Deleted Added
sdiff udiff text old ( 249588 ) new ( 254025 )
full compact
1/*-
2 * Copyright (c) 2009-2011 Spectra Logic Corporation
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions, and the following disclaimer,
10 * without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 * substantially similar to the "NO WARRANTY" disclaimer below
13 * ("Disclaimer") and any redistribution must be conditioned upon
14 * including a substantially similar Disclaimer requirement for further
15 * binary redistribution.
16 *
17 * NO WARRANTY
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
27 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGES.
29 *
30 * Authors: Justin T. Gibbs (Spectra Logic Corporation)
31 * Alan Somers (Spectra Logic Corporation)
32 * John Suykerbuyk (Spectra Logic Corporation)
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: head/sys/dev/xen/netback/netback.c 249588 2013-04-17 11:56:11Z gabor $");
37
38/**
39 * \file netback.c
40 *
41 * \brief Device driver supporting the vending of network access
42 * from this FreeBSD domain to other domains.
43 */
44#include "opt_inet.h"
45#include "opt_global.h"
46
47#include "opt_sctp.h"
48
49#include <sys/param.h>
50#include <sys/kernel.h>
51
52#include <sys/bus.h>
53#include <sys/module.h>
54#include <sys/rman.h>
55#include <sys/socket.h>
56#include <sys/sockio.h>
57#include <sys/sysctl.h>
58
59#include <net/if.h>
60#include <net/if_arp.h>
61#include <net/ethernet.h>
62#include <net/if_dl.h>
63#include <net/if_media.h>
64#include <net/if_types.h>
65
66#include <netinet/in.h>
67#include <netinet/ip.h>
68#include <netinet/if_ether.h>
69#if __FreeBSD_version >= 700000
70#include <netinet/tcp.h>
71#endif
72#include <netinet/ip_icmp.h>
73#include <netinet/udp.h>
74#include <machine/in_cksum.h>
75
76#include <vm/vm.h>
77#include <vm/pmap.h>
78#include <vm/vm_extern.h>
79#include <vm/vm_kern.h>
80
81#include <machine/_inttypes.h>
82#include <machine/xen/xen-os.h>
83#include <machine/xen/xenvar.h>
84
85#include <xen/evtchn.h>
86#include <xen/xen_intr.h>
87#include <xen/interface/io/netif.h>
88#include <xen/xenbus/xenbusvar.h>
89
90/*--------------------------- Compile-time Tunables --------------------------*/
91
92/*---------------------------------- Macros ----------------------------------*/
93/**
94 * Custom malloc type for all driver allocations.
95 */
96static MALLOC_DEFINE(M_XENNETBACK, "xnb", "Xen Net Back Driver Data");
97
98#define XNB_SG 1 /* netback driver supports feature-sg */
99#define XNB_GSO_TCPV4 1 /* netback driver supports feature-gso-tcpv4 */
100#define XNB_RX_COPY 1 /* netback driver supports feature-rx-copy */
101#define XNB_RX_FLIP 0 /* netback driver does not support feature-rx-flip */
102
103#undef XNB_DEBUG
104#define XNB_DEBUG /* hardcode on during development */
105
106#ifdef XNB_DEBUG
107#define DPRINTF(fmt, args...) \
108 printf("xnb(%s:%d): " fmt, __FUNCTION__, __LINE__, ##args)
109#else
110#define DPRINTF(fmt, args...) do {} while (0)
111#endif
112
113/* Default length for stack-allocated grant tables */
114#define GNTTAB_LEN (64)
115
116/* Features supported by all backends. TSO and LRO can be negotiated */
117#define XNB_CSUM_FEATURES (CSUM_TCP | CSUM_UDP)
118
119#define NET_TX_RING_SIZE __RING_SIZE((netif_tx_sring_t *)0, PAGE_SIZE)
120#define NET_RX_RING_SIZE __RING_SIZE((netif_rx_sring_t *)0, PAGE_SIZE)
121
122/**
123 * Two argument version of the standard macro. Second argument is a tentative
124 * value of req_cons
125 */
126#define RING_HAS_UNCONSUMED_REQUESTS_2(_r, cons) ({ \
127 unsigned int req = (_r)->sring->req_prod - cons; \
128 unsigned int rsp = RING_SIZE(_r) - \
129 (cons - (_r)->rsp_prod_pvt); \
130 req < rsp ? req : rsp; \
131})
132
133#define virt_to_mfn(x) (vtomach(x) >> PAGE_SHIFT)
134#define virt_to_offset(x) ((x) & (PAGE_SIZE - 1))
135
136/**
137 * Predefined array type of grant table copy descriptors. Used to pass around
138 * statically allocated memory structures.
139 */
140typedef struct gnttab_copy gnttab_copy_table[GNTTAB_LEN];
141
142/*--------------------------- Forward Declarations ---------------------------*/
143struct xnb_softc;
144struct xnb_pkt;
145
146static void xnb_attach_failed(struct xnb_softc *xnb,
147 int err, const char *fmt, ...)
148 __printflike(3,4);
149static int xnb_shutdown(struct xnb_softc *xnb);
150static int create_netdev(device_t dev);
151static int xnb_detach(device_t dev);
152static int xen_net_read_mac(device_t dev, uint8_t mac[]);
153static int xnb_ifmedia_upd(struct ifnet *ifp);
154static void xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
155static void xnb_intr(void *arg);
156static int xnb_send(netif_rx_back_ring_t *rxb, domid_t otherend,
157 const struct mbuf *mbufc, gnttab_copy_table gnttab);
158static int xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend,
159 struct mbuf **mbufc, struct ifnet *ifnet,
160 gnttab_copy_table gnttab);
161static int xnb_ring2pkt(struct xnb_pkt *pkt,
162 const netif_tx_back_ring_t *tx_ring,
163 RING_IDX start);
164static void xnb_txpkt2rsp(const struct xnb_pkt *pkt,
165 netif_tx_back_ring_t *ring, int error);
166static struct mbuf *xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp);
167static int xnb_txpkt2gnttab(const struct xnb_pkt *pkt,
168 const struct mbuf *mbufc,
169 gnttab_copy_table gnttab,
170 const netif_tx_back_ring_t *txb,
171 domid_t otherend_id);
172static void xnb_update_mbufc(struct mbuf *mbufc,
173 const gnttab_copy_table gnttab, int n_entries);
174static int xnb_mbufc2pkt(const struct mbuf *mbufc,
175 struct xnb_pkt *pkt,
176 RING_IDX start, int space);
177static int xnb_rxpkt2gnttab(const struct xnb_pkt *pkt,
178 const struct mbuf *mbufc,
179 gnttab_copy_table gnttab,
180 const netif_rx_back_ring_t *rxb,
181 domid_t otherend_id);
182static int xnb_rxpkt2rsp(const struct xnb_pkt *pkt,
183 const gnttab_copy_table gnttab, int n_entries,
184 netif_rx_back_ring_t *ring);
185static void xnb_add_mbuf_cksum(struct mbuf *mbufc);
186static void xnb_stop(struct xnb_softc*);
187static int xnb_ioctl(struct ifnet*, u_long, caddr_t);
188static void xnb_start_locked(struct ifnet*);
189static void xnb_start(struct ifnet*);
190static void xnb_ifinit_locked(struct xnb_softc*);
191static void xnb_ifinit(void*);
192#ifdef XNB_DEBUG
193static int xnb_unit_test_main(SYSCTL_HANDLER_ARGS);
194static int xnb_dump_rings(SYSCTL_HANDLER_ARGS);
195#endif
196/*------------------------------ Data Structures -----------------------------*/
197
198
199/**
200 * Representation of a xennet packet. Simplified version of a packet as
201 * stored in the Xen tx ring. Applicable to both RX and TX packets
202 */
203struct xnb_pkt{
204 /**
205 * Array index of the first data-bearing (eg, not extra info) entry
206 * for this packet
207 */
208 RING_IDX car;
209
210 /**
211 * Array index of the second data-bearing entry for this packet.
212 * Invalid if the packet has only one data-bearing entry. If the
213 * packet has more than two data-bearing entries, then the second
214 * through the last will be sequential modulo the ring size
215 */
216 RING_IDX cdr;
217
218 /**
219 * Optional extra info. Only valid if flags contains
220 * NETTXF_extra_info. Note that extra.type will always be
221 * XEN_NETIF_EXTRA_TYPE_GSO. Currently, no known netfront or netback
222 * driver will ever set XEN_NETIF_EXTRA_TYPE_MCAST_*
223 */
224 netif_extra_info_t extra;
225
226 /** Size of entire packet in bytes. */
227 uint16_t size;
228
229 /** The size of the first entry's data in bytes */
230 uint16_t car_size;
231
232 /**
233 * Either NETTXF_ or NETRXF_ flags. Note that the flag values are
234 * not the same for TX and RX packets
235 */
236 uint16_t flags;
237
238 /**
239 * The number of valid data-bearing entries (either netif_tx_request's
240 * or netif_rx_response's) in the packet. If this is 0, it means the
241 * entire packet is invalid.
242 */
243 uint16_t list_len;
244
245 /** There was an error processing the packet */
246 uint8_t error;
247};
248
249/** xnb_pkt method: initialize it */
250static inline void
251xnb_pkt_initialize(struct xnb_pkt *pxnb)
252{
253 bzero(pxnb, sizeof(*pxnb));
254}
255
256/** xnb_pkt method: mark the packet as valid */
257static inline void
258xnb_pkt_validate(struct xnb_pkt *pxnb)
259{
260 pxnb->error = 0;
261};
262
263/** xnb_pkt method: mark the packet as invalid */
264static inline void
265xnb_pkt_invalidate(struct xnb_pkt *pxnb)
266{
267 pxnb->error = 1;
268};
269
270/** xnb_pkt method: Check whether the packet is valid */
271static inline int
272xnb_pkt_is_valid(const struct xnb_pkt *pxnb)
273{
274 return (! pxnb->error);
275}
276
277#ifdef XNB_DEBUG
278/** xnb_pkt method: print the packet's contents in human-readable format*/
279static void __unused
280xnb_dump_pkt(const struct xnb_pkt *pkt) {
281 if (pkt == NULL) {
282 DPRINTF("Was passed a null pointer.\n");
283 return;
284 }
285 DPRINTF("pkt address= %p\n", pkt);
286 DPRINTF("pkt->size=%d\n", pkt->size);
287 DPRINTF("pkt->car_size=%d\n", pkt->car_size);
288 DPRINTF("pkt->flags=0x%04x\n", pkt->flags);
289 DPRINTF("pkt->list_len=%d\n", pkt->list_len);
290 /* DPRINTF("pkt->extra"); TODO */
291 DPRINTF("pkt->car=%d\n", pkt->car);
292 DPRINTF("pkt->cdr=%d\n", pkt->cdr);
293 DPRINTF("pkt->error=%d\n", pkt->error);
294}
295#endif /* XNB_DEBUG */
296
297static void
298xnb_dump_txreq(RING_IDX idx, const struct netif_tx_request *txreq)
299{
300 if (txreq != NULL) {
301 DPRINTF("netif_tx_request index =%u\n", idx);
302 DPRINTF("netif_tx_request.gref =%u\n", txreq->gref);
303 DPRINTF("netif_tx_request.offset=%hu\n", txreq->offset);
304 DPRINTF("netif_tx_request.flags =%hu\n", txreq->flags);
305 DPRINTF("netif_tx_request.id =%hu\n", txreq->id);
306 DPRINTF("netif_tx_request.size =%hu\n", txreq->size);
307 }
308}
309
310
311/**
312 * \brief Configuration data for a shared memory request ring
313 * used to communicate with the front-end client of this
314 * this driver.
315 */
316struct xnb_ring_config {
317 /**
318 * Runtime structures for ring access. Unfortunately, TX and RX rings
319 * use different data structures, and that cannot be changed since it
320 * is part of the interdomain protocol.
321 */
322 union{
323 netif_rx_back_ring_t rx_ring;
324 netif_tx_back_ring_t tx_ring;
325 } back_ring;
326
327 /**
328 * The device bus address returned by the hypervisor when
329 * mapping the ring and required to unmap it when a connection
330 * is torn down.
331 */
332 uint64_t bus_addr;
333
334 /** The pseudo-physical address where ring memory is mapped.*/
335 uint64_t gnt_addr;
336
337 /** KVA address where ring memory is mapped. */
338 vm_offset_t va;
339
340 /**
341 * Grant table handles, one per-ring page, returned by the
342 * hyperpervisor upon mapping of the ring and required to
343 * unmap it when a connection is torn down.
344 */
345 grant_handle_t handle;
346
347 /** The number of ring pages mapped for the current connection. */
348 unsigned ring_pages;
349
350 /**
351 * The grant references, one per-ring page, supplied by the
352 * front-end, allowing us to reference the ring pages in the
353 * front-end's domain and to map these pages into our own domain.
354 */
355 grant_ref_t ring_ref;
356};
357
358/**
359 * Per-instance connection state flags.
360 */
361typedef enum
362{
363 /** Communication with the front-end has been established. */
364 XNBF_RING_CONNECTED = 0x01,
365
366 /**
367 * Front-end requests exist in the ring and are waiting for
368 * xnb_xen_req objects to free up.
369 */
370 XNBF_RESOURCE_SHORTAGE = 0x02,
371
372 /** Connection teardown has started. */
373 XNBF_SHUTDOWN = 0x04,
374
375 /** A thread is already performing shutdown processing. */
376 XNBF_IN_SHUTDOWN = 0x08
377} xnb_flag_t;
378
379/**
380 * Types of rings. Used for array indices and to identify a ring's control
381 * data structure type
382 */
383typedef enum{
384 XNB_RING_TYPE_TX = 0, /* ID of TX rings, used for array indices */
385 XNB_RING_TYPE_RX = 1, /* ID of RX rings, used for array indices */
386 XNB_NUM_RING_TYPES
387} xnb_ring_type_t;
388
389/**
390 * Per-instance configuration data.
391 */
392struct xnb_softc {
393 /** NewBus device corresponding to this instance. */
394 device_t dev;
395
396 /* Media related fields */
397
398 /** Generic network media state */
399 struct ifmedia sc_media;
400
401 /** Media carrier info */
402 struct ifnet *xnb_ifp;
403
404 /** Our own private carrier state */
405 unsigned carrier;
406
407 /** Device MAC Address */
408 uint8_t mac[ETHER_ADDR_LEN];
409
410 /* Xen related fields */
411
412 /**
413 * \brief The netif protocol abi in effect.
414 *
415 * There are situations where the back and front ends can
416 * have a different, native abi (e.g. intel x86_64 and
417 * 32bit x86 domains on the same machine). The back-end
418 * always accomodates the front-end's native abi. That
419 * value is pulled from the XenStore and recorded here.
420 */
421 int abi;
422
423 /**
424 * Name of the bridge to which this VIF is connected, if any
425 * This field is dynamically allocated by xenbus and must be free()ed
426 * when no longer needed
427 */
428 char *bridge;
429
430 /** The interrupt driven even channel used to signal ring events. */
431 evtchn_port_t evtchn;
432
433 /** Xen device handle.*/
434 long handle;
435
436 /** IRQ mapping for the communication ring event channel. */
437 int irq;
438
439 /**
440 * \brief Cached value of the front-end's domain id.
441 *
442 * This value is used at once for each mapped page in
443 * a transaction. We cache it to avoid incuring the
444 * cost of an ivar access every time this is needed.
445 */
446 domid_t otherend_id;
447
448 /**
449 * Undocumented frontend feature. Has something to do with
450 * scatter/gather IO
451 */
452 uint8_t can_sg;
453 /** Undocumented frontend feature */
454 uint8_t gso;
455 /** Undocumented frontend feature */
456 uint8_t gso_prefix;
457 /** Can checksum TCP/UDP over IPv4 */
458 uint8_t ip_csum;
459
460 /* Implementation related fields */
461 /**
462 * Preallocated grant table copy descriptor for RX operations.
463 * Access must be protected by rx_lock
464 */
465 gnttab_copy_table rx_gnttab;
466
467 /**
468 * Preallocated grant table copy descriptor for TX operations.
469 * Access must be protected by tx_lock
470 */
471 gnttab_copy_table tx_gnttab;
472
473#ifdef XENHVM
474 /**
475 * Resource representing allocated physical address space
476 * associated with our per-instance kva region.
477 */
478 struct resource *pseudo_phys_res;
479
480 /** Resource id for allocated physical address space. */
481 int pseudo_phys_res_id;
482#endif
483
484 /** Ring mapping and interrupt configuration data. */
485 struct xnb_ring_config ring_configs[XNB_NUM_RING_TYPES];
486
487 /**
488 * Global pool of kva used for mapping remote domain ring
489 * and I/O transaction data.
490 */
491 vm_offset_t kva;
492
493 /** Psuedo-physical address corresponding to kva. */
494 uint64_t gnt_base_addr;
495
496 /** Various configuration and state bit flags. */
497 xnb_flag_t flags;
498
499 /** Mutex protecting per-instance data in the receive path. */
500 struct mtx rx_lock;
501
502 /** Mutex protecting per-instance data in the softc structure. */
503 struct mtx sc_lock;
504
505 /** Mutex protecting per-instance data in the transmit path. */
506 struct mtx tx_lock;
507
508 /** The size of the global kva pool. */
509 int kva_size;
510};
511
512/*---------------------------- Debugging functions ---------------------------*/
513#ifdef XNB_DEBUG
514static void __unused
515xnb_dump_gnttab_copy(const struct gnttab_copy *entry)
516{
517 if (entry == NULL) {
518 printf("NULL grant table pointer\n");
519 return;
520 }
521
522 if (entry->flags & GNTCOPY_dest_gref)
523 printf("gnttab dest ref=\t%u\n", entry->dest.u.ref);
524 else
525 printf("gnttab dest gmfn=\t%lu\n", entry->dest.u.gmfn);
526 printf("gnttab dest offset=\t%hu\n", entry->dest.offset);
527 printf("gnttab dest domid=\t%hu\n", entry->dest.domid);
528 if (entry->flags & GNTCOPY_source_gref)
529 printf("gnttab source ref=\t%u\n", entry->source.u.ref);
530 else
531 printf("gnttab source gmfn=\t%lu\n", entry->source.u.gmfn);
532 printf("gnttab source offset=\t%hu\n", entry->source.offset);
533 printf("gnttab source domid=\t%hu\n", entry->source.domid);
534 printf("gnttab len=\t%hu\n", entry->len);
535 printf("gnttab flags=\t%hu\n", entry->flags);
536 printf("gnttab status=\t%hd\n", entry->status);
537}
538
539static int
540xnb_dump_rings(SYSCTL_HANDLER_ARGS)
541{
542 static char results[720];
543 struct xnb_softc const* xnb = (struct xnb_softc*)arg1;
544 netif_rx_back_ring_t const* rxb =
545 &xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring;
546 netif_tx_back_ring_t const* txb =
547 &xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring;
548
549 /* empty the result strings */
550 results[0] = 0;
551
552 if ( !txb || !txb->sring || !rxb || !rxb->sring )
553 return (SYSCTL_OUT(req, results, strnlen(results, 720)));
554
555 snprintf(results, 720,
556 "\n\t%35s %18s\n" /* TX, RX */
557 "\t%16s %18d %18d\n" /* req_cons */
558 "\t%16s %18d %18d\n" /* nr_ents */
559 "\t%16s %18d %18d\n" /* rsp_prod_pvt */
560 "\t%16s %18p %18p\n" /* sring */
561 "\t%16s %18d %18d\n" /* req_prod */
562 "\t%16s %18d %18d\n" /* req_event */
563 "\t%16s %18d %18d\n" /* rsp_prod */
564 "\t%16s %18d %18d\n", /* rsp_event */
565 "TX", "RX",
566 "req_cons", txb->req_cons, rxb->req_cons,
567 "nr_ents", txb->nr_ents, rxb->nr_ents,
568 "rsp_prod_pvt", txb->rsp_prod_pvt, rxb->rsp_prod_pvt,
569 "sring", txb->sring, rxb->sring,
570 "sring->req_prod", txb->sring->req_prod, rxb->sring->req_prod,
571 "sring->req_event", txb->sring->req_event, rxb->sring->req_event,
572 "sring->rsp_prod", txb->sring->rsp_prod, rxb->sring->rsp_prod,
573 "sring->rsp_event", txb->sring->rsp_event, rxb->sring->rsp_event);
574
575 return (SYSCTL_OUT(req, results, strnlen(results, 720)));
576}
577
578static void __unused
579xnb_dump_mbuf(const struct mbuf *m)
580{
581 int len;
582 uint8_t *d;
583 if (m == NULL)
584 return;
585
586 printf("xnb_dump_mbuf:\n");
587 if (m->m_flags & M_PKTHDR) {
588 printf(" flowid=%10d, csum_flags=%#8x, csum_data=%#8x, "
589 "tso_segsz=%5hd\n",
590 m->m_pkthdr.flowid, m->m_pkthdr.csum_flags,
591 m->m_pkthdr.csum_data, m->m_pkthdr.tso_segsz);
592 printf(" rcvif=%16p, header=%18p, len=%19d\n",
593 m->m_pkthdr.rcvif, m->m_pkthdr.header, m->m_pkthdr.len);
594 }
595 printf(" m_next=%16p, m_nextpk=%16p, m_data=%16p\n",
596 m->m_next, m->m_nextpkt, m->m_data);
597 printf(" m_len=%17d, m_flags=%#15x, m_type=%18hd\n",
598 m->m_len, m->m_flags, m->m_type);
599
600 len = m->m_len;
601 d = mtod(m, uint8_t*);
602 while (len > 0) {
603 int i;
604 printf(" ");
605 for (i = 0; (i < 16) && (len > 0); i++, len--) {
606 printf("%02hhx ", *(d++));
607 }
608 printf("\n");
609 }
610}
611#endif /* XNB_DEBUG */
612
613/*------------------------ Inter-Domain Communication ------------------------*/
614/**
615 * Free dynamically allocated KVA or pseudo-physical address allocations.
616 *
617 * \param xnb Per-instance xnb configuration structure.
618 */
619static void
620xnb_free_communication_mem(struct xnb_softc *xnb)
621{
622 if (xnb->kva != 0) {
623#ifndef XENHVM
624 kmem_free(kernel_map, xnb->kva, xnb->kva_size);
625#else
626 if (xnb->pseudo_phys_res != NULL) {
627 bus_release_resource(xnb->dev, SYS_RES_MEMORY,
628 xnb->pseudo_phys_res_id,
629 xnb->pseudo_phys_res);
630 xnb->pseudo_phys_res = NULL;
631 }
632#endif /* XENHVM */
633 }
634 xnb->kva = 0;
635 xnb->gnt_base_addr = 0;
636}
637
638/**
639 * Cleanup all inter-domain communication mechanisms.
640 *
641 * \param xnb Per-instance xnb configuration structure.
642 */
643static int
644xnb_disconnect(struct xnb_softc *xnb)
645{
646 struct gnttab_unmap_grant_ref gnts[XNB_NUM_RING_TYPES];
647 int error;
648 int i;
649
650 if (xnb->irq != 0) {
651 unbind_from_irqhandler(xnb->irq);
652 xnb->irq = 0;
653 }
654
655 /*
656 * We may still have another thread currently processing requests. We
657 * must acquire the rx and tx locks to make sure those threads are done,
658 * but we can release those locks as soon as we acquire them, because no
659 * more interrupts will be arriving.
660 */
661 mtx_lock(&xnb->tx_lock);
662 mtx_unlock(&xnb->tx_lock);
663 mtx_lock(&xnb->rx_lock);
664 mtx_unlock(&xnb->rx_lock);
665
666 /* Free malloc'd softc member variables */
667 if (xnb->bridge != NULL)
668 free(xnb->bridge, M_XENSTORE);
669
670 /* All request processing has stopped, so unmap the rings */
671 for (i=0; i < XNB_NUM_RING_TYPES; i++) {
672 gnts[i].host_addr = xnb->ring_configs[i].gnt_addr;
673 gnts[i].dev_bus_addr = xnb->ring_configs[i].bus_addr;
674 gnts[i].handle = xnb->ring_configs[i].handle;
675 }
676 error = HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, gnts,
677 XNB_NUM_RING_TYPES);
678 KASSERT(error == 0, ("Grant table unmap op failed (%d)", error));
679
680 xnb_free_communication_mem(xnb);
681 /*
682 * Zero the ring config structs because the pointers, handles, and
683 * grant refs contained therein are no longer valid.
684 */
685 bzero(&xnb->ring_configs[XNB_RING_TYPE_TX],
686 sizeof(struct xnb_ring_config));
687 bzero(&xnb->ring_configs[XNB_RING_TYPE_RX],
688 sizeof(struct xnb_ring_config));
689
690 xnb->flags &= ~XNBF_RING_CONNECTED;
691 return (0);
692}
693
694/**
695 * Map a single shared memory ring into domain local address space and
696 * initialize its control structure
697 *
698 * \param xnb Per-instance xnb configuration structure
699 * \param ring_type Array index of this ring in the xnb's array of rings
700 * \return An errno
701 */
702static int
703xnb_connect_ring(struct xnb_softc *xnb, xnb_ring_type_t ring_type)
704{
705 struct gnttab_map_grant_ref gnt;
706 struct xnb_ring_config *ring = &xnb->ring_configs[ring_type];
707 int error;
708
709 /* TX ring type = 0, RX =1 */
710 ring->va = xnb->kva + ring_type * PAGE_SIZE;
711 ring->gnt_addr = xnb->gnt_base_addr + ring_type * PAGE_SIZE;
712
713 gnt.host_addr = ring->gnt_addr;
714 gnt.flags = GNTMAP_host_map;
715 gnt.ref = ring->ring_ref;
716 gnt.dom = xnb->otherend_id;
717
718 error = HYPERVISOR_grant_table_op(GNTTABOP_map_grant_ref, &gnt, 1);
719 if (error != 0)
720 panic("netback: Ring page grant table op failed (%d)", error);
721
722 if (gnt.status != 0) {
723 ring->va = 0;
724 error = EACCES;
725 xenbus_dev_fatal(xnb->dev, error,
726 "Ring shared page mapping failed. "
727 "Status %d.", gnt.status);
728 } else {
729 ring->handle = gnt.handle;
730 ring->bus_addr = gnt.dev_bus_addr;
731
732 if (ring_type == XNB_RING_TYPE_TX) {
733 BACK_RING_INIT(&ring->back_ring.tx_ring,
734 (netif_tx_sring_t*)ring->va,
735 ring->ring_pages * PAGE_SIZE);
736 } else if (ring_type == XNB_RING_TYPE_RX) {
737 BACK_RING_INIT(&ring->back_ring.rx_ring,
738 (netif_rx_sring_t*)ring->va,
739 ring->ring_pages * PAGE_SIZE);
740 } else {
741 xenbus_dev_fatal(xnb->dev, error,
742 "Unknown ring type %d", ring_type);
743 }
744 }
745
746 return error;
747}
748
749/**
750 * Setup the shared memory rings and bind an interrupt to the event channel
751 * used to notify us of ring changes.
752 *
753 * \param xnb Per-instance xnb configuration structure.
754 */
755static int
756xnb_connect_comms(struct xnb_softc *xnb)
757{
758 int error;
759 xnb_ring_type_t i;
760
761 if ((xnb->flags & XNBF_RING_CONNECTED) != 0)
762 return (0);
763
764 /*
765 * Kva for our rings are at the tail of the region of kva allocated
766 * by xnb_alloc_communication_mem().
767 */
768 for (i=0; i < XNB_NUM_RING_TYPES; i++) {
769 error = xnb_connect_ring(xnb, i);
770 if (error != 0)
771 return error;
772 }
773
774 xnb->flags |= XNBF_RING_CONNECTED;
775
776 error =
777 bind_interdomain_evtchn_to_irqhandler(xnb->otherend_id,
778 xnb->evtchn,
779 device_get_nameunit(xnb->dev),
780 xnb_intr, /*arg*/xnb,
781 INTR_TYPE_BIO | INTR_MPSAFE,
782 &xnb->irq);
783 if (error != 0) {
784 (void)xnb_disconnect(xnb);
785 xenbus_dev_fatal(xnb->dev, error, "binding event channel");
786 return (error);
787 }
788
789 DPRINTF("rings connected!\n");
790
791 return (0);
792}
793
794/**
795 * Size KVA and pseudo-physical address allocations based on negotiated
796 * values for the size and number of I/O requests, and the size of our
797 * communication ring.
798 *
799 * \param xnb Per-instance xnb configuration structure.
800 *
801 * These address spaces are used to dynamically map pages in the
802 * front-end's domain into our own.
803 */
804static int
805xnb_alloc_communication_mem(struct xnb_softc *xnb)
806{
807 xnb_ring_type_t i;
808
809 xnb->kva_size = 0;
810 for (i=0; i < XNB_NUM_RING_TYPES; i++) {
811 xnb->kva_size += xnb->ring_configs[i].ring_pages * PAGE_SIZE;
812 }
813#ifndef XENHVM
814 xnb->kva = kmem_alloc_nofault(kernel_map, xnb->kva_size);
815 if (xnb->kva == 0)
816 return (ENOMEM);
817 xnb->gnt_base_addr = xnb->kva;
818#else /* defined XENHVM */
819 /*
820 * Reserve a range of pseudo physical memory that we can map
821 * into kva. These pages will only be backed by machine
822 * pages ("real memory") during the lifetime of front-end requests
823 * via grant table operations. We will map the netif tx and rx rings
824 * into this space.
825 */
826 xnb->pseudo_phys_res_id = 0;
827 xnb->pseudo_phys_res = bus_alloc_resource(xnb->dev, SYS_RES_MEMORY,
828 &xnb->pseudo_phys_res_id,
829 0, ~0, xnb->kva_size,
830 RF_ACTIVE);
831 if (xnb->pseudo_phys_res == NULL) {
832 xnb->kva = 0;
833 return (ENOMEM);
834 }
835 xnb->kva = (vm_offset_t)rman_get_virtual(xnb->pseudo_phys_res);
836 xnb->gnt_base_addr = rman_get_start(xnb->pseudo_phys_res);
837#endif /* !defined XENHVM */
838 return (0);
839}
840
841/**
842 * Collect information from the XenStore related to our device and its frontend
843 *
844 * \param xnb Per-instance xnb configuration structure.
845 */
846static int
847xnb_collect_xenstore_info(struct xnb_softc *xnb)
848{
849 /**
850 * \todo Linux collects the following info. We should collect most
851 * of this, too:
852 * "feature-rx-notify"
853 */
854 const char *otherend_path;
855 const char *our_path;
856 int err;
857 unsigned int rx_copy, bridge_len;
858 uint8_t no_csum_offload;
859
860 otherend_path = xenbus_get_otherend_path(xnb->dev);
861 our_path = xenbus_get_node(xnb->dev);
862
863 /* Collect the critical communication parameters */
864 err = xs_gather(XST_NIL, otherend_path,
865 "tx-ring-ref", "%l" PRIu32,
866 &xnb->ring_configs[XNB_RING_TYPE_TX].ring_ref,
867 "rx-ring-ref", "%l" PRIu32,
868 &xnb->ring_configs[XNB_RING_TYPE_RX].ring_ref,
869 "event-channel", "%" PRIu32, &xnb->evtchn,
870 NULL);
871 if (err != 0) {
872 xenbus_dev_fatal(xnb->dev, err,
873 "Unable to retrieve ring information from "
874 "frontend %s. Unable to connect.",
875 otherend_path);
876 return (err);
877 }
878
879 /* Collect the handle from xenstore */
880 err = xs_scanf(XST_NIL, our_path, "handle", NULL, "%li", &xnb->handle);
881 if (err != 0) {
882 xenbus_dev_fatal(xnb->dev, err,
883 "Error reading handle from frontend %s. "
884 "Unable to connect.", otherend_path);
885 }
886
887 /*
888 * Collect the bridgename, if any. We do not need bridge_len; we just
889 * throw it away
890 */
891 err = xs_read(XST_NIL, our_path, "bridge", &bridge_len,
892 (void**)&xnb->bridge);
893 if (err != 0)
894 xnb->bridge = NULL;
895
896 /*
897 * Does the frontend request that we use rx copy? If not, return an
898 * error because this driver only supports rx copy.
899 */
900 err = xs_scanf(XST_NIL, otherend_path, "request-rx-copy", NULL,
901 "%" PRIu32, &rx_copy);
902 if (err == ENOENT) {
903 err = 0;
904 rx_copy = 0;
905 }
906 if (err < 0) {
907 xenbus_dev_fatal(xnb->dev, err, "reading %s/request-rx-copy",
908 otherend_path);
909 return err;
910 }
911 /**
912 * \todo: figure out the exact meaning of this feature, and when
913 * the frontend will set it to true. It should be set to true
914 * at some point
915 */
916/* if (!rx_copy)*/
917/* return EOPNOTSUPP;*/
918
919 /** \todo Collect the rx notify feature */
920
921 /* Collect the feature-sg. */
922 if (xs_scanf(XST_NIL, otherend_path, "feature-sg", NULL,
923 "%hhu", &xnb->can_sg) < 0)
924 xnb->can_sg = 0;
925
926 /* Collect remaining frontend features */
927 if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4", NULL,
928 "%hhu", &xnb->gso) < 0)
929 xnb->gso = 0;
930
931 if (xs_scanf(XST_NIL, otherend_path, "feature-gso-tcpv4-prefix", NULL,
932 "%hhu", &xnb->gso_prefix) < 0)
933 xnb->gso_prefix = 0;
934
935 if (xs_scanf(XST_NIL, otherend_path, "feature-no-csum-offload", NULL,
936 "%hhu", &no_csum_offload) < 0)
937 no_csum_offload = 0;
938 xnb->ip_csum = (no_csum_offload == 0);
939
940 return (0);
941}
942
943/**
944 * Supply information about the physical device to the frontend
945 * via XenBus.
946 *
947 * \param xnb Per-instance xnb configuration structure.
948 */
949static int
950xnb_publish_backend_info(struct xnb_softc *xnb)
951{
952 struct xs_transaction xst;
953 const char *our_path;
954 int error;
955
956 our_path = xenbus_get_node(xnb->dev);
957
958 do {
959 error = xs_transaction_start(&xst);
960 if (error != 0) {
961 xenbus_dev_fatal(xnb->dev, error,
962 "Error publishing backend info "
963 "(start transaction)");
964 break;
965 }
966
967 error = xs_printf(xst, our_path, "feature-sg",
968 "%d", XNB_SG);
969 if (error != 0)
970 break;
971
972 error = xs_printf(xst, our_path, "feature-gso-tcpv4",
973 "%d", XNB_GSO_TCPV4);
974 if (error != 0)
975 break;
976
977 error = xs_printf(xst, our_path, "feature-rx-copy",
978 "%d", XNB_RX_COPY);
979 if (error != 0)
980 break;
981
982 error = xs_printf(xst, our_path, "feature-rx-flip",
983 "%d", XNB_RX_FLIP);
984 if (error != 0)
985 break;
986
987 error = xs_transaction_end(xst, 0);
988 if (error != 0 && error != EAGAIN) {
989 xenbus_dev_fatal(xnb->dev, error, "ending transaction");
990 break;
991 }
992
993 } while (error == EAGAIN);
994
995 return (error);
996}
997
998/**
999 * Connect to our netfront peer now that it has completed publishing
1000 * its configuration into the XenStore.
1001 *
1002 * \param xnb Per-instance xnb configuration structure.
1003 */
1004static void
1005xnb_connect(struct xnb_softc *xnb)
1006{
1007 int error;
1008
1009 if (xenbus_get_state(xnb->dev) == XenbusStateConnected)
1010 return;
1011
1012 if (xnb_collect_xenstore_info(xnb) != 0)
1013 return;
1014
1015 xnb->flags &= ~XNBF_SHUTDOWN;
1016
1017 /* Read front end configuration. */
1018
1019 /* Allocate resources whose size depends on front-end configuration. */
1020 error = xnb_alloc_communication_mem(xnb);
1021 if (error != 0) {
1022 xenbus_dev_fatal(xnb->dev, error,
1023 "Unable to allocate communication memory");
1024 return;
1025 }
1026
1027 /*
1028 * Connect communication channel.
1029 */
1030 error = xnb_connect_comms(xnb);
1031 if (error != 0) {
1032 /* Specific errors are reported by xnb_connect_comms(). */
1033 return;
1034 }
1035 xnb->carrier = 1;
1036
1037 /* Ready for I/O. */
1038 xenbus_set_state(xnb->dev, XenbusStateConnected);
1039}
1040
1041/*-------------------------- Device Teardown Support -------------------------*/
1042/**
1043 * Perform device shutdown functions.
1044 *
1045 * \param xnb Per-instance xnb configuration structure.
1046 *
1047 * Mark this instance as shutting down, wait for any active requests
1048 * to drain, disconnect from the front-end, and notify any waiters (e.g.
1049 * a thread invoking our detach method) that detach can now proceed.
1050 */
1051static int
1052xnb_shutdown(struct xnb_softc *xnb)
1053{
1054 /*
1055 * Due to the need to drop our mutex during some
1056 * xenbus operations, it is possible for two threads
1057 * to attempt to close out shutdown processing at
1058 * the same time. Tell the caller that hits this
1059 * race to try back later.
1060 */
1061 if ((xnb->flags & XNBF_IN_SHUTDOWN) != 0)
1062 return (EAGAIN);
1063
1064 xnb->flags |= XNBF_SHUTDOWN;
1065
1066 xnb->flags |= XNBF_IN_SHUTDOWN;
1067
1068 mtx_unlock(&xnb->sc_lock);
1069 /* Free the network interface */
1070 xnb->carrier = 0;
1071 if (xnb->xnb_ifp != NULL) {
1072 ether_ifdetach(xnb->xnb_ifp);
1073 if_free(xnb->xnb_ifp);
1074 xnb->xnb_ifp = NULL;
1075 }
1076 mtx_lock(&xnb->sc_lock);
1077
1078 xnb_disconnect(xnb);
1079
1080 mtx_unlock(&xnb->sc_lock);
1081 if (xenbus_get_state(xnb->dev) < XenbusStateClosing)
1082 xenbus_set_state(xnb->dev, XenbusStateClosing);
1083 mtx_lock(&xnb->sc_lock);
1084
1085 xnb->flags &= ~XNBF_IN_SHUTDOWN;
1086
1087
1088 /* Indicate to xnb_detach() that is it safe to proceed. */
1089 wakeup(xnb);
1090
1091 return (0);
1092}
1093
1094/**
1095 * Report an attach time error to the console and Xen, and cleanup
1096 * this instance by forcing immediate detach processing.
1097 *
1098 * \param xnb Per-instance xnb configuration structure.
1099 * \param err Errno describing the error.
1100 * \param fmt Printf style format and arguments
1101 */
1102static void
1103xnb_attach_failed(struct xnb_softc *xnb, int err, const char *fmt, ...)
1104{
1105 va_list ap;
1106 va_list ap_hotplug;
1107
1108 va_start(ap, fmt);
1109 va_copy(ap_hotplug, ap);
1110 xs_vprintf(XST_NIL, xenbus_get_node(xnb->dev),
1111 "hotplug-error", fmt, ap_hotplug);
1112 va_end(ap_hotplug);
1113 xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1114 "hotplug-status", "error");
1115
1116 xenbus_dev_vfatal(xnb->dev, err, fmt, ap);
1117 va_end(ap);
1118
1119 xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1120 "online", "0");
1121 xnb_detach(xnb->dev);
1122}
1123
1124/*---------------------------- NewBus Entrypoints ----------------------------*/
1125/**
1126 * Inspect a XenBus device and claim it if is of the appropriate type.
1127 *
1128 * \param dev NewBus device object representing a candidate XenBus device.
1129 *
1130 * \return 0 for success, errno codes for failure.
1131 */
1132static int
1133xnb_probe(device_t dev)
1134{
1135 if (!strcmp(xenbus_get_type(dev), "vif")) {
1136 DPRINTF("Claiming device %d, %s\n", device_get_unit(dev),
1137 devclass_get_name(device_get_devclass(dev)));
1138 device_set_desc(dev, "Backend Virtual Network Device");
1139 device_quiet(dev);
1140 return (0);
1141 }
1142 return (ENXIO);
1143}
1144
1145/**
1146 * Setup sysctl variables to control various Network Back parameters.
1147 *
1148 * \param xnb Xen Net Back softc.
1149 *
1150 */
1151static void
1152xnb_setup_sysctl(struct xnb_softc *xnb)
1153{
1154 struct sysctl_ctx_list *sysctl_ctx = NULL;
1155 struct sysctl_oid *sysctl_tree = NULL;
1156
1157 sysctl_ctx = device_get_sysctl_ctx(xnb->dev);
1158 if (sysctl_ctx == NULL)
1159 return;
1160
1161 sysctl_tree = device_get_sysctl_tree(xnb->dev);
1162 if (sysctl_tree == NULL)
1163 return;
1164
1165#ifdef XNB_DEBUG
1166 SYSCTL_ADD_PROC(sysctl_ctx,
1167 SYSCTL_CHILDREN(sysctl_tree),
1168 OID_AUTO,
1169 "unit_test_results",
1170 CTLTYPE_STRING | CTLFLAG_RD,
1171 xnb,
1172 0,
1173 xnb_unit_test_main,
1174 "A",
1175 "Results of builtin unit tests");
1176
1177 SYSCTL_ADD_PROC(sysctl_ctx,
1178 SYSCTL_CHILDREN(sysctl_tree),
1179 OID_AUTO,
1180 "dump_rings",
1181 CTLTYPE_STRING | CTLFLAG_RD,
1182 xnb,
1183 0,
1184 xnb_dump_rings,
1185 "A",
1186 "Xennet Back Rings");
1187#endif /* XNB_DEBUG */
1188}
1189
1190/**
1191 * Create a network device.
1192 * @param handle device handle
1193 */
1194int
1195create_netdev(device_t dev)
1196{
1197 struct ifnet *ifp;
1198 struct xnb_softc *xnb;
1199 int err = 0;
1200
1201 xnb = device_get_softc(dev);
1202 mtx_init(&xnb->sc_lock, "xnb_softc", "xen netback softc lock", MTX_DEF);
1203 mtx_init(&xnb->tx_lock, "xnb_tx", "xen netback tx lock", MTX_DEF);
1204 mtx_init(&xnb->rx_lock, "xnb_rx", "xen netback rx lock", MTX_DEF);
1205
1206 xnb->dev = dev;
1207
1208 ifmedia_init(&xnb->sc_media, 0, xnb_ifmedia_upd, xnb_ifmedia_sts);
1209 ifmedia_add(&xnb->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
1210 ifmedia_set(&xnb->sc_media, IFM_ETHER|IFM_MANUAL);
1211
1212 err = xen_net_read_mac(dev, xnb->mac);
1213 if (err == 0) {
1214 /* Set up ifnet structure */
1215 ifp = xnb->xnb_ifp = if_alloc(IFT_ETHER);
1216 ifp->if_softc = xnb;
1217 if_initname(ifp, "xnb", device_get_unit(dev));
1218 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1219 ifp->if_ioctl = xnb_ioctl;
1220 ifp->if_output = ether_output;
1221 ifp->if_start = xnb_start;
1222#ifdef notyet
1223 ifp->if_watchdog = xnb_watchdog;
1224#endif
1225 ifp->if_init = xnb_ifinit;
1226 ifp->if_mtu = ETHERMTU;
1227 ifp->if_snd.ifq_maxlen = NET_RX_RING_SIZE - 1;
1228
1229 ifp->if_hwassist = XNB_CSUM_FEATURES;
1230 ifp->if_capabilities = IFCAP_HWCSUM;
1231 ifp->if_capenable = IFCAP_HWCSUM;
1232
1233 ether_ifattach(ifp, xnb->mac);
1234 xnb->carrier = 0;
1235 }
1236
1237 return err;
1238}
1239
1240/**
1241 * Attach to a XenBus device that has been claimed by our probe routine.
1242 *
1243 * \param dev NewBus device object representing this Xen Net Back instance.
1244 *
1245 * \return 0 for success, errno codes for failure.
1246 */
1247static int
1248xnb_attach(device_t dev)
1249{
1250 struct xnb_softc *xnb;
1251 int error;
1252 xnb_ring_type_t i;
1253
1254 error = create_netdev(dev);
1255 if (error != 0) {
1256 xenbus_dev_fatal(dev, error, "creating netdev");
1257 return (error);
1258 }
1259
1260 DPRINTF("Attaching to %s\n", xenbus_get_node(dev));
1261
1262 /*
1263 * Basic initialization.
1264 * After this block it is safe to call xnb_detach()
1265 * to clean up any allocated data for this instance.
1266 */
1267 xnb = device_get_softc(dev);
1268 xnb->otherend_id = xenbus_get_otherend_id(dev);
1269 for (i=0; i < XNB_NUM_RING_TYPES; i++) {
1270 xnb->ring_configs[i].ring_pages = 1;
1271 }
1272
1273 /*
1274 * Setup sysctl variables.
1275 */
1276 xnb_setup_sysctl(xnb);
1277
1278 /* Update hot-plug status to satisfy xend. */
1279 error = xs_printf(XST_NIL, xenbus_get_node(xnb->dev),
1280 "hotplug-status", "connected");
1281 if (error != 0) {
1282 xnb_attach_failed(xnb, error, "writing %s/hotplug-status",
1283 xenbus_get_node(xnb->dev));
1284 return (error);
1285 }
1286
1287 if ((error = xnb_publish_backend_info(xnb)) != 0) {
1288 /*
1289 * If we can't publish our data, we cannot participate
1290 * in this connection, and waiting for a front-end state
1291 * change will not help the situation.
1292 */
1293 xnb_attach_failed(xnb, error,
1294 "Publishing backend status for %s",
1295 xenbus_get_node(xnb->dev));
1296 return error;
1297 }
1298
1299 /* Tell the front end that we are ready to connect. */
1300 xenbus_set_state(dev, XenbusStateInitWait);
1301
1302 return (0);
1303}
1304
1305/**
1306 * Detach from a net back device instance.
1307 *
1308 * \param dev NewBus device object representing this Xen Net Back instance.
1309 *
1310 * \return 0 for success, errno codes for failure.
1311 *
1312 * \note A net back device may be detached at any time in its life-cycle,
1313 * including part way through the attach process. For this reason,
1314 * initialization order and the intialization state checks in this
1315 * routine must be carefully coupled so that attach time failures
1316 * are gracefully handled.
1317 */
1318static int
1319xnb_detach(device_t dev)
1320{
1321 struct xnb_softc *xnb;
1322
1323 DPRINTF("\n");
1324
1325 xnb = device_get_softc(dev);
1326 mtx_lock(&xnb->sc_lock);
1327 while (xnb_shutdown(xnb) == EAGAIN) {
1328 msleep(xnb, &xnb->sc_lock, /*wakeup prio unchanged*/0,
1329 "xnb_shutdown", 0);
1330 }
1331 mtx_unlock(&xnb->sc_lock);
1332 DPRINTF("\n");
1333
1334 mtx_destroy(&xnb->tx_lock);
1335 mtx_destroy(&xnb->rx_lock);
1336 mtx_destroy(&xnb->sc_lock);
1337 return (0);
1338}
1339
1340/**
1341 * Prepare this net back device for suspension of this VM.
1342 *
1343 * \param dev NewBus device object representing this Xen net Back instance.
1344 *
1345 * \return 0 for success, errno codes for failure.
1346 */
1347static int
1348xnb_suspend(device_t dev)
1349{
1350 return (0);
1351}
1352
1353/**
1354 * Perform any processing required to recover from a suspended state.
1355 *
1356 * \param dev NewBus device object representing this Xen Net Back instance.
1357 *
1358 * \return 0 for success, errno codes for failure.
1359 */
1360static int
1361xnb_resume(device_t dev)
1362{
1363 return (0);
1364}
1365
1366/**
1367 * Handle state changes expressed via the XenStore by our front-end peer.
1368 *
1369 * \param dev NewBus device object representing this Xen
1370 * Net Back instance.
1371 * \param frontend_state The new state of the front-end.
1372 *
1373 * \return 0 for success, errno codes for failure.
1374 */
1375static void
1376xnb_frontend_changed(device_t dev, XenbusState frontend_state)
1377{
1378 struct xnb_softc *xnb;
1379
1380 xnb = device_get_softc(dev);
1381
1382 DPRINTF("frontend_state=%s, xnb_state=%s\n",
1383 xenbus_strstate(frontend_state),
1384 xenbus_strstate(xenbus_get_state(xnb->dev)));
1385
1386 switch (frontend_state) {
1387 case XenbusStateInitialising:
1388 break;
1389 case XenbusStateInitialised:
1390 case XenbusStateConnected:
1391 xnb_connect(xnb);
1392 break;
1393 case XenbusStateClosing:
1394 case XenbusStateClosed:
1395 mtx_lock(&xnb->sc_lock);
1396 xnb_shutdown(xnb);
1397 mtx_unlock(&xnb->sc_lock);
1398 if (frontend_state == XenbusStateClosed)
1399 xenbus_set_state(xnb->dev, XenbusStateClosed);
1400 break;
1401 default:
1402 xenbus_dev_fatal(xnb->dev, EINVAL, "saw state %d at frontend",
1403 frontend_state);
1404 break;
1405 }
1406}
1407
1408
1409/*---------------------------- Request Processing ----------------------------*/
1410/**
1411 * Interrupt handler bound to the shared ring's event channel.
1412 * Entry point for the xennet transmit path in netback
1413 * Transfers packets from the Xen ring to the host's generic networking stack
1414 *
1415 * \param arg Callback argument registerd during event channel
1416 * binding - the xnb_softc for this instance.
1417 */
1418static void
1419xnb_intr(void *arg)
1420{
1421 struct xnb_softc *xnb;
1422 struct ifnet *ifp;
1423 netif_tx_back_ring_t *txb;
1424 RING_IDX req_prod_local;
1425
1426 xnb = (struct xnb_softc *)arg;
1427 ifp = xnb->xnb_ifp;
1428 txb = &xnb->ring_configs[XNB_RING_TYPE_TX].back_ring.tx_ring;
1429
1430 mtx_lock(&xnb->tx_lock);
1431 do {
1432 int notify;
1433 req_prod_local = txb->sring->req_prod;
1434 xen_rmb();
1435
1436 for (;;) {
1437 struct mbuf *mbufc;
1438 int err;
1439
1440 err = xnb_recv(txb, xnb->otherend_id, &mbufc, ifp,
1441 xnb->tx_gnttab);
1442 if (err || (mbufc == NULL))
1443 break;
1444
1445 /* Send the packet to the generic network stack */
1446 (*xnb->xnb_ifp->if_input)(xnb->xnb_ifp, mbufc);
1447 }
1448
1449 RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(txb, notify);
1450 if (notify != 0)
1451 notify_remote_via_irq(xnb->irq);
1452
1453 txb->sring->req_event = txb->req_cons + 1;
1454 xen_mb();
1455 } while (txb->sring->req_prod != req_prod_local) ;
1456 mtx_unlock(&xnb->tx_lock);
1457
1458 xnb_start(ifp);
1459}
1460
1461
1462/**
1463 * Build a struct xnb_pkt based on netif_tx_request's from a netif tx ring.
1464 * Will read exactly 0 or 1 packets from the ring; never a partial packet.
1465 * \param[out] pkt The returned packet. If there is an error building
1466 * the packet, pkt.list_len will be set to 0.
1467 * \param[in] tx_ring Pointer to the Ring that is the input to this function
1468 * \param[in] start The ring index of the first potential request
1469 * \return The number of requests consumed to build this packet
1470 */
1471static int
1472xnb_ring2pkt(struct xnb_pkt *pkt, const netif_tx_back_ring_t *tx_ring,
1473 RING_IDX start)
1474{
1475 /*
1476 * Outline:
1477 * 1) Initialize pkt
1478 * 2) Read the first request of the packet
1479 * 3) Read the extras
1480 * 4) Set cdr
1481 * 5) Loop on the remainder of the packet
1482 * 6) Finalize pkt (stuff like car_size and list_len)
1483 */
1484 int idx = start;
1485 int discard = 0; /* whether to discard the packet */
1486 int more_data = 0; /* there are more request past the last one */
1487 uint16_t cdr_size = 0; /* accumulated size of requests 2 through n */
1488
1489 xnb_pkt_initialize(pkt);
1490
1491 /* Read the first request */
1492 if (RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1493 netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx);
1494 pkt->size = tx->size;
1495 pkt->flags = tx->flags & ~NETTXF_more_data;
1496 more_data = tx->flags & NETTXF_more_data;
1497 pkt->list_len++;
1498 pkt->car = idx;
1499 idx++;
1500 }
1501
1502 /* Read the extra info */
1503 if ((pkt->flags & NETTXF_extra_info) &&
1504 RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1505 netif_extra_info_t *ext =
1506 (netif_extra_info_t*) RING_GET_REQUEST(tx_ring, idx);
1507 pkt->extra.type = ext->type;
1508 switch (pkt->extra.type) {
1509 case XEN_NETIF_EXTRA_TYPE_GSO:
1510 pkt->extra.u.gso = ext->u.gso;
1511 break;
1512 default:
1513 /*
1514 * The reference Linux netfront driver will
1515 * never set any other extra.type. So we don't
1516 * know what to do with it. Let's print an
1517 * error, then consume and discard the packet
1518 */
1519 printf("xnb(%s:%d): Unknown extra info type %d."
1520 " Discarding packet\n",
1521 __func__, __LINE__, pkt->extra.type);
1522 xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring,
1523 start));
1524 xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring,
1525 idx));
1526 discard = 1;
1527 break;
1528 }
1529
1530 pkt->extra.flags = ext->flags;
1531 if (ext->flags & XEN_NETIF_EXTRA_FLAG_MORE) {
1532 /*
1533 * The reference linux netfront driver never sets this
1534 * flag (nor does any other known netfront). So we
1535 * will discard the packet.
1536 */
1537 printf("xnb(%s:%d): Request sets "
1538 "XEN_NETIF_EXTRA_FLAG_MORE, but we can't handle "
1539 "that\n", __func__, __LINE__);
1540 xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start));
1541 xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx));
1542 discard = 1;
1543 }
1544
1545 idx++;
1546 }
1547
1548 /* Set cdr. If there is not more data, cdr is invalid */
1549 pkt->cdr = idx;
1550
1551 /* Loop on remainder of packet */
1552 while (more_data && RING_HAS_UNCONSUMED_REQUESTS_2(tx_ring, idx)) {
1553 netif_tx_request_t *tx = RING_GET_REQUEST(tx_ring, idx);
1554 pkt->list_len++;
1555 cdr_size += tx->size;
1556 if (tx->flags & ~NETTXF_more_data) {
1557 /* There should be no other flags set at this point */
1558 printf("xnb(%s:%d): Request sets unknown flags %d "
1559 "after the 1st request in the packet.\n",
1560 __func__, __LINE__, tx->flags);
1561 xnb_dump_txreq(start, RING_GET_REQUEST(tx_ring, start));
1562 xnb_dump_txreq(idx, RING_GET_REQUEST(tx_ring, idx));
1563 }
1564
1565 more_data = tx->flags & NETTXF_more_data;
1566 idx++;
1567 }
1568
1569 /* Finalize packet */
1570 if (more_data != 0) {
1571 /* The ring ran out of requests before finishing the packet */
1572 xnb_pkt_invalidate(pkt);
1573 idx = start; /* tell caller that we consumed no requests */
1574 } else {
1575 /* Calculate car_size */
1576 pkt->car_size = pkt->size - cdr_size;
1577 }
1578 if (discard != 0) {
1579 xnb_pkt_invalidate(pkt);
1580 }
1581
1582 return idx - start;
1583}
1584
1585
1586/**
1587 * Respond to all the requests that constituted pkt. Builds the responses and
1588 * writes them to the ring, but doesn't push them to the shared ring.
1589 * \param[in] pkt the packet that needs a response
1590 * \param[in] error true if there was an error handling the packet, such
1591 * as in the hypervisor copy op or mbuf allocation
1592 * \param[out] ring Responses go here
1593 */
1594static void
1595xnb_txpkt2rsp(const struct xnb_pkt *pkt, netif_tx_back_ring_t *ring,
1596 int error)
1597{
1598 /*
1599 * Outline:
1600 * 1) Respond to the first request
1601 * 2) Respond to the extra info reques
1602 * Loop through every remaining request in the packet, generating
1603 * responses that copy those requests' ids and sets the status
1604 * appropriately.
1605 */
1606 netif_tx_request_t *tx;
1607 netif_tx_response_t *rsp;
1608 int i;
1609 uint16_t status;
1610
1611 status = (xnb_pkt_is_valid(pkt) == 0) || error ?
1612 NETIF_RSP_ERROR : NETIF_RSP_OKAY;
1613 KASSERT((pkt->list_len == 0) || (ring->rsp_prod_pvt == pkt->car),
1614 ("Cannot respond to ring requests out of order"));
1615
1616 if (pkt->list_len >= 1) {
1617 uint16_t id;
1618 tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt);
1619 id = tx->id;
1620 rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1621 rsp->id = id;
1622 rsp->status = status;
1623 ring->rsp_prod_pvt++;
1624
1625 if (pkt->flags & NETRXF_extra_info) {
1626 rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1627 rsp->status = NETIF_RSP_NULL;
1628 ring->rsp_prod_pvt++;
1629 }
1630 }
1631
1632 for (i=0; i < pkt->list_len - 1; i++) {
1633 uint16_t id;
1634 tx = RING_GET_REQUEST(ring, ring->rsp_prod_pvt);
1635 id = tx->id;
1636 rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
1637 rsp->id = id;
1638 rsp->status = status;
1639 ring->rsp_prod_pvt++;
1640 }
1641}
1642
1643/**
1644 * Create an mbuf chain to represent a packet. Initializes all of the headers
1645 * in the mbuf chain, but does not copy the data. The returned chain must be
1646 * free()'d when no longer needed
1647 * \param[in] pkt A packet to model the mbuf chain after
1648 * \return A newly allocated mbuf chain, possibly with clusters attached.
1649 * NULL on failure
1650 */
1651static struct mbuf*
1652xnb_pkt2mbufc(const struct xnb_pkt *pkt, struct ifnet *ifp)
1653{
1654 /**
1655 * \todo consider using a memory pool for mbufs instead of
1656 * reallocating them for every packet
1657 */
1658 /** \todo handle extra data */
1659 struct mbuf *m;
1660
1661 m = m_getm(NULL, pkt->size, M_NOWAIT, MT_DATA);
1662
1663 if (m != NULL) {
1664 m->m_pkthdr.rcvif = ifp;
1665 if (pkt->flags & NETTXF_data_validated) {
1666 /*
1667 * We lie to the host OS and always tell it that the
1668 * checksums are ok, because the packet is unlikely to
1669 * get corrupted going across domains.
1670 */
1671 m->m_pkthdr.csum_flags = (
1672 CSUM_IP_CHECKED |
1673 CSUM_IP_VALID |
1674 CSUM_DATA_VALID |
1675 CSUM_PSEUDO_HDR
1676 );
1677 m->m_pkthdr.csum_data = 0xffff;
1678 }
1679 }
1680 return m;
1681}
1682
1683/**
1684 * Build a gnttab_copy table that can be used to copy data from a pkt
1685 * to an mbufc. Does not actually perform the copy. Always uses gref's on
1686 * the packet side.
1687 * \param[in] pkt pkt's associated requests form the src for
1688 * the copy operation
1689 * \param[in] mbufc mbufc's storage forms the dest for the copy operation
1690 * \param[out] gnttab Storage for the returned grant table
1691 * \param[in] txb Pointer to the backend ring structure
1692 * \param[in] otherend_id The domain ID of the other end of the copy
1693 * \return The number of gnttab entries filled
1694 */
1695static int
1696xnb_txpkt2gnttab(const struct xnb_pkt *pkt, const struct mbuf *mbufc,
1697 gnttab_copy_table gnttab, const netif_tx_back_ring_t *txb,
1698 domid_t otherend_id)
1699{
1700
1701 const struct mbuf *mbuf = mbufc;/* current mbuf within the chain */
1702 int gnt_idx = 0; /* index into grant table */
1703 RING_IDX r_idx = pkt->car; /* index into tx ring buffer */
1704 int r_ofs = 0; /* offset of next data within tx request's data area */
1705 int m_ofs = 0; /* offset of next data within mbuf's data area */
1706 /* size in bytes that still needs to be represented in the table */
1707 uint16_t size_remaining = pkt->size;
1708
1709 while (size_remaining > 0) {
1710 const netif_tx_request_t *txq = RING_GET_REQUEST(txb, r_idx);
1711 const size_t mbuf_space = M_TRAILINGSPACE(mbuf) - m_ofs;
1712 const size_t req_size =
1713 r_idx == pkt->car ? pkt->car_size : txq->size;
1714 const size_t pkt_space = req_size - r_ofs;
1715 /*
1716 * space is the largest amount of data that can be copied in the
1717 * grant table's next entry
1718 */
1719 const size_t space = MIN(pkt_space, mbuf_space);
1720
1721 /* TODO: handle this error condition without panicking */
1722 KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short"));
1723
1724 gnttab[gnt_idx].source.u.ref = txq->gref;
1725 gnttab[gnt_idx].source.domid = otherend_id;
1726 gnttab[gnt_idx].source.offset = txq->offset + r_ofs;
1727 gnttab[gnt_idx].dest.u.gmfn = virt_to_mfn(
1728 mtod(mbuf, vm_offset_t) + m_ofs);
1729 gnttab[gnt_idx].dest.offset = virt_to_offset(
1730 mtod(mbuf, vm_offset_t) + m_ofs);
1731 gnttab[gnt_idx].dest.domid = DOMID_SELF;
1732 gnttab[gnt_idx].len = space;
1733 gnttab[gnt_idx].flags = GNTCOPY_source_gref;
1734
1735 gnt_idx++;
1736 r_ofs += space;
1737 m_ofs += space;
1738 size_remaining -= space;
1739 if (req_size - r_ofs <= 0) {
1740 /* Must move to the next tx request */
1741 r_ofs = 0;
1742 r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1;
1743 }
1744 if (M_TRAILINGSPACE(mbuf) - m_ofs <= 0) {
1745 /* Must move to the next mbuf */
1746 m_ofs = 0;
1747 mbuf = mbuf->m_next;
1748 }
1749 }
1750
1751 return gnt_idx;
1752}
1753
1754/**
1755 * Check the status of the grant copy operations, and update mbufs various
1756 * non-data fields to reflect the data present.
1757 * \param[in,out] mbufc mbuf chain to update. The chain must be valid and of
1758 * the correct length, and data should already be present
1759 * \param[in] gnttab A grant table for a just completed copy op
1760 * \param[in] n_entries The number of valid entries in the grant table
1761 */
1762static void
1763xnb_update_mbufc(struct mbuf *mbufc, const gnttab_copy_table gnttab,
1764 int n_entries)
1765{
1766 struct mbuf *mbuf = mbufc;
1767 int i;
1768 size_t total_size = 0;
1769
1770 for (i = 0; i < n_entries; i++) {
1771 KASSERT(gnttab[i].status == GNTST_okay,
1772 ("Some gnttab_copy entry had error status %hd\n",
1773 gnttab[i].status));
1774
1775 mbuf->m_len += gnttab[i].len;
1776 total_size += gnttab[i].len;
1777 if (M_TRAILINGSPACE(mbuf) <= 0) {
1778 mbuf = mbuf->m_next;
1779 }
1780 }
1781 mbufc->m_pkthdr.len = total_size;
1782
1783 xnb_add_mbuf_cksum(mbufc);
1784}
1785
1786/**
1787 * Dequeue at most one packet from the shared ring
1788 * \param[in,out] txb Netif tx ring. A packet will be removed from it, and
1789 * its private indices will be updated. But the indices
1790 * will not be pushed to the shared ring.
1791 * \param[in] ifnet Interface to which the packet will be sent
1792 * \param[in] otherend Domain ID of the other end of the ring
1793 * \param[out] mbufc The assembled mbuf chain, ready to send to the generic
1794 * networking stack
1795 * \param[in,out] gnttab Pointer to enough memory for a grant table. We make
1796 * this a function parameter so that we will take less
1797 * stack space.
1798 * \return An error code
1799 */
1800static int
1801xnb_recv(netif_tx_back_ring_t *txb, domid_t otherend, struct mbuf **mbufc,
1802 struct ifnet *ifnet, gnttab_copy_table gnttab)
1803{
1804 struct xnb_pkt pkt;
1805 /* number of tx requests consumed to build the last packet */
1806 int num_consumed;
1807 int nr_ents;
1808
1809 *mbufc = NULL;
1810 num_consumed = xnb_ring2pkt(&pkt, txb, txb->req_cons);
1811 if (num_consumed == 0)
1812 return 0; /* Nothing to receive */
1813
1814 /* update statistics independent of errors */
1815 ifnet->if_ipackets++;
1816
1817 /*
1818 * if we got here, then 1 or more requests was consumed, but the packet
1819 * is not necessarily valid.
1820 */
1821 if (xnb_pkt_is_valid(&pkt) == 0) {
1822 /* got a garbage packet, respond and drop it */
1823 xnb_txpkt2rsp(&pkt, txb, 1);
1824 txb->req_cons += num_consumed;
1825 DPRINTF("xnb_intr: garbage packet, num_consumed=%d\n",
1826 num_consumed);
1827 ifnet->if_ierrors++;
1828 return EINVAL;
1829 }
1830
1831 *mbufc = xnb_pkt2mbufc(&pkt, ifnet);
1832
1833 if (*mbufc == NULL) {
1834 /*
1835 * Couldn't allocate mbufs. Respond and drop the packet. Do
1836 * not consume the requests
1837 */
1838 xnb_txpkt2rsp(&pkt, txb, 1);
1839 DPRINTF("xnb_intr: Couldn't allocate mbufs, num_consumed=%d\n",
1840 num_consumed);
1841 ifnet->if_iqdrops++;
1842 return ENOMEM;
1843 }
1844
1845 nr_ents = xnb_txpkt2gnttab(&pkt, *mbufc, gnttab, txb, otherend);
1846
1847 if (nr_ents > 0) {
1848 int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy,
1849 gnttab, nr_ents);
1850 KASSERT(hv_ret == 0,
1851 ("HYPERVISOR_grant_table_op returned %d\n", hv_ret));
1852 xnb_update_mbufc(*mbufc, gnttab, nr_ents);
1853 }
1854
1855 xnb_txpkt2rsp(&pkt, txb, 0);
1856 txb->req_cons += num_consumed;
1857 return 0;
1858}
1859
1860/**
1861 * Create an xnb_pkt based on the contents of an mbuf chain.
1862 * \param[in] mbufc mbuf chain to transform into a packet
1863 * \param[out] pkt Storage for the newly generated xnb_pkt
1864 * \param[in] start The ring index of the first available slot in the rx
1865 * ring
1866 * \param[in] space The number of free slots in the rx ring
1867 * \retval 0 Success
1868 * \retval EINVAL mbufc was corrupt or not convertible into a pkt
1869 * \retval EAGAIN There was not enough space in the ring to queue the
1870 * packet
1871 */
1872static int
1873xnb_mbufc2pkt(const struct mbuf *mbufc, struct xnb_pkt *pkt,
1874 RING_IDX start, int space)
1875{
1876
1877 int retval = 0;
1878
1879 if ((mbufc == NULL) ||
1880 ( (mbufc->m_flags & M_PKTHDR) == 0) ||
1881 (mbufc->m_pkthdr.len == 0)) {
1882 xnb_pkt_invalidate(pkt);
1883 retval = EINVAL;
1884 } else {
1885 int slots_required;
1886
1887 xnb_pkt_validate(pkt);
1888 pkt->flags = 0;
1889 pkt->size = mbufc->m_pkthdr.len;
1890 pkt->car = start;
1891 pkt->car_size = mbufc->m_len;
1892
1893 if (mbufc->m_pkthdr.csum_flags & CSUM_TSO) {
1894 pkt->flags |= NETRXF_extra_info;
1895 pkt->extra.u.gso.size = mbufc->m_pkthdr.tso_segsz;
1896 pkt->extra.u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
1897 pkt->extra.u.gso.pad = 0;
1898 pkt->extra.u.gso.features = 0;
1899 pkt->extra.type = XEN_NETIF_EXTRA_TYPE_GSO;
1900 pkt->extra.flags = 0;
1901 pkt->cdr = start + 2;
1902 } else {
1903 pkt->cdr = start + 1;
1904 }
1905 if (mbufc->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_DELAY_DATA)) {
1906 pkt->flags |=
1907 (NETRXF_csum_blank | NETRXF_data_validated);
1908 }
1909
1910 /*
1911 * Each ring response can have up to PAGE_SIZE of data.
1912 * Assume that we can defragment the mbuf chain efficiently
1913 * into responses so that each response but the last uses all
1914 * PAGE_SIZE bytes.
1915 */
1916 pkt->list_len = (pkt->size + PAGE_SIZE - 1) / PAGE_SIZE;
1917
1918 if (pkt->list_len > 1) {
1919 pkt->flags |= NETRXF_more_data;
1920 }
1921
1922 slots_required = pkt->list_len +
1923 (pkt->flags & NETRXF_extra_info ? 1 : 0);
1924 if (slots_required > space) {
1925 xnb_pkt_invalidate(pkt);
1926 retval = EAGAIN;
1927 }
1928 }
1929
1930 return retval;
1931}
1932
1933/**
1934 * Build a gnttab_copy table that can be used to copy data from an mbuf chain
1935 * to the frontend's shared buffers. Does not actually perform the copy.
1936 * Always uses gref's on the other end's side.
1937 * \param[in] pkt pkt's associated responses form the dest for the copy
1938 * operatoin
1939 * \param[in] mbufc The source for the copy operation
1940 * \param[out] gnttab Storage for the returned grant table
1941 * \param[in] rxb Pointer to the backend ring structure
1942 * \param[in] otherend_id The domain ID of the other end of the copy
1943 * \return The number of gnttab entries filled
1944 */
1945static int
1946xnb_rxpkt2gnttab(const struct xnb_pkt *pkt, const struct mbuf *mbufc,
1947 gnttab_copy_table gnttab, const netif_rx_back_ring_t *rxb,
1948 domid_t otherend_id)
1949{
1950
1951 const struct mbuf *mbuf = mbufc;/* current mbuf within the chain */
1952 int gnt_idx = 0; /* index into grant table */
1953 RING_IDX r_idx = pkt->car; /* index into rx ring buffer */
1954 int r_ofs = 0; /* offset of next data within rx request's data area */
1955 int m_ofs = 0; /* offset of next data within mbuf's data area */
1956 /* size in bytes that still needs to be represented in the table */
1957 uint16_t size_remaining;
1958
1959 size_remaining = (xnb_pkt_is_valid(pkt) != 0) ? pkt->size : 0;
1960
1961 while (size_remaining > 0) {
1962 const netif_rx_request_t *rxq = RING_GET_REQUEST(rxb, r_idx);
1963 const size_t mbuf_space = mbuf->m_len - m_ofs;
1964 /* Xen shared pages have an implied size of PAGE_SIZE */
1965 const size_t req_size = PAGE_SIZE;
1966 const size_t pkt_space = req_size - r_ofs;
1967 /*
1968 * space is the largest amount of data that can be copied in the
1969 * grant table's next entry
1970 */
1971 const size_t space = MIN(pkt_space, mbuf_space);
1972
1973 /* TODO: handle this error condition without panicing */
1974 KASSERT(gnt_idx < GNTTAB_LEN, ("Grant table is too short"));
1975
1976 gnttab[gnt_idx].dest.u.ref = rxq->gref;
1977 gnttab[gnt_idx].dest.domid = otherend_id;
1978 gnttab[gnt_idx].dest.offset = r_ofs;
1979 gnttab[gnt_idx].source.u.gmfn = virt_to_mfn(
1980 mtod(mbuf, vm_offset_t) + m_ofs);
1981 gnttab[gnt_idx].source.offset = virt_to_offset(
1982 mtod(mbuf, vm_offset_t) + m_ofs);
1983 gnttab[gnt_idx].source.domid = DOMID_SELF;
1984 gnttab[gnt_idx].len = space;
1985 gnttab[gnt_idx].flags = GNTCOPY_dest_gref;
1986
1987 gnt_idx++;
1988
1989 r_ofs += space;
1990 m_ofs += space;
1991 size_remaining -= space;
1992 if (req_size - r_ofs <= 0) {
1993 /* Must move to the next rx request */
1994 r_ofs = 0;
1995 r_idx = (r_idx == pkt->car) ? pkt->cdr : r_idx + 1;
1996 }
1997 if (mbuf->m_len - m_ofs <= 0) {
1998 /* Must move to the next mbuf */
1999 m_ofs = 0;
2000 mbuf = mbuf->m_next;
2001 }
2002 }
2003
2004 return gnt_idx;
2005}
2006
2007/**
2008 * Generates responses for all the requests that constituted pkt. Builds
2009 * responses and writes them to the ring, but doesn't push the shared ring
2010 * indices.
2011 * \param[in] pkt the packet that needs a response
2012 * \param[in] gnttab The grant copy table corresponding to this packet.
2013 * Used to determine how many rsp->netif_rx_response_t's to
2014 * generate.
2015 * \param[in] n_entries Number of relevant entries in the grant table
2016 * \param[out] ring Responses go here
2017 * \return The number of RX requests that were consumed to generate
2018 * the responses
2019 */
2020static int
2021xnb_rxpkt2rsp(const struct xnb_pkt *pkt, const gnttab_copy_table gnttab,
2022 int n_entries, netif_rx_back_ring_t *ring)
2023{
2024 /*
2025 * This code makes the following assumptions:
2026 * * All entries in gnttab set GNTCOPY_dest_gref
2027 * * The entries in gnttab are grouped by their grefs: any two
2028 * entries with the same gref must be adjacent
2029 */
2030 int error = 0;
2031 int gnt_idx, i;
2032 int n_responses = 0;
2033 grant_ref_t last_gref = GRANT_REF_INVALID;
2034 RING_IDX r_idx;
2035
2036 KASSERT(gnttab != NULL, ("Received a null granttable copy"));
2037
2038 /*
2039 * In the event of an error, we only need to send one response to the
2040 * netfront. In that case, we musn't write any data to the responses
2041 * after the one we send. So we must loop all the way through gnttab
2042 * looking for errors before we generate any responses
2043 *
2044 * Since we're looping through the grant table anyway, we'll count the
2045 * number of different gref's in it, which will tell us how many
2046 * responses to generate
2047 */
2048 for (gnt_idx = 0; gnt_idx < n_entries; gnt_idx++) {
2049 int16_t status = gnttab[gnt_idx].status;
2050 if (status != GNTST_okay) {
2051 DPRINTF(
2052 "Got error %d for hypervisor gnttab_copy status\n",
2053 status);
2054 error = 1;
2055 break;
2056 }
2057 if (gnttab[gnt_idx].dest.u.ref != last_gref) {
2058 n_responses++;
2059 last_gref = gnttab[gnt_idx].dest.u.ref;
2060 }
2061 }
2062
2063 if (error != 0) {
2064 uint16_t id;
2065 netif_rx_response_t *rsp;
2066
2067 id = RING_GET_REQUEST(ring, ring->rsp_prod_pvt)->id;
2068 rsp = RING_GET_RESPONSE(ring, ring->rsp_prod_pvt);
2069 rsp->id = id;
2070 rsp->status = NETIF_RSP_ERROR;
2071 n_responses = 1;
2072 } else {
2073 gnt_idx = 0;
2074 const int has_extra = pkt->flags & NETRXF_extra_info;
2075 if (has_extra != 0)
2076 n_responses++;
2077
2078 for (i = 0; i < n_responses; i++) {
2079 netif_rx_request_t rxq;
2080 netif_rx_response_t *rsp;
2081
2082 r_idx = ring->rsp_prod_pvt + i;
2083 /*
2084 * We copy the structure of rxq instead of making a
2085 * pointer because it shares the same memory as rsp.
2086 */
2087 rxq = *(RING_GET_REQUEST(ring, r_idx));
2088 rsp = RING_GET_RESPONSE(ring, r_idx);
2089 if (has_extra && (i == 1)) {
2090 netif_extra_info_t *ext =
2091 (netif_extra_info_t*)rsp;
2092 ext->type = XEN_NETIF_EXTRA_TYPE_GSO;
2093 ext->flags = 0;
2094 ext->u.gso.size = pkt->extra.u.gso.size;
2095 ext->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
2096 ext->u.gso.pad = 0;
2097 ext->u.gso.features = 0;
2098 } else {
2099 rsp->id = rxq.id;
2100 rsp->status = GNTST_okay;
2101 rsp->offset = 0;
2102 rsp->flags = 0;
2103 if (i < pkt->list_len - 1)
2104 rsp->flags |= NETRXF_more_data;
2105 if ((i == 0) && has_extra)
2106 rsp->flags |= NETRXF_extra_info;
2107 if ((i == 0) &&
2108 (pkt->flags & NETRXF_data_validated)) {
2109 rsp->flags |= NETRXF_data_validated;
2110 rsp->flags |= NETRXF_csum_blank;
2111 }
2112 rsp->status = 0;
2113 for (; gnttab[gnt_idx].dest.u.ref == rxq.gref;
2114 gnt_idx++) {
2115 rsp->status += gnttab[gnt_idx].len;
2116 }
2117 }
2118 }
2119 }
2120
2121 ring->req_cons += n_responses;
2122 ring->rsp_prod_pvt += n_responses;
2123 return n_responses;
2124}
2125
2126/**
2127 * Add IP, TCP, and/or UDP checksums to every mbuf in a chain. The first mbuf
2128 * in the chain must start with a struct ether_header.
2129 *
2130 * XXX This function will perform incorrectly on UDP packets that are split up
2131 * into multiple ethernet frames.
2132 */
2133static void
2134xnb_add_mbuf_cksum(struct mbuf *mbufc)
2135{
2136 struct ether_header *eh;
2137 struct ip *iph;
2138 uint16_t ether_type;
2139
2140 eh = mtod(mbufc, struct ether_header*);
2141 ether_type = ntohs(eh->ether_type);
2142 if (ether_type != ETHERTYPE_IP) {
2143 /* Nothing to calculate */
2144 return;
2145 }
2146
2147 iph = (struct ip*)(eh + 1);
2148 if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2149 iph->ip_sum = 0;
2150 iph->ip_sum = in_cksum_hdr(iph);
2151 }
2152
2153 switch (iph->ip_p) {
2154 case IPPROTO_TCP:
2155 if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2156 size_t tcplen = ntohs(iph->ip_len) - sizeof(struct ip);
2157 struct tcphdr *th = (struct tcphdr*)(iph + 1);
2158 th->th_sum = in_pseudo(iph->ip_src.s_addr,
2159 iph->ip_dst.s_addr, htons(IPPROTO_TCP + tcplen));
2160 th->th_sum = in_cksum_skip(mbufc,
2161 sizeof(struct ether_header) + ntohs(iph->ip_len),
2162 sizeof(struct ether_header) + (iph->ip_hl << 2));
2163 }
2164 break;
2165 case IPPROTO_UDP:
2166 if (mbufc->m_pkthdr.csum_flags & CSUM_IP_VALID) {
2167 size_t udplen = ntohs(iph->ip_len) - sizeof(struct ip);
2168 struct udphdr *uh = (struct udphdr*)(iph + 1);
2169 uh->uh_sum = in_pseudo(iph->ip_src.s_addr,
2170 iph->ip_dst.s_addr, htons(IPPROTO_UDP + udplen));
2171 uh->uh_sum = in_cksum_skip(mbufc,
2172 sizeof(struct ether_header) + ntohs(iph->ip_len),
2173 sizeof(struct ether_header) + (iph->ip_hl << 2));
2174 }
2175 break;
2176 default:
2177 break;
2178 }
2179}
2180
2181static void
2182xnb_stop(struct xnb_softc *xnb)
2183{
2184 struct ifnet *ifp;
2185
2186 mtx_assert(&xnb->sc_lock, MA_OWNED);
2187 ifp = xnb->xnb_ifp;
2188 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2189 if_link_state_change(ifp, LINK_STATE_DOWN);
2190}
2191
2192static int
2193xnb_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2194{
2195 struct xnb_softc *xnb = ifp->if_softc;
2196#ifdef INET
2197 struct ifreq *ifr = (struct ifreq*) data;
2198 struct ifaddr *ifa = (struct ifaddr*)data;
2199#endif
2200 int error = 0;
2201
2202 switch (cmd) {
2203 case SIOCSIFFLAGS:
2204 mtx_lock(&xnb->sc_lock);
2205 if (ifp->if_flags & IFF_UP) {
2206 xnb_ifinit_locked(xnb);
2207 } else {
2208 if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2209 xnb_stop(xnb);
2210 }
2211 }
2212 /*
2213 * Note: netfront sets a variable named xn_if_flags
2214 * here, but that variable is never read
2215 */
2216 mtx_unlock(&xnb->sc_lock);
2217 break;
2218 case SIOCSIFADDR:
2219 case SIOCGIFADDR:
2220#ifdef INET
2221 mtx_lock(&xnb->sc_lock);
2222 if (ifa->ifa_addr->sa_family == AF_INET) {
2223 ifp->if_flags |= IFF_UP;
2224 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2225 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING |
2226 IFF_DRV_OACTIVE);
2227 if_link_state_change(ifp,
2228 LINK_STATE_DOWN);
2229 ifp->if_drv_flags |= IFF_DRV_RUNNING;
2230 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2231 if_link_state_change(ifp,
2232 LINK_STATE_UP);
2233 }
2234 arp_ifinit(ifp, ifa);
2235 mtx_unlock(&xnb->sc_lock);
2236 } else {
2237 mtx_unlock(&xnb->sc_lock);
2238#endif
2239 error = ether_ioctl(ifp, cmd, data);
2240#ifdef INET
2241 }
2242#endif
2243 break;
2244 case SIOCSIFCAP:
2245 mtx_lock(&xnb->sc_lock);
2246 if (ifr->ifr_reqcap & IFCAP_TXCSUM) {
2247 ifp->if_capenable |= IFCAP_TXCSUM;
2248 ifp->if_hwassist |= XNB_CSUM_FEATURES;
2249 } else {
2250 ifp->if_capenable &= ~(IFCAP_TXCSUM);
2251 ifp->if_hwassist &= ~(XNB_CSUM_FEATURES);
2252 }
2253 if ((ifr->ifr_reqcap & IFCAP_RXCSUM)) {
2254 ifp->if_capenable |= IFCAP_RXCSUM;
2255 } else {
2256 ifp->if_capenable &= ~(IFCAP_RXCSUM);
2257 }
2258 /*
2259 * TODO enable TSO4 and LRO once we no longer need
2260 * to calculate checksums in software
2261 */
2262#if 0
2263 if (ifr->if_reqcap |= IFCAP_TSO4) {
2264 if (IFCAP_TXCSUM & ifp->if_capenable) {
2265 printf("xnb: Xen netif requires that "
2266 "TXCSUM be enabled in order "
2267 "to use TSO4\n");
2268 error = EINVAL;
2269 } else {
2270 ifp->if_capenable |= IFCAP_TSO4;
2271 ifp->if_hwassist |= CSUM_TSO;
2272 }
2273 } else {
2274 ifp->if_capenable &= ~(IFCAP_TSO4);
2275 ifp->if_hwassist &= ~(CSUM_TSO);
2276 }
2277 if (ifr->ifreqcap |= IFCAP_LRO) {
2278 ifp->if_capenable |= IFCAP_LRO;
2279 } else {
2280 ifp->if_capenable &= ~(IFCAP_LRO);
2281 }
2282#endif
2283 mtx_unlock(&xnb->sc_lock);
2284 break;
2285 case SIOCSIFMTU:
2286 ifp->if_mtu = ifr->ifr_mtu;
2287 ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2288 xnb_ifinit(xnb);
2289 break;
2290 case SIOCADDMULTI:
2291 case SIOCDELMULTI:
2292 case SIOCSIFMEDIA:
2293 case SIOCGIFMEDIA:
2294 error = ifmedia_ioctl(ifp, ifr, &xnb->sc_media, cmd);
2295 break;
2296 default:
2297 error = ether_ioctl(ifp, cmd, data);
2298 break;
2299 }
2300 return (error);
2301}
2302
2303static void
2304xnb_start_locked(struct ifnet *ifp)
2305{
2306 netif_rx_back_ring_t *rxb;
2307 struct xnb_softc *xnb;
2308 struct mbuf *mbufc;
2309 RING_IDX req_prod_local;
2310
2311 xnb = ifp->if_softc;
2312 rxb = &xnb->ring_configs[XNB_RING_TYPE_RX].back_ring.rx_ring;
2313
2314 if (!xnb->carrier)
2315 return;
2316
2317 do {
2318 int out_of_space = 0;
2319 int notify;
2320 req_prod_local = rxb->sring->req_prod;
2321 xen_rmb();
2322 for (;;) {
2323 int error;
2324
2325 IF_DEQUEUE(&ifp->if_snd, mbufc);
2326 if (mbufc == NULL)
2327 break;
2328 error = xnb_send(rxb, xnb->otherend_id, mbufc,
2329 xnb->rx_gnttab);
2330 switch (error) {
2331 case EAGAIN:
2332 /*
2333 * Insufficient space in the ring.
2334 * Requeue pkt and send when space is
2335 * available.
2336 */
2337 IF_PREPEND(&ifp->if_snd, mbufc);
2338 /*
2339 * Perhaps the frontend missed an IRQ
2340 * and went to sleep. Notify it to wake
2341 * it up.
2342 */
2343 out_of_space = 1;
2344 break;
2345
2346 case EINVAL:
2347 /* OS gave a corrupt packet. Drop it.*/
2348 ifp->if_oerrors++;
2349 /* FALLTHROUGH */
2350 default:
2351 /* Send succeeded, or packet had error.
2352 * Free the packet */
2353 ifp->if_opackets++;
2354 if (mbufc)
2355 m_freem(mbufc);
2356 break;
2357 }
2358 if (out_of_space != 0)
2359 break;
2360 }
2361
2362 RING_PUSH_RESPONSES_AND_CHECK_NOTIFY(rxb, notify);
2363 if ((notify != 0) || (out_of_space != 0))
2364 notify_remote_via_irq(xnb->irq);
2365 rxb->sring->req_event = req_prod_local + 1;
2366 xen_mb();
2367 } while (rxb->sring->req_prod != req_prod_local) ;
2368}
2369
2370/**
2371 * Sends one packet to the ring. Blocks until the packet is on the ring
2372 * \param[in] mbufc Contains one packet to send. Caller must free
2373 * \param[in,out] rxb The packet will be pushed onto this ring, but the
2374 * otherend will not be notified.
2375 * \param[in] otherend The domain ID of the other end of the connection
2376 * \retval EAGAIN The ring did not have enough space for the packet.
2377 * The ring has not been modified
2378 * \param[in,out] gnttab Pointer to enough memory for a grant table. We make
2379 * this a function parameter so that we will take less
2380 * stack space.
2381 * \retval EINVAL mbufc was corrupt or not convertible into a pkt
2382 */
2383static int
2384xnb_send(netif_rx_back_ring_t *ring, domid_t otherend, const struct mbuf *mbufc,
2385 gnttab_copy_table gnttab)
2386{
2387 struct xnb_pkt pkt;
2388 int error, n_entries, n_reqs;
2389 RING_IDX space;
2390
2391 space = ring->sring->req_prod - ring->req_cons;
2392 error = xnb_mbufc2pkt(mbufc, &pkt, ring->rsp_prod_pvt, space);
2393 if (error != 0)
2394 return error;
2395 n_entries = xnb_rxpkt2gnttab(&pkt, mbufc, gnttab, ring, otherend);
2396 if (n_entries != 0) {
2397 int __unused hv_ret = HYPERVISOR_grant_table_op(GNTTABOP_copy,
2398 gnttab, n_entries);
2399 KASSERT(hv_ret == 0, ("HYPERVISOR_grant_table_op returned %d\n",
2400 hv_ret));
2401 }
2402
2403 n_reqs = xnb_rxpkt2rsp(&pkt, gnttab, n_entries, ring);
2404
2405 return 0;
2406}
2407
2408static void
2409xnb_start(struct ifnet *ifp)
2410{
2411 struct xnb_softc *xnb;
2412
2413 xnb = ifp->if_softc;
2414 mtx_lock(&xnb->rx_lock);
2415 xnb_start_locked(ifp);
2416 mtx_unlock(&xnb->rx_lock);
2417}
2418
2419/* equivalent of network_open() in Linux */
2420static void
2421xnb_ifinit_locked(struct xnb_softc *xnb)
2422{
2423 struct ifnet *ifp;
2424
2425 ifp = xnb->xnb_ifp;
2426
2427 mtx_assert(&xnb->sc_lock, MA_OWNED);
2428
2429 if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2430 return;
2431
2432 xnb_stop(xnb);
2433
2434 ifp->if_drv_flags |= IFF_DRV_RUNNING;
2435 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2436 if_link_state_change(ifp, LINK_STATE_UP);
2437}
2438
2439
2440static void
2441xnb_ifinit(void *xsc)
2442{
2443 struct xnb_softc *xnb = xsc;
2444
2445 mtx_lock(&xnb->sc_lock);
2446 xnb_ifinit_locked(xnb);
2447 mtx_unlock(&xnb->sc_lock);
2448}
2449
2450
2451/**
2452 * Read the 'mac' node at the given device's node in the store, and parse that
2453 * as colon-separated octets, placing result the given mac array. mac must be
2454 * a preallocated array of length ETHER_ADDR_LEN ETH_ALEN (as declared in
2455 * net/ethernet.h).
2456 * Return 0 on success, or errno on error.
2457 */
2458static int
2459xen_net_read_mac(device_t dev, uint8_t mac[])
2460{
2461 char *s, *e, *macstr;
2462 const char *path;
2463 int error = 0;
2464 int i;
2465
2466 path = xenbus_get_node(dev);
2467 error = xs_read(XST_NIL, path, "mac", NULL, (void **) &macstr);
2468 if (error != 0) {
2469 xenbus_dev_fatal(dev, error, "parsing %s/mac", path);
2470 } else {
2471 s = macstr;
2472 for (i = 0; i < ETHER_ADDR_LEN; i++) {
2473 mac[i] = strtoul(s, &e, 16);
2474 if (s == e || (e[0] != ':' && e[0] != 0)) {
2475 error = ENOENT;
2476 break;
2477 }
2478 s = &e[1];
2479 }
2480 free(macstr, M_XENBUS);
2481 }
2482 return error;
2483}
2484
2485
2486/**
2487 * Callback used by the generic networking code to tell us when our carrier
2488 * state has changed. Since we don't have a physical carrier, we don't care
2489 */
2490static int
2491xnb_ifmedia_upd(struct ifnet *ifp)
2492{
2493 return (0);
2494}
2495
2496/**
2497 * Callback used by the generic networking code to ask us what our carrier
2498 * state is. Since we don't have a physical carrier, this is very simple
2499 */
2500static void
2501xnb_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2502{
2503 ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE;
2504 ifmr->ifm_active = IFM_ETHER|IFM_MANUAL;
2505}
2506
2507
2508/*---------------------------- NewBus Registration ---------------------------*/
2509static device_method_t xnb_methods[] = {
2510 /* Device interface */
2511 DEVMETHOD(device_probe, xnb_probe),
2512 DEVMETHOD(device_attach, xnb_attach),
2513 DEVMETHOD(device_detach, xnb_detach),
2514 DEVMETHOD(device_shutdown, bus_generic_shutdown),
2515 DEVMETHOD(device_suspend, xnb_suspend),
2516 DEVMETHOD(device_resume, xnb_resume),
2517
2518 /* Xenbus interface */
2519 DEVMETHOD(xenbus_otherend_changed, xnb_frontend_changed),
2520
2521 { 0, 0 }
2522};
2523
2524static driver_t xnb_driver = {
2525 "xnb",
2526 xnb_methods,
2527 sizeof(struct xnb_softc),
2528};
2529devclass_t xnb_devclass;
2530
2531DRIVER_MODULE(xnb, xenbusb_back, xnb_driver, xnb_devclass, 0, 0);
2532
2533
2534/*-------------------------- Unit Tests -------------------------------------*/
2535#ifdef XNB_DEBUG
2536#include "netback_unit_tests.c"
2537#endif