Deleted Added
full compact
if_sf.c (61041) if_sf.c (63090)
1/*
2 * Copyright (c) 1997, 1998, 1999
3 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 *
1/*
2 * Copyright (c) 1997, 1998, 1999
3 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 *
32 * $FreeBSD: head/sys/dev/sf/if_sf.c 61041 2000-05-28 16:13:43Z peter $
32 * $FreeBSD: head/sys/dev/sf/if_sf.c 63090 2000-07-13 22:54:34Z archie $
33 */
34
35/*
36 * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
37 * Programming manual is available from:
38 * ftp.adaptec.com:/pub/BBS/userguides/aic6915_pg.pdf.
39 *
40 * Written by Bill Paul <wpaul@ctr.columbia.edu>
41 * Department of Electical Engineering
42 * Columbia University, New York City
43 */
44
45/*
46 * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
47 * controller designed with flexibility and reducing CPU load in mind.
48 * The Starfire offers high and low priority buffer queues, a
49 * producer/consumer index mechanism and several different buffer
50 * queue and completion queue descriptor types. Any one of a number
51 * of different driver designs can be used, depending on system and
52 * OS requirements. This driver makes use of type0 transmit frame
53 * descriptors (since BSD fragments packets across an mbuf chain)
54 * and two RX buffer queues prioritized on size (one queue for small
55 * frames that will fit into a single mbuf, another with full size
56 * mbuf clusters for everything else). The producer/consumer indexes
57 * and completion queues are also used.
58 *
59 * One downside to the Starfire has to do with alignment: buffer
60 * queues must be aligned on 256-byte boundaries, and receive buffers
61 * must be aligned on longword boundaries. The receive buffer alignment
62 * causes problems on the Alpha platform, where the packet payload
63 * should be longword aligned. There is no simple way around this.
64 *
65 * For receive filtering, the Starfire offers 16 perfect filter slots
66 * and a 512-bit hash table.
67 *
68 * The Starfire has no internal transceiver, relying instead on an
69 * external MII-based transceiver. Accessing registers on external
70 * PHYs is done through a special register map rather than with the
71 * usual bitbang MDIO method.
72 *
73 * Acesssing the registers on the Starfire is a little tricky. The
74 * Starfire has a 512K internal register space. When programmed for
75 * PCI memory mapped mode, the entire register space can be accessed
76 * directly. However in I/O space mode, only 256 bytes are directly
77 * mapped into PCI I/O space. The other registers can be accessed
78 * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
79 * registers inside the 256-byte I/O window.
80 */
81
82#include <sys/param.h>
83#include <sys/systm.h>
84#include <sys/sockio.h>
85#include <sys/mbuf.h>
86#include <sys/malloc.h>
87#include <sys/kernel.h>
88#include <sys/socket.h>
89
90#include <net/if.h>
91#include <net/if_arp.h>
92#include <net/ethernet.h>
93#include <net/if_dl.h>
94#include <net/if_media.h>
95
96#include <net/bpf.h>
97
98#include <vm/vm.h> /* for vtophys */
99#include <vm/pmap.h> /* for vtophys */
100#include <machine/clock.h> /* for DELAY */
101#include <machine/bus_pio.h>
102#include <machine/bus_memio.h>
103#include <machine/bus.h>
104#include <machine/resource.h>
105#include <sys/bus.h>
106#include <sys/rman.h>
107
108#include <dev/mii/mii.h>
109#include <dev/mii/miivar.h>
110
111/* "controller miibus0" required. See GENERIC if you get errors here. */
112#include "miibus_if.h"
113
114#include <pci/pcireg.h>
115#include <pci/pcivar.h>
116
117#define SF_USEIOSPACE
118
119#include <pci/if_sfreg.h>
120
121MODULE_DEPEND(sf, miibus, 1, 1, 1);
122
123#ifndef lint
124static const char rcsid[] =
33 */
34
35/*
36 * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD.
37 * Programming manual is available from:
38 * ftp.adaptec.com:/pub/BBS/userguides/aic6915_pg.pdf.
39 *
40 * Written by Bill Paul <wpaul@ctr.columbia.edu>
41 * Department of Electical Engineering
42 * Columbia University, New York City
43 */
44
45/*
46 * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet
47 * controller designed with flexibility and reducing CPU load in mind.
48 * The Starfire offers high and low priority buffer queues, a
49 * producer/consumer index mechanism and several different buffer
50 * queue and completion queue descriptor types. Any one of a number
51 * of different driver designs can be used, depending on system and
52 * OS requirements. This driver makes use of type0 transmit frame
53 * descriptors (since BSD fragments packets across an mbuf chain)
54 * and two RX buffer queues prioritized on size (one queue for small
55 * frames that will fit into a single mbuf, another with full size
56 * mbuf clusters for everything else). The producer/consumer indexes
57 * and completion queues are also used.
58 *
59 * One downside to the Starfire has to do with alignment: buffer
60 * queues must be aligned on 256-byte boundaries, and receive buffers
61 * must be aligned on longword boundaries. The receive buffer alignment
62 * causes problems on the Alpha platform, where the packet payload
63 * should be longword aligned. There is no simple way around this.
64 *
65 * For receive filtering, the Starfire offers 16 perfect filter slots
66 * and a 512-bit hash table.
67 *
68 * The Starfire has no internal transceiver, relying instead on an
69 * external MII-based transceiver. Accessing registers on external
70 * PHYs is done through a special register map rather than with the
71 * usual bitbang MDIO method.
72 *
73 * Acesssing the registers on the Starfire is a little tricky. The
74 * Starfire has a 512K internal register space. When programmed for
75 * PCI memory mapped mode, the entire register space can be accessed
76 * directly. However in I/O space mode, only 256 bytes are directly
77 * mapped into PCI I/O space. The other registers can be accessed
78 * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA
79 * registers inside the 256-byte I/O window.
80 */
81
82#include <sys/param.h>
83#include <sys/systm.h>
84#include <sys/sockio.h>
85#include <sys/mbuf.h>
86#include <sys/malloc.h>
87#include <sys/kernel.h>
88#include <sys/socket.h>
89
90#include <net/if.h>
91#include <net/if_arp.h>
92#include <net/ethernet.h>
93#include <net/if_dl.h>
94#include <net/if_media.h>
95
96#include <net/bpf.h>
97
98#include <vm/vm.h> /* for vtophys */
99#include <vm/pmap.h> /* for vtophys */
100#include <machine/clock.h> /* for DELAY */
101#include <machine/bus_pio.h>
102#include <machine/bus_memio.h>
103#include <machine/bus.h>
104#include <machine/resource.h>
105#include <sys/bus.h>
106#include <sys/rman.h>
107
108#include <dev/mii/mii.h>
109#include <dev/mii/miivar.h>
110
111/* "controller miibus0" required. See GENERIC if you get errors here. */
112#include "miibus_if.h"
113
114#include <pci/pcireg.h>
115#include <pci/pcivar.h>
116
117#define SF_USEIOSPACE
118
119#include <pci/if_sfreg.h>
120
121MODULE_DEPEND(sf, miibus, 1, 1, 1);
122
123#ifndef lint
124static const char rcsid[] =
125 "$FreeBSD: head/sys/dev/sf/if_sf.c 61041 2000-05-28 16:13:43Z peter $";
125 "$FreeBSD: head/sys/dev/sf/if_sf.c 63090 2000-07-13 22:54:34Z archie $";
126#endif
127
128static struct sf_type sf_devs[] = {
129 { AD_VENDORID, AD_DEVICEID_STARFIRE,
130 "Adaptec AIC-6915 10/100BaseTX" },
131 { 0, 0, NULL }
132};
133
134static int sf_probe __P((device_t));
135static int sf_attach __P((device_t));
136static int sf_detach __P((device_t));
137static void sf_intr __P((void *));
138static void sf_stats_update __P((void *));
139static void sf_rxeof __P((struct sf_softc *));
140static void sf_txeof __P((struct sf_softc *));
141static int sf_encap __P((struct sf_softc *,
142 struct sf_tx_bufdesc_type0 *,
143 struct mbuf *));
144static void sf_start __P((struct ifnet *));
145static int sf_ioctl __P((struct ifnet *, u_long, caddr_t));
146static void sf_init __P((void *));
147static void sf_stop __P((struct sf_softc *));
148static void sf_watchdog __P((struct ifnet *));
149static void sf_shutdown __P((device_t));
150static int sf_ifmedia_upd __P((struct ifnet *));
151static void sf_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
152static void sf_reset __P((struct sf_softc *));
153static int sf_init_rx_ring __P((struct sf_softc *));
154static void sf_init_tx_ring __P((struct sf_softc *));
155static int sf_newbuf __P((struct sf_softc *,
156 struct sf_rx_bufdesc_type0 *,
157 struct mbuf *));
158static void sf_setmulti __P((struct sf_softc *));
159static int sf_setperf __P((struct sf_softc *, int, caddr_t));
160static int sf_sethash __P((struct sf_softc *, caddr_t, int));
161#ifdef notdef
162static int sf_setvlan __P((struct sf_softc *, int, u_int32_t));
163#endif
164
165static u_int8_t sf_read_eeprom __P((struct sf_softc *, int));
166static u_int32_t sf_calchash __P((caddr_t));
167
168static int sf_miibus_readreg __P((device_t, int, int));
169static int sf_miibus_writereg __P((device_t, int, int, int));
170static void sf_miibus_statchg __P((device_t));
171
172static u_int32_t csr_read_4 __P((struct sf_softc *, int));
173static void csr_write_4 __P((struct sf_softc *, int, u_int32_t));
174
175#ifdef SF_USEIOSPACE
176#define SF_RES SYS_RES_IOPORT
177#define SF_RID SF_PCI_LOIO
178#else
179#define SF_RES SYS_RES_MEMORY
180#define SF_RID SF_PCI_LOMEM
181#endif
182
183static device_method_t sf_methods[] = {
184 /* Device interface */
185 DEVMETHOD(device_probe, sf_probe),
186 DEVMETHOD(device_attach, sf_attach),
187 DEVMETHOD(device_detach, sf_detach),
188 DEVMETHOD(device_shutdown, sf_shutdown),
189
190 /* bus interface */
191 DEVMETHOD(bus_print_child, bus_generic_print_child),
192 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
193
194 /* MII interface */
195 DEVMETHOD(miibus_readreg, sf_miibus_readreg),
196 DEVMETHOD(miibus_writereg, sf_miibus_writereg),
197 DEVMETHOD(miibus_statchg, sf_miibus_statchg),
198
199 { 0, 0 }
200};
201
202static driver_t sf_driver = {
203 "sf",
204 sf_methods,
205 sizeof(struct sf_softc),
206};
207
208static devclass_t sf_devclass;
209
210DRIVER_MODULE(if_sf, pci, sf_driver, sf_devclass, 0, 0);
211DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
212
213#define SF_SETBIT(sc, reg, x) \
214 csr_write_4(sc, reg, csr_read_4(sc, reg) | x)
215
216#define SF_CLRBIT(sc, reg, x) \
217 csr_write_4(sc, reg, csr_read_4(sc, reg) & ~x)
218
219static u_int32_t csr_read_4(sc, reg)
220 struct sf_softc *sc;
221 int reg;
222{
223 u_int32_t val;
224
225#ifdef SF_USEIOSPACE
226 CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
227 val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
228#else
229 val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
230#endif
231
232 return(val);
233}
234
235static u_int8_t sf_read_eeprom(sc, reg)
236 struct sf_softc *sc;
237 int reg;
238{
239 u_int8_t val;
240
241 val = (csr_read_4(sc, SF_EEADDR_BASE +
242 (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
243
244 return(val);
245}
246
247static void csr_write_4(sc, reg, val)
248 struct sf_softc *sc;
249 int reg;
250 u_int32_t val;
251{
252#ifdef SF_USEIOSPACE
253 CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
254 CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
255#else
256 CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
257#endif
258 return;
259}
260
261static u_int32_t sf_calchash(addr)
262 caddr_t addr;
263{
264 u_int32_t crc, carry;
265 int i, j;
266 u_int8_t c;
267
268 /* Compute CRC for the address value. */
269 crc = 0xFFFFFFFF; /* initial value */
270
271 for (i = 0; i < 6; i++) {
272 c = *(addr + i);
273 for (j = 0; j < 8; j++) {
274 carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
275 crc <<= 1;
276 c >>= 1;
277 if (carry)
278 crc = (crc ^ 0x04c11db6) | carry;
279 }
280 }
281
282 /* return the filter bit position */
283 return(crc >> 23 & 0x1FF);
284}
285
286/*
287 * Copy the address 'mac' into the perfect RX filter entry at
288 * offset 'idx.' The perfect filter only has 16 entries so do
289 * some sanity tests.
290 */
291static int sf_setperf(sc, idx, mac)
292 struct sf_softc *sc;
293 int idx;
294 caddr_t mac;
295{
296 u_int16_t *p;
297
298 if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
299 return(EINVAL);
300
301 if (mac == NULL)
302 return(EINVAL);
303
304 p = (u_int16_t *)mac;
305
306 csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
307 (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
308 csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
309 (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
310 csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
311 (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));
312
313 return(0);
314}
315
316/*
317 * Set the bit in the 512-bit hash table that corresponds to the
318 * specified mac address 'mac.' If 'prio' is nonzero, update the
319 * priority hash table instead of the filter hash table.
320 */
321static int sf_sethash(sc, mac, prio)
322 struct sf_softc *sc;
323 caddr_t mac;
324 int prio;
325{
326 u_int32_t h = 0;
327
328 if (mac == NULL)
329 return(EINVAL);
330
331 h = sf_calchash(mac);
332
333 if (prio) {
334 SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
335 (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
336 } else {
337 SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
338 (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
339 }
340
341 return(0);
342}
343
344#ifdef notdef
345/*
346 * Set a VLAN tag in the receive filter.
347 */
348static int sf_setvlan(sc, idx, vlan)
349 struct sf_softc *sc;
350 int idx;
351 u_int32_t vlan;
352{
353 if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
354 return(EINVAL);
355
356 csr_write_4(sc, SF_RXFILT_HASH_BASE +
357 (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
358
359 return(0);
360}
361#endif
362
363static int sf_miibus_readreg(dev, phy, reg)
364 device_t dev;
365 int phy, reg;
366{
367 struct sf_softc *sc;
368 int i;
369 u_int32_t val = 0;
370
371 sc = device_get_softc(dev);
372
373 for (i = 0; i < SF_TIMEOUT; i++) {
374 val = csr_read_4(sc, SF_PHY_REG(phy, reg));
375 if (val & SF_MII_DATAVALID)
376 break;
377 }
378
379 if (i == SF_TIMEOUT)
380 return(0);
381
382 if ((val & 0x0000FFFF) == 0xFFFF)
383 return(0);
384
385 return(val & 0x0000FFFF);
386}
387
388static int sf_miibus_writereg(dev, phy, reg, val)
389 device_t dev;
390 int phy, reg, val;
391{
392 struct sf_softc *sc;
393 int i;
394 int busy;
395
396 sc = device_get_softc(dev);
397
398 csr_write_4(sc, SF_PHY_REG(phy, reg), val);
399
400 for (i = 0; i < SF_TIMEOUT; i++) {
401 busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
402 if (!(busy & SF_MII_BUSY))
403 break;
404 }
405
406 return(0);
407}
408
409static void sf_miibus_statchg(dev)
410 device_t dev;
411{
412 struct sf_softc *sc;
413 struct mii_data *mii;
414
415 sc = device_get_softc(dev);
416 mii = device_get_softc(sc->sf_miibus);
417
418 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
419 SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
420 csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
421 } else {
422 SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
423 csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
424 }
425
426 return;
427}
428
429static void sf_setmulti(sc)
430 struct sf_softc *sc;
431{
432 struct ifnet *ifp;
433 int i;
434 struct ifmultiaddr *ifma;
435 u_int8_t dummy[] = { 0, 0, 0, 0, 0, 0 };
436
437 ifp = &sc->arpcom.ac_if;
438
439 /* First zot all the existing filters. */
440 for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
441 sf_setperf(sc, i, (char *)&dummy);
442 for (i = SF_RXFILT_HASH_BASE;
443 i < (SF_RXFILT_HASH_MAX + 1); i += 4)
444 csr_write_4(sc, i, 0);
445 SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
446
447 /* Now program new ones. */
448 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
449 SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
450 } else {
451 i = 1;
452 /* First find the tail of the list. */
453 for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
454 ifma = ifma->ifma_link.le_next) {
455 if (ifma->ifma_link.le_next == NULL)
456 break;
457 }
458 /* Now traverse the list backwards. */
459 for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs;
460 ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) {
461 if (ifma->ifma_addr->sa_family != AF_LINK)
462 continue;
463 /*
464 * Program the first 15 multicast groups
465 * into the perfect filter. For all others,
466 * use the hash table.
467 */
468 if (i < SF_RXFILT_PERFECT_CNT) {
469 sf_setperf(sc, i,
470 LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
471 i++;
472 continue;
473 }
474
475 sf_sethash(sc,
476 LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
477 }
478 }
479
480 return;
481}
482
483/*
484 * Set media options.
485 */
486static int sf_ifmedia_upd(ifp)
487 struct ifnet *ifp;
488{
489 struct sf_softc *sc;
490 struct mii_data *mii;
491
492 sc = ifp->if_softc;
493 mii = device_get_softc(sc->sf_miibus);
494 sc->sf_link = 0;
495 if (mii->mii_instance) {
496 struct mii_softc *miisc;
497 for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
498 miisc = LIST_NEXT(miisc, mii_list))
499 mii_phy_reset(miisc);
500 }
501 mii_mediachg(mii);
502
503 return(0);
504}
505
506/*
507 * Report current media status.
508 */
509static void sf_ifmedia_sts(ifp, ifmr)
510 struct ifnet *ifp;
511 struct ifmediareq *ifmr;
512{
513 struct sf_softc *sc;
514 struct mii_data *mii;
515
516 sc = ifp->if_softc;
517 mii = device_get_softc(sc->sf_miibus);
518
519 mii_pollstat(mii);
520 ifmr->ifm_active = mii->mii_media_active;
521 ifmr->ifm_status = mii->mii_media_status;
522
523 return;
524}
525
526static int sf_ioctl(ifp, command, data)
527 struct ifnet *ifp;
528 u_long command;
529 caddr_t data;
530{
531 struct sf_softc *sc = ifp->if_softc;
532 struct ifreq *ifr = (struct ifreq *) data;
533 struct mii_data *mii;
534 int s, error = 0;
535
536 s = splimp();
537
538 switch(command) {
539 case SIOCSIFADDR:
540 case SIOCGIFADDR:
541 case SIOCSIFMTU:
542 error = ether_ioctl(ifp, command, data);
543 break;
544 case SIOCSIFFLAGS:
545 if (ifp->if_flags & IFF_UP) {
546 if (ifp->if_flags & IFF_RUNNING &&
547 ifp->if_flags & IFF_PROMISC &&
548 !(sc->sf_if_flags & IFF_PROMISC)) {
549 SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
550 } else if (ifp->if_flags & IFF_RUNNING &&
551 !(ifp->if_flags & IFF_PROMISC) &&
552 sc->sf_if_flags & IFF_PROMISC) {
553 SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
554 } else if (!(ifp->if_flags & IFF_RUNNING))
555 sf_init(sc);
556 } else {
557 if (ifp->if_flags & IFF_RUNNING)
558 sf_stop(sc);
559 }
560 sc->sf_if_flags = ifp->if_flags;
561 error = 0;
562 break;
563 case SIOCADDMULTI:
564 case SIOCDELMULTI:
565 sf_setmulti(sc);
566 error = 0;
567 break;
568 case SIOCGIFMEDIA:
569 case SIOCSIFMEDIA:
570 mii = device_get_softc(sc->sf_miibus);
571 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
572 break;
573 default:
574 error = EINVAL;
575 break;
576 }
577
578 (void)splx(s);
579
580 return(error);
581}
582
583static void sf_reset(sc)
584 struct sf_softc *sc;
585{
586 register int i;
587
588 csr_write_4(sc, SF_GEN_ETH_CTL, 0);
589 SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
590 DELAY(1000);
591 SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
592
593 SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
594
595 for (i = 0; i < SF_TIMEOUT; i++) {
596 DELAY(10);
597 if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
598 break;
599 }
600
601 if (i == SF_TIMEOUT)
602 printf("sf%d: reset never completed!\n", sc->sf_unit);
603
604 /* Wait a little while for the chip to get its brains in order. */
605 DELAY(1000);
606 return;
607}
608
609/*
610 * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
611 * IDs against our list and return a device name if we find a match.
612 * We also check the subsystem ID so that we can identify exactly which
613 * NIC has been found, if possible.
614 */
615static int sf_probe(dev)
616 device_t dev;
617{
618 struct sf_type *t;
619
620 t = sf_devs;
621
622 while(t->sf_name != NULL) {
623 if ((pci_get_vendor(dev) == t->sf_vid) &&
624 (pci_get_device(dev) == t->sf_did)) {
625 switch((pci_read_config(dev,
626 SF_PCI_SUBVEN_ID, 4) >> 16) & 0xFFFF) {
627 case AD_SUBSYSID_62011_REV0:
628 case AD_SUBSYSID_62011_REV1:
629 device_set_desc(dev,
630 "Adaptec ANA-62011 10/100BaseTX");
631 return(0);
632 break;
633 case AD_SUBSYSID_62022:
634 device_set_desc(dev,
635 "Adaptec ANA-62022 10/100BaseTX");
636 return(0);
637 break;
638 case AD_SUBSYSID_62044_REV0:
639 case AD_SUBSYSID_62044_REV1:
640 device_set_desc(dev,
641 "Adaptec ANA-62044 10/100BaseTX");
642 return(0);
643 break;
644 case AD_SUBSYSID_62020:
645 device_set_desc(dev,
646 "Adaptec ANA-62020 10/100BaseFX");
647 return(0);
648 break;
649 case AD_SUBSYSID_69011:
650 device_set_desc(dev,
651 "Adaptec ANA-69011 10/100BaseTX");
652 return(0);
653 break;
654 default:
655 device_set_desc(dev, t->sf_name);
656 return(0);
657 break;
658 }
659 }
660 t++;
661 }
662
663 return(ENXIO);
664}
665
666/*
667 * Attach the interface. Allocate softc structures, do ifmedia
668 * setup and ethernet/BPF attach.
669 */
670static int sf_attach(dev)
671 device_t dev;
672{
673 int s, i;
674 u_int32_t command;
675 struct sf_softc *sc;
676 struct ifnet *ifp;
677 int unit, rid, error = 0;
678
679 s = splimp();
680
681 sc = device_get_softc(dev);
682 unit = device_get_unit(dev);
683 bzero(sc, sizeof(struct sf_softc));
684
685 /*
686 * Handle power management nonsense.
687 */
688 command = pci_read_config(dev, SF_PCI_CAPID, 4) & 0x000000FF;
689 if (command == 0x01) {
690
691 command = pci_read_config(dev, SF_PCI_PWRMGMTCTRL, 4);
692 if (command & SF_PSTATE_MASK) {
693 u_int32_t iobase, membase, irq;
694
695 /* Save important PCI config data. */
696 iobase = pci_read_config(dev, SF_PCI_LOIO, 4);
697 membase = pci_read_config(dev, SF_PCI_LOMEM, 4);
698 irq = pci_read_config(dev, SF_PCI_INTLINE, 4);
699
700 /* Reset the power state. */
701 printf("sf%d: chip is in D%d power mode "
702 "-- setting to D0\n", unit, command & SF_PSTATE_MASK);
703 command &= 0xFFFFFFFC;
704 pci_write_config(dev, SF_PCI_PWRMGMTCTRL, command, 4);
705
706 /* Restore PCI config data. */
707 pci_write_config(dev, SF_PCI_LOIO, iobase, 4);
708 pci_write_config(dev, SF_PCI_LOMEM, membase, 4);
709 pci_write_config(dev, SF_PCI_INTLINE, irq, 4);
710 }
711 }
712
713 /*
714 * Map control/status registers.
715 */
716 command = pci_read_config(dev, PCIR_COMMAND, 4);
717 command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
718 pci_write_config(dev, PCIR_COMMAND, command, 4);
719 command = pci_read_config(dev, PCIR_COMMAND, 4);
720
721#ifdef SF_USEIOSPACE
722 if (!(command & PCIM_CMD_PORTEN)) {
723 printf("sf%d: failed to enable I/O ports!\n", unit);
724 error = ENXIO;
725 goto fail;
726 }
727#else
728 if (!(command & PCIM_CMD_MEMEN)) {
729 printf("sf%d: failed to enable memory mapping!\n", unit);
730 error = ENXIO;
731 goto fail;
732 }
733#endif
734
735 rid = SF_RID;
736 sc->sf_res = bus_alloc_resource(dev, SF_RES, &rid,
737 0, ~0, 1, RF_ACTIVE);
738
739 if (sc->sf_res == NULL) {
740 printf ("sf%d: couldn't map ports\n", unit);
741 error = ENXIO;
742 goto fail;
743 }
744
745 sc->sf_btag = rman_get_bustag(sc->sf_res);
746 sc->sf_bhandle = rman_get_bushandle(sc->sf_res);
747
748 /* Allocate interrupt */
749 rid = 0;
750 sc->sf_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
751 RF_SHAREABLE | RF_ACTIVE);
752
753 if (sc->sf_irq == NULL) {
754 printf("sf%d: couldn't map interrupt\n", unit);
755 bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
756 error = ENXIO;
757 goto fail;
758 }
759
760 error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET,
761 sf_intr, sc, &sc->sf_intrhand);
762
763 if (error) {
764 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_res);
765 bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
766 printf("sf%d: couldn't set up irq\n", unit);
767 goto fail;
768 }
769
770 callout_handle_init(&sc->sf_stat_ch);
771
772 /* Reset the adapter. */
773 sf_reset(sc);
774
775 /*
776 * Get station address from the EEPROM.
777 */
778 for (i = 0; i < ETHER_ADDR_LEN; i++)
779 sc->arpcom.ac_enaddr[i] =
780 sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
781
782 /*
783 * An Adaptec chip was detected. Inform the world.
784 */
785 printf("sf%d: Ethernet address: %6D\n", unit,
786 sc->arpcom.ac_enaddr, ":");
787
788 sc->sf_unit = unit;
789
790 /* Allocate the descriptor queues. */
791 sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF,
792 M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
793
794 if (sc->sf_ldata == NULL) {
795 printf("sf%d: no memory for list buffers!\n", unit);
796 bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
797 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
798 bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
799 error = ENXIO;
800 goto fail;
801 }
802
803 bzero(sc->sf_ldata, sizeof(struct sf_list_data));
804
805 /* Do MII setup. */
806 if (mii_phy_probe(dev, &sc->sf_miibus,
807 sf_ifmedia_upd, sf_ifmedia_sts)) {
808 printf("sf%d: MII without any phy!\n", sc->sf_unit);
809 contigfree(sc->sf_ldata,sizeof(struct sf_list_data),M_DEVBUF);
810 bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
811 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
812 bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
813 error = ENXIO;
814 goto fail;
815 }
816
817 ifp = &sc->arpcom.ac_if;
818 ifp->if_softc = sc;
819 ifp->if_unit = unit;
820 ifp->if_name = "sf";
821 ifp->if_mtu = ETHERMTU;
822 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
823 ifp->if_ioctl = sf_ioctl;
824 ifp->if_output = ether_output;
825 ifp->if_start = sf_start;
826 ifp->if_watchdog = sf_watchdog;
827 ifp->if_init = sf_init;
828 ifp->if_baudrate = 10000000;
829 ifp->if_snd.ifq_maxlen = SF_TX_DLIST_CNT - 1;
830
831 /*
126#endif
127
128static struct sf_type sf_devs[] = {
129 { AD_VENDORID, AD_DEVICEID_STARFIRE,
130 "Adaptec AIC-6915 10/100BaseTX" },
131 { 0, 0, NULL }
132};
133
134static int sf_probe __P((device_t));
135static int sf_attach __P((device_t));
136static int sf_detach __P((device_t));
137static void sf_intr __P((void *));
138static void sf_stats_update __P((void *));
139static void sf_rxeof __P((struct sf_softc *));
140static void sf_txeof __P((struct sf_softc *));
141static int sf_encap __P((struct sf_softc *,
142 struct sf_tx_bufdesc_type0 *,
143 struct mbuf *));
144static void sf_start __P((struct ifnet *));
145static int sf_ioctl __P((struct ifnet *, u_long, caddr_t));
146static void sf_init __P((void *));
147static void sf_stop __P((struct sf_softc *));
148static void sf_watchdog __P((struct ifnet *));
149static void sf_shutdown __P((device_t));
150static int sf_ifmedia_upd __P((struct ifnet *));
151static void sf_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
152static void sf_reset __P((struct sf_softc *));
153static int sf_init_rx_ring __P((struct sf_softc *));
154static void sf_init_tx_ring __P((struct sf_softc *));
155static int sf_newbuf __P((struct sf_softc *,
156 struct sf_rx_bufdesc_type0 *,
157 struct mbuf *));
158static void sf_setmulti __P((struct sf_softc *));
159static int sf_setperf __P((struct sf_softc *, int, caddr_t));
160static int sf_sethash __P((struct sf_softc *, caddr_t, int));
161#ifdef notdef
162static int sf_setvlan __P((struct sf_softc *, int, u_int32_t));
163#endif
164
165static u_int8_t sf_read_eeprom __P((struct sf_softc *, int));
166static u_int32_t sf_calchash __P((caddr_t));
167
168static int sf_miibus_readreg __P((device_t, int, int));
169static int sf_miibus_writereg __P((device_t, int, int, int));
170static void sf_miibus_statchg __P((device_t));
171
172static u_int32_t csr_read_4 __P((struct sf_softc *, int));
173static void csr_write_4 __P((struct sf_softc *, int, u_int32_t));
174
175#ifdef SF_USEIOSPACE
176#define SF_RES SYS_RES_IOPORT
177#define SF_RID SF_PCI_LOIO
178#else
179#define SF_RES SYS_RES_MEMORY
180#define SF_RID SF_PCI_LOMEM
181#endif
182
183static device_method_t sf_methods[] = {
184 /* Device interface */
185 DEVMETHOD(device_probe, sf_probe),
186 DEVMETHOD(device_attach, sf_attach),
187 DEVMETHOD(device_detach, sf_detach),
188 DEVMETHOD(device_shutdown, sf_shutdown),
189
190 /* bus interface */
191 DEVMETHOD(bus_print_child, bus_generic_print_child),
192 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
193
194 /* MII interface */
195 DEVMETHOD(miibus_readreg, sf_miibus_readreg),
196 DEVMETHOD(miibus_writereg, sf_miibus_writereg),
197 DEVMETHOD(miibus_statchg, sf_miibus_statchg),
198
199 { 0, 0 }
200};
201
202static driver_t sf_driver = {
203 "sf",
204 sf_methods,
205 sizeof(struct sf_softc),
206};
207
208static devclass_t sf_devclass;
209
210DRIVER_MODULE(if_sf, pci, sf_driver, sf_devclass, 0, 0);
211DRIVER_MODULE(miibus, sf, miibus_driver, miibus_devclass, 0, 0);
212
213#define SF_SETBIT(sc, reg, x) \
214 csr_write_4(sc, reg, csr_read_4(sc, reg) | x)
215
216#define SF_CLRBIT(sc, reg, x) \
217 csr_write_4(sc, reg, csr_read_4(sc, reg) & ~x)
218
219static u_int32_t csr_read_4(sc, reg)
220 struct sf_softc *sc;
221 int reg;
222{
223 u_int32_t val;
224
225#ifdef SF_USEIOSPACE
226 CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
227 val = CSR_READ_4(sc, SF_INDIRECTIO_DATA);
228#else
229 val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE));
230#endif
231
232 return(val);
233}
234
235static u_int8_t sf_read_eeprom(sc, reg)
236 struct sf_softc *sc;
237 int reg;
238{
239 u_int8_t val;
240
241 val = (csr_read_4(sc, SF_EEADDR_BASE +
242 (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF;
243
244 return(val);
245}
246
247static void csr_write_4(sc, reg, val)
248 struct sf_softc *sc;
249 int reg;
250 u_int32_t val;
251{
252#ifdef SF_USEIOSPACE
253 CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE);
254 CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val);
255#else
256 CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val);
257#endif
258 return;
259}
260
261static u_int32_t sf_calchash(addr)
262 caddr_t addr;
263{
264 u_int32_t crc, carry;
265 int i, j;
266 u_int8_t c;
267
268 /* Compute CRC for the address value. */
269 crc = 0xFFFFFFFF; /* initial value */
270
271 for (i = 0; i < 6; i++) {
272 c = *(addr + i);
273 for (j = 0; j < 8; j++) {
274 carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
275 crc <<= 1;
276 c >>= 1;
277 if (carry)
278 crc = (crc ^ 0x04c11db6) | carry;
279 }
280 }
281
282 /* return the filter bit position */
283 return(crc >> 23 & 0x1FF);
284}
285
286/*
287 * Copy the address 'mac' into the perfect RX filter entry at
288 * offset 'idx.' The perfect filter only has 16 entries so do
289 * some sanity tests.
290 */
291static int sf_setperf(sc, idx, mac)
292 struct sf_softc *sc;
293 int idx;
294 caddr_t mac;
295{
296 u_int16_t *p;
297
298 if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT)
299 return(EINVAL);
300
301 if (mac == NULL)
302 return(EINVAL);
303
304 p = (u_int16_t *)mac;
305
306 csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
307 (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2]));
308 csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
309 (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1]));
310 csr_write_4(sc, SF_RXFILT_PERFECT_BASE +
311 (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0]));
312
313 return(0);
314}
315
316/*
317 * Set the bit in the 512-bit hash table that corresponds to the
318 * specified mac address 'mac.' If 'prio' is nonzero, update the
319 * priority hash table instead of the filter hash table.
320 */
321static int sf_sethash(sc, mac, prio)
322 struct sf_softc *sc;
323 caddr_t mac;
324 int prio;
325{
326 u_int32_t h = 0;
327
328 if (mac == NULL)
329 return(EINVAL);
330
331 h = sf_calchash(mac);
332
333 if (prio) {
334 SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF +
335 (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
336 } else {
337 SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF +
338 (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF)));
339 }
340
341 return(0);
342}
343
344#ifdef notdef
345/*
346 * Set a VLAN tag in the receive filter.
347 */
348static int sf_setvlan(sc, idx, vlan)
349 struct sf_softc *sc;
350 int idx;
351 u_int32_t vlan;
352{
353 if (idx < 0 || idx >> SF_RXFILT_HASH_CNT)
354 return(EINVAL);
355
356 csr_write_4(sc, SF_RXFILT_HASH_BASE +
357 (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan);
358
359 return(0);
360}
361#endif
362
363static int sf_miibus_readreg(dev, phy, reg)
364 device_t dev;
365 int phy, reg;
366{
367 struct sf_softc *sc;
368 int i;
369 u_int32_t val = 0;
370
371 sc = device_get_softc(dev);
372
373 for (i = 0; i < SF_TIMEOUT; i++) {
374 val = csr_read_4(sc, SF_PHY_REG(phy, reg));
375 if (val & SF_MII_DATAVALID)
376 break;
377 }
378
379 if (i == SF_TIMEOUT)
380 return(0);
381
382 if ((val & 0x0000FFFF) == 0xFFFF)
383 return(0);
384
385 return(val & 0x0000FFFF);
386}
387
388static int sf_miibus_writereg(dev, phy, reg, val)
389 device_t dev;
390 int phy, reg, val;
391{
392 struct sf_softc *sc;
393 int i;
394 int busy;
395
396 sc = device_get_softc(dev);
397
398 csr_write_4(sc, SF_PHY_REG(phy, reg), val);
399
400 for (i = 0; i < SF_TIMEOUT; i++) {
401 busy = csr_read_4(sc, SF_PHY_REG(phy, reg));
402 if (!(busy & SF_MII_BUSY))
403 break;
404 }
405
406 return(0);
407}
408
409static void sf_miibus_statchg(dev)
410 device_t dev;
411{
412 struct sf_softc *sc;
413 struct mii_data *mii;
414
415 sc = device_get_softc(dev);
416 mii = device_get_softc(sc->sf_miibus);
417
418 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
419 SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
420 csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX);
421 } else {
422 SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX);
423 csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX);
424 }
425
426 return;
427}
428
429static void sf_setmulti(sc)
430 struct sf_softc *sc;
431{
432 struct ifnet *ifp;
433 int i;
434 struct ifmultiaddr *ifma;
435 u_int8_t dummy[] = { 0, 0, 0, 0, 0, 0 };
436
437 ifp = &sc->arpcom.ac_if;
438
439 /* First zot all the existing filters. */
440 for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++)
441 sf_setperf(sc, i, (char *)&dummy);
442 for (i = SF_RXFILT_HASH_BASE;
443 i < (SF_RXFILT_HASH_MAX + 1); i += 4)
444 csr_write_4(sc, i, 0);
445 SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
446
447 /* Now program new ones. */
448 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
449 SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI);
450 } else {
451 i = 1;
452 /* First find the tail of the list. */
453 for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
454 ifma = ifma->ifma_link.le_next) {
455 if (ifma->ifma_link.le_next == NULL)
456 break;
457 }
458 /* Now traverse the list backwards. */
459 for (; ifma != NULL && ifma != (void *)&ifp->if_multiaddrs;
460 ifma = (struct ifmultiaddr *)ifma->ifma_link.le_prev) {
461 if (ifma->ifma_addr->sa_family != AF_LINK)
462 continue;
463 /*
464 * Program the first 15 multicast groups
465 * into the perfect filter. For all others,
466 * use the hash table.
467 */
468 if (i < SF_RXFILT_PERFECT_CNT) {
469 sf_setperf(sc, i,
470 LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
471 i++;
472 continue;
473 }
474
475 sf_sethash(sc,
476 LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 0);
477 }
478 }
479
480 return;
481}
482
483/*
484 * Set media options.
485 */
486static int sf_ifmedia_upd(ifp)
487 struct ifnet *ifp;
488{
489 struct sf_softc *sc;
490 struct mii_data *mii;
491
492 sc = ifp->if_softc;
493 mii = device_get_softc(sc->sf_miibus);
494 sc->sf_link = 0;
495 if (mii->mii_instance) {
496 struct mii_softc *miisc;
497 for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
498 miisc = LIST_NEXT(miisc, mii_list))
499 mii_phy_reset(miisc);
500 }
501 mii_mediachg(mii);
502
503 return(0);
504}
505
506/*
507 * Report current media status.
508 */
509static void sf_ifmedia_sts(ifp, ifmr)
510 struct ifnet *ifp;
511 struct ifmediareq *ifmr;
512{
513 struct sf_softc *sc;
514 struct mii_data *mii;
515
516 sc = ifp->if_softc;
517 mii = device_get_softc(sc->sf_miibus);
518
519 mii_pollstat(mii);
520 ifmr->ifm_active = mii->mii_media_active;
521 ifmr->ifm_status = mii->mii_media_status;
522
523 return;
524}
525
526static int sf_ioctl(ifp, command, data)
527 struct ifnet *ifp;
528 u_long command;
529 caddr_t data;
530{
531 struct sf_softc *sc = ifp->if_softc;
532 struct ifreq *ifr = (struct ifreq *) data;
533 struct mii_data *mii;
534 int s, error = 0;
535
536 s = splimp();
537
538 switch(command) {
539 case SIOCSIFADDR:
540 case SIOCGIFADDR:
541 case SIOCSIFMTU:
542 error = ether_ioctl(ifp, command, data);
543 break;
544 case SIOCSIFFLAGS:
545 if (ifp->if_flags & IFF_UP) {
546 if (ifp->if_flags & IFF_RUNNING &&
547 ifp->if_flags & IFF_PROMISC &&
548 !(sc->sf_if_flags & IFF_PROMISC)) {
549 SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
550 } else if (ifp->if_flags & IFF_RUNNING &&
551 !(ifp->if_flags & IFF_PROMISC) &&
552 sc->sf_if_flags & IFF_PROMISC) {
553 SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
554 } else if (!(ifp->if_flags & IFF_RUNNING))
555 sf_init(sc);
556 } else {
557 if (ifp->if_flags & IFF_RUNNING)
558 sf_stop(sc);
559 }
560 sc->sf_if_flags = ifp->if_flags;
561 error = 0;
562 break;
563 case SIOCADDMULTI:
564 case SIOCDELMULTI:
565 sf_setmulti(sc);
566 error = 0;
567 break;
568 case SIOCGIFMEDIA:
569 case SIOCSIFMEDIA:
570 mii = device_get_softc(sc->sf_miibus);
571 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
572 break;
573 default:
574 error = EINVAL;
575 break;
576 }
577
578 (void)splx(s);
579
580 return(error);
581}
582
583static void sf_reset(sc)
584 struct sf_softc *sc;
585{
586 register int i;
587
588 csr_write_4(sc, SF_GEN_ETH_CTL, 0);
589 SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
590 DELAY(1000);
591 SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET);
592
593 SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET);
594
595 for (i = 0; i < SF_TIMEOUT; i++) {
596 DELAY(10);
597 if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET))
598 break;
599 }
600
601 if (i == SF_TIMEOUT)
602 printf("sf%d: reset never completed!\n", sc->sf_unit);
603
604 /* Wait a little while for the chip to get its brains in order. */
605 DELAY(1000);
606 return;
607}
608
609/*
610 * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device
611 * IDs against our list and return a device name if we find a match.
612 * We also check the subsystem ID so that we can identify exactly which
613 * NIC has been found, if possible.
614 */
615static int sf_probe(dev)
616 device_t dev;
617{
618 struct sf_type *t;
619
620 t = sf_devs;
621
622 while(t->sf_name != NULL) {
623 if ((pci_get_vendor(dev) == t->sf_vid) &&
624 (pci_get_device(dev) == t->sf_did)) {
625 switch((pci_read_config(dev,
626 SF_PCI_SUBVEN_ID, 4) >> 16) & 0xFFFF) {
627 case AD_SUBSYSID_62011_REV0:
628 case AD_SUBSYSID_62011_REV1:
629 device_set_desc(dev,
630 "Adaptec ANA-62011 10/100BaseTX");
631 return(0);
632 break;
633 case AD_SUBSYSID_62022:
634 device_set_desc(dev,
635 "Adaptec ANA-62022 10/100BaseTX");
636 return(0);
637 break;
638 case AD_SUBSYSID_62044_REV0:
639 case AD_SUBSYSID_62044_REV1:
640 device_set_desc(dev,
641 "Adaptec ANA-62044 10/100BaseTX");
642 return(0);
643 break;
644 case AD_SUBSYSID_62020:
645 device_set_desc(dev,
646 "Adaptec ANA-62020 10/100BaseFX");
647 return(0);
648 break;
649 case AD_SUBSYSID_69011:
650 device_set_desc(dev,
651 "Adaptec ANA-69011 10/100BaseTX");
652 return(0);
653 break;
654 default:
655 device_set_desc(dev, t->sf_name);
656 return(0);
657 break;
658 }
659 }
660 t++;
661 }
662
663 return(ENXIO);
664}
665
666/*
667 * Attach the interface. Allocate softc structures, do ifmedia
668 * setup and ethernet/BPF attach.
669 */
670static int sf_attach(dev)
671 device_t dev;
672{
673 int s, i;
674 u_int32_t command;
675 struct sf_softc *sc;
676 struct ifnet *ifp;
677 int unit, rid, error = 0;
678
679 s = splimp();
680
681 sc = device_get_softc(dev);
682 unit = device_get_unit(dev);
683 bzero(sc, sizeof(struct sf_softc));
684
685 /*
686 * Handle power management nonsense.
687 */
688 command = pci_read_config(dev, SF_PCI_CAPID, 4) & 0x000000FF;
689 if (command == 0x01) {
690
691 command = pci_read_config(dev, SF_PCI_PWRMGMTCTRL, 4);
692 if (command & SF_PSTATE_MASK) {
693 u_int32_t iobase, membase, irq;
694
695 /* Save important PCI config data. */
696 iobase = pci_read_config(dev, SF_PCI_LOIO, 4);
697 membase = pci_read_config(dev, SF_PCI_LOMEM, 4);
698 irq = pci_read_config(dev, SF_PCI_INTLINE, 4);
699
700 /* Reset the power state. */
701 printf("sf%d: chip is in D%d power mode "
702 "-- setting to D0\n", unit, command & SF_PSTATE_MASK);
703 command &= 0xFFFFFFFC;
704 pci_write_config(dev, SF_PCI_PWRMGMTCTRL, command, 4);
705
706 /* Restore PCI config data. */
707 pci_write_config(dev, SF_PCI_LOIO, iobase, 4);
708 pci_write_config(dev, SF_PCI_LOMEM, membase, 4);
709 pci_write_config(dev, SF_PCI_INTLINE, irq, 4);
710 }
711 }
712
713 /*
714 * Map control/status registers.
715 */
716 command = pci_read_config(dev, PCIR_COMMAND, 4);
717 command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
718 pci_write_config(dev, PCIR_COMMAND, command, 4);
719 command = pci_read_config(dev, PCIR_COMMAND, 4);
720
721#ifdef SF_USEIOSPACE
722 if (!(command & PCIM_CMD_PORTEN)) {
723 printf("sf%d: failed to enable I/O ports!\n", unit);
724 error = ENXIO;
725 goto fail;
726 }
727#else
728 if (!(command & PCIM_CMD_MEMEN)) {
729 printf("sf%d: failed to enable memory mapping!\n", unit);
730 error = ENXIO;
731 goto fail;
732 }
733#endif
734
735 rid = SF_RID;
736 sc->sf_res = bus_alloc_resource(dev, SF_RES, &rid,
737 0, ~0, 1, RF_ACTIVE);
738
739 if (sc->sf_res == NULL) {
740 printf ("sf%d: couldn't map ports\n", unit);
741 error = ENXIO;
742 goto fail;
743 }
744
745 sc->sf_btag = rman_get_bustag(sc->sf_res);
746 sc->sf_bhandle = rman_get_bushandle(sc->sf_res);
747
748 /* Allocate interrupt */
749 rid = 0;
750 sc->sf_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
751 RF_SHAREABLE | RF_ACTIVE);
752
753 if (sc->sf_irq == NULL) {
754 printf("sf%d: couldn't map interrupt\n", unit);
755 bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
756 error = ENXIO;
757 goto fail;
758 }
759
760 error = bus_setup_intr(dev, sc->sf_irq, INTR_TYPE_NET,
761 sf_intr, sc, &sc->sf_intrhand);
762
763 if (error) {
764 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_res);
765 bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
766 printf("sf%d: couldn't set up irq\n", unit);
767 goto fail;
768 }
769
770 callout_handle_init(&sc->sf_stat_ch);
771
772 /* Reset the adapter. */
773 sf_reset(sc);
774
775 /*
776 * Get station address from the EEPROM.
777 */
778 for (i = 0; i < ETHER_ADDR_LEN; i++)
779 sc->arpcom.ac_enaddr[i] =
780 sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i);
781
782 /*
783 * An Adaptec chip was detected. Inform the world.
784 */
785 printf("sf%d: Ethernet address: %6D\n", unit,
786 sc->arpcom.ac_enaddr, ":");
787
788 sc->sf_unit = unit;
789
790 /* Allocate the descriptor queues. */
791 sc->sf_ldata = contigmalloc(sizeof(struct sf_list_data), M_DEVBUF,
792 M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
793
794 if (sc->sf_ldata == NULL) {
795 printf("sf%d: no memory for list buffers!\n", unit);
796 bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
797 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
798 bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
799 error = ENXIO;
800 goto fail;
801 }
802
803 bzero(sc->sf_ldata, sizeof(struct sf_list_data));
804
805 /* Do MII setup. */
806 if (mii_phy_probe(dev, &sc->sf_miibus,
807 sf_ifmedia_upd, sf_ifmedia_sts)) {
808 printf("sf%d: MII without any phy!\n", sc->sf_unit);
809 contigfree(sc->sf_ldata,sizeof(struct sf_list_data),M_DEVBUF);
810 bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
811 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
812 bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
813 error = ENXIO;
814 goto fail;
815 }
816
817 ifp = &sc->arpcom.ac_if;
818 ifp->if_softc = sc;
819 ifp->if_unit = unit;
820 ifp->if_name = "sf";
821 ifp->if_mtu = ETHERMTU;
822 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
823 ifp->if_ioctl = sf_ioctl;
824 ifp->if_output = ether_output;
825 ifp->if_start = sf_start;
826 ifp->if_watchdog = sf_watchdog;
827 ifp->if_init = sf_init;
828 ifp->if_baudrate = 10000000;
829 ifp->if_snd.ifq_maxlen = SF_TX_DLIST_CNT - 1;
830
831 /*
832 * Call MI attach routines.
832 * Call MI attach routine.
833 */
833 */
834 if_attach(ifp);
835 ether_ifattach(ifp);
834 ether_ifattach(ifp, ETHER_BPF_SUPPORTED);
836
835
837 bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
838
839fail:
840 splx(s);
841 return(error);
842}
843
844static int sf_detach(dev)
845 device_t dev;
846{
847 struct sf_softc *sc;
848 struct ifnet *ifp;
849 int s;
850
851 s = splimp();
852
853 sc = device_get_softc(dev);
854 ifp = &sc->arpcom.ac_if;
855
836fail:
837 splx(s);
838 return(error);
839}
840
841static int sf_detach(dev)
842 device_t dev;
843{
844 struct sf_softc *sc;
845 struct ifnet *ifp;
846 int s;
847
848 s = splimp();
849
850 sc = device_get_softc(dev);
851 ifp = &sc->arpcom.ac_if;
852
856 if_detach(ifp);
853 ether_ifdetach(ifp, ETHER_BPF_SUPPORTED);
857 sf_stop(sc);
858
859 bus_generic_detach(dev);
860 device_delete_child(dev, sc->sf_miibus);
861
862 bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
863 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
864 bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
865
866 contigfree(sc->sf_ldata, sizeof(struct sf_list_data), M_DEVBUF);
867
868 splx(s);
869
870 return(0);
871}
872
873static int sf_init_rx_ring(sc)
874 struct sf_softc *sc;
875{
876 struct sf_list_data *ld;
877 int i;
878
879 ld = sc->sf_ldata;
880
881 bzero((char *)ld->sf_rx_dlist_big,
882 sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
883 bzero((char *)ld->sf_rx_clist,
884 sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);
885
886 for (i = 0; i < SF_RX_DLIST_CNT; i++) {
887 if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
888 return(ENOBUFS);
889 }
890
891 return(0);
892}
893
894static void sf_init_tx_ring(sc)
895 struct sf_softc *sc;
896{
897 struct sf_list_data *ld;
898 int i;
899
900 ld = sc->sf_ldata;
901
902 bzero((char *)ld->sf_tx_dlist,
903 sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
904 bzero((char *)ld->sf_tx_clist,
905 sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);
906
907 for (i = 0; i < SF_TX_DLIST_CNT; i++)
908 ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
909 for (i = 0; i < SF_TX_CLIST_CNT; i++)
910 ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;
911
912 ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
913 sc->sf_tx_cnt = 0;
914
915 return;
916}
917
918static int sf_newbuf(sc, c, m)
919 struct sf_softc *sc;
920 struct sf_rx_bufdesc_type0 *c;
921 struct mbuf *m;
922{
923 struct mbuf *m_new = NULL;
924
925 if (m == NULL) {
926 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
927 if (m_new == NULL) {
928 printf("sf%d: no memory for rx list -- "
929 "packet dropped!\n", sc->sf_unit);
930 return(ENOBUFS);
931 }
932
933 MCLGET(m_new, M_DONTWAIT);
934 if (!(m_new->m_flags & M_EXT)) {
935 printf("sf%d: no memory for rx list -- "
936 "packet dropped!\n", sc->sf_unit);
937 m_freem(m_new);
938 return(ENOBUFS);
939 }
940 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
941 } else {
942 m_new = m;
943 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
944 m_new->m_data = m_new->m_ext.ext_buf;
945 }
946
947 m_adj(m_new, sizeof(u_int64_t));
948
949 c->sf_mbuf = m_new;
950 c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
951 c->sf_valid = 1;
952
953 return(0);
954}
955
956/*
957 * The starfire is programmed to use 'normal' mode for packet reception,
958 * which means we use the consumer/producer model for both the buffer
959 * descriptor queue and the completion descriptor queue. The only problem
960 * with this is that it involves a lot of register accesses: we have to
961 * read the RX completion consumer and producer indexes and the RX buffer
962 * producer index, plus the RX completion consumer and RX buffer producer
963 * indexes have to be updated. It would have been easier if Adaptec had
964 * put each index in a separate register, especially given that the damn
965 * NIC has a 512K register space.
966 *
967 * In spite of all the lovely features that Adaptec crammed into the 6915,
968 * it is marred by one truly stupid design flaw, which is that receive
969 * buffer addresses must be aligned on a longword boundary. This forces
970 * the packet payload to be unaligned, which is suboptimal on the x86 and
971 * completely unuseable on the Alpha. Our only recourse is to copy received
972 * packets into properly aligned buffers before handing them off.
973 */
974
975static void sf_rxeof(sc)
976 struct sf_softc *sc;
977{
978 struct ether_header *eh;
979 struct mbuf *m;
980 struct ifnet *ifp;
981 struct sf_rx_bufdesc_type0 *desc;
982 struct sf_rx_cmpdesc_type3 *cur_rx;
983 u_int32_t rxcons, rxprod;
984 int cmpprodidx, cmpconsidx, bufprodidx;
985
986 ifp = &sc->arpcom.ac_if;
987
988 rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
989 rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
990 cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
991 cmpconsidx = SF_IDX_LO(rxcons);
992 bufprodidx = SF_IDX_LO(rxprod);
993
994 while (cmpconsidx != cmpprodidx) {
995 struct mbuf *m0;
996
997 cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
998 desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
999 m = desc->sf_mbuf;
1000 SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
1001 SF_INC(bufprodidx, SF_RX_DLIST_CNT);
1002
1003 if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
1004 ifp->if_ierrors++;
1005 sf_newbuf(sc, desc, m);
1006 continue;
1007 }
1008
1009 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1010 cur_rx->sf_len + ETHER_ALIGN, 0, ifp, NULL);
1011 sf_newbuf(sc, desc, m);
1012 if (m0 == NULL) {
1013 ifp->if_ierrors++;
1014 continue;
1015 }
1016 m_adj(m0, ETHER_ALIGN);
1017 m = m0;
1018
1019 eh = mtod(m, struct ether_header *);
1020 ifp->if_ipackets++;
1021
1022 /* Remove header from mbuf and pass it on. */
1023 m_adj(m, sizeof(struct ether_header));
1024 ether_input(ifp, eh, m);
1025 }
1026
1027 csr_write_4(sc, SF_CQ_CONSIDX,
1028 (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
1029 csr_write_4(sc, SF_RXDQ_PTR_Q1,
1030 (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);
1031
1032 return;
1033}
1034
1035/*
1036 * Read the transmit status from the completion queue and release
1037 * mbufs. Note that the buffer descriptor index in the completion
1038 * descriptor is an offset from the start of the transmit buffer
1039 * descriptor list in bytes. This is important because the manual
1040 * gives the impression that it should match the producer/consumer
1041 * index, which is the offset in 8 byte blocks.
1042 */
1043static void sf_txeof(sc)
1044 struct sf_softc *sc;
1045{
1046 int txcons, cmpprodidx, cmpconsidx;
1047 struct sf_tx_cmpdesc_type1 *cur_cmp;
1048 struct sf_tx_bufdesc_type0 *cur_tx;
1049 struct ifnet *ifp;
1050
1051 ifp = &sc->arpcom.ac_if;
1052
1053 txcons = csr_read_4(sc, SF_CQ_CONSIDX);
1054 cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
1055 cmpconsidx = SF_IDX_HI(txcons);
1056
1057 while (cmpconsidx != cmpprodidx) {
1058 cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
1059 cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
1060 SF_INC(cmpconsidx, SF_TX_CLIST_CNT);
1061
1062 if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
1063 ifp->if_opackets++;
1064 else
1065 ifp->if_oerrors++;
1066
1067 sc->sf_tx_cnt--;
1068 if (cur_tx->sf_mbuf != NULL) {
1069 m_freem(cur_tx->sf_mbuf);
1070 cur_tx->sf_mbuf = NULL;
1071 }
1072 }
1073
1074 ifp->if_timer = 0;
1075 ifp->if_flags &= ~IFF_OACTIVE;
1076
1077 csr_write_4(sc, SF_CQ_CONSIDX,
1078 (txcons & ~SF_CQ_CONSIDX_TXQ) |
1079 ((cmpconsidx << 16) & 0xFFFF0000));
1080
1081 return;
1082}
1083
1084static void sf_intr(arg)
1085 void *arg;
1086{
1087 struct sf_softc *sc;
1088 struct ifnet *ifp;
1089 u_int32_t status;
1090
1091 sc = arg;
1092 ifp = &sc->arpcom.ac_if;
1093
1094 if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED))
1095 return;
1096
1097 /* Disable interrupts. */
1098 csr_write_4(sc, SF_IMR, 0x00000000);
1099
1100 for (;;) {
1101 status = csr_read_4(sc, SF_ISR);
1102 if (status)
1103 csr_write_4(sc, SF_ISR, status);
1104
1105 if (!(status & SF_INTRS))
1106 break;
1107
1108 if (status & SF_ISR_RXDQ1_DMADONE)
1109 sf_rxeof(sc);
1110
1111 if (status & SF_ISR_TX_TXDONE)
1112 sf_txeof(sc);
1113
1114 if (status & SF_ISR_ABNORMALINTR) {
1115 if (status & SF_ISR_STATSOFLOW) {
1116 untimeout(sf_stats_update, sc,
1117 sc->sf_stat_ch);
1118 sf_stats_update(sc);
1119 } else
1120 sf_init(sc);
1121 }
1122 }
1123
1124 /* Re-enable interrupts. */
1125 csr_write_4(sc, SF_IMR, SF_INTRS);
1126
1127 if (ifp->if_snd.ifq_head != NULL)
1128 sf_start(ifp);
1129
1130 return;
1131}
1132
1133static void sf_init(xsc)
1134 void *xsc;
1135{
1136 struct sf_softc *sc;
1137 struct ifnet *ifp;
1138 struct mii_data *mii;
1139 int i, s;
1140
1141 s = splimp();
1142
1143 sc = xsc;
1144 ifp = &sc->arpcom.ac_if;
1145 mii = device_get_softc(sc->sf_miibus);
1146
1147 sf_stop(sc);
1148 sf_reset(sc);
1149
1150 /* Init all the receive filter registers */
1151 for (i = SF_RXFILT_PERFECT_BASE;
1152 i < (SF_RXFILT_HASH_MAX + 1); i += 4)
1153 csr_write_4(sc, i, 0);
1154
1155 /* Empty stats counter registers. */
1156 for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
1157 csr_write_4(sc, SF_STATS_BASE +
1158 (i + sizeof(u_int32_t)), 0);
1159
1160 /* Init our MAC address */
1161 csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1162 csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1163 sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr);
1164
1165 if (sf_init_rx_ring(sc) == ENOBUFS) {
1166 printf("sf%d: initialization failed: no "
1167 "memory for rx buffers\n", sc->sf_unit);
1168 (void)splx(s);
1169 return;
1170 }
1171
1172 sf_init_tx_ring(sc);
1173
1174 csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);
1175
1176 /* If we want promiscuous mode, set the allframes bit. */
1177 if (ifp->if_flags & IFF_PROMISC) {
1178 SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1179 } else {
1180 SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1181 }
1182
1183 if (ifp->if_flags & IFF_BROADCAST) {
1184 SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1185 } else {
1186 SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1187 }
1188
1189 /* Init the completion queue indexes */
1190 csr_write_4(sc, SF_CQ_CONSIDX, 0);
1191 csr_write_4(sc, SF_CQ_PRODIDX, 0);
1192
1193 /* Init the RX completion queue */
1194 csr_write_4(sc, SF_RXCQ_CTL_1,
1195 vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
1196 SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);
1197
1198 /* Init RX DMA control. */
1199 SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);
1200
1201 /* Init the RX buffer descriptor queue. */
1202 csr_write_4(sc, SF_RXDQ_ADDR_Q1,
1203 vtophys(sc->sf_ldata->sf_rx_dlist_big));
1204 csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
1205 csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
1206
1207 /* Init the TX completion queue */
1208 csr_write_4(sc, SF_TXCQ_CTL,
1209 vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);
1210
1211 /* Init the TX buffer descriptor queue. */
1212 csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
1213 vtophys(sc->sf_ldata->sf_tx_dlist));
1214 SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
1215 csr_write_4(sc, SF_TXDQ_CTL,
1216 SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
1217 SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);
1218
1219 /* Enable autopadding of short TX frames. */
1220 SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
1221
1222 /* Enable interrupts. */
1223 csr_write_4(sc, SF_IMR, SF_INTRS);
1224 SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
1225
1226 /* Enable the RX and TX engines. */
1227 SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
1228 SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);
1229
1230 /*mii_mediachg(mii);*/
1231 sf_ifmedia_upd(ifp);
1232
1233 ifp->if_flags |= IFF_RUNNING;
1234 ifp->if_flags &= ~IFF_OACTIVE;
1235
1236 sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
1237
1238 splx(s);
1239
1240 return;
1241}
1242
1243static int sf_encap(sc, c, m_head)
1244 struct sf_softc *sc;
1245 struct sf_tx_bufdesc_type0 *c;
1246 struct mbuf *m_head;
1247{
1248 int frag = 0;
1249 struct sf_frag *f = NULL;
1250 struct mbuf *m;
1251
1252 m = m_head;
1253
1254 for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1255 if (m->m_len != 0) {
1256 if (frag == SF_MAXFRAGS)
1257 break;
1258 f = &c->sf_frags[frag];
1259 if (frag == 0)
1260 f->sf_pktlen = m_head->m_pkthdr.len;
1261 f->sf_fraglen = m->m_len;
1262 f->sf_addr = vtophys(mtod(m, vm_offset_t));
1263 frag++;
1264 }
1265 }
1266
1267 if (m != NULL) {
1268 struct mbuf *m_new = NULL;
1269
1270 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1271 if (m_new == NULL) {
1272 printf("sf%d: no memory for tx list", sc->sf_unit);
1273 return(1);
1274 }
1275
1276 if (m_head->m_pkthdr.len > MHLEN) {
1277 MCLGET(m_new, M_DONTWAIT);
1278 if (!(m_new->m_flags & M_EXT)) {
1279 m_freem(m_new);
1280 printf("sf%d: no memory for tx list",
1281 sc->sf_unit);
1282 return(1);
1283 }
1284 }
1285 m_copydata(m_head, 0, m_head->m_pkthdr.len,
1286 mtod(m_new, caddr_t));
1287 m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1288 m_freem(m_head);
1289 m_head = m_new;
1290 f = &c->sf_frags[0];
1291 f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len;
1292 f->sf_addr = vtophys(mtod(m_head, caddr_t));
1293 frag = 1;
1294 }
1295
1296 c->sf_mbuf = m_head;
1297 c->sf_id = SF_TX_BUFDESC_ID;
1298 c->sf_fragcnt = frag;
1299 c->sf_intr = 1;
1300 c->sf_caltcp = 0;
1301 c->sf_crcen = 1;
1302
1303 return(0);
1304}
1305
1306static void sf_start(ifp)
1307 struct ifnet *ifp;
1308{
1309 struct sf_softc *sc;
1310 struct sf_tx_bufdesc_type0 *cur_tx = NULL;
1311 struct mbuf *m_head = NULL;
1312 int i, txprod;
1313
1314 sc = ifp->if_softc;
1315
1316 if (!sc->sf_link)
1317 return;
1318
1319 if (ifp->if_flags & IFF_OACTIVE)
1320 return;
1321
1322 txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1323 i = SF_IDX_HI(txprod) >> 4;
1324
1325 while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
1326 IF_DEQUEUE(&ifp->if_snd, m_head);
1327 if (m_head == NULL)
1328 break;
1329
1330 cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
1331 sf_encap(sc, cur_tx, m_head);
1332
1333 /*
1334 * If there's a BPF listener, bounce a copy of this frame
1335 * to him.
1336 */
1337 if (ifp->if_bpf)
1338 bpf_mtap(ifp, m_head);
1339
1340 SF_INC(i, SF_TX_DLIST_CNT);
1341 sc->sf_tx_cnt++;
1342 if (sc->sf_tx_cnt == (SF_TX_DLIST_CNT - 2))
1343 break;
1344 }
1345
1346 if (cur_tx == NULL)
1347 return;
1348
1349 /* Transmit */
1350 csr_write_4(sc, SF_TXDQ_PRODIDX,
1351 (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
1352 ((i << 20) & 0xFFFF0000));
1353
1354 ifp->if_timer = 5;
1355
1356 return;
1357}
1358
1359static void sf_stop(sc)
1360 struct sf_softc *sc;
1361{
1362 int i;
1363 struct ifnet *ifp;
1364
1365 ifp = &sc->arpcom.ac_if;
1366
1367 untimeout(sf_stats_update, sc, sc->sf_stat_ch);
1368
1369 csr_write_4(sc, SF_GEN_ETH_CTL, 0);
1370 csr_write_4(sc, SF_CQ_CONSIDX, 0);
1371 csr_write_4(sc, SF_CQ_PRODIDX, 0);
1372 csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
1373 csr_write_4(sc, SF_RXDQ_CTL_1, 0);
1374 csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
1375 csr_write_4(sc, SF_TXCQ_CTL, 0);
1376 csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
1377 csr_write_4(sc, SF_TXDQ_CTL, 0);
1378 sf_reset(sc);
1379
1380 sc->sf_link = 0;
1381
1382 for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1383 if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
1384 m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
1385 sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
1386 }
1387 }
1388
1389 for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1390 if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1391 m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
1392 sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
1393 }
1394 }
1395
1396 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1397
1398 return;
1399}
1400
1401/*
1402 * Note: it is important that this function not be interrupted. We
1403 * use a two-stage register access scheme: if we are interrupted in
1404 * between setting the indirect address register and reading from the
1405 * indirect data register, the contents of the address register could
1406 * be changed out from under us.
1407 */
1408static void sf_stats_update(xsc)
1409 void *xsc;
1410{
1411 struct sf_softc *sc;
1412 struct ifnet *ifp;
1413 struct mii_data *mii;
1414 struct sf_stats stats;
1415 u_int32_t *ptr;
1416 int i, s;
1417
1418 s = splimp();
1419
1420 sc = xsc;
1421 ifp = &sc->arpcom.ac_if;
1422 mii = device_get_softc(sc->sf_miibus);
1423
1424 ptr = (u_int32_t *)&stats;
1425 for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1426 ptr[i] = csr_read_4(sc, SF_STATS_BASE +
1427 (i + sizeof(u_int32_t)));
1428
1429 for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1430 csr_write_4(sc, SF_STATS_BASE +
1431 (i + sizeof(u_int32_t)), 0);
1432
1433 ifp->if_collisions += stats.sf_tx_single_colls +
1434 stats.sf_tx_multi_colls + stats.sf_tx_excess_colls;
1435
1436 mii_tick(mii);
1437 if (!sc->sf_link) {
1438 mii_pollstat(mii);
1439 if (mii->mii_media_status & IFM_ACTIVE &&
1440 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1441 sc->sf_link++;
1442 if (ifp->if_snd.ifq_head != NULL)
1443 sf_start(ifp);
1444 }
1445
1446 sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
1447
1448 splx(s);
1449
1450 return;
1451}
1452
1453static void sf_watchdog(ifp)
1454 struct ifnet *ifp;
1455{
1456 struct sf_softc *sc;
1457
1458 sc = ifp->if_softc;
1459
1460 ifp->if_oerrors++;
1461 printf("sf%d: watchdog timeout\n", sc->sf_unit);
1462
1463 sf_stop(sc);
1464 sf_reset(sc);
1465 sf_init(sc);
1466
1467 if (ifp->if_snd.ifq_head != NULL)
1468 sf_start(ifp);
1469
1470 return;
1471}
1472
1473static void sf_shutdown(dev)
1474 device_t dev;
1475{
1476 struct sf_softc *sc;
1477
1478 sc = device_get_softc(dev);
1479
1480 sf_stop(sc);
1481
1482 return;
1483}
854 sf_stop(sc);
855
856 bus_generic_detach(dev);
857 device_delete_child(dev, sc->sf_miibus);
858
859 bus_teardown_intr(dev, sc->sf_irq, sc->sf_intrhand);
860 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sf_irq);
861 bus_release_resource(dev, SF_RES, SF_RID, sc->sf_res);
862
863 contigfree(sc->sf_ldata, sizeof(struct sf_list_data), M_DEVBUF);
864
865 splx(s);
866
867 return(0);
868}
869
870static int sf_init_rx_ring(sc)
871 struct sf_softc *sc;
872{
873 struct sf_list_data *ld;
874 int i;
875
876 ld = sc->sf_ldata;
877
878 bzero((char *)ld->sf_rx_dlist_big,
879 sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT);
880 bzero((char *)ld->sf_rx_clist,
881 sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT);
882
883 for (i = 0; i < SF_RX_DLIST_CNT; i++) {
884 if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS)
885 return(ENOBUFS);
886 }
887
888 return(0);
889}
890
891static void sf_init_tx_ring(sc)
892 struct sf_softc *sc;
893{
894 struct sf_list_data *ld;
895 int i;
896
897 ld = sc->sf_ldata;
898
899 bzero((char *)ld->sf_tx_dlist,
900 sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT);
901 bzero((char *)ld->sf_tx_clist,
902 sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT);
903
904 for (i = 0; i < SF_TX_DLIST_CNT; i++)
905 ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID;
906 for (i = 0; i < SF_TX_CLIST_CNT; i++)
907 ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX;
908
909 ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1;
910 sc->sf_tx_cnt = 0;
911
912 return;
913}
914
915static int sf_newbuf(sc, c, m)
916 struct sf_softc *sc;
917 struct sf_rx_bufdesc_type0 *c;
918 struct mbuf *m;
919{
920 struct mbuf *m_new = NULL;
921
922 if (m == NULL) {
923 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
924 if (m_new == NULL) {
925 printf("sf%d: no memory for rx list -- "
926 "packet dropped!\n", sc->sf_unit);
927 return(ENOBUFS);
928 }
929
930 MCLGET(m_new, M_DONTWAIT);
931 if (!(m_new->m_flags & M_EXT)) {
932 printf("sf%d: no memory for rx list -- "
933 "packet dropped!\n", sc->sf_unit);
934 m_freem(m_new);
935 return(ENOBUFS);
936 }
937 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
938 } else {
939 m_new = m;
940 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
941 m_new->m_data = m_new->m_ext.ext_buf;
942 }
943
944 m_adj(m_new, sizeof(u_int64_t));
945
946 c->sf_mbuf = m_new;
947 c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t)));
948 c->sf_valid = 1;
949
950 return(0);
951}
952
953/*
954 * The starfire is programmed to use 'normal' mode for packet reception,
955 * which means we use the consumer/producer model for both the buffer
956 * descriptor queue and the completion descriptor queue. The only problem
957 * with this is that it involves a lot of register accesses: we have to
958 * read the RX completion consumer and producer indexes and the RX buffer
959 * producer index, plus the RX completion consumer and RX buffer producer
960 * indexes have to be updated. It would have been easier if Adaptec had
961 * put each index in a separate register, especially given that the damn
962 * NIC has a 512K register space.
963 *
964 * In spite of all the lovely features that Adaptec crammed into the 6915,
965 * it is marred by one truly stupid design flaw, which is that receive
966 * buffer addresses must be aligned on a longword boundary. This forces
967 * the packet payload to be unaligned, which is suboptimal on the x86 and
968 * completely unuseable on the Alpha. Our only recourse is to copy received
969 * packets into properly aligned buffers before handing them off.
970 */
971
972static void sf_rxeof(sc)
973 struct sf_softc *sc;
974{
975 struct ether_header *eh;
976 struct mbuf *m;
977 struct ifnet *ifp;
978 struct sf_rx_bufdesc_type0 *desc;
979 struct sf_rx_cmpdesc_type3 *cur_rx;
980 u_int32_t rxcons, rxprod;
981 int cmpprodidx, cmpconsidx, bufprodidx;
982
983 ifp = &sc->arpcom.ac_if;
984
985 rxcons = csr_read_4(sc, SF_CQ_CONSIDX);
986 rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1);
987 cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX));
988 cmpconsidx = SF_IDX_LO(rxcons);
989 bufprodidx = SF_IDX_LO(rxprod);
990
991 while (cmpconsidx != cmpprodidx) {
992 struct mbuf *m0;
993
994 cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx];
995 desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx];
996 m = desc->sf_mbuf;
997 SF_INC(cmpconsidx, SF_RX_CLIST_CNT);
998 SF_INC(bufprodidx, SF_RX_DLIST_CNT);
999
1000 if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) {
1001 ifp->if_ierrors++;
1002 sf_newbuf(sc, desc, m);
1003 continue;
1004 }
1005
1006 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1007 cur_rx->sf_len + ETHER_ALIGN, 0, ifp, NULL);
1008 sf_newbuf(sc, desc, m);
1009 if (m0 == NULL) {
1010 ifp->if_ierrors++;
1011 continue;
1012 }
1013 m_adj(m0, ETHER_ALIGN);
1014 m = m0;
1015
1016 eh = mtod(m, struct ether_header *);
1017 ifp->if_ipackets++;
1018
1019 /* Remove header from mbuf and pass it on. */
1020 m_adj(m, sizeof(struct ether_header));
1021 ether_input(ifp, eh, m);
1022 }
1023
1024 csr_write_4(sc, SF_CQ_CONSIDX,
1025 (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx);
1026 csr_write_4(sc, SF_RXDQ_PTR_Q1,
1027 (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx);
1028
1029 return;
1030}
1031
1032/*
1033 * Read the transmit status from the completion queue and release
1034 * mbufs. Note that the buffer descriptor index in the completion
1035 * descriptor is an offset from the start of the transmit buffer
1036 * descriptor list in bytes. This is important because the manual
1037 * gives the impression that it should match the producer/consumer
1038 * index, which is the offset in 8 byte blocks.
1039 */
1040static void sf_txeof(sc)
1041 struct sf_softc *sc;
1042{
1043 int txcons, cmpprodidx, cmpconsidx;
1044 struct sf_tx_cmpdesc_type1 *cur_cmp;
1045 struct sf_tx_bufdesc_type0 *cur_tx;
1046 struct ifnet *ifp;
1047
1048 ifp = &sc->arpcom.ac_if;
1049
1050 txcons = csr_read_4(sc, SF_CQ_CONSIDX);
1051 cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX));
1052 cmpconsidx = SF_IDX_HI(txcons);
1053
1054 while (cmpconsidx != cmpprodidx) {
1055 cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx];
1056 cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7];
1057 SF_INC(cmpconsidx, SF_TX_CLIST_CNT);
1058
1059 if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK)
1060 ifp->if_opackets++;
1061 else
1062 ifp->if_oerrors++;
1063
1064 sc->sf_tx_cnt--;
1065 if (cur_tx->sf_mbuf != NULL) {
1066 m_freem(cur_tx->sf_mbuf);
1067 cur_tx->sf_mbuf = NULL;
1068 }
1069 }
1070
1071 ifp->if_timer = 0;
1072 ifp->if_flags &= ~IFF_OACTIVE;
1073
1074 csr_write_4(sc, SF_CQ_CONSIDX,
1075 (txcons & ~SF_CQ_CONSIDX_TXQ) |
1076 ((cmpconsidx << 16) & 0xFFFF0000));
1077
1078 return;
1079}
1080
1081static void sf_intr(arg)
1082 void *arg;
1083{
1084 struct sf_softc *sc;
1085 struct ifnet *ifp;
1086 u_int32_t status;
1087
1088 sc = arg;
1089 ifp = &sc->arpcom.ac_if;
1090
1091 if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED))
1092 return;
1093
1094 /* Disable interrupts. */
1095 csr_write_4(sc, SF_IMR, 0x00000000);
1096
1097 for (;;) {
1098 status = csr_read_4(sc, SF_ISR);
1099 if (status)
1100 csr_write_4(sc, SF_ISR, status);
1101
1102 if (!(status & SF_INTRS))
1103 break;
1104
1105 if (status & SF_ISR_RXDQ1_DMADONE)
1106 sf_rxeof(sc);
1107
1108 if (status & SF_ISR_TX_TXDONE)
1109 sf_txeof(sc);
1110
1111 if (status & SF_ISR_ABNORMALINTR) {
1112 if (status & SF_ISR_STATSOFLOW) {
1113 untimeout(sf_stats_update, sc,
1114 sc->sf_stat_ch);
1115 sf_stats_update(sc);
1116 } else
1117 sf_init(sc);
1118 }
1119 }
1120
1121 /* Re-enable interrupts. */
1122 csr_write_4(sc, SF_IMR, SF_INTRS);
1123
1124 if (ifp->if_snd.ifq_head != NULL)
1125 sf_start(ifp);
1126
1127 return;
1128}
1129
1130static void sf_init(xsc)
1131 void *xsc;
1132{
1133 struct sf_softc *sc;
1134 struct ifnet *ifp;
1135 struct mii_data *mii;
1136 int i, s;
1137
1138 s = splimp();
1139
1140 sc = xsc;
1141 ifp = &sc->arpcom.ac_if;
1142 mii = device_get_softc(sc->sf_miibus);
1143
1144 sf_stop(sc);
1145 sf_reset(sc);
1146
1147 /* Init all the receive filter registers */
1148 for (i = SF_RXFILT_PERFECT_BASE;
1149 i < (SF_RXFILT_HASH_MAX + 1); i += 4)
1150 csr_write_4(sc, i, 0);
1151
1152 /* Empty stats counter registers. */
1153 for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++)
1154 csr_write_4(sc, SF_STATS_BASE +
1155 (i + sizeof(u_int32_t)), 0);
1156
1157 /* Init our MAC address */
1158 csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
1159 csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
1160 sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr);
1161
1162 if (sf_init_rx_ring(sc) == ENOBUFS) {
1163 printf("sf%d: initialization failed: no "
1164 "memory for rx buffers\n", sc->sf_unit);
1165 (void)splx(s);
1166 return;
1167 }
1168
1169 sf_init_tx_ring(sc);
1170
1171 csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN);
1172
1173 /* If we want promiscuous mode, set the allframes bit. */
1174 if (ifp->if_flags & IFF_PROMISC) {
1175 SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1176 } else {
1177 SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC);
1178 }
1179
1180 if (ifp->if_flags & IFF_BROADCAST) {
1181 SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1182 } else {
1183 SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD);
1184 }
1185
1186 /* Init the completion queue indexes */
1187 csr_write_4(sc, SF_CQ_CONSIDX, 0);
1188 csr_write_4(sc, SF_CQ_PRODIDX, 0);
1189
1190 /* Init the RX completion queue */
1191 csr_write_4(sc, SF_RXCQ_CTL_1,
1192 vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR);
1193 SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3);
1194
1195 /* Init RX DMA control. */
1196 SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS);
1197
1198 /* Init the RX buffer descriptor queue. */
1199 csr_write_4(sc, SF_RXDQ_ADDR_Q1,
1200 vtophys(sc->sf_ldata->sf_rx_dlist_big));
1201 csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES);
1202 csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1);
1203
1204 /* Init the TX completion queue */
1205 csr_write_4(sc, SF_TXCQ_CTL,
1206 vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR);
1207
1208 /* Init the TX buffer descriptor queue. */
1209 csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO,
1210 vtophys(sc->sf_ldata->sf_tx_dlist));
1211 SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX);
1212 csr_write_4(sc, SF_TXDQ_CTL,
1213 SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES);
1214 SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP);
1215
1216 /* Enable autopadding of short TX frames. */
1217 SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD);
1218
1219 /* Enable interrupts. */
1220 csr_write_4(sc, SF_IMR, SF_INTRS);
1221 SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB);
1222
1223 /* Enable the RX and TX engines. */
1224 SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB);
1225 SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB);
1226
1227 /*mii_mediachg(mii);*/
1228 sf_ifmedia_upd(ifp);
1229
1230 ifp->if_flags |= IFF_RUNNING;
1231 ifp->if_flags &= ~IFF_OACTIVE;
1232
1233 sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
1234
1235 splx(s);
1236
1237 return;
1238}
1239
1240static int sf_encap(sc, c, m_head)
1241 struct sf_softc *sc;
1242 struct sf_tx_bufdesc_type0 *c;
1243 struct mbuf *m_head;
1244{
1245 int frag = 0;
1246 struct sf_frag *f = NULL;
1247 struct mbuf *m;
1248
1249 m = m_head;
1250
1251 for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1252 if (m->m_len != 0) {
1253 if (frag == SF_MAXFRAGS)
1254 break;
1255 f = &c->sf_frags[frag];
1256 if (frag == 0)
1257 f->sf_pktlen = m_head->m_pkthdr.len;
1258 f->sf_fraglen = m->m_len;
1259 f->sf_addr = vtophys(mtod(m, vm_offset_t));
1260 frag++;
1261 }
1262 }
1263
1264 if (m != NULL) {
1265 struct mbuf *m_new = NULL;
1266
1267 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1268 if (m_new == NULL) {
1269 printf("sf%d: no memory for tx list", sc->sf_unit);
1270 return(1);
1271 }
1272
1273 if (m_head->m_pkthdr.len > MHLEN) {
1274 MCLGET(m_new, M_DONTWAIT);
1275 if (!(m_new->m_flags & M_EXT)) {
1276 m_freem(m_new);
1277 printf("sf%d: no memory for tx list",
1278 sc->sf_unit);
1279 return(1);
1280 }
1281 }
1282 m_copydata(m_head, 0, m_head->m_pkthdr.len,
1283 mtod(m_new, caddr_t));
1284 m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1285 m_freem(m_head);
1286 m_head = m_new;
1287 f = &c->sf_frags[0];
1288 f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len;
1289 f->sf_addr = vtophys(mtod(m_head, caddr_t));
1290 frag = 1;
1291 }
1292
1293 c->sf_mbuf = m_head;
1294 c->sf_id = SF_TX_BUFDESC_ID;
1295 c->sf_fragcnt = frag;
1296 c->sf_intr = 1;
1297 c->sf_caltcp = 0;
1298 c->sf_crcen = 1;
1299
1300 return(0);
1301}
1302
1303static void sf_start(ifp)
1304 struct ifnet *ifp;
1305{
1306 struct sf_softc *sc;
1307 struct sf_tx_bufdesc_type0 *cur_tx = NULL;
1308 struct mbuf *m_head = NULL;
1309 int i, txprod;
1310
1311 sc = ifp->if_softc;
1312
1313 if (!sc->sf_link)
1314 return;
1315
1316 if (ifp->if_flags & IFF_OACTIVE)
1317 return;
1318
1319 txprod = csr_read_4(sc, SF_TXDQ_PRODIDX);
1320 i = SF_IDX_HI(txprod) >> 4;
1321
1322 while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) {
1323 IF_DEQUEUE(&ifp->if_snd, m_head);
1324 if (m_head == NULL)
1325 break;
1326
1327 cur_tx = &sc->sf_ldata->sf_tx_dlist[i];
1328 sf_encap(sc, cur_tx, m_head);
1329
1330 /*
1331 * If there's a BPF listener, bounce a copy of this frame
1332 * to him.
1333 */
1334 if (ifp->if_bpf)
1335 bpf_mtap(ifp, m_head);
1336
1337 SF_INC(i, SF_TX_DLIST_CNT);
1338 sc->sf_tx_cnt++;
1339 if (sc->sf_tx_cnt == (SF_TX_DLIST_CNT - 2))
1340 break;
1341 }
1342
1343 if (cur_tx == NULL)
1344 return;
1345
1346 /* Transmit */
1347 csr_write_4(sc, SF_TXDQ_PRODIDX,
1348 (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) |
1349 ((i << 20) & 0xFFFF0000));
1350
1351 ifp->if_timer = 5;
1352
1353 return;
1354}
1355
1356static void sf_stop(sc)
1357 struct sf_softc *sc;
1358{
1359 int i;
1360 struct ifnet *ifp;
1361
1362 ifp = &sc->arpcom.ac_if;
1363
1364 untimeout(sf_stats_update, sc, sc->sf_stat_ch);
1365
1366 csr_write_4(sc, SF_GEN_ETH_CTL, 0);
1367 csr_write_4(sc, SF_CQ_CONSIDX, 0);
1368 csr_write_4(sc, SF_CQ_PRODIDX, 0);
1369 csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0);
1370 csr_write_4(sc, SF_RXDQ_CTL_1, 0);
1371 csr_write_4(sc, SF_RXDQ_PTR_Q1, 0);
1372 csr_write_4(sc, SF_TXCQ_CTL, 0);
1373 csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0);
1374 csr_write_4(sc, SF_TXDQ_CTL, 0);
1375 sf_reset(sc);
1376
1377 sc->sf_link = 0;
1378
1379 for (i = 0; i < SF_RX_DLIST_CNT; i++) {
1380 if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) {
1381 m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf);
1382 sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL;
1383 }
1384 }
1385
1386 for (i = 0; i < SF_TX_DLIST_CNT; i++) {
1387 if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) {
1388 m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf);
1389 sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL;
1390 }
1391 }
1392
1393 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1394
1395 return;
1396}
1397
1398/*
1399 * Note: it is important that this function not be interrupted. We
1400 * use a two-stage register access scheme: if we are interrupted in
1401 * between setting the indirect address register and reading from the
1402 * indirect data register, the contents of the address register could
1403 * be changed out from under us.
1404 */
1405static void sf_stats_update(xsc)
1406 void *xsc;
1407{
1408 struct sf_softc *sc;
1409 struct ifnet *ifp;
1410 struct mii_data *mii;
1411 struct sf_stats stats;
1412 u_int32_t *ptr;
1413 int i, s;
1414
1415 s = splimp();
1416
1417 sc = xsc;
1418 ifp = &sc->arpcom.ac_if;
1419 mii = device_get_softc(sc->sf_miibus);
1420
1421 ptr = (u_int32_t *)&stats;
1422 for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1423 ptr[i] = csr_read_4(sc, SF_STATS_BASE +
1424 (i + sizeof(u_int32_t)));
1425
1426 for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++)
1427 csr_write_4(sc, SF_STATS_BASE +
1428 (i + sizeof(u_int32_t)), 0);
1429
1430 ifp->if_collisions += stats.sf_tx_single_colls +
1431 stats.sf_tx_multi_colls + stats.sf_tx_excess_colls;
1432
1433 mii_tick(mii);
1434 if (!sc->sf_link) {
1435 mii_pollstat(mii);
1436 if (mii->mii_media_status & IFM_ACTIVE &&
1437 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
1438 sc->sf_link++;
1439 if (ifp->if_snd.ifq_head != NULL)
1440 sf_start(ifp);
1441 }
1442
1443 sc->sf_stat_ch = timeout(sf_stats_update, sc, hz);
1444
1445 splx(s);
1446
1447 return;
1448}
1449
1450static void sf_watchdog(ifp)
1451 struct ifnet *ifp;
1452{
1453 struct sf_softc *sc;
1454
1455 sc = ifp->if_softc;
1456
1457 ifp->if_oerrors++;
1458 printf("sf%d: watchdog timeout\n", sc->sf_unit);
1459
1460 sf_stop(sc);
1461 sf_reset(sc);
1462 sf_init(sc);
1463
1464 if (ifp->if_snd.ifq_head != NULL)
1465 sf_start(ifp);
1466
1467 return;
1468}
1469
1470static void sf_shutdown(dev)
1471 device_t dev;
1472{
1473 struct sf_softc *sc;
1474
1475 sc = device_get_softc(dev);
1476
1477 sf_stop(sc);
1478
1479 return;
1480}