Deleted Added
full compact
X86AsmBackend.cpp (234353) X86AsmBackend.cpp (241430)
1//===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "MCTargetDesc/X86BaseInfo.h"
11#include "MCTargetDesc/X86FixupKinds.h"
12#include "llvm/MC/MCAsmBackend.h"
13#include "llvm/MC/MCAssembler.h"
14#include "llvm/MC/MCELFObjectWriter.h"
15#include "llvm/MC/MCExpr.h"
16#include "llvm/MC/MCFixupKindInfo.h"
17#include "llvm/MC/MCMachObjectWriter.h"
18#include "llvm/MC/MCObjectWriter.h"
19#include "llvm/MC/MCSectionCOFF.h"
20#include "llvm/MC/MCSectionELF.h"
21#include "llvm/MC/MCSectionMachO.h"
22#include "llvm/Object/MachOFormat.h"
23#include "llvm/Support/CommandLine.h"
24#include "llvm/Support/ELF.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/TargetRegistry.h"
27#include "llvm/Support/raw_ostream.h"
28using namespace llvm;
29
30// Option to allow disabling arithmetic relaxation to workaround PR9807, which
31// is useful when running bitwise comparison experiments on Darwin. We should be
32// able to remove this once PR9807 is resolved.
33static cl::opt<bool>
34MCDisableArithRelaxation("mc-x86-disable-arith-relaxation",
35 cl::desc("Disable relaxation of arithmetic instruction for X86"));
36
37static unsigned getFixupKindLog2Size(unsigned Kind) {
38 switch (Kind) {
39 default: llvm_unreachable("invalid fixup kind!");
40 case FK_PCRel_1:
41 case FK_SecRel_1:
42 case FK_Data_1: return 0;
43 case FK_PCRel_2:
44 case FK_SecRel_2:
45 case FK_Data_2: return 1;
46 case FK_PCRel_4:
47 case X86::reloc_riprel_4byte:
48 case X86::reloc_riprel_4byte_movq_load:
49 case X86::reloc_signed_4byte:
50 case X86::reloc_global_offset_table:
51 case FK_SecRel_4:
52 case FK_Data_4: return 2;
53 case FK_PCRel_8:
54 case FK_SecRel_8:
55 case FK_Data_8: return 3;
56 }
57}
58
59namespace {
60
61class X86ELFObjectWriter : public MCELFObjectTargetWriter {
62public:
63 X86ELFObjectWriter(bool is64Bit, uint8_t OSABI, uint16_t EMachine,
64 bool HasRelocationAddend, bool foobar)
65 : MCELFObjectTargetWriter(is64Bit, OSABI, EMachine, HasRelocationAddend) {}
66};
67
68class X86AsmBackend : public MCAsmBackend {
1//===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "MCTargetDesc/X86BaseInfo.h"
11#include "MCTargetDesc/X86FixupKinds.h"
12#include "llvm/MC/MCAsmBackend.h"
13#include "llvm/MC/MCAssembler.h"
14#include "llvm/MC/MCELFObjectWriter.h"
15#include "llvm/MC/MCExpr.h"
16#include "llvm/MC/MCFixupKindInfo.h"
17#include "llvm/MC/MCMachObjectWriter.h"
18#include "llvm/MC/MCObjectWriter.h"
19#include "llvm/MC/MCSectionCOFF.h"
20#include "llvm/MC/MCSectionELF.h"
21#include "llvm/MC/MCSectionMachO.h"
22#include "llvm/Object/MachOFormat.h"
23#include "llvm/Support/CommandLine.h"
24#include "llvm/Support/ELF.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/TargetRegistry.h"
27#include "llvm/Support/raw_ostream.h"
28using namespace llvm;
29
30// Option to allow disabling arithmetic relaxation to workaround PR9807, which
31// is useful when running bitwise comparison experiments on Darwin. We should be
32// able to remove this once PR9807 is resolved.
33static cl::opt<bool>
34MCDisableArithRelaxation("mc-x86-disable-arith-relaxation",
35 cl::desc("Disable relaxation of arithmetic instruction for X86"));
36
37static unsigned getFixupKindLog2Size(unsigned Kind) {
38 switch (Kind) {
39 default: llvm_unreachable("invalid fixup kind!");
40 case FK_PCRel_1:
41 case FK_SecRel_1:
42 case FK_Data_1: return 0;
43 case FK_PCRel_2:
44 case FK_SecRel_2:
45 case FK_Data_2: return 1;
46 case FK_PCRel_4:
47 case X86::reloc_riprel_4byte:
48 case X86::reloc_riprel_4byte_movq_load:
49 case X86::reloc_signed_4byte:
50 case X86::reloc_global_offset_table:
51 case FK_SecRel_4:
52 case FK_Data_4: return 2;
53 case FK_PCRel_8:
54 case FK_SecRel_8:
55 case FK_Data_8: return 3;
56 }
57}
58
59namespace {
60
61class X86ELFObjectWriter : public MCELFObjectTargetWriter {
62public:
63 X86ELFObjectWriter(bool is64Bit, uint8_t OSABI, uint16_t EMachine,
64 bool HasRelocationAddend, bool foobar)
65 : MCELFObjectTargetWriter(is64Bit, OSABI, EMachine, HasRelocationAddend) {}
66};
67
68class X86AsmBackend : public MCAsmBackend {
69 StringRef CPU;
69public:
70public:
70 X86AsmBackend(const Target &T)
71 : MCAsmBackend() {}
71 X86AsmBackend(const Target &T, StringRef _CPU)
72 : MCAsmBackend(), CPU(_CPU) {}
72
73 unsigned getNumFixupKinds() const {
74 return X86::NumTargetFixupKinds;
75 }
76
77 const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
78 const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = {
79 { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
80 { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel},
81 { "reloc_signed_4byte", 0, 4 * 8, 0},
82 { "reloc_global_offset_table", 0, 4 * 8, 0}
83 };
84
85 if (Kind < FirstTargetFixupKind)
86 return MCAsmBackend::getFixupKindInfo(Kind);
87
88 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
89 "Invalid kind!");
90 return Infos[Kind - FirstTargetFixupKind];
91 }
92
93 void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
94 uint64_t Value) const {
95 unsigned Size = 1 << getFixupKindLog2Size(Fixup.getKind());
96
97 assert(Fixup.getOffset() + Size <= DataSize &&
98 "Invalid fixup offset!");
99
100 // Check that uppper bits are either all zeros or all ones.
101 // Specifically ignore overflow/underflow as long as the leakage is
102 // limited to the lower bits. This is to remain compatible with
103 // other assemblers.
104 assert(isIntN(Size * 8 + 1, Value) &&
105 "Value does not fit in the Fixup field");
106
107 for (unsigned i = 0; i != Size; ++i)
108 Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8));
109 }
110
111 bool mayNeedRelaxation(const MCInst &Inst) const;
112
113 bool fixupNeedsRelaxation(const MCFixup &Fixup,
114 uint64_t Value,
115 const MCInstFragment *DF,
116 const MCAsmLayout &Layout) const;
117
118 void relaxInstruction(const MCInst &Inst, MCInst &Res) const;
119
120 bool writeNopData(uint64_t Count, MCObjectWriter *OW) const;
121};
122} // end anonymous namespace
123
124static unsigned getRelaxedOpcodeBranch(unsigned Op) {
125 switch (Op) {
126 default:
127 return Op;
128
129 case X86::JAE_1: return X86::JAE_4;
130 case X86::JA_1: return X86::JA_4;
131 case X86::JBE_1: return X86::JBE_4;
132 case X86::JB_1: return X86::JB_4;
133 case X86::JE_1: return X86::JE_4;
134 case X86::JGE_1: return X86::JGE_4;
135 case X86::JG_1: return X86::JG_4;
136 case X86::JLE_1: return X86::JLE_4;
137 case X86::JL_1: return X86::JL_4;
138 case X86::JMP_1: return X86::JMP_4;
139 case X86::JNE_1: return X86::JNE_4;
140 case X86::JNO_1: return X86::JNO_4;
141 case X86::JNP_1: return X86::JNP_4;
142 case X86::JNS_1: return X86::JNS_4;
143 case X86::JO_1: return X86::JO_4;
144 case X86::JP_1: return X86::JP_4;
145 case X86::JS_1: return X86::JS_4;
146 }
147}
148
149static unsigned getRelaxedOpcodeArith(unsigned Op) {
150 switch (Op) {
151 default:
152 return Op;
153
154 // IMUL
155 case X86::IMUL16rri8: return X86::IMUL16rri;
156 case X86::IMUL16rmi8: return X86::IMUL16rmi;
157 case X86::IMUL32rri8: return X86::IMUL32rri;
158 case X86::IMUL32rmi8: return X86::IMUL32rmi;
159 case X86::IMUL64rri8: return X86::IMUL64rri32;
160 case X86::IMUL64rmi8: return X86::IMUL64rmi32;
161
162 // AND
163 case X86::AND16ri8: return X86::AND16ri;
164 case X86::AND16mi8: return X86::AND16mi;
165 case X86::AND32ri8: return X86::AND32ri;
166 case X86::AND32mi8: return X86::AND32mi;
167 case X86::AND64ri8: return X86::AND64ri32;
168 case X86::AND64mi8: return X86::AND64mi32;
169
170 // OR
171 case X86::OR16ri8: return X86::OR16ri;
172 case X86::OR16mi8: return X86::OR16mi;
173 case X86::OR32ri8: return X86::OR32ri;
174 case X86::OR32mi8: return X86::OR32mi;
175 case X86::OR64ri8: return X86::OR64ri32;
176 case X86::OR64mi8: return X86::OR64mi32;
177
178 // XOR
179 case X86::XOR16ri8: return X86::XOR16ri;
180 case X86::XOR16mi8: return X86::XOR16mi;
181 case X86::XOR32ri8: return X86::XOR32ri;
182 case X86::XOR32mi8: return X86::XOR32mi;
183 case X86::XOR64ri8: return X86::XOR64ri32;
184 case X86::XOR64mi8: return X86::XOR64mi32;
185
186 // ADD
187 case X86::ADD16ri8: return X86::ADD16ri;
188 case X86::ADD16mi8: return X86::ADD16mi;
189 case X86::ADD32ri8: return X86::ADD32ri;
190 case X86::ADD32mi8: return X86::ADD32mi;
191 case X86::ADD64ri8: return X86::ADD64ri32;
192 case X86::ADD64mi8: return X86::ADD64mi32;
193
194 // SUB
195 case X86::SUB16ri8: return X86::SUB16ri;
196 case X86::SUB16mi8: return X86::SUB16mi;
197 case X86::SUB32ri8: return X86::SUB32ri;
198 case X86::SUB32mi8: return X86::SUB32mi;
199 case X86::SUB64ri8: return X86::SUB64ri32;
200 case X86::SUB64mi8: return X86::SUB64mi32;
201
202 // CMP
203 case X86::CMP16ri8: return X86::CMP16ri;
204 case X86::CMP16mi8: return X86::CMP16mi;
205 case X86::CMP32ri8: return X86::CMP32ri;
206 case X86::CMP32mi8: return X86::CMP32mi;
207 case X86::CMP64ri8: return X86::CMP64ri32;
208 case X86::CMP64mi8: return X86::CMP64mi32;
209
210 // PUSH
211 case X86::PUSHi8: return X86::PUSHi32;
212 case X86::PUSHi16: return X86::PUSHi32;
213 case X86::PUSH64i8: return X86::PUSH64i32;
214 case X86::PUSH64i16: return X86::PUSH64i32;
215 }
216}
217
218static unsigned getRelaxedOpcode(unsigned Op) {
219 unsigned R = getRelaxedOpcodeArith(Op);
220 if (R != Op)
221 return R;
222 return getRelaxedOpcodeBranch(Op);
223}
224
225bool X86AsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
226 // Branches can always be relaxed.
227 if (getRelaxedOpcodeBranch(Inst.getOpcode()) != Inst.getOpcode())
228 return true;
229
230 if (MCDisableArithRelaxation)
231 return false;
232
233 // Check if this instruction is ever relaxable.
234 if (getRelaxedOpcodeArith(Inst.getOpcode()) == Inst.getOpcode())
235 return false;
236
237
238 // Check if it has an expression and is not RIP relative.
239 bool hasExp = false;
240 bool hasRIP = false;
241 for (unsigned i = 0; i < Inst.getNumOperands(); ++i) {
242 const MCOperand &Op = Inst.getOperand(i);
243 if (Op.isExpr())
244 hasExp = true;
245
246 if (Op.isReg() && Op.getReg() == X86::RIP)
247 hasRIP = true;
248 }
249
250 // FIXME: Why exactly do we need the !hasRIP? Is it just a limitation on
251 // how we do relaxations?
252 return hasExp && !hasRIP;
253}
254
255bool X86AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
256 uint64_t Value,
257 const MCInstFragment *DF,
258 const MCAsmLayout &Layout) const {
259 // Relax if the value is too big for a (signed) i8.
260 return int64_t(Value) != int64_t(int8_t(Value));
261}
262
263// FIXME: Can tblgen help at all here to verify there aren't other instructions
264// we can relax?
265void X86AsmBackend::relaxInstruction(const MCInst &Inst, MCInst &Res) const {
266 // The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel.
267 unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());
268
269 if (RelaxedOp == Inst.getOpcode()) {
270 SmallString<256> Tmp;
271 raw_svector_ostream OS(Tmp);
272 Inst.dump_pretty(OS);
273 OS << "\n";
274 report_fatal_error("unexpected instruction to relax: " + OS.str());
275 }
276
277 Res = Inst;
278 Res.setOpcode(RelaxedOp);
279}
280
281/// writeNopData - Write optimal nops to the output file for the \arg Count
282/// bytes. This returns the number of bytes written. It may return 0 if
283/// the \arg Count is more than the maximum optimal nops.
284bool X86AsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
285 static const uint8_t Nops[10][10] = {
286 // nop
287 {0x90},
288 // xchg %ax,%ax
289 {0x66, 0x90},
290 // nopl (%[re]ax)
291 {0x0f, 0x1f, 0x00},
292 // nopl 0(%[re]ax)
293 {0x0f, 0x1f, 0x40, 0x00},
294 // nopl 0(%[re]ax,%[re]ax,1)
295 {0x0f, 0x1f, 0x44, 0x00, 0x00},
296 // nopw 0(%[re]ax,%[re]ax,1)
297 {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
298 // nopl 0L(%[re]ax)
299 {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00},
300 // nopl 0L(%[re]ax,%[re]ax,1)
301 {0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
302 // nopw 0L(%[re]ax,%[re]ax,1)
303 {0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
304 // nopw %cs:0L(%[re]ax,%[re]ax,1)
305 {0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
306 };
307
73
74 unsigned getNumFixupKinds() const {
75 return X86::NumTargetFixupKinds;
76 }
77
78 const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
79 const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = {
80 { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
81 { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel},
82 { "reloc_signed_4byte", 0, 4 * 8, 0},
83 { "reloc_global_offset_table", 0, 4 * 8, 0}
84 };
85
86 if (Kind < FirstTargetFixupKind)
87 return MCAsmBackend::getFixupKindInfo(Kind);
88
89 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
90 "Invalid kind!");
91 return Infos[Kind - FirstTargetFixupKind];
92 }
93
94 void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
95 uint64_t Value) const {
96 unsigned Size = 1 << getFixupKindLog2Size(Fixup.getKind());
97
98 assert(Fixup.getOffset() + Size <= DataSize &&
99 "Invalid fixup offset!");
100
101 // Check that uppper bits are either all zeros or all ones.
102 // Specifically ignore overflow/underflow as long as the leakage is
103 // limited to the lower bits. This is to remain compatible with
104 // other assemblers.
105 assert(isIntN(Size * 8 + 1, Value) &&
106 "Value does not fit in the Fixup field");
107
108 for (unsigned i = 0; i != Size; ++i)
109 Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8));
110 }
111
112 bool mayNeedRelaxation(const MCInst &Inst) const;
113
114 bool fixupNeedsRelaxation(const MCFixup &Fixup,
115 uint64_t Value,
116 const MCInstFragment *DF,
117 const MCAsmLayout &Layout) const;
118
119 void relaxInstruction(const MCInst &Inst, MCInst &Res) const;
120
121 bool writeNopData(uint64_t Count, MCObjectWriter *OW) const;
122};
123} // end anonymous namespace
124
125static unsigned getRelaxedOpcodeBranch(unsigned Op) {
126 switch (Op) {
127 default:
128 return Op;
129
130 case X86::JAE_1: return X86::JAE_4;
131 case X86::JA_1: return X86::JA_4;
132 case X86::JBE_1: return X86::JBE_4;
133 case X86::JB_1: return X86::JB_4;
134 case X86::JE_1: return X86::JE_4;
135 case X86::JGE_1: return X86::JGE_4;
136 case X86::JG_1: return X86::JG_4;
137 case X86::JLE_1: return X86::JLE_4;
138 case X86::JL_1: return X86::JL_4;
139 case X86::JMP_1: return X86::JMP_4;
140 case X86::JNE_1: return X86::JNE_4;
141 case X86::JNO_1: return X86::JNO_4;
142 case X86::JNP_1: return X86::JNP_4;
143 case X86::JNS_1: return X86::JNS_4;
144 case X86::JO_1: return X86::JO_4;
145 case X86::JP_1: return X86::JP_4;
146 case X86::JS_1: return X86::JS_4;
147 }
148}
149
150static unsigned getRelaxedOpcodeArith(unsigned Op) {
151 switch (Op) {
152 default:
153 return Op;
154
155 // IMUL
156 case X86::IMUL16rri8: return X86::IMUL16rri;
157 case X86::IMUL16rmi8: return X86::IMUL16rmi;
158 case X86::IMUL32rri8: return X86::IMUL32rri;
159 case X86::IMUL32rmi8: return X86::IMUL32rmi;
160 case X86::IMUL64rri8: return X86::IMUL64rri32;
161 case X86::IMUL64rmi8: return X86::IMUL64rmi32;
162
163 // AND
164 case X86::AND16ri8: return X86::AND16ri;
165 case X86::AND16mi8: return X86::AND16mi;
166 case X86::AND32ri8: return X86::AND32ri;
167 case X86::AND32mi8: return X86::AND32mi;
168 case X86::AND64ri8: return X86::AND64ri32;
169 case X86::AND64mi8: return X86::AND64mi32;
170
171 // OR
172 case X86::OR16ri8: return X86::OR16ri;
173 case X86::OR16mi8: return X86::OR16mi;
174 case X86::OR32ri8: return X86::OR32ri;
175 case X86::OR32mi8: return X86::OR32mi;
176 case X86::OR64ri8: return X86::OR64ri32;
177 case X86::OR64mi8: return X86::OR64mi32;
178
179 // XOR
180 case X86::XOR16ri8: return X86::XOR16ri;
181 case X86::XOR16mi8: return X86::XOR16mi;
182 case X86::XOR32ri8: return X86::XOR32ri;
183 case X86::XOR32mi8: return X86::XOR32mi;
184 case X86::XOR64ri8: return X86::XOR64ri32;
185 case X86::XOR64mi8: return X86::XOR64mi32;
186
187 // ADD
188 case X86::ADD16ri8: return X86::ADD16ri;
189 case X86::ADD16mi8: return X86::ADD16mi;
190 case X86::ADD32ri8: return X86::ADD32ri;
191 case X86::ADD32mi8: return X86::ADD32mi;
192 case X86::ADD64ri8: return X86::ADD64ri32;
193 case X86::ADD64mi8: return X86::ADD64mi32;
194
195 // SUB
196 case X86::SUB16ri8: return X86::SUB16ri;
197 case X86::SUB16mi8: return X86::SUB16mi;
198 case X86::SUB32ri8: return X86::SUB32ri;
199 case X86::SUB32mi8: return X86::SUB32mi;
200 case X86::SUB64ri8: return X86::SUB64ri32;
201 case X86::SUB64mi8: return X86::SUB64mi32;
202
203 // CMP
204 case X86::CMP16ri8: return X86::CMP16ri;
205 case X86::CMP16mi8: return X86::CMP16mi;
206 case X86::CMP32ri8: return X86::CMP32ri;
207 case X86::CMP32mi8: return X86::CMP32mi;
208 case X86::CMP64ri8: return X86::CMP64ri32;
209 case X86::CMP64mi8: return X86::CMP64mi32;
210
211 // PUSH
212 case X86::PUSHi8: return X86::PUSHi32;
213 case X86::PUSHi16: return X86::PUSHi32;
214 case X86::PUSH64i8: return X86::PUSH64i32;
215 case X86::PUSH64i16: return X86::PUSH64i32;
216 }
217}
218
219static unsigned getRelaxedOpcode(unsigned Op) {
220 unsigned R = getRelaxedOpcodeArith(Op);
221 if (R != Op)
222 return R;
223 return getRelaxedOpcodeBranch(Op);
224}
225
226bool X86AsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
227 // Branches can always be relaxed.
228 if (getRelaxedOpcodeBranch(Inst.getOpcode()) != Inst.getOpcode())
229 return true;
230
231 if (MCDisableArithRelaxation)
232 return false;
233
234 // Check if this instruction is ever relaxable.
235 if (getRelaxedOpcodeArith(Inst.getOpcode()) == Inst.getOpcode())
236 return false;
237
238
239 // Check if it has an expression and is not RIP relative.
240 bool hasExp = false;
241 bool hasRIP = false;
242 for (unsigned i = 0; i < Inst.getNumOperands(); ++i) {
243 const MCOperand &Op = Inst.getOperand(i);
244 if (Op.isExpr())
245 hasExp = true;
246
247 if (Op.isReg() && Op.getReg() == X86::RIP)
248 hasRIP = true;
249 }
250
251 // FIXME: Why exactly do we need the !hasRIP? Is it just a limitation on
252 // how we do relaxations?
253 return hasExp && !hasRIP;
254}
255
256bool X86AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
257 uint64_t Value,
258 const MCInstFragment *DF,
259 const MCAsmLayout &Layout) const {
260 // Relax if the value is too big for a (signed) i8.
261 return int64_t(Value) != int64_t(int8_t(Value));
262}
263
264// FIXME: Can tblgen help at all here to verify there aren't other instructions
265// we can relax?
266void X86AsmBackend::relaxInstruction(const MCInst &Inst, MCInst &Res) const {
267 // The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel.
268 unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode());
269
270 if (RelaxedOp == Inst.getOpcode()) {
271 SmallString<256> Tmp;
272 raw_svector_ostream OS(Tmp);
273 Inst.dump_pretty(OS);
274 OS << "\n";
275 report_fatal_error("unexpected instruction to relax: " + OS.str());
276 }
277
278 Res = Inst;
279 Res.setOpcode(RelaxedOp);
280}
281
282/// writeNopData - Write optimal nops to the output file for the \arg Count
283/// bytes. This returns the number of bytes written. It may return 0 if
284/// the \arg Count is more than the maximum optimal nops.
285bool X86AsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
286 static const uint8_t Nops[10][10] = {
287 // nop
288 {0x90},
289 // xchg %ax,%ax
290 {0x66, 0x90},
291 // nopl (%[re]ax)
292 {0x0f, 0x1f, 0x00},
293 // nopl 0(%[re]ax)
294 {0x0f, 0x1f, 0x40, 0x00},
295 // nopl 0(%[re]ax,%[re]ax,1)
296 {0x0f, 0x1f, 0x44, 0x00, 0x00},
297 // nopw 0(%[re]ax,%[re]ax,1)
298 {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
299 // nopl 0L(%[re]ax)
300 {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00},
301 // nopl 0L(%[re]ax,%[re]ax,1)
302 {0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
303 // nopw 0L(%[re]ax,%[re]ax,1)
304 {0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
305 // nopw %cs:0L(%[re]ax,%[re]ax,1)
306 {0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
307 };
308
309 // This CPU doesnt support long nops. If needed add more.
310 if (CPU == "geode") {
311 for (uint64_t i = 0; i < Count; ++i)
312 OW->Write8(0x90);
313 return true;
314 }
315
308 // Write an optimal sequence for the first 15 bytes.
309 const uint64_t OptimalCount = (Count < 16) ? Count : 15;
310 const uint64_t Prefixes = OptimalCount <= 10 ? 0 : OptimalCount - 10;
311 for (uint64_t i = 0, e = Prefixes; i != e; i++)
312 OW->Write8(0x66);
313 const uint64_t Rest = OptimalCount - Prefixes;
314 for (uint64_t i = 0, e = Rest; i != e; i++)
315 OW->Write8(Nops[Rest - 1][i]);
316
317 // Finish with single byte nops.
318 for (uint64_t i = OptimalCount, e = Count; i != e; ++i)
319 OW->Write8(0x90);
320
321 return true;
322}
323
324/* *** */
325
326namespace {
327class ELFX86AsmBackend : public X86AsmBackend {
328public:
329 uint8_t OSABI;
316 // Write an optimal sequence for the first 15 bytes.
317 const uint64_t OptimalCount = (Count < 16) ? Count : 15;
318 const uint64_t Prefixes = OptimalCount <= 10 ? 0 : OptimalCount - 10;
319 for (uint64_t i = 0, e = Prefixes; i != e; i++)
320 OW->Write8(0x66);
321 const uint64_t Rest = OptimalCount - Prefixes;
322 for (uint64_t i = 0, e = Rest; i != e; i++)
323 OW->Write8(Nops[Rest - 1][i]);
324
325 // Finish with single byte nops.
326 for (uint64_t i = OptimalCount, e = Count; i != e; ++i)
327 OW->Write8(0x90);
328
329 return true;
330}
331
332/* *** */
333
334namespace {
335class ELFX86AsmBackend : public X86AsmBackend {
336public:
337 uint8_t OSABI;
330 ELFX86AsmBackend(const Target &T, uint8_t _OSABI)
331 : X86AsmBackend(T), OSABI(_OSABI) {
338 ELFX86AsmBackend(const Target &T, uint8_t _OSABI, StringRef CPU)
339 : X86AsmBackend(T, CPU), OSABI(_OSABI) {
332 HasReliableSymbolDifference = true;
333 }
334
335 virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
336 const MCSectionELF &ES = static_cast<const MCSectionELF&>(Section);
337 return ES.getFlags() & ELF::SHF_MERGE;
338 }
339};
340
341class ELFX86_32AsmBackend : public ELFX86AsmBackend {
342public:
340 HasReliableSymbolDifference = true;
341 }
342
343 virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
344 const MCSectionELF &ES = static_cast<const MCSectionELF&>(Section);
345 return ES.getFlags() & ELF::SHF_MERGE;
346 }
347};
348
349class ELFX86_32AsmBackend : public ELFX86AsmBackend {
350public:
343 ELFX86_32AsmBackend(const Target &T, uint8_t OSABI)
344 : ELFX86AsmBackend(T, OSABI) {}
351 ELFX86_32AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
352 : ELFX86AsmBackend(T, OSABI, CPU) {}
345
346 MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
347 return createX86ELFObjectWriter(OS, /*Is64Bit*/ false, OSABI);
348 }
349};
350
351class ELFX86_64AsmBackend : public ELFX86AsmBackend {
352public:
353
354 MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
355 return createX86ELFObjectWriter(OS, /*Is64Bit*/ false, OSABI);
356 }
357};
358
359class ELFX86_64AsmBackend : public ELFX86AsmBackend {
360public:
353 ELFX86_64AsmBackend(const Target &T, uint8_t OSABI)
354 : ELFX86AsmBackend(T, OSABI) {}
361 ELFX86_64AsmBackend(const Target &T, uint8_t OSABI, StringRef CPU)
362 : ELFX86AsmBackend(T, OSABI, CPU) {}
355
356 MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
357 return createX86ELFObjectWriter(OS, /*Is64Bit*/ true, OSABI);
358 }
359};
360
361class WindowsX86AsmBackend : public X86AsmBackend {
362 bool Is64Bit;
363
364public:
363
364 MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
365 return createX86ELFObjectWriter(OS, /*Is64Bit*/ true, OSABI);
366 }
367};
368
369class WindowsX86AsmBackend : public X86AsmBackend {
370 bool Is64Bit;
371
372public:
365 WindowsX86AsmBackend(const Target &T, bool is64Bit)
366 : X86AsmBackend(T)
373 WindowsX86AsmBackend(const Target &T, bool is64Bit, StringRef CPU)
374 : X86AsmBackend(T, CPU)
367 , Is64Bit(is64Bit) {
368 }
369
370 MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
371 return createX86WinCOFFObjectWriter(OS, Is64Bit);
372 }
373};
374
375class DarwinX86AsmBackend : public X86AsmBackend {
376public:
375 , Is64Bit(is64Bit) {
376 }
377
378 MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
379 return createX86WinCOFFObjectWriter(OS, Is64Bit);
380 }
381};
382
383class DarwinX86AsmBackend : public X86AsmBackend {
384public:
377 DarwinX86AsmBackend(const Target &T)
378 : X86AsmBackend(T) { }
385 DarwinX86AsmBackend(const Target &T, StringRef CPU)
386 : X86AsmBackend(T, CPU) { }
379};
380
381class DarwinX86_32AsmBackend : public DarwinX86AsmBackend {
382public:
387};
388
389class DarwinX86_32AsmBackend : public DarwinX86AsmBackend {
390public:
383 DarwinX86_32AsmBackend(const Target &T)
384 : DarwinX86AsmBackend(T) {}
391 DarwinX86_32AsmBackend(const Target &T, StringRef CPU)
392 : DarwinX86AsmBackend(T, CPU) {}
385
386 MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
387 return createX86MachObjectWriter(OS, /*Is64Bit=*/false,
388 object::mach::CTM_i386,
389 object::mach::CSX86_ALL);
390 }
391};
392
393class DarwinX86_64AsmBackend : public DarwinX86AsmBackend {
394public:
393
394 MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
395 return createX86MachObjectWriter(OS, /*Is64Bit=*/false,
396 object::mach::CTM_i386,
397 object::mach::CSX86_ALL);
398 }
399};
400
401class DarwinX86_64AsmBackend : public DarwinX86AsmBackend {
402public:
395 DarwinX86_64AsmBackend(const Target &T)
396 : DarwinX86AsmBackend(T) {
403 DarwinX86_64AsmBackend(const Target &T, StringRef CPU)
404 : DarwinX86AsmBackend(T, CPU) {
397 HasReliableSymbolDifference = true;
398 }
399
400 MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
401 return createX86MachObjectWriter(OS, /*Is64Bit=*/true,
402 object::mach::CTM_x86_64,
403 object::mach::CSX86_ALL);
404 }
405
406 virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
407 // Temporary labels in the string literals sections require symbols. The
408 // issue is that the x86_64 relocation format does not allow symbol +
409 // offset, and so the linker does not have enough information to resolve the
410 // access to the appropriate atom unless an external relocation is used. For
411 // non-cstring sections, we expect the compiler to use a non-temporary label
412 // for anything that could have an addend pointing outside the symbol.
413 //
414 // See <rdar://problem/4765733>.
415 const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
416 return SMO.getType() == MCSectionMachO::S_CSTRING_LITERALS;
417 }
418
419 virtual bool isSectionAtomizable(const MCSection &Section) const {
420 const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
421 // Fixed sized data sections are uniqued, they cannot be diced into atoms.
422 switch (SMO.getType()) {
423 default:
424 return true;
425
426 case MCSectionMachO::S_4BYTE_LITERALS:
427 case MCSectionMachO::S_8BYTE_LITERALS:
428 case MCSectionMachO::S_16BYTE_LITERALS:
429 case MCSectionMachO::S_LITERAL_POINTERS:
430 case MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS:
431 case MCSectionMachO::S_LAZY_SYMBOL_POINTERS:
432 case MCSectionMachO::S_MOD_INIT_FUNC_POINTERS:
433 case MCSectionMachO::S_MOD_TERM_FUNC_POINTERS:
434 case MCSectionMachO::S_INTERPOSING:
435 return false;
436 }
437 }
438};
439
440} // end anonymous namespace
441
405 HasReliableSymbolDifference = true;
406 }
407
408 MCObjectWriter *createObjectWriter(raw_ostream &OS) const {
409 return createX86MachObjectWriter(OS, /*Is64Bit=*/true,
410 object::mach::CTM_x86_64,
411 object::mach::CSX86_ALL);
412 }
413
414 virtual bool doesSectionRequireSymbols(const MCSection &Section) const {
415 // Temporary labels in the string literals sections require symbols. The
416 // issue is that the x86_64 relocation format does not allow symbol +
417 // offset, and so the linker does not have enough information to resolve the
418 // access to the appropriate atom unless an external relocation is used. For
419 // non-cstring sections, we expect the compiler to use a non-temporary label
420 // for anything that could have an addend pointing outside the symbol.
421 //
422 // See <rdar://problem/4765733>.
423 const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
424 return SMO.getType() == MCSectionMachO::S_CSTRING_LITERALS;
425 }
426
427 virtual bool isSectionAtomizable(const MCSection &Section) const {
428 const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section);
429 // Fixed sized data sections are uniqued, they cannot be diced into atoms.
430 switch (SMO.getType()) {
431 default:
432 return true;
433
434 case MCSectionMachO::S_4BYTE_LITERALS:
435 case MCSectionMachO::S_8BYTE_LITERALS:
436 case MCSectionMachO::S_16BYTE_LITERALS:
437 case MCSectionMachO::S_LITERAL_POINTERS:
438 case MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS:
439 case MCSectionMachO::S_LAZY_SYMBOL_POINTERS:
440 case MCSectionMachO::S_MOD_INIT_FUNC_POINTERS:
441 case MCSectionMachO::S_MOD_TERM_FUNC_POINTERS:
442 case MCSectionMachO::S_INTERPOSING:
443 return false;
444 }
445 }
446};
447
448} // end anonymous namespace
449
442MCAsmBackend *llvm::createX86_32AsmBackend(const Target &T, StringRef TT) {
450MCAsmBackend *llvm::createX86_32AsmBackend(const Target &T, StringRef TT, StringRef CPU) {
443 Triple TheTriple(TT);
444
445 if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO)
451 Triple TheTriple(TT);
452
453 if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO)
446 return new DarwinX86_32AsmBackend(T);
454 return new DarwinX86_32AsmBackend(T, CPU);
447
448 if (TheTriple.isOSWindows())
455
456 if (TheTriple.isOSWindows())
449 return new WindowsX86AsmBackend(T, false);
457 return new WindowsX86AsmBackend(T, false, CPU);
450
451 uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
458
459 uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
452 return new ELFX86_32AsmBackend(T, OSABI);
460 return new ELFX86_32AsmBackend(T, OSABI, CPU);
453}
454
461}
462
455MCAsmBackend *llvm::createX86_64AsmBackend(const Target &T, StringRef TT) {
463MCAsmBackend *llvm::createX86_64AsmBackend(const Target &T, StringRef TT, StringRef CPU) {
456 Triple TheTriple(TT);
457
458 if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO)
464 Triple TheTriple(TT);
465
466 if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO)
459 return new DarwinX86_64AsmBackend(T);
467 return new DarwinX86_64AsmBackend(T, CPU);
460
461 if (TheTriple.isOSWindows())
468
469 if (TheTriple.isOSWindows())
462 return new WindowsX86AsmBackend(T, true);
470 return new WindowsX86AsmBackend(T, true, CPU);
463
464 uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
471
472 uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
465 return new ELFX86_64AsmBackend(T, OSABI);
473 return new ELFX86_64AsmBackend(T, OSABI, CPU);
466}
474}