workaround_hv(hw);
1568 if (ret_val)
1569 return ret_val;
1570 }
1571
1572 /* Workaround for PCHx parts in half-duplex:
1573 * Set the number of preambles removed from the packet
1574 * when it is passed from the PHY to the MAC to prevent
1575 * the MAC from misinterpreting the packet type.
1576 */
1577 hw->phy.ops.read_reg(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1578 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1579
1580 if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FD) !=
1581 E1000_STATUS_FD)
1582 phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1583
1584 hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1585 break;
1586 default:
1587 break;
1588 }
1589
1590 /* Check if there was DownShift, must be checked
1591 * immediately after link-up
1592 */
1593 e1000_check_downshift_generic(hw);
1594
1595 /* Enable/Disable EEE after link up */
1596 if (hw->phy.type > e1000_phy_82579) {
1597 ret_val = e1000_set_eee_pchlan(hw);
1598 if (ret_val)
1599 return ret_val;
1600 }
1601
1602 /* If we are forcing speed/duplex, then we simply return since
1603 * we have already determined whether we have link or not.
1604 */
1605 if (!mac->autoneg)
1606 return -E1000_ERR_CONFIG;
1607
1608 /* Auto-Neg is enabled. Auto Speed Detection takes care
1609 * of MAC speed/duplex configuration. So we only need to
1610 * configure Collision Distance in the MAC.
1611 */
1612 mac->ops.config_collision_dist(hw);
1613
1614 /* Configure Flow Control now that Auto-Neg has completed.
1615 * First, we need to restore the desired flow control
1616 * settings because we may have had to re-autoneg with a
1617 * different link partner.
1618 */
1619 ret_val = e1000_config_fc_after_link_up_generic(hw);
1620 if (ret_val)
1621 DEBUGOUT("Error configuring flow control\n");
1622
1623 return ret_val;
1624}
1625
1626/**
1627 * e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers
1628 * @hw: pointer to the HW structure
1629 *
1630 * Initialize family-specific function pointers for PHY, MAC, and NVM.
1631 **/
1632void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw)
1633{
1634 DEBUGFUNC("e1000_init_function_pointers_ich8lan");
1635
1636 hw->mac.ops.init_params = e1000_init_mac_params_ich8lan;
1637 hw->nvm.ops.init_params = e1000_init_nvm_params_ich8lan;
1638 switch (hw->mac.type) {
1639 case e1000_ich8lan:
1640 case e1000_ich9lan:
1641 case e1000_ich10lan:
1642 hw->phy.ops.init_params = e1000_init_phy_params_ich8lan;
1643 break;
1644 case e1000_pchlan:
1645 case e1000_pch2lan:
1646 case e1000_pch_lpt:
1647 hw->phy.ops.init_params = e1000_init_phy_params_pchlan;
1648 break;
1649 default:
1650 break;
1651 }
1652}
1653
1654/**
1655 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1656 * @hw: pointer to the HW structure
1657 *
1658 * Acquires the mutex for performing NVM operations.
1659 **/
1660static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
1661{
1662 DEBUGFUNC("e1000_acquire_nvm_ich8lan");
1663
1664 E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.nvm_mutex);
1665
1666 return E1000_SUCCESS;
1667}
1668
1669/**
1670 * e1000_release_nvm_ich8lan - Release NVM mutex
1671 * @hw: pointer to the HW structure
1672 *
1673 * Releases the mutex used while performing NVM operations.
1674 **/
1675static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
1676{
1677 DEBUGFUNC("e1000_release_nvm_ich8lan");
1678
1679 E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.nvm_mutex);
1680
1681 return;
1682}
1683
1684/**
1685 * e1000_acquire_swflag_ich8lan - Acquire software control flag
1686 * @hw: pointer to the HW structure
1687 *
1688 * Acquires the software control flag for performing PHY and select
1689 * MAC CSR accesses.
1690 **/
1691static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1692{
1693 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1694 s32 ret_val = E1000_SUCCESS;
1695
1696 DEBUGFUNC("e1000_acquire_swflag_ich8lan");
1697
1698 E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1699
1700 while (timeout) {
1701 extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1702 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1703 break;
1704
1705 msec_delay_irq(1);
1706 timeout--;
1707 }
1708
1709 if (!timeout) {
1710 DEBUGOUT("SW has already locked the resource.\n");
1711 ret_val = -E1000_ERR_CONFIG;
1712 goto out;
1713 }
1714
1715 timeout = SW_FLAG_TIMEOUT;
1716
1717 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1718 E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1719
1720 while (timeout) {
1721 extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1722 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1723 break;
1724
1725 msec_delay_irq(1);
1726 timeout--;
1727 }
1728
1729 if (!timeout) {
1730 DEBUGOUT2("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1731 E1000_READ_REG(hw, E1000_FWSM), extcnf_ctrl);
1732 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1733 E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1734 ret_val = -E1000_ERR_CONFIG;
1735 goto out;
1736 }
1737
1738out:
1739 if (ret_val)
1740 E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1741
1742 return ret_val;
1743}
1744
1745/**
1746 * e1000_release_swflag_ich8lan - Release software control flag
1747 * @hw: pointer to the HW structure
1748 *
1749 * Releases the software control flag for performing PHY and select
1750 * MAC CSR accesses.
1751 **/
1752static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1753{
1754 u32 extcnf_ctrl;
1755
1756 DEBUGFUNC("e1000_release_swflag_ich8lan");
1757
1758 extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1759
1760 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1761 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1762 E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1763 } else {
1764 DEBUGOUT("Semaphore unexpectedly released by sw/fw/hw\n");
1765 }
1766
1767 E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1768
1769 return;
1770}
1771
1772/**
1773 * e1000_check_mng_mode_ich8lan - Checks management mode
1774 * @hw: pointer to the HW structure
1775 *
1776 * This checks if the adapter has any manageability enabled.
1777 * This is a function pointer entry point only called by read/write
1778 * routines for the PHY and NVM parts.
1779 **/
1780static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1781{
1782 u32 fwsm;
1783
1784 DEBUGFUNC("e1000_check_mng_mode_ich8lan");
1785
1786 fwsm = E1000_READ_REG(hw, E1000_FWSM);
1787
1788 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1789 ((fwsm & E1000_FWSM_MODE_MASK) ==
1790 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1791}
1792
1793/**
1794 * e1000_check_mng_mode_pchlan - Checks management mode
1795 * @hw: pointer to the HW structure
1796 *
1797 * This checks if the adapter has iAMT enabled.
1798 * This is a function pointer entry point only called by read/write
1799 * routines for the PHY and NVM parts.
1800 **/
1801static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1802{
1803 u32 fwsm;
1804
1805 DEBUGFUNC("e1000_check_mng_mode_pchlan");
1806
1807 fwsm = E1000_READ_REG(hw, E1000_FWSM);
1808
1809 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1810 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1811}
1812
1813/**
1814 * e1000_rar_set_pch2lan - Set receive address register
1815 * @hw: pointer to the HW structure
1816 * @addr: pointer to the receive address
1817 * @index: receive address array register
1818 *
1819 * Sets the receive address array register at index to the address passed
1820 * in by addr. For 82579, RAR[0] is the base address register that is to
1821 * contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1822 * Use SHRA[0-3] in place of those reserved for ME.
1823 **/
1824static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1825{
1826 u32 rar_low, rar_high;
1827
1828 DEBUGFUNC("e1000_rar_set_pch2lan");
1829
1830 /* HW expects these in little endian so we reverse the byte order
1831 * from network order (big endian) to little endian
1832 */
1833 rar_low = ((u32) addr[0] |
1834 ((u32) addr[1] << 8) |
1835 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
1836
1837 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
1838
1839 /* If MAC address zero, no need to set the AV bit */
1840 if (rar_low || rar_high)
1841 rar_high |= E1000_RAH_AV;
1842
1843 if (index == 0) {
1844 E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
1845 E1000_WRITE_FLUSH(hw);
1846 E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
1847 E1000_WRITE_FLUSH(hw);
1848 return E1000_SUCCESS;
1849 }
1850
1851 /* RAR[1-6] are owned by manageability. Skip those and program the
1852 * next address into the SHRA register array.
1853 */
1854 if (index < (u32) (hw->mac.rar_entry_count)) {
1855 s32 ret_val;
1856
1857 ret_val = e1000_acquire_swflag_ich8lan(hw);
1858 if (ret_val)
1859 goto out;
1860
1861 E1000_WRITE_REG(hw, E1000_SHRAL(index - 1), rar_low);
1862 E1000_WRITE_FLUSH(hw);
1863 E1000_WRITE_REG(hw, E1000_SHRAH(index - 1), rar_high);
1864 E1000_WRITE_FLUSH(hw);
1865
1866 e1000_release_swflag_ich8lan(hw);
1867
1868 /* verify the register updates */
1869 if ((E1000_READ_REG(hw, E1000_SHRAL(index - 1)) == rar_low) &&
1870 (E1000_READ_REG(hw, E1000_SHRAH(index - 1)) == rar_high))
1871 return E1000_SUCCESS;
1872
1873 DEBUGOUT2("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1874 (index - 1), E1000_READ_REG(hw, E1000_FWSM));
1875 }
1876
1877out:
1878 DEBUGOUT1("Failed to write receive address at index %d\n", index);
1879 return -E1000_ERR_CONFIG;
1880}
1881
1882/**
1883 * e1000_rar_set_pch_lpt - Set receive address registers
1884 * @hw: pointer to the HW structure
1885 * @addr: pointer to the receive address
1886 * @index: receive address array register
1887 *
1888 * Sets the receive address register array at index to the address passed
1889 * in by addr. For LPT, RAR[0] is the base address register that is to
1890 * contain the MAC address. SHRA[0-10] are the shared receive address
1891 * registers that are shared between the Host and manageability engine (ME).
1892 **/
1893static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1894{
1895 u32 rar_low, rar_high;
1896 u32 wlock_mac;
1897
1898 DEBUGFUNC("e1000_rar_set_pch_lpt");
1899
1900 /* HW expects these in little endian so we reverse the byte order
1901 * from network order (big endian) to little endian
1902 */
1903 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
1904 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
1905
1906 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
1907
1908 /* If MAC address zero, no need to set the AV bit */
1909 if (rar_low || rar_high)
1910 rar_high |= E1000_RAH_AV;
1911
1912 if (index == 0) {
1913 E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
1914 E1000_WRITE_FLUSH(hw);
1915 E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
1916 E1000_WRITE_FLUSH(hw);
1917 return E1000_SUCCESS;
1918 }
1919
1920 /* The manageability engine (ME) can lock certain SHRAR registers that
1921 * it is using - those registers are unavailable for use.
1922 */
1923 if (index < hw->mac.rar_entry_count) {
1924 wlock_mac = E1000_READ_REG(hw, E1000_FWSM) &
1925 E1000_FWSM_WLOCK_MAC_MASK;
1926 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1927
1928 /* Check if all SHRAR registers are locked */
1929 if (wlock_mac == 1)
1930 goto out;
1931
1932 if ((wlock_mac == 0) || (index <= wlock_mac)) {
1933 s32 ret_val;
1934
1935 ret_val = e1000_acquire_swflag_ich8lan(hw);
1936
1937 if (ret_val)
1938 goto out;
1939
1940 E1000_WRITE_REG(hw, E1000_SHRAL_PCH_LPT(index - 1),
1941 rar_low);
1942 E1000_WRITE_FLUSH(hw);
1943 E1000_WRITE_REG(hw, E1000_SHRAH_PCH_LPT(index - 1),
1944 rar_high);
1945 E1000_WRITE_FLUSH(hw);
1946
1947 e1000_release_swflag_ich8lan(hw);
1948
1949 /* verify the register updates */
1950 if ((E1000_READ_REG(hw, E1000_SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1951 (E1000_READ_REG(hw, E1000_SHRAH_PCH_LPT(index - 1)) == rar_high))
1952 return E1000_SUCCESS;
1953 }
1954 }
1955
1956out:
1957 DEBUGOUT1("Failed to write receive address at index %d\n", index);
1958 return -E1000_ERR_CONFIG;
1959}
1960
1961/**
1962 * e1000_update_mc_addr_list_pch2lan - Update Multicast addresses
1963 * @hw: pointer to the HW structure
1964 * @mc_addr_list: array of multicast addresses to program
1965 * @mc_addr_count: number of multicast addresses to program
1966 *
1967 * Updates entire Multicast Table Array of the PCH2 MAC and PHY.
1968 * The caller must have a packed mc_addr_list of multicast addresses.
1969 **/
1970static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
1971 u8 *mc_addr_list,
1972 u32 mc_addr_count)
1973{
1974 u16 phy_reg = 0;
1975 int i;
1976 s32 ret_val;
1977
1978 DEBUGFUNC("e1000_update_mc_addr_list_pch2lan");
1979
1980 e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count);
1981
1982 ret_val = hw->phy.ops.acquire(hw);
1983 if (ret_val)
1984 return;
1985
1986 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1987 if (ret_val)
1988 goto release;
1989
1990 for (i = 0; i < hw->mac.mta_reg_count; i++) {
1991 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
1992 (u16)(hw->mac.mta_shadow[i] &
1993 0xFFFF));
1994 hw->phy.ops.write_reg_page(hw, (BM_MTA(i) + 1),
1995 (u16)((hw->mac.mta_shadow[i] >> 16) &
1996 0xFFFF));
1997 }
1998
1999 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2000
2001release:
2002 hw->phy.ops.release(hw);
2003}
2004
2005/**
2006 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2007 * @hw: pointer to the HW structure
2008 *
2009 * Checks if firmware is blocking the reset of the PHY.
2010 * This is a function pointer entry point only called by
2011 * reset routines.
2012 **/
2013static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2014{
2015 u32 fwsm;
2016 bool blocked = FALSE;
2017 int i = 0;
2018
2019 DEBUGFUNC("e1000_check_reset_block_ich8lan");
2020
2021 do {
2022 fwsm = E1000_READ_REG(hw, E1000_FWSM);
2023 if (!(fwsm & E1000_ICH_FWSM_RSPCIPHY)) {
2024 blocked = TRUE;
2025 msec_delay(10);
2026 continue;
2027 }
2028 blocked = FALSE;
2029 } while (blocked && (i++ < 10));
2030 return blocked ? E1000_BLK_PHY_RESET : E1000_SUCCESS;
2031}
2032
2033/**
2034 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2035 * @hw: pointer to the HW structure
2036 *
2037 * Assumes semaphore already acquired.
2038 *
2039 **/
2040static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2041{
2042 u16 phy_data;
2043 u32 strap = E1000_READ_REG(hw, E1000_STRAP);
2044 u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2045 E1000_STRAP_SMT_FREQ_SHIFT;
2046 s32 ret_val;
2047
2048 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2049
2050 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2051 if (ret_val)
2052 return ret_val;
2053
2054 phy_data &= ~HV_SMB_ADDR_MASK;
2055 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2056 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2057
2058 if (hw->phy.type == e1000_phy_i217) {
2059 /* Restore SMBus frequency */
2060 if (freq--) {
2061 phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2062 phy_data |= (freq & (1 << 0)) <<
2063 HV_SMB_ADDR_FREQ_LOW_SHIFT;
2064 phy_data |= (freq & (1 << 1)) <<
2065 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2066 } else {
2067 DEBUGOUT("Unsupported SMB frequency in PHY\n");
2068 }
2069 }
2070
2071 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2072}
2073
2074/**
2075 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2076 * @hw: pointer to the HW structure
2077 *
2078 * SW should configure the LCD from the NVM extended configuration region
2079 * as a workaround for certain parts.
2080 **/
2081static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2082{
2083 struct e1000_phy_info *phy = &hw->phy;
2084 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2085 s32 ret_val = E1000_SUCCESS;
2086 u16 word_addr, reg_data, reg_addr, phy_page = 0;
2087
2088 DEBUGFUNC("e1000_sw_lcd_config_ich8lan");
2089
2090 /* Initialize the PHY from the NVM on ICH platforms. This
2091 * is needed due to an issue where the NVM configuration is
2092 * not properly autoloaded after power transitions.
2093 * Therefore, after each PHY reset, we will load the
2094 * configuration data out of the NVM manually.
2095 */
2096 switch (hw->mac.type) {
2097 case e1000_ich8lan:
2098 if (phy->type != e1000_phy_igp_3)
2099 return ret_val;
2100
2101 if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_AMT) ||
2102 (hw->device_id == E1000_DEV_ID_ICH8_IGP_C)) {
2103 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2104 break;
2105 }
2106 /* Fall-thru */
2107 case e1000_pchlan:
2108 case e1000_pch2lan:
2109 case e1000_pch_lpt:
2110 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2111 break;
2112 default:
2113 return ret_val;
2114 }
2115
2116 ret_val = hw->phy.ops.acquire(hw);
2117 if (ret_val)
2118 return ret_val;
2119
2120 data = E1000_READ_REG(hw, E1000_FEXTNVM);
2121 if (!(data & sw_cfg_mask))
2122 goto release;
2123
2124 /* Make sure HW does not configure LCD from PHY
2125 * extended configuration before SW configuration
2126 */
2127 data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2128 if ((hw->mac.type < e1000_pch2lan) &&
2129 (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2130 goto release;
2131
2132 cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE);
2133 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2134 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2135 if (!cnf_size)
2136 goto release;
2137
2138 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2139 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2140
2141 if (((hw->mac.type == e1000_pchlan) &&
2142 !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2143 (hw->mac.type > e1000_pchlan)) {
2144 /* HW configures the SMBus address and LEDs when the
2145 * OEM and LCD Write Enable bits are set in the NVM.
2146 * When both NVM bits are cleared, SW will configure
2147 * them instead.
2148 */
2149 ret_val = e1000_write_smbus_addr(hw);
2150 if (ret_val)
2151 goto release;
2152
2153 data = E1000_READ_REG(hw, E1000_LEDCTL);
2154 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2155 (u16)data);
2156 if (ret_val)
2157 goto release;
2158 }
2159
2160 /* Configure LCD from extended configuration region. */
2161
2162 /* cnf_base_addr is in DWORD */
2163 word_addr = (u16)(cnf_base_addr << 1);
2164
2165 for (i = 0; i < cnf_size; i++) {
2166 ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2), 1,
2167 &reg_data);
2168 if (ret_val)
2169 goto release;
2170
2171 ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2 + 1),
2172 1, &reg_addr);
2173 if (ret_val)
2174 goto release;
2175
2176 /* Save off the PHY page for future writes. */
2177 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2178 phy_page = reg_data;
2179 continue;
2180 }
2181
2182 reg_addr &= PHY_REG_MASK;
2183 reg_addr |= phy_page;
2184
2185 ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
2186 reg_data);
2187 if (ret_val)
2188 goto release;
2189 }
2190
2191release:
2192 hw->phy.ops.release(hw);
2193 return ret_val;
2194}
2195
2196/**
2197 * e1000_k1_gig_workaround_hv - K1 Si workaround
2198 * @hw: pointer to the HW structure
2199 * @link: link up bool flag
2200 *
2201 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2202 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
2203 * If link is down, the function will restore the default K1 setting located
2204 * in the NVM.
2205 **/
2206static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2207{
2208 s32 ret_val = E1000_SUCCESS;
2209 u16 status_reg = 0;
2210 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2211
2212 DEBUGFUNC("e1000_k1_gig_workaround_hv");
2213
2214 if (hw->mac.type != e1000_pchlan)
2215 return E1000_SUCCESS;
2216
2217 /* Wrap the whole flow with the sw flag */
2218 ret_val = hw->phy.ops.acquire(hw);
2219 if (ret_val)
2220 return ret_val;
2221
2222 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2223 if (link) {
2224 if (hw->phy.type == e1000_phy_82578) {
2225 ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
2226 &status_reg);
2227 if (ret_val)
2228 goto release;
2229
2230 status_reg &= (BM_CS_STATUS_LINK_UP |
2231 BM_CS_STATUS_RESOLVED |
2232 BM_CS_STATUS_SPEED_MASK);
2233
2234 if (status_reg == (BM_CS_STATUS_LINK_UP |
2235 BM_CS_STATUS_RESOLVED |
2236 BM_CS_STATUS_SPEED_1000))
2237 k1_enable = FALSE;
2238 }
2239
2240 if (hw->phy.type == e1000_phy_82577) {
2241 ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
2242 &status_reg);
2243 if (ret_val)
2244 goto release;
2245
2246 status_reg &= (HV_M_STATUS_LINK_UP |
2247 HV_M_STATUS_AUTONEG_COMPLETE |
2248 HV_M_STATUS_SPEED_MASK);
2249
2250 if (status_reg == (HV_M_STATUS_LINK_UP |
2251 HV_M_STATUS_AUTONEG_COMPLETE |
2252 HV_M_STATUS_SPEED_1000))
2253 k1_enable = FALSE;
2254 }
2255
2256 /* Link stall fix for link up */
2257 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2258 0x0100);
2259 if (ret_val)
2260 goto release;
2261
2262 } else {
2263 /* Link stall fix for link down */
2264 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2265 0x4100);
2266 if (ret_val)
2267 goto release;
2268 }
2269
2270 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2271
2272release:
2273 hw->phy.ops.release(hw);
2274
2275 return ret_val;
2276}
2277
2278/**
2279 * e1000_configure_k1_ich8lan - Configure K1 power state
2280 * @hw: pointer to the HW structure
2281 * @enable: K1 state to configure
2282 *
2283 * Configure the K1 power state based on the provided parameter.
2284 * Assumes semaphore already acquired.
2285 *
2286 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2287 **/
2288s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2289{
2290 s32 ret_val;
2291 u32 ctrl_reg = 0;
2292 u32 ctrl_ext = 0;
2293 u32 reg = 0;
2294 u16 kmrn_reg = 0;
2295
2296 DEBUGFUNC("e1000_configure_k1_ich8lan");
2297
2298 ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2299 &kmrn_reg);
2300 if (ret_val)
2301 return ret_val;
2302
2303 if (k1_enable)
2304 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2305 else
2306 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2307
2308 ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2309 kmrn_reg);
2310 if (ret_val)
2311 return ret_val;
2312
2313 usec_delay(20);
2314 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2315 ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
2316
2317 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2318 reg |= E1000_CTRL_FRCSPD;
2319 E1000_WRITE_REG(hw, E1000_CTRL, reg);
2320
2321 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2322 E1000_WRITE_FLUSH(hw);
2323 usec_delay(20);
2324 E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
2325 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
2326 E1000_WRITE_FLUSH(hw);
2327 usec_delay(20);
2328
2329 return E1000_SUCCESS;
2330}
2331
2332/**
2333 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2334 * @hw: pointer to the HW structure
2335 * @d0_state: boolean if entering d0 or d3 device state
2336 *
2337 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2338 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
2339 * in NVM determines whether HW should configure LPLU and Gbe Disable.
2340 **/
2341static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2342{
2343 s32 ret_val = 0;
2344 u32 mac_reg;
2345 u16 oem_reg;
2346
2347 DEBUGFUNC("e1000_oem_bits_config_ich8lan");
2348
2349 if (hw->mac.type < e1000_pchlan)
2350 return ret_val;
2351
2352 ret_val = hw->phy.ops.acquire(hw);
2353 if (ret_val)
2354 return ret_val;
2355
2356 if (hw->mac.type == e1000_pchlan) {
2357 mac_reg = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2358 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2359 goto release;
2360 }
2361
2362 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM);
2363 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2364 goto release;
2365
2366 mac_reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
2367
2368 ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
2369 if (ret_val)
2370 goto release;
2371
2372 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2373
2374 if (d0_state) {
2375 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2376 oem_reg |= HV_OEM_BITS_GBE_DIS;
2377
2378 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2379 oem_reg |= HV_OEM_BITS_LPLU;
2380 } else {
2381 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2382 E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2383 oem_reg |= HV_OEM_BITS_GBE_DIS;
2384
2385 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2386 E1000_PHY_CTRL_NOND0A_LPLU))
2387 oem_reg |= HV_OEM_BITS_LPLU;
2388 }
2389
2390 /* Set Restart auto-neg to activate the bits */
2391 if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2392 !hw->phy.ops.check_reset_block(hw))
2393 oem_reg |= HV_OEM_BITS_RESTART_AN;
2394
2395 ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
2396
2397release:
2398 hw->phy.ops.release(hw);
2399
2400 return ret_val;
2401}
2402
2403
2404/**
2405 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2406 * @hw: pointer to the HW structure
2407 **/
2408static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2409{
2410 s32 ret_val;
2411 u16 data;
2412
2413 DEBUGFUNC("e1000_set_mdio_slow_mode_hv");
2414
2415 ret_val = hw->phy.ops.read_reg(hw, HV_KMRN_MODE_CTRL, &data);
2416 if (ret_val)
2417 return ret_val;
2418
2419 data |= HV_KMRN_MDIO_SLOW;
2420
2421 ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_MODE_CTRL, data);
2422
2423 return ret_val;
2424}
2425
2426/**
2427 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2428 * done after every PHY reset.
2429 **/
2430static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2431{
2432 s32 ret_val = E1000_SUCCESS;
2433 u16 phy_data;
2434
2435 DEBUGFUNC("e1000_hv_phy_workarounds_ich8lan");
2436
2437 if (hw->mac.type != e1000_pchlan)
2438 return E1000_SUCCESS;
2439
2440 /* Set MDIO slow mode before any other MDIO access */
2441 if (hw->phy.type == e1000_phy_82577) {
2442 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2443 if (ret_val)
2444 return ret_val;
2445 }
2446
2447 if (((hw->phy.type == e1000_phy_82577) &&
2448 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2449 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2450 /* Disable generation of early preamble */
2451 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431);
2452 if (ret_val)
2453 return ret_val;
2454
2455 /* Preamble tuning for SSC */
2456 ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA,
2457 0xA204);
2458 if (ret_val)
2459 return ret_val;
2460 }
2461
2462 if (hw->phy.type == e1000_phy_82578) {
2463 /* Return registers to default by doing a soft reset then
2464 * writing 0x3140 to the control register.
2465 */
2466 if (hw->phy.revision < 2) {
2467 e1000_phy_sw_reset_generic(hw);
2468 ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL,
2469 0x3140);
2470 }
2471 }
2472
2473 /* Select page 0 */
2474 ret_val = hw->phy.ops.acquire(hw);
2475 if (ret_val)
2476 return ret_val;
2477
2478 hw->phy.addr = 1;
2479 ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2480 hw->phy.ops.release(hw);
2481 if (ret_val)
2482 return ret_val;
2483
2484 /* Configure the K1 Si workaround during phy reset assuming there is
2485 * link so that it disables K1 if link is in 1Gbps.
2486 */
2487 ret_val = e1000_k1_gig_workaround_hv(hw, TRUE);
2488 if (ret_val)
2489 return ret_val;
2490
2491 /* Workaround for link disconnects on a busy hub in half duplex */
2492 ret_val = hw->phy.ops.acquire(hw);
2493 if (ret_val)
2494 return ret_val;
2495 ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2496 if (ret_val)
2497 goto release;
2498 ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
2499 phy_data & 0x00FF);
2500 if (ret_val)
2501 goto release;
2502
2503 /* set MSE higher to enable link to stay up when noise is high */
2504 ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2505release:
2506 hw->phy.ops.release(hw);
2507
2508 return ret_val;
2509}
2510
2511/**
2512 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2513 * @hw: pointer to the HW structure
2514 **/
2515void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2516{
2517 u32 mac_reg;
2518 u16 i, phy_reg = 0;
2519 s32 ret_val;
2520
2521 DEBUGFUNC("e1000_copy_rx_addrs_to_phy_ich8lan");
2522
2523 ret_val = hw->phy.ops.acquire(hw);
2524 if (ret_val)
2525 return;
2526 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2527 if (ret_val)
2528 goto release;
2529
2530 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2531 for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2532 mac_reg = E1000_READ_REG(hw, E1000_RAL(i));
2533 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2534 (u16)(mac_reg & 0xFFFF));
2535 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2536 (u16)((mac_reg >> 16) & 0xFFFF));
2537
2538 mac_reg = E1000_READ_REG(hw, E1000_RAH(i));
2539 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2540 (u16)(mac_reg & 0xFFFF));
2541 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2542 (u16)((mac_reg & E1000_RAH_AV)
2543 >> 16));
2544 }
2545
2546 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2547
2548release:
2549 hw->phy.ops.release(hw);
2550}
2551
2552static u32 e1000_calc_rx_da_crc(u8 mac[])
2553{
2554 u32 poly = 0xEDB88320; /* Polynomial for 802.3 CRC calculation */
2555 u32 i, j, mask, crc;
2556
2557 DEBUGFUNC("e1000_calc_rx_da_crc");
2558
2559 crc = 0xffffffff;
2560 for (i = 0; i < 6; i++) {
2561 crc = crc ^ mac[i];
2562 for (j = 8; j > 0; j--) {
2563 mask = (crc & 1) * (-1);
2564 crc = (crc >> 1) ^ (poly & mask);
2565 }
2566 }
2567 return ~crc;
2568}
2569
2570/**
2571 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2572 * with 82579 PHY
2573 * @hw: pointer to the HW structure
2574 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
2575 **/
2576s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2577{
2578 s32 ret_val = E1000_SUCCESS;
2579 u16 phy_reg, data;
2580 u32 mac_reg;
2581 u16 i;
2582
2583 DEBUGFUNC("e1000_lv_jumbo_workaround_ich8lan");
2584
2585 if (hw->mac.type < e1000_pch2lan)
2586 return E1000_SUCCESS;
2587
2588 /* disable Rx path while enabling/disabling workaround */
2589 hw->phy.ops.read_reg(hw, PHY_REG(769, 20), &phy_reg);
2590 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20),
2591 phy_reg | (1 << 14));
2592 if (ret_val)
2593 return ret_val;
2594
2595 if (enable) {
2596 /* Write Rx addresses (rar_entry_count for RAL/H, and
2597 * SHRAL/H) and initial CRC values to the MAC
2598 */
2599 for (i = 0; i < hw->mac.rar_entry_count; i++) {
2600 u8 mac_addr[ETH_ADDR_LEN] = {0};
2601 u32 addr_high, addr_low;
2602
2603 addr_high = E1000_READ_REG(hw, E1000_RAH(i));
2604 if (!(addr_high & E1000_RAH_AV))
2605 continue;
2606 addr_low = E1000_READ_REG(hw, E1000_RAL(i));
2607 mac_addr[0] = (addr_low & 0xFF);
2608 mac_addr[1] = ((addr_low >> 8) & 0xFF);
2609 mac_addr[2] = ((addr_low >> 16) & 0xFF);
2610 mac_addr[3] = ((addr_low >> 24) & 0xFF);
2611 mac_addr[4] = (addr_high & 0xFF);
2612 mac_addr[5] = ((addr_high >> 8) & 0xFF);
2613
2614 E1000_WRITE_REG(hw, E1000_PCH_RAICC(i),
2615 e1000_calc_rx_da_crc(mac_addr));
2616 }
2617
2618 /* Write Rx addresses to the PHY */
2619 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2620
2621 /* Enable jumbo frame workaround in the MAC */
2622 mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2623 mac_reg &= ~(1 << 14);
2624 mac_reg |= (7 << 15);
2625 E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2626
2627 mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2628 mac_reg |= E1000_RCTL_SECRC;
2629 E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2630
2631 ret_val = e1000_read_kmrn_reg_generic(hw,
2632 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2633 &data);
2634 if (ret_val)
2635 return ret_val;
2636 ret_val = e1000_write_kmrn_reg_generic(hw,
2637 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2638 data | (1 << 0));
2639 if (ret_val)
2640 return ret_val;
2641 ret_val = e1000_read_kmrn_reg_generic(hw,
2642 E1000_KMRNCTRLSTA_HD_CTRL,
2643 &data);
2644 if (ret_val)
2645 return ret_val;
2646 data &= ~(0xF << 8);
2647 data |= (0xB << 8);
2648 ret_val = e1000_write_kmrn_reg_generic(hw,
2649 E1000_KMRNCTRLSTA_HD_CTRL,
2650 data);
2651 if (ret_val)
2652 return ret_val;
2653
2654 /* Enable jumbo frame workaround in the PHY */
2655 hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2656 data &= ~(0x7F << 5);
2657 data |= (0x37 << 5);
2658 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2659 if (ret_val)
2660 return ret_val;
2661 hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2662 data &= ~(1 << 13);
2663 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2664 if (ret_val)
2665 return ret_val;
2666 hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2667 data &= ~(0x3FF << 2);
2668 data |= (E1000_TX_PTR_GAP << 2);
2669 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2670 if (ret_val)
2671 return ret_val;
2672 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xF100);
2673 if (ret_val)
2674 return ret_val;
2675 hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2676 ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data |
2677 (1 << 10));
2678 if (ret_val)
2679 return ret_val;
2680 } else {
2681 /* Write MAC register values back to h/w defaults */
2682 mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2683 mac_reg &= ~(0xF << 14);
2684 E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2685
2686 mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2687 mac_reg &= ~E1000_RCTL_SECRC;
2688 E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2689
2690 ret_val = e1000_read_kmrn_reg_generic(hw,
2691 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2692 &data);
2693 if (ret_val)
2694 return ret_val;
2695 ret_val = e1000_write_kmrn_reg_generic(hw,
2696 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2697 data & ~(1 << 0));
2698 if (ret_val)
2699 return ret_val;
2700 ret_val = e1000_read_kmrn_reg_generic(hw,
2701 E1000_KMRNCTRLSTA_HD_CTRL,
2702 &data);
2703 if (ret_val)
2704 return ret_val;
2705 data &= ~(0xF << 8);
2706 data |= (0xB << 8);
2707 ret_val = e1000_write_kmrn_reg_generic(hw,
2708 E1000_KMRNCTRLSTA_HD_CTRL,
2709 data);
2710 if (ret_val)
2711 return ret_val;
2712
2713 /* Write PHY register values back to h/w defaults */
2714 hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2715 data &= ~(0x7F << 5);
2716 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2717 if (ret_val)
2718 return ret_val;
2719 hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2720 data |= (1 << 13);
2721 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2722 if (ret_val)
2723 return ret_val;
2724 hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2725 data &= ~(0x3FF << 2);
2726 data |= (0x8 << 2);
2727 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2728 if (ret_val)
2729 return ret_val;
2730 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0x7E00);
2731 if (ret_val)
2732 return ret_val;
2733 hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2734 ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data &
2735 ~(1 << 10));
2736 if (ret_val)
2737 return ret_val;
2738 }
2739
2740 /* re-enable Rx path after enabling/disabling workaround */
2741 return hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg &
2742 ~(1 << 14));
2743}
2744
2745/**
2746 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2747 * done after every PHY reset.
2748 **/
2749static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2750{
2751 s32 ret_val = E1000_SUCCESS;
2752
2753 DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan");
2754
2755 if (hw->mac.type != e1000_pch2lan)
2756 return E1000_SUCCESS;
2757
2758 /* Set MDIO slow mode before any other MDIO access */
2759 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2760 if (ret_val)
2761 return ret_val;
2762
2763 ret_val = hw->phy.ops.acquire(hw);
2764 if (ret_val)
2765 return ret_val;
2766 /* set MSE higher to enable link to stay up when noise is high */
2767 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2768 if (ret_val)
2769 goto release;
2770 /* drop link after 5 times MSE threshold was reached */
2771 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2772release:
2773 hw->phy.ops.release(hw);
2774
2775 return ret_val;
2776}
2777
2778/**
2779 * e1000_k1_gig_workaround_lv - K1 Si workaround
2780 * @hw: pointer to the HW structure
2781 *
2782 * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2783 * Disable K1 for 1000 and 100 speeds
2784 **/
2785static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2786{
2787 s32 ret_val = E1000_SUCCESS;
2788 u16 status_reg = 0;
2789
2790 DEBUGFUNC("e1000_k1_workaround_lv");
2791
2792 if (hw->mac.type != e1000_pch2lan)
2793 return E1000_SUCCESS;
2794
2795 /* Set K1 beacon duration based on 10Mbs speed */
2796 ret_val = hw->phy.ops.read_reg(hw, HV_M_STATUS, &status_reg);
2797 if (ret_val)
2798 return ret_val;
2799
2800 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2801 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2802 if (status_reg &
2803 (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2804 u16 pm_phy_reg;
2805
2806 /* LV 1G/100 Packet drop issue wa */
2807 ret_val = hw->phy.ops.read_reg(hw, HV_PM_CTRL,
2808 &pm_phy_reg);
2809 if (ret_val)
2810 return ret_val;
2811 pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2812 ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL,
2813 pm_phy_reg);
2814 if (ret_val)
2815 return ret_val;
2816 } else {
2817 u32 mac_reg;
2818 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
2819 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2820 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2821 E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
2822 }
2823 }
2824
2825 return ret_val;
2826}
2827
2828/**
2829 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2830 * @hw: pointer to the HW structure
2831 * @gate: boolean set to TRUE to gate, FALSE to ungate
2832 *
2833 * Gate/ungate the automatic PHY configuration via hardware; perform
2834 * the configuration via software instead.
2835 **/
2836static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2837{
2838 u32 extcnf_ctrl;
2839
2840 DEBUGFUNC("e1000_gate_hw_phy_config_ich8lan");
2841
2842 if (hw->mac.type < e1000_pch2lan)
2843 return;
2844
2845 extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2846
2847 if (gate)
2848 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2849 else
2850 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2851
2852 E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
2853}
2854
2855/**
2856 * e1000_lan_init_done_ich8lan - Check for PHY config completion
2857 * @hw: pointer to the HW structure
2858 *
2859 * Check the appropriate indication the MAC has finished configuring the
2860 * PHY after a software reset.
2861 **/
2862static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2863{
2864 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2865
2866 DEBUGFUNC("e1000_lan_init_done_ich8lan");
2867
2868 /* Wait for basic configuration completes before proceeding */
2869 do {
2870 data = E1000_READ_REG(hw, E1000_STATUS);
2871 data &= E1000_STATUS_LAN_INIT_DONE;
2872 usec_delay(100);
2873 } while ((!data) && --loop);
2874
2875 /* If basic configuration is incomplete before the above loop
2876 * count reaches 0, loading the configuration from NVM will
2877 * leave the PHY in a bad state possibly resulting in no link.
2878 */
2879 if (loop == 0)
2880 DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n");
2881
2882 /* Clear the Init Done bit for the next init event */
2883 data = E1000_READ_REG(hw, E1000_STATUS);
2884 data &= ~E1000_STATUS_LAN_INIT_DONE;
2885 E1000_WRITE_REG(hw, E1000_STATUS, data);
2886}
2887
2888/**
2889 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2890 * @hw: pointer to the HW structure
2891 **/
2892static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2893{
2894 s32 ret_val = E1000_SUCCESS;
2895 u16 reg;
2896
2897 DEBUGFUNC("e1000_post_phy_reset_ich8lan");
2898
2899 if (hw->phy.ops.check_reset_block(hw))
2900 return E1000_SUCCESS;
2901
2902 /* Allow time for h/w to get to quiescent state after reset */
2903 msec_delay(10);
2904
2905 /* Perform any necessary post-reset workarounds */
2906 switch (hw->mac.type) {
2907 case e1000_pchlan:
2908 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2909 if (ret_val)
2910 return ret_val;
2911 break;
2912 case e1000_pch2lan:
2913 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2914 if (ret_val)
2915 return ret_val;
2916 break;
2917 default:
2918 break;
2919 }
2920
2921 /* Clear the host wakeup bit after lcd reset */
2922 if (hw->mac.type >= e1000_pchlan) {
2923 hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &reg);
2924 reg &= ~BM_WUC_HOST_WU_BIT;
2925 hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, reg);
2926 }
2927
2928 /* Configure the LCD with the extended configuration region in NVM */
2929 ret_val = e1000_sw_lcd_config_ich8lan(hw);
2930 if (ret_val)
2931 return ret_val;
2932
2933 /* Configure the LCD with the OEM bits in NVM */
2934 ret_val = e1000_oem_bits_config_ich8lan(hw, TRUE);
2935
2936 if (hw->mac.type == e1000_pch2lan) {
2937 /* Ungate automatic PHY configuration on non-managed 82579 */
2938 if (!(E1000_READ_REG(hw, E1000_FWSM) &
2939 E1000_ICH_FWSM_FW_VALID)) {
2940 msec_delay(10);
2941 e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
2942 }
2943
2944 /* Set EEE LPI Update Timer to 200usec */
2945 ret_val = hw->phy.ops.acquire(hw);
2946 if (ret_val)
2947 return ret_val;
2948 ret_val = e1000_write_emi_reg_locked(hw,
2949 I82579_LPI_UPDATE_TIMER,
2950 0x1387);
2951 hw->phy.ops.release(hw);
2952 }
2953
2954 return ret_val;
2955}
2956
2957/**
2958 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2959 * @hw: pointer to the HW structure
2960 *
2961 * Resets the PHY
2962 * This is a function pointer entry point called by drivers
2963 * or other shared routines.
2964 **/
2965static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2966{
2967 s32 ret_val = E1000_SUCCESS;
2968
2969 DEBUGFUNC("e1000_phy_hw_reset_ich8lan");
2970
2971 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2972 if ((hw->mac.type == e1000_pch2lan) &&
2973 !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
2974 e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
2975
2976 ret_val = e1000_phy_hw_reset_generic(hw);
2977 if (ret_val)
2978 return ret_val;
2979
2980 return e1000_post_phy_reset_ich8lan(hw);
2981}
2982
2983/**
2984 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2985 * @hw: pointer to the HW structure
2986 * @active: TRUE to enable LPLU, FALSE to disable
2987 *
2988 * Sets the LPLU state according to the active flag. For PCH, if OEM write
2989 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2990 * the phy speed. This function will manually set the LPLU bit and restart
2991 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
2992 * since it configures the same bit.
2993 **/
2994static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2995{
2996 s32 ret_val;
2997 u16 oem_reg;
2998
2999 DEBUGFUNC("e1000_set_lplu_state_pchlan");
3000
3001 ret_val = hw->phy.ops.read_reg(hw, HV_OEM_BITS, &oem_reg);
3002 if (ret_val)
3003 return ret_val;
3004
3005 if (active)
3006 oem_reg |= HV_OEM_BITS_LPLU;
3007 else
3008 oem_reg &= ~HV_OEM_BITS_LPLU;
3009
3010 if (!hw->phy.ops.check_reset_block(hw))
3011 oem_reg |= HV_OEM_BITS_RESTART_AN;
3012
3013 return hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg);
3014}
3015
3016/**
3017 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3018 * @hw: pointer to the HW structure
3019 * @active: TRUE to enable LPLU, FALSE to disable
3020 *
3021 * Sets the LPLU D0 state according to the active flag. When
3022 * activating LPLU this function also disables smart speed
3023 * and vice versa. LPLU will not be activated unless the
3024 * device autonegotiation advertisement meets standards of
3025 * either 10 or 10/100 or 10/100/1000 at all duplexes.
3026 * This is a function pointer entry point only called by
3027 * PHY setup routines.
3028 **/
3029static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3030{
3031 struct e1000_phy_info *phy = &hw->phy;
3032 u32 phy_ctrl;
3033 s32 ret_val = E1000_SUCCESS;
3034 u16 data;
3035
3036 DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan");
3037
3038 if (phy->type == e1000_phy_ife)
3039 return E1000_SUCCESS;
3040
3041 phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3042
3043 if (active) {
3044 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3045 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3046
3047 if (phy->type != e1000_phy_igp_3)
3048 return E1000_SUCCESS;
3049
3050 /* Call gig speed drop workaround on LPLU before accessing
3051 * any PHY registers
3052 */
3053 if (hw->mac.type == e1000_ich8lan)
3054 e1000_gig_downshift_workaround_ich8lan(hw);
3055
3056 /* When LPLU is enabled, we should disable SmartSpeed */
3057 ret_val = phy->ops.read_reg(hw,
3058 IGP01E1000_PHY_PORT_CONFIG,
3059 &data);
3060 if (ret_val)
3061 return ret_val;
3062 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3063 ret_val = phy->ops.write_reg(hw,
3064 IGP01E1000_PHY_PORT_CONFIG,
3065 data);
3066 if (ret_val)
3067 return ret_val;
3068 } else {
3069 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3070 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3071
3072 if (phy->type != e1000_phy_igp_3)
3073 return E1000_SUCCESS;
3074
3075 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
3076 * during Dx states where the power conservation is most
3077 * important. During driver activity we should enable
3078 * SmartSpeed, so performance is maintained.
3079 */
3080 if (phy->smart_speed == e1000_smart_speed_on) {
3081 ret_val = phy->ops.read_reg(hw,
3082 IGP01E1000_PHY_PORT_CONFIG,
3083 &data);
3084 if (ret_val)
3085 return ret_val;
3086
3087 data |= IGP01E1000_PSCFR_SMART_SPEED;
3088 ret_val = phy->ops.write_reg(hw,
3089 IGP01E1000_PHY_PORT_CONFIG,
3090 data);
3091 if (ret_val)
3092 return ret_val;
3093 } else if (phy->smart_speed == e1000_smart_speed_off) {
3094 ret_val = phy->ops.read_reg(hw,
3095 IGP01E1000_PHY_PORT_CONFIG,
3096 &data);
3097 if (ret_val)
3098 return ret_val;
3099
3100 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3101 ret_val = phy->ops.write_reg(hw,
3102 IGP01E1000_PHY_PORT_CONFIG,
3103 data);
3104 if (ret_val)
3105 return ret_val;
3106 }
3107 }
3108
3109 return E1000_SUCCESS;
3110}
3111
3112/**
3113 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3114 * @hw: pointer to the HW structure
3115 * @active: TRUE to enable LPLU, FALSE to disable
3116 *
3117 * Sets the LPLU D3 state according to the active flag. When
3118 * activating LPLU this function also disables smart speed
3119 * and vice versa. LPLU will not be activated unless the
3120 * device autonegotiation advertisement meets standards of
3121 * either 10 or 10/100 or 10/100/1000 at all duplexes.
3122 * This is a function pointer entry point only called by
3123 * PHY setup routines.
3124 **/
3125static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3126{
3127 struct e1000_phy_info *phy = &hw->phy;
3128 u32 phy_ctrl;
3129 s32 ret_val = E1000_SUCCESS;
3130 u16 data;
3131
3132 DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan");
3133
3134 phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3135
3136 if (!active) {
3137 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3138 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3139
3140 if (phy->type != e1000_phy_igp_3)
3141 return E1000_SUCCESS;
3142
3143 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
3144 * during Dx states where the power conservation is most
3145 * important. During driver activity we should enable
3146 * SmartSpeed, so performance is maintained.
3147 */
3148 if (phy->smart_speed == e1000_smart_speed_on) {
3149 ret_val = phy->ops.read_reg(hw,
3150 IGP01E1000_PHY_PORT_CONFIG,
3151 &data);
3152 if (ret_val)
3153 return ret_val;
3154
3155 data |= IGP01E1000_PSCFR_SMART_SPEED;
3156 ret_val = phy->ops.write_reg(hw,
3157 IGP01E1000_PHY_PORT_CONFIG,
3158 data);
3159 if (ret_val)
3160 return ret_val;
3161 } else if (phy->smart_speed == e1000_smart_speed_off) {
3162 ret_val = phy->ops.read_reg(hw,
3163 IGP01E1000_PHY_PORT_CONFIG,
3164 &data);
3165 if (ret_val)
3166 return ret_val;
3167
3168 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3169 ret_val = phy->ops.write_reg(hw,
3170 IGP01E1000_PHY_PORT_CONFIG,
3171 data);
3172 if (ret_val)
3173 return ret_val;
3174 }
3175 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3176 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3177 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3178 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3179 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3180
3181 if (phy->type != e1000_phy_igp_3)
3182 return E1000_SUCCESS;
3183
3184 /* Call gig speed drop workaround on LPLU before accessing
3185 * any PHY registers
3186 */
3187 if (hw->mac.type == e1000_ich8lan)
3188 e1000_gig_downshift_workaround_ich8lan(hw);
3189
3190 /* When LPLU is enabled, we should disable SmartSpeed */
3191 ret_val = phy->ops.read_reg(hw,
3192 IGP01E1000_PHY_PORT_CONFIG,
3193 &data);
3194 if (ret_val)
3195 return ret_val;
3196
3197 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3198 ret_val = phy->ops.write_reg(hw,
3199 IGP01E1000_PHY_PORT_CONFIG,
3200 data);
3201 }
3202
3203 return ret_val;
3204}
3205
3206/**
3207 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3208 * @hw: pointer to the HW structure
3209 * @bank: pointer to the variable that returns the active bank
3210 *
3211 * Reads signature byte from the NVM using the flash access registers.
3212 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3213 **/
3214static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3215{
3216 u32 eecd;
3217 struct e1000_nvm_info *nvm = &hw->nvm;
3218 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3219 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3220 u8 sig_byte = 0;
3221 s32 ret_val;
3222
3223 DEBUGFUNC("e1000_valid_nvm_bank_detect_ich8lan");
3224
3225 switch (hw->mac.type) {
3226 case e1000_ich8lan:
3227 case e1000_ich9lan:
3228 eecd = E1000_READ_REG(hw, E1000_EECD);
3229 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3230 E1000_EECD_SEC1VAL_VALID_MASK) {
3231 if (eecd & E1000_EECD_SEC1VAL)
3232 *bank = 1;
3233 else
3234 *bank = 0;
3235
3236 return E1000_SUCCESS;
3237 }
3238 DEBUGOUT("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3239 /* fall-thru */
3240 default:
3241 /* set bank to 0 in case flash read fails */
3242 *bank = 0;
3243
3244 /* Check bank 0 */
3245 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3246 &sig_byte);
3247 if (ret_val)
3248 return ret_val;
3249 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3250 E1000_ICH_NVM_SIG_VALUE) {
3251 *bank = 0;
3252 return E1000_SUCCESS;
3253 }
3254
3255 /* Check bank 1 */
3256 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3257 bank1_offset,
3258 &sig_byte);
3259 if (ret_val)
3260 return ret_val;
3261 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3262 E1000_ICH_NVM_SIG_VALUE) {
3263 *bank = 1;
3264 return E1000_SUCCESS;
3265 }
3266
3267 DEBUGOUT("ERROR: No valid NVM bank present\n");
3268 return -E1000_ERR_NVM;
3269 }
3270}
3271
3272/**
3273 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
3274 * @hw: pointer to the HW structure
3275 * @offset: The offset (in bytes) of the word(s) to read.
3276 * @words: Size of data to read in words
3277 * @data: Pointer to the word(s) to read at offset.
3278 *
3279 * Reads a word(s) from the NVM using the flash access registers.
3280 **/
3281static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3282 u16 *data)
3283{
3284 struct e1000_nvm_info *nvm = &hw->nvm;
3285 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3286 u32 act_offset;
3287 s32 ret_val = E1000_SUCCESS;
3288 u32 bank = 0;
3289 u16 i, word;
3290
3291 DEBUGFUNC("e1000_read_nvm_ich8lan");
3292
3293 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3294 (words == 0)) {
3295 DEBUGOUT("nvm parameter(s) out of bounds\n");
3296 ret_val = -E1000_ERR_NVM;
3297 goto out;
3298 }
3299
3300 nvm->ops.acquire(hw);
3301
3302 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3303 if (ret_val != E1000_SUCCESS) {
3304 DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3305 bank = 0;
3306 }
3307
3308 act_offset = (bank) ? nvm->flash_bank_size : 0;
3309 act_offset += offset;
3310
3311 ret_val = E1000_SUCCESS;
3312 for (i = 0; i < words; i++) {
3313 if (dev_spec->shadow_ram[offset+i].modified) {
3314 data[i] = dev_spec->shadow_ram[offset+i].value;
3315 } else {
3316 ret_val = e1000_read_flash_word_ich8lan(hw,
3317 act_offset + i,
3318 &word);
3319 if (ret_val)
3320 break;
3321 data[i] = word;
3322 }
3323 }
3324
3325 nvm->ops.release(hw);
3326
3327out:
3328 if (ret_val)
3329 DEBUGOUT1("NVM read error: %d\n", ret_val);
3330
3331 return ret_val;
3332}
3333
3334/**
3335 * e1000_flash_cycle_init_ich8lan - Initialize flash
3336 * @hw: pointer to the HW structure
3337 *
3338 * This function does initial flash setup so that a new read/write/erase cycle
3339 * can be started.
3340 **/
3341static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3342{
3343 union ich8_hws_flash_status hsfsts;
3344 s32 ret_val = -E1000_ERR_NVM;
3345
3346 DEBUGFUNC("e1000_flash_cycle_init_ich8lan");
3347
3348 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3349
3350 /* Check if the flash descriptor is valid */
3351 if (!hsfsts.hsf_status.fldesvalid) {
3352 DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used.\n");
3353 return -E1000_ERR_NVM;
3354 }
3355
3356 /* Clear FCERR and DAEL in hw status by writing 1 */
3357 hsfsts.hsf_status.flcerr = 1;
3358 hsfsts.hsf_status.dael = 1;
3359 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
3360
3361 /* Either we should have a hardware SPI cycle in progress
3362 * bit to check against, in order to start a new cycle or
3363 * FDONE bit should be changed in the hardware so that it
3364 * is 1 after hardware reset, which can then be used as an
3365 * indication whether a cycle is in progress or has been
3366 * completed.
3367 */
3368
3369 if (!hsfsts.hsf_status.flcinprog) {
3370 /* There is no cycle running at present,
3371 * so we can start a cycle.
3372 * Begin by setting Flash Cycle Done.
3373 */
3374 hsfsts.hsf_status.flcdone = 1;
3375 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
3376 ret_val = E1000_SUCCESS;
3377 } else {
3378 s32 i;
3379
3380 /* Otherwise poll for sometime so the current
3381 * cycle has a chance to end before giving up.
3382 */
3383 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3384 hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3385 ICH_FLASH_HSFSTS);
3386 if (!hsfsts.hsf_status.flcinprog) {
3387 ret_val = E1000_SUCCESS;
3388 break;
3389 }
3390 usec_delay(1);
3391 }
3392 if (ret_val == E1000_SUCCESS) {
3393 /* Successful in waiting for previous cycle to timeout,
3394 * now set the Flash Cycle Done.
3395 */
3396 hsfsts.hsf_status.flcdone = 1;
3397 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3398 hsfsts.regval);
3399 } else {
3400 DEBUGOUT("Flash controller busy, cannot get access\n");
3401 }
3402 }
3403
3404 return ret_val;
3405}
3406
3407/**
3408 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3409 * @hw: pointer to the HW structure
3410 * @timeout: maximum time to wait for completion
3411 *
3412 * This function starts a flash cycle and waits for its completion.
3413 **/
3414static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3415{
3416 union ich8_hws_flash_ctrl hsflctl;
3417 union ich8_hws_flash_status hsfsts;
3418 u32 i = 0;
3419
3420 DEBUGFUNC("e1000_flash_cycle_ich8lan");
3421
3422 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3423 hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3424 hsflctl.hsf_ctrl.flcgo = 1;
3425
3426 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3427
3428 /* wait till FDONE bit is set to 1 */
3429 do {
3430 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3431 if (hsfsts.hsf_status.flcdone)
3432 break;
3433 usec_delay(1);
3434 } while (i++ < timeout);
3435
3436 if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3437 return E1000_SUCCESS;
3438
3439 return -E1000_ERR_NVM;
3440}
3441
3442/**
3443 * e1000_read_flash_word_ich8lan - Read word from flash
3444 * @hw: pointer to the HW structure
3445 * @offset: offset to data location
3446 * @data: pointer to the location for storing the data
3447 *
3448 * Reads the flash word at offset into data. Offset is converted
3449 * to bytes before read.
3450 **/
3451static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3452 u16 *data)
3453{
3454 DEBUGFUNC("e1000_read_flash_word_ich8lan");
3455
3456 if (!data)
3457 return -E1000_ERR_NVM;
3458
3459 /* Must convert offset into bytes. */
3460 offset <<= 1;
3461
3462 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3463}
3464
3465/**
3466 * e1000_read_flash_byte_ich8lan - Read byte from flash
3467 * @hw: pointer to the HW structure
3468 * @offset: The offset of the byte to read.
3469 * @data: Pointer to a byte to store the value read.
3470 *
3471 * Reads a single byte from the NVM using the flash access registers.
3472 **/
3473static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3474 u8 *data)
3475{
3476 s32 ret_val;
3477 u16 word = 0;
3478
3479 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3480
3481 if (ret_val)
3482 return ret_val;
3483
3484 *data = (u8)word;
3485
3486 return E1000_SUCCESS;
3487}
3488
3489/**
3490 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
3491 * @hw: pointer to the HW structure
3492 * @offset: The offset (in bytes) of the byte or word to read.
3493 * @size: Size of data to read, 1=byte 2=word
3494 * @data: Pointer to the word to store the value read.
3495 *
3496 * Reads a byte or word from the NVM using the flash access registers.
3497 **/
3498static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3499 u8 size, u16 *data)
3500{
3501 union ich8_hws_flash_status hsfsts;
3502 union ich8_hws_flash_ctrl hsflctl;
3503 u32 flash_linear_addr;
3504 u32 flash_data = 0;
3505 s32 ret_val = -E1000_ERR_NVM;
3506 u8 count = 0;
3507
3508 DEBUGFUNC("e1000_read_flash_data_ich8lan");
3509
3510 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3511 return -E1000_ERR_NVM;
3512 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3513 hw->nvm.flash_base_addr);
3514
3515 do {
3516 usec_delay(1);
3517 /* Steps */
3518 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3519 if (ret_val != E1000_SUCCESS)
3520 break;
3521 hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3522
3523 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3524 hsflctl.hsf_ctrl.fldbcount = size - 1;
3525 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3526 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3527 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3528
3529 ret_val = e1000_flash_cycle_ich8lan(hw,
3530 ICH_FLASH_READ_COMMAND_TIMEOUT);
3531
3532 /* Check if FCERR is set to 1, if set to 1, clear it
3533 * and try the whole sequence a few more times, else
3534 * read in (shift in) the Flash Data0, the order is
3535 * least significant byte first msb to lsb
3536 */
3537 if (ret_val == E1000_SUCCESS) {
3538 flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
3539 if (size == 1)
3540 *data = (u8)(flash_data & 0x000000FF);
3541 else if (size == 2)
3542 *data = (u16)(flash_data & 0x0000FFFF);
3543 break;
3544 } else {
3545 /* If we've gotten here, then things are probably
3546 * completely hosed, but if the error condition is
3547 * detected, it won't hurt to give it another try...
3548 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3549 */
3550 hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3551 ICH_FLASH_HSFSTS);
3552 if (hsfsts.hsf_status.flcerr) {
3553 /* Repeat for some time before giving up. */
3554 continue;
3555 } else if (!hsfsts.hsf_status.flcdone) {
3556 DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3557 break;
3558 }
3559 }
3560 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3561
3562 return ret_val;
3563}
3564
3565
3566/**
3567 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
3568 * @hw: pointer to the HW structure
3569 * @offset: The offset (in bytes) of the word(s) to write.
3570 * @words: Size of data to write in words
3571 * @data: Pointer to the word(s) to write at offset.
3572 *
3573 * Writes a byte or word to the NVM using the flash access registers.
3574 **/
3575static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3576 u16 *data)
3577{
3578 struct e1000_nvm_info *nvm = &hw->nvm;
3579 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3580 u16 i;
3581
3582 DEBUGFUNC("e1000_write_nvm_ich8lan");
3583
3584 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3585 (words == 0)) {
3586 DEBUGOUT("nvm parameter(s) out of bounds\n");
3587 return -E1000_ERR_NVM;
3588 }
3589
3590 nvm->ops.acquire(hw);
3591
3592 for (i = 0; i < words; i++) {
3593 dev_spec->shadow_ram[offset+i].modified = TRUE;
3594 dev_spec->shadow_ram[offset+i].value = data[i];
3595 }
3596
3597 nvm->ops.release(hw);
3598
3599 return E1000_SUCCESS;
3600}
3601
3602/**
3603 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3604 * @hw: pointer to the HW structure
3605 *
3606 * The NVM checksum is updated by calling the generic update_nvm_checksum,
3607 * which writes the checksum to the shadow ram. The changes in the shadow
3608 * ram are then committed to the EEPROM by processing each bank at a time
3609 * checking for the modified bit and writing only the pending changes.
3610 * After a successful commit, the shadow ram is cleared and is ready for
3611 * future writes.
3612 **/
3613static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3614{
3615 struct e1000_nvm_info *nvm = &hw->nvm;
3616 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3617 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3618 s32 ret_val;
3619 u16 data = 0;
3620
3621 DEBUGFUNC("e1000_update_nvm_checksum_ich8lan");
3622
3623 ret_val = e1000_update_nvm_checksum_generic(hw);
3624 if (ret_val)
3625 goto out;
3626
3627 if (nvm->type != e1000_nvm_flash_sw)
3628 goto out;
3629
3630 nvm->ops.acquire(hw);
3631
3632 /* We're writing to the opposite bank so if we're on bank 1,
3633 * write to bank 0 etc. We also need to erase the segment that
3634 * is going to be written
3635 */
3636 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3637 if (ret_val != E1000_SUCCESS) {
3638 DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3639 bank = 0;
3640 }
3641
3642 if (bank == 0) {
3643 new_bank_offset = nvm->flash_bank_size;
3644 old_bank_offset = 0;
3645 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3646 if (ret_val)
3647 goto release;
3648 } else {
3649 old_bank_offset = nvm->flash_bank_size;
3650 new_bank_offset = 0;
3651 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3652 if (ret_val)
3653 goto release;
3654 }
3655 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
3656 if (dev_spec->shadow_ram[i].modified) {
3657 data = dev_spec->shadow_ram[i].value;
3658 } else {
3659 ret_val = e1000_read_flash_word_ich8lan(hw, i +
3660 old_bank_offset,
3661 &data);
3662 if (ret_val)
3663 break;
3664 }
3665 /* If the word is 0x13, then make sure the signature bits
3666 * (15:14) are 11b until the commit has completed.
3667 * This will allow us to write 10b which indicates the
3668 * signature is valid. We want to do this after the write
3669 * has completed so that we don't mark the segment valid
3670 * while the write is still in progress
3671 */
3672 if (i == E1000_ICH_NVM_SIG_WORD)
3673 data |= E1000_ICH_NVM_SIG_MASK;
3674
3675 /* Convert offset to bytes. */
3676 act_offset = (i + new_bank_offset) << 1;
3677
3678 usec_delay(100);
3679
3680 /* Write the bytes to the new bank. */
3681 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3682 act_offset,
3683 (u8)data);
3684 if (ret_val)
3685 break;
3686
3687 usec_delay(100);
3688 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3689 act_offset + 1,
3690 (u8)(data >> 8));
3691 if (ret_val)
3692 break;
3693 }
3694
3695 /* Don't bother writing the segment valid bits if sector
3696 * programming failed.
3697 */
3698 if (ret_val) {
3699 DEBUGOUT("Flash commit failed.\n");
3700 goto release;
3701 }
3702
3703 /* Finally validate the new segment by setting bit 15:14
3704 * to 10b in word 0x13 , this can be done without an
3705 * erase as well since these bits are 11 to start with
3706 * and we need to change bit 14 to 0b
3707 */
3708 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3709 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
3710 if (ret_val)
3711 goto release;
3712
3713 data &= 0xBFFF;
3714 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset * 2 + 1,
3715 (u8)(data >> 8));
3716 if (ret_val)
3717 goto release;
3718
3719 /* And invalidate the previously valid segment by setting
3720 * its signature word (0x13) high_byte to 0b. This can be
3721 * done without an erase because flash erase sets all bits
3722 * to 1's. We can write 1's to 0's without an erase
3723 */
3724 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3725
3726 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
3727
3728 if (ret_val)
3729 goto release;
3730
3731 /* Great! Everything worked, we can now clear the cached entries. */
3732 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
3733 dev_spec->shadow_ram[i].modified = FALSE;
3734 dev_spec->shadow_ram[i].value = 0xFFFF;
3735 }
3736
3737release:
3738 nvm->ops.release(hw);
3739
3740 /* Reload the EEPROM, or else modifications will not appear
3741 * until after the next adapter reset.
3742 */
3743 if (!ret_val) {
3744 nvm->ops.reload(hw);
3745 msec_delay(10);
3746 }
3747
3748out:
3749 if (ret_val)
3750 DEBUGOUT1("NVM update error: %d\n", ret_val);
3751
3752 return ret_val;
3753}
3754
3755/**
3756 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
3757 * @hw: pointer to the HW structure
3758 *
3759 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
3760 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
3761 * calculated, in which case we need to calculate the checksum and set bit 6.
3762 **/
3763static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
3764{
3765 s32 ret_val;
3766 u16 data;
3767 u16 word;
3768 u16 valid_csum_mask;
3769
3770 DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan");
3771
3772 /* Read NVM and check Invalid Image CSUM bit. If this bit is 0,
3773 * the checksum needs to be fixed. This bit is an indication that
3774 * the NVM was prepared by OEM software and did not calculate
3775 * the checksum...a likely scenario.
3776 */
3777 switch (hw->mac.type) {
3778 case e1000_pch_lpt:
3779 word = NVM_COMPAT;
3780 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
3781 break;
3782 default:
3783 word = NVM_FUTURE_INIT_WORD1;
3784 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
3785 break;
3786 }
3787
3788 ret_val = hw->nvm.ops.read(hw, word, 1, &data);
3789 if (ret_val)
3790 return ret_val;
3791
3792 if (!(data & valid_csum_mask)) {
3793 data |= valid_csum_mask;
3794 ret_val = hw->nvm.ops.write(hw, word, 1, &data);
3795 if (ret_val)
3796 return ret_val;
3797 ret_val = hw->nvm.ops.update(hw);
3798 if (ret_val)
3799 return ret_val;
3800 }
3801
3802 return e1000_validate_nvm_checksum_generic(hw);
3803}
3804
3805/**
3806 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
3807 * @hw: pointer to the HW structure
3808 * @offset: The offset (in bytes) of the byte/word to read.
3809 * @size: Size of data to read, 1=byte 2=word
3810 * @data: The byte(s) to write to the NVM.
3811 *
3812 * Writes one/two bytes to the NVM using the flash access registers.
3813 **/
3814static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3815 u8 size, u16 data)
3816{
3817 union ich8_hws_flash_status hsfsts;
3818 union ich8_hws_flash_ctrl hsflctl;
3819 u32 flash_linear_addr;
3820 u32 flash_data = 0;
3821 s32 ret_val;
3822 u8 count = 0;
3823
3824 DEBUGFUNC("e1000_write_ich8_data");
3825
3826 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3827 return -E1000_ERR_NVM;
3828
3829 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3830 hw->nvm.flash_base_addr);
3831
3832 do {
3833 usec_delay(1);
3834 /* Steps */
3835 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3836 if (ret_val != E1000_SUCCESS)
3837 break;
3838 hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3839
3840 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3841 hsflctl.hsf_ctrl.fldbcount = size - 1;
3842 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
3843 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3844
3845 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3846
3847 if (size == 1)
3848 flash_data = (u32)data & 0x00FF;
3849 else
3850 flash_data = (u32)data;
3851
3852 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
3853
3854 /* check if FCERR is set to 1 , if set to 1, clear it
3855 * and try the whole sequence a few more times else done
3856 */
3857 ret_val =
3858 e1000_flash_cycle_ich8lan(hw,
3859 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
3860 if (ret_val == E1000_SUCCESS)
3861 break;
3862
3863 /* If we're here, then things are most likely
3864 * completely hosed, but if the error condition
3865 * is detected, it won't hurt to give it another
3866 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
3867 */
3868 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3869 if (hsfsts.hsf_status.flcerr)
3870 /* Repeat for some time before giving up. */
3871 continue;
3872 if (!hsfsts.hsf_status.flcdone) {
3873 DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3874 break;
3875 }
3876 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3877
3878 return ret_val;
3879}
3880
3881
3882/**
3883 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
3884 * @hw: pointer to the HW structure
3885 * @offset: The index of the byte to read.
3886 * @data: The byte to write to the NVM.
3887 *
3888 * Writes a single byte to the NVM using the flash access registers.
3889 **/
3890static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3891 u8 data)
3892{
3893 u16 word = (u16)data;
3894
3895 DEBUGFUNC("e1000_write_flash_byte_ich8lan");
3896
3897 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
3898}
3899
3900
3901
3902/**
3903 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
3904 * @hw: pointer to the HW structure
3905 * @offset: The offset of the byte to write.
3906 * @byte: The byte to write to the NVM.
3907 *
3908 * Writes a single byte to the NVM using the flash access registers.
3909 * Goes through a retry algorithm before giving up.
3910 **/
3911static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
3912 u32 offset, u8 byte)
3913{
3914 s32 ret_val;
3915 u16 program_retries;
3916
3917 DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan");
3918
3919 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3920 if (!ret_val)
3921 return ret_val;
3922
3923 for (program_retries = 0; program_retries < 100; program_retries++) {
3924 DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset);
3925 usec_delay(100);
3926 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3927 if (ret_val == E1000_SUCCESS)
3928 break;
3929 }
3930 if (program_retries == 100)
3931 return -E1000_ERR_NVM;
3932
3933 return E1000_SUCCESS;
3934}
3935
3936/**
3937 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
3938 * @hw: pointer to the HW structure
3939 * @bank: 0 for first bank, 1 for second bank, etc.
3940 *
3941 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
3942 * bank N is 4096 * N + flash_reg_addr.
3943 **/
3944static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
3945{
3946 struct e1000_nvm_info *nvm = &hw->nvm;
3947 union ich8_hws_flash_status hsfsts;
3948 union ich8_hws_flash_ctrl hsflctl;
3949 u32 flash_linear_addr;
3950 /* bank size is in 16bit words - adjust to bytes */
3951 u32 flash_bank_size = nvm->flash_bank_size * 2;
3952 s32 ret_val;
3953 s32 count = 0;
3954 s32 j, iteration, sector_size;
3955
3956 DEBUGFUNC("e1000_erase_flash_bank_ich8lan");
3957
3958 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3959
3960 /* Determine HW Sector size: Read BERASE bits of hw flash status
3961 * register
3962 * 00: The Hw sector is 256 bytes, hence we need to erase 16
3963 * consecutive sectors. The start index for the nth Hw sector
3964 * can be calculated as = bank * 4096 + n * 256
3965 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3966 * The start index for the nth Hw sector can be calculated
3967 * as = bank * 4096
3968 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3969 * (ich9 only, otherwise error condition)
3970 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3971 */
3972 switch (hsfsts.hsf_status.berasesz) {
3973 case 0:
3974 /* Hw sector size 256 */
3975 sector_size = ICH_FLASH_SEG_SIZE_256;
3976 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3977 break;
3978 case 1:
3979 sector_size = ICH_FLASH_SEG_SIZE_4K;
3980 iteration = 1;
3981 break;
3982 case 2:
3983 sector_size = ICH_FLASH_SEG_SIZE_8K;
3984 iteration = 1;
3985 break;
3986 case 3:
3987 sector_size = ICH_FLASH_SEG_SIZE_64K;
3988 iteration = 1;
3989 break;
3990 default:
3991 return -E1000_ERR_NVM;
3992 }
3993
3994 /* Start with the base address, then add the sector offset. */
3995 flash_linear_addr = hw->nvm.flash_base_addr;
3996 flash_linear_addr += (bank) ? flash_bank_size : 0;
3997
3998 for (j = 0; j < iteration; j++) {
3999 do {
4000 u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4001
4002 /* Steps */
4003 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4004 if (ret_val)
4005 return ret_val;
4006
4007 /* Write a value 11 (block Erase) in Flash
4008 * Cycle field in hw flash control
4009 */
4010 hsflctl.regval =
4011 E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
4012
4013 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4014 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4015 hsflctl.regval);
4016
4017 /* Write the last 24 bits of an index within the
4018 * block into Flash Linear address field in Flash
4019 * Address.
4020 */
4021 flash_linear_addr += (j * sector_size);
4022 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR,
4023 flash_linear_addr);
4024
4025 ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4026 if (ret_val == E1000_SUCCESS)
4027 break;
4028
4029 /* Check if FCERR is set to 1. If 1,
4030 * clear it and try the whole sequence
4031 * a few more times else Done
4032 */
4033 hsfsts.regval = E1000_READ_FLASH_REG16(hw,
4034 ICH_FLASH_HSFSTS);
4035 if (hsfsts.hsf_status.flcerr)
4036 /* repeat for some time before giving up */
4037 continue;
4038 else if (!hsfsts.hsf_status.flcdone)
4039 return ret_val;
4040 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4041 }
4042
4043 return E1000_SUCCESS;
4044}
4045
4046/**
4047 * e1000_valid_led_default_ich8lan - Set the default LED settings
4048 * @hw: pointer to the HW structure
4049 * @data: Pointer to the LED settings
4050 *
4051 * Reads the LED default settings from the NVM to data. If the NVM LED
4052 * settings is all 0's or F's, set the LED default to a valid LED default
4053 * setting.
4054 **/
4055static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4056{
4057 s32 ret_val;
4058
4059 DEBUGFUNC("e1000_valid_led_default_ich8lan");
4060
4061 ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
4062 if (ret_val) {
4063 DEBUGOUT("NVM Read Error\n");
4064 return ret_val;
4065 }
4066
4067 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4068 *data = ID_LED_DEFAULT_ICH8LAN;
4069
4070 return E1000_SUCCESS;
4071}
4072
4073/**
4074 * e1000_id_led_init_pchlan - store LED configurations
4075 * @hw: pointer to the HW structure
4076 *
4077 * PCH does not control LEDs via the LEDCTL register, rather it uses
4078 * the PHY LED configuration register.
4079 *
4080 * PCH also does not have an "always on" or "always off" mode which
4081 * complicates the ID feature. Instead of using the "on" mode to indicate
4082 * in ledctl_mode2 the LEDs to use for ID (see e1000_id_led_init_generic()),
4083 * use "link_up" mode. The LEDs will still ID on request if there is no
4084 * link based on logic in e1000_led_[on|off]_pchlan().
4085 **/
4086static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4087{
4088 struct e1000_mac_info *mac = &hw->mac;
4089 s32 ret_val;
4090 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4091 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4092 u16 data, i, temp, shift;
4093
4094 DEBUGFUNC("e1000_id_led_init_pchlan");
4095
4096 /* Get default ID LED modes */
4097 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4098 if (ret_val)
4099 return ret_val;
4100
4101 mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
4102 mac->ledctl_mode1 = mac->ledctl_default;
4103 mac->ledctl_mode2 = mac->ledctl_default;
4104
4105 for (i = 0; i < 4; i++) {
4106 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4107 shift = (i * 5);
4108 switch (temp) {
4109 case ID_LED_ON1_DEF2:
4110 case ID_LED_ON1_ON2:
4111 case ID_LED_ON1_OFF2:
4112 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4113 mac->ledctl_mode1 |= (ledctl_on << shift);
4114 break;
4115 case ID_LED_OFF1_DEF2:
4116 case ID_LED_OFF1_ON2:
4117 case ID_LED_OFF1_OFF2:
4118 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4119 mac->ledctl_mode1 |= (ledctl_off << shift);
4120 break;
4121 default:
4122 /* Do nothing */
4123 break;
4124 }
4125 switch (temp) {
4126 case ID_LED_DEF1_ON2:
4127 case ID_LED_ON1_ON2:
4128 case ID_LED_OFF1_ON2:
4129 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4130 mac->ledctl_mode2 |= (ledctl_on << shift);
4131 break;
4132 case ID_LED_DEF1_OFF2:
4133 case ID_LED_ON1_OFF2:
4134 case ID_LED_OFF1_OFF2:
4135 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4136 mac->ledctl_mode2 |= (ledctl_off << shift);
4137 break;
4138 default:
4139 /* Do nothing */
4140 break;
4141 }
4142 }
4143
4144 return E1000_SUCCESS;
4145}
4146
4147/**
4148 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4149 * @hw: pointer to the HW structure
4150 *
4151 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4152 * register, so the the bus width is hard coded.
4153 **/
4154static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4155{
4156 struct e1000_bus_info *bus = &hw->bus;
4157 s32 ret_val;
4158
4159 DEBUGFUNC("e1000_get_bus_info_ich8lan");
4160
4161 ret_val = e1000_get_bus_info_pcie_generic(hw);
4162
4163 /* ICH devices are "PCI Express"-ish. They have
4164 * a configuration space, but do not contain
4165 * PCI Express Capability registers, so bus width
4166 * must be hardcoded.
4167 */
4168 if (bus->width == e1000_bus_width_unknown)
4169 bus->width = e1000_bus_width_pcie_x1;
4170
4171 return ret_val;
4172}
4173
4174/**
4175 * e1000_reset_hw_ich8lan - Reset the hardware
4176 * @hw: pointer to the HW structure
4177 *
4178 * Does a full reset of the hardware which includes a reset of the PHY and
4179 * MAC.
4180 **/
4181static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4182{
4183 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4184 u16 kum_cfg;
4185 u32 ctrl, reg;
4186 s32 ret_val;
4187
4188 DEBUGFUNC("e1000_reset_hw_ich8lan");
4189
4190 /* Prevent the PCI-E bus from sticking if there is no TLP connection
4191 * on the last TLP read/write transaction when MAC is reset.
4192 */
4193 ret_val = e1000_disable_pcie_master_generic(hw);
4194 if (ret_val)
4195 DEBUGOUT("PCI-E Master disable polling has failed.\n");
4196
4197 DEBUGOUT("Masking off all interrupts\n");
4198 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4199
4200 /* Disable the Transmit and Receive units. Then delay to allow
4201 * any pending transactions to complete before we hit the MAC
4202 * with the global reset.
4203 */
4204 E1000_WRITE_REG(hw, E1000_RCTL, 0);
4205 E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
4206 E1000_WRITE_FLUSH(hw);
4207
4208 msec_delay(10);
4209
4210 /* Workaround for ICH8 bit corruption issue in FIFO memory */
4211 if (hw->mac.type == e1000_ich8lan) {
4212 /* Set Tx and Rx buffer allocation to 8k apiece. */
4213 E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K);
4214 /* Set Packet Buffer Size to 16k. */
4215 E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K);
4216 }
4217
4218 if (hw->mac.type == e1000_pchlan) {
4219 /* Save the NVM K1 bit setting*/
4220 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4221 if (ret_val)
4222 return ret_val;
4223
4224 if (kum_cfg & E1000_NVM_K1_ENABLE)
4225 dev_spec->nvm_k1_enabled = TRUE;
4226 else
4227 dev_spec->nvm_k1_enabled = FALSE;
4228 }
4229
4230 ctrl = E1000_READ_REG(hw, E1000_CTRL);
4231
4232 if (!hw->phy.ops.check_reset_block(hw)) {
4233 /* Full-chip reset requires MAC and PHY reset at the same
4234 * time to make sure the interface between MAC and the
4235 * external PHY is reset.
4236 */
4237 ctrl |= E1000_CTRL_PHY_RST;
4238
4239 /* Gate automatic PHY configuration by hardware on
4240 * non-managed 82579
4241 */
4242 if ((hw->mac.type == e1000_pch2lan) &&
4243 !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
4244 e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
4245 }
4246 ret_val = e1000_acquire_swflag_ich8lan(hw);
4247 DEBUGOUT("Issuing a global reset to ich8lan\n");
4248 E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST));
4249 /* cannot issue a flush here because it hangs the hardware */
4250 msec_delay(20);
4251
4252 /* Set Phy Config Counter to 50msec */
4253 if (hw->mac.type == e1000_pch2lan) {
4254 reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
4255 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4256 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4257 E1000_WRITE_REG(hw, E1000_FEXTNVM3, reg);
4258 }
4259
4260 if (!ret_val)
4261 E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
4262
4263 if (ctrl & E1000_CTRL_PHY_RST) {
4264 ret_val = hw->phy.ops.get_cfg_done(hw);
4265 if (ret_val)
4266 return ret_val;
4267
4268 ret_val = e1000_post_phy_reset_ich8lan(hw);
4269 if (ret_val)
4270 return ret_val;
4271 }
4272
4273 /* For PCH, this write will make sure that any noise
4274 * will be detected as a CRC error and be dropped rather than show up
4275 * as a bad packet to the DMA engine.
4276 */
4277 if (hw->mac.type == e1000_pchlan)
4278 E1000_WRITE_REG(hw, E1000_CRC_OFFSET, 0x65656565);
4279
4280 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4281 E1000_READ_REG(hw, E1000_ICR);
4282
4283 reg = E1000_READ_REG(hw, E1000_KABGTXD);
4284 reg |= E1000_KABGTXD_BGSQLBIAS;
4285 E1000_WRITE_REG(hw, E1000_KABGTXD, reg);
4286
4287 return E1000_SUCCESS;
4288}
4289
4290/**
4291 * e1000_init_hw_ich8lan - Initialize the hardware
4292 * @hw: pointer to the HW structure
4293 *
4294 * Prepares the hardware for transmit and receive by doing the following:
4295 * - initialize hardware bits
4296 * - initialize LED identification
4297 * - setup receive address registers
4298 * - setup flow control
4299 * - setup transmit descriptors
4300 * - clear statistics
4301 **/
4302static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4303{
4304 struct e1000_mac_info *mac = &hw->mac;
4305 u32 ctrl_ext, txdctl, snoop;
4306 s32 ret_val;
4307 u16 i;
4308
4309 DEBUGFUNC("e1000_init_hw_ich8lan");
4310
4311 e1000_initialize_hw_bits_ich8lan(hw);
4312
4313 /* Initialize identification LED */
4314 ret_val = mac->ops.id_led_init(hw);
4315 /* An error is not fatal and we should not stop init due to this */
4316 if (ret_val)
4317 DEBUGOUT("Error initializing identification LED\n");
4318
4319 /* Setup the receive address. */
4320 e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
4321
4322 /* Zero out the Multicast HASH table */
4323 DEBUGOUT("Zeroing the MTA\n");
4324 for (i = 0; i < mac->mta_reg_count; i++)
4325 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4326
4327 /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4328 * the ME. Disable wakeup by clearing the host wakeup bit.
4329 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4330 */
4331 if (hw->phy.type == e1000_phy_82578) {
4332 hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &i);
4333 i &= ~BM_WUC_HOST_WU_BIT;
4334 hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, i);
4335 ret_val = e1000_phy_hw_reset_ich8lan(hw);
4336 if (ret_val)
4337 return ret_val;
4338 }
4339
4340 /* Setup link and flow control */
4341 ret_val = mac->ops.setup_link(hw);
4342
4343 /* Set the transmit descriptor write-back policy for both queues */
4344 txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
4345 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4346 E1000_TXDCTL_FULL_TX_DESC_WB);
4347 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4348 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4349 E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
4350 txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1));
4351 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4352 E1000_TXDCTL_FULL_TX_DESC_WB);
4353 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4354 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4355 E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl);
4356
4357 /* ICH8 has opposite polarity of no_snoop bits.
4358 * By default, we should use snoop behavior.
4359 */
4360 if (mac->type == e1000_ich8lan)
4361 snoop = PCIE_ICH8_SNOOP_ALL;
4362 else
4363 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
4364 e1000_set_pcie_no_snoop_generic(hw, snoop);
4365
4366 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
4367 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4368 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
4369
4370 /* Clear all of the statistics registers (clear on read). It is
4371 * important that we do this after we have tried to establish link
4372 * because the symbol error count will increment wildly if there
4373 * is no link.
4374 */
4375 e1000_clear_hw_cntrs_ich8lan(hw);
4376
4377 return ret_val;
4378}
4379
4380/**
4381 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4382 * @hw: pointer to the HW structure
4383 *
4384 * Sets/Clears required hardware bits necessary for correctly setting up the
4385 * hardware for transmit and receive.
4386 **/
4387static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4388{
4389 u32 reg;
4390
4391 DEBUGFUNC("e1000_initialize_hw_bits_ich8lan");
4392
4393 /* Extended Device Control */
4394 reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
4395 reg |= (1 << 22);
4396 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4397 if (hw->mac.type >= e1000_pchlan)
4398 reg |= E1000_CTRL_EXT_PHYPDEN;
4399 E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
4400
4401 /* Transmit Descriptor Control 0 */
4402 reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
4403 reg |= (1 << 22);
4404 E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
4405
4406 /* Transmit Descriptor Control 1 */
4407 reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
4408 reg |= (1 << 22);
4409 E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
4410
4411 /* Transmit Arbitration Control 0 */
4412 reg = E1000_READ_REG(hw, E1000_TARC(0));
4413 if (hw->mac.type == e1000_ich8lan)
4414 reg |= (1 << 28) | (1 << 29);
4415 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
4416 E1000_WRITE_REG(hw, E1000_TARC(0), reg);
4417
4418 /* Transmit Arbitration Control 1 */
4419 reg = E1000_READ_REG(hw, E1000_TARC(1));
4420 if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
4421 reg &= ~(1 << 28);
4422 else
4423 reg |= (1 << 28);
4424 reg |= (1 << 24) | (1 << 26) | (1 << 30);
4425 E1000_WRITE_REG(hw, E1000_TARC(1), reg);
4426
4427 /* Device Status */
4428 if (hw->mac.type == e1000_ich8lan) {
4429 reg = E1000_READ_REG(hw, E1000_STATUS);
4430 reg &= ~(1 << 31);
4431 E1000_WRITE_REG(hw, E1000_STATUS, reg);
4432 }
4433
4434 /* work-around descriptor data corruption issue during nfs v2 udp
4435 * traffic, just disable the nfs filtering capability
4436 */
4437 reg = E1000_READ_REG(hw, E1000_RFCTL);
4438 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4439
4440 /* Disable IPv6 extension header parsing because some malformed
4441 * IPv6 headers can hang the Rx.
4442 */
4443 if (hw->mac.type == e1000_ich8lan)
4444 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4445 E1000_WRITE_REG(hw, E1000_RFCTL, reg);
4446
4447 /* Enable ECC on Lynxpoint */
4448 if (hw->mac.type == e1000_pch_lpt) {
4449 reg = E1000_READ_REG(hw, E1000_PBECCSTS);
4450 reg |= E1000_PBECCSTS_ECC_ENABLE;
4451 E1000_WRITE_REG(hw, E1000_PBECCSTS, reg);
4452
4453 reg = E1000_READ_REG(hw, E1000_CTRL);
4454 reg |= E1000_CTRL_MEHE;
4455 E1000_WRITE_REG(hw, E1000_CTRL, reg);
4456 }
4457
4458 return;
4459}
4460
4461/**
4462 * e1000_setup_link_ich8lan - Setup flow control and link settings
4463 * @hw: pointer to the HW structure
4464 *
4465 * Determines which flow control settings to use, then configures flow
4466 * control. Calls the appropriate media-specific link configuration
4467 * function. Assuming the adapter has a valid link partner, a valid link
4468 * should be established. Assumes the hardware has previously been reset
4469 * and the transmitter and receiver are not enabled.
4470 **/
4471static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4472{
4473 s32 ret_val;
4474
4475 DEBUGFUNC("e1000_setup_link_ich8lan");
4476
4477 if (hw->phy.ops.check_reset_block(hw))
4478 return E1000_SUCCESS;
4479
4480 /* ICH parts do not have a word in the NVM to determine
4481 * the default flow control setting, so we explicitly
4482 * set it to full.
4483 */
4484 if (hw->fc.requested_mode == e1000_fc_default)
4485 hw->fc.requested_mode = e1000_fc_full;
4486
4487 /* Save off the requested flow control mode for use later. Depending
4488 * on the link partner's capabilities, we may or may not use this mode.
4489 */
4490 hw->fc.current_mode = hw->fc.requested_mode;
4491
4492 DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
4493 hw->fc.current_mode);
4494
4495 /* Continue to configure the copper link. */
4496 ret_val = hw->mac.ops.setup_physical_interface(hw);
4497 if (ret_val)
4498 return ret_val;
4499
4500 E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
4501 if ((hw->phy.type == e1000_phy_82578) ||
4502 (hw->phy.type == e1000_phy_82579) ||
4503 (hw->phy.type == e1000_phy_i217) ||
4504 (hw->phy.type == e1000_phy_82577)) {
4505 E1000_WRITE_REG(hw, E1000_FCRTV_PCH, hw->fc.refresh_time);
4506
4507 ret_val = hw->phy.ops.write_reg(hw,
4508 PHY_REG(BM_PORT_CTRL_PAGE, 27),
4509 hw->fc.pause_time);
4510 if (ret_val)
4511 return ret_val;
4512 }
4513
4514 return e1000_set_fc_watermarks_generic(hw);
4515}
4516
4517/**
4518 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4519 * @hw: pointer to the HW structure
4520 *
4521 * Configures the kumeran interface to the PHY to wait the appropriate time
4522 * when polling the PHY, then call the generic setup_copper_link to finish
4523 * configuring the copper link.
4524 **/
4525static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4526{
4527 u32 ctrl;
4528 s32 ret_val;
4529 u16 reg_data;
4530
4531 DEBUGFUNC("e1000_setup_copper_link_ich8lan");
4532
4533 ctrl = E1000_READ_REG(hw, E1000_CTRL);
4534 ctrl |= E1000_CTRL_SLU;
4535 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4536 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4537
4538 /* Set the mac to wait the maximum time between each iteration
4539 * and increase the max iterations when polling the phy;
4540 * this fixes erroneous timeouts at 10Mbps.
4541 */
4542 ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_TIMEOUTS,
4543 0xFFFF);
4544 if (ret_val)
4545 return ret_val;
4546 ret_val = e1000_read_kmrn_reg_generic(hw,
4547 E1000_KMRNCTRLSTA_INBAND_PARAM,
4548 &reg_data);
4549 if (ret_val)
4550 return ret_val;
4551 reg_data |= 0x3F;
4552 ret_val = e1000_write_kmrn_reg_generic(hw,
4553 E1000_KMRNCTRLSTA_INBAND_PARAM,
4554 reg_data);
4555 if (ret_val)
4556 return ret_val;
4557
4558 switch (hw->phy.type) {
4559 case e1000_phy_igp_3:
4560 ret_val = e1000_copper_link_setup_igp(hw);
4561 if (ret_val)
4562 return ret_val;
4563 break;
4564 case e1000_phy_bm:
4565 case e1000_phy_82578:
4566 ret_val = e1000_copper_link_setup_m88(hw);
4567 if (ret_val)
4568 return ret_val;
4569 break;
4570 case e1000_phy_82577:
4571 case e1000_phy_82579:
4572 ret_val = e1000_copper_link_setup_82577(hw);
4573 if (ret_val)
4574 return ret_val;
4575 break;
4576 case e1000_phy_ife:
4577 ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
4578 &reg_data);
4579 if (ret_val)
4580 return ret_val;
4581
4582 reg_data &= ~IFE_PMC_AUTO_MDIX;
4583
4584 switch (hw->phy.mdix) {
4585 case 1:
4586 reg_data &= ~IFE_PMC_FORCE_MDIX;
4587 break;
4588 case 2:
4589 reg_data |= IFE_PMC_FORCE_MDIX;
4590 break;
4591 case 0:
4592 default:
4593 reg_data |= IFE_PMC_AUTO_MDIX;
4594 break;
4595 }
4596 ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
4597 reg_data);
4598 if (ret_val)
4599 return ret_val;
4600 break;
4601 default:
4602 break;
4603 }
4604
4605 return e1000_setup_copper_link_generic(hw);
4606}
4607
4608/**
4609 * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
4610 * @hw: pointer to the HW structure
4611 *
4612 * Calls the PHY specific link setup function and then calls the
4613 * generic setup_copper_link to finish configuring the link for
4614 * Lynxpoint PCH devices
4615 **/
4616static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
4617{
4618 u32 ctrl;
4619 s32 ret_val;
4620
4621 DEBUGFUNC("e1000_setup_copper_link_pch_lpt");
4622
4623 ctrl = E1000_READ_REG(hw, E1000_CTRL);
4624 ctrl |= E1000_CTRL_SLU;
4625 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4626 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4627
4628 ret_val = e1000_copper_link_setup_82577(hw);
4629 if (ret_val)
4630 return ret_val;
4631
4632 return e1000_setup_copper_link_generic(hw);
4633}
4634
4635/**
4636 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
4637 * @hw: pointer to the HW structure
4638 * @speed: pointer to store current link speed
4639 * @duplex: pointer to store the current link duplex
4640 *
4641 * Calls the generic get_speed_and_duplex to retrieve the current link
4642 * information and then calls the Kumeran lock loss workaround for links at
4643 * gigabit speeds.
4644 **/
4645static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
4646 u16 *duplex)
4647{
4648 s32 ret_val;
4649
4650 DEBUGFUNC("e1000_get_link_up_info_ich8lan");
4651
4652 ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
4653 if (ret_val)
4654 return ret_val;
4655
4656 if ((hw->mac.type == e1000_ich8lan) &&
4657 (hw->phy.type == e1000_phy_igp_3) &&
4658 (*speed == SPEED_1000)) {
4659 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
4660 }
4661
4662 return ret_val;
4663}
4664
4665/**
4666 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
4667 * @hw: pointer to the HW structure
4668 *
4669 * Work-around for 82566 Kumeran PCS lock loss:
4670 * On link status change (i.e. PCI reset, speed change) and link is up and
4671 * speed is gigabit-
4672 * 0) if workaround is optionally disabled do nothing
4673 * 1) wait 1ms for Kumeran link to come up
4674 * 2) check Kumeran Diagnostic register PCS lock loss bit
4675 * 3) if not set the link is locked (all is good), otherwise...
4676 * 4) reset the PHY
4677 * 5) repeat up to 10 times
4678 * Note: this is only called for IGP3 copper when speed is 1gb.
4679 **/
4680static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
4681{
4682 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4683 u32 phy_ctrl;
4684 s32 ret_val;
4685 u16 i, data;
4686 bool link;
4687
4688 DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan");
4689
4690 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
4691 return E1000_SUCCESS;
4692
4693 /* Make sure link is up before proceeding. If not just return.
4694 * Attempting this while link is negotiating fouled up link
4695 * stability
4696 */
4697 ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
4698 if (!link)
4699 return E1000_SUCCESS;
4700
4701 for (i = 0; i < 10; i++) {
4702 /* read once to clear */
4703 ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
4704 if (ret_val)
4705 return ret_val;
4706 /* and again to get new status */
4707 ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
4708 if (ret_val)
4709 return ret_val;
4710
4711 /* check for PCS lock */
4712 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
4713 return E1000_SUCCESS;
4714
4715 /* Issue PHY reset */
4716 hw->phy.ops.reset(hw);
4717 msec_delay_irq(5);
4718 }
4719 /* Disable GigE link negotiation */
4720 phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
4721 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
4722 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4723 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
4724
4725 /* Call gig speed drop workaround on Gig disable before accessing
4726 * any PHY registers
4727 */
4728 e1000_gig_downshift_workaround_ich8lan(hw);
4729
4730 /* unable to acquire PCS lock */
4731 return -E1000_ERR_PHY;
4732}
4733
4734/**
4735 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
4736 * @hw: pointer to the HW structure
4737 * @state: boolean value used to set the current Kumeran workaround state
4738 *
4739 * If ICH8, set the current Kumeran workaround state (enabled - TRUE
4740 * /disabled - FALSE).
4741 **/
4742void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
4743 bool state)
4744{
4745 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4746
4747 DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan");
4748
4749 if (hw->mac.type != e1000_ich8lan) {
4750 DEBUGOUT("Workaround applies to ICH8 only.\n");
4751 return;
4752 }
4753
4754 dev_spec->kmrn_lock_loss_workaround_enabled = state;
4755
4756 return;
4757}
4758
4759/**
4760 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
4761 * @hw: pointer to the HW structure
4762 *
4763 * Workaround for 82566 power-down on D3 entry:
4764 * 1) disable gigabit link
4765 * 2) write VR power-down enable
4766 * 3) read it back
4767 * Continue if successful, else issue LCD reset and repeat
4768 **/
4769void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
4770{
4771 u32 reg;
4772 u16 data;
4773 u8 retry = 0;
4774
4775 DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan");
4776
4777 if (hw->phy.type != e1000_phy_igp_3)
4778 return;
4779
4780 /* Try the workaround twice (if needed) */
4781 do {
4782 /* Disable link */
4783 reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
4784 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
4785 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4786 E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg);
4787
4788 /* Call gig speed drop workaround on Gig disable before
4789 * accessing any PHY registers
4790 */
4791 if (hw->mac.type == e1000_ich8lan)
4792 e1000_gig_downshift_workaround_ich8lan(hw);
4793
4794 /* Write VR power-down enable */
4795 hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
4796 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4797 hw->phy.ops.write_reg(hw, IGP3_VR_CTRL,
4798 data | IGP3_VR_CTRL_MODE_SHUTDOWN);
4799
4800 /* Read it back and test */
4801 hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
4802 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4803 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
4804 break;
4805
4806 /* Issue PHY reset and repeat at most one more time */
4807 reg = E1000_READ_REG(hw, E1000_CTRL);
4808 E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST);
4809 retry++;
4810 } while (retry);
4811}
4812
4813/**
4814 * e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working
4815 * @hw: pointer to the HW structure
4816 *
4817 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
4818 * LPLU, Gig disable, MDIC PHY reset):
4819 * 1) Set Kumeran Near-end loopback
4820 * 2) Clear Kumeran Near-end loopback
4821 * Should only be called for ICH8[m] devices with any 1G Phy.
4822 **/
4823void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
4824{
4825 s32 ret_val;
4826 u16 reg_data;
4827
4828 DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan");
4829
4830 if ((hw->mac.type != e1000_ich8lan) ||
4831 (hw->phy.type == e1000_phy_ife))
4832 return;
4833
4834 ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4835 &reg_data);
4836 if (ret_val)
4837 return;
4838 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
4839 ret_val = e1000_write_kmrn_reg_generic(hw,
4840 E1000_KMRNCTRLSTA_DIAG_OFFSET,
4841 reg_data);
4842 if (ret_val)
4843 return;
4844 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
4845 e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4846 reg_data);
4847}
4848
4849/**
4850 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
4851 * @hw: pointer to the HW structure
4852 *
4853 * During S0 to Sx transition, it is possible the link remains at gig
4854 * instead of negotiating to a lower speed. Before going to Sx, set
4855 * 'Gig Disable' to force link speed negotiation to a lower speed based on
4856 * the LPLU setting in the NVM or custom setting. For PCH and newer parts,
4857 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
4858 * needs to be written.
4859 * Parts that support (and are linked to a partner which support) EEE in
4860 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
4861 * than 10Mbps w/o EEE.
4862 **/
4863void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
4864{
4865 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4866 u32 phy_ctrl;
4867 s32 ret_val;
4868
4869 DEBUGFUNC("e1000_suspend_workarounds_ich8lan");
4870
4871 phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
4872 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
4873
4874 if (hw->phy.type == e1000_phy_i217) {
4875 u16 phy_reg, device_id = hw->device_id;
4876
4877 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
4878 (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
4879 (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
4880 (device_id == E1000_DEV_ID_PCH_I218_V3)) {
4881 u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
4882
4883 E1000_WRITE_REG(hw, E1000_FEXTNVM6,
4884 fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
4885 }
4886
4887 ret_val = hw->phy.ops.acquire(hw);
4888 if (ret_val)
4889 goto out;
4890
4891 if (!dev_spec->eee_disable) {
4892 u16 eee_advert;
4893
4894 ret_val =
4895 e1000_read_emi_reg_locked(hw,
4896 I217_EEE_ADVERTISEMENT,
4897 &eee_advert);
4898 if (ret_val)
4899 goto release;
4900
4901 /* Disable LPLU if both link partners support 100BaseT
4902 * EEE and 100Full is advertised on both ends of the
4903 * link, and enable Auto Enable LPI since there will
4904 * be no driver to enable LPI while in Sx.
4905 */
4906 if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
4907 (dev_spec->eee_lp_ability &
4908 I82579_EEE_100_SUPPORTED) &&
4909 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
4910 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
4911 E1000_PHY_CTRL_NOND0A_LPLU);
4912
4913 /* Set Auto Enable LPI after link up */
4914 hw->phy.ops.read_reg_locked(hw,
4915 I217_LPI_GPIO_CTRL,
4916 &phy_reg);
4917 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
4918 hw->phy.ops.write_reg_locked(hw,
4919 I217_LPI_GPIO_CTRL,
4920 phy_reg);
4921 }
4922 }
4923
4924 /* For i217 Intel Rapid Start Technology support,
4925 * when the system is going into Sx and no manageability engine
4926 * is present, the driver must configure proxy to reset only on
4927 * power good. LPI (Low Power Idle) state must also reset only
4928 * on power good, as well as the MTA (Multicast table array).
4929 * The SMBus release must also be disabled on LCD reset.
4930 */
4931 if (!(E1000_READ_REG(hw, E1000_FWSM) &
4932 E1000_ICH_FWSM_FW_VALID)) {
4933 /* Enable proxy to reset only on power good. */
4934 hw->phy.ops.read_reg_locked(hw, I217_PROXY_CTRL,
4935 &phy_reg);
4936 phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
4937 hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL,
4938 phy_reg);
4939
4940 /* Set bit enable LPI (EEE) to reset only on
4941 * power good.
4942 */
4943 hw->phy.ops.read_reg_locked(hw, I217_SxCTRL, &phy_reg);
4944 phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
4945 hw->phy.ops.write_reg_locked(hw, I217_SxCTRL, phy_reg);
4946
4947 /* Disable the SMB release on LCD reset. */
4948 hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, &phy_reg);
4949 phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
4950 hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
4951 }
4952
4953 /* Enable MTA to reset for Intel Rapid Start Technology
4954 * Support
4955 */
4956 hw->phy.ops.read_reg_locked(hw, I217_CGFREG, &phy_reg);
4957 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
4958 hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
4959
4960release:
4961 hw->phy.ops.release(hw);
4962 }
4963out:
4964 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
4965
4966 if (hw->mac.type == e1000_ich8lan)
4967 e1000_gig_downshift_workaround_ich8lan(hw);
4968
4969 if (hw->mac.type >= e1000_pchlan) {
4970 e1000_oem_bits_config_ich8lan(hw, FALSE);
4971
4972 /* Reset PHY to activate OEM bits on 82577/8 */
4973 if (hw->mac.type == e1000_pchlan)
4974 e1000_phy_hw_reset_generic(hw);
4975
4976 ret_val = hw->phy.ops.acquire(hw);
4977 if (ret_val)
4978 return;
4979 e1000_write_smbus_addr(hw);
4980 hw->phy.ops.release(hw);
4981 }
4982
4983 return;
4984}
4985
4986/**
4987 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
4988 * @hw: pointer to the HW structure
4989 *
4990 * During Sx to S0 transitions on non-managed devices or managed devices
4991 * on which PHY resets are not blocked, if the PHY registers cannot be
4992 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
4993 * the PHY.
4994 * On i217, setup Intel Rapid Start Technology.
4995 **/
4996void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
4997{
4998 s32 ret_val;
4999
5000 DEBUGFUNC("e1000_resume_workarounds_pchlan");
5001
5002 if (hw->mac.type < e1000_pch2lan)
5003 return;
5004
5005 ret_val = e1000_init_phy_workarounds_pchlan(hw);
5006 if (ret_val) {
5007 DEBUGOUT1("Failed to init PHY flow ret_val=%d\n", ret_val);
5008 return;
5009 }
5010
5011 /* For i217 Intel Rapid Start Technology support when the system
5012 * is transitioning from Sx and no manageability engine is present
5013 * configure SMBus to restore on reset, disable proxy, and enable
5014 * the reset on MTA (Multicast table array).
5015 */
5016 if (hw->phy.type == e1000_phy_i217) {
5017 u16 phy_reg;
5018
5019 ret_val = hw->phy.ops.acquire(hw);
5020 if (ret_val) {
5021 DEBUGOUT("Failed to setup iRST\n");
5022 return;
5023 }
5024
5025 /* Clear Auto Enable LPI after link up */
5026 hw->phy.ops.read_reg_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5027 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5028 hw->phy.ops.write_reg_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5029
5030 if (!(E1000_READ_REG(hw, E1000_FWSM) &
5031 E1000_ICH_FWSM_FW_VALID)) {
5032 /* Restore clear on SMB if no manageability engine
5033 * is present
5034 */
5035 ret_val = hw->phy.ops.read_reg_locked(hw, I217_MEMPWR,
5036 &phy_reg);
5037 if (ret_val)
5038 goto release;
5039 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5040 hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5041
5042 /* Disable Proxy */
5043 hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, 0);
5044 }
5045 /* Enable reset on MTA */
5046 ret_val = hw->phy.ops.read_reg_locked(hw, I217_CGFREG,
5047 &phy_reg);
5048 if (ret_val)
5049 goto release;
5050 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5051 hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5052release:
5053 if (ret_val)
5054 DEBUGOUT1("Error %d in resume workarounds\n", ret_val);
5055 hw->phy.ops.release(hw);
5056 }
5057}
5058
5059/**
5060 * e1000_cleanup_led_ich8lan - Restore the default LED operation
5061 * @hw: pointer to the HW structure
5062 *
5063 * Return the LED back to the default configuration.
5064 **/
5065static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5066{
5067 DEBUGFUNC("e1000_cleanup_led_ich8lan");
5068
5069 if (hw->phy.type == e1000_phy_ife)
5070 return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5071 0);
5072
5073 E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
5074 return E1000_SUCCESS;
5075}
5076
5077/**
5078 * e1000_led_on_ich8lan - Turn LEDs on
5079 * @hw: pointer to the HW structure
5080 *
5081 * Turn on the LEDs.
5082 **/
5083static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5084{
5085 DEBUGFUNC("e1000_led_on_ich8lan");
5086
5087 if (hw->phy.type == e1000_phy_ife)
5088 return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5089 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5090
5091 E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
5092 return E1000_SUCCESS;
5093}
5094
5095/**
5096 * e1000_led_off_ich8lan - Turn LEDs off
5097 * @hw: pointer to the HW structure
5098 *
5099 * Turn off the LEDs.
5100 **/
5101static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5102{
5103 DEBUGFUNC("e1000_led_off_ich8lan");
5104
5105 if (hw->phy.type == e1000_phy_ife)
5106 return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5107 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
5108
5109 E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
5110 return E1000_SUCCESS;
5111}
5112
5113/**
5114 * e1000_setup_led_pchlan - Configures SW controllable LED
5115 * @hw: pointer to the HW structure
5116 *
5117 * This prepares the SW controllable LED for use.
5118 **/
5119static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5120{
5121 DEBUGFUNC("e1000_setup_led_pchlan");
5122
5123 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5124 (u16)hw->mac.ledctl_mode1);
5125}
5126
5127/**
5128 * e1000_cleanup_led_pchlan - Restore the default LED operation
5129 * @hw: pointer to the HW structure
5130 *
5131 * Return the LED back to the default configuration.
5132 **/
5133static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5134{
5135 DEBUGFUNC("e1000_cleanup_led_pchlan");
5136
5137 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5138 (u16)hw->mac.ledctl_default);
5139}
5140
5141/**
5142 * e1000_led_on_pchlan - Turn LEDs on
5143 * @hw: pointer to the HW structure
5144 *
5145 * Turn on the LEDs.
5146 **/
5147static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5148{
5149 u16 data = (u16)hw->mac.ledctl_mode2;
5150 u32 i, led;
5151
5152 DEBUGFUNC("e1000_led_on_pchlan");
5153
5154 /* If no link, then turn LED on by setting the invert bit
5155 * for each LED that's mode is "link_up" in ledctl_mode2.
5156 */
5157 if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5158 for (i = 0; i < 3; i++) {
5159 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5160 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5161 E1000_LEDCTL_MODE_LINK_UP)
5162 continue;
5163 if (led & E1000_PHY_LED0_IVRT)
5164 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5165 else
5166 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5167 }
5168 }
5169
5170 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5171}
5172
5173/**
5174 * e1000_led_off_pchlan - Turn LEDs off
5175 * @hw: pointer to the HW structure
5176 *
5177 * Turn off the LEDs.
5178 **/
5179static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5180{
5181 u16 data = (u16)hw->mac.ledctl_mode1;
5182 u32 i, led;
5183
5184 DEBUGFUNC("e1000_led_off_pchlan");
5185
5186 /* If no link, then turn LED off by clearing the invert bit
5187 * for each LED that's mode is "link_up" in ledctl_mode1.
5188 */
5189 if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5190 for (i = 0; i < 3; i++) {
5191 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5192 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5193 E1000_LEDCTL_MODE_LINK_UP)
5194 continue;
5195 if (led & E1000_PHY_LED0_IVRT)
5196 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5197 else
5198 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5199 }
5200 }
5201
5202 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5203}
5204
5205/**
5206 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5207 * @hw: pointer to the HW structure
5208 *
5209 * Read appropriate register for the config done bit for completion status
5210 * and configure the PHY through s/w for EEPROM-less parts.
5211 *
5212 * NOTE: some silicon which is EEPROM-less will fail trying to read the
5213 * config done bit, so only an error is logged and continues. If we were
5214 * to return with error, EEPROM-less silicon would not be able to be reset
5215 * or change link.
5216 **/
5217static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5218{
5219 s32 ret_val = E1000_SUCCESS;
5220 u32 bank = 0;
5221 u32 status;
5222
5223 DEBUGFUNC("e1000_get_cfg_done_ich8lan");
5224
5225 e1000_get_cfg_done_generic(hw);
5226
5227 /* Wait for indication from h/w that it has completed basic config */
5228 if (hw->mac.type >= e1000_ich10lan) {
5229 e1000_lan_init_done_ich8lan(hw);
5230 } else {
5231 ret_val = e1000_get_auto_rd_done_generic(hw);
5232 if (ret_val) {
5233 /* When auto config read does not complete, do not
5234 * return with an error. This can happen in situations
5235 * where there is no eeprom and prevents getting link.
5236 */
5237 DEBUGOUT("Auto Read Done did not complete\n");
5238 ret_val = E1000_SUCCESS;
5239 }
5240 }
5241
5242 /* Clear PHY Reset Asserted bit */
5243 status = E1000_READ_REG(hw, E1000_STATUS);
5244 if (status & E1000_STATUS_PHYRA)
5245 E1000_WRITE_REG(hw, E1000_STATUS, status & ~E1000_STATUS_PHYRA);
5246 else
5247 DEBUGOUT("PHY Reset Asserted not set - needs delay\n");
5248
5249 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
5250 if (hw->mac.type <= e1000_ich9lan) {
5251 if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
5252 (hw->phy.type == e1000_phy_igp_3)) {
5253 e1000_phy_init_script_igp3(hw);
5254 }
5255 } else {
5256 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5257 /* Maybe we should do a basic PHY config */
5258 DEBUGOUT("EEPROM not present\n");
5259 ret_val = -E1000_ERR_CONFIG;
5260 }
5261 }
5262
5263 return ret_val;
5264}
5265
5266/**
5267 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5268 * @hw: pointer to the HW structure
5269 *
5270 * In the case of a PHY power down to save power, or to turn off link during a
5271 * driver unload, or wake on lan is not enabled, remove the link.
5272 **/
5273static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5274{
5275 /* If the management interface is not enabled, then power down */
5276 if (!(hw->mac.ops.check_mng_mode(hw) ||
5277 hw->phy.ops.check_reset_block(hw)))
5278 e1000_power_down_phy_copper(hw);
5279
5280 return;
5281}
5282
5283/**
5284 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5285 * @hw: pointer to the HW structure
5286 *
5287 * Clears hardware counters specific to the silicon family and calls
5288 * clear_hw_cntrs_generic to clear all general purpose counters.
5289 **/
5290static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5291{
5292 u16 phy_data;
5293 s32 ret_val;
5294
5295 DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan");
5296
5297 e1000_clear_hw_cntrs_base_generic(hw);
5298
5299 E1000_READ_REG(hw, E1000_ALGNERRC);
5300 E1000_READ_REG(hw, E1000_RXERRC);
5301 E1000_READ_REG(hw, E1000_TNCRS);
5302 E1000_READ_REG(hw, E1000_CEXTERR);
5303 E1000_READ_REG(hw, E1000_TSCTC);
5304 E1000_READ_REG(hw, E1000_TSCTFC);
5305
5306 E1000_READ_REG(hw, E1000_MGTPRC);
5307 E1000_READ_REG(hw, E1000_MGTPDC);
5308 E1000_READ_REG(hw, E1000_MGTPTC);
5309
5310 E1000_READ_REG(hw, E1000_IAC);
5311 E1000_READ_REG(hw, E1000_ICRXOC);
5312
5313 /* Clear PHY statistics registers */
5314 if ((hw->phy.type == e1000_phy_82578) ||
5315 (hw->phy.type == e1000_phy_82579) ||
5316 (hw->phy.type == e1000_phy_i217) ||
5317 (hw->phy.type == e1000_phy_82577)) {
5318 ret_val = hw->phy.ops.acquire(hw);
5319 if (ret_val)
5320 return;
5321 ret_val = hw->phy.ops.set_page(hw,
5322 HV_STATS_PAGE << IGP_PAGE_SHIFT);
5323 if (ret_val)
5324 goto release;
5325 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5326 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5327 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5328 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5329 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5330 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5331 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5332 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5333 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5334 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5335 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5336 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5337 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5338 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5339release:
5340 hw->phy.ops.release(hw);
5341 }
5342}
5343
34
35/* 82562G 10/100 Network Connection
36 * 82562G-2 10/100 Network Connection
37 * 82562GT 10/100 Network Connection
38 * 82562GT-2 10/100 Network Connection
39 * 82562V 10/100 Network Connection
40 * 82562V-2 10/100 Network Connection
41 * 82566DC-2 Gigabit Network Connection
42 * 82566DC Gigabit Network Connection
43 * 82566DM-2 Gigabit Network Connection
44 * 82566DM Gigabit Network Connection
45 * 82566MC Gigabit Network Connection
46 * 82566MM Gigabit Network Connection
47 * 82567LM Gigabit Network Connection
48 * 82567LF Gigabit Network Connection
49 * 82567V Gigabit Network Connection
50 * 82567LM-2 Gigabit Network Connection
51 * 82567LF-2 Gigabit Network Connection
52 * 82567V-2 Gigabit Network Connection
53 * 82567LF-3 Gigabit Network Connection
54 * 82567LM-3 Gigabit Network Connection
55 * 82567LM-4 Gigabit Network Connection
56 * 82577LM Gigabit Network Connection
57 * 82577LC Gigabit Network Connection
58 * 82578DM Gigabit Network Connection
59 * 82578DC Gigabit Network Connection
60 * 82579LM Gigabit Network Connection
61 * 82579V Gigabit Network Connection
62 * Ethernet Connection I217-LM
63 * Ethernet Connection I217-V
64 * Ethernet Connection I218-V
65 * Ethernet Connection I218-LM
66 * Ethernet Connection (2) I218-LM
67 * Ethernet Connection (2) I218-V
68 * Ethernet Connection (3) I218-LM
69 * Ethernet Connection (3) I218-V
70 */
71
72#include "e1000_api.h"
73
74static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw);
75static void e1000_release_swflag_ich8lan(struct e1000_hw *hw);
76static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw);
77static void e1000_release_nvm_ich8lan(struct e1000_hw *hw);
78static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
79static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
80static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
81static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
82static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw);
83static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
84 u8 *mc_addr_list,
85 u32 mc_addr_count);
86static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw);
87static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw);
88static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
89static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw,
90 bool active);
91static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw,
92 bool active);
93static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
94 u16 words, u16 *data);
95static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
96 u16 words, u16 *data);
97static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw);
98static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw);
99static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw,
100 u16 *data);
101static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
102static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw);
103static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw);
104static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw);
105static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
106static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
107static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
108static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw,
109 u16 *speed, u16 *duplex);
110static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
111static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
112static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
113static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
114static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
115static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
116static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
117static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
118static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
119static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
120static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
121static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
122static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw,
123 u32 offset, u8 *data);
124static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
125 u8 size, u16 *data);
126static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw,
127 u32 offset, u16 *data);
128static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
129 u32 offset, u8 byte);
130static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
131static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
132static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw);
133static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
134static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
135static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
136static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr);
137
138/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
139/* Offset 04h HSFSTS */
140union ich8_hws_flash_status {
141 struct ich8_hsfsts {
142 u16 flcdone:1; /* bit 0 Flash Cycle Done */
143 u16 flcerr:1; /* bit 1 Flash Cycle Error */
144 u16 dael:1; /* bit 2 Direct Access error Log */
145 u16 berasesz:2; /* bit 4:3 Sector Erase Size */
146 u16 flcinprog:1; /* bit 5 flash cycle in Progress */
147 u16 reserved1:2; /* bit 13:6 Reserved */
148 u16 reserved2:6; /* bit 13:6 Reserved */
149 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
150 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
151 } hsf_status;
152 u16 regval;
153};
154
155/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
156/* Offset 06h FLCTL */
157union ich8_hws_flash_ctrl {
158 struct ich8_hsflctl {
159 u16 flcgo:1; /* 0 Flash Cycle Go */
160 u16 flcycle:2; /* 2:1 Flash Cycle */
161 u16 reserved:5; /* 7:3 Reserved */
162 u16 fldbcount:2; /* 9:8 Flash Data Byte Count */
163 u16 flockdn:6; /* 15:10 Reserved */
164 } hsf_ctrl;
165 u16 regval;
166};
167
168/* ICH Flash Region Access Permissions */
169union ich8_hws_flash_regacc {
170 struct ich8_flracc {
171 u32 grra:8; /* 0:7 GbE region Read Access */
172 u32 grwa:8; /* 8:15 GbE region Write Access */
173 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
174 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
175 } hsf_flregacc;
176 u16 regval;
177};
178
179/**
180 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
181 * @hw: pointer to the HW structure
182 *
183 * Test access to the PHY registers by reading the PHY ID registers. If
184 * the PHY ID is already known (e.g. resume path) compare it with known ID,
185 * otherwise assume the read PHY ID is correct if it is valid.
186 *
187 * Assumes the sw/fw/hw semaphore is already acquired.
188 **/
189static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
190{
191 u16 phy_reg = 0;
192 u32 phy_id = 0;
193 s32 ret_val = 0;
194 u16 retry_count;
195 u32 mac_reg = 0;
196
197 for (retry_count = 0; retry_count < 2; retry_count++) {
198 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_reg);
199 if (ret_val || (phy_reg == 0xFFFF))
200 continue;
201 phy_id = (u32)(phy_reg << 16);
202
203 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_reg);
204 if (ret_val || (phy_reg == 0xFFFF)) {
205 phy_id = 0;
206 continue;
207 }
208 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
209 break;
210 }
211
212 if (hw->phy.id) {
213 if (hw->phy.id == phy_id)
214 goto out;
215 } else if (phy_id) {
216 hw->phy.id = phy_id;
217 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
218 goto out;
219 }
220
221 /* In case the PHY needs to be in mdio slow mode,
222 * set slow mode and try to get the PHY id again.
223 */
224 if (hw->mac.type < e1000_pch_lpt) {
225 hw->phy.ops.release(hw);
226 ret_val = e1000_set_mdio_slow_mode_hv(hw);
227 if (!ret_val)
228 ret_val = e1000_get_phy_id(hw);
229 hw->phy.ops.acquire(hw);
230 }
231
232 if (ret_val)
233 return FALSE;
234out:
235 if (hw->mac.type == e1000_pch_lpt) {
236 /* Unforce SMBus mode in PHY */
237 hw->phy.ops.read_reg_locked(hw, CV_SMB_CTRL, &phy_reg);
238 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
239 hw->phy.ops.write_reg_locked(hw, CV_SMB_CTRL, phy_reg);
240
241 /* Unforce SMBus mode in MAC */
242 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
243 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
244 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
245 }
246
247 return TRUE;
248}
249
250/**
251 * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
252 * @hw: pointer to the HW structure
253 *
254 * Toggling the LANPHYPC pin value fully power-cycles the PHY and is
255 * used to reset the PHY to a quiescent state when necessary.
256 **/
257static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
258{
259 u32 mac_reg;
260
261 DEBUGFUNC("e1000_toggle_lanphypc_pch_lpt");
262
263 /* Set Phy Config Counter to 50msec */
264 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
265 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
266 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
267 E1000_WRITE_REG(hw, E1000_FEXTNVM3, mac_reg);
268
269 /* Toggle LANPHYPC Value bit */
270 mac_reg = E1000_READ_REG(hw, E1000_CTRL);
271 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
272 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
273 E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
274 E1000_WRITE_FLUSH(hw);
275 usec_delay(10);
276 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
277 E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
278 E1000_WRITE_FLUSH(hw);
279
280 if (hw->mac.type < e1000_pch_lpt) {
281 msec_delay(50);
282 } else {
283 u16 count = 20;
284
285 do {
286 msec_delay(5);
287 } while (!(E1000_READ_REG(hw, E1000_CTRL_EXT) &
288 E1000_CTRL_EXT_LPCD) && count--);
289
290 msec_delay(30);
291 }
292}
293
294/**
295 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
296 * @hw: pointer to the HW structure
297 *
298 * Workarounds/flow necessary for PHY initialization during driver load
299 * and resume paths.
300 **/
301static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
302{
303 u32 mac_reg, fwsm = E1000_READ_REG(hw, E1000_FWSM);
304 s32 ret_val;
305
306 DEBUGFUNC("e1000_init_phy_workarounds_pchlan");
307
308 /* Gate automatic PHY configuration by hardware on managed and
309 * non-managed 82579 and newer adapters.
310 */
311 e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
312
313 /* It is not possible to be certain of the current state of ULP
314 * so forcibly disable it.
315 */
316 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
317 e1000_disable_ulp_lpt_lp(hw, TRUE);
318
319 ret_val = hw->phy.ops.acquire(hw);
320 if (ret_val) {
321 DEBUGOUT("Failed to initialize PHY flow\n");
322 goto out;
323 }
324
325 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is
326 * inaccessible and resetting the PHY is not blocked, toggle the
327 * LANPHYPC Value bit to force the interconnect to PCIe mode.
328 */
329 switch (hw->mac.type) {
330 case e1000_pch_lpt:
331 if (e1000_phy_is_accessible_pchlan(hw))
332 break;
333
334 /* Before toggling LANPHYPC, see if PHY is accessible by
335 * forcing MAC to SMBus mode first.
336 */
337 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
338 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
339 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
340
341 /* Wait 50 milliseconds for MAC to finish any retries
342 * that it might be trying to perform from previous
343 * attempts to acknowledge any phy read requests.
344 */
345 msec_delay(50);
346
347 /* fall-through */
348 case e1000_pch2lan:
349 if (e1000_phy_is_accessible_pchlan(hw))
350 break;
351
352 /* fall-through */
353 case e1000_pchlan:
354 if ((hw->mac.type == e1000_pchlan) &&
355 (fwsm & E1000_ICH_FWSM_FW_VALID))
356 break;
357
358 if (hw->phy.ops.check_reset_block(hw)) {
359 DEBUGOUT("Required LANPHYPC toggle blocked by ME\n");
360 ret_val = -E1000_ERR_PHY;
361 break;
362 }
363
364 /* Toggle LANPHYPC Value bit */
365 e1000_toggle_lanphypc_pch_lpt(hw);
366 if (hw->mac.type >= e1000_pch_lpt) {
367 if (e1000_phy_is_accessible_pchlan(hw))
368 break;
369
370 /* Toggling LANPHYPC brings the PHY out of SMBus mode
371 * so ensure that the MAC is also out of SMBus mode
372 */
373 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
374 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
375 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
376
377 if (e1000_phy_is_accessible_pchlan(hw))
378 break;
379
380 ret_val = -E1000_ERR_PHY;
381 }
382 break;
383 default:
384 break;
385 }
386
387 hw->phy.ops.release(hw);
388 if (!ret_val) {
389
390 /* Check to see if able to reset PHY. Print error if not */
391 if (hw->phy.ops.check_reset_block(hw)) {
392 ERROR_REPORT("Reset blocked by ME\n");
393 goto out;
394 }
395
396 /* Reset the PHY before any access to it. Doing so, ensures
397 * that the PHY is in a known good state before we read/write
398 * PHY registers. The generic reset is sufficient here,
399 * because we haven't determined the PHY type yet.
400 */
401 ret_val = e1000_phy_hw_reset_generic(hw);
402 if (ret_val)
403 goto out;
404
405 /* On a successful reset, possibly need to wait for the PHY
406 * to quiesce to an accessible state before returning control
407 * to the calling function. If the PHY does not quiesce, then
408 * return E1000E_BLK_PHY_RESET, as this is the condition that
409 * the PHY is in.
410 */
411 ret_val = hw->phy.ops.check_reset_block(hw);
412 if (ret_val)
413 ERROR_REPORT("ME blocked access to PHY after reset\n");
414 }
415
416out:
417 /* Ungate automatic PHY configuration on non-managed 82579 */
418 if ((hw->mac.type == e1000_pch2lan) &&
419 !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
420 msec_delay(10);
421 e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
422 }
423
424 return ret_val;
425}
426
427/**
428 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
429 * @hw: pointer to the HW structure
430 *
431 * Initialize family-specific PHY parameters and function pointers.
432 **/
433static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
434{
435 struct e1000_phy_info *phy = &hw->phy;
436 s32 ret_val;
437
438 DEBUGFUNC("e1000_init_phy_params_pchlan");
439
440 phy->addr = 1;
441 phy->reset_delay_us = 100;
442
443 phy->ops.acquire = e1000_acquire_swflag_ich8lan;
444 phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
445 phy->ops.get_cfg_done = e1000_get_cfg_done_ich8lan;
446 phy->ops.set_page = e1000_set_page_igp;
447 phy->ops.read_reg = e1000_read_phy_reg_hv;
448 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
449 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
450 phy->ops.release = e1000_release_swflag_ich8lan;
451 phy->ops.reset = e1000_phy_hw_reset_ich8lan;
452 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
453 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
454 phy->ops.write_reg = e1000_write_phy_reg_hv;
455 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
456 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
457 phy->ops.power_up = e1000_power_up_phy_copper;
458 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
459 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
460
461 phy->id = e1000_phy_unknown;
462
463 ret_val = e1000_init_phy_workarounds_pchlan(hw);
464 if (ret_val)
465 return ret_val;
466
467 if (phy->id == e1000_phy_unknown)
468 switch (hw->mac.type) {
469 default:
470 ret_val = e1000_get_phy_id(hw);
471 if (ret_val)
472 return ret_val;
473 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
474 break;
475 /* fall-through */
476 case e1000_pch2lan:
477 case e1000_pch_lpt:
478 /* In case the PHY needs to be in mdio slow mode,
479 * set slow mode and try to get the PHY id again.
480 */
481 ret_val = e1000_set_mdio_slow_mode_hv(hw);
482 if (ret_val)
483 return ret_val;
484 ret_val = e1000_get_phy_id(hw);
485 if (ret_val)
486 return ret_val;
487 break;
488 }
489 phy->type = e1000_get_phy_type_from_id(phy->id);
490
491 switch (phy->type) {
492 case e1000_phy_82577:
493 case e1000_phy_82579:
494 case e1000_phy_i217:
495 phy->ops.check_polarity = e1000_check_polarity_82577;
496 phy->ops.force_speed_duplex =
497 e1000_phy_force_speed_duplex_82577;
498 phy->ops.get_cable_length = e1000_get_cable_length_82577;
499 phy->ops.get_info = e1000_get_phy_info_82577;
500 phy->ops.commit = e1000_phy_sw_reset_generic;
501 break;
502 case e1000_phy_82578:
503 phy->ops.check_polarity = e1000_check_polarity_m88;
504 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
505 phy->ops.get_cable_length = e1000_get_cable_length_m88;
506 phy->ops.get_info = e1000_get_phy_info_m88;
507 break;
508 default:
509 ret_val = -E1000_ERR_PHY;
510 break;
511 }
512
513 return ret_val;
514}
515
516/**
517 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
518 * @hw: pointer to the HW structure
519 *
520 * Initialize family-specific PHY parameters and function pointers.
521 **/
522static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
523{
524 struct e1000_phy_info *phy = &hw->phy;
525 s32 ret_val;
526 u16 i = 0;
527
528 DEBUGFUNC("e1000_init_phy_params_ich8lan");
529
530 phy->addr = 1;
531 phy->reset_delay_us = 100;
532
533 phy->ops.acquire = e1000_acquire_swflag_ich8lan;
534 phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
535 phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
536 phy->ops.get_cfg_done = e1000_get_cfg_done_ich8lan;
537 phy->ops.read_reg = e1000_read_phy_reg_igp;
538 phy->ops.release = e1000_release_swflag_ich8lan;
539 phy->ops.reset = e1000_phy_hw_reset_ich8lan;
540 phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan;
541 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan;
542 phy->ops.write_reg = e1000_write_phy_reg_igp;
543 phy->ops.power_up = e1000_power_up_phy_copper;
544 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
545
546 /* We may need to do this twice - once for IGP and if that fails,
547 * we'll set BM func pointers and try again
548 */
549 ret_val = e1000_determine_phy_address(hw);
550 if (ret_val) {
551 phy->ops.write_reg = e1000_write_phy_reg_bm;
552 phy->ops.read_reg = e1000_read_phy_reg_bm;
553 ret_val = e1000_determine_phy_address(hw);
554 if (ret_val) {
555 DEBUGOUT("Cannot determine PHY addr. Erroring out\n");
556 return ret_val;
557 }
558 }
559
560 phy->id = 0;
561 while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) &&
562 (i++ < 100)) {
563 msec_delay(1);
564 ret_val = e1000_get_phy_id(hw);
565 if (ret_val)
566 return ret_val;
567 }
568
569 /* Verify phy id */
570 switch (phy->id) {
571 case IGP03E1000_E_PHY_ID:
572 phy->type = e1000_phy_igp_3;
573 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
574 phy->ops.read_reg_locked = e1000_read_phy_reg_igp_locked;
575 phy->ops.write_reg_locked = e1000_write_phy_reg_igp_locked;
576 phy->ops.get_info = e1000_get_phy_info_igp;
577 phy->ops.check_polarity = e1000_check_polarity_igp;
578 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
579 break;
580 case IFE_E_PHY_ID:
581 case IFE_PLUS_E_PHY_ID:
582 case IFE_C_E_PHY_ID:
583 phy->type = e1000_phy_ife;
584 phy->autoneg_mask = E1000_ALL_NOT_GIG;
585 phy->ops.get_info = e1000_get_phy_info_ife;
586 phy->ops.check_polarity = e1000_check_polarity_ife;
587 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
588 break;
589 case BME1000_E_PHY_ID:
590 phy->type = e1000_phy_bm;
591 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
592 phy->ops.read_reg = e1000_read_phy_reg_bm;
593 phy->ops.write_reg = e1000_write_phy_reg_bm;
594 phy->ops.commit = e1000_phy_sw_reset_generic;
595 phy->ops.get_info = e1000_get_phy_info_m88;
596 phy->ops.check_polarity = e1000_check_polarity_m88;
597 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
598 break;
599 default:
600 return -E1000_ERR_PHY;
601 break;
602 }
603
604 return E1000_SUCCESS;
605}
606
607/**
608 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
609 * @hw: pointer to the HW structure
610 *
611 * Initialize family-specific NVM parameters and function
612 * pointers.
613 **/
614static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
615{
616 struct e1000_nvm_info *nvm = &hw->nvm;
617 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
618 u32 gfpreg, sector_base_addr, sector_end_addr;
619 u16 i;
620
621 DEBUGFUNC("e1000_init_nvm_params_ich8lan");
622
623 /* Can't read flash registers if the register set isn't mapped. */
624 nvm->type = e1000_nvm_flash_sw;
625 if (!hw->flash_address) {
626 DEBUGOUT("ERROR: Flash registers not mapped\n");
627 return -E1000_ERR_CONFIG;
628 }
629
630 gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG);
631
632 /* sector_X_addr is a "sector"-aligned address (4096 bytes)
633 * Add 1 to sector_end_addr since this sector is included in
634 * the overall size.
635 */
636 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
637 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
638
639 /* flash_base_addr is byte-aligned */
640 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
641
642 /* find total size of the NVM, then cut in half since the total
643 * size represents two separate NVM banks.
644 */
645 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
646 << FLASH_SECTOR_ADDR_SHIFT);
647 nvm->flash_bank_size /= 2;
648 /* Adjust to word count */
649 nvm->flash_bank_size /= sizeof(u16);
650
651 nvm->word_size = E1000_SHADOW_RAM_WORDS;
652
653 /* Clear shadow ram */
654 for (i = 0; i < nvm->word_size; i++) {
655 dev_spec->shadow_ram[i].modified = FALSE;
656 dev_spec->shadow_ram[i].value = 0xFFFF;
657 }
658
659 E1000_MUTEX_INIT(&dev_spec->nvm_mutex);
660 E1000_MUTEX_INIT(&dev_spec->swflag_mutex);
661
662 /* Function Pointers */
663 nvm->ops.acquire = e1000_acquire_nvm_ich8lan;
664 nvm->ops.release = e1000_release_nvm_ich8lan;
665 nvm->ops.read = e1000_read_nvm_ich8lan;
666 nvm->ops.update = e1000_update_nvm_checksum_ich8lan;
667 nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan;
668 nvm->ops.validate = e1000_validate_nvm_checksum_ich8lan;
669 nvm->ops.write = e1000_write_nvm_ich8lan;
670
671 return E1000_SUCCESS;
672}
673
674/**
675 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
676 * @hw: pointer to the HW structure
677 *
678 * Initialize family-specific MAC parameters and function
679 * pointers.
680 **/
681static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
682{
683 struct e1000_mac_info *mac = &hw->mac;
684#if defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT)
685 u16 pci_cfg;
686#endif /* QV_RELEASE || !defined(NO_PCH_LPT_B0_SUPPORT) */
687
688 DEBUGFUNC("e1000_init_mac_params_ich8lan");
689
690 /* Set media type function pointer */
691 hw->phy.media_type = e1000_media_type_copper;
692
693 /* Set mta register count */
694 mac->mta_reg_count = 32;
695 /* Set rar entry count */
696 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
697 if (mac->type == e1000_ich8lan)
698 mac->rar_entry_count--;
699 /* Set if part includes ASF firmware */
700 mac->asf_firmware_present = TRUE;
701 /* FWSM register */
702 mac->has_fwsm = TRUE;
703 /* ARC subsystem not supported */
704 mac->arc_subsystem_valid = FALSE;
705 /* Adaptive IFS supported */
706 mac->adaptive_ifs = TRUE;
707
708 /* Function pointers */
709
710 /* bus type/speed/width */
711 mac->ops.get_bus_info = e1000_get_bus_info_ich8lan;
712 /* function id */
713 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
714 /* reset */
715 mac->ops.reset_hw = e1000_reset_hw_ich8lan;
716 /* hw initialization */
717 mac->ops.init_hw = e1000_init_hw_ich8lan;
718 /* link setup */
719 mac->ops.setup_link = e1000_setup_link_ich8lan;
720 /* physical interface setup */
721 mac->ops.setup_physical_interface = e1000_setup_copper_link_ich8lan;
722 /* check for link */
723 mac->ops.check_for_link = e1000_check_for_copper_link_ich8lan;
724 /* link info */
725 mac->ops.get_link_up_info = e1000_get_link_up_info_ich8lan;
726 /* multicast address update */
727 mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
728 /* clear hardware counters */
729 mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan;
730
731 /* LED and other operations */
732 switch (mac->type) {
733 case e1000_ich8lan:
734 case e1000_ich9lan:
735 case e1000_ich10lan:
736 /* check management mode */
737 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
738 /* ID LED init */
739 mac->ops.id_led_init = e1000_id_led_init_generic;
740 /* blink LED */
741 mac->ops.blink_led = e1000_blink_led_generic;
742 /* setup LED */
743 mac->ops.setup_led = e1000_setup_led_generic;
744 /* cleanup LED */
745 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
746 /* turn on/off LED */
747 mac->ops.led_on = e1000_led_on_ich8lan;
748 mac->ops.led_off = e1000_led_off_ich8lan;
749 break;
750 case e1000_pch2lan:
751 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
752 mac->ops.rar_set = e1000_rar_set_pch2lan;
753 /* fall-through */
754 case e1000_pch_lpt:
755 /* multicast address update for pch2 */
756 mac->ops.update_mc_addr_list =
757 e1000_update_mc_addr_list_pch2lan;
758 case e1000_pchlan:
759#if defined(QV_RELEASE) || !defined(NO_PCH_LPT_B0_SUPPORT)
760 /* save PCH revision_id */
761 e1000_read_pci_cfg(hw, E1000_PCI_REVISION_ID_REG, &pci_cfg);
762 hw->revision_id = (u8)(pci_cfg &= 0x000F);
763#endif /* QV_RELEASE || !defined(NO_PCH_LPT_B0_SUPPORT) */
764 /* check management mode */
765 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
766 /* ID LED init */
767 mac->ops.id_led_init = e1000_id_led_init_pchlan;
768 /* setup LED */
769 mac->ops.setup_led = e1000_setup_led_pchlan;
770 /* cleanup LED */
771 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
772 /* turn on/off LED */
773 mac->ops.led_on = e1000_led_on_pchlan;
774 mac->ops.led_off = e1000_led_off_pchlan;
775 break;
776 default:
777 break;
778 }
779
780 if (mac->type == e1000_pch_lpt) {
781 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
782 mac->ops.rar_set = e1000_rar_set_pch_lpt;
783 mac->ops.setup_physical_interface = e1000_setup_copper_link_pch_lpt;
784 mac->ops.set_obff_timer = e1000_set_obff_timer_pch_lpt;
785 }
786
787 /* Enable PCS Lock-loss workaround for ICH8 */
788 if (mac->type == e1000_ich8lan)
789 e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, TRUE);
790
791 return E1000_SUCCESS;
792}
793
794/**
795 * __e1000_access_emi_reg_locked - Read/write EMI register
796 * @hw: pointer to the HW structure
797 * @addr: EMI address to program
798 * @data: pointer to value to read/write from/to the EMI address
799 * @read: boolean flag to indicate read or write
800 *
801 * This helper function assumes the SW/FW/HW Semaphore is already acquired.
802 **/
803static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
804 u16 *data, bool read)
805{
806 s32 ret_val;
807
808 DEBUGFUNC("__e1000_access_emi_reg_locked");
809
810 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, address);
811 if (ret_val)
812 return ret_val;
813
814 if (read)
815 ret_val = hw->phy.ops.read_reg_locked(hw, I82579_EMI_DATA,
816 data);
817 else
818 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
819 *data);
820
821 return ret_val;
822}
823
824/**
825 * e1000_read_emi_reg_locked - Read Extended Management Interface register
826 * @hw: pointer to the HW structure
827 * @addr: EMI address to program
828 * @data: value to be read from the EMI address
829 *
830 * Assumes the SW/FW/HW Semaphore is already acquired.
831 **/
832s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
833{
834 DEBUGFUNC("e1000_read_emi_reg_locked");
835
836 return __e1000_access_emi_reg_locked(hw, addr, data, TRUE);
837}
838
839/**
840 * e1000_write_emi_reg_locked - Write Extended Management Interface register
841 * @hw: pointer to the HW structure
842 * @addr: EMI address to program
843 * @data: value to be written to the EMI address
844 *
845 * Assumes the SW/FW/HW Semaphore is already acquired.
846 **/
847s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
848{
849 DEBUGFUNC("e1000_read_emi_reg_locked");
850
851 return __e1000_access_emi_reg_locked(hw, addr, &data, FALSE);
852}
853
854/**
855 * e1000_set_eee_pchlan - Enable/disable EEE support
856 * @hw: pointer to the HW structure
857 *
858 * Enable/disable EEE based on setting in dev_spec structure, the duplex of
859 * the link and the EEE capabilities of the link partner. The LPI Control
860 * register bits will remain set only if/when link is up.
861 *
862 * EEE LPI must not be asserted earlier than one second after link is up.
863 * On 82579, EEE LPI should not be enabled until such time otherwise there
864 * can be link issues with some switches. Other devices can have EEE LPI
865 * enabled immediately upon link up since they have a timer in hardware which
866 * prevents LPI from being asserted too early.
867 **/
868s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
869{
870 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
871 s32 ret_val;
872 u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
873
874 DEBUGFUNC("e1000_set_eee_pchlan");
875
876 switch (hw->phy.type) {
877 case e1000_phy_82579:
878 lpa = I82579_EEE_LP_ABILITY;
879 pcs_status = I82579_EEE_PCS_STATUS;
880 adv_addr = I82579_EEE_ADVERTISEMENT;
881 break;
882 case e1000_phy_i217:
883 lpa = I217_EEE_LP_ABILITY;
884 pcs_status = I217_EEE_PCS_STATUS;
885 adv_addr = I217_EEE_ADVERTISEMENT;
886 break;
887 default:
888 return E1000_SUCCESS;
889 }
890
891 ret_val = hw->phy.ops.acquire(hw);
892 if (ret_val)
893 return ret_val;
894
895 ret_val = hw->phy.ops.read_reg_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
896 if (ret_val)
897 goto release;
898
899 /* Clear bits that enable EEE in various speeds */
900 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
901
902 /* Enable EEE if not disabled by user */
903 if (!dev_spec->eee_disable) {
904 /* Save off link partner's EEE ability */
905 ret_val = e1000_read_emi_reg_locked(hw, lpa,
906 &dev_spec->eee_lp_ability);
907 if (ret_val)
908 goto release;
909
910 /* Read EEE advertisement */
911 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
912 if (ret_val)
913 goto release;
914
915 /* Enable EEE only for speeds in which the link partner is
916 * EEE capable and for which we advertise EEE.
917 */
918 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
919 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
920
921 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
922 hw->phy.ops.read_reg_locked(hw, PHY_LP_ABILITY, &data);
923 if (data & NWAY_LPAR_100TX_FD_CAPS)
924 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
925 else
926 /* EEE is not supported in 100Half, so ignore
927 * partner's EEE in 100 ability if full-duplex
928 * is not advertised.
929 */
930 dev_spec->eee_lp_ability &=
931 ~I82579_EEE_100_SUPPORTED;
932 }
933 }
934
935 if (hw->phy.type == e1000_phy_82579) {
936 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
937 &data);
938 if (ret_val)
939 goto release;
940
941 data &= ~I82579_LPI_100_PLL_SHUT;
942 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
943 data);
944 }
945
946 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
947 ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
948 if (ret_val)
949 goto release;
950
951 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
952release:
953 hw->phy.ops.release(hw);
954
955 return ret_val;
956}
957
958/**
959 * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
960 * @hw: pointer to the HW structure
961 * @link: link up bool flag
962 *
963 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
964 * preventing further DMA write requests. Workaround the issue by disabling
965 * the de-assertion of the clock request when in 1Gpbs mode.
966 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
967 * speeds in order to avoid Tx hangs.
968 **/
969static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
970{
971 u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
972 u32 status = E1000_READ_REG(hw, E1000_STATUS);
973 s32 ret_val = E1000_SUCCESS;
974 u16 reg;
975
976 if (link && (status & E1000_STATUS_SPEED_1000)) {
977 ret_val = hw->phy.ops.acquire(hw);
978 if (ret_val)
979 return ret_val;
980
981 ret_val =
982 e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
983 &reg);
984 if (ret_val)
985 goto release;
986
987 ret_val =
988 e1000_write_kmrn_reg_locked(hw,
989 E1000_KMRNCTRLSTA_K1_CONFIG,
990 reg &
991 ~E1000_KMRNCTRLSTA_K1_ENABLE);
992 if (ret_val)
993 goto release;
994
995 usec_delay(10);
996
997 E1000_WRITE_REG(hw, E1000_FEXTNVM6,
998 fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
999
1000 ret_val =
1001 e1000_write_kmrn_reg_locked(hw,
1002 E1000_KMRNCTRLSTA_K1_CONFIG,
1003 reg);
1004release:
1005 hw->phy.ops.release(hw);
1006 } else {
1007 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
1008 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
1009
1010 if (!link || ((status & E1000_STATUS_SPEED_100) &&
1011 (status & E1000_STATUS_FD)))
1012 goto update_fextnvm6;
1013
1014 ret_val = hw->phy.ops.read_reg(hw, I217_INBAND_CTRL, &reg);
1015 if (ret_val)
1016 return ret_val;
1017
1018 /* Clear link status transmit timeout */
1019 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
1020
1021 if (status & E1000_STATUS_SPEED_100) {
1022 /* Set inband Tx timeout to 5x10us for 100Half */
1023 reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1024
1025 /* Do not extend the K1 entry latency for 100Half */
1026 fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1027 } else {
1028 /* Set inband Tx timeout to 50x10us for 10Full/Half */
1029 reg |= 50 <<
1030 I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1031
1032 /* Extend the K1 entry latency for 10 Mbps */
1033 fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1034 }
1035
1036 ret_val = hw->phy.ops.write_reg(hw, I217_INBAND_CTRL, reg);
1037 if (ret_val)
1038 return ret_val;
1039
1040update_fextnvm6:
1041 E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1042 }
1043
1044 return ret_val;
1045}
1046
1047static u64 e1000_ltr2ns(u16 ltr)
1048{
1049 u32 value, scale;
1050
1051 /* Determine the latency in nsec based on the LTR value & scale */
1052 value = ltr & E1000_LTRV_VALUE_MASK;
1053 scale = (ltr & E1000_LTRV_SCALE_MASK) >> E1000_LTRV_SCALE_SHIFT;
1054
1055 return value * (1 << (scale * E1000_LTRV_SCALE_FACTOR));
1056}
1057
1058/**
1059 * e1000_platform_pm_pch_lpt - Set platform power management values
1060 * @hw: pointer to the HW structure
1061 * @link: bool indicating link status
1062 *
1063 * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1064 * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1065 * when link is up (which must not exceed the maximum latency supported
1066 * by the platform), otherwise specify there is no LTR requirement.
1067 * Unlike TRUE-PCIe devices which set the LTR maximum snoop/no-snoop
1068 * latencies in the LTR Extended Capability Structure in the PCIe Extended
1069 * Capability register set, on this device LTR is set by writing the
1070 * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1071 * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1072 * message to the PMC.
1073 *
1074 * Use the LTR value to calculate the Optimized Buffer Flush/Fill (OBFF)
1075 * high-water mark.
1076 **/
1077static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1078{
1079 u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1080 link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1081 u16 lat_enc = 0; /* latency encoded */
1082 s32 obff_hwm = 0;
1083
1084 DEBUGFUNC("e1000_platform_pm_pch_lpt");
1085
1086 if (link) {
1087 u16 speed, duplex, scale = 0;
1088 u16 max_snoop, max_nosnoop;
1089 u16 max_ltr_enc; /* max LTR latency encoded */
1090 s64 lat_ns; /* latency (ns) */
1091 s64 value;
1092 u32 rxa;
1093
1094 if (!hw->mac.max_frame_size) {
1095 DEBUGOUT("max_frame_size not set.\n");
1096 return -E1000_ERR_CONFIG;
1097 }
1098
1099 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1100 if (!speed) {
1101 DEBUGOUT("Speed not set.\n");
1102 return -E1000_ERR_CONFIG;
1103 }
1104
1105 /* Rx Packet Buffer Allocation size (KB) */
1106 rxa = E1000_READ_REG(hw, E1000_PBA) & E1000_PBA_RXA_MASK;
1107
1108 /* Determine the maximum latency tolerated by the device.
1109 *
1110 * Per the PCIe spec, the tolerated latencies are encoded as
1111 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1112 * a 10-bit value (0-1023) to provide a range from 1 ns to
1113 * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns,
1114 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1115 */
1116 lat_ns = ((s64)rxa * 1024 -
1117 (2 * (s64)hw->mac.max_frame_size)) * 8 * 1000;
1118 if (lat_ns < 0)
1119 lat_ns = 0;
1120 else
1121 lat_ns /= speed;
1122
1123 value = lat_ns;
1124 while (value > E1000_LTRV_VALUE_MASK) {
1125 scale++;
1126 value = E1000_DIVIDE_ROUND_UP(value, (1 << 5));
1127 }
1128 if (scale > E1000_LTRV_SCALE_MAX) {
1129 DEBUGOUT1("Invalid LTR latency scale %d\n", scale);
1130 return -E1000_ERR_CONFIG;
1131 }
1132 lat_enc = (u16)((scale << E1000_LTRV_SCALE_SHIFT) | value);
1133
1134 /* Determine the maximum latency tolerated by the platform */
1135 e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT, &max_snoop);
1136 e1000_read_pci_cfg(hw, E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1137 max_ltr_enc = E1000_MAX(max_snoop, max_nosnoop);
1138
1139 if (lat_enc > max_ltr_enc) {
1140 lat_enc = max_ltr_enc;
1141 lat_ns = e1000_ltr2ns(max_ltr_enc);
1142 }
1143
1144 if (lat_ns) {
1145 lat_ns *= speed * 1000;
1146 lat_ns /= 8;
1147 lat_ns /= 1000000000;
1148 obff_hwm = (s32)(rxa - lat_ns);
1149 }
1150 if ((obff_hwm < 0) || (obff_hwm > E1000_SVT_OFF_HWM_MASK)) {
1151 DEBUGOUT1("Invalid high water mark %d\n", obff_hwm);
1152 return -E1000_ERR_CONFIG;
1153 }
1154 }
1155
1156 /* Set Snoop and No-Snoop latencies the same */
1157 reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1158 E1000_WRITE_REG(hw, E1000_LTRV, reg);
1159
1160 /* Set OBFF high water mark */
1161 reg = E1000_READ_REG(hw, E1000_SVT) & ~E1000_SVT_OFF_HWM_MASK;
1162 reg |= obff_hwm;
1163 E1000_WRITE_REG(hw, E1000_SVT, reg);
1164
1165 /* Enable OBFF */
1166 reg = E1000_READ_REG(hw, E1000_SVCR);
1167 reg |= E1000_SVCR_OFF_EN;
1168 /* Always unblock interrupts to the CPU even when the system is
1169 * in OBFF mode. This ensures that small round-robin traffic
1170 * (like ping) does not get dropped or experience long latency.
1171 */
1172 reg |= E1000_SVCR_OFF_MASKINT;
1173 E1000_WRITE_REG(hw, E1000_SVCR, reg);
1174
1175 return E1000_SUCCESS;
1176}
1177
1178/**
1179 * e1000_set_obff_timer_pch_lpt - Update Optimized Buffer Flush/Fill timer
1180 * @hw: pointer to the HW structure
1181 * @itr: interrupt throttling rate
1182 *
1183 * Configure OBFF with the updated interrupt rate.
1184 **/
1185static s32 e1000_set_obff_timer_pch_lpt(struct e1000_hw *hw, u32 itr)
1186{
1187 u32 svcr;
1188 s32 timer;
1189
1190 DEBUGFUNC("e1000_set_obff_timer_pch_lpt");
1191
1192 /* Convert ITR value into microseconds for OBFF timer */
1193 timer = itr & E1000_ITR_MASK;
1194 timer = (timer * E1000_ITR_MULT) / 1000;
1195
1196 if ((timer < 0) || (timer > E1000_ITR_MASK)) {
1197 DEBUGOUT1("Invalid OBFF timer %d\n", timer);
1198 return -E1000_ERR_CONFIG;
1199 }
1200
1201 svcr = E1000_READ_REG(hw, E1000_SVCR);
1202 svcr &= ~E1000_SVCR_OFF_TIMER_MASK;
1203 svcr |= timer << E1000_SVCR_OFF_TIMER_SHIFT;
1204 E1000_WRITE_REG(hw, E1000_SVCR, svcr);
1205
1206 return E1000_SUCCESS;
1207}
1208
1209/**
1210 * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1211 * @hw: pointer to the HW structure
1212 * @to_sx: boolean indicating a system power state transition to Sx
1213 *
1214 * When link is down, configure ULP mode to significantly reduce the power
1215 * to the PHY. If on a Manageability Engine (ME) enabled system, tell the
1216 * ME firmware to start the ULP configuration. If not on an ME enabled
1217 * system, configure the ULP mode by software.
1218 */
1219s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1220{
1221 u32 mac_reg;
1222 s32 ret_val = E1000_SUCCESS;
1223 u16 phy_reg;
1224
1225 if ((hw->mac.type < e1000_pch_lpt) ||
1226 (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1227 (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1228 (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1229 (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1230 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1231 return 0;
1232
1233 if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1234 /* Request ME configure ULP mode in the PHY */
1235 mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1236 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1237 E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1238
1239 goto out;
1240 }
1241
1242 if (!to_sx) {
1243 int i = 0;
1244
1245 /* Poll up to 5 seconds for Cable Disconnected indication */
1246 while (!(E1000_READ_REG(hw, E1000_FEXT) &
1247 E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1248 /* Bail if link is re-acquired */
1249 if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)
1250 return -E1000_ERR_PHY;
1251
1252 if (i++ == 100)
1253 break;
1254
1255 msec_delay(50);
1256 }
1257 DEBUGOUT2("CABLE_DISCONNECTED %s set after %dmsec\n",
1258 (E1000_READ_REG(hw, E1000_FEXT) &
1259 E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not",
1260 i * 50);
1261 }
1262
1263 ret_val = hw->phy.ops.acquire(hw);
1264 if (ret_val)
1265 goto out;
1266
1267 /* Force SMBus mode in PHY */
1268 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1269 if (ret_val)
1270 goto release;
1271 phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1272 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1273
1274 /* Force SMBus mode in MAC */
1275 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1276 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1277 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1278
1279 /* Set Inband ULP Exit, Reset to SMBus mode and
1280 * Disable SMBus Release on PERST# in PHY
1281 */
1282 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1283 if (ret_val)
1284 goto release;
1285 phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1286 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1287 if (to_sx) {
1288 if (E1000_READ_REG(hw, E1000_WUFC) & E1000_WUFC_LNKC)
1289 phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1290
1291 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1292 } else {
1293 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1294 }
1295 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1296
1297 /* Set Disable SMBus Release on PERST# in MAC */
1298 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1299 mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1300 E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1301
1302 /* Commit ULP changes in PHY by starting auto ULP configuration */
1303 phy_reg |= I218_ULP_CONFIG1_START;
1304 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1305release:
1306 hw->phy.ops.release(hw);
1307out:
1308 if (ret_val)
1309 DEBUGOUT1("Error in ULP enable flow: %d\n", ret_val);
1310 else
1311 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1312
1313 return ret_val;
1314}
1315
1316/**
1317 * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1318 * @hw: pointer to the HW structure
1319 * @force: boolean indicating whether or not to force disabling ULP
1320 *
1321 * Un-configure ULP mode when link is up, the system is transitioned from
1322 * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled
1323 * system, poll for an indication from ME that ULP has been un-configured.
1324 * If not on an ME enabled system, un-configure the ULP mode by software.
1325 *
1326 * During nominal operation, this function is called when link is acquired
1327 * to disable ULP mode (force=FALSE); otherwise, for example when unloading
1328 * the driver or during Sx->S0 transitions, this is called with force=TRUE
1329 * to forcibly disable ULP.
1330 */
1331s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1332{
1333 s32 ret_val = E1000_SUCCESS;
1334 u32 mac_reg;
1335 u16 phy_reg;
1336 int i = 0;
1337
1338 if ((hw->mac.type < e1000_pch_lpt) ||
1339 (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1340 (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1341 (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1342 (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1343 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1344 return 0;
1345
1346 if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1347 if (force) {
1348 /* Request ME un-configure ULP mode in the PHY */
1349 mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1350 mac_reg &= ~E1000_H2ME_ULP;
1351 mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1352 E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1353 }
1354
1355 /* Poll up to 100msec for ME to clear ULP_CFG_DONE */
1356 while (E1000_READ_REG(hw, E1000_FWSM) &
1357 E1000_FWSM_ULP_CFG_DONE) {
1358 if (i++ == 10) {
1359 ret_val = -E1000_ERR_PHY;
1360 goto out;
1361 }
1362
1363 msec_delay(10);
1364 }
1365 DEBUGOUT1("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1366
1367 if (force) {
1368 mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1369 mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1370 E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1371 } else {
1372 /* Clear H2ME.ULP after ME ULP configuration */
1373 mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1374 mac_reg &= ~E1000_H2ME_ULP;
1375 E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1376 }
1377
1378 goto out;
1379 }
1380
1381 ret_val = hw->phy.ops.acquire(hw);
1382 if (ret_val)
1383 goto out;
1384
1385 if (force)
1386 /* Toggle LANPHYPC Value bit */
1387 e1000_toggle_lanphypc_pch_lpt(hw);
1388
1389 /* Unforce SMBus mode in PHY */
1390 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1391 if (ret_val) {
1392 /* The MAC might be in PCIe mode, so temporarily force to
1393 * SMBus mode in order to access the PHY.
1394 */
1395 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1396 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1397 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1398
1399 msec_delay(50);
1400
1401 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1402 &phy_reg);
1403 if (ret_val)
1404 goto release;
1405 }
1406 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1407 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1408
1409 /* Unforce SMBus mode in MAC */
1410 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1411 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1412 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1413
1414 /* When ULP mode was previously entered, K1 was disabled by the
1415 * hardware. Re-Enable K1 in the PHY when exiting ULP.
1416 */
1417 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1418 if (ret_val)
1419 goto release;
1420 phy_reg |= HV_PM_CTRL_K1_ENABLE;
1421 e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1422
1423 /* Clear ULP enabled configuration */
1424 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1425 if (ret_val)
1426 goto release;
1427 phy_reg &= ~(I218_ULP_CONFIG1_IND |
1428 I218_ULP_CONFIG1_STICKY_ULP |
1429 I218_ULP_CONFIG1_RESET_TO_SMBUS |
1430 I218_ULP_CONFIG1_WOL_HOST |
1431 I218_ULP_CONFIG1_INBAND_EXIT |
1432 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1433 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1434
1435 /* Commit ULP changes by starting auto ULP configuration */
1436 phy_reg |= I218_ULP_CONFIG1_START;
1437 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1438
1439 /* Clear Disable SMBus Release on PERST# in MAC */
1440 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1441 mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1442 E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1443
1444release:
1445 hw->phy.ops.release(hw);
1446 if (force) {
1447 hw->phy.ops.reset(hw);
1448 msec_delay(50);
1449 }
1450out:
1451 if (ret_val)
1452 DEBUGOUT1("Error in ULP disable flow: %d\n", ret_val);
1453 else
1454 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1455
1456 return ret_val;
1457}
1458
1459/**
1460 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1461 * @hw: pointer to the HW structure
1462 *
1463 * Checks to see of the link status of the hardware has changed. If a
1464 * change in link status has been detected, then we read the PHY registers
1465 * to get the current speed/duplex if link exists.
1466 **/
1467static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1468{
1469 struct e1000_mac_info *mac = &hw->mac;
1470 s32 ret_val;
1471 bool link;
1472 u16 phy_reg;
1473
1474 DEBUGFUNC("e1000_check_for_copper_link_ich8lan");
1475
1476 /* We only want to go out to the PHY registers to see if Auto-Neg
1477 * has completed and/or if our link status has changed. The
1478 * get_link_status flag is set upon receiving a Link Status
1479 * Change or Rx Sequence Error interrupt.
1480 */
1481 if (!mac->get_link_status)
1482 return E1000_SUCCESS;
1483
1484 /* First we want to see if the MII Status Register reports
1485 * link. If so, then we want to get the current speed/duplex
1486 * of the PHY.
1487 */
1488 ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
1489 if (ret_val)
1490 return ret_val;
1491
1492 if (hw->mac.type == e1000_pchlan) {
1493 ret_val = e1000_k1_gig_workaround_hv(hw, link);
1494 if (ret_val)
1495 return ret_val;
1496 }
1497
1498 /* When connected at 10Mbps half-duplex, some parts are excessively
1499 * aggressive resulting in many collisions. To avoid this, increase
1500 * the IPG and reduce Rx latency in the PHY.
1501 */
1502 if (((hw->mac.type == e1000_pch2lan) ||
1503 (hw->mac.type == e1000_pch_lpt)) && link) {
1504 u32 reg;
1505 reg = E1000_READ_REG(hw, E1000_STATUS);
1506 if (!(reg & (E1000_STATUS_FD | E1000_STATUS_SPEED_MASK))) {
1507 u16 emi_addr;
1508
1509 reg = E1000_READ_REG(hw, E1000_TIPG);
1510 reg &= ~E1000_TIPG_IPGT_MASK;
1511 reg |= 0xFF;
1512 E1000_WRITE_REG(hw, E1000_TIPG, reg);
1513
1514 /* Reduce Rx latency in analog PHY */
1515 ret_val = hw->phy.ops.acquire(hw);
1516 if (ret_val)
1517 return ret_val;
1518
1519 if (hw->mac.type == e1000_pch2lan)
1520 emi_addr = I82579_RX_CONFIG;
1521 else
1522 emi_addr = I217_RX_CONFIG;
1523 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, 0);
1524
1525 hw->phy.ops.release(hw);
1526
1527 if (ret_val)
1528 return ret_val;
1529 }
1530 }
1531
1532 /* Work-around I218 hang issue */
1533 if ((hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1534 (hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1535 (hw->device_id == E1000_DEV_ID_PCH_I218_LM3) ||
1536 (hw->device_id == E1000_DEV_ID_PCH_I218_V3)) {
1537 ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1538 if (ret_val)
1539 return ret_val;
1540 }
1541 if (hw->mac.type == e1000_pch_lpt) {
1542 /* Set platform power management values for
1543 * Latency Tolerance Reporting (LTR)
1544 * Optimized Buffer Flush/Fill (OBFF)
1545 */
1546 ret_val = e1000_platform_pm_pch_lpt(hw, link);
1547 if (ret_val)
1548 return ret_val;
1549 }
1550
1551 /* Clear link partner's EEE ability */
1552 hw->dev_spec.ich8lan.eee_lp_ability = 0;
1553
1554 if (!link)
1555 return E1000_SUCCESS; /* No link detected */
1556
1557 mac->get_link_status = FALSE;
1558
1559 switch (hw->mac.type) {
1560 case e1000_pch2lan:
1561 ret_val = e1000_k1_workaround_lv(hw);
1562 if (ret_val)
1563 return ret_val;
1564 /* fall-thru */
1565 case e1000_pchlan:
1566 if (hw->phy.type == e1000_phy_82578) {
1567 ret_val = e1000_link_stall_workaround_hv(hw);
1568 if (ret_val)
1569 return ret_val;
1570 }
1571
1572 /* Workaround for PCHx parts in half-duplex:
1573 * Set the number of preambles removed from the packet
1574 * when it is passed from the PHY to the MAC to prevent
1575 * the MAC from misinterpreting the packet type.
1576 */
1577 hw->phy.ops.read_reg(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1578 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1579
1580 if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FD) !=
1581 E1000_STATUS_FD)
1582 phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1583
1584 hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1585 break;
1586 default:
1587 break;
1588 }
1589
1590 /* Check if there was DownShift, must be checked
1591 * immediately after link-up
1592 */
1593 e1000_check_downshift_generic(hw);
1594
1595 /* Enable/Disable EEE after link up */
1596 if (hw->phy.type > e1000_phy_82579) {
1597 ret_val = e1000_set_eee_pchlan(hw);
1598 if (ret_val)
1599 return ret_val;
1600 }
1601
1602 /* If we are forcing speed/duplex, then we simply return since
1603 * we have already determined whether we have link or not.
1604 */
1605 if (!mac->autoneg)
1606 return -E1000_ERR_CONFIG;
1607
1608 /* Auto-Neg is enabled. Auto Speed Detection takes care
1609 * of MAC speed/duplex configuration. So we only need to
1610 * configure Collision Distance in the MAC.
1611 */
1612 mac->ops.config_collision_dist(hw);
1613
1614 /* Configure Flow Control now that Auto-Neg has completed.
1615 * First, we need to restore the desired flow control
1616 * settings because we may have had to re-autoneg with a
1617 * different link partner.
1618 */
1619 ret_val = e1000_config_fc_after_link_up_generic(hw);
1620 if (ret_val)
1621 DEBUGOUT("Error configuring flow control\n");
1622
1623 return ret_val;
1624}
1625
1626/**
1627 * e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers
1628 * @hw: pointer to the HW structure
1629 *
1630 * Initialize family-specific function pointers for PHY, MAC, and NVM.
1631 **/
1632void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw)
1633{
1634 DEBUGFUNC("e1000_init_function_pointers_ich8lan");
1635
1636 hw->mac.ops.init_params = e1000_init_mac_params_ich8lan;
1637 hw->nvm.ops.init_params = e1000_init_nvm_params_ich8lan;
1638 switch (hw->mac.type) {
1639 case e1000_ich8lan:
1640 case e1000_ich9lan:
1641 case e1000_ich10lan:
1642 hw->phy.ops.init_params = e1000_init_phy_params_ich8lan;
1643 break;
1644 case e1000_pchlan:
1645 case e1000_pch2lan:
1646 case e1000_pch_lpt:
1647 hw->phy.ops.init_params = e1000_init_phy_params_pchlan;
1648 break;
1649 default:
1650 break;
1651 }
1652}
1653
1654/**
1655 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1656 * @hw: pointer to the HW structure
1657 *
1658 * Acquires the mutex for performing NVM operations.
1659 **/
1660static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
1661{
1662 DEBUGFUNC("e1000_acquire_nvm_ich8lan");
1663
1664 E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.nvm_mutex);
1665
1666 return E1000_SUCCESS;
1667}
1668
1669/**
1670 * e1000_release_nvm_ich8lan - Release NVM mutex
1671 * @hw: pointer to the HW structure
1672 *
1673 * Releases the mutex used while performing NVM operations.
1674 **/
1675static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
1676{
1677 DEBUGFUNC("e1000_release_nvm_ich8lan");
1678
1679 E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.nvm_mutex);
1680
1681 return;
1682}
1683
1684/**
1685 * e1000_acquire_swflag_ich8lan - Acquire software control flag
1686 * @hw: pointer to the HW structure
1687 *
1688 * Acquires the software control flag for performing PHY and select
1689 * MAC CSR accesses.
1690 **/
1691static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1692{
1693 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1694 s32 ret_val = E1000_SUCCESS;
1695
1696 DEBUGFUNC("e1000_acquire_swflag_ich8lan");
1697
1698 E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1699
1700 while (timeout) {
1701 extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1702 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1703 break;
1704
1705 msec_delay_irq(1);
1706 timeout--;
1707 }
1708
1709 if (!timeout) {
1710 DEBUGOUT("SW has already locked the resource.\n");
1711 ret_val = -E1000_ERR_CONFIG;
1712 goto out;
1713 }
1714
1715 timeout = SW_FLAG_TIMEOUT;
1716
1717 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1718 E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1719
1720 while (timeout) {
1721 extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1722 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1723 break;
1724
1725 msec_delay_irq(1);
1726 timeout--;
1727 }
1728
1729 if (!timeout) {
1730 DEBUGOUT2("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1731 E1000_READ_REG(hw, E1000_FWSM), extcnf_ctrl);
1732 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1733 E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1734 ret_val = -E1000_ERR_CONFIG;
1735 goto out;
1736 }
1737
1738out:
1739 if (ret_val)
1740 E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1741
1742 return ret_val;
1743}
1744
1745/**
1746 * e1000_release_swflag_ich8lan - Release software control flag
1747 * @hw: pointer to the HW structure
1748 *
1749 * Releases the software control flag for performing PHY and select
1750 * MAC CSR accesses.
1751 **/
1752static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1753{
1754 u32 extcnf_ctrl;
1755
1756 DEBUGFUNC("e1000_release_swflag_ich8lan");
1757
1758 extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1759
1760 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1761 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1762 E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1763 } else {
1764 DEBUGOUT("Semaphore unexpectedly released by sw/fw/hw\n");
1765 }
1766
1767 E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1768
1769 return;
1770}
1771
1772/**
1773 * e1000_check_mng_mode_ich8lan - Checks management mode
1774 * @hw: pointer to the HW structure
1775 *
1776 * This checks if the adapter has any manageability enabled.
1777 * This is a function pointer entry point only called by read/write
1778 * routines for the PHY and NVM parts.
1779 **/
1780static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1781{
1782 u32 fwsm;
1783
1784 DEBUGFUNC("e1000_check_mng_mode_ich8lan");
1785
1786 fwsm = E1000_READ_REG(hw, E1000_FWSM);
1787
1788 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1789 ((fwsm & E1000_FWSM_MODE_MASK) ==
1790 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1791}
1792
1793/**
1794 * e1000_check_mng_mode_pchlan - Checks management mode
1795 * @hw: pointer to the HW structure
1796 *
1797 * This checks if the adapter has iAMT enabled.
1798 * This is a function pointer entry point only called by read/write
1799 * routines for the PHY and NVM parts.
1800 **/
1801static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1802{
1803 u32 fwsm;
1804
1805 DEBUGFUNC("e1000_check_mng_mode_pchlan");
1806
1807 fwsm = E1000_READ_REG(hw, E1000_FWSM);
1808
1809 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1810 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1811}
1812
1813/**
1814 * e1000_rar_set_pch2lan - Set receive address register
1815 * @hw: pointer to the HW structure
1816 * @addr: pointer to the receive address
1817 * @index: receive address array register
1818 *
1819 * Sets the receive address array register at index to the address passed
1820 * in by addr. For 82579, RAR[0] is the base address register that is to
1821 * contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1822 * Use SHRA[0-3] in place of those reserved for ME.
1823 **/
1824static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1825{
1826 u32 rar_low, rar_high;
1827
1828 DEBUGFUNC("e1000_rar_set_pch2lan");
1829
1830 /* HW expects these in little endian so we reverse the byte order
1831 * from network order (big endian) to little endian
1832 */
1833 rar_low = ((u32) addr[0] |
1834 ((u32) addr[1] << 8) |
1835 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
1836
1837 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
1838
1839 /* If MAC address zero, no need to set the AV bit */
1840 if (rar_low || rar_high)
1841 rar_high |= E1000_RAH_AV;
1842
1843 if (index == 0) {
1844 E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
1845 E1000_WRITE_FLUSH(hw);
1846 E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
1847 E1000_WRITE_FLUSH(hw);
1848 return E1000_SUCCESS;
1849 }
1850
1851 /* RAR[1-6] are owned by manageability. Skip those and program the
1852 * next address into the SHRA register array.
1853 */
1854 if (index < (u32) (hw->mac.rar_entry_count)) {
1855 s32 ret_val;
1856
1857 ret_val = e1000_acquire_swflag_ich8lan(hw);
1858 if (ret_val)
1859 goto out;
1860
1861 E1000_WRITE_REG(hw, E1000_SHRAL(index - 1), rar_low);
1862 E1000_WRITE_FLUSH(hw);
1863 E1000_WRITE_REG(hw, E1000_SHRAH(index - 1), rar_high);
1864 E1000_WRITE_FLUSH(hw);
1865
1866 e1000_release_swflag_ich8lan(hw);
1867
1868 /* verify the register updates */
1869 if ((E1000_READ_REG(hw, E1000_SHRAL(index - 1)) == rar_low) &&
1870 (E1000_READ_REG(hw, E1000_SHRAH(index - 1)) == rar_high))
1871 return E1000_SUCCESS;
1872
1873 DEBUGOUT2("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1874 (index - 1), E1000_READ_REG(hw, E1000_FWSM));
1875 }
1876
1877out:
1878 DEBUGOUT1("Failed to write receive address at index %d\n", index);
1879 return -E1000_ERR_CONFIG;
1880}
1881
1882/**
1883 * e1000_rar_set_pch_lpt - Set receive address registers
1884 * @hw: pointer to the HW structure
1885 * @addr: pointer to the receive address
1886 * @index: receive address array register
1887 *
1888 * Sets the receive address register array at index to the address passed
1889 * in by addr. For LPT, RAR[0] is the base address register that is to
1890 * contain the MAC address. SHRA[0-10] are the shared receive address
1891 * registers that are shared between the Host and manageability engine (ME).
1892 **/
1893static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1894{
1895 u32 rar_low, rar_high;
1896 u32 wlock_mac;
1897
1898 DEBUGFUNC("e1000_rar_set_pch_lpt");
1899
1900 /* HW expects these in little endian so we reverse the byte order
1901 * from network order (big endian) to little endian
1902 */
1903 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
1904 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
1905
1906 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
1907
1908 /* If MAC address zero, no need to set the AV bit */
1909 if (rar_low || rar_high)
1910 rar_high |= E1000_RAH_AV;
1911
1912 if (index == 0) {
1913 E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
1914 E1000_WRITE_FLUSH(hw);
1915 E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
1916 E1000_WRITE_FLUSH(hw);
1917 return E1000_SUCCESS;
1918 }
1919
1920 /* The manageability engine (ME) can lock certain SHRAR registers that
1921 * it is using - those registers are unavailable for use.
1922 */
1923 if (index < hw->mac.rar_entry_count) {
1924 wlock_mac = E1000_READ_REG(hw, E1000_FWSM) &
1925 E1000_FWSM_WLOCK_MAC_MASK;
1926 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1927
1928 /* Check if all SHRAR registers are locked */
1929 if (wlock_mac == 1)
1930 goto out;
1931
1932 if ((wlock_mac == 0) || (index <= wlock_mac)) {
1933 s32 ret_val;
1934
1935 ret_val = e1000_acquire_swflag_ich8lan(hw);
1936
1937 if (ret_val)
1938 goto out;
1939
1940 E1000_WRITE_REG(hw, E1000_SHRAL_PCH_LPT(index - 1),
1941 rar_low);
1942 E1000_WRITE_FLUSH(hw);
1943 E1000_WRITE_REG(hw, E1000_SHRAH_PCH_LPT(index - 1),
1944 rar_high);
1945 E1000_WRITE_FLUSH(hw);
1946
1947 e1000_release_swflag_ich8lan(hw);
1948
1949 /* verify the register updates */
1950 if ((E1000_READ_REG(hw, E1000_SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1951 (E1000_READ_REG(hw, E1000_SHRAH_PCH_LPT(index - 1)) == rar_high))
1952 return E1000_SUCCESS;
1953 }
1954 }
1955
1956out:
1957 DEBUGOUT1("Failed to write receive address at index %d\n", index);
1958 return -E1000_ERR_CONFIG;
1959}
1960
1961/**
1962 * e1000_update_mc_addr_list_pch2lan - Update Multicast addresses
1963 * @hw: pointer to the HW structure
1964 * @mc_addr_list: array of multicast addresses to program
1965 * @mc_addr_count: number of multicast addresses to program
1966 *
1967 * Updates entire Multicast Table Array of the PCH2 MAC and PHY.
1968 * The caller must have a packed mc_addr_list of multicast addresses.
1969 **/
1970static void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
1971 u8 *mc_addr_list,
1972 u32 mc_addr_count)
1973{
1974 u16 phy_reg = 0;
1975 int i;
1976 s32 ret_val;
1977
1978 DEBUGFUNC("e1000_update_mc_addr_list_pch2lan");
1979
1980 e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count);
1981
1982 ret_val = hw->phy.ops.acquire(hw);
1983 if (ret_val)
1984 return;
1985
1986 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1987 if (ret_val)
1988 goto release;
1989
1990 for (i = 0; i < hw->mac.mta_reg_count; i++) {
1991 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
1992 (u16)(hw->mac.mta_shadow[i] &
1993 0xFFFF));
1994 hw->phy.ops.write_reg_page(hw, (BM_MTA(i) + 1),
1995 (u16)((hw->mac.mta_shadow[i] >> 16) &
1996 0xFFFF));
1997 }
1998
1999 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2000
2001release:
2002 hw->phy.ops.release(hw);
2003}
2004
2005/**
2006 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2007 * @hw: pointer to the HW structure
2008 *
2009 * Checks if firmware is blocking the reset of the PHY.
2010 * This is a function pointer entry point only called by
2011 * reset routines.
2012 **/
2013static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2014{
2015 u32 fwsm;
2016 bool blocked = FALSE;
2017 int i = 0;
2018
2019 DEBUGFUNC("e1000_check_reset_block_ich8lan");
2020
2021 do {
2022 fwsm = E1000_READ_REG(hw, E1000_FWSM);
2023 if (!(fwsm & E1000_ICH_FWSM_RSPCIPHY)) {
2024 blocked = TRUE;
2025 msec_delay(10);
2026 continue;
2027 }
2028 blocked = FALSE;
2029 } while (blocked && (i++ < 10));
2030 return blocked ? E1000_BLK_PHY_RESET : E1000_SUCCESS;
2031}
2032
2033/**
2034 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2035 * @hw: pointer to the HW structure
2036 *
2037 * Assumes semaphore already acquired.
2038 *
2039 **/
2040static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2041{
2042 u16 phy_data;
2043 u32 strap = E1000_READ_REG(hw, E1000_STRAP);
2044 u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2045 E1000_STRAP_SMT_FREQ_SHIFT;
2046 s32 ret_val;
2047
2048 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2049
2050 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2051 if (ret_val)
2052 return ret_val;
2053
2054 phy_data &= ~HV_SMB_ADDR_MASK;
2055 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2056 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2057
2058 if (hw->phy.type == e1000_phy_i217) {
2059 /* Restore SMBus frequency */
2060 if (freq--) {
2061 phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2062 phy_data |= (freq & (1 << 0)) <<
2063 HV_SMB_ADDR_FREQ_LOW_SHIFT;
2064 phy_data |= (freq & (1 << 1)) <<
2065 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2066 } else {
2067 DEBUGOUT("Unsupported SMB frequency in PHY\n");
2068 }
2069 }
2070
2071 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2072}
2073
2074/**
2075 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2076 * @hw: pointer to the HW structure
2077 *
2078 * SW should configure the LCD from the NVM extended configuration region
2079 * as a workaround for certain parts.
2080 **/
2081static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2082{
2083 struct e1000_phy_info *phy = &hw->phy;
2084 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2085 s32 ret_val = E1000_SUCCESS;
2086 u16 word_addr, reg_data, reg_addr, phy_page = 0;
2087
2088 DEBUGFUNC("e1000_sw_lcd_config_ich8lan");
2089
2090 /* Initialize the PHY from the NVM on ICH platforms. This
2091 * is needed due to an issue where the NVM configuration is
2092 * not properly autoloaded after power transitions.
2093 * Therefore, after each PHY reset, we will load the
2094 * configuration data out of the NVM manually.
2095 */
2096 switch (hw->mac.type) {
2097 case e1000_ich8lan:
2098 if (phy->type != e1000_phy_igp_3)
2099 return ret_val;
2100
2101 if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_AMT) ||
2102 (hw->device_id == E1000_DEV_ID_ICH8_IGP_C)) {
2103 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2104 break;
2105 }
2106 /* Fall-thru */
2107 case e1000_pchlan:
2108 case e1000_pch2lan:
2109 case e1000_pch_lpt:
2110 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2111 break;
2112 default:
2113 return ret_val;
2114 }
2115
2116 ret_val = hw->phy.ops.acquire(hw);
2117 if (ret_val)
2118 return ret_val;
2119
2120 data = E1000_READ_REG(hw, E1000_FEXTNVM);
2121 if (!(data & sw_cfg_mask))
2122 goto release;
2123
2124 /* Make sure HW does not configure LCD from PHY
2125 * extended configuration before SW configuration
2126 */
2127 data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2128 if ((hw->mac.type < e1000_pch2lan) &&
2129 (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2130 goto release;
2131
2132 cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE);
2133 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2134 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2135 if (!cnf_size)
2136 goto release;
2137
2138 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2139 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2140
2141 if (((hw->mac.type == e1000_pchlan) &&
2142 !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2143 (hw->mac.type > e1000_pchlan)) {
2144 /* HW configures the SMBus address and LEDs when the
2145 * OEM and LCD Write Enable bits are set in the NVM.
2146 * When both NVM bits are cleared, SW will configure
2147 * them instead.
2148 */
2149 ret_val = e1000_write_smbus_addr(hw);
2150 if (ret_val)
2151 goto release;
2152
2153 data = E1000_READ_REG(hw, E1000_LEDCTL);
2154 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2155 (u16)data);
2156 if (ret_val)
2157 goto release;
2158 }
2159
2160 /* Configure LCD from extended configuration region. */
2161
2162 /* cnf_base_addr is in DWORD */
2163 word_addr = (u16)(cnf_base_addr << 1);
2164
2165 for (i = 0; i < cnf_size; i++) {
2166 ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2), 1,
2167 &reg_data);
2168 if (ret_val)
2169 goto release;
2170
2171 ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2 + 1),
2172 1, &reg_addr);
2173 if (ret_val)
2174 goto release;
2175
2176 /* Save off the PHY page for future writes. */
2177 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2178 phy_page = reg_data;
2179 continue;
2180 }
2181
2182 reg_addr &= PHY_REG_MASK;
2183 reg_addr |= phy_page;
2184
2185 ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
2186 reg_data);
2187 if (ret_val)
2188 goto release;
2189 }
2190
2191release:
2192 hw->phy.ops.release(hw);
2193 return ret_val;
2194}
2195
2196/**
2197 * e1000_k1_gig_workaround_hv - K1 Si workaround
2198 * @hw: pointer to the HW structure
2199 * @link: link up bool flag
2200 *
2201 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2202 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
2203 * If link is down, the function will restore the default K1 setting located
2204 * in the NVM.
2205 **/
2206static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2207{
2208 s32 ret_val = E1000_SUCCESS;
2209 u16 status_reg = 0;
2210 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2211
2212 DEBUGFUNC("e1000_k1_gig_workaround_hv");
2213
2214 if (hw->mac.type != e1000_pchlan)
2215 return E1000_SUCCESS;
2216
2217 /* Wrap the whole flow with the sw flag */
2218 ret_val = hw->phy.ops.acquire(hw);
2219 if (ret_val)
2220 return ret_val;
2221
2222 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2223 if (link) {
2224 if (hw->phy.type == e1000_phy_82578) {
2225 ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
2226 &status_reg);
2227 if (ret_val)
2228 goto release;
2229
2230 status_reg &= (BM_CS_STATUS_LINK_UP |
2231 BM_CS_STATUS_RESOLVED |
2232 BM_CS_STATUS_SPEED_MASK);
2233
2234 if (status_reg == (BM_CS_STATUS_LINK_UP |
2235 BM_CS_STATUS_RESOLVED |
2236 BM_CS_STATUS_SPEED_1000))
2237 k1_enable = FALSE;
2238 }
2239
2240 if (hw->phy.type == e1000_phy_82577) {
2241 ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
2242 &status_reg);
2243 if (ret_val)
2244 goto release;
2245
2246 status_reg &= (HV_M_STATUS_LINK_UP |
2247 HV_M_STATUS_AUTONEG_COMPLETE |
2248 HV_M_STATUS_SPEED_MASK);
2249
2250 if (status_reg == (HV_M_STATUS_LINK_UP |
2251 HV_M_STATUS_AUTONEG_COMPLETE |
2252 HV_M_STATUS_SPEED_1000))
2253 k1_enable = FALSE;
2254 }
2255
2256 /* Link stall fix for link up */
2257 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2258 0x0100);
2259 if (ret_val)
2260 goto release;
2261
2262 } else {
2263 /* Link stall fix for link down */
2264 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2265 0x4100);
2266 if (ret_val)
2267 goto release;
2268 }
2269
2270 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2271
2272release:
2273 hw->phy.ops.release(hw);
2274
2275 return ret_val;
2276}
2277
2278/**
2279 * e1000_configure_k1_ich8lan - Configure K1 power state
2280 * @hw: pointer to the HW structure
2281 * @enable: K1 state to configure
2282 *
2283 * Configure the K1 power state based on the provided parameter.
2284 * Assumes semaphore already acquired.
2285 *
2286 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2287 **/
2288s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2289{
2290 s32 ret_val;
2291 u32 ctrl_reg = 0;
2292 u32 ctrl_ext = 0;
2293 u32 reg = 0;
2294 u16 kmrn_reg = 0;
2295
2296 DEBUGFUNC("e1000_configure_k1_ich8lan");
2297
2298 ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2299 &kmrn_reg);
2300 if (ret_val)
2301 return ret_val;
2302
2303 if (k1_enable)
2304 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2305 else
2306 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2307
2308 ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2309 kmrn_reg);
2310 if (ret_val)
2311 return ret_val;
2312
2313 usec_delay(20);
2314 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2315 ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
2316
2317 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2318 reg |= E1000_CTRL_FRCSPD;
2319 E1000_WRITE_REG(hw, E1000_CTRL, reg);
2320
2321 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2322 E1000_WRITE_FLUSH(hw);
2323 usec_delay(20);
2324 E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
2325 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
2326 E1000_WRITE_FLUSH(hw);
2327 usec_delay(20);
2328
2329 return E1000_SUCCESS;
2330}
2331
2332/**
2333 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2334 * @hw: pointer to the HW structure
2335 * @d0_state: boolean if entering d0 or d3 device state
2336 *
2337 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2338 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
2339 * in NVM determines whether HW should configure LPLU and Gbe Disable.
2340 **/
2341static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2342{
2343 s32 ret_val = 0;
2344 u32 mac_reg;
2345 u16 oem_reg;
2346
2347 DEBUGFUNC("e1000_oem_bits_config_ich8lan");
2348
2349 if (hw->mac.type < e1000_pchlan)
2350 return ret_val;
2351
2352 ret_val = hw->phy.ops.acquire(hw);
2353 if (ret_val)
2354 return ret_val;
2355
2356 if (hw->mac.type == e1000_pchlan) {
2357 mac_reg = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2358 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2359 goto release;
2360 }
2361
2362 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM);
2363 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2364 goto release;
2365
2366 mac_reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
2367
2368 ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
2369 if (ret_val)
2370 goto release;
2371
2372 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2373
2374 if (d0_state) {
2375 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2376 oem_reg |= HV_OEM_BITS_GBE_DIS;
2377
2378 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2379 oem_reg |= HV_OEM_BITS_LPLU;
2380 } else {
2381 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2382 E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2383 oem_reg |= HV_OEM_BITS_GBE_DIS;
2384
2385 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2386 E1000_PHY_CTRL_NOND0A_LPLU))
2387 oem_reg |= HV_OEM_BITS_LPLU;
2388 }
2389
2390 /* Set Restart auto-neg to activate the bits */
2391 if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2392 !hw->phy.ops.check_reset_block(hw))
2393 oem_reg |= HV_OEM_BITS_RESTART_AN;
2394
2395 ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
2396
2397release:
2398 hw->phy.ops.release(hw);
2399
2400 return ret_val;
2401}
2402
2403
2404/**
2405 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2406 * @hw: pointer to the HW structure
2407 **/
2408static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2409{
2410 s32 ret_val;
2411 u16 data;
2412
2413 DEBUGFUNC("e1000_set_mdio_slow_mode_hv");
2414
2415 ret_val = hw->phy.ops.read_reg(hw, HV_KMRN_MODE_CTRL, &data);
2416 if (ret_val)
2417 return ret_val;
2418
2419 data |= HV_KMRN_MDIO_SLOW;
2420
2421 ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_MODE_CTRL, data);
2422
2423 return ret_val;
2424}
2425
2426/**
2427 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2428 * done after every PHY reset.
2429 **/
2430static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2431{
2432 s32 ret_val = E1000_SUCCESS;
2433 u16 phy_data;
2434
2435 DEBUGFUNC("e1000_hv_phy_workarounds_ich8lan");
2436
2437 if (hw->mac.type != e1000_pchlan)
2438 return E1000_SUCCESS;
2439
2440 /* Set MDIO slow mode before any other MDIO access */
2441 if (hw->phy.type == e1000_phy_82577) {
2442 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2443 if (ret_val)
2444 return ret_val;
2445 }
2446
2447 if (((hw->phy.type == e1000_phy_82577) &&
2448 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2449 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2450 /* Disable generation of early preamble */
2451 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431);
2452 if (ret_val)
2453 return ret_val;
2454
2455 /* Preamble tuning for SSC */
2456 ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA,
2457 0xA204);
2458 if (ret_val)
2459 return ret_val;
2460 }
2461
2462 if (hw->phy.type == e1000_phy_82578) {
2463 /* Return registers to default by doing a soft reset then
2464 * writing 0x3140 to the control register.
2465 */
2466 if (hw->phy.revision < 2) {
2467 e1000_phy_sw_reset_generic(hw);
2468 ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL,
2469 0x3140);
2470 }
2471 }
2472
2473 /* Select page 0 */
2474 ret_val = hw->phy.ops.acquire(hw);
2475 if (ret_val)
2476 return ret_val;
2477
2478 hw->phy.addr = 1;
2479 ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2480 hw->phy.ops.release(hw);
2481 if (ret_val)
2482 return ret_val;
2483
2484 /* Configure the K1 Si workaround during phy reset assuming there is
2485 * link so that it disables K1 if link is in 1Gbps.
2486 */
2487 ret_val = e1000_k1_gig_workaround_hv(hw, TRUE);
2488 if (ret_val)
2489 return ret_val;
2490
2491 /* Workaround for link disconnects on a busy hub in half duplex */
2492 ret_val = hw->phy.ops.acquire(hw);
2493 if (ret_val)
2494 return ret_val;
2495 ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2496 if (ret_val)
2497 goto release;
2498 ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
2499 phy_data & 0x00FF);
2500 if (ret_val)
2501 goto release;
2502
2503 /* set MSE higher to enable link to stay up when noise is high */
2504 ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2505release:
2506 hw->phy.ops.release(hw);
2507
2508 return ret_val;
2509}
2510
2511/**
2512 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2513 * @hw: pointer to the HW structure
2514 **/
2515void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2516{
2517 u32 mac_reg;
2518 u16 i, phy_reg = 0;
2519 s32 ret_val;
2520
2521 DEBUGFUNC("e1000_copy_rx_addrs_to_phy_ich8lan");
2522
2523 ret_val = hw->phy.ops.acquire(hw);
2524 if (ret_val)
2525 return;
2526 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2527 if (ret_val)
2528 goto release;
2529
2530 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2531 for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2532 mac_reg = E1000_READ_REG(hw, E1000_RAL(i));
2533 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2534 (u16)(mac_reg & 0xFFFF));
2535 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2536 (u16)((mac_reg >> 16) & 0xFFFF));
2537
2538 mac_reg = E1000_READ_REG(hw, E1000_RAH(i));
2539 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2540 (u16)(mac_reg & 0xFFFF));
2541 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2542 (u16)((mac_reg & E1000_RAH_AV)
2543 >> 16));
2544 }
2545
2546 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2547
2548release:
2549 hw->phy.ops.release(hw);
2550}
2551
2552static u32 e1000_calc_rx_da_crc(u8 mac[])
2553{
2554 u32 poly = 0xEDB88320; /* Polynomial for 802.3 CRC calculation */
2555 u32 i, j, mask, crc;
2556
2557 DEBUGFUNC("e1000_calc_rx_da_crc");
2558
2559 crc = 0xffffffff;
2560 for (i = 0; i < 6; i++) {
2561 crc = crc ^ mac[i];
2562 for (j = 8; j > 0; j--) {
2563 mask = (crc & 1) * (-1);
2564 crc = (crc >> 1) ^ (poly & mask);
2565 }
2566 }
2567 return ~crc;
2568}
2569
2570/**
2571 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2572 * with 82579 PHY
2573 * @hw: pointer to the HW structure
2574 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
2575 **/
2576s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2577{
2578 s32 ret_val = E1000_SUCCESS;
2579 u16 phy_reg, data;
2580 u32 mac_reg;
2581 u16 i;
2582
2583 DEBUGFUNC("e1000_lv_jumbo_workaround_ich8lan");
2584
2585 if (hw->mac.type < e1000_pch2lan)
2586 return E1000_SUCCESS;
2587
2588 /* disable Rx path while enabling/disabling workaround */
2589 hw->phy.ops.read_reg(hw, PHY_REG(769, 20), &phy_reg);
2590 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20),
2591 phy_reg | (1 << 14));
2592 if (ret_val)
2593 return ret_val;
2594
2595 if (enable) {
2596 /* Write Rx addresses (rar_entry_count for RAL/H, and
2597 * SHRAL/H) and initial CRC values to the MAC
2598 */
2599 for (i = 0; i < hw->mac.rar_entry_count; i++) {
2600 u8 mac_addr[ETH_ADDR_LEN] = {0};
2601 u32 addr_high, addr_low;
2602
2603 addr_high = E1000_READ_REG(hw, E1000_RAH(i));
2604 if (!(addr_high & E1000_RAH_AV))
2605 continue;
2606 addr_low = E1000_READ_REG(hw, E1000_RAL(i));
2607 mac_addr[0] = (addr_low & 0xFF);
2608 mac_addr[1] = ((addr_low >> 8) & 0xFF);
2609 mac_addr[2] = ((addr_low >> 16) & 0xFF);
2610 mac_addr[3] = ((addr_low >> 24) & 0xFF);
2611 mac_addr[4] = (addr_high & 0xFF);
2612 mac_addr[5] = ((addr_high >> 8) & 0xFF);
2613
2614 E1000_WRITE_REG(hw, E1000_PCH_RAICC(i),
2615 e1000_calc_rx_da_crc(mac_addr));
2616 }
2617
2618 /* Write Rx addresses to the PHY */
2619 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2620
2621 /* Enable jumbo frame workaround in the MAC */
2622 mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2623 mac_reg &= ~(1 << 14);
2624 mac_reg |= (7 << 15);
2625 E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2626
2627 mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2628 mac_reg |= E1000_RCTL_SECRC;
2629 E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2630
2631 ret_val = e1000_read_kmrn_reg_generic(hw,
2632 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2633 &data);
2634 if (ret_val)
2635 return ret_val;
2636 ret_val = e1000_write_kmrn_reg_generic(hw,
2637 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2638 data | (1 << 0));
2639 if (ret_val)
2640 return ret_val;
2641 ret_val = e1000_read_kmrn_reg_generic(hw,
2642 E1000_KMRNCTRLSTA_HD_CTRL,
2643 &data);
2644 if (ret_val)
2645 return ret_val;
2646 data &= ~(0xF << 8);
2647 data |= (0xB << 8);
2648 ret_val = e1000_write_kmrn_reg_generic(hw,
2649 E1000_KMRNCTRLSTA_HD_CTRL,
2650 data);
2651 if (ret_val)
2652 return ret_val;
2653
2654 /* Enable jumbo frame workaround in the PHY */
2655 hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2656 data &= ~(0x7F << 5);
2657 data |= (0x37 << 5);
2658 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2659 if (ret_val)
2660 return ret_val;
2661 hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2662 data &= ~(1 << 13);
2663 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2664 if (ret_val)
2665 return ret_val;
2666 hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2667 data &= ~(0x3FF << 2);
2668 data |= (E1000_TX_PTR_GAP << 2);
2669 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2670 if (ret_val)
2671 return ret_val;
2672 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xF100);
2673 if (ret_val)
2674 return ret_val;
2675 hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2676 ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data |
2677 (1 << 10));
2678 if (ret_val)
2679 return ret_val;
2680 } else {
2681 /* Write MAC register values back to h/w defaults */
2682 mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2683 mac_reg &= ~(0xF << 14);
2684 E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2685
2686 mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2687 mac_reg &= ~E1000_RCTL_SECRC;
2688 E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2689
2690 ret_val = e1000_read_kmrn_reg_generic(hw,
2691 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2692 &data);
2693 if (ret_val)
2694 return ret_val;
2695 ret_val = e1000_write_kmrn_reg_generic(hw,
2696 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2697 data & ~(1 << 0));
2698 if (ret_val)
2699 return ret_val;
2700 ret_val = e1000_read_kmrn_reg_generic(hw,
2701 E1000_KMRNCTRLSTA_HD_CTRL,
2702 &data);
2703 if (ret_val)
2704 return ret_val;
2705 data &= ~(0xF << 8);
2706 data |= (0xB << 8);
2707 ret_val = e1000_write_kmrn_reg_generic(hw,
2708 E1000_KMRNCTRLSTA_HD_CTRL,
2709 data);
2710 if (ret_val)
2711 return ret_val;
2712
2713 /* Write PHY register values back to h/w defaults */
2714 hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2715 data &= ~(0x7F << 5);
2716 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2717 if (ret_val)
2718 return ret_val;
2719 hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2720 data |= (1 << 13);
2721 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2722 if (ret_val)
2723 return ret_val;
2724 hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2725 data &= ~(0x3FF << 2);
2726 data |= (0x8 << 2);
2727 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2728 if (ret_val)
2729 return ret_val;
2730 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0x7E00);
2731 if (ret_val)
2732 return ret_val;
2733 hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2734 ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data &
2735 ~(1 << 10));
2736 if (ret_val)
2737 return ret_val;
2738 }
2739
2740 /* re-enable Rx path after enabling/disabling workaround */
2741 return hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg &
2742 ~(1 << 14));
2743}
2744
2745/**
2746 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2747 * done after every PHY reset.
2748 **/
2749static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2750{
2751 s32 ret_val = E1000_SUCCESS;
2752
2753 DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan");
2754
2755 if (hw->mac.type != e1000_pch2lan)
2756 return E1000_SUCCESS;
2757
2758 /* Set MDIO slow mode before any other MDIO access */
2759 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2760 if (ret_val)
2761 return ret_val;
2762
2763 ret_val = hw->phy.ops.acquire(hw);
2764 if (ret_val)
2765 return ret_val;
2766 /* set MSE higher to enable link to stay up when noise is high */
2767 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2768 if (ret_val)
2769 goto release;
2770 /* drop link after 5 times MSE threshold was reached */
2771 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2772release:
2773 hw->phy.ops.release(hw);
2774
2775 return ret_val;
2776}
2777
2778/**
2779 * e1000_k1_gig_workaround_lv - K1 Si workaround
2780 * @hw: pointer to the HW structure
2781 *
2782 * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2783 * Disable K1 for 1000 and 100 speeds
2784 **/
2785static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2786{
2787 s32 ret_val = E1000_SUCCESS;
2788 u16 status_reg = 0;
2789
2790 DEBUGFUNC("e1000_k1_workaround_lv");
2791
2792 if (hw->mac.type != e1000_pch2lan)
2793 return E1000_SUCCESS;
2794
2795 /* Set K1 beacon duration based on 10Mbs speed */
2796 ret_val = hw->phy.ops.read_reg(hw, HV_M_STATUS, &status_reg);
2797 if (ret_val)
2798 return ret_val;
2799
2800 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2801 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2802 if (status_reg &
2803 (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2804 u16 pm_phy_reg;
2805
2806 /* LV 1G/100 Packet drop issue wa */
2807 ret_val = hw->phy.ops.read_reg(hw, HV_PM_CTRL,
2808 &pm_phy_reg);
2809 if (ret_val)
2810 return ret_val;
2811 pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2812 ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL,
2813 pm_phy_reg);
2814 if (ret_val)
2815 return ret_val;
2816 } else {
2817 u32 mac_reg;
2818 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
2819 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2820 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2821 E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
2822 }
2823 }
2824
2825 return ret_val;
2826}
2827
2828/**
2829 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2830 * @hw: pointer to the HW structure
2831 * @gate: boolean set to TRUE to gate, FALSE to ungate
2832 *
2833 * Gate/ungate the automatic PHY configuration via hardware; perform
2834 * the configuration via software instead.
2835 **/
2836static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2837{
2838 u32 extcnf_ctrl;
2839
2840 DEBUGFUNC("e1000_gate_hw_phy_config_ich8lan");
2841
2842 if (hw->mac.type < e1000_pch2lan)
2843 return;
2844
2845 extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2846
2847 if (gate)
2848 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2849 else
2850 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2851
2852 E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
2853}
2854
2855/**
2856 * e1000_lan_init_done_ich8lan - Check for PHY config completion
2857 * @hw: pointer to the HW structure
2858 *
2859 * Check the appropriate indication the MAC has finished configuring the
2860 * PHY after a software reset.
2861 **/
2862static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2863{
2864 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2865
2866 DEBUGFUNC("e1000_lan_init_done_ich8lan");
2867
2868 /* Wait for basic configuration completes before proceeding */
2869 do {
2870 data = E1000_READ_REG(hw, E1000_STATUS);
2871 data &= E1000_STATUS_LAN_INIT_DONE;
2872 usec_delay(100);
2873 } while ((!data) && --loop);
2874
2875 /* If basic configuration is incomplete before the above loop
2876 * count reaches 0, loading the configuration from NVM will
2877 * leave the PHY in a bad state possibly resulting in no link.
2878 */
2879 if (loop == 0)
2880 DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n");
2881
2882 /* Clear the Init Done bit for the next init event */
2883 data = E1000_READ_REG(hw, E1000_STATUS);
2884 data &= ~E1000_STATUS_LAN_INIT_DONE;
2885 E1000_WRITE_REG(hw, E1000_STATUS, data);
2886}
2887
2888/**
2889 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2890 * @hw: pointer to the HW structure
2891 **/
2892static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2893{
2894 s32 ret_val = E1000_SUCCESS;
2895 u16 reg;
2896
2897 DEBUGFUNC("e1000_post_phy_reset_ich8lan");
2898
2899 if (hw->phy.ops.check_reset_block(hw))
2900 return E1000_SUCCESS;
2901
2902 /* Allow time for h/w to get to quiescent state after reset */
2903 msec_delay(10);
2904
2905 /* Perform any necessary post-reset workarounds */
2906 switch (hw->mac.type) {
2907 case e1000_pchlan:
2908 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2909 if (ret_val)
2910 return ret_val;
2911 break;
2912 case e1000_pch2lan:
2913 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2914 if (ret_val)
2915 return ret_val;
2916 break;
2917 default:
2918 break;
2919 }
2920
2921 /* Clear the host wakeup bit after lcd reset */
2922 if (hw->mac.type >= e1000_pchlan) {
2923 hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &reg);
2924 reg &= ~BM_WUC_HOST_WU_BIT;
2925 hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, reg);
2926 }
2927
2928 /* Configure the LCD with the extended configuration region in NVM */
2929 ret_val = e1000_sw_lcd_config_ich8lan(hw);
2930 if (ret_val)
2931 return ret_val;
2932
2933 /* Configure the LCD with the OEM bits in NVM */
2934 ret_val = e1000_oem_bits_config_ich8lan(hw, TRUE);
2935
2936 if (hw->mac.type == e1000_pch2lan) {
2937 /* Ungate automatic PHY configuration on non-managed 82579 */
2938 if (!(E1000_READ_REG(hw, E1000_FWSM) &
2939 E1000_ICH_FWSM_FW_VALID)) {
2940 msec_delay(10);
2941 e1000_gate_hw_phy_config_ich8lan(hw, FALSE);
2942 }
2943
2944 /* Set EEE LPI Update Timer to 200usec */
2945 ret_val = hw->phy.ops.acquire(hw);
2946 if (ret_val)
2947 return ret_val;
2948 ret_val = e1000_write_emi_reg_locked(hw,
2949 I82579_LPI_UPDATE_TIMER,
2950 0x1387);
2951 hw->phy.ops.release(hw);
2952 }
2953
2954 return ret_val;
2955}
2956
2957/**
2958 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2959 * @hw: pointer to the HW structure
2960 *
2961 * Resets the PHY
2962 * This is a function pointer entry point called by drivers
2963 * or other shared routines.
2964 **/
2965static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2966{
2967 s32 ret_val = E1000_SUCCESS;
2968
2969 DEBUGFUNC("e1000_phy_hw_reset_ich8lan");
2970
2971 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2972 if ((hw->mac.type == e1000_pch2lan) &&
2973 !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
2974 e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
2975
2976 ret_val = e1000_phy_hw_reset_generic(hw);
2977 if (ret_val)
2978 return ret_val;
2979
2980 return e1000_post_phy_reset_ich8lan(hw);
2981}
2982
2983/**
2984 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2985 * @hw: pointer to the HW structure
2986 * @active: TRUE to enable LPLU, FALSE to disable
2987 *
2988 * Sets the LPLU state according to the active flag. For PCH, if OEM write
2989 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2990 * the phy speed. This function will manually set the LPLU bit and restart
2991 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
2992 * since it configures the same bit.
2993 **/
2994static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2995{
2996 s32 ret_val;
2997 u16 oem_reg;
2998
2999 DEBUGFUNC("e1000_set_lplu_state_pchlan");
3000
3001 ret_val = hw->phy.ops.read_reg(hw, HV_OEM_BITS, &oem_reg);
3002 if (ret_val)
3003 return ret_val;
3004
3005 if (active)
3006 oem_reg |= HV_OEM_BITS_LPLU;
3007 else
3008 oem_reg &= ~HV_OEM_BITS_LPLU;
3009
3010 if (!hw->phy.ops.check_reset_block(hw))
3011 oem_reg |= HV_OEM_BITS_RESTART_AN;
3012
3013 return hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg);
3014}
3015
3016/**
3017 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3018 * @hw: pointer to the HW structure
3019 * @active: TRUE to enable LPLU, FALSE to disable
3020 *
3021 * Sets the LPLU D0 state according to the active flag. When
3022 * activating LPLU this function also disables smart speed
3023 * and vice versa. LPLU will not be activated unless the
3024 * device autonegotiation advertisement meets standards of
3025 * either 10 or 10/100 or 10/100/1000 at all duplexes.
3026 * This is a function pointer entry point only called by
3027 * PHY setup routines.
3028 **/
3029static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3030{
3031 struct e1000_phy_info *phy = &hw->phy;
3032 u32 phy_ctrl;
3033 s32 ret_val = E1000_SUCCESS;
3034 u16 data;
3035
3036 DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan");
3037
3038 if (phy->type == e1000_phy_ife)
3039 return E1000_SUCCESS;
3040
3041 phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3042
3043 if (active) {
3044 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3045 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3046
3047 if (phy->type != e1000_phy_igp_3)
3048 return E1000_SUCCESS;
3049
3050 /* Call gig speed drop workaround on LPLU before accessing
3051 * any PHY registers
3052 */
3053 if (hw->mac.type == e1000_ich8lan)
3054 e1000_gig_downshift_workaround_ich8lan(hw);
3055
3056 /* When LPLU is enabled, we should disable SmartSpeed */
3057 ret_val = phy->ops.read_reg(hw,
3058 IGP01E1000_PHY_PORT_CONFIG,
3059 &data);
3060 if (ret_val)
3061 return ret_val;
3062 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3063 ret_val = phy->ops.write_reg(hw,
3064 IGP01E1000_PHY_PORT_CONFIG,
3065 data);
3066 if (ret_val)
3067 return ret_val;
3068 } else {
3069 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3070 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3071
3072 if (phy->type != e1000_phy_igp_3)
3073 return E1000_SUCCESS;
3074
3075 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
3076 * during Dx states where the power conservation is most
3077 * important. During driver activity we should enable
3078 * SmartSpeed, so performance is maintained.
3079 */
3080 if (phy->smart_speed == e1000_smart_speed_on) {
3081 ret_val = phy->ops.read_reg(hw,
3082 IGP01E1000_PHY_PORT_CONFIG,
3083 &data);
3084 if (ret_val)
3085 return ret_val;
3086
3087 data |= IGP01E1000_PSCFR_SMART_SPEED;
3088 ret_val = phy->ops.write_reg(hw,
3089 IGP01E1000_PHY_PORT_CONFIG,
3090 data);
3091 if (ret_val)
3092 return ret_val;
3093 } else if (phy->smart_speed == e1000_smart_speed_off) {
3094 ret_val = phy->ops.read_reg(hw,
3095 IGP01E1000_PHY_PORT_CONFIG,
3096 &data);
3097 if (ret_val)
3098 return ret_val;
3099
3100 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3101 ret_val = phy->ops.write_reg(hw,
3102 IGP01E1000_PHY_PORT_CONFIG,
3103 data);
3104 if (ret_val)
3105 return ret_val;
3106 }
3107 }
3108
3109 return E1000_SUCCESS;
3110}
3111
3112/**
3113 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3114 * @hw: pointer to the HW structure
3115 * @active: TRUE to enable LPLU, FALSE to disable
3116 *
3117 * Sets the LPLU D3 state according to the active flag. When
3118 * activating LPLU this function also disables smart speed
3119 * and vice versa. LPLU will not be activated unless the
3120 * device autonegotiation advertisement meets standards of
3121 * either 10 or 10/100 or 10/100/1000 at all duplexes.
3122 * This is a function pointer entry point only called by
3123 * PHY setup routines.
3124 **/
3125static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3126{
3127 struct e1000_phy_info *phy = &hw->phy;
3128 u32 phy_ctrl;
3129 s32 ret_val = E1000_SUCCESS;
3130 u16 data;
3131
3132 DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan");
3133
3134 phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3135
3136 if (!active) {
3137 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3138 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3139
3140 if (phy->type != e1000_phy_igp_3)
3141 return E1000_SUCCESS;
3142
3143 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
3144 * during Dx states where the power conservation is most
3145 * important. During driver activity we should enable
3146 * SmartSpeed, so performance is maintained.
3147 */
3148 if (phy->smart_speed == e1000_smart_speed_on) {
3149 ret_val = phy->ops.read_reg(hw,
3150 IGP01E1000_PHY_PORT_CONFIG,
3151 &data);
3152 if (ret_val)
3153 return ret_val;
3154
3155 data |= IGP01E1000_PSCFR_SMART_SPEED;
3156 ret_val = phy->ops.write_reg(hw,
3157 IGP01E1000_PHY_PORT_CONFIG,
3158 data);
3159 if (ret_val)
3160 return ret_val;
3161 } else if (phy->smart_speed == e1000_smart_speed_off) {
3162 ret_val = phy->ops.read_reg(hw,
3163 IGP01E1000_PHY_PORT_CONFIG,
3164 &data);
3165 if (ret_val)
3166 return ret_val;
3167
3168 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3169 ret_val = phy->ops.write_reg(hw,
3170 IGP01E1000_PHY_PORT_CONFIG,
3171 data);
3172 if (ret_val)
3173 return ret_val;
3174 }
3175 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3176 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3177 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3178 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3179 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3180
3181 if (phy->type != e1000_phy_igp_3)
3182 return E1000_SUCCESS;
3183
3184 /* Call gig speed drop workaround on LPLU before accessing
3185 * any PHY registers
3186 */
3187 if (hw->mac.type == e1000_ich8lan)
3188 e1000_gig_downshift_workaround_ich8lan(hw);
3189
3190 /* When LPLU is enabled, we should disable SmartSpeed */
3191 ret_val = phy->ops.read_reg(hw,
3192 IGP01E1000_PHY_PORT_CONFIG,
3193 &data);
3194 if (ret_val)
3195 return ret_val;
3196
3197 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3198 ret_val = phy->ops.write_reg(hw,
3199 IGP01E1000_PHY_PORT_CONFIG,
3200 data);
3201 }
3202
3203 return ret_val;
3204}
3205
3206/**
3207 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3208 * @hw: pointer to the HW structure
3209 * @bank: pointer to the variable that returns the active bank
3210 *
3211 * Reads signature byte from the NVM using the flash access registers.
3212 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3213 **/
3214static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3215{
3216 u32 eecd;
3217 struct e1000_nvm_info *nvm = &hw->nvm;
3218 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3219 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3220 u8 sig_byte = 0;
3221 s32 ret_val;
3222
3223 DEBUGFUNC("e1000_valid_nvm_bank_detect_ich8lan");
3224
3225 switch (hw->mac.type) {
3226 case e1000_ich8lan:
3227 case e1000_ich9lan:
3228 eecd = E1000_READ_REG(hw, E1000_EECD);
3229 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3230 E1000_EECD_SEC1VAL_VALID_MASK) {
3231 if (eecd & E1000_EECD_SEC1VAL)
3232 *bank = 1;
3233 else
3234 *bank = 0;
3235
3236 return E1000_SUCCESS;
3237 }
3238 DEBUGOUT("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3239 /* fall-thru */
3240 default:
3241 /* set bank to 0 in case flash read fails */
3242 *bank = 0;
3243
3244 /* Check bank 0 */
3245 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3246 &sig_byte);
3247 if (ret_val)
3248 return ret_val;
3249 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3250 E1000_ICH_NVM_SIG_VALUE) {
3251 *bank = 0;
3252 return E1000_SUCCESS;
3253 }
3254
3255 /* Check bank 1 */
3256 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3257 bank1_offset,
3258 &sig_byte);
3259 if (ret_val)
3260 return ret_val;
3261 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3262 E1000_ICH_NVM_SIG_VALUE) {
3263 *bank = 1;
3264 return E1000_SUCCESS;
3265 }
3266
3267 DEBUGOUT("ERROR: No valid NVM bank present\n");
3268 return -E1000_ERR_NVM;
3269 }
3270}
3271
3272/**
3273 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
3274 * @hw: pointer to the HW structure
3275 * @offset: The offset (in bytes) of the word(s) to read.
3276 * @words: Size of data to read in words
3277 * @data: Pointer to the word(s) to read at offset.
3278 *
3279 * Reads a word(s) from the NVM using the flash access registers.
3280 **/
3281static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3282 u16 *data)
3283{
3284 struct e1000_nvm_info *nvm = &hw->nvm;
3285 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3286 u32 act_offset;
3287 s32 ret_val = E1000_SUCCESS;
3288 u32 bank = 0;
3289 u16 i, word;
3290
3291 DEBUGFUNC("e1000_read_nvm_ich8lan");
3292
3293 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3294 (words == 0)) {
3295 DEBUGOUT("nvm parameter(s) out of bounds\n");
3296 ret_val = -E1000_ERR_NVM;
3297 goto out;
3298 }
3299
3300 nvm->ops.acquire(hw);
3301
3302 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3303 if (ret_val != E1000_SUCCESS) {
3304 DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3305 bank = 0;
3306 }
3307
3308 act_offset = (bank) ? nvm->flash_bank_size : 0;
3309 act_offset += offset;
3310
3311 ret_val = E1000_SUCCESS;
3312 for (i = 0; i < words; i++) {
3313 if (dev_spec->shadow_ram[offset+i].modified) {
3314 data[i] = dev_spec->shadow_ram[offset+i].value;
3315 } else {
3316 ret_val = e1000_read_flash_word_ich8lan(hw,
3317 act_offset + i,
3318 &word);
3319 if (ret_val)
3320 break;
3321 data[i] = word;
3322 }
3323 }
3324
3325 nvm->ops.release(hw);
3326
3327out:
3328 if (ret_val)
3329 DEBUGOUT1("NVM read error: %d\n", ret_val);
3330
3331 return ret_val;
3332}
3333
3334/**
3335 * e1000_flash_cycle_init_ich8lan - Initialize flash
3336 * @hw: pointer to the HW structure
3337 *
3338 * This function does initial flash setup so that a new read/write/erase cycle
3339 * can be started.
3340 **/
3341static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3342{
3343 union ich8_hws_flash_status hsfsts;
3344 s32 ret_val = -E1000_ERR_NVM;
3345
3346 DEBUGFUNC("e1000_flash_cycle_init_ich8lan");
3347
3348 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3349
3350 /* Check if the flash descriptor is valid */
3351 if (!hsfsts.hsf_status.fldesvalid) {
3352 DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used.\n");
3353 return -E1000_ERR_NVM;
3354 }
3355
3356 /* Clear FCERR and DAEL in hw status by writing 1 */
3357 hsfsts.hsf_status.flcerr = 1;
3358 hsfsts.hsf_status.dael = 1;
3359 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
3360
3361 /* Either we should have a hardware SPI cycle in progress
3362 * bit to check against, in order to start a new cycle or
3363 * FDONE bit should be changed in the hardware so that it
3364 * is 1 after hardware reset, which can then be used as an
3365 * indication whether a cycle is in progress or has been
3366 * completed.
3367 */
3368
3369 if (!hsfsts.hsf_status.flcinprog) {
3370 /* There is no cycle running at present,
3371 * so we can start a cycle.
3372 * Begin by setting Flash Cycle Done.
3373 */
3374 hsfsts.hsf_status.flcdone = 1;
3375 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
3376 ret_val = E1000_SUCCESS;
3377 } else {
3378 s32 i;
3379
3380 /* Otherwise poll for sometime so the current
3381 * cycle has a chance to end before giving up.
3382 */
3383 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3384 hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3385 ICH_FLASH_HSFSTS);
3386 if (!hsfsts.hsf_status.flcinprog) {
3387 ret_val = E1000_SUCCESS;
3388 break;
3389 }
3390 usec_delay(1);
3391 }
3392 if (ret_val == E1000_SUCCESS) {
3393 /* Successful in waiting for previous cycle to timeout,
3394 * now set the Flash Cycle Done.
3395 */
3396 hsfsts.hsf_status.flcdone = 1;
3397 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3398 hsfsts.regval);
3399 } else {
3400 DEBUGOUT("Flash controller busy, cannot get access\n");
3401 }
3402 }
3403
3404 return ret_val;
3405}
3406
3407/**
3408 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3409 * @hw: pointer to the HW structure
3410 * @timeout: maximum time to wait for completion
3411 *
3412 * This function starts a flash cycle and waits for its completion.
3413 **/
3414static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3415{
3416 union ich8_hws_flash_ctrl hsflctl;
3417 union ich8_hws_flash_status hsfsts;
3418 u32 i = 0;
3419
3420 DEBUGFUNC("e1000_flash_cycle_ich8lan");
3421
3422 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3423 hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3424 hsflctl.hsf_ctrl.flcgo = 1;
3425
3426 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3427
3428 /* wait till FDONE bit is set to 1 */
3429 do {
3430 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3431 if (hsfsts.hsf_status.flcdone)
3432 break;
3433 usec_delay(1);
3434 } while (i++ < timeout);
3435
3436 if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3437 return E1000_SUCCESS;
3438
3439 return -E1000_ERR_NVM;
3440}
3441
3442/**
3443 * e1000_read_flash_word_ich8lan - Read word from flash
3444 * @hw: pointer to the HW structure
3445 * @offset: offset to data location
3446 * @data: pointer to the location for storing the data
3447 *
3448 * Reads the flash word at offset into data. Offset is converted
3449 * to bytes before read.
3450 **/
3451static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3452 u16 *data)
3453{
3454 DEBUGFUNC("e1000_read_flash_word_ich8lan");
3455
3456 if (!data)
3457 return -E1000_ERR_NVM;
3458
3459 /* Must convert offset into bytes. */
3460 offset <<= 1;
3461
3462 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3463}
3464
3465/**
3466 * e1000_read_flash_byte_ich8lan - Read byte from flash
3467 * @hw: pointer to the HW structure
3468 * @offset: The offset of the byte to read.
3469 * @data: Pointer to a byte to store the value read.
3470 *
3471 * Reads a single byte from the NVM using the flash access registers.
3472 **/
3473static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3474 u8 *data)
3475{
3476 s32 ret_val;
3477 u16 word = 0;
3478
3479 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3480
3481 if (ret_val)
3482 return ret_val;
3483
3484 *data = (u8)word;
3485
3486 return E1000_SUCCESS;
3487}
3488
3489/**
3490 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
3491 * @hw: pointer to the HW structure
3492 * @offset: The offset (in bytes) of the byte or word to read.
3493 * @size: Size of data to read, 1=byte 2=word
3494 * @data: Pointer to the word to store the value read.
3495 *
3496 * Reads a byte or word from the NVM using the flash access registers.
3497 **/
3498static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3499 u8 size, u16 *data)
3500{
3501 union ich8_hws_flash_status hsfsts;
3502 union ich8_hws_flash_ctrl hsflctl;
3503 u32 flash_linear_addr;
3504 u32 flash_data = 0;
3505 s32 ret_val = -E1000_ERR_NVM;
3506 u8 count = 0;
3507
3508 DEBUGFUNC("e1000_read_flash_data_ich8lan");
3509
3510 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3511 return -E1000_ERR_NVM;
3512 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3513 hw->nvm.flash_base_addr);
3514
3515 do {
3516 usec_delay(1);
3517 /* Steps */
3518 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3519 if (ret_val != E1000_SUCCESS)
3520 break;
3521 hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3522
3523 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3524 hsflctl.hsf_ctrl.fldbcount = size - 1;
3525 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3526 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3527 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3528
3529 ret_val = e1000_flash_cycle_ich8lan(hw,
3530 ICH_FLASH_READ_COMMAND_TIMEOUT);
3531
3532 /* Check if FCERR is set to 1, if set to 1, clear it
3533 * and try the whole sequence a few more times, else
3534 * read in (shift in) the Flash Data0, the order is
3535 * least significant byte first msb to lsb
3536 */
3537 if (ret_val == E1000_SUCCESS) {
3538 flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
3539 if (size == 1)
3540 *data = (u8)(flash_data & 0x000000FF);
3541 else if (size == 2)
3542 *data = (u16)(flash_data & 0x0000FFFF);
3543 break;
3544 } else {
3545 /* If we've gotten here, then things are probably
3546 * completely hosed, but if the error condition is
3547 * detected, it won't hurt to give it another try...
3548 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3549 */
3550 hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3551 ICH_FLASH_HSFSTS);
3552 if (hsfsts.hsf_status.flcerr) {
3553 /* Repeat for some time before giving up. */
3554 continue;
3555 } else if (!hsfsts.hsf_status.flcdone) {
3556 DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3557 break;
3558 }
3559 }
3560 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3561
3562 return ret_val;
3563}
3564
3565
3566/**
3567 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
3568 * @hw: pointer to the HW structure
3569 * @offset: The offset (in bytes) of the word(s) to write.
3570 * @words: Size of data to write in words
3571 * @data: Pointer to the word(s) to write at offset.
3572 *
3573 * Writes a byte or word to the NVM using the flash access registers.
3574 **/
3575static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3576 u16 *data)
3577{
3578 struct e1000_nvm_info *nvm = &hw->nvm;
3579 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3580 u16 i;
3581
3582 DEBUGFUNC("e1000_write_nvm_ich8lan");
3583
3584 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3585 (words == 0)) {
3586 DEBUGOUT("nvm parameter(s) out of bounds\n");
3587 return -E1000_ERR_NVM;
3588 }
3589
3590 nvm->ops.acquire(hw);
3591
3592 for (i = 0; i < words; i++) {
3593 dev_spec->shadow_ram[offset+i].modified = TRUE;
3594 dev_spec->shadow_ram[offset+i].value = data[i];
3595 }
3596
3597 nvm->ops.release(hw);
3598
3599 return E1000_SUCCESS;
3600}
3601
3602/**
3603 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3604 * @hw: pointer to the HW structure
3605 *
3606 * The NVM checksum is updated by calling the generic update_nvm_checksum,
3607 * which writes the checksum to the shadow ram. The changes in the shadow
3608 * ram are then committed to the EEPROM by processing each bank at a time
3609 * checking for the modified bit and writing only the pending changes.
3610 * After a successful commit, the shadow ram is cleared and is ready for
3611 * future writes.
3612 **/
3613static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3614{
3615 struct e1000_nvm_info *nvm = &hw->nvm;
3616 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3617 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3618 s32 ret_val;
3619 u16 data = 0;
3620
3621 DEBUGFUNC("e1000_update_nvm_checksum_ich8lan");
3622
3623 ret_val = e1000_update_nvm_checksum_generic(hw);
3624 if (ret_val)
3625 goto out;
3626
3627 if (nvm->type != e1000_nvm_flash_sw)
3628 goto out;
3629
3630 nvm->ops.acquire(hw);
3631
3632 /* We're writing to the opposite bank so if we're on bank 1,
3633 * write to bank 0 etc. We also need to erase the segment that
3634 * is going to be written
3635 */
3636 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3637 if (ret_val != E1000_SUCCESS) {
3638 DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3639 bank = 0;
3640 }
3641
3642 if (bank == 0) {
3643 new_bank_offset = nvm->flash_bank_size;
3644 old_bank_offset = 0;
3645 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3646 if (ret_val)
3647 goto release;
3648 } else {
3649 old_bank_offset = nvm->flash_bank_size;
3650 new_bank_offset = 0;
3651 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3652 if (ret_val)
3653 goto release;
3654 }
3655 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
3656 if (dev_spec->shadow_ram[i].modified) {
3657 data = dev_spec->shadow_ram[i].value;
3658 } else {
3659 ret_val = e1000_read_flash_word_ich8lan(hw, i +
3660 old_bank_offset,
3661 &data);
3662 if (ret_val)
3663 break;
3664 }
3665 /* If the word is 0x13, then make sure the signature bits
3666 * (15:14) are 11b until the commit has completed.
3667 * This will allow us to write 10b which indicates the
3668 * signature is valid. We want to do this after the write
3669 * has completed so that we don't mark the segment valid
3670 * while the write is still in progress
3671 */
3672 if (i == E1000_ICH_NVM_SIG_WORD)
3673 data |= E1000_ICH_NVM_SIG_MASK;
3674
3675 /* Convert offset to bytes. */
3676 act_offset = (i + new_bank_offset) << 1;
3677
3678 usec_delay(100);
3679
3680 /* Write the bytes to the new bank. */
3681 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3682 act_offset,
3683 (u8)data);
3684 if (ret_val)
3685 break;
3686
3687 usec_delay(100);
3688 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3689 act_offset + 1,
3690 (u8)(data >> 8));
3691 if (ret_val)
3692 break;
3693 }
3694
3695 /* Don't bother writing the segment valid bits if sector
3696 * programming failed.
3697 */
3698 if (ret_val) {
3699 DEBUGOUT("Flash commit failed.\n");
3700 goto release;
3701 }
3702
3703 /* Finally validate the new segment by setting bit 15:14
3704 * to 10b in word 0x13 , this can be done without an
3705 * erase as well since these bits are 11 to start with
3706 * and we need to change bit 14 to 0b
3707 */
3708 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3709 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
3710 if (ret_val)
3711 goto release;
3712
3713 data &= 0xBFFF;
3714 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset * 2 + 1,
3715 (u8)(data >> 8));
3716 if (ret_val)
3717 goto release;
3718
3719 /* And invalidate the previously valid segment by setting
3720 * its signature word (0x13) high_byte to 0b. This can be
3721 * done without an erase because flash erase sets all bits
3722 * to 1's. We can write 1's to 0's without an erase
3723 */
3724 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3725
3726 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
3727
3728 if (ret_val)
3729 goto release;
3730
3731 /* Great! Everything worked, we can now clear the cached entries. */
3732 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
3733 dev_spec->shadow_ram[i].modified = FALSE;
3734 dev_spec->shadow_ram[i].value = 0xFFFF;
3735 }
3736
3737release:
3738 nvm->ops.release(hw);
3739
3740 /* Reload the EEPROM, or else modifications will not appear
3741 * until after the next adapter reset.
3742 */
3743 if (!ret_val) {
3744 nvm->ops.reload(hw);
3745 msec_delay(10);
3746 }
3747
3748out:
3749 if (ret_val)
3750 DEBUGOUT1("NVM update error: %d\n", ret_val);
3751
3752 return ret_val;
3753}
3754
3755/**
3756 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
3757 * @hw: pointer to the HW structure
3758 *
3759 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
3760 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
3761 * calculated, in which case we need to calculate the checksum and set bit 6.
3762 **/
3763static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
3764{
3765 s32 ret_val;
3766 u16 data;
3767 u16 word;
3768 u16 valid_csum_mask;
3769
3770 DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan");
3771
3772 /* Read NVM and check Invalid Image CSUM bit. If this bit is 0,
3773 * the checksum needs to be fixed. This bit is an indication that
3774 * the NVM was prepared by OEM software and did not calculate
3775 * the checksum...a likely scenario.
3776 */
3777 switch (hw->mac.type) {
3778 case e1000_pch_lpt:
3779 word = NVM_COMPAT;
3780 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
3781 break;
3782 default:
3783 word = NVM_FUTURE_INIT_WORD1;
3784 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
3785 break;
3786 }
3787
3788 ret_val = hw->nvm.ops.read(hw, word, 1, &data);
3789 if (ret_val)
3790 return ret_val;
3791
3792 if (!(data & valid_csum_mask)) {
3793 data |= valid_csum_mask;
3794 ret_val = hw->nvm.ops.write(hw, word, 1, &data);
3795 if (ret_val)
3796 return ret_val;
3797 ret_val = hw->nvm.ops.update(hw);
3798 if (ret_val)
3799 return ret_val;
3800 }
3801
3802 return e1000_validate_nvm_checksum_generic(hw);
3803}
3804
3805/**
3806 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
3807 * @hw: pointer to the HW structure
3808 * @offset: The offset (in bytes) of the byte/word to read.
3809 * @size: Size of data to read, 1=byte 2=word
3810 * @data: The byte(s) to write to the NVM.
3811 *
3812 * Writes one/two bytes to the NVM using the flash access registers.
3813 **/
3814static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3815 u8 size, u16 data)
3816{
3817 union ich8_hws_flash_status hsfsts;
3818 union ich8_hws_flash_ctrl hsflctl;
3819 u32 flash_linear_addr;
3820 u32 flash_data = 0;
3821 s32 ret_val;
3822 u8 count = 0;
3823
3824 DEBUGFUNC("e1000_write_ich8_data");
3825
3826 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3827 return -E1000_ERR_NVM;
3828
3829 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3830 hw->nvm.flash_base_addr);
3831
3832 do {
3833 usec_delay(1);
3834 /* Steps */
3835 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3836 if (ret_val != E1000_SUCCESS)
3837 break;
3838 hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3839
3840 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3841 hsflctl.hsf_ctrl.fldbcount = size - 1;
3842 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
3843 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3844
3845 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3846
3847 if (size == 1)
3848 flash_data = (u32)data & 0x00FF;
3849 else
3850 flash_data = (u32)data;
3851
3852 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
3853
3854 /* check if FCERR is set to 1 , if set to 1, clear it
3855 * and try the whole sequence a few more times else done
3856 */
3857 ret_val =
3858 e1000_flash_cycle_ich8lan(hw,
3859 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
3860 if (ret_val == E1000_SUCCESS)
3861 break;
3862
3863 /* If we're here, then things are most likely
3864 * completely hosed, but if the error condition
3865 * is detected, it won't hurt to give it another
3866 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
3867 */
3868 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3869 if (hsfsts.hsf_status.flcerr)
3870 /* Repeat for some time before giving up. */
3871 continue;
3872 if (!hsfsts.hsf_status.flcdone) {
3873 DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3874 break;
3875 }
3876 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3877
3878 return ret_val;
3879}
3880
3881
3882/**
3883 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
3884 * @hw: pointer to the HW structure
3885 * @offset: The index of the byte to read.
3886 * @data: The byte to write to the NVM.
3887 *
3888 * Writes a single byte to the NVM using the flash access registers.
3889 **/
3890static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3891 u8 data)
3892{
3893 u16 word = (u16)data;
3894
3895 DEBUGFUNC("e1000_write_flash_byte_ich8lan");
3896
3897 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
3898}
3899
3900
3901
3902/**
3903 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
3904 * @hw: pointer to the HW structure
3905 * @offset: The offset of the byte to write.
3906 * @byte: The byte to write to the NVM.
3907 *
3908 * Writes a single byte to the NVM using the flash access registers.
3909 * Goes through a retry algorithm before giving up.
3910 **/
3911static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
3912 u32 offset, u8 byte)
3913{
3914 s32 ret_val;
3915 u16 program_retries;
3916
3917 DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan");
3918
3919 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3920 if (!ret_val)
3921 return ret_val;
3922
3923 for (program_retries = 0; program_retries < 100; program_retries++) {
3924 DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset);
3925 usec_delay(100);
3926 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3927 if (ret_val == E1000_SUCCESS)
3928 break;
3929 }
3930 if (program_retries == 100)
3931 return -E1000_ERR_NVM;
3932
3933 return E1000_SUCCESS;
3934}
3935
3936/**
3937 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
3938 * @hw: pointer to the HW structure
3939 * @bank: 0 for first bank, 1 for second bank, etc.
3940 *
3941 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
3942 * bank N is 4096 * N + flash_reg_addr.
3943 **/
3944static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
3945{
3946 struct e1000_nvm_info *nvm = &hw->nvm;
3947 union ich8_hws_flash_status hsfsts;
3948 union ich8_hws_flash_ctrl hsflctl;
3949 u32 flash_linear_addr;
3950 /* bank size is in 16bit words - adjust to bytes */
3951 u32 flash_bank_size = nvm->flash_bank_size * 2;
3952 s32 ret_val;
3953 s32 count = 0;
3954 s32 j, iteration, sector_size;
3955
3956 DEBUGFUNC("e1000_erase_flash_bank_ich8lan");
3957
3958 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3959
3960 /* Determine HW Sector size: Read BERASE bits of hw flash status
3961 * register
3962 * 00: The Hw sector is 256 bytes, hence we need to erase 16
3963 * consecutive sectors. The start index for the nth Hw sector
3964 * can be calculated as = bank * 4096 + n * 256
3965 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3966 * The start index for the nth Hw sector can be calculated
3967 * as = bank * 4096
3968 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3969 * (ich9 only, otherwise error condition)
3970 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3971 */
3972 switch (hsfsts.hsf_status.berasesz) {
3973 case 0:
3974 /* Hw sector size 256 */
3975 sector_size = ICH_FLASH_SEG_SIZE_256;
3976 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3977 break;
3978 case 1:
3979 sector_size = ICH_FLASH_SEG_SIZE_4K;
3980 iteration = 1;
3981 break;
3982 case 2:
3983 sector_size = ICH_FLASH_SEG_SIZE_8K;
3984 iteration = 1;
3985 break;
3986 case 3:
3987 sector_size = ICH_FLASH_SEG_SIZE_64K;
3988 iteration = 1;
3989 break;
3990 default:
3991 return -E1000_ERR_NVM;
3992 }
3993
3994 /* Start with the base address, then add the sector offset. */
3995 flash_linear_addr = hw->nvm.flash_base_addr;
3996 flash_linear_addr += (bank) ? flash_bank_size : 0;
3997
3998 for (j = 0; j < iteration; j++) {
3999 do {
4000 u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4001
4002 /* Steps */
4003 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4004 if (ret_val)
4005 return ret_val;
4006
4007 /* Write a value 11 (block Erase) in Flash
4008 * Cycle field in hw flash control
4009 */
4010 hsflctl.regval =
4011 E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
4012
4013 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4014 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4015 hsflctl.regval);
4016
4017 /* Write the last 24 bits of an index within the
4018 * block into Flash Linear address field in Flash
4019 * Address.
4020 */
4021 flash_linear_addr += (j * sector_size);
4022 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR,
4023 flash_linear_addr);
4024
4025 ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4026 if (ret_val == E1000_SUCCESS)
4027 break;
4028
4029 /* Check if FCERR is set to 1. If 1,
4030 * clear it and try the whole sequence
4031 * a few more times else Done
4032 */
4033 hsfsts.regval = E1000_READ_FLASH_REG16(hw,
4034 ICH_FLASH_HSFSTS);
4035 if (hsfsts.hsf_status.flcerr)
4036 /* repeat for some time before giving up */
4037 continue;
4038 else if (!hsfsts.hsf_status.flcdone)
4039 return ret_val;
4040 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4041 }
4042
4043 return E1000_SUCCESS;
4044}
4045
4046/**
4047 * e1000_valid_led_default_ich8lan - Set the default LED settings
4048 * @hw: pointer to the HW structure
4049 * @data: Pointer to the LED settings
4050 *
4051 * Reads the LED default settings from the NVM to data. If the NVM LED
4052 * settings is all 0's or F's, set the LED default to a valid LED default
4053 * setting.
4054 **/
4055static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4056{
4057 s32 ret_val;
4058
4059 DEBUGFUNC("e1000_valid_led_default_ich8lan");
4060
4061 ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
4062 if (ret_val) {
4063 DEBUGOUT("NVM Read Error\n");
4064 return ret_val;
4065 }
4066
4067 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4068 *data = ID_LED_DEFAULT_ICH8LAN;
4069
4070 return E1000_SUCCESS;
4071}
4072
4073/**
4074 * e1000_id_led_init_pchlan - store LED configurations
4075 * @hw: pointer to the HW structure
4076 *
4077 * PCH does not control LEDs via the LEDCTL register, rather it uses
4078 * the PHY LED configuration register.
4079 *
4080 * PCH also does not have an "always on" or "always off" mode which
4081 * complicates the ID feature. Instead of using the "on" mode to indicate
4082 * in ledctl_mode2 the LEDs to use for ID (see e1000_id_led_init_generic()),
4083 * use "link_up" mode. The LEDs will still ID on request if there is no
4084 * link based on logic in e1000_led_[on|off]_pchlan().
4085 **/
4086static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4087{
4088 struct e1000_mac_info *mac = &hw->mac;
4089 s32 ret_val;
4090 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4091 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4092 u16 data, i, temp, shift;
4093
4094 DEBUGFUNC("e1000_id_led_init_pchlan");
4095
4096 /* Get default ID LED modes */
4097 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4098 if (ret_val)
4099 return ret_val;
4100
4101 mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
4102 mac->ledctl_mode1 = mac->ledctl_default;
4103 mac->ledctl_mode2 = mac->ledctl_default;
4104
4105 for (i = 0; i < 4; i++) {
4106 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4107 shift = (i * 5);
4108 switch (temp) {
4109 case ID_LED_ON1_DEF2:
4110 case ID_LED_ON1_ON2:
4111 case ID_LED_ON1_OFF2:
4112 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4113 mac->ledctl_mode1 |= (ledctl_on << shift);
4114 break;
4115 case ID_LED_OFF1_DEF2:
4116 case ID_LED_OFF1_ON2:
4117 case ID_LED_OFF1_OFF2:
4118 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4119 mac->ledctl_mode1 |= (ledctl_off << shift);
4120 break;
4121 default:
4122 /* Do nothing */
4123 break;
4124 }
4125 switch (temp) {
4126 case ID_LED_DEF1_ON2:
4127 case ID_LED_ON1_ON2:
4128 case ID_LED_OFF1_ON2:
4129 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4130 mac->ledctl_mode2 |= (ledctl_on << shift);
4131 break;
4132 case ID_LED_DEF1_OFF2:
4133 case ID_LED_ON1_OFF2:
4134 case ID_LED_OFF1_OFF2:
4135 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4136 mac->ledctl_mode2 |= (ledctl_off << shift);
4137 break;
4138 default:
4139 /* Do nothing */
4140 break;
4141 }
4142 }
4143
4144 return E1000_SUCCESS;
4145}
4146
4147/**
4148 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4149 * @hw: pointer to the HW structure
4150 *
4151 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4152 * register, so the the bus width is hard coded.
4153 **/
4154static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4155{
4156 struct e1000_bus_info *bus = &hw->bus;
4157 s32 ret_val;
4158
4159 DEBUGFUNC("e1000_get_bus_info_ich8lan");
4160
4161 ret_val = e1000_get_bus_info_pcie_generic(hw);
4162
4163 /* ICH devices are "PCI Express"-ish. They have
4164 * a configuration space, but do not contain
4165 * PCI Express Capability registers, so bus width
4166 * must be hardcoded.
4167 */
4168 if (bus->width == e1000_bus_width_unknown)
4169 bus->width = e1000_bus_width_pcie_x1;
4170
4171 return ret_val;
4172}
4173
4174/**
4175 * e1000_reset_hw_ich8lan - Reset the hardware
4176 * @hw: pointer to the HW structure
4177 *
4178 * Does a full reset of the hardware which includes a reset of the PHY and
4179 * MAC.
4180 **/
4181static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4182{
4183 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4184 u16 kum_cfg;
4185 u32 ctrl, reg;
4186 s32 ret_val;
4187
4188 DEBUGFUNC("e1000_reset_hw_ich8lan");
4189
4190 /* Prevent the PCI-E bus from sticking if there is no TLP connection
4191 * on the last TLP read/write transaction when MAC is reset.
4192 */
4193 ret_val = e1000_disable_pcie_master_generic(hw);
4194 if (ret_val)
4195 DEBUGOUT("PCI-E Master disable polling has failed.\n");
4196
4197 DEBUGOUT("Masking off all interrupts\n");
4198 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4199
4200 /* Disable the Transmit and Receive units. Then delay to allow
4201 * any pending transactions to complete before we hit the MAC
4202 * with the global reset.
4203 */
4204 E1000_WRITE_REG(hw, E1000_RCTL, 0);
4205 E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
4206 E1000_WRITE_FLUSH(hw);
4207
4208 msec_delay(10);
4209
4210 /* Workaround for ICH8 bit corruption issue in FIFO memory */
4211 if (hw->mac.type == e1000_ich8lan) {
4212 /* Set Tx and Rx buffer allocation to 8k apiece. */
4213 E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K);
4214 /* Set Packet Buffer Size to 16k. */
4215 E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K);
4216 }
4217
4218 if (hw->mac.type == e1000_pchlan) {
4219 /* Save the NVM K1 bit setting*/
4220 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4221 if (ret_val)
4222 return ret_val;
4223
4224 if (kum_cfg & E1000_NVM_K1_ENABLE)
4225 dev_spec->nvm_k1_enabled = TRUE;
4226 else
4227 dev_spec->nvm_k1_enabled = FALSE;
4228 }
4229
4230 ctrl = E1000_READ_REG(hw, E1000_CTRL);
4231
4232 if (!hw->phy.ops.check_reset_block(hw)) {
4233 /* Full-chip reset requires MAC and PHY reset at the same
4234 * time to make sure the interface between MAC and the
4235 * external PHY is reset.
4236 */
4237 ctrl |= E1000_CTRL_PHY_RST;
4238
4239 /* Gate automatic PHY configuration by hardware on
4240 * non-managed 82579
4241 */
4242 if ((hw->mac.type == e1000_pch2lan) &&
4243 !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
4244 e1000_gate_hw_phy_config_ich8lan(hw, TRUE);
4245 }
4246 ret_val = e1000_acquire_swflag_ich8lan(hw);
4247 DEBUGOUT("Issuing a global reset to ich8lan\n");
4248 E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST));
4249 /* cannot issue a flush here because it hangs the hardware */
4250 msec_delay(20);
4251
4252 /* Set Phy Config Counter to 50msec */
4253 if (hw->mac.type == e1000_pch2lan) {
4254 reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
4255 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4256 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4257 E1000_WRITE_REG(hw, E1000_FEXTNVM3, reg);
4258 }
4259
4260 if (!ret_val)
4261 E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
4262
4263 if (ctrl & E1000_CTRL_PHY_RST) {
4264 ret_val = hw->phy.ops.get_cfg_done(hw);
4265 if (ret_val)
4266 return ret_val;
4267
4268 ret_val = e1000_post_phy_reset_ich8lan(hw);
4269 if (ret_val)
4270 return ret_val;
4271 }
4272
4273 /* For PCH, this write will make sure that any noise
4274 * will be detected as a CRC error and be dropped rather than show up
4275 * as a bad packet to the DMA engine.
4276 */
4277 if (hw->mac.type == e1000_pchlan)
4278 E1000_WRITE_REG(hw, E1000_CRC_OFFSET, 0x65656565);
4279
4280 E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4281 E1000_READ_REG(hw, E1000_ICR);
4282
4283 reg = E1000_READ_REG(hw, E1000_KABGTXD);
4284 reg |= E1000_KABGTXD_BGSQLBIAS;
4285 E1000_WRITE_REG(hw, E1000_KABGTXD, reg);
4286
4287 return E1000_SUCCESS;
4288}
4289
4290/**
4291 * e1000_init_hw_ich8lan - Initialize the hardware
4292 * @hw: pointer to the HW structure
4293 *
4294 * Prepares the hardware for transmit and receive by doing the following:
4295 * - initialize hardware bits
4296 * - initialize LED identification
4297 * - setup receive address registers
4298 * - setup flow control
4299 * - setup transmit descriptors
4300 * - clear statistics
4301 **/
4302static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4303{
4304 struct e1000_mac_info *mac = &hw->mac;
4305 u32 ctrl_ext, txdctl, snoop;
4306 s32 ret_val;
4307 u16 i;
4308
4309 DEBUGFUNC("e1000_init_hw_ich8lan");
4310
4311 e1000_initialize_hw_bits_ich8lan(hw);
4312
4313 /* Initialize identification LED */
4314 ret_val = mac->ops.id_led_init(hw);
4315 /* An error is not fatal and we should not stop init due to this */
4316 if (ret_val)
4317 DEBUGOUT("Error initializing identification LED\n");
4318
4319 /* Setup the receive address. */
4320 e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
4321
4322 /* Zero out the Multicast HASH table */
4323 DEBUGOUT("Zeroing the MTA\n");
4324 for (i = 0; i < mac->mta_reg_count; i++)
4325 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4326
4327 /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4328 * the ME. Disable wakeup by clearing the host wakeup bit.
4329 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4330 */
4331 if (hw->phy.type == e1000_phy_82578) {
4332 hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &i);
4333 i &= ~BM_WUC_HOST_WU_BIT;
4334 hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, i);
4335 ret_val = e1000_phy_hw_reset_ich8lan(hw);
4336 if (ret_val)
4337 return ret_val;
4338 }
4339
4340 /* Setup link and flow control */
4341 ret_val = mac->ops.setup_link(hw);
4342
4343 /* Set the transmit descriptor write-back policy for both queues */
4344 txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
4345 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4346 E1000_TXDCTL_FULL_TX_DESC_WB);
4347 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4348 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4349 E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
4350 txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1));
4351 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4352 E1000_TXDCTL_FULL_TX_DESC_WB);
4353 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4354 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4355 E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl);
4356
4357 /* ICH8 has opposite polarity of no_snoop bits.
4358 * By default, we should use snoop behavior.
4359 */
4360 if (mac->type == e1000_ich8lan)
4361 snoop = PCIE_ICH8_SNOOP_ALL;
4362 else
4363 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
4364 e1000_set_pcie_no_snoop_generic(hw, snoop);
4365
4366 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
4367 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4368 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
4369
4370 /* Clear all of the statistics registers (clear on read). It is
4371 * important that we do this after we have tried to establish link
4372 * because the symbol error count will increment wildly if there
4373 * is no link.
4374 */
4375 e1000_clear_hw_cntrs_ich8lan(hw);
4376
4377 return ret_val;
4378}
4379
4380/**
4381 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4382 * @hw: pointer to the HW structure
4383 *
4384 * Sets/Clears required hardware bits necessary for correctly setting up the
4385 * hardware for transmit and receive.
4386 **/
4387static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4388{
4389 u32 reg;
4390
4391 DEBUGFUNC("e1000_initialize_hw_bits_ich8lan");
4392
4393 /* Extended Device Control */
4394 reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
4395 reg |= (1 << 22);
4396 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4397 if (hw->mac.type >= e1000_pchlan)
4398 reg |= E1000_CTRL_EXT_PHYPDEN;
4399 E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
4400
4401 /* Transmit Descriptor Control 0 */
4402 reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
4403 reg |= (1 << 22);
4404 E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
4405
4406 /* Transmit Descriptor Control 1 */
4407 reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
4408 reg |= (1 << 22);
4409 E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
4410
4411 /* Transmit Arbitration Control 0 */
4412 reg = E1000_READ_REG(hw, E1000_TARC(0));
4413 if (hw->mac.type == e1000_ich8lan)
4414 reg |= (1 << 28) | (1 << 29);
4415 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
4416 E1000_WRITE_REG(hw, E1000_TARC(0), reg);
4417
4418 /* Transmit Arbitration Control 1 */
4419 reg = E1000_READ_REG(hw, E1000_TARC(1));
4420 if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
4421 reg &= ~(1 << 28);
4422 else
4423 reg |= (1 << 28);
4424 reg |= (1 << 24) | (1 << 26) | (1 << 30);
4425 E1000_WRITE_REG(hw, E1000_TARC(1), reg);
4426
4427 /* Device Status */
4428 if (hw->mac.type == e1000_ich8lan) {
4429 reg = E1000_READ_REG(hw, E1000_STATUS);
4430 reg &= ~(1 << 31);
4431 E1000_WRITE_REG(hw, E1000_STATUS, reg);
4432 }
4433
4434 /* work-around descriptor data corruption issue during nfs v2 udp
4435 * traffic, just disable the nfs filtering capability
4436 */
4437 reg = E1000_READ_REG(hw, E1000_RFCTL);
4438 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4439
4440 /* Disable IPv6 extension header parsing because some malformed
4441 * IPv6 headers can hang the Rx.
4442 */
4443 if (hw->mac.type == e1000_ich8lan)
4444 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4445 E1000_WRITE_REG(hw, E1000_RFCTL, reg);
4446
4447 /* Enable ECC on Lynxpoint */
4448 if (hw->mac.type == e1000_pch_lpt) {
4449 reg = E1000_READ_REG(hw, E1000_PBECCSTS);
4450 reg |= E1000_PBECCSTS_ECC_ENABLE;
4451 E1000_WRITE_REG(hw, E1000_PBECCSTS, reg);
4452
4453 reg = E1000_READ_REG(hw, E1000_CTRL);
4454 reg |= E1000_CTRL_MEHE;
4455 E1000_WRITE_REG(hw, E1000_CTRL, reg);
4456 }
4457
4458 return;
4459}
4460
4461/**
4462 * e1000_setup_link_ich8lan - Setup flow control and link settings
4463 * @hw: pointer to the HW structure
4464 *
4465 * Determines which flow control settings to use, then configures flow
4466 * control. Calls the appropriate media-specific link configuration
4467 * function. Assuming the adapter has a valid link partner, a valid link
4468 * should be established. Assumes the hardware has previously been reset
4469 * and the transmitter and receiver are not enabled.
4470 **/
4471static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4472{
4473 s32 ret_val;
4474
4475 DEBUGFUNC("e1000_setup_link_ich8lan");
4476
4477 if (hw->phy.ops.check_reset_block(hw))
4478 return E1000_SUCCESS;
4479
4480 /* ICH parts do not have a word in the NVM to determine
4481 * the default flow control setting, so we explicitly
4482 * set it to full.
4483 */
4484 if (hw->fc.requested_mode == e1000_fc_default)
4485 hw->fc.requested_mode = e1000_fc_full;
4486
4487 /* Save off the requested flow control mode for use later. Depending
4488 * on the link partner's capabilities, we may or may not use this mode.
4489 */
4490 hw->fc.current_mode = hw->fc.requested_mode;
4491
4492 DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
4493 hw->fc.current_mode);
4494
4495 /* Continue to configure the copper link. */
4496 ret_val = hw->mac.ops.setup_physical_interface(hw);
4497 if (ret_val)
4498 return ret_val;
4499
4500 E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
4501 if ((hw->phy.type == e1000_phy_82578) ||
4502 (hw->phy.type == e1000_phy_82579) ||
4503 (hw->phy.type == e1000_phy_i217) ||
4504 (hw->phy.type == e1000_phy_82577)) {
4505 E1000_WRITE_REG(hw, E1000_FCRTV_PCH, hw->fc.refresh_time);
4506
4507 ret_val = hw->phy.ops.write_reg(hw,
4508 PHY_REG(BM_PORT_CTRL_PAGE, 27),
4509 hw->fc.pause_time);
4510 if (ret_val)
4511 return ret_val;
4512 }
4513
4514 return e1000_set_fc_watermarks_generic(hw);
4515}
4516
4517/**
4518 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4519 * @hw: pointer to the HW structure
4520 *
4521 * Configures the kumeran interface to the PHY to wait the appropriate time
4522 * when polling the PHY, then call the generic setup_copper_link to finish
4523 * configuring the copper link.
4524 **/
4525static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4526{
4527 u32 ctrl;
4528 s32 ret_val;
4529 u16 reg_data;
4530
4531 DEBUGFUNC("e1000_setup_copper_link_ich8lan");
4532
4533 ctrl = E1000_READ_REG(hw, E1000_CTRL);
4534 ctrl |= E1000_CTRL_SLU;
4535 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4536 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4537
4538 /* Set the mac to wait the maximum time between each iteration
4539 * and increase the max iterations when polling the phy;
4540 * this fixes erroneous timeouts at 10Mbps.
4541 */
4542 ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_TIMEOUTS,
4543 0xFFFF);
4544 if (ret_val)
4545 return ret_val;
4546 ret_val = e1000_read_kmrn_reg_generic(hw,
4547 E1000_KMRNCTRLSTA_INBAND_PARAM,
4548 &reg_data);
4549 if (ret_val)
4550 return ret_val;
4551 reg_data |= 0x3F;
4552 ret_val = e1000_write_kmrn_reg_generic(hw,
4553 E1000_KMRNCTRLSTA_INBAND_PARAM,
4554 reg_data);
4555 if (ret_val)
4556 return ret_val;
4557
4558 switch (hw->phy.type) {
4559 case e1000_phy_igp_3:
4560 ret_val = e1000_copper_link_setup_igp(hw);
4561 if (ret_val)
4562 return ret_val;
4563 break;
4564 case e1000_phy_bm:
4565 case e1000_phy_82578:
4566 ret_val = e1000_copper_link_setup_m88(hw);
4567 if (ret_val)
4568 return ret_val;
4569 break;
4570 case e1000_phy_82577:
4571 case e1000_phy_82579:
4572 ret_val = e1000_copper_link_setup_82577(hw);
4573 if (ret_val)
4574 return ret_val;
4575 break;
4576 case e1000_phy_ife:
4577 ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
4578 &reg_data);
4579 if (ret_val)
4580 return ret_val;
4581
4582 reg_data &= ~IFE_PMC_AUTO_MDIX;
4583
4584 switch (hw->phy.mdix) {
4585 case 1:
4586 reg_data &= ~IFE_PMC_FORCE_MDIX;
4587 break;
4588 case 2:
4589 reg_data |= IFE_PMC_FORCE_MDIX;
4590 break;
4591 case 0:
4592 default:
4593 reg_data |= IFE_PMC_AUTO_MDIX;
4594 break;
4595 }
4596 ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
4597 reg_data);
4598 if (ret_val)
4599 return ret_val;
4600 break;
4601 default:
4602 break;
4603 }
4604
4605 return e1000_setup_copper_link_generic(hw);
4606}
4607
4608/**
4609 * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
4610 * @hw: pointer to the HW structure
4611 *
4612 * Calls the PHY specific link setup function and then calls the
4613 * generic setup_copper_link to finish configuring the link for
4614 * Lynxpoint PCH devices
4615 **/
4616static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
4617{
4618 u32 ctrl;
4619 s32 ret_val;
4620
4621 DEBUGFUNC("e1000_setup_copper_link_pch_lpt");
4622
4623 ctrl = E1000_READ_REG(hw, E1000_CTRL);
4624 ctrl |= E1000_CTRL_SLU;
4625 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4626 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
4627
4628 ret_val = e1000_copper_link_setup_82577(hw);
4629 if (ret_val)
4630 return ret_val;
4631
4632 return e1000_setup_copper_link_generic(hw);
4633}
4634
4635/**
4636 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
4637 * @hw: pointer to the HW structure
4638 * @speed: pointer to store current link speed
4639 * @duplex: pointer to store the current link duplex
4640 *
4641 * Calls the generic get_speed_and_duplex to retrieve the current link
4642 * information and then calls the Kumeran lock loss workaround for links at
4643 * gigabit speeds.
4644 **/
4645static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
4646 u16 *duplex)
4647{
4648 s32 ret_val;
4649
4650 DEBUGFUNC("e1000_get_link_up_info_ich8lan");
4651
4652 ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
4653 if (ret_val)
4654 return ret_val;
4655
4656 if ((hw->mac.type == e1000_ich8lan) &&
4657 (hw->phy.type == e1000_phy_igp_3) &&
4658 (*speed == SPEED_1000)) {
4659 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
4660 }
4661
4662 return ret_val;
4663}
4664
4665/**
4666 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
4667 * @hw: pointer to the HW structure
4668 *
4669 * Work-around for 82566 Kumeran PCS lock loss:
4670 * On link status change (i.e. PCI reset, speed change) and link is up and
4671 * speed is gigabit-
4672 * 0) if workaround is optionally disabled do nothing
4673 * 1) wait 1ms for Kumeran link to come up
4674 * 2) check Kumeran Diagnostic register PCS lock loss bit
4675 * 3) if not set the link is locked (all is good), otherwise...
4676 * 4) reset the PHY
4677 * 5) repeat up to 10 times
4678 * Note: this is only called for IGP3 copper when speed is 1gb.
4679 **/
4680static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
4681{
4682 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4683 u32 phy_ctrl;
4684 s32 ret_val;
4685 u16 i, data;
4686 bool link;
4687
4688 DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan");
4689
4690 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
4691 return E1000_SUCCESS;
4692
4693 /* Make sure link is up before proceeding. If not just return.
4694 * Attempting this while link is negotiating fouled up link
4695 * stability
4696 */
4697 ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
4698 if (!link)
4699 return E1000_SUCCESS;
4700
4701 for (i = 0; i < 10; i++) {
4702 /* read once to clear */
4703 ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
4704 if (ret_val)
4705 return ret_val;
4706 /* and again to get new status */
4707 ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
4708 if (ret_val)
4709 return ret_val;
4710
4711 /* check for PCS lock */
4712 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
4713 return E1000_SUCCESS;
4714
4715 /* Issue PHY reset */
4716 hw->phy.ops.reset(hw);
4717 msec_delay_irq(5);
4718 }
4719 /* Disable GigE link negotiation */
4720 phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
4721 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
4722 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4723 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
4724
4725 /* Call gig speed drop workaround on Gig disable before accessing
4726 * any PHY registers
4727 */
4728 e1000_gig_downshift_workaround_ich8lan(hw);
4729
4730 /* unable to acquire PCS lock */
4731 return -E1000_ERR_PHY;
4732}
4733
4734/**
4735 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
4736 * @hw: pointer to the HW structure
4737 * @state: boolean value used to set the current Kumeran workaround state
4738 *
4739 * If ICH8, set the current Kumeran workaround state (enabled - TRUE
4740 * /disabled - FALSE).
4741 **/
4742void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
4743 bool state)
4744{
4745 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4746
4747 DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan");
4748
4749 if (hw->mac.type != e1000_ich8lan) {
4750 DEBUGOUT("Workaround applies to ICH8 only.\n");
4751 return;
4752 }
4753
4754 dev_spec->kmrn_lock_loss_workaround_enabled = state;
4755
4756 return;
4757}
4758
4759/**
4760 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
4761 * @hw: pointer to the HW structure
4762 *
4763 * Workaround for 82566 power-down on D3 entry:
4764 * 1) disable gigabit link
4765 * 2) write VR power-down enable
4766 * 3) read it back
4767 * Continue if successful, else issue LCD reset and repeat
4768 **/
4769void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
4770{
4771 u32 reg;
4772 u16 data;
4773 u8 retry = 0;
4774
4775 DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan");
4776
4777 if (hw->phy.type != e1000_phy_igp_3)
4778 return;
4779
4780 /* Try the workaround twice (if needed) */
4781 do {
4782 /* Disable link */
4783 reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
4784 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
4785 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4786 E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg);
4787
4788 /* Call gig speed drop workaround on Gig disable before
4789 * accessing any PHY registers
4790 */
4791 if (hw->mac.type == e1000_ich8lan)
4792 e1000_gig_downshift_workaround_ich8lan(hw);
4793
4794 /* Write VR power-down enable */
4795 hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
4796 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4797 hw->phy.ops.write_reg(hw, IGP3_VR_CTRL,
4798 data | IGP3_VR_CTRL_MODE_SHUTDOWN);
4799
4800 /* Read it back and test */
4801 hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
4802 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4803 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
4804 break;
4805
4806 /* Issue PHY reset and repeat at most one more time */
4807 reg = E1000_READ_REG(hw, E1000_CTRL);
4808 E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST);
4809 retry++;
4810 } while (retry);
4811}
4812
4813/**
4814 * e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working
4815 * @hw: pointer to the HW structure
4816 *
4817 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
4818 * LPLU, Gig disable, MDIC PHY reset):
4819 * 1) Set Kumeran Near-end loopback
4820 * 2) Clear Kumeran Near-end loopback
4821 * Should only be called for ICH8[m] devices with any 1G Phy.
4822 **/
4823void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
4824{
4825 s32 ret_val;
4826 u16 reg_data;
4827
4828 DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan");
4829
4830 if ((hw->mac.type != e1000_ich8lan) ||
4831 (hw->phy.type == e1000_phy_ife))
4832 return;
4833
4834 ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4835 &reg_data);
4836 if (ret_val)
4837 return;
4838 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
4839 ret_val = e1000_write_kmrn_reg_generic(hw,
4840 E1000_KMRNCTRLSTA_DIAG_OFFSET,
4841 reg_data);
4842 if (ret_val)
4843 return;
4844 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
4845 e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4846 reg_data);
4847}
4848
4849/**
4850 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
4851 * @hw: pointer to the HW structure
4852 *
4853 * During S0 to Sx transition, it is possible the link remains at gig
4854 * instead of negotiating to a lower speed. Before going to Sx, set
4855 * 'Gig Disable' to force link speed negotiation to a lower speed based on
4856 * the LPLU setting in the NVM or custom setting. For PCH and newer parts,
4857 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
4858 * needs to be written.
4859 * Parts that support (and are linked to a partner which support) EEE in
4860 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
4861 * than 10Mbps w/o EEE.
4862 **/
4863void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
4864{
4865 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4866 u32 phy_ctrl;
4867 s32 ret_val;
4868
4869 DEBUGFUNC("e1000_suspend_workarounds_ich8lan");
4870
4871 phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
4872 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
4873
4874 if (hw->phy.type == e1000_phy_i217) {
4875 u16 phy_reg, device_id = hw->device_id;
4876
4877 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
4878 (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
4879 (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
4880 (device_id == E1000_DEV_ID_PCH_I218_V3)) {
4881 u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
4882
4883 E1000_WRITE_REG(hw, E1000_FEXTNVM6,
4884 fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
4885 }
4886
4887 ret_val = hw->phy.ops.acquire(hw);
4888 if (ret_val)
4889 goto out;
4890
4891 if (!dev_spec->eee_disable) {
4892 u16 eee_advert;
4893
4894 ret_val =
4895 e1000_read_emi_reg_locked(hw,
4896 I217_EEE_ADVERTISEMENT,
4897 &eee_advert);
4898 if (ret_val)
4899 goto release;
4900
4901 /* Disable LPLU if both link partners support 100BaseT
4902 * EEE and 100Full is advertised on both ends of the
4903 * link, and enable Auto Enable LPI since there will
4904 * be no driver to enable LPI while in Sx.
4905 */
4906 if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
4907 (dev_spec->eee_lp_ability &
4908 I82579_EEE_100_SUPPORTED) &&
4909 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
4910 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
4911 E1000_PHY_CTRL_NOND0A_LPLU);
4912
4913 /* Set Auto Enable LPI after link up */
4914 hw->phy.ops.read_reg_locked(hw,
4915 I217_LPI_GPIO_CTRL,
4916 &phy_reg);
4917 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
4918 hw->phy.ops.write_reg_locked(hw,
4919 I217_LPI_GPIO_CTRL,
4920 phy_reg);
4921 }
4922 }
4923
4924 /* For i217 Intel Rapid Start Technology support,
4925 * when the system is going into Sx and no manageability engine
4926 * is present, the driver must configure proxy to reset only on
4927 * power good. LPI (Low Power Idle) state must also reset only
4928 * on power good, as well as the MTA (Multicast table array).
4929 * The SMBus release must also be disabled on LCD reset.
4930 */
4931 if (!(E1000_READ_REG(hw, E1000_FWSM) &
4932 E1000_ICH_FWSM_FW_VALID)) {
4933 /* Enable proxy to reset only on power good. */
4934 hw->phy.ops.read_reg_locked(hw, I217_PROXY_CTRL,
4935 &phy_reg);
4936 phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
4937 hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL,
4938 phy_reg);
4939
4940 /* Set bit enable LPI (EEE) to reset only on
4941 * power good.
4942 */
4943 hw->phy.ops.read_reg_locked(hw, I217_SxCTRL, &phy_reg);
4944 phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
4945 hw->phy.ops.write_reg_locked(hw, I217_SxCTRL, phy_reg);
4946
4947 /* Disable the SMB release on LCD reset. */
4948 hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, &phy_reg);
4949 phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
4950 hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
4951 }
4952
4953 /* Enable MTA to reset for Intel Rapid Start Technology
4954 * Support
4955 */
4956 hw->phy.ops.read_reg_locked(hw, I217_CGFREG, &phy_reg);
4957 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
4958 hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
4959
4960release:
4961 hw->phy.ops.release(hw);
4962 }
4963out:
4964 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
4965
4966 if (hw->mac.type == e1000_ich8lan)
4967 e1000_gig_downshift_workaround_ich8lan(hw);
4968
4969 if (hw->mac.type >= e1000_pchlan) {
4970 e1000_oem_bits_config_ich8lan(hw, FALSE);
4971
4972 /* Reset PHY to activate OEM bits on 82577/8 */
4973 if (hw->mac.type == e1000_pchlan)
4974 e1000_phy_hw_reset_generic(hw);
4975
4976 ret_val = hw->phy.ops.acquire(hw);
4977 if (ret_val)
4978 return;
4979 e1000_write_smbus_addr(hw);
4980 hw->phy.ops.release(hw);
4981 }
4982
4983 return;
4984}
4985
4986/**
4987 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
4988 * @hw: pointer to the HW structure
4989 *
4990 * During Sx to S0 transitions on non-managed devices or managed devices
4991 * on which PHY resets are not blocked, if the PHY registers cannot be
4992 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
4993 * the PHY.
4994 * On i217, setup Intel Rapid Start Technology.
4995 **/
4996void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
4997{
4998 s32 ret_val;
4999
5000 DEBUGFUNC("e1000_resume_workarounds_pchlan");
5001
5002 if (hw->mac.type < e1000_pch2lan)
5003 return;
5004
5005 ret_val = e1000_init_phy_workarounds_pchlan(hw);
5006 if (ret_val) {
5007 DEBUGOUT1("Failed to init PHY flow ret_val=%d\n", ret_val);
5008 return;
5009 }
5010
5011 /* For i217 Intel Rapid Start Technology support when the system
5012 * is transitioning from Sx and no manageability engine is present
5013 * configure SMBus to restore on reset, disable proxy, and enable
5014 * the reset on MTA (Multicast table array).
5015 */
5016 if (hw->phy.type == e1000_phy_i217) {
5017 u16 phy_reg;
5018
5019 ret_val = hw->phy.ops.acquire(hw);
5020 if (ret_val) {
5021 DEBUGOUT("Failed to setup iRST\n");
5022 return;
5023 }
5024
5025 /* Clear Auto Enable LPI after link up */
5026 hw->phy.ops.read_reg_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5027 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5028 hw->phy.ops.write_reg_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5029
5030 if (!(E1000_READ_REG(hw, E1000_FWSM) &
5031 E1000_ICH_FWSM_FW_VALID)) {
5032 /* Restore clear on SMB if no manageability engine
5033 * is present
5034 */
5035 ret_val = hw->phy.ops.read_reg_locked(hw, I217_MEMPWR,
5036 &phy_reg);
5037 if (ret_val)
5038 goto release;
5039 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5040 hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5041
5042 /* Disable Proxy */
5043 hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, 0);
5044 }
5045 /* Enable reset on MTA */
5046 ret_val = hw->phy.ops.read_reg_locked(hw, I217_CGFREG,
5047 &phy_reg);
5048 if (ret_val)
5049 goto release;
5050 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5051 hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5052release:
5053 if (ret_val)
5054 DEBUGOUT1("Error %d in resume workarounds\n", ret_val);
5055 hw->phy.ops.release(hw);
5056 }
5057}
5058
5059/**
5060 * e1000_cleanup_led_ich8lan - Restore the default LED operation
5061 * @hw: pointer to the HW structure
5062 *
5063 * Return the LED back to the default configuration.
5064 **/
5065static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5066{
5067 DEBUGFUNC("e1000_cleanup_led_ich8lan");
5068
5069 if (hw->phy.type == e1000_phy_ife)
5070 return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5071 0);
5072
5073 E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
5074 return E1000_SUCCESS;
5075}
5076
5077/**
5078 * e1000_led_on_ich8lan - Turn LEDs on
5079 * @hw: pointer to the HW structure
5080 *
5081 * Turn on the LEDs.
5082 **/
5083static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5084{
5085 DEBUGFUNC("e1000_led_on_ich8lan");
5086
5087 if (hw->phy.type == e1000_phy_ife)
5088 return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5089 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5090
5091 E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
5092 return E1000_SUCCESS;
5093}
5094
5095/**
5096 * e1000_led_off_ich8lan - Turn LEDs off
5097 * @hw: pointer to the HW structure
5098 *
5099 * Turn off the LEDs.
5100 **/
5101static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5102{
5103 DEBUGFUNC("e1000_led_off_ich8lan");
5104
5105 if (hw->phy.type == e1000_phy_ife)
5106 return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5107 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
5108
5109 E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
5110 return E1000_SUCCESS;
5111}
5112
5113/**
5114 * e1000_setup_led_pchlan - Configures SW controllable LED
5115 * @hw: pointer to the HW structure
5116 *
5117 * This prepares the SW controllable LED for use.
5118 **/
5119static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5120{
5121 DEBUGFUNC("e1000_setup_led_pchlan");
5122
5123 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5124 (u16)hw->mac.ledctl_mode1);
5125}
5126
5127/**
5128 * e1000_cleanup_led_pchlan - Restore the default LED operation
5129 * @hw: pointer to the HW structure
5130 *
5131 * Return the LED back to the default configuration.
5132 **/
5133static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5134{
5135 DEBUGFUNC("e1000_cleanup_led_pchlan");
5136
5137 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5138 (u16)hw->mac.ledctl_default);
5139}
5140
5141/**
5142 * e1000_led_on_pchlan - Turn LEDs on
5143 * @hw: pointer to the HW structure
5144 *
5145 * Turn on the LEDs.
5146 **/
5147static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5148{
5149 u16 data = (u16)hw->mac.ledctl_mode2;
5150 u32 i, led;
5151
5152 DEBUGFUNC("e1000_led_on_pchlan");
5153
5154 /* If no link, then turn LED on by setting the invert bit
5155 * for each LED that's mode is "link_up" in ledctl_mode2.
5156 */
5157 if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5158 for (i = 0; i < 3; i++) {
5159 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5160 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5161 E1000_LEDCTL_MODE_LINK_UP)
5162 continue;
5163 if (led & E1000_PHY_LED0_IVRT)
5164 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5165 else
5166 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5167 }
5168 }
5169
5170 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5171}
5172
5173/**
5174 * e1000_led_off_pchlan - Turn LEDs off
5175 * @hw: pointer to the HW structure
5176 *
5177 * Turn off the LEDs.
5178 **/
5179static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5180{
5181 u16 data = (u16)hw->mac.ledctl_mode1;
5182 u32 i, led;
5183
5184 DEBUGFUNC("e1000_led_off_pchlan");
5185
5186 /* If no link, then turn LED off by clearing the invert bit
5187 * for each LED that's mode is "link_up" in ledctl_mode1.
5188 */
5189 if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5190 for (i = 0; i < 3; i++) {
5191 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5192 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5193 E1000_LEDCTL_MODE_LINK_UP)
5194 continue;
5195 if (led & E1000_PHY_LED0_IVRT)
5196 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5197 else
5198 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5199 }
5200 }
5201
5202 return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5203}
5204
5205/**
5206 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5207 * @hw: pointer to the HW structure
5208 *
5209 * Read appropriate register for the config done bit for completion status
5210 * and configure the PHY through s/w for EEPROM-less parts.
5211 *
5212 * NOTE: some silicon which is EEPROM-less will fail trying to read the
5213 * config done bit, so only an error is logged and continues. If we were
5214 * to return with error, EEPROM-less silicon would not be able to be reset
5215 * or change link.
5216 **/
5217static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5218{
5219 s32 ret_val = E1000_SUCCESS;
5220 u32 bank = 0;
5221 u32 status;
5222
5223 DEBUGFUNC("e1000_get_cfg_done_ich8lan");
5224
5225 e1000_get_cfg_done_generic(hw);
5226
5227 /* Wait for indication from h/w that it has completed basic config */
5228 if (hw->mac.type >= e1000_ich10lan) {
5229 e1000_lan_init_done_ich8lan(hw);
5230 } else {
5231 ret_val = e1000_get_auto_rd_done_generic(hw);
5232 if (ret_val) {
5233 /* When auto config read does not complete, do not
5234 * return with an error. This can happen in situations
5235 * where there is no eeprom and prevents getting link.
5236 */
5237 DEBUGOUT("Auto Read Done did not complete\n");
5238 ret_val = E1000_SUCCESS;
5239 }
5240 }
5241
5242 /* Clear PHY Reset Asserted bit */
5243 status = E1000_READ_REG(hw, E1000_STATUS);
5244 if (status & E1000_STATUS_PHYRA)
5245 E1000_WRITE_REG(hw, E1000_STATUS, status & ~E1000_STATUS_PHYRA);
5246 else
5247 DEBUGOUT("PHY Reset Asserted not set - needs delay\n");
5248
5249 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
5250 if (hw->mac.type <= e1000_ich9lan) {
5251 if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
5252 (hw->phy.type == e1000_phy_igp_3)) {
5253 e1000_phy_init_script_igp3(hw);
5254 }
5255 } else {
5256 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5257 /* Maybe we should do a basic PHY config */
5258 DEBUGOUT("EEPROM not present\n");
5259 ret_val = -E1000_ERR_CONFIG;
5260 }
5261 }
5262
5263 return ret_val;
5264}
5265
5266/**
5267 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5268 * @hw: pointer to the HW structure
5269 *
5270 * In the case of a PHY power down to save power, or to turn off link during a
5271 * driver unload, or wake on lan is not enabled, remove the link.
5272 **/
5273static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5274{
5275 /* If the management interface is not enabled, then power down */
5276 if (!(hw->mac.ops.check_mng_mode(hw) ||
5277 hw->phy.ops.check_reset_block(hw)))
5278 e1000_power_down_phy_copper(hw);
5279
5280 return;
5281}
5282
5283/**
5284 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5285 * @hw: pointer to the HW structure
5286 *
5287 * Clears hardware counters specific to the silicon family and calls
5288 * clear_hw_cntrs_generic to clear all general purpose counters.
5289 **/
5290static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5291{
5292 u16 phy_data;
5293 s32 ret_val;
5294
5295 DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan");
5296
5297 e1000_clear_hw_cntrs_base_generic(hw);
5298
5299 E1000_READ_REG(hw, E1000_ALGNERRC);
5300 E1000_READ_REG(hw, E1000_RXERRC);
5301 E1000_READ_REG(hw, E1000_TNCRS);
5302 E1000_READ_REG(hw, E1000_CEXTERR);
5303 E1000_READ_REG(hw, E1000_TSCTC);
5304 E1000_READ_REG(hw, E1000_TSCTFC);
5305
5306 E1000_READ_REG(hw, E1000_MGTPRC);
5307 E1000_READ_REG(hw, E1000_MGTPDC);
5308 E1000_READ_REG(hw, E1000_MGTPTC);
5309
5310 E1000_READ_REG(hw, E1000_IAC);
5311 E1000_READ_REG(hw, E1000_ICRXOC);
5312
5313 /* Clear PHY statistics registers */
5314 if ((hw->phy.type == e1000_phy_82578) ||
5315 (hw->phy.type == e1000_phy_82579) ||
5316 (hw->phy.type == e1000_phy_i217) ||
5317 (hw->phy.type == e1000_phy_82577)) {
5318 ret_val = hw->phy.ops.acquire(hw);
5319 if (ret_val)
5320 return;
5321 ret_val = hw->phy.ops.set_page(hw,
5322 HV_STATS_PAGE << IGP_PAGE_SHIFT);
5323 if (ret_val)
5324 goto release;
5325 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5326 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5327 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5328 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5329 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5330 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5331 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5332 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5333 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5334 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5335 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5336 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5337 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5338 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5339release:
5340 hw->phy.ops.release(hw);
5341 }
5342}
5343