Deleted Added
full compact
acpi_cpu.c (166184) acpi_cpu.c (167814)
1/*-
2 * Copyright (c) 2003-2005 Nate Lawson (SDG)
3 * Copyright (c) 2001 Michael Smith
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
1/*-
2 * Copyright (c) 2003-2005 Nate Lawson (SDG)
3 * Copyright (c) 2001 Michael Smith
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/dev/acpica/acpi_cpu.c 166184 2007-01-23 07:20:44Z njl $");
29__FBSDID("$FreeBSD: head/sys/dev/acpica/acpi_cpu.c 167814 2007-03-22 18:16:43Z jkim $");
30
31#include "opt_acpi.h"
32#include <sys/param.h>
33#include <sys/bus.h>
34#include <sys/cpu.h>
35#include <sys/kernel.h>
36#include <sys/malloc.h>
37#include <sys/module.h>
38#include <sys/pcpu.h>
39#include <sys/power.h>
40#include <sys/proc.h>
41#include <sys/sbuf.h>
42#include <sys/smp.h>
43
44#include <dev/pci/pcivar.h>
45#include <machine/atomic.h>
46#include <machine/bus.h>
47#include <sys/rman.h>
48
49#include <contrib/dev/acpica/acpi.h>
50#include <dev/acpica/acpivar.h>
51
52/*
53 * Support for ACPI Processor devices, including C[1-3] sleep states.
54 */
55
56/* Hooks for the ACPI CA debugging infrastructure */
57#define _COMPONENT ACPI_PROCESSOR
58ACPI_MODULE_NAME("PROCESSOR")
59
60struct acpi_cx {
61 struct resource *p_lvlx; /* Register to read to enter state. */
62 uint32_t type; /* C1-3 (C4 and up treated as C3). */
63 uint32_t trans_lat; /* Transition latency (usec). */
64 uint32_t power; /* Power consumed (mW). */
65 int res_type; /* Resource type for p_lvlx. */
66};
67#define MAX_CX_STATES 8
68
69struct acpi_cpu_softc {
70 device_t cpu_dev;
71 ACPI_HANDLE cpu_handle;
72 struct pcpu *cpu_pcpu;
73 uint32_t cpu_acpi_id; /* ACPI processor id */
74 uint32_t cpu_p_blk; /* ACPI P_BLK location */
75 uint32_t cpu_p_blk_len; /* P_BLK length (must be 6). */
76 struct acpi_cx cpu_cx_states[MAX_CX_STATES];
77 int cpu_cx_count; /* Number of valid Cx states. */
78 int cpu_prev_sleep;/* Last idle sleep duration. */
79 int cpu_features; /* Child driver supported features. */
80 /* Runtime state. */
81 int cpu_non_c3; /* Index of lowest non-C3 state. */
82 int cpu_short_slp; /* Count of < 1us sleeps. */
83 u_int cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */
84 /* Values for sysctl. */
85 struct sysctl_ctx_list cpu_sysctl_ctx;
86 struct sysctl_oid *cpu_sysctl_tree;
87 int cpu_cx_lowest;
88 char cpu_cx_supported[64];
89 int cpu_rid;
90};
91
92struct acpi_cpu_device {
93 struct resource_list ad_rl;
94};
95
96#define CPU_GET_REG(reg, width) \
97 (bus_space_read_ ## width(rman_get_bustag((reg)), \
98 rman_get_bushandle((reg)), 0))
99#define CPU_SET_REG(reg, width, val) \
100 (bus_space_write_ ## width(rman_get_bustag((reg)), \
101 rman_get_bushandle((reg)), 0, (val)))
102
103#define PM_USEC(x) ((x) >> 2) /* ~4 clocks per usec (3.57955 Mhz) */
104
105#define ACPI_NOTIFY_CX_STATES 0x81 /* _CST changed. */
106
107#define CPU_QUIRK_NO_C3 (1<<0) /* C3-type states are not usable. */
108#define CPU_QUIRK_NO_BM_CTRL (1<<2) /* No bus mastering control. */
109
110#define PCI_VENDOR_INTEL 0x8086
111#define PCI_DEVICE_82371AB_3 0x7113 /* PIIX4 chipset for quirks. */
112#define PCI_REVISION_A_STEP 0
113#define PCI_REVISION_B_STEP 1
114#define PCI_REVISION_4E 2
115#define PCI_REVISION_4M 3
116
117/* Platform hardware resource information. */
118static uint32_t cpu_smi_cmd; /* Value to write to SMI_CMD. */
119static uint8_t cpu_cst_cnt; /* Indicate we are _CST aware. */
120static int cpu_quirks; /* Indicate any hardware bugs. */
121
122/* Runtime state. */
123static int cpu_disable_idle; /* Disable entry to idle function */
124static int cpu_cx_count; /* Number of valid Cx states */
125
126/* Values for sysctl. */
127static struct sysctl_ctx_list cpu_sysctl_ctx;
128static struct sysctl_oid *cpu_sysctl_tree;
129static int cpu_cx_generic;
130static int cpu_cx_lowest;
131
132static device_t *cpu_devices;
133static int cpu_ndevices;
134static struct acpi_cpu_softc **cpu_softc;
135ACPI_SERIAL_DECL(cpu, "ACPI CPU");
136
137static int acpi_cpu_probe(device_t dev);
138static int acpi_cpu_attach(device_t dev);
139static int acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id,
140 uint32_t *cpu_id);
141static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child);
142static device_t acpi_cpu_add_child(device_t dev, int order, const char *name,
143 int unit);
144static int acpi_cpu_read_ivar(device_t dev, device_t child, int index,
145 uintptr_t *result);
146static int acpi_cpu_shutdown(device_t dev);
147static void acpi_cpu_cx_probe(struct acpi_cpu_softc *sc);
148static void acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc);
149static int acpi_cpu_cx_cst(struct acpi_cpu_softc *sc);
150static void acpi_cpu_startup(void *arg);
151static void acpi_cpu_startup_cx(struct acpi_cpu_softc *sc);
152static void acpi_cpu_idle(void);
153static void acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context);
154static int acpi_cpu_quirks(void);
155static int acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS);
156static int acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
157static int acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
158
159static device_method_t acpi_cpu_methods[] = {
160 /* Device interface */
161 DEVMETHOD(device_probe, acpi_cpu_probe),
162 DEVMETHOD(device_attach, acpi_cpu_attach),
163 DEVMETHOD(device_detach, bus_generic_detach),
164 DEVMETHOD(device_shutdown, acpi_cpu_shutdown),
165 DEVMETHOD(device_suspend, bus_generic_suspend),
166 DEVMETHOD(device_resume, bus_generic_resume),
167
168 /* Bus interface */
169 DEVMETHOD(bus_add_child, acpi_cpu_add_child),
170 DEVMETHOD(bus_read_ivar, acpi_cpu_read_ivar),
171 DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist),
172 DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource),
173 DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource),
174 DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource),
175 DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
176 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
177 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
178 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
179 DEVMETHOD(bus_setup_intr, bus_generic_setup_intr),
180 DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
181
182 {0, 0}
183};
184
185static driver_t acpi_cpu_driver = {
186 "cpu",
187 acpi_cpu_methods,
188 sizeof(struct acpi_cpu_softc),
189};
190
191static devclass_t acpi_cpu_devclass;
192DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, acpi_cpu_devclass, 0, 0);
193MODULE_DEPEND(cpu, acpi, 1, 1, 1);
194
195static int
196acpi_cpu_probe(device_t dev)
197{
198 int acpi_id, cpu_id;
199 ACPI_BUFFER buf;
200 ACPI_HANDLE handle;
201 ACPI_OBJECT *obj;
202 ACPI_STATUS status;
203
204 if (acpi_disabled("cpu") || acpi_get_type(dev) != ACPI_TYPE_PROCESSOR)
205 return (ENXIO);
206
207 handle = acpi_get_handle(dev);
208 if (cpu_softc == NULL)
209 cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) *
210 (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO);
211
212 /* Get our Processor object. */
213 buf.Pointer = NULL;
214 buf.Length = ACPI_ALLOCATE_BUFFER;
215 status = AcpiEvaluateObject(handle, NULL, NULL, &buf);
216 if (ACPI_FAILURE(status)) {
217 device_printf(dev, "probe failed to get Processor obj - %s\n",
218 AcpiFormatException(status));
219 return (ENXIO);
220 }
221 obj = (ACPI_OBJECT *)buf.Pointer;
222 if (obj->Type != ACPI_TYPE_PROCESSOR) {
223 device_printf(dev, "Processor object has bad type %d\n", obj->Type);
224 AcpiOsFree(obj);
225 return (ENXIO);
226 }
227
228 /*
229 * Find the processor associated with our unit. We could use the
230 * ProcId as a key, however, some boxes do not have the same values
231 * in their Processor object as the ProcId values in the MADT.
232 */
233 acpi_id = obj->Processor.ProcId;
234 AcpiOsFree(obj);
235 if (acpi_pcpu_get_id(device_get_unit(dev), &acpi_id, &cpu_id) != 0)
236 return (ENXIO);
237
238 /*
239 * Check if we already probed this processor. We scan the bus twice
240 * so it's possible we've already seen this one.
241 */
242 if (cpu_softc[cpu_id] != NULL)
243 return (ENXIO);
244
245 /* Mark this processor as in-use and save our derived id for attach. */
246 cpu_softc[cpu_id] = (void *)1;
247 acpi_set_magic(dev, cpu_id);
248 device_set_desc(dev, "ACPI CPU");
249
250 return (0);
251}
252
253static int
254acpi_cpu_attach(device_t dev)
255{
256 ACPI_BUFFER buf;
257 ACPI_OBJECT arg, *obj;
258 ACPI_OBJECT_LIST arglist;
259 struct pcpu *pcpu_data;
260 struct acpi_cpu_softc *sc;
261 struct acpi_softc *acpi_sc;
262 ACPI_STATUS status;
263 u_int features;
264 int cpu_id, drv_count, i;
265 driver_t **drivers;
266 uint32_t cap_set[3];
267
268 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
269
270 sc = device_get_softc(dev);
271 sc->cpu_dev = dev;
272 sc->cpu_handle = acpi_get_handle(dev);
273 cpu_id = acpi_get_magic(dev);
274 cpu_softc[cpu_id] = sc;
275 pcpu_data = pcpu_find(cpu_id);
276 pcpu_data->pc_device = dev;
277 sc->cpu_pcpu = pcpu_data;
30
31#include "opt_acpi.h"
32#include <sys/param.h>
33#include <sys/bus.h>
34#include <sys/cpu.h>
35#include <sys/kernel.h>
36#include <sys/malloc.h>
37#include <sys/module.h>
38#include <sys/pcpu.h>
39#include <sys/power.h>
40#include <sys/proc.h>
41#include <sys/sbuf.h>
42#include <sys/smp.h>
43
44#include <dev/pci/pcivar.h>
45#include <machine/atomic.h>
46#include <machine/bus.h>
47#include <sys/rman.h>
48
49#include <contrib/dev/acpica/acpi.h>
50#include <dev/acpica/acpivar.h>
51
52/*
53 * Support for ACPI Processor devices, including C[1-3] sleep states.
54 */
55
56/* Hooks for the ACPI CA debugging infrastructure */
57#define _COMPONENT ACPI_PROCESSOR
58ACPI_MODULE_NAME("PROCESSOR")
59
60struct acpi_cx {
61 struct resource *p_lvlx; /* Register to read to enter state. */
62 uint32_t type; /* C1-3 (C4 and up treated as C3). */
63 uint32_t trans_lat; /* Transition latency (usec). */
64 uint32_t power; /* Power consumed (mW). */
65 int res_type; /* Resource type for p_lvlx. */
66};
67#define MAX_CX_STATES 8
68
69struct acpi_cpu_softc {
70 device_t cpu_dev;
71 ACPI_HANDLE cpu_handle;
72 struct pcpu *cpu_pcpu;
73 uint32_t cpu_acpi_id; /* ACPI processor id */
74 uint32_t cpu_p_blk; /* ACPI P_BLK location */
75 uint32_t cpu_p_blk_len; /* P_BLK length (must be 6). */
76 struct acpi_cx cpu_cx_states[MAX_CX_STATES];
77 int cpu_cx_count; /* Number of valid Cx states. */
78 int cpu_prev_sleep;/* Last idle sleep duration. */
79 int cpu_features; /* Child driver supported features. */
80 /* Runtime state. */
81 int cpu_non_c3; /* Index of lowest non-C3 state. */
82 int cpu_short_slp; /* Count of < 1us sleeps. */
83 u_int cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */
84 /* Values for sysctl. */
85 struct sysctl_ctx_list cpu_sysctl_ctx;
86 struct sysctl_oid *cpu_sysctl_tree;
87 int cpu_cx_lowest;
88 char cpu_cx_supported[64];
89 int cpu_rid;
90};
91
92struct acpi_cpu_device {
93 struct resource_list ad_rl;
94};
95
96#define CPU_GET_REG(reg, width) \
97 (bus_space_read_ ## width(rman_get_bustag((reg)), \
98 rman_get_bushandle((reg)), 0))
99#define CPU_SET_REG(reg, width, val) \
100 (bus_space_write_ ## width(rman_get_bustag((reg)), \
101 rman_get_bushandle((reg)), 0, (val)))
102
103#define PM_USEC(x) ((x) >> 2) /* ~4 clocks per usec (3.57955 Mhz) */
104
105#define ACPI_NOTIFY_CX_STATES 0x81 /* _CST changed. */
106
107#define CPU_QUIRK_NO_C3 (1<<0) /* C3-type states are not usable. */
108#define CPU_QUIRK_NO_BM_CTRL (1<<2) /* No bus mastering control. */
109
110#define PCI_VENDOR_INTEL 0x8086
111#define PCI_DEVICE_82371AB_3 0x7113 /* PIIX4 chipset for quirks. */
112#define PCI_REVISION_A_STEP 0
113#define PCI_REVISION_B_STEP 1
114#define PCI_REVISION_4E 2
115#define PCI_REVISION_4M 3
116
117/* Platform hardware resource information. */
118static uint32_t cpu_smi_cmd; /* Value to write to SMI_CMD. */
119static uint8_t cpu_cst_cnt; /* Indicate we are _CST aware. */
120static int cpu_quirks; /* Indicate any hardware bugs. */
121
122/* Runtime state. */
123static int cpu_disable_idle; /* Disable entry to idle function */
124static int cpu_cx_count; /* Number of valid Cx states */
125
126/* Values for sysctl. */
127static struct sysctl_ctx_list cpu_sysctl_ctx;
128static struct sysctl_oid *cpu_sysctl_tree;
129static int cpu_cx_generic;
130static int cpu_cx_lowest;
131
132static device_t *cpu_devices;
133static int cpu_ndevices;
134static struct acpi_cpu_softc **cpu_softc;
135ACPI_SERIAL_DECL(cpu, "ACPI CPU");
136
137static int acpi_cpu_probe(device_t dev);
138static int acpi_cpu_attach(device_t dev);
139static int acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id,
140 uint32_t *cpu_id);
141static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child);
142static device_t acpi_cpu_add_child(device_t dev, int order, const char *name,
143 int unit);
144static int acpi_cpu_read_ivar(device_t dev, device_t child, int index,
145 uintptr_t *result);
146static int acpi_cpu_shutdown(device_t dev);
147static void acpi_cpu_cx_probe(struct acpi_cpu_softc *sc);
148static void acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc);
149static int acpi_cpu_cx_cst(struct acpi_cpu_softc *sc);
150static void acpi_cpu_startup(void *arg);
151static void acpi_cpu_startup_cx(struct acpi_cpu_softc *sc);
152static void acpi_cpu_idle(void);
153static void acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context);
154static int acpi_cpu_quirks(void);
155static int acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS);
156static int acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
157static int acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
158
159static device_method_t acpi_cpu_methods[] = {
160 /* Device interface */
161 DEVMETHOD(device_probe, acpi_cpu_probe),
162 DEVMETHOD(device_attach, acpi_cpu_attach),
163 DEVMETHOD(device_detach, bus_generic_detach),
164 DEVMETHOD(device_shutdown, acpi_cpu_shutdown),
165 DEVMETHOD(device_suspend, bus_generic_suspend),
166 DEVMETHOD(device_resume, bus_generic_resume),
167
168 /* Bus interface */
169 DEVMETHOD(bus_add_child, acpi_cpu_add_child),
170 DEVMETHOD(bus_read_ivar, acpi_cpu_read_ivar),
171 DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist),
172 DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource),
173 DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource),
174 DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource),
175 DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
176 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
177 DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
178 DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
179 DEVMETHOD(bus_setup_intr, bus_generic_setup_intr),
180 DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
181
182 {0, 0}
183};
184
185static driver_t acpi_cpu_driver = {
186 "cpu",
187 acpi_cpu_methods,
188 sizeof(struct acpi_cpu_softc),
189};
190
191static devclass_t acpi_cpu_devclass;
192DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, acpi_cpu_devclass, 0, 0);
193MODULE_DEPEND(cpu, acpi, 1, 1, 1);
194
195static int
196acpi_cpu_probe(device_t dev)
197{
198 int acpi_id, cpu_id;
199 ACPI_BUFFER buf;
200 ACPI_HANDLE handle;
201 ACPI_OBJECT *obj;
202 ACPI_STATUS status;
203
204 if (acpi_disabled("cpu") || acpi_get_type(dev) != ACPI_TYPE_PROCESSOR)
205 return (ENXIO);
206
207 handle = acpi_get_handle(dev);
208 if (cpu_softc == NULL)
209 cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) *
210 (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO);
211
212 /* Get our Processor object. */
213 buf.Pointer = NULL;
214 buf.Length = ACPI_ALLOCATE_BUFFER;
215 status = AcpiEvaluateObject(handle, NULL, NULL, &buf);
216 if (ACPI_FAILURE(status)) {
217 device_printf(dev, "probe failed to get Processor obj - %s\n",
218 AcpiFormatException(status));
219 return (ENXIO);
220 }
221 obj = (ACPI_OBJECT *)buf.Pointer;
222 if (obj->Type != ACPI_TYPE_PROCESSOR) {
223 device_printf(dev, "Processor object has bad type %d\n", obj->Type);
224 AcpiOsFree(obj);
225 return (ENXIO);
226 }
227
228 /*
229 * Find the processor associated with our unit. We could use the
230 * ProcId as a key, however, some boxes do not have the same values
231 * in their Processor object as the ProcId values in the MADT.
232 */
233 acpi_id = obj->Processor.ProcId;
234 AcpiOsFree(obj);
235 if (acpi_pcpu_get_id(device_get_unit(dev), &acpi_id, &cpu_id) != 0)
236 return (ENXIO);
237
238 /*
239 * Check if we already probed this processor. We scan the bus twice
240 * so it's possible we've already seen this one.
241 */
242 if (cpu_softc[cpu_id] != NULL)
243 return (ENXIO);
244
245 /* Mark this processor as in-use and save our derived id for attach. */
246 cpu_softc[cpu_id] = (void *)1;
247 acpi_set_magic(dev, cpu_id);
248 device_set_desc(dev, "ACPI CPU");
249
250 return (0);
251}
252
253static int
254acpi_cpu_attach(device_t dev)
255{
256 ACPI_BUFFER buf;
257 ACPI_OBJECT arg, *obj;
258 ACPI_OBJECT_LIST arglist;
259 struct pcpu *pcpu_data;
260 struct acpi_cpu_softc *sc;
261 struct acpi_softc *acpi_sc;
262 ACPI_STATUS status;
263 u_int features;
264 int cpu_id, drv_count, i;
265 driver_t **drivers;
266 uint32_t cap_set[3];
267
268 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
269
270 sc = device_get_softc(dev);
271 sc->cpu_dev = dev;
272 sc->cpu_handle = acpi_get_handle(dev);
273 cpu_id = acpi_get_magic(dev);
274 cpu_softc[cpu_id] = sc;
275 pcpu_data = pcpu_find(cpu_id);
276 pcpu_data->pc_device = dev;
277 sc->cpu_pcpu = pcpu_data;
278 cpu_smi_cmd = AcpiGbl_FADT->SmiCmd;
279 cpu_cst_cnt = AcpiGbl_FADT->CstCnt;
278 cpu_smi_cmd = AcpiGbl_FADT.SmiCommand;
279 cpu_cst_cnt = AcpiGbl_FADT.CstControl;
280
281 buf.Pointer = NULL;
282 buf.Length = ACPI_ALLOCATE_BUFFER;
283 status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf);
284 if (ACPI_FAILURE(status)) {
285 device_printf(dev, "attach failed to get Processor obj - %s\n",
286 AcpiFormatException(status));
287 return (ENXIO);
288 }
289 obj = (ACPI_OBJECT *)buf.Pointer;
290 sc->cpu_p_blk = obj->Processor.PblkAddress;
291 sc->cpu_p_blk_len = obj->Processor.PblkLength;
292 sc->cpu_acpi_id = obj->Processor.ProcId;
293 AcpiOsFree(obj);
294 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n",
295 device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len));
296
297 /*
298 * If this is the first cpu we attach, create and initialize the generic
299 * resources that will be used by all acpi cpu devices.
300 */
301 if (device_get_unit(dev) == 0) {
302 /* Assume we won't be using generic Cx mode by default */
303 cpu_cx_generic = FALSE;
304
305 /* Install hw.acpi.cpu sysctl tree */
306 acpi_sc = acpi_device_get_parent_softc(dev);
307 sysctl_ctx_init(&cpu_sysctl_ctx);
308 cpu_sysctl_tree = SYSCTL_ADD_NODE(&cpu_sysctl_ctx,
309 SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu",
310 CTLFLAG_RD, 0, "node for CPU children");
311
312 /* Queue post cpu-probing task handler */
280
281 buf.Pointer = NULL;
282 buf.Length = ACPI_ALLOCATE_BUFFER;
283 status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf);
284 if (ACPI_FAILURE(status)) {
285 device_printf(dev, "attach failed to get Processor obj - %s\n",
286 AcpiFormatException(status));
287 return (ENXIO);
288 }
289 obj = (ACPI_OBJECT *)buf.Pointer;
290 sc->cpu_p_blk = obj->Processor.PblkAddress;
291 sc->cpu_p_blk_len = obj->Processor.PblkLength;
292 sc->cpu_acpi_id = obj->Processor.ProcId;
293 AcpiOsFree(obj);
294 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n",
295 device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len));
296
297 /*
298 * If this is the first cpu we attach, create and initialize the generic
299 * resources that will be used by all acpi cpu devices.
300 */
301 if (device_get_unit(dev) == 0) {
302 /* Assume we won't be using generic Cx mode by default */
303 cpu_cx_generic = FALSE;
304
305 /* Install hw.acpi.cpu sysctl tree */
306 acpi_sc = acpi_device_get_parent_softc(dev);
307 sysctl_ctx_init(&cpu_sysctl_ctx);
308 cpu_sysctl_tree = SYSCTL_ADD_NODE(&cpu_sysctl_ctx,
309 SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu",
310 CTLFLAG_RD, 0, "node for CPU children");
311
312 /* Queue post cpu-probing task handler */
313 AcpiOsQueueForExecution(OSD_PRIORITY_LO, acpi_cpu_startup, NULL);
313 AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_cpu_startup, NULL);
314 }
315
316 /*
317 * Before calling any CPU methods, collect child driver feature hints
318 * and notify ACPI of them. We support unified SMP power control
319 * so advertise this ourselves. Note this is not the same as independent
320 * SMP control where each CPU can have different settings.
321 */
322 sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3;
323 if (devclass_get_drivers(acpi_cpu_devclass, &drivers, &drv_count) == 0) {
324 for (i = 0; i < drv_count; i++) {
325 if (ACPI_GET_FEATURES(drivers[i], &features) == 0)
326 sc->cpu_features |= features;
327 }
328 free(drivers, M_TEMP);
329 }
330
331 /*
332 * CPU capabilities are specified as a buffer of 32-bit integers:
333 * revision, count, and one or more capabilities. The revision of
334 * "1" is not specified anywhere but seems to match Linux. We should
335 * also support _OSC here.
336 */
337 if (sc->cpu_features) {
338 arglist.Pointer = &arg;
339 arglist.Count = 1;
340 arg.Type = ACPI_TYPE_BUFFER;
341 arg.Buffer.Length = sizeof(cap_set);
342 arg.Buffer.Pointer = (uint8_t *)cap_set;
343 cap_set[0] = 1; /* revision */
344 cap_set[1] = 1; /* number of capabilities integers */
345 cap_set[2] = sc->cpu_features;
346 AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL);
347 }
348
349 /* Probe for Cx state support. */
350 acpi_cpu_cx_probe(sc);
351
352 /* Finally, call identify and probe/attach for child devices. */
353 bus_generic_probe(dev);
354 bus_generic_attach(dev);
355
356 return (0);
357}
358
359/*
360 * Find the nth present CPU and return its pc_cpuid as well as set the
361 * pc_acpi_id from the most reliable source.
362 */
363static int
364acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id, uint32_t *cpu_id)
365{
366 struct pcpu *pcpu_data;
367 uint32_t i;
368
369 KASSERT(acpi_id != NULL, ("Null acpi_id"));
370 KASSERT(cpu_id != NULL, ("Null cpu_id"));
371 for (i = 0; i <= mp_maxid; i++) {
372 if (CPU_ABSENT(i))
373 continue;
374 pcpu_data = pcpu_find(i);
375 KASSERT(pcpu_data != NULL, ("no pcpu data for %d", i));
376 if (idx-- == 0) {
377 /*
378 * If pc_acpi_id was not initialized (e.g., a non-APIC UP box)
379 * override it with the value from the ASL. Otherwise, if the
380 * two don't match, prefer the MADT-derived value. Finally,
381 * return the pc_cpuid to reference this processor.
382 */
383 if (pcpu_data->pc_acpi_id == 0xffffffff)
384 pcpu_data->pc_acpi_id = *acpi_id;
385 else if (pcpu_data->pc_acpi_id != *acpi_id)
386 *acpi_id = pcpu_data->pc_acpi_id;
387 *cpu_id = pcpu_data->pc_cpuid;
388 return (0);
389 }
390 }
391
392 return (ESRCH);
393}
394
395static struct resource_list *
396acpi_cpu_get_rlist(device_t dev, device_t child)
397{
398 struct acpi_cpu_device *ad;
399
400 ad = device_get_ivars(child);
401 if (ad == NULL)
402 return (NULL);
403 return (&ad->ad_rl);
404}
405
406static device_t
407acpi_cpu_add_child(device_t dev, int order, const char *name, int unit)
408{
409 struct acpi_cpu_device *ad;
410 device_t child;
411
412 if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL)
413 return (NULL);
414
415 resource_list_init(&ad->ad_rl);
416
417 child = device_add_child_ordered(dev, order, name, unit);
418 if (child != NULL)
419 device_set_ivars(child, ad);
420 else
421 free(ad, M_TEMP);
422 return (child);
423}
424
425static int
426acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
427{
428 struct acpi_cpu_softc *sc;
429
430 sc = device_get_softc(dev);
431 switch (index) {
432 case ACPI_IVAR_HANDLE:
433 *result = (uintptr_t)sc->cpu_handle;
434 break;
435 case CPU_IVAR_PCPU:
436 *result = (uintptr_t)sc->cpu_pcpu;
437 break;
438 default:
439 return (ENOENT);
440 }
441 return (0);
442}
443
444static int
445acpi_cpu_shutdown(device_t dev)
446{
447 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
448
449 /* Allow children to shutdown first. */
450 bus_generic_shutdown(dev);
451
452 /* Disable any entry to the idle function. */
453 cpu_disable_idle = TRUE;
454
455 /* Signal and wait for all processors to exit acpi_cpu_idle(). */
456 smp_rendezvous(NULL, NULL, NULL, NULL);
457
458 return_VALUE (0);
459}
460
461static void
462acpi_cpu_cx_probe(struct acpi_cpu_softc *sc)
463{
464 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
465
466 /* Use initial sleep value of 1 sec. to start with lowest idle state. */
467 sc->cpu_prev_sleep = 1000000;
468 sc->cpu_cx_lowest = 0;
469
470 /*
471 * Check for the ACPI 2.0 _CST sleep states object. If we can't find
472 * any, we'll revert to generic FADT/P_BLK Cx control method which will
473 * be handled by acpi_cpu_startup. We need to defer to after having
474 * probed all the cpus in the system before probing for generic Cx
475 * states as we may already have found cpus with valid _CST packages
476 */
477 if (!cpu_cx_generic && acpi_cpu_cx_cst(sc) != 0) {
478 /*
479 * We were unable to find a _CST package for this cpu or there
480 * was an error parsing it. Switch back to generic mode.
481 */
482 cpu_cx_generic = TRUE;
483 if (bootverbose)
484 device_printf(sc->cpu_dev, "switching to generic Cx mode\n");
485 }
486
487 /*
488 * TODO: _CSD Package should be checked here.
489 */
490}
491
492static void
493acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc)
494{
495 ACPI_GENERIC_ADDRESS gas;
496 struct acpi_cx *cx_ptr;
497
498 sc->cpu_cx_count = 0;
499 cx_ptr = sc->cpu_cx_states;
500
501 /* Use initial sleep value of 1 sec. to start with lowest idle state. */
502 sc->cpu_prev_sleep = 1000000;
503
504 /* C1 has been required since just after ACPI 1.0 */
505 cx_ptr->type = ACPI_STATE_C1;
506 cx_ptr->trans_lat = 0;
507 cx_ptr++;
508 sc->cpu_cx_count++;
509
510 /*
511 * The spec says P_BLK must be 6 bytes long. However, some systems
512 * use it to indicate a fractional set of features present so we
513 * take 5 as C2. Some may also have a value of 7 to indicate
514 * another C3 but most use _CST for this (as required) and having
515 * "only" C1-C3 is not a hardship.
516 */
517 if (sc->cpu_p_blk_len < 5)
518 return;
519
520 /* Validate and allocate resources for C2 (P_LVL2). */
314 }
315
316 /*
317 * Before calling any CPU methods, collect child driver feature hints
318 * and notify ACPI of them. We support unified SMP power control
319 * so advertise this ourselves. Note this is not the same as independent
320 * SMP control where each CPU can have different settings.
321 */
322 sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3;
323 if (devclass_get_drivers(acpi_cpu_devclass, &drivers, &drv_count) == 0) {
324 for (i = 0; i < drv_count; i++) {
325 if (ACPI_GET_FEATURES(drivers[i], &features) == 0)
326 sc->cpu_features |= features;
327 }
328 free(drivers, M_TEMP);
329 }
330
331 /*
332 * CPU capabilities are specified as a buffer of 32-bit integers:
333 * revision, count, and one or more capabilities. The revision of
334 * "1" is not specified anywhere but seems to match Linux. We should
335 * also support _OSC here.
336 */
337 if (sc->cpu_features) {
338 arglist.Pointer = &arg;
339 arglist.Count = 1;
340 arg.Type = ACPI_TYPE_BUFFER;
341 arg.Buffer.Length = sizeof(cap_set);
342 arg.Buffer.Pointer = (uint8_t *)cap_set;
343 cap_set[0] = 1; /* revision */
344 cap_set[1] = 1; /* number of capabilities integers */
345 cap_set[2] = sc->cpu_features;
346 AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL);
347 }
348
349 /* Probe for Cx state support. */
350 acpi_cpu_cx_probe(sc);
351
352 /* Finally, call identify and probe/attach for child devices. */
353 bus_generic_probe(dev);
354 bus_generic_attach(dev);
355
356 return (0);
357}
358
359/*
360 * Find the nth present CPU and return its pc_cpuid as well as set the
361 * pc_acpi_id from the most reliable source.
362 */
363static int
364acpi_pcpu_get_id(uint32_t idx, uint32_t *acpi_id, uint32_t *cpu_id)
365{
366 struct pcpu *pcpu_data;
367 uint32_t i;
368
369 KASSERT(acpi_id != NULL, ("Null acpi_id"));
370 KASSERT(cpu_id != NULL, ("Null cpu_id"));
371 for (i = 0; i <= mp_maxid; i++) {
372 if (CPU_ABSENT(i))
373 continue;
374 pcpu_data = pcpu_find(i);
375 KASSERT(pcpu_data != NULL, ("no pcpu data for %d", i));
376 if (idx-- == 0) {
377 /*
378 * If pc_acpi_id was not initialized (e.g., a non-APIC UP box)
379 * override it with the value from the ASL. Otherwise, if the
380 * two don't match, prefer the MADT-derived value. Finally,
381 * return the pc_cpuid to reference this processor.
382 */
383 if (pcpu_data->pc_acpi_id == 0xffffffff)
384 pcpu_data->pc_acpi_id = *acpi_id;
385 else if (pcpu_data->pc_acpi_id != *acpi_id)
386 *acpi_id = pcpu_data->pc_acpi_id;
387 *cpu_id = pcpu_data->pc_cpuid;
388 return (0);
389 }
390 }
391
392 return (ESRCH);
393}
394
395static struct resource_list *
396acpi_cpu_get_rlist(device_t dev, device_t child)
397{
398 struct acpi_cpu_device *ad;
399
400 ad = device_get_ivars(child);
401 if (ad == NULL)
402 return (NULL);
403 return (&ad->ad_rl);
404}
405
406static device_t
407acpi_cpu_add_child(device_t dev, int order, const char *name, int unit)
408{
409 struct acpi_cpu_device *ad;
410 device_t child;
411
412 if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL)
413 return (NULL);
414
415 resource_list_init(&ad->ad_rl);
416
417 child = device_add_child_ordered(dev, order, name, unit);
418 if (child != NULL)
419 device_set_ivars(child, ad);
420 else
421 free(ad, M_TEMP);
422 return (child);
423}
424
425static int
426acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
427{
428 struct acpi_cpu_softc *sc;
429
430 sc = device_get_softc(dev);
431 switch (index) {
432 case ACPI_IVAR_HANDLE:
433 *result = (uintptr_t)sc->cpu_handle;
434 break;
435 case CPU_IVAR_PCPU:
436 *result = (uintptr_t)sc->cpu_pcpu;
437 break;
438 default:
439 return (ENOENT);
440 }
441 return (0);
442}
443
444static int
445acpi_cpu_shutdown(device_t dev)
446{
447 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
448
449 /* Allow children to shutdown first. */
450 bus_generic_shutdown(dev);
451
452 /* Disable any entry to the idle function. */
453 cpu_disable_idle = TRUE;
454
455 /* Signal and wait for all processors to exit acpi_cpu_idle(). */
456 smp_rendezvous(NULL, NULL, NULL, NULL);
457
458 return_VALUE (0);
459}
460
461static void
462acpi_cpu_cx_probe(struct acpi_cpu_softc *sc)
463{
464 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
465
466 /* Use initial sleep value of 1 sec. to start with lowest idle state. */
467 sc->cpu_prev_sleep = 1000000;
468 sc->cpu_cx_lowest = 0;
469
470 /*
471 * Check for the ACPI 2.0 _CST sleep states object. If we can't find
472 * any, we'll revert to generic FADT/P_BLK Cx control method which will
473 * be handled by acpi_cpu_startup. We need to defer to after having
474 * probed all the cpus in the system before probing for generic Cx
475 * states as we may already have found cpus with valid _CST packages
476 */
477 if (!cpu_cx_generic && acpi_cpu_cx_cst(sc) != 0) {
478 /*
479 * We were unable to find a _CST package for this cpu or there
480 * was an error parsing it. Switch back to generic mode.
481 */
482 cpu_cx_generic = TRUE;
483 if (bootverbose)
484 device_printf(sc->cpu_dev, "switching to generic Cx mode\n");
485 }
486
487 /*
488 * TODO: _CSD Package should be checked here.
489 */
490}
491
492static void
493acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc)
494{
495 ACPI_GENERIC_ADDRESS gas;
496 struct acpi_cx *cx_ptr;
497
498 sc->cpu_cx_count = 0;
499 cx_ptr = sc->cpu_cx_states;
500
501 /* Use initial sleep value of 1 sec. to start with lowest idle state. */
502 sc->cpu_prev_sleep = 1000000;
503
504 /* C1 has been required since just after ACPI 1.0 */
505 cx_ptr->type = ACPI_STATE_C1;
506 cx_ptr->trans_lat = 0;
507 cx_ptr++;
508 sc->cpu_cx_count++;
509
510 /*
511 * The spec says P_BLK must be 6 bytes long. However, some systems
512 * use it to indicate a fractional set of features present so we
513 * take 5 as C2. Some may also have a value of 7 to indicate
514 * another C3 but most use _CST for this (as required) and having
515 * "only" C1-C3 is not a hardship.
516 */
517 if (sc->cpu_p_blk_len < 5)
518 return;
519
520 /* Validate and allocate resources for C2 (P_LVL2). */
521 gas.AddressSpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
522 gas.RegisterBitWidth = 8;
523 if (AcpiGbl_FADT->Plvl2Lat <= 100) {
521 gas.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
522 gas.BitWidth = 8;
523 if (AcpiGbl_FADT.C2Latency <= 100) {
524 gas.Address = sc->cpu_p_blk + 4;
525 acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &sc->cpu_rid,
526 &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
527 if (cx_ptr->p_lvlx != NULL) {
528 sc->cpu_rid++;
529 cx_ptr->type = ACPI_STATE_C2;
524 gas.Address = sc->cpu_p_blk + 4;
525 acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &sc->cpu_rid,
526 &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
527 if (cx_ptr->p_lvlx != NULL) {
528 sc->cpu_rid++;
529 cx_ptr->type = ACPI_STATE_C2;
530 cx_ptr->trans_lat = AcpiGbl_FADT->Plvl2Lat;
530 cx_ptr->trans_lat = AcpiGbl_FADT.C2Latency;
531 cx_ptr++;
532 sc->cpu_cx_count++;
533 }
534 }
535 if (sc->cpu_p_blk_len < 6)
536 return;
537
538 /* Validate and allocate resources for C3 (P_LVL3). */
531 cx_ptr++;
532 sc->cpu_cx_count++;
533 }
534 }
535 if (sc->cpu_p_blk_len < 6)
536 return;
537
538 /* Validate and allocate resources for C3 (P_LVL3). */
539 if (AcpiGbl_FADT->Plvl3Lat <= 1000) {
539 if (AcpiGbl_FADT.C3Latency <= 1000) {
540 gas.Address = sc->cpu_p_blk + 5;
541 acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &sc->cpu_rid, &gas,
542 &cx_ptr->p_lvlx, RF_SHAREABLE);
543 if (cx_ptr->p_lvlx != NULL) {
544 sc->cpu_rid++;
545 cx_ptr->type = ACPI_STATE_C3;
540 gas.Address = sc->cpu_p_blk + 5;
541 acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &sc->cpu_rid, &gas,
542 &cx_ptr->p_lvlx, RF_SHAREABLE);
543 if (cx_ptr->p_lvlx != NULL) {
544 sc->cpu_rid++;
545 cx_ptr->type = ACPI_STATE_C3;
546 cx_ptr->trans_lat = AcpiGbl_FADT->Plvl3Lat;
546 cx_ptr->trans_lat = AcpiGbl_FADT.C3Latency;
547 cx_ptr++;
548 sc->cpu_cx_count++;
549 }
550 }
551
552 /* Update the largest cx_count seen so far */
553 if (sc->cpu_cx_count > cpu_cx_count)
554 cpu_cx_count = sc->cpu_cx_count;
555}
556
557/*
558 * Parse a _CST package and set up its Cx states. Since the _CST object
559 * can change dynamically, our notify handler may call this function
560 * to clean up and probe the new _CST package.
561 */
562static int
563acpi_cpu_cx_cst(struct acpi_cpu_softc *sc)
564{
565 struct acpi_cx *cx_ptr;
566 ACPI_STATUS status;
567 ACPI_BUFFER buf;
568 ACPI_OBJECT *top;
569 ACPI_OBJECT *pkg;
570 uint32_t count;
571 int i;
572
573 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
574
575 buf.Pointer = NULL;
576 buf.Length = ACPI_ALLOCATE_BUFFER;
577 status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf);
578 if (ACPI_FAILURE(status))
579 return (ENXIO);
580
581 /* _CST is a package with a count and at least one Cx package. */
582 top = (ACPI_OBJECT *)buf.Pointer;
583 if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) {
584 device_printf(sc->cpu_dev, "invalid _CST package\n");
585 AcpiOsFree(buf.Pointer);
586 return (ENXIO);
587 }
588 if (count != top->Package.Count - 1) {
589 device_printf(sc->cpu_dev, "invalid _CST state count (%d != %d)\n",
590 count, top->Package.Count - 1);
591 count = top->Package.Count - 1;
592 }
593 if (count > MAX_CX_STATES) {
594 device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count);
595 count = MAX_CX_STATES;
596 }
597
598 /* Set up all valid states. */
599 sc->cpu_cx_count = 0;
600 cx_ptr = sc->cpu_cx_states;
601 for (i = 0; i < count; i++) {
602 pkg = &top->Package.Elements[i + 1];
603 if (!ACPI_PKG_VALID(pkg, 4) ||
604 acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 ||
605 acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 ||
606 acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) {
607
608 device_printf(sc->cpu_dev, "skipping invalid Cx state package\n");
609 continue;
610 }
611
612 /* Validate the state to see if we should use it. */
613 switch (cx_ptr->type) {
614 case ACPI_STATE_C1:
615 sc->cpu_non_c3 = i;
616 cx_ptr++;
617 sc->cpu_cx_count++;
618 continue;
619 case ACPI_STATE_C2:
620 if (cx_ptr->trans_lat > 100) {
621 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
622 "acpi_cpu%d: C2[%d] not available.\n",
623 device_get_unit(sc->cpu_dev), i));
624 continue;
625 }
626 sc->cpu_non_c3 = i;
627 break;
628 case ACPI_STATE_C3:
629 default:
630 if (cx_ptr->trans_lat > 1000 ||
631 (cpu_quirks & CPU_QUIRK_NO_C3) != 0) {
632
633 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
634 "acpi_cpu%d: C3[%d] not available.\n",
635 device_get_unit(sc->cpu_dev), i));
636 continue;
637 }
638 break;
639 }
640
641#ifdef notyet
642 /* Free up any previous register. */
643 if (cx_ptr->p_lvlx != NULL) {
644 bus_release_resource(sc->cpu_dev, 0, 0, cx_ptr->p_lvlx);
645 cx_ptr->p_lvlx = NULL;
646 }
647#endif
648
649 /* Allocate the control register for C2 or C3. */
650 acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type, &sc->cpu_rid,
651 &cx_ptr->p_lvlx, RF_SHAREABLE);
652 if (cx_ptr->p_lvlx) {
653 sc->cpu_rid++;
654 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
655 "acpi_cpu%d: Got C%d - %d latency\n",
656 device_get_unit(sc->cpu_dev), cx_ptr->type,
657 cx_ptr->trans_lat));
658 cx_ptr++;
659 sc->cpu_cx_count++;
660 }
661 }
662 AcpiOsFree(buf.Pointer);
663
664 return (0);
665}
666
667/*
668 * Call this *after* all CPUs have been attached.
669 */
670static void
671acpi_cpu_startup(void *arg)
672{
673 struct acpi_cpu_softc *sc;
674 int i;
675
676 /* Get set of CPU devices */
677 devclass_get_devices(acpi_cpu_devclass, &cpu_devices, &cpu_ndevices);
678
679 /*
680 * Setup any quirks that might necessary now that we have probed
681 * all the CPUs
682 */
683 acpi_cpu_quirks();
684
685 cpu_cx_count = 0;
686 if (cpu_cx_generic) {
687 /*
688 * We are using generic Cx mode, probe for available Cx states
689 * for all processors.
690 */
691 for (i = 0; i < cpu_ndevices; i++) {
692 sc = device_get_softc(cpu_devices[i]);
693 acpi_cpu_generic_cx_probe(sc);
694 }
695
696 /*
697 * Find the highest Cx state common to all CPUs
698 * in the system, taking quirks into account.
699 */
700 for (i = 0; i < cpu_ndevices; i++) {
701 sc = device_get_softc(cpu_devices[i]);
702 if (sc->cpu_cx_count < cpu_cx_count)
703 cpu_cx_count = sc->cpu_cx_count;
704 }
705 } else {
706 /*
707 * We are using _CST mode, remove C3 state if necessary.
708 * Update the largest Cx state supported in the global cpu_cx_count.
709 * It will be used in the global Cx sysctl handler.
710 * As we now know for sure that we will be using _CST mode
711 * install our notify handler.
712 */
713 for (i = 0; i < cpu_ndevices; i++) {
714 sc = device_get_softc(cpu_devices[i]);
715 if (cpu_quirks && CPU_QUIRK_NO_C3) {
716 sc->cpu_cx_count = sc->cpu_non_c3 + 1;
717 }
718 if (sc->cpu_cx_count > cpu_cx_count)
719 cpu_cx_count = sc->cpu_cx_count;
720 AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY,
721 acpi_cpu_notify, sc);
722 }
723 }
724
725 /* Perform Cx final initialization. */
726 for (i = 0; i < cpu_ndevices; i++) {
727 sc = device_get_softc(cpu_devices[i]);
728 acpi_cpu_startup_cx(sc);
729 }
730
731 /* Add a sysctl handler to handle global Cx lowest setting */
732 SYSCTL_ADD_PROC(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree),
733 OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
734 NULL, 0, acpi_cpu_global_cx_lowest_sysctl, "A",
735 "Global lowest Cx sleep state to use");
736
737 /* Take over idling from cpu_idle_default(). */
738 cpu_cx_lowest = 0;
739 cpu_disable_idle = FALSE;
740 cpu_idle_hook = acpi_cpu_idle;
741}
742
743static void
744acpi_cpu_startup_cx(struct acpi_cpu_softc *sc)
745{
746 struct sbuf sb;
747 int i;
748
749 /*
750 * Set up the list of Cx states
751 */
752 sc->cpu_non_c3 = 0;
753 sbuf_new(&sb, sc->cpu_cx_supported, sizeof(sc->cpu_cx_supported),
754 SBUF_FIXEDLEN);
755 for (i = 0; i < sc->cpu_cx_count; i++) {
756 sbuf_printf(&sb, "C%d/%d ", i + 1, sc->cpu_cx_states[i].trans_lat);
757 if (sc->cpu_cx_states[i].type < ACPI_STATE_C3)
758 sc->cpu_non_c3 = i;
759 }
760 sbuf_trim(&sb);
761 sbuf_finish(&sb);
762
763 SYSCTL_ADD_STRING(&sc->cpu_sysctl_ctx,
764 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
765 OID_AUTO, "cx_supported", CTLFLAG_RD,
766 sc->cpu_cx_supported, 0,
767 "Cx/microsecond values for supported Cx states");
768 SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
769 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
770 OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
771 (void *)sc, 0, acpi_cpu_cx_lowest_sysctl, "A",
772 "lowest Cx sleep state to use");
773 SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
774 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
775 OID_AUTO, "cx_usage", CTLTYPE_STRING | CTLFLAG_RD,
776 (void *)sc, 0, acpi_cpu_usage_sysctl, "A",
777 "percent usage for each Cx state");
778
779#ifdef notyet
780 /* Signal platform that we can handle _CST notification. */
781 if (!cpu_cx_generic && cpu_cst_cnt != 0) {
782 ACPI_LOCK(acpi);
783 AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8);
784 ACPI_UNLOCK(acpi);
785 }
786#endif
787}
788
789/*
790 * Idle the CPU in the lowest state possible. This function is called with
791 * interrupts disabled. Note that once it re-enables interrupts, a task
792 * switch can occur so do not access shared data (i.e. the softc) after
793 * interrupts are re-enabled.
794 */
795static void
796acpi_cpu_idle()
797{
798 struct acpi_cpu_softc *sc;
799 struct acpi_cx *cx_next;
800 uint32_t start_time, end_time;
801 int bm_active, cx_next_idx, i;
802
803 /* If disabled, return immediately. */
804 if (cpu_disable_idle) {
805 ACPI_ENABLE_IRQS();
806 return;
807 }
808
809 /*
810 * Look up our CPU id to get our softc. If it's NULL, we'll use C1
811 * since there is no ACPI processor object for this CPU. This occurs
812 * for logical CPUs in the HTT case.
813 */
814 sc = cpu_softc[PCPU_GET(cpuid)];
815 if (sc == NULL) {
816 acpi_cpu_c1();
817 return;
818 }
819
820 /*
821 * If we slept 100 us or more, use the lowest Cx state. Otherwise,
822 * find the lowest state that has a latency less than or equal to
823 * the length of our last sleep.
824 */
825 cx_next_idx = sc->cpu_cx_lowest;
826 if (sc->cpu_prev_sleep < 100) {
827 /*
828 * If we sleep too short all the time, this system may not implement
829 * C2/3 correctly (i.e. reads return immediately). In this case,
830 * back off and use the next higher level.
831 * It seems that when you have a dual core cpu (like the Intel Core Duo)
832 * that both cores will get out of C3 state as soon as one of them
833 * requires it. This breaks the sleep detection logic as the sleep
834 * counter is local to each cpu. Disable the sleep logic for now as a
835 * workaround if there's more than one CPU. The right fix would probably
836 * be to add quirks for system that don't really support C3 state.
837 */
838 if (mp_ncpus < 2 && sc->cpu_prev_sleep <= 1) {
839 sc->cpu_short_slp++;
840 if (sc->cpu_short_slp == 1000 && sc->cpu_cx_lowest != 0) {
841 if (sc->cpu_non_c3 == sc->cpu_cx_lowest && sc->cpu_non_c3 != 0)
842 sc->cpu_non_c3--;
843 sc->cpu_cx_lowest--;
844 sc->cpu_short_slp = 0;
845 device_printf(sc->cpu_dev,
846 "too many short sleeps, backing off to C%d\n",
847 sc->cpu_cx_lowest + 1);
848 }
849 } else
850 sc->cpu_short_slp = 0;
851
852 for (i = sc->cpu_cx_lowest; i >= 0; i--)
853 if (sc->cpu_cx_states[i].trans_lat <= sc->cpu_prev_sleep) {
854 cx_next_idx = i;
855 break;
856 }
857 }
858
859 /*
860 * Check for bus master activity. If there was activity, clear
861 * the bit and use the lowest non-C3 state. Note that the USB
862 * driver polling for new devices keeps this bit set all the
863 * time if USB is loaded.
864 */
865 if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
547 cx_ptr++;
548 sc->cpu_cx_count++;
549 }
550 }
551
552 /* Update the largest cx_count seen so far */
553 if (sc->cpu_cx_count > cpu_cx_count)
554 cpu_cx_count = sc->cpu_cx_count;
555}
556
557/*
558 * Parse a _CST package and set up its Cx states. Since the _CST object
559 * can change dynamically, our notify handler may call this function
560 * to clean up and probe the new _CST package.
561 */
562static int
563acpi_cpu_cx_cst(struct acpi_cpu_softc *sc)
564{
565 struct acpi_cx *cx_ptr;
566 ACPI_STATUS status;
567 ACPI_BUFFER buf;
568 ACPI_OBJECT *top;
569 ACPI_OBJECT *pkg;
570 uint32_t count;
571 int i;
572
573 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
574
575 buf.Pointer = NULL;
576 buf.Length = ACPI_ALLOCATE_BUFFER;
577 status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf);
578 if (ACPI_FAILURE(status))
579 return (ENXIO);
580
581 /* _CST is a package with a count and at least one Cx package. */
582 top = (ACPI_OBJECT *)buf.Pointer;
583 if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) {
584 device_printf(sc->cpu_dev, "invalid _CST package\n");
585 AcpiOsFree(buf.Pointer);
586 return (ENXIO);
587 }
588 if (count != top->Package.Count - 1) {
589 device_printf(sc->cpu_dev, "invalid _CST state count (%d != %d)\n",
590 count, top->Package.Count - 1);
591 count = top->Package.Count - 1;
592 }
593 if (count > MAX_CX_STATES) {
594 device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count);
595 count = MAX_CX_STATES;
596 }
597
598 /* Set up all valid states. */
599 sc->cpu_cx_count = 0;
600 cx_ptr = sc->cpu_cx_states;
601 for (i = 0; i < count; i++) {
602 pkg = &top->Package.Elements[i + 1];
603 if (!ACPI_PKG_VALID(pkg, 4) ||
604 acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 ||
605 acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 ||
606 acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) {
607
608 device_printf(sc->cpu_dev, "skipping invalid Cx state package\n");
609 continue;
610 }
611
612 /* Validate the state to see if we should use it. */
613 switch (cx_ptr->type) {
614 case ACPI_STATE_C1:
615 sc->cpu_non_c3 = i;
616 cx_ptr++;
617 sc->cpu_cx_count++;
618 continue;
619 case ACPI_STATE_C2:
620 if (cx_ptr->trans_lat > 100) {
621 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
622 "acpi_cpu%d: C2[%d] not available.\n",
623 device_get_unit(sc->cpu_dev), i));
624 continue;
625 }
626 sc->cpu_non_c3 = i;
627 break;
628 case ACPI_STATE_C3:
629 default:
630 if (cx_ptr->trans_lat > 1000 ||
631 (cpu_quirks & CPU_QUIRK_NO_C3) != 0) {
632
633 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
634 "acpi_cpu%d: C3[%d] not available.\n",
635 device_get_unit(sc->cpu_dev), i));
636 continue;
637 }
638 break;
639 }
640
641#ifdef notyet
642 /* Free up any previous register. */
643 if (cx_ptr->p_lvlx != NULL) {
644 bus_release_resource(sc->cpu_dev, 0, 0, cx_ptr->p_lvlx);
645 cx_ptr->p_lvlx = NULL;
646 }
647#endif
648
649 /* Allocate the control register for C2 or C3. */
650 acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type, &sc->cpu_rid,
651 &cx_ptr->p_lvlx, RF_SHAREABLE);
652 if (cx_ptr->p_lvlx) {
653 sc->cpu_rid++;
654 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
655 "acpi_cpu%d: Got C%d - %d latency\n",
656 device_get_unit(sc->cpu_dev), cx_ptr->type,
657 cx_ptr->trans_lat));
658 cx_ptr++;
659 sc->cpu_cx_count++;
660 }
661 }
662 AcpiOsFree(buf.Pointer);
663
664 return (0);
665}
666
667/*
668 * Call this *after* all CPUs have been attached.
669 */
670static void
671acpi_cpu_startup(void *arg)
672{
673 struct acpi_cpu_softc *sc;
674 int i;
675
676 /* Get set of CPU devices */
677 devclass_get_devices(acpi_cpu_devclass, &cpu_devices, &cpu_ndevices);
678
679 /*
680 * Setup any quirks that might necessary now that we have probed
681 * all the CPUs
682 */
683 acpi_cpu_quirks();
684
685 cpu_cx_count = 0;
686 if (cpu_cx_generic) {
687 /*
688 * We are using generic Cx mode, probe for available Cx states
689 * for all processors.
690 */
691 for (i = 0; i < cpu_ndevices; i++) {
692 sc = device_get_softc(cpu_devices[i]);
693 acpi_cpu_generic_cx_probe(sc);
694 }
695
696 /*
697 * Find the highest Cx state common to all CPUs
698 * in the system, taking quirks into account.
699 */
700 for (i = 0; i < cpu_ndevices; i++) {
701 sc = device_get_softc(cpu_devices[i]);
702 if (sc->cpu_cx_count < cpu_cx_count)
703 cpu_cx_count = sc->cpu_cx_count;
704 }
705 } else {
706 /*
707 * We are using _CST mode, remove C3 state if necessary.
708 * Update the largest Cx state supported in the global cpu_cx_count.
709 * It will be used in the global Cx sysctl handler.
710 * As we now know for sure that we will be using _CST mode
711 * install our notify handler.
712 */
713 for (i = 0; i < cpu_ndevices; i++) {
714 sc = device_get_softc(cpu_devices[i]);
715 if (cpu_quirks && CPU_QUIRK_NO_C3) {
716 sc->cpu_cx_count = sc->cpu_non_c3 + 1;
717 }
718 if (sc->cpu_cx_count > cpu_cx_count)
719 cpu_cx_count = sc->cpu_cx_count;
720 AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY,
721 acpi_cpu_notify, sc);
722 }
723 }
724
725 /* Perform Cx final initialization. */
726 for (i = 0; i < cpu_ndevices; i++) {
727 sc = device_get_softc(cpu_devices[i]);
728 acpi_cpu_startup_cx(sc);
729 }
730
731 /* Add a sysctl handler to handle global Cx lowest setting */
732 SYSCTL_ADD_PROC(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree),
733 OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
734 NULL, 0, acpi_cpu_global_cx_lowest_sysctl, "A",
735 "Global lowest Cx sleep state to use");
736
737 /* Take over idling from cpu_idle_default(). */
738 cpu_cx_lowest = 0;
739 cpu_disable_idle = FALSE;
740 cpu_idle_hook = acpi_cpu_idle;
741}
742
743static void
744acpi_cpu_startup_cx(struct acpi_cpu_softc *sc)
745{
746 struct sbuf sb;
747 int i;
748
749 /*
750 * Set up the list of Cx states
751 */
752 sc->cpu_non_c3 = 0;
753 sbuf_new(&sb, sc->cpu_cx_supported, sizeof(sc->cpu_cx_supported),
754 SBUF_FIXEDLEN);
755 for (i = 0; i < sc->cpu_cx_count; i++) {
756 sbuf_printf(&sb, "C%d/%d ", i + 1, sc->cpu_cx_states[i].trans_lat);
757 if (sc->cpu_cx_states[i].type < ACPI_STATE_C3)
758 sc->cpu_non_c3 = i;
759 }
760 sbuf_trim(&sb);
761 sbuf_finish(&sb);
762
763 SYSCTL_ADD_STRING(&sc->cpu_sysctl_ctx,
764 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
765 OID_AUTO, "cx_supported", CTLFLAG_RD,
766 sc->cpu_cx_supported, 0,
767 "Cx/microsecond values for supported Cx states");
768 SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
769 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
770 OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
771 (void *)sc, 0, acpi_cpu_cx_lowest_sysctl, "A",
772 "lowest Cx sleep state to use");
773 SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
774 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
775 OID_AUTO, "cx_usage", CTLTYPE_STRING | CTLFLAG_RD,
776 (void *)sc, 0, acpi_cpu_usage_sysctl, "A",
777 "percent usage for each Cx state");
778
779#ifdef notyet
780 /* Signal platform that we can handle _CST notification. */
781 if (!cpu_cx_generic && cpu_cst_cnt != 0) {
782 ACPI_LOCK(acpi);
783 AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8);
784 ACPI_UNLOCK(acpi);
785 }
786#endif
787}
788
789/*
790 * Idle the CPU in the lowest state possible. This function is called with
791 * interrupts disabled. Note that once it re-enables interrupts, a task
792 * switch can occur so do not access shared data (i.e. the softc) after
793 * interrupts are re-enabled.
794 */
795static void
796acpi_cpu_idle()
797{
798 struct acpi_cpu_softc *sc;
799 struct acpi_cx *cx_next;
800 uint32_t start_time, end_time;
801 int bm_active, cx_next_idx, i;
802
803 /* If disabled, return immediately. */
804 if (cpu_disable_idle) {
805 ACPI_ENABLE_IRQS();
806 return;
807 }
808
809 /*
810 * Look up our CPU id to get our softc. If it's NULL, we'll use C1
811 * since there is no ACPI processor object for this CPU. This occurs
812 * for logical CPUs in the HTT case.
813 */
814 sc = cpu_softc[PCPU_GET(cpuid)];
815 if (sc == NULL) {
816 acpi_cpu_c1();
817 return;
818 }
819
820 /*
821 * If we slept 100 us or more, use the lowest Cx state. Otherwise,
822 * find the lowest state that has a latency less than or equal to
823 * the length of our last sleep.
824 */
825 cx_next_idx = sc->cpu_cx_lowest;
826 if (sc->cpu_prev_sleep < 100) {
827 /*
828 * If we sleep too short all the time, this system may not implement
829 * C2/3 correctly (i.e. reads return immediately). In this case,
830 * back off and use the next higher level.
831 * It seems that when you have a dual core cpu (like the Intel Core Duo)
832 * that both cores will get out of C3 state as soon as one of them
833 * requires it. This breaks the sleep detection logic as the sleep
834 * counter is local to each cpu. Disable the sleep logic for now as a
835 * workaround if there's more than one CPU. The right fix would probably
836 * be to add quirks for system that don't really support C3 state.
837 */
838 if (mp_ncpus < 2 && sc->cpu_prev_sleep <= 1) {
839 sc->cpu_short_slp++;
840 if (sc->cpu_short_slp == 1000 && sc->cpu_cx_lowest != 0) {
841 if (sc->cpu_non_c3 == sc->cpu_cx_lowest && sc->cpu_non_c3 != 0)
842 sc->cpu_non_c3--;
843 sc->cpu_cx_lowest--;
844 sc->cpu_short_slp = 0;
845 device_printf(sc->cpu_dev,
846 "too many short sleeps, backing off to C%d\n",
847 sc->cpu_cx_lowest + 1);
848 }
849 } else
850 sc->cpu_short_slp = 0;
851
852 for (i = sc->cpu_cx_lowest; i >= 0; i--)
853 if (sc->cpu_cx_states[i].trans_lat <= sc->cpu_prev_sleep) {
854 cx_next_idx = i;
855 break;
856 }
857 }
858
859 /*
860 * Check for bus master activity. If there was activity, clear
861 * the bit and use the lowest non-C3 state. Note that the USB
862 * driver polling for new devices keeps this bit set all the
863 * time if USB is loaded.
864 */
865 if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
866 AcpiGetRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active,
867 ACPI_MTX_DO_NOT_LOCK);
866 AcpiGetRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active);
868 if (bm_active != 0) {
867 if (bm_active != 0) {
869 AcpiSetRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1,
870 ACPI_MTX_DO_NOT_LOCK);
868 AcpiSetRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
871 cx_next_idx = min(cx_next_idx, sc->cpu_non_c3);
872 }
873 }
874
875 /* Select the next state and update statistics. */
876 cx_next = &sc->cpu_cx_states[cx_next_idx];
877 sc->cpu_cx_stats[cx_next_idx]++;
878 KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));
879
880 /*
881 * Execute HLT (or equivalent) and wait for an interrupt. We can't
882 * calculate the time spent in C1 since the place we wake up is an
883 * ISR. Assume we slept one quantum and return.
884 */
885 if (cx_next->type == ACPI_STATE_C1) {
886 sc->cpu_prev_sleep = 1000000 / hz;
887 acpi_cpu_c1();
888 return;
889 }
890
891 /*
892 * For C3, disable bus master arbitration and enable bus master wake
893 * if BM control is available, otherwise flush the CPU cache.
894 */
895 if (cx_next->type == ACPI_STATE_C3) {
896 if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
869 cx_next_idx = min(cx_next_idx, sc->cpu_non_c3);
870 }
871 }
872
873 /* Select the next state and update statistics. */
874 cx_next = &sc->cpu_cx_states[cx_next_idx];
875 sc->cpu_cx_stats[cx_next_idx]++;
876 KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));
877
878 /*
879 * Execute HLT (or equivalent) and wait for an interrupt. We can't
880 * calculate the time spent in C1 since the place we wake up is an
881 * ISR. Assume we slept one quantum and return.
882 */
883 if (cx_next->type == ACPI_STATE_C1) {
884 sc->cpu_prev_sleep = 1000000 / hz;
885 acpi_cpu_c1();
886 return;
887 }
888
889 /*
890 * For C3, disable bus master arbitration and enable bus master wake
891 * if BM control is available, otherwise flush the CPU cache.
892 */
893 if (cx_next->type == ACPI_STATE_C3) {
894 if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
897 AcpiSetRegister(ACPI_BITREG_ARB_DISABLE, 1, ACPI_MTX_DO_NOT_LOCK);
898 AcpiSetRegister(ACPI_BITREG_BUS_MASTER_RLD, 1,
899 ACPI_MTX_DO_NOT_LOCK);
895 AcpiSetRegister(ACPI_BITREG_ARB_DISABLE, 1);
896 AcpiSetRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
900 } else
901 ACPI_FLUSH_CPU_CACHE();
902 }
903
904 /*
905 * Read from P_LVLx to enter C2(+), checking time spent asleep.
906 * Use the ACPI timer for measuring sleep time. Since we need to
907 * get the time very close to the CPU start/stop clock logic, this
908 * is the only reliable time source.
909 */
897 } else
898 ACPI_FLUSH_CPU_CACHE();
899 }
900
901 /*
902 * Read from P_LVLx to enter C2(+), checking time spent asleep.
903 * Use the ACPI timer for measuring sleep time. Since we need to
904 * get the time very close to the CPU start/stop clock logic, this
905 * is the only reliable time source.
906 */
910 AcpiHwLowLevelRead(32, &start_time, &AcpiGbl_FADT->XPmTmrBlk);
907 AcpiHwLowLevelRead(32, &start_time, &AcpiGbl_FADT.XPmTimerBlock);
911 CPU_GET_REG(cx_next->p_lvlx, 1);
912
913 /*
914 * Read the end time twice. Since it may take an arbitrary time
915 * to enter the idle state, the first read may be executed before
916 * the processor has stopped. Doing it again provides enough
917 * margin that we are certain to have a correct value.
918 */
908 CPU_GET_REG(cx_next->p_lvlx, 1);
909
910 /*
911 * Read the end time twice. Since it may take an arbitrary time
912 * to enter the idle state, the first read may be executed before
913 * the processor has stopped. Doing it again provides enough
914 * margin that we are certain to have a correct value.
915 */
919 AcpiHwLowLevelRead(32, &end_time, &AcpiGbl_FADT->XPmTmrBlk);
920 AcpiHwLowLevelRead(32, &end_time, &AcpiGbl_FADT->XPmTmrBlk);
916 AcpiHwLowLevelRead(32, &end_time, &AcpiGbl_FADT.XPmTimerBlock);
917 AcpiHwLowLevelRead(32, &end_time, &AcpiGbl_FADT.XPmTimerBlock);
921
922 /* Enable bus master arbitration and disable bus master wakeup. */
923 if (cx_next->type == ACPI_STATE_C3 &&
924 (cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
918
919 /* Enable bus master arbitration and disable bus master wakeup. */
920 if (cx_next->type == ACPI_STATE_C3 &&
921 (cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
925 AcpiSetRegister(ACPI_BITREG_ARB_DISABLE, 0, ACPI_MTX_DO_NOT_LOCK);
926 AcpiSetRegister(ACPI_BITREG_BUS_MASTER_RLD, 0, ACPI_MTX_DO_NOT_LOCK);
922 AcpiSetRegister(ACPI_BITREG_ARB_DISABLE, 0);
923 AcpiSetRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
927 }
928 ACPI_ENABLE_IRQS();
929
930 /* Find the actual time asleep in microseconds, minus overhead. */
931 end_time = acpi_TimerDelta(end_time, start_time);
932 sc->cpu_prev_sleep = PM_USEC(end_time) - cx_next->trans_lat;
933}
934
935/*
936 * Re-evaluate the _CST object when we are notified that it changed.
937 *
938 * XXX Re-evaluation disabled until locking is done.
939 */
940static void
941acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context)
942{
943 struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context;
944
945 if (notify != ACPI_NOTIFY_CX_STATES)
946 return;
947
948 device_printf(sc->cpu_dev, "Cx states changed\n");
949 /* acpi_cpu_cx_cst(sc); */
950}
951
952static int
953acpi_cpu_quirks(void)
954{
955 device_t acpi_dev;
956
957 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
958
959 /*
960 * Bus mastering arbitration control is needed to keep caches coherent
961 * while sleeping in C3. If it's not present but a working flush cache
962 * instruction is present, flush the caches before entering C3 instead.
963 * Otherwise, just disable C3 completely.
964 */
924 }
925 ACPI_ENABLE_IRQS();
926
927 /* Find the actual time asleep in microseconds, minus overhead. */
928 end_time = acpi_TimerDelta(end_time, start_time);
929 sc->cpu_prev_sleep = PM_USEC(end_time) - cx_next->trans_lat;
930}
931
932/*
933 * Re-evaluate the _CST object when we are notified that it changed.
934 *
935 * XXX Re-evaluation disabled until locking is done.
936 */
937static void
938acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context)
939{
940 struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context;
941
942 if (notify != ACPI_NOTIFY_CX_STATES)
943 return;
944
945 device_printf(sc->cpu_dev, "Cx states changed\n");
946 /* acpi_cpu_cx_cst(sc); */
947}
948
949static int
950acpi_cpu_quirks(void)
951{
952 device_t acpi_dev;
953
954 ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
955
956 /*
957 * Bus mastering arbitration control is needed to keep caches coherent
958 * while sleeping in C3. If it's not present but a working flush cache
959 * instruction is present, flush the caches before entering C3 instead.
960 * Otherwise, just disable C3 completely.
961 */
965 if (AcpiGbl_FADT->V1_Pm2CntBlk == 0 || AcpiGbl_FADT->Pm2CntLen == 0) {
966 if (AcpiGbl_FADT->WbInvd && AcpiGbl_FADT->WbInvdFlush == 0) {
962 if (AcpiGbl_FADT.Pm2ControlBlock == 0 ||
963 AcpiGbl_FADT.Pm2ControlLength == 0) {
964 if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) &&
965 (AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0) {
967 cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
968 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
969 "acpi_cpu: no BM control, using flush cache method\n"));
970 } else {
971 cpu_quirks |= CPU_QUIRK_NO_C3;
972 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
973 "acpi_cpu: no BM control, C3 not available\n"));
974 }
975 }
976
977 /*
978 * If we are using generic Cx mode, C3 on multiple CPUs requires using
979 * the expensive flush cache instruction.
980 */
981 if (cpu_cx_generic && mp_ncpus > 1) {
982 cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
983 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
984 "acpi_cpu: SMP, using flush cache mode for C3\n"));
985 }
986
987 /* Look for various quirks of the PIIX4 part. */
988 acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3);
989 if (acpi_dev != NULL) {
990 switch (pci_get_revid(acpi_dev)) {
991 /*
992 * Disable C3 support for all PIIX4 chipsets. Some of these parts
993 * do not report the BMIDE status to the BM status register and
994 * others have a livelock bug if Type-F DMA is enabled. Linux
995 * works around the BMIDE bug by reading the BM status directly
996 * but we take the simpler approach of disabling C3 for these
997 * parts.
998 *
999 * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
1000 * Livelock") from the January 2002 PIIX4 specification update.
1001 * Applies to all PIIX4 models.
1002 */
1003 case PCI_REVISION_4E:
1004 case PCI_REVISION_4M:
1005 cpu_quirks |= CPU_QUIRK_NO_C3;
1006 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1007 "acpi_cpu: working around PIIX4 bug, disabling C3\n"));
1008 break;
1009 default:
1010 break;
1011 }
1012 }
1013
1014 return (0);
1015}
1016
1017static int
1018acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)
1019{
1020 struct acpi_cpu_softc *sc;
1021 struct sbuf sb;
1022 char buf[128];
1023 int i;
1024 uintmax_t fract, sum, whole;
1025
1026 sc = (struct acpi_cpu_softc *) arg1;
1027 sum = 0;
1028 for (i = 0; i < sc->cpu_cx_count; i++)
1029 sum += sc->cpu_cx_stats[i];
1030 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1031 for (i = 0; i < sc->cpu_cx_count; i++) {
1032 if (sum > 0) {
1033 whole = (uintmax_t)sc->cpu_cx_stats[i] * 100;
1034 fract = (whole % sum) * 100;
1035 sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum),
1036 (u_int)(fract / sum));
1037 } else
1038 sbuf_printf(&sb, "0%% ");
1039 }
1040 sbuf_trim(&sb);
1041 sbuf_finish(&sb);
1042 sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
1043 sbuf_delete(&sb);
1044
1045 return (0);
1046}
1047
1048static int
1049acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1050{
1051 struct acpi_cpu_softc *sc;
1052 char state[8];
1053 int val, error, i;
1054
1055 sc = (struct acpi_cpu_softc *) arg1;
1056 snprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest + 1);
1057 error = sysctl_handle_string(oidp, state, sizeof(state), req);
1058 if (error != 0 || req->newptr == NULL)
1059 return (error);
1060 if (strlen(state) < 2 || toupper(state[0]) != 'C')
1061 return (EINVAL);
1062 val = (int) strtol(state + 1, NULL, 10) - 1;
1063 if (val < 0 || val > sc->cpu_cx_count - 1)
1064 return (EINVAL);
1065
1066 ACPI_SERIAL_BEGIN(cpu);
1067 sc->cpu_cx_lowest = val;
1068
1069 /* If not disabling, cache the new lowest non-C3 state. */
1070 sc->cpu_non_c3 = 0;
1071 for (i = sc->cpu_cx_lowest; i >= 0; i--) {
1072 if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
1073 sc->cpu_non_c3 = i;
1074 break;
1075 }
1076 }
1077
1078 /* Reset the statistics counters. */
1079 bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats));
1080 ACPI_SERIAL_END(cpu);
1081
1082 return (0);
1083}
1084
1085static int
1086acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1087{
1088 struct acpi_cpu_softc *sc;
1089 char state[8];
1090 int val, error, i, j;
1091
1092 snprintf(state, sizeof(state), "C%d", cpu_cx_lowest + 1);
1093 error = sysctl_handle_string(oidp, state, sizeof(state), req);
1094 if (error != 0 || req->newptr == NULL)
1095 return (error);
1096 if (strlen(state) < 2 || toupper(state[0]) != 'C')
1097 return (EINVAL);
1098 val = (int) strtol(state + 1, NULL, 10) - 1;
1099 if (val < 0 || val > cpu_cx_count - 1)
1100 return (EINVAL);
1101
1102 cpu_cx_lowest = val;
1103
1104 /*
1105 * Update the new lowest useable Cx state for all CPUs
1106 */
1107 ACPI_SERIAL_BEGIN(cpu);
1108 for (i = 0; i < cpu_ndevices; i++) {
1109 sc = device_get_softc(cpu_devices[i]);
1110 sc->cpu_cx_lowest = cpu_cx_lowest;
1111 sc->cpu_non_c3 = 0;
1112 for (j = sc->cpu_cx_lowest; j >= 0; j++) {
1113 if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
1114 sc->cpu_non_c3 = i;
1115 break;
1116 }
1117 }
1118
1119 /* Reset the statistics counters. */
1120 bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats));
1121 }
1122 ACPI_SERIAL_END(cpu);
1123
1124 return (0);
1125}
966 cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
967 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
968 "acpi_cpu: no BM control, using flush cache method\n"));
969 } else {
970 cpu_quirks |= CPU_QUIRK_NO_C3;
971 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
972 "acpi_cpu: no BM control, C3 not available\n"));
973 }
974 }
975
976 /*
977 * If we are using generic Cx mode, C3 on multiple CPUs requires using
978 * the expensive flush cache instruction.
979 */
980 if (cpu_cx_generic && mp_ncpus > 1) {
981 cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
982 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
983 "acpi_cpu: SMP, using flush cache mode for C3\n"));
984 }
985
986 /* Look for various quirks of the PIIX4 part. */
987 acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3);
988 if (acpi_dev != NULL) {
989 switch (pci_get_revid(acpi_dev)) {
990 /*
991 * Disable C3 support for all PIIX4 chipsets. Some of these parts
992 * do not report the BMIDE status to the BM status register and
993 * others have a livelock bug if Type-F DMA is enabled. Linux
994 * works around the BMIDE bug by reading the BM status directly
995 * but we take the simpler approach of disabling C3 for these
996 * parts.
997 *
998 * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
999 * Livelock") from the January 2002 PIIX4 specification update.
1000 * Applies to all PIIX4 models.
1001 */
1002 case PCI_REVISION_4E:
1003 case PCI_REVISION_4M:
1004 cpu_quirks |= CPU_QUIRK_NO_C3;
1005 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1006 "acpi_cpu: working around PIIX4 bug, disabling C3\n"));
1007 break;
1008 default:
1009 break;
1010 }
1011 }
1012
1013 return (0);
1014}
1015
1016static int
1017acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)
1018{
1019 struct acpi_cpu_softc *sc;
1020 struct sbuf sb;
1021 char buf[128];
1022 int i;
1023 uintmax_t fract, sum, whole;
1024
1025 sc = (struct acpi_cpu_softc *) arg1;
1026 sum = 0;
1027 for (i = 0; i < sc->cpu_cx_count; i++)
1028 sum += sc->cpu_cx_stats[i];
1029 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1030 for (i = 0; i < sc->cpu_cx_count; i++) {
1031 if (sum > 0) {
1032 whole = (uintmax_t)sc->cpu_cx_stats[i] * 100;
1033 fract = (whole % sum) * 100;
1034 sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum),
1035 (u_int)(fract / sum));
1036 } else
1037 sbuf_printf(&sb, "0%% ");
1038 }
1039 sbuf_trim(&sb);
1040 sbuf_finish(&sb);
1041 sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
1042 sbuf_delete(&sb);
1043
1044 return (0);
1045}
1046
1047static int
1048acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1049{
1050 struct acpi_cpu_softc *sc;
1051 char state[8];
1052 int val, error, i;
1053
1054 sc = (struct acpi_cpu_softc *) arg1;
1055 snprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest + 1);
1056 error = sysctl_handle_string(oidp, state, sizeof(state), req);
1057 if (error != 0 || req->newptr == NULL)
1058 return (error);
1059 if (strlen(state) < 2 || toupper(state[0]) != 'C')
1060 return (EINVAL);
1061 val = (int) strtol(state + 1, NULL, 10) - 1;
1062 if (val < 0 || val > sc->cpu_cx_count - 1)
1063 return (EINVAL);
1064
1065 ACPI_SERIAL_BEGIN(cpu);
1066 sc->cpu_cx_lowest = val;
1067
1068 /* If not disabling, cache the new lowest non-C3 state. */
1069 sc->cpu_non_c3 = 0;
1070 for (i = sc->cpu_cx_lowest; i >= 0; i--) {
1071 if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
1072 sc->cpu_non_c3 = i;
1073 break;
1074 }
1075 }
1076
1077 /* Reset the statistics counters. */
1078 bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats));
1079 ACPI_SERIAL_END(cpu);
1080
1081 return (0);
1082}
1083
1084static int
1085acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1086{
1087 struct acpi_cpu_softc *sc;
1088 char state[8];
1089 int val, error, i, j;
1090
1091 snprintf(state, sizeof(state), "C%d", cpu_cx_lowest + 1);
1092 error = sysctl_handle_string(oidp, state, sizeof(state), req);
1093 if (error != 0 || req->newptr == NULL)
1094 return (error);
1095 if (strlen(state) < 2 || toupper(state[0]) != 'C')
1096 return (EINVAL);
1097 val = (int) strtol(state + 1, NULL, 10) - 1;
1098 if (val < 0 || val > cpu_cx_count - 1)
1099 return (EINVAL);
1100
1101 cpu_cx_lowest = val;
1102
1103 /*
1104 * Update the new lowest useable Cx state for all CPUs
1105 */
1106 ACPI_SERIAL_BEGIN(cpu);
1107 for (i = 0; i < cpu_ndevices; i++) {
1108 sc = device_get_softc(cpu_devices[i]);
1109 sc->cpu_cx_lowest = cpu_cx_lowest;
1110 sc->cpu_non_c3 = 0;
1111 for (j = sc->cpu_cx_lowest; j >= 0; j++) {
1112 if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
1113 sc->cpu_non_c3 = i;
1114 break;
1115 }
1116 }
1117
1118 /* Reset the statistics counters. */
1119 bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats));
1120 }
1121 ACPI_SERIAL_END(cpu);
1122
1123 return (0);
1124}