Deleted Added
sdiff udiff text old ( 132727 ) new ( 169699 )
full compact
1/* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4 Free Software Foundation, Inc.
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING. If not, write to the Free
20Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2102110-1301, USA. */
22
23/* This is the final pass of the compiler.
24 It looks at the rtl code for a function and outputs assembler code.
25
26 Call `final_start_function' to output the assembler code for function entry,
27 `final' to output assembler code for some RTL code,
28 `final_end_function' to output assembler code for function exit.
29 If a function is compiled in several pieces, each piece is
30 output separately with `final'.
31
32 Some optimizations are also done at this level.
33 Move instructions that were made unnecessary by good register allocation
34 are detected and omitted from the output. (Though most of these
35 are removed by the last jump pass.)
36
37 Instructions to set the condition codes are omitted when it can be
38 seen that the condition codes already had the desired values.
39
40 In some cases it is sufficient if the inherited condition codes
41 have related values, but this may require the following insn
42 (the one that tests the condition codes) to be modified.
43
44 The code for the function prologue and epilogue are generated
45 directly in assembler by the target functions function_prologue and
46 function_epilogue. Those instructions never exist as rtl. */
47
48#include "config.h"
49#include "system.h"
50#include "coretypes.h"
51#include "tm.h"
52
53#include "tree.h"
54#include "rtl.h"
55#include "tm_p.h"
56#include "regs.h"
57#include "insn-config.h"
58#include "insn-attr.h"
59#include "recog.h"
60#include "conditions.h"
61#include "flags.h"
62#include "real.h"
63#include "hard-reg-set.h"
64#include "output.h"
65#include "except.h"
66#include "function.h"
67#include "toplev.h"
68#include "reload.h"
69#include "intl.h"
70#include "basic-block.h"
71#include "target.h"
72#include "debug.h"
73#include "expr.h"
74#include "cfglayout.h"
75#include "tree-pass.h"
76#include "timevar.h"
77#include "cgraph.h"
78#include "coverage.h"
79
80#ifdef XCOFF_DEBUGGING_INFO
81#include "xcoffout.h" /* Needed for external data
82 declarations for e.g. AIX 4.x. */
83#endif
84
85#if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
86#include "dwarf2out.h"
87#endif
88
89#ifdef DBX_DEBUGGING_INFO
90#include "dbxout.h"
91#endif
92
93#ifdef SDB_DEBUGGING_INFO
94#include "sdbout.h"
95#endif
96
97/* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
98 null default for it to save conditionalization later. */
99#ifndef CC_STATUS_INIT
100#define CC_STATUS_INIT
101#endif
102
103/* How to start an assembler comment. */
104#ifndef ASM_COMMENT_START
105#define ASM_COMMENT_START ";#"
106#endif
107
108/* Is the given character a logical line separator for the assembler? */
109#ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
110#define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
111#endif
112
113#ifndef JUMP_TABLES_IN_TEXT_SECTION
114#define JUMP_TABLES_IN_TEXT_SECTION 0
115#endif
116
117/* Bitflags used by final_scan_insn. */
118#define SEEN_BB 1
119#define SEEN_NOTE 2
120#define SEEN_EMITTED 4
121
122/* Last insn processed by final_scan_insn. */
123static rtx debug_insn;
124rtx current_output_insn;
125
126/* Line number of last NOTE. */
127static int last_linenum;
128
129/* Highest line number in current block. */
130static int high_block_linenum;
131
132/* Likewise for function. */
133static int high_function_linenum;
134
135/* Filename of last NOTE. */
136static const char *last_filename;
137
138/* Whether to force emission of a line note before the next insn. */
139static bool force_source_line = false;
140
141extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
142
143/* Nonzero while outputting an `asm' with operands.
144 This means that inconsistencies are the user's fault, so don't die.
145 The precise value is the insn being output, to pass to error_for_asm. */
146rtx this_is_asm_operands;
147
148/* Number of operands of this insn, for an `asm' with operands. */
149static unsigned int insn_noperands;
150
151/* Compare optimization flag. */
152
153static rtx last_ignored_compare = 0;
154
155/* Assign a unique number to each insn that is output.
156 This can be used to generate unique local labels. */
157
158static int insn_counter = 0;
159
160#ifdef HAVE_cc0
161/* This variable contains machine-dependent flags (defined in tm.h)
162 set and examined by output routines
163 that describe how to interpret the condition codes properly. */
164
165CC_STATUS cc_status;
166
167/* During output of an insn, this contains a copy of cc_status
168 from before the insn. */
169
170CC_STATUS cc_prev_status;
171#endif
172
173/* Indexed by hardware reg number, is 1 if that register is ever
174 used in the current function.
175
176 In life_analysis, or in stupid_life_analysis, this is set
177 up to record the hard regs used explicitly. Reload adds
178 in the hard regs used for holding pseudo regs. Final uses
179 it to generate the code in the function prologue and epilogue
180 to save and restore registers as needed. */
181
182char regs_ever_live[FIRST_PSEUDO_REGISTER];
183
184/* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm.
185 Unlike regs_ever_live, elements of this array corresponding to
186 eliminable regs like the frame pointer are set if an asm sets them. */
187
188char regs_asm_clobbered[FIRST_PSEUDO_REGISTER];
189
190/* Nonzero means current function must be given a frame pointer.
191 Initialized in function.c to 0. Set only in reload1.c as per
192 the needs of the function. */
193
194int frame_pointer_needed;
195
196/* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
197
198static int block_depth;
199
200/* Nonzero if have enabled APP processing of our assembler output. */
201
202static int app_on;
203
204/* If we are outputting an insn sequence, this contains the sequence rtx.
205 Zero otherwise. */
206
207rtx final_sequence;
208
209#ifdef ASSEMBLER_DIALECT
210
211/* Number of the assembler dialect to use, starting at 0. */
212static int dialect_number;
213#endif
214
215#ifdef HAVE_conditional_execution
216/* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
217rtx current_insn_predicate;
218#endif
219
220#ifdef HAVE_ATTR_length
221static int asm_insn_count (rtx);
222#endif
223static void profile_function (FILE *);
224static void profile_after_prologue (FILE *);
225static bool notice_source_line (rtx);
226static rtx walk_alter_subreg (rtx *);
227static void output_asm_name (void);
228static void output_alternate_entry_point (FILE *, rtx);
229static tree get_mem_expr_from_op (rtx, int *);
230static void output_asm_operand_names (rtx *, int *, int);
231static void output_operand (rtx, int);
232#ifdef LEAF_REGISTERS
233static void leaf_renumber_regs (rtx);
234#endif
235#ifdef HAVE_cc0
236static int alter_cond (rtx);
237#endif
238#ifndef ADDR_VEC_ALIGN
239static int final_addr_vec_align (rtx);
240#endif
241#ifdef HAVE_ATTR_length
242static int align_fuzz (rtx, rtx, int, unsigned);
243#endif
244
245/* Initialize data in final at the beginning of a compilation. */
246
247void
248init_final (const char *filename ATTRIBUTE_UNUSED)
249{
250 app_on = 0;
251 final_sequence = 0;
252
253#ifdef ASSEMBLER_DIALECT
254 dialect_number = ASSEMBLER_DIALECT;
255#endif
256}
257
258/* Default target function prologue and epilogue assembler output.
259
260 If not overridden for epilogue code, then the function body itself
261 contains return instructions wherever needed. */
262void
263default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
264 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
265{
266}
267
268/* Default target hook that outputs nothing to a stream. */
269void
270no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
271{
272}
273
274/* Enable APP processing of subsequent output.
275 Used before the output from an `asm' statement. */
276
277void
278app_enable (void)
279{
280 if (! app_on)
281 {
282 fputs (ASM_APP_ON, asm_out_file);
283 app_on = 1;
284 }
285}
286
287/* Disable APP processing of subsequent output.
288 Called from varasm.c before most kinds of output. */
289
290void
291app_disable (void)
292{
293 if (app_on)
294 {
295 fputs (ASM_APP_OFF, asm_out_file);
296 app_on = 0;
297 }
298}
299
300/* Return the number of slots filled in the current
301 delayed branch sequence (we don't count the insn needing the
302 delay slot). Zero if not in a delayed branch sequence. */
303
304#ifdef DELAY_SLOTS
305int
306dbr_sequence_length (void)
307{
308 if (final_sequence != 0)
309 return XVECLEN (final_sequence, 0) - 1;
310 else
311 return 0;
312}
313#endif
314
315/* The next two pages contain routines used to compute the length of an insn
316 and to shorten branches. */
317
318/* Arrays for insn lengths, and addresses. The latter is referenced by
319 `insn_current_length'. */
320
321static int *insn_lengths;
322
323varray_type insn_addresses_;
324
325/* Max uid for which the above arrays are valid. */
326static int insn_lengths_max_uid;
327
328/* Address of insn being processed. Used by `insn_current_length'. */
329int insn_current_address;
330
331/* Address of insn being processed in previous iteration. */
332int insn_last_address;
333
334/* known invariant alignment of insn being processed. */
335int insn_current_align;
336
337/* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
338 gives the next following alignment insn that increases the known
339 alignment, or NULL_RTX if there is no such insn.
340 For any alignment obtained this way, we can again index uid_align with
341 its uid to obtain the next following align that in turn increases the
342 alignment, till we reach NULL_RTX; the sequence obtained this way
343 for each insn we'll call the alignment chain of this insn in the following
344 comments. */
345
346struct label_alignment
347{
348 short alignment;
349 short max_skip;
350};
351
352static rtx *uid_align;
353static int *uid_shuid;
354static struct label_alignment *label_align;
355
356/* Indicate that branch shortening hasn't yet been done. */
357
358void
359init_insn_lengths (void)
360{
361 if (uid_shuid)
362 {
363 free (uid_shuid);
364 uid_shuid = 0;
365 }
366 if (insn_lengths)
367 {
368 free (insn_lengths);
369 insn_lengths = 0;
370 insn_lengths_max_uid = 0;
371 }
372#ifdef HAVE_ATTR_length
373 INSN_ADDRESSES_FREE ();
374#endif
375 if (uid_align)
376 {
377 free (uid_align);
378 uid_align = 0;
379 }
380}
381
382/* Obtain the current length of an insn. If branch shortening has been done,
383 get its actual length. Otherwise, use FALLBACK_FN to calculate the
384 length. */
385static inline int
386get_attr_length_1 (rtx insn ATTRIBUTE_UNUSED,
387 int (*fallback_fn) (rtx) ATTRIBUTE_UNUSED)
388{
389#ifdef HAVE_ATTR_length
390 rtx body;
391 int i;
392 int length = 0;
393
394 if (insn_lengths_max_uid > INSN_UID (insn))
395 return insn_lengths[INSN_UID (insn)];
396 else
397 switch (GET_CODE (insn))
398 {
399 case NOTE:
400 case BARRIER:
401 case CODE_LABEL:
402 return 0;
403
404 case CALL_INSN:
405 length = fallback_fn (insn);
406 break;
407
408 case JUMP_INSN:
409 body = PATTERN (insn);
410 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
411 {
412 /* Alignment is machine-dependent and should be handled by
413 ADDR_VEC_ALIGN. */
414 }
415 else
416 length = fallback_fn (insn);
417 break;
418
419 case INSN:
420 body = PATTERN (insn);
421 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
422 return 0;
423
424 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
425 length = asm_insn_count (body) * fallback_fn (insn);
426 else if (GET_CODE (body) == SEQUENCE)
427 for (i = 0; i < XVECLEN (body, 0); i++)
428 length += get_attr_length (XVECEXP (body, 0, i));
429 else
430 length = fallback_fn (insn);
431 break;
432
433 default:
434 break;
435 }
436
437#ifdef ADJUST_INSN_LENGTH
438 ADJUST_INSN_LENGTH (insn, length);
439#endif
440 return length;
441#else /* not HAVE_ATTR_length */
442 return 0;
443#define insn_default_length 0
444#define insn_min_length 0
445#endif /* not HAVE_ATTR_length */
446}
447
448/* Obtain the current length of an insn. If branch shortening has been done,
449 get its actual length. Otherwise, get its maximum length. */
450int
451get_attr_length (rtx insn)
452{
453 return get_attr_length_1 (insn, insn_default_length);
454}
455
456/* Obtain the current length of an insn. If branch shortening has been done,
457 get its actual length. Otherwise, get its minimum length. */
458int
459get_attr_min_length (rtx insn)
460{
461 return get_attr_length_1 (insn, insn_min_length);
462}
463
464/* Code to handle alignment inside shorten_branches. */
465
466/* Here is an explanation how the algorithm in align_fuzz can give
467 proper results:
468
469 Call a sequence of instructions beginning with alignment point X
470 and continuing until the next alignment point `block X'. When `X'
471 is used in an expression, it means the alignment value of the
472 alignment point.
473
474 Call the distance between the start of the first insn of block X, and
475 the end of the last insn of block X `IX', for the `inner size of X'.
476 This is clearly the sum of the instruction lengths.
477
478 Likewise with the next alignment-delimited block following X, which we
479 shall call block Y.
480
481 Call the distance between the start of the first insn of block X, and
482 the start of the first insn of block Y `OX', for the `outer size of X'.
483
484 The estimated padding is then OX - IX.
485
486 OX can be safely estimated as
487
488 if (X >= Y)
489 OX = round_up(IX, Y)
490 else
491 OX = round_up(IX, X) + Y - X
492
493 Clearly est(IX) >= real(IX), because that only depends on the
494 instruction lengths, and those being overestimated is a given.
495
496 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
497 we needn't worry about that when thinking about OX.
498
499 When X >= Y, the alignment provided by Y adds no uncertainty factor
500 for branch ranges starting before X, so we can just round what we have.
501 But when X < Y, we don't know anything about the, so to speak,
502 `middle bits', so we have to assume the worst when aligning up from an
503 address mod X to one mod Y, which is Y - X. */
504
505#ifndef LABEL_ALIGN
506#define LABEL_ALIGN(LABEL) align_labels_log
507#endif
508
509#ifndef LABEL_ALIGN_MAX_SKIP
510#define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
511#endif
512
513#ifndef LOOP_ALIGN
514#define LOOP_ALIGN(LABEL) align_loops_log
515#endif
516
517#ifndef LOOP_ALIGN_MAX_SKIP
518#define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
519#endif
520
521#ifndef LABEL_ALIGN_AFTER_BARRIER
522#define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
523#endif
524
525#ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
526#define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
527#endif
528
529#ifndef JUMP_ALIGN
530#define JUMP_ALIGN(LABEL) align_jumps_log
531#endif
532
533#ifndef JUMP_ALIGN_MAX_SKIP
534#define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
535#endif
536
537#ifndef ADDR_VEC_ALIGN
538static int
539final_addr_vec_align (rtx addr_vec)
540{
541 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
542
543 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
544 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
545 return exact_log2 (align);
546
547}
548
549#define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
550#endif
551
552#ifndef INSN_LENGTH_ALIGNMENT
553#define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
554#endif
555
556#define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
557
558static int min_labelno, max_labelno;
559
560#define LABEL_TO_ALIGNMENT(LABEL) \
561 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
562
563#define LABEL_TO_MAX_SKIP(LABEL) \
564 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
565
566/* For the benefit of port specific code do this also as a function. */
567
568int
569label_to_alignment (rtx label)
570{
571 return LABEL_TO_ALIGNMENT (label);
572}
573
574#ifdef HAVE_ATTR_length
575/* The differences in addresses
576 between a branch and its target might grow or shrink depending on
577 the alignment the start insn of the range (the branch for a forward
578 branch or the label for a backward branch) starts out on; if these
579 differences are used naively, they can even oscillate infinitely.
580 We therefore want to compute a 'worst case' address difference that
581 is independent of the alignment the start insn of the range end
582 up on, and that is at least as large as the actual difference.
583 The function align_fuzz calculates the amount we have to add to the
584 naively computed difference, by traversing the part of the alignment
585 chain of the start insn of the range that is in front of the end insn
586 of the range, and considering for each alignment the maximum amount
587 that it might contribute to a size increase.
588
589 For casesi tables, we also want to know worst case minimum amounts of
590 address difference, in case a machine description wants to introduce
591 some common offset that is added to all offsets in a table.
592 For this purpose, align_fuzz with a growth argument of 0 computes the
593 appropriate adjustment. */
594
595/* Compute the maximum delta by which the difference of the addresses of
596 START and END might grow / shrink due to a different address for start
597 which changes the size of alignment insns between START and END.
598 KNOWN_ALIGN_LOG is the alignment known for START.
599 GROWTH should be ~0 if the objective is to compute potential code size
600 increase, and 0 if the objective is to compute potential shrink.
601 The return value is undefined for any other value of GROWTH. */
602
603static int
604align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
605{
606 int uid = INSN_UID (start);
607 rtx align_label;
608 int known_align = 1 << known_align_log;
609 int end_shuid = INSN_SHUID (end);
610 int fuzz = 0;
611
612 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
613 {
614 int align_addr, new_align;
615
616 uid = INSN_UID (align_label);
617 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
618 if (uid_shuid[uid] > end_shuid)
619 break;
620 known_align_log = LABEL_TO_ALIGNMENT (align_label);
621 new_align = 1 << known_align_log;
622 if (new_align < known_align)
623 continue;
624 fuzz += (-align_addr ^ growth) & (new_align - known_align);
625 known_align = new_align;
626 }
627 return fuzz;
628}
629
630/* Compute a worst-case reference address of a branch so that it
631 can be safely used in the presence of aligned labels. Since the
632 size of the branch itself is unknown, the size of the branch is
633 not included in the range. I.e. for a forward branch, the reference
634 address is the end address of the branch as known from the previous
635 branch shortening pass, minus a value to account for possible size
636 increase due to alignment. For a backward branch, it is the start
637 address of the branch as known from the current pass, plus a value
638 to account for possible size increase due to alignment.
639 NB.: Therefore, the maximum offset allowed for backward branches needs
640 to exclude the branch size. */
641
642int
643insn_current_reference_address (rtx branch)
644{
645 rtx dest, seq;
646 int seq_uid;
647
648 if (! INSN_ADDRESSES_SET_P ())
649 return 0;
650
651 seq = NEXT_INSN (PREV_INSN (branch));
652 seq_uid = INSN_UID (seq);
653 if (!JUMP_P (branch))
654 /* This can happen for example on the PA; the objective is to know the
655 offset to address something in front of the start of the function.
656 Thus, we can treat it like a backward branch.
657 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
658 any alignment we'd encounter, so we skip the call to align_fuzz. */
659 return insn_current_address;
660 dest = JUMP_LABEL (branch);
661
662 /* BRANCH has no proper alignment chain set, so use SEQ.
663 BRANCH also has no INSN_SHUID. */
664 if (INSN_SHUID (seq) < INSN_SHUID (dest))
665 {
666 /* Forward branch. */
667 return (insn_last_address + insn_lengths[seq_uid]
668 - align_fuzz (seq, dest, length_unit_log, ~0));
669 }
670 else
671 {
672 /* Backward branch. */
673 return (insn_current_address
674 + align_fuzz (dest, seq, length_unit_log, ~0));
675 }
676}
677#endif /* HAVE_ATTR_length */
678
679/* Compute branch alignments based on frequency information in the
680 CFG. */
681
682static unsigned int
683compute_alignments (void)
684{
685 int log, max_skip, max_log;
686 basic_block bb;
687
688 if (label_align)
689 {
690 free (label_align);
691 label_align = 0;
692 }
693
694 max_labelno = max_label_num ();
695 min_labelno = get_first_label_num ();
696 label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
697
698 /* If not optimizing or optimizing for size, don't assign any alignments. */
699 if (! optimize || optimize_size)
700 return 0;
701
702 FOR_EACH_BB (bb)
703 {
704 rtx label = BB_HEAD (bb);
705 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
706 edge e;
707 edge_iterator ei;
708
709 if (!LABEL_P (label)
710 || probably_never_executed_bb_p (bb))
711 continue;
712 max_log = LABEL_ALIGN (label);
713 max_skip = LABEL_ALIGN_MAX_SKIP;
714
715 FOR_EACH_EDGE (e, ei, bb->preds)
716 {
717 if (e->flags & EDGE_FALLTHRU)
718 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
719 else
720 branch_frequency += EDGE_FREQUENCY (e);
721 }
722
723 /* There are two purposes to align block with no fallthru incoming edge:
724 1) to avoid fetch stalls when branch destination is near cache boundary
725 2) to improve cache efficiency in case the previous block is not executed
726 (so it does not need to be in the cache).
727
728 We to catch first case, we align frequently executed blocks.
729 To catch the second, we align blocks that are executed more frequently
730 than the predecessor and the predecessor is likely to not be executed
731 when function is called. */
732
733 if (!has_fallthru
734 && (branch_frequency > BB_FREQ_MAX / 10
735 || (bb->frequency > bb->prev_bb->frequency * 10
736 && (bb->prev_bb->frequency
737 <= ENTRY_BLOCK_PTR->frequency / 2))))
738 {
739 log = JUMP_ALIGN (label);
740 if (max_log < log)
741 {
742 max_log = log;
743 max_skip = JUMP_ALIGN_MAX_SKIP;
744 }
745 }
746 /* In case block is frequent and reached mostly by non-fallthru edge,
747 align it. It is most likely a first block of loop. */
748 if (has_fallthru
749 && maybe_hot_bb_p (bb)
750 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
751 && branch_frequency > fallthru_frequency * 2)
752 {
753 log = LOOP_ALIGN (label);
754 if (max_log < log)
755 {
756 max_log = log;
757 max_skip = LOOP_ALIGN_MAX_SKIP;
758 }
759 }
760 LABEL_TO_ALIGNMENT (label) = max_log;
761 LABEL_TO_MAX_SKIP (label) = max_skip;
762 }
763 return 0;
764}
765
766struct tree_opt_pass pass_compute_alignments =
767{
768 NULL, /* name */
769 NULL, /* gate */
770 compute_alignments, /* execute */
771 NULL, /* sub */
772 NULL, /* next */
773 0, /* static_pass_number */
774 0, /* tv_id */
775 0, /* properties_required */
776 0, /* properties_provided */
777 0, /* properties_destroyed */
778 0, /* todo_flags_start */
779 0, /* todo_flags_finish */
780 0 /* letter */
781};
782
783
784/* Make a pass over all insns and compute their actual lengths by shortening
785 any branches of variable length if possible. */
786
787/* shorten_branches might be called multiple times: for example, the SH
788 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
789 In order to do this, it needs proper length information, which it obtains
790 by calling shorten_branches. This cannot be collapsed with
791 shorten_branches itself into a single pass unless we also want to integrate
792 reorg.c, since the branch splitting exposes new instructions with delay
793 slots. */
794
795void
796shorten_branches (rtx first ATTRIBUTE_UNUSED)
797{
798 rtx insn;
799 int max_uid;
800 int i;
801 int max_log;
802 int max_skip;
803#ifdef HAVE_ATTR_length
804#define MAX_CODE_ALIGN 16
805 rtx seq;
806 int something_changed = 1;
807 char *varying_length;
808 rtx body;
809 int uid;
810 rtx align_tab[MAX_CODE_ALIGN];
811
812#endif
813
814 /* Compute maximum UID and allocate label_align / uid_shuid. */
815 max_uid = get_max_uid ();
816
817 /* Free uid_shuid before reallocating it. */
818 free (uid_shuid);
819
820 uid_shuid = XNEWVEC (int, max_uid);
821
822 if (max_labelno != max_label_num ())
823 {
824 int old = max_labelno;
825 int n_labels;
826 int n_old_labels;
827
828 max_labelno = max_label_num ();
829
830 n_labels = max_labelno - min_labelno + 1;
831 n_old_labels = old - min_labelno + 1;
832
833 label_align = xrealloc (label_align,
834 n_labels * sizeof (struct label_alignment));
835
836 /* Range of labels grows monotonically in the function. Failing here
837 means that the initialization of array got lost. */
838 gcc_assert (n_old_labels <= n_labels);
839
840 memset (label_align + n_old_labels, 0,
841 (n_labels - n_old_labels) * sizeof (struct label_alignment));
842 }
843
844 /* Initialize label_align and set up uid_shuid to be strictly
845 monotonically rising with insn order. */
846 /* We use max_log here to keep track of the maximum alignment we want to
847 impose on the next CODE_LABEL (or the current one if we are processing
848 the CODE_LABEL itself). */
849
850 max_log = 0;
851 max_skip = 0;
852
853 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
854 {
855 int log;
856
857 INSN_SHUID (insn) = i++;
858 if (INSN_P (insn))
859 continue;
860
861 if (LABEL_P (insn))
862 {
863 rtx next;
864
865 /* Merge in alignments computed by compute_alignments. */
866 log = LABEL_TO_ALIGNMENT (insn);
867 if (max_log < log)
868 {
869 max_log = log;
870 max_skip = LABEL_TO_MAX_SKIP (insn);
871 }
872
873 log = LABEL_ALIGN (insn);
874 if (max_log < log)
875 {
876 max_log = log;
877 max_skip = LABEL_ALIGN_MAX_SKIP;
878 }
879 next = next_nonnote_insn (insn);
880 /* ADDR_VECs only take room if read-only data goes into the text
881 section. */
882 if (JUMP_TABLES_IN_TEXT_SECTION
883 || readonly_data_section == text_section)
884 if (next && JUMP_P (next))
885 {
886 rtx nextbody = PATTERN (next);
887 if (GET_CODE (nextbody) == ADDR_VEC
888 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
889 {
890 log = ADDR_VEC_ALIGN (next);
891 if (max_log < log)
892 {
893 max_log = log;
894 max_skip = LABEL_ALIGN_MAX_SKIP;
895 }
896 }
897 }
898 LABEL_TO_ALIGNMENT (insn) = max_log;
899 LABEL_TO_MAX_SKIP (insn) = max_skip;
900 max_log = 0;
901 max_skip = 0;
902 }
903 else if (BARRIER_P (insn))
904 {
905 rtx label;
906
907 for (label = insn; label && ! INSN_P (label);
908 label = NEXT_INSN (label))
909 if (LABEL_P (label))
910 {
911 log = LABEL_ALIGN_AFTER_BARRIER (insn);
912 if (max_log < log)
913 {
914 max_log = log;
915 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
916 }
917 break;
918 }
919 }
920 }
921#ifdef HAVE_ATTR_length
922
923 /* Allocate the rest of the arrays. */
924 insn_lengths = XNEWVEC (int, max_uid);
925 insn_lengths_max_uid = max_uid;
926 /* Syntax errors can lead to labels being outside of the main insn stream.
927 Initialize insn_addresses, so that we get reproducible results. */
928 INSN_ADDRESSES_ALLOC (max_uid);
929
930 varying_length = XCNEWVEC (char, max_uid);
931
932 /* Initialize uid_align. We scan instructions
933 from end to start, and keep in align_tab[n] the last seen insn
934 that does an alignment of at least n+1, i.e. the successor
935 in the alignment chain for an insn that does / has a known
936 alignment of n. */
937 uid_align = XCNEWVEC (rtx, max_uid);
938
939 for (i = MAX_CODE_ALIGN; --i >= 0;)
940 align_tab[i] = NULL_RTX;
941 seq = get_last_insn ();
942 for (; seq; seq = PREV_INSN (seq))
943 {
944 int uid = INSN_UID (seq);
945 int log;
946 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
947 uid_align[uid] = align_tab[0];
948 if (log)
949 {
950 /* Found an alignment label. */
951 uid_align[uid] = align_tab[log];
952 for (i = log - 1; i >= 0; i--)
953 align_tab[i] = seq;
954 }
955 }
956#ifdef CASE_VECTOR_SHORTEN_MODE
957 if (optimize)
958 {
959 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
960 label fields. */
961
962 int min_shuid = INSN_SHUID (get_insns ()) - 1;
963 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
964 int rel;
965
966 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
967 {
968 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
969 int len, i, min, max, insn_shuid;
970 int min_align;
971 addr_diff_vec_flags flags;
972
973 if (!JUMP_P (insn)
974 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
975 continue;
976 pat = PATTERN (insn);
977 len = XVECLEN (pat, 1);
978 gcc_assert (len > 0);
979 min_align = MAX_CODE_ALIGN;
980 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
981 {
982 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
983 int shuid = INSN_SHUID (lab);
984 if (shuid < min)
985 {
986 min = shuid;
987 min_lab = lab;
988 }
989 if (shuid > max)
990 {
991 max = shuid;
992 max_lab = lab;
993 }
994 if (min_align > LABEL_TO_ALIGNMENT (lab))
995 min_align = LABEL_TO_ALIGNMENT (lab);
996 }
997 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
998 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
999 insn_shuid = INSN_SHUID (insn);
1000 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1001 memset (&flags, 0, sizeof (flags));
1002 flags.min_align = min_align;
1003 flags.base_after_vec = rel > insn_shuid;
1004 flags.min_after_vec = min > insn_shuid;
1005 flags.max_after_vec = max > insn_shuid;
1006 flags.min_after_base = min > rel;
1007 flags.max_after_base = max > rel;
1008 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1009 }
1010 }
1011#endif /* CASE_VECTOR_SHORTEN_MODE */
1012
1013 /* Compute initial lengths, addresses, and varying flags for each insn. */
1014 for (insn_current_address = 0, insn = first;
1015 insn != 0;
1016 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1017 {
1018 uid = INSN_UID (insn);
1019
1020 insn_lengths[uid] = 0;
1021
1022 if (LABEL_P (insn))
1023 {
1024 int log = LABEL_TO_ALIGNMENT (insn);
1025 if (log)
1026 {
1027 int align = 1 << log;
1028 int new_address = (insn_current_address + align - 1) & -align;
1029 insn_lengths[uid] = new_address - insn_current_address;
1030 }
1031 }
1032
1033 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1034
1035 if (NOTE_P (insn) || BARRIER_P (insn)
1036 || LABEL_P (insn))
1037 continue;
1038 if (INSN_DELETED_P (insn))
1039 continue;
1040
1041 body = PATTERN (insn);
1042 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1043 {
1044 /* This only takes room if read-only data goes into the text
1045 section. */
1046 if (JUMP_TABLES_IN_TEXT_SECTION
1047 || readonly_data_section == text_section)
1048 insn_lengths[uid] = (XVECLEN (body,
1049 GET_CODE (body) == ADDR_DIFF_VEC)
1050 * GET_MODE_SIZE (GET_MODE (body)));
1051 /* Alignment is handled by ADDR_VEC_ALIGN. */
1052 }
1053 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1054 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1055 else if (GET_CODE (body) == SEQUENCE)
1056 {
1057 int i;
1058 int const_delay_slots;
1059#ifdef DELAY_SLOTS
1060 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1061#else
1062 const_delay_slots = 0;
1063#endif
1064 /* Inside a delay slot sequence, we do not do any branch shortening
1065 if the shortening could change the number of delay slots
1066 of the branch. */
1067 for (i = 0; i < XVECLEN (body, 0); i++)
1068 {
1069 rtx inner_insn = XVECEXP (body, 0, i);
1070 int inner_uid = INSN_UID (inner_insn);
1071 int inner_length;
1072
1073 if (GET_CODE (body) == ASM_INPUT
1074 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1075 inner_length = (asm_insn_count (PATTERN (inner_insn))
1076 * insn_default_length (inner_insn));
1077 else
1078 inner_length = insn_default_length (inner_insn);
1079
1080 insn_lengths[inner_uid] = inner_length;
1081 if (const_delay_slots)
1082 {
1083 if ((varying_length[inner_uid]
1084 = insn_variable_length_p (inner_insn)) != 0)
1085 varying_length[uid] = 1;
1086 INSN_ADDRESSES (inner_uid) = (insn_current_address
1087 + insn_lengths[uid]);
1088 }
1089 else
1090 varying_length[inner_uid] = 0;
1091 insn_lengths[uid] += inner_length;
1092 }
1093 }
1094 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1095 {
1096 insn_lengths[uid] = insn_default_length (insn);
1097 varying_length[uid] = insn_variable_length_p (insn);
1098 }
1099
1100 /* If needed, do any adjustment. */
1101#ifdef ADJUST_INSN_LENGTH
1102 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1103 if (insn_lengths[uid] < 0)
1104 fatal_insn ("negative insn length", insn);
1105#endif
1106 }
1107
1108 /* Now loop over all the insns finding varying length insns. For each,
1109 get the current insn length. If it has changed, reflect the change.
1110 When nothing changes for a full pass, we are done. */
1111
1112 while (something_changed)
1113 {
1114 something_changed = 0;
1115 insn_current_align = MAX_CODE_ALIGN - 1;
1116 for (insn_current_address = 0, insn = first;
1117 insn != 0;
1118 insn = NEXT_INSN (insn))
1119 {
1120 int new_length;
1121#ifdef ADJUST_INSN_LENGTH
1122 int tmp_length;
1123#endif
1124 int length_align;
1125
1126 uid = INSN_UID (insn);
1127
1128 if (LABEL_P (insn))
1129 {
1130 int log = LABEL_TO_ALIGNMENT (insn);
1131 if (log > insn_current_align)
1132 {
1133 int align = 1 << log;
1134 int new_address= (insn_current_address + align - 1) & -align;
1135 insn_lengths[uid] = new_address - insn_current_address;
1136 insn_current_align = log;
1137 insn_current_address = new_address;
1138 }
1139 else
1140 insn_lengths[uid] = 0;
1141 INSN_ADDRESSES (uid) = insn_current_address;
1142 continue;
1143 }
1144
1145 length_align = INSN_LENGTH_ALIGNMENT (insn);
1146 if (length_align < insn_current_align)
1147 insn_current_align = length_align;
1148
1149 insn_last_address = INSN_ADDRESSES (uid);
1150 INSN_ADDRESSES (uid) = insn_current_address;
1151
1152#ifdef CASE_VECTOR_SHORTEN_MODE
1153 if (optimize && JUMP_P (insn)
1154 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1155 {
1156 rtx body = PATTERN (insn);
1157 int old_length = insn_lengths[uid];
1158 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1159 rtx min_lab = XEXP (XEXP (body, 2), 0);
1160 rtx max_lab = XEXP (XEXP (body, 3), 0);
1161 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1162 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1163 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1164 rtx prev;
1165 int rel_align = 0;
1166 addr_diff_vec_flags flags;
1167
1168 /* Avoid automatic aggregate initialization. */
1169 flags = ADDR_DIFF_VEC_FLAGS (body);
1170
1171 /* Try to find a known alignment for rel_lab. */
1172 for (prev = rel_lab;
1173 prev
1174 && ! insn_lengths[INSN_UID (prev)]
1175 && ! (varying_length[INSN_UID (prev)] & 1);
1176 prev = PREV_INSN (prev))
1177 if (varying_length[INSN_UID (prev)] & 2)
1178 {
1179 rel_align = LABEL_TO_ALIGNMENT (prev);
1180 break;
1181 }
1182
1183 /* See the comment on addr_diff_vec_flags in rtl.h for the
1184 meaning of the flags values. base: REL_LAB vec: INSN */
1185 /* Anything after INSN has still addresses from the last
1186 pass; adjust these so that they reflect our current
1187 estimate for this pass. */
1188 if (flags.base_after_vec)
1189 rel_addr += insn_current_address - insn_last_address;
1190 if (flags.min_after_vec)
1191 min_addr += insn_current_address - insn_last_address;
1192 if (flags.max_after_vec)
1193 max_addr += insn_current_address - insn_last_address;
1194 /* We want to know the worst case, i.e. lowest possible value
1195 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1196 its offset is positive, and we have to be wary of code shrink;
1197 otherwise, it is negative, and we have to be vary of code
1198 size increase. */
1199 if (flags.min_after_base)
1200 {
1201 /* If INSN is between REL_LAB and MIN_LAB, the size
1202 changes we are about to make can change the alignment
1203 within the observed offset, therefore we have to break
1204 it up into two parts that are independent. */
1205 if (! flags.base_after_vec && flags.min_after_vec)
1206 {
1207 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1208 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1209 }
1210 else
1211 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1212 }
1213 else
1214 {
1215 if (flags.base_after_vec && ! flags.min_after_vec)
1216 {
1217 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1218 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1219 }
1220 else
1221 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1222 }
1223 /* Likewise, determine the highest lowest possible value
1224 for the offset of MAX_LAB. */
1225 if (flags.max_after_base)
1226 {
1227 if (! flags.base_after_vec && flags.max_after_vec)
1228 {
1229 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1230 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1231 }
1232 else
1233 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1234 }
1235 else
1236 {
1237 if (flags.base_after_vec && ! flags.max_after_vec)
1238 {
1239 max_addr += align_fuzz (max_lab, insn, 0, 0);
1240 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1241 }
1242 else
1243 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1244 }
1245 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1246 max_addr - rel_addr,
1247 body));
1248 if (JUMP_TABLES_IN_TEXT_SECTION
1249 || readonly_data_section == text_section)
1250 {
1251 insn_lengths[uid]
1252 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1253 insn_current_address += insn_lengths[uid];
1254 if (insn_lengths[uid] != old_length)
1255 something_changed = 1;
1256 }
1257
1258 continue;
1259 }
1260#endif /* CASE_VECTOR_SHORTEN_MODE */
1261
1262 if (! (varying_length[uid]))
1263 {
1264 if (NONJUMP_INSN_P (insn)
1265 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1266 {
1267 int i;
1268
1269 body = PATTERN (insn);
1270 for (i = 0; i < XVECLEN (body, 0); i++)
1271 {
1272 rtx inner_insn = XVECEXP (body, 0, i);
1273 int inner_uid = INSN_UID (inner_insn);
1274
1275 INSN_ADDRESSES (inner_uid) = insn_current_address;
1276
1277 insn_current_address += insn_lengths[inner_uid];
1278 }
1279 }
1280 else
1281 insn_current_address += insn_lengths[uid];
1282
1283 continue;
1284 }
1285
1286 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1287 {
1288 int i;
1289
1290 body = PATTERN (insn);
1291 new_length = 0;
1292 for (i = 0; i < XVECLEN (body, 0); i++)
1293 {
1294 rtx inner_insn = XVECEXP (body, 0, i);
1295 int inner_uid = INSN_UID (inner_insn);
1296 int inner_length;
1297
1298 INSN_ADDRESSES (inner_uid) = insn_current_address;
1299
1300 /* insn_current_length returns 0 for insns with a
1301 non-varying length. */
1302 if (! varying_length[inner_uid])
1303 inner_length = insn_lengths[inner_uid];
1304 else
1305 inner_length = insn_current_length (inner_insn);
1306
1307 if (inner_length != insn_lengths[inner_uid])
1308 {
1309 insn_lengths[inner_uid] = inner_length;
1310 something_changed = 1;
1311 }
1312 insn_current_address += insn_lengths[inner_uid];
1313 new_length += inner_length;
1314 }
1315 }
1316 else
1317 {
1318 new_length = insn_current_length (insn);
1319 insn_current_address += new_length;
1320 }
1321
1322#ifdef ADJUST_INSN_LENGTH
1323 /* If needed, do any adjustment. */
1324 tmp_length = new_length;
1325 ADJUST_INSN_LENGTH (insn, new_length);
1326 insn_current_address += (new_length - tmp_length);
1327#endif
1328
1329 if (new_length != insn_lengths[uid])
1330 {
1331 insn_lengths[uid] = new_length;
1332 something_changed = 1;
1333 }
1334 }
1335 /* For a non-optimizing compile, do only a single pass. */
1336 if (!optimize)
1337 break;
1338 }
1339
1340 free (varying_length);
1341
1342#endif /* HAVE_ATTR_length */
1343}
1344
1345#ifdef HAVE_ATTR_length
1346/* Given the body of an INSN known to be generated by an ASM statement, return
1347 the number of machine instructions likely to be generated for this insn.
1348 This is used to compute its length. */
1349
1350static int
1351asm_insn_count (rtx body)
1352{
1353 const char *template;
1354 int count = 1;
1355
1356 if (GET_CODE (body) == ASM_INPUT)
1357 template = XSTR (body, 0);
1358 else
1359 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1360
1361 for (; *template; template++)
1362 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1363 count++;
1364
1365 return count;
1366}
1367#endif
1368
1369/* Output assembler code for the start of a function,
1370 and initialize some of the variables in this file
1371 for the new function. The label for the function and associated
1372 assembler pseudo-ops have already been output in `assemble_start_function'.
1373
1374 FIRST is the first insn of the rtl for the function being compiled.
1375 FILE is the file to write assembler code to.
1376 OPTIMIZE is nonzero if we should eliminate redundant
1377 test and compare insns. */
1378
1379void
1380final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1381 int optimize ATTRIBUTE_UNUSED)
1382{
1383 block_depth = 0;
1384
1385 this_is_asm_operands = 0;
1386
1387 last_filename = locator_file (prologue_locator);
1388 last_linenum = locator_line (prologue_locator);
1389
1390 high_block_linenum = high_function_linenum = last_linenum;
1391
1392 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1393
1394#if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1395 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1396 dwarf2out_begin_prologue (0, NULL);
1397#endif
1398
1399#ifdef LEAF_REG_REMAP
1400 if (current_function_uses_only_leaf_regs)
1401 leaf_renumber_regs (first);
1402#endif
1403
1404 /* The Sun386i and perhaps other machines don't work right
1405 if the profiling code comes after the prologue. */
1406#ifdef PROFILE_BEFORE_PROLOGUE
1407 if (current_function_profile)
1408 profile_function (file);
1409#endif /* PROFILE_BEFORE_PROLOGUE */
1410
1411#if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1412 if (dwarf2out_do_frame ())
1413 dwarf2out_frame_debug (NULL_RTX, false);
1414#endif
1415
1416 /* If debugging, assign block numbers to all of the blocks in this
1417 function. */
1418 if (write_symbols)
1419 {
1420 reemit_insn_block_notes ();
1421 number_blocks (current_function_decl);
1422 /* We never actually put out begin/end notes for the top-level
1423 block in the function. But, conceptually, that block is
1424 always needed. */
1425 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1426 }
1427
1428 /* First output the function prologue: code to set up the stack frame. */
1429 targetm.asm_out.function_prologue (file, get_frame_size ());
1430
1431 /* If the machine represents the prologue as RTL, the profiling code must
1432 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1433#ifdef HAVE_prologue
1434 if (! HAVE_prologue)
1435#endif
1436 profile_after_prologue (file);
1437}
1438
1439static void
1440profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1441{
1442#ifndef PROFILE_BEFORE_PROLOGUE
1443 if (current_function_profile)
1444 profile_function (file);
1445#endif /* not PROFILE_BEFORE_PROLOGUE */
1446}
1447
1448static void
1449profile_function (FILE *file ATTRIBUTE_UNUSED)
1450{
1451#ifndef NO_PROFILE_COUNTERS
1452# define NO_PROFILE_COUNTERS 0
1453#endif
1454#if defined(ASM_OUTPUT_REG_PUSH)
1455 int sval = current_function_returns_struct;
1456 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1457#if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1458 int cxt = cfun->static_chain_decl != NULL;
1459#endif
1460#endif /* ASM_OUTPUT_REG_PUSH */
1461
1462 if (! NO_PROFILE_COUNTERS)
1463 {
1464 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1465 switch_to_section (data_section);
1466 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1467 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1468 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1469 }
1470
1471 switch_to_section (current_function_section ());
1472
1473#if defined(ASM_OUTPUT_REG_PUSH)
1474 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1475 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1476#endif
1477
1478#if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1479 if (cxt)
1480 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1481#else
1482#if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1483 if (cxt)
1484 {
1485 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1486 }
1487#endif
1488#endif
1489
1490 FUNCTION_PROFILER (file, current_function_funcdef_no);
1491
1492#if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1493 if (cxt)
1494 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1495#else
1496#if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1497 if (cxt)
1498 {
1499 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1500 }
1501#endif
1502#endif
1503
1504#if defined(ASM_OUTPUT_REG_PUSH)
1505 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1506 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1507#endif
1508}
1509
1510/* Output assembler code for the end of a function.
1511 For clarity, args are same as those of `final_start_function'
1512 even though not all of them are needed. */
1513
1514void
1515final_end_function (void)
1516{
1517 app_disable ();
1518
1519 (*debug_hooks->end_function) (high_function_linenum);
1520
1521 /* Finally, output the function epilogue:
1522 code to restore the stack frame and return to the caller. */
1523 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1524
1525 /* And debug output. */
1526 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1527
1528#if defined (DWARF2_UNWIND_INFO)
1529 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1530 && dwarf2out_do_frame ())
1531 dwarf2out_end_epilogue (last_linenum, last_filename);
1532#endif
1533}
1534
1535/* Output assembler code for some insns: all or part of a function.
1536 For description of args, see `final_start_function', above. */
1537
1538void
1539final (rtx first, FILE *file, int optimize)
1540{
1541 rtx insn;
1542 int max_uid = 0;
1543 int seen = 0;
1544
1545 last_ignored_compare = 0;
1546
1547#ifdef SDB_DEBUGGING_INFO
1548 /* When producing SDB debugging info, delete troublesome line number
1549 notes from inlined functions in other files as well as duplicate
1550 line number notes. */
1551 if (write_symbols == SDB_DEBUG)
1552 {
1553 rtx last = 0;
1554 for (insn = first; insn; insn = NEXT_INSN (insn))
1555 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
1556 {
1557 if (last != 0
1558#ifdef USE_MAPPED_LOCATION
1559 && NOTE_SOURCE_LOCATION (insn) == NOTE_SOURCE_LOCATION (last)
1560#else
1561 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1562 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)
1563#endif
1564 )
1565 {
1566 delete_insn (insn); /* Use delete_note. */
1567 continue;
1568 }
1569 last = insn;
1570 }
1571 }
1572#endif
1573
1574 for (insn = first; insn; insn = NEXT_INSN (insn))
1575 {
1576 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1577 max_uid = INSN_UID (insn);
1578#ifdef HAVE_cc0
1579 /* If CC tracking across branches is enabled, record the insn which
1580 jumps to each branch only reached from one place. */
1581 if (optimize && JUMP_P (insn))
1582 {
1583 rtx lab = JUMP_LABEL (insn);
1584 if (lab && LABEL_NUSES (lab) == 1)
1585 {
1586 LABEL_REFS (lab) = insn;
1587 }
1588 }
1589#endif
1590 }
1591
1592 init_recog ();
1593
1594 CC_STATUS_INIT;
1595
1596 /* Output the insns. */
1597 for (insn = NEXT_INSN (first); insn;)
1598 {
1599#ifdef HAVE_ATTR_length
1600 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1601 {
1602 /* This can be triggered by bugs elsewhere in the compiler if
1603 new insns are created after init_insn_lengths is called. */
1604 gcc_assert (NOTE_P (insn));
1605 insn_current_address = -1;
1606 }
1607 else
1608 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1609#endif /* HAVE_ATTR_length */
1610
1611 insn = final_scan_insn (insn, file, optimize, 0, &seen);
1612 }
1613}
1614
1615const char *
1616get_insn_template (int code, rtx insn)
1617{
1618 switch (insn_data[code].output_format)
1619 {
1620 case INSN_OUTPUT_FORMAT_SINGLE:
1621 return insn_data[code].output.single;
1622 case INSN_OUTPUT_FORMAT_MULTI:
1623 return insn_data[code].output.multi[which_alternative];
1624 case INSN_OUTPUT_FORMAT_FUNCTION:
1625 gcc_assert (insn);
1626 return (*insn_data[code].output.function) (recog_data.operand, insn);
1627
1628 default:
1629 gcc_unreachable ();
1630 }
1631}
1632
1633/* Emit the appropriate declaration for an alternate-entry-point
1634 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1635 LABEL_KIND != LABEL_NORMAL.
1636
1637 The case fall-through in this function is intentional. */
1638static void
1639output_alternate_entry_point (FILE *file, rtx insn)
1640{
1641 const char *name = LABEL_NAME (insn);
1642
1643 switch (LABEL_KIND (insn))
1644 {
1645 case LABEL_WEAK_ENTRY:
1646#ifdef ASM_WEAKEN_LABEL
1647 ASM_WEAKEN_LABEL (file, name);
1648#endif
1649 case LABEL_GLOBAL_ENTRY:
1650 targetm.asm_out.globalize_label (file, name);
1651 case LABEL_STATIC_ENTRY:
1652#ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1653 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1654#endif
1655 ASM_OUTPUT_LABEL (file, name);
1656 break;
1657
1658 case LABEL_NORMAL:
1659 default:
1660 gcc_unreachable ();
1661 }
1662}
1663
1664/* The final scan for one insn, INSN.
1665 Args are same as in `final', except that INSN
1666 is the insn being scanned.
1667 Value returned is the next insn to be scanned.
1668
1669 NOPEEPHOLES is the flag to disallow peephole processing (currently
1670 used for within delayed branch sequence output).
1671
1672 SEEN is used to track the end of the prologue, for emitting
1673 debug information. We force the emission of a line note after
1674 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1675 at the beginning of the second basic block, whichever comes
1676 first. */
1677
1678rtx
1679final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1680 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
1681{
1682#ifdef HAVE_cc0
1683 rtx set;
1684#endif
1685 rtx next;
1686
1687 insn_counter++;
1688
1689 /* Ignore deleted insns. These can occur when we split insns (due to a
1690 template of "#") while not optimizing. */
1691 if (INSN_DELETED_P (insn))
1692 return NEXT_INSN (insn);
1693
1694 switch (GET_CODE (insn))
1695 {
1696 case NOTE:
1697 switch (NOTE_LINE_NUMBER (insn))
1698 {
1699 case NOTE_INSN_DELETED:
1700 case NOTE_INSN_FUNCTION_END:
1701 case NOTE_INSN_REPEATED_LINE_NUMBER:
1702 case NOTE_INSN_EXPECTED_VALUE:
1703 break;
1704
1705 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1706 in_cold_section_p = !in_cold_section_p;
1707 (*debug_hooks->switch_text_section) ();
1708 switch_to_section (current_function_section ());
1709 break;
1710
1711 case NOTE_INSN_BASIC_BLOCK:
1712#ifdef TARGET_UNWIND_INFO
1713 targetm.asm_out.unwind_emit (asm_out_file, insn);
1714#endif
1715
1716 if (flag_debug_asm)
1717 fprintf (asm_out_file, "\t%s basic block %d\n",
1718 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1719
1720 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1721 {
1722 *seen |= SEEN_EMITTED;
1723 force_source_line = true;
1724 }
1725 else
1726 *seen |= SEEN_BB;
1727
1728 break;
1729
1730 case NOTE_INSN_EH_REGION_BEG:
1731 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1732 NOTE_EH_HANDLER (insn));
1733 break;
1734
1735 case NOTE_INSN_EH_REGION_END:
1736 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1737 NOTE_EH_HANDLER (insn));
1738 break;
1739
1740 case NOTE_INSN_PROLOGUE_END:
1741 targetm.asm_out.function_end_prologue (file);
1742 profile_after_prologue (file);
1743
1744 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1745 {
1746 *seen |= SEEN_EMITTED;
1747 force_source_line = true;
1748 }
1749 else
1750 *seen |= SEEN_NOTE;
1751
1752 break;
1753
1754 case NOTE_INSN_EPILOGUE_BEG:
1755 targetm.asm_out.function_begin_epilogue (file);
1756 break;
1757
1758 case NOTE_INSN_FUNCTION_BEG:
1759 app_disable ();
1760 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1761
1762 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1763 {
1764 *seen |= SEEN_EMITTED;
1765 force_source_line = true;
1766 }
1767 else
1768 *seen |= SEEN_NOTE;
1769
1770 break;
1771
1772 case NOTE_INSN_BLOCK_BEG:
1773 if (debug_info_level == DINFO_LEVEL_NORMAL
1774 || debug_info_level == DINFO_LEVEL_VERBOSE
1775 || write_symbols == DWARF2_DEBUG
1776 || write_symbols == VMS_AND_DWARF2_DEBUG
1777 || write_symbols == VMS_DEBUG)
1778 {
1779 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1780
1781 app_disable ();
1782 ++block_depth;
1783 high_block_linenum = last_linenum;
1784
1785 /* Output debugging info about the symbol-block beginning. */
1786 (*debug_hooks->begin_block) (last_linenum, n);
1787
1788 /* Mark this block as output. */
1789 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1790 }
1791 break;
1792
1793 case NOTE_INSN_BLOCK_END:
1794 if (debug_info_level == DINFO_LEVEL_NORMAL
1795 || debug_info_level == DINFO_LEVEL_VERBOSE
1796 || write_symbols == DWARF2_DEBUG
1797 || write_symbols == VMS_AND_DWARF2_DEBUG
1798 || write_symbols == VMS_DEBUG)
1799 {
1800 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1801
1802 app_disable ();
1803
1804 /* End of a symbol-block. */
1805 --block_depth;
1806 gcc_assert (block_depth >= 0);
1807
1808 (*debug_hooks->end_block) (high_block_linenum, n);
1809 }
1810 break;
1811
1812 case NOTE_INSN_DELETED_LABEL:
1813 /* Emit the label. We may have deleted the CODE_LABEL because
1814 the label could be proved to be unreachable, though still
1815 referenced (in the form of having its address taken. */
1816 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1817 break;
1818
1819 case NOTE_INSN_VAR_LOCATION:
1820 (*debug_hooks->var_location) (insn);
1821 break;
1822
1823 case 0:
1824 break;
1825
1826 default:
1827 gcc_assert (NOTE_LINE_NUMBER (insn) > 0);
1828 break;
1829 }
1830 break;
1831
1832 case BARRIER:
1833#if defined (DWARF2_UNWIND_INFO)
1834 if (dwarf2out_do_frame ())
1835 dwarf2out_frame_debug (insn, false);
1836#endif
1837 break;
1838
1839 case CODE_LABEL:
1840 /* The target port might emit labels in the output function for
1841 some insn, e.g. sh.c output_branchy_insn. */
1842 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1843 {
1844 int align = LABEL_TO_ALIGNMENT (insn);
1845#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1846 int max_skip = LABEL_TO_MAX_SKIP (insn);
1847#endif
1848
1849 if (align && NEXT_INSN (insn))
1850 {
1851#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1852 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1853#else
1854#ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1855 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1856#else
1857 ASM_OUTPUT_ALIGN (file, align);
1858#endif
1859#endif
1860 }
1861 }
1862#ifdef HAVE_cc0
1863 CC_STATUS_INIT;
1864 /* If this label is reached from only one place, set the condition
1865 codes from the instruction just before the branch. */
1866
1867 /* Disabled because some insns set cc_status in the C output code
1868 and NOTICE_UPDATE_CC alone can set incorrect status. */
1869 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1870 {
1871 rtx jump = LABEL_REFS (insn);
1872 rtx barrier = prev_nonnote_insn (insn);
1873 rtx prev;
1874 /* If the LABEL_REFS field of this label has been set to point
1875 at a branch, the predecessor of the branch is a regular
1876 insn, and that branch is the only way to reach this label,
1877 set the condition codes based on the branch and its
1878 predecessor. */
1879 if (barrier && BARRIER_P (barrier)
1880 && jump && JUMP_P (jump)
1881 && (prev = prev_nonnote_insn (jump))
1882 && NONJUMP_INSN_P (prev))
1883 {
1884 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1885 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1886 }
1887 }
1888#endif
1889
1890 if (LABEL_NAME (insn))
1891 (*debug_hooks->label) (insn);
1892
1893 if (app_on)
1894 {
1895 fputs (ASM_APP_OFF, file);
1896 app_on = 0;
1897 }
1898
1899 next = next_nonnote_insn (insn);
1900 if (next != 0 && JUMP_P (next))
1901 {
1902 rtx nextbody = PATTERN (next);
1903
1904 /* If this label is followed by a jump-table,
1905 make sure we put the label in the read-only section. Also
1906 possibly write the label and jump table together. */
1907
1908 if (GET_CODE (nextbody) == ADDR_VEC
1909 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1910 {
1911#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1912 /* In this case, the case vector is being moved by the
1913 target, so don't output the label at all. Leave that
1914 to the back end macros. */
1915#else
1916 if (! JUMP_TABLES_IN_TEXT_SECTION)
1917 {
1918 int log_align;
1919
1920 switch_to_section (targetm.asm_out.function_rodata_section
1921 (current_function_decl));
1922
1923#ifdef ADDR_VEC_ALIGN
1924 log_align = ADDR_VEC_ALIGN (next);
1925#else
1926 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1927#endif
1928 ASM_OUTPUT_ALIGN (file, log_align);
1929 }
1930 else
1931 switch_to_section (current_function_section ());
1932
1933#ifdef ASM_OUTPUT_CASE_LABEL
1934 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1935 next);
1936#else
1937 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1938#endif
1939#endif
1940 break;
1941 }
1942 }
1943 if (LABEL_ALT_ENTRY_P (insn))
1944 output_alternate_entry_point (file, insn);
1945 else
1946 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1947 break;
1948
1949 default:
1950 {
1951 rtx body = PATTERN (insn);
1952 int insn_code_number;
1953 const char *template;
1954
1955#ifdef HAVE_conditional_execution
1956 /* Reset this early so it is correct for ASM statements. */
1957 current_insn_predicate = NULL_RTX;
1958#endif
1959 /* An INSN, JUMP_INSN or CALL_INSN.
1960 First check for special kinds that recog doesn't recognize. */
1961
1962 if (GET_CODE (body) == USE /* These are just declarations. */
1963 || GET_CODE (body) == CLOBBER)
1964 break;
1965
1966#ifdef HAVE_cc0
1967 {
1968 /* If there is a REG_CC_SETTER note on this insn, it means that
1969 the setting of the condition code was done in the delay slot
1970 of the insn that branched here. So recover the cc status
1971 from the insn that set it. */
1972
1973 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
1974 if (note)
1975 {
1976 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
1977 cc_prev_status = cc_status;
1978 }
1979 }
1980#endif
1981
1982 /* Detect insns that are really jump-tables
1983 and output them as such. */
1984
1985 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1986 {
1987#if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
1988 int vlen, idx;
1989#endif
1990
1991 if (! JUMP_TABLES_IN_TEXT_SECTION)
1992 switch_to_section (targetm.asm_out.function_rodata_section
1993 (current_function_decl));
1994 else
1995 switch_to_section (current_function_section ());
1996
1997 if (app_on)
1998 {
1999 fputs (ASM_APP_OFF, file);
2000 app_on = 0;
2001 }
2002
2003#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2004 if (GET_CODE (body) == ADDR_VEC)
2005 {
2006#ifdef ASM_OUTPUT_ADDR_VEC
2007 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2008#else
2009 gcc_unreachable ();
2010#endif
2011 }
2012 else
2013 {
2014#ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2015 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2016#else
2017 gcc_unreachable ();
2018#endif
2019 }
2020#else
2021 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2022 for (idx = 0; idx < vlen; idx++)
2023 {
2024 if (GET_CODE (body) == ADDR_VEC)
2025 {
2026#ifdef ASM_OUTPUT_ADDR_VEC_ELT
2027 ASM_OUTPUT_ADDR_VEC_ELT
2028 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2029#else
2030 gcc_unreachable ();
2031#endif
2032 }
2033 else
2034 {
2035#ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2036 ASM_OUTPUT_ADDR_DIFF_ELT
2037 (file,
2038 body,
2039 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2040 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2041#else
2042 gcc_unreachable ();
2043#endif
2044 }
2045 }
2046#ifdef ASM_OUTPUT_CASE_END
2047 ASM_OUTPUT_CASE_END (file,
2048 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2049 insn);
2050#endif
2051#endif
2052
2053 switch_to_section (current_function_section ());
2054
2055 break;
2056 }
2057 /* Output this line note if it is the first or the last line
2058 note in a row. */
2059 if (notice_source_line (insn))
2060 {
2061 (*debug_hooks->source_line) (last_linenum, last_filename);
2062 }
2063
2064 if (GET_CODE (body) == ASM_INPUT)
2065 {
2066 const char *string = XSTR (body, 0);
2067
2068 /* There's no telling what that did to the condition codes. */
2069 CC_STATUS_INIT;
2070
2071 if (string[0])
2072 {
2073 if (! app_on)
2074 {
2075 fputs (ASM_APP_ON, file);
2076 app_on = 1;
2077 }
2078 fprintf (asm_out_file, "\t%s\n", string);
2079 }
2080 break;
2081 }
2082
2083 /* Detect `asm' construct with operands. */
2084 if (asm_noperands (body) >= 0)
2085 {
2086 unsigned int noperands = asm_noperands (body);
2087 rtx *ops = alloca (noperands * sizeof (rtx));
2088 const char *string;
2089
2090 /* There's no telling what that did to the condition codes. */
2091 CC_STATUS_INIT;
2092
2093 /* Get out the operand values. */
2094 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2095 /* Inhibit dieing on what would otherwise be compiler bugs. */
2096 insn_noperands = noperands;
2097 this_is_asm_operands = insn;
2098
2099#ifdef FINAL_PRESCAN_INSN
2100 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2101#endif
2102
2103 /* Output the insn using them. */
2104 if (string[0])
2105 {
2106 if (! app_on)
2107 {
2108 fputs (ASM_APP_ON, file);
2109 app_on = 1;
2110 }
2111 output_asm_insn (string, ops);
2112 }
2113
2114 this_is_asm_operands = 0;
2115 break;
2116 }
2117
2118 if (app_on)
2119 {
2120 fputs (ASM_APP_OFF, file);
2121 app_on = 0;
2122 }
2123
2124 if (GET_CODE (body) == SEQUENCE)
2125 {
2126 /* A delayed-branch sequence */
2127 int i;
2128
2129 final_sequence = body;
2130
2131 /* Record the delay slots' frame information before the branch.
2132 This is needed for delayed calls: see execute_cfa_program(). */
2133#if defined (DWARF2_UNWIND_INFO)
2134 if (dwarf2out_do_frame ())
2135 for (i = 1; i < XVECLEN (body, 0); i++)
2136 dwarf2out_frame_debug (XVECEXP (body, 0, i), false);
2137#endif
2138
2139 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2140 force the restoration of a comparison that was previously
2141 thought unnecessary. If that happens, cancel this sequence
2142 and cause that insn to be restored. */
2143
2144 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, 1, seen);
2145 if (next != XVECEXP (body, 0, 1))
2146 {
2147 final_sequence = 0;
2148 return next;
2149 }
2150
2151 for (i = 1; i < XVECLEN (body, 0); i++)
2152 {
2153 rtx insn = XVECEXP (body, 0, i);
2154 rtx next = NEXT_INSN (insn);
2155 /* We loop in case any instruction in a delay slot gets
2156 split. */
2157 do
2158 insn = final_scan_insn (insn, file, 0, 1, seen);
2159 while (insn != next);
2160 }
2161#ifdef DBR_OUTPUT_SEQEND
2162 DBR_OUTPUT_SEQEND (file);
2163#endif
2164 final_sequence = 0;
2165
2166 /* If the insn requiring the delay slot was a CALL_INSN, the
2167 insns in the delay slot are actually executed before the
2168 called function. Hence we don't preserve any CC-setting
2169 actions in these insns and the CC must be marked as being
2170 clobbered by the function. */
2171 if (CALL_P (XVECEXP (body, 0, 0)))
2172 {
2173 CC_STATUS_INIT;
2174 }
2175 break;
2176 }
2177
2178 /* We have a real machine instruction as rtl. */
2179
2180 body = PATTERN (insn);
2181
2182#ifdef HAVE_cc0
2183 set = single_set (insn);
2184
2185 /* Check for redundant test and compare instructions
2186 (when the condition codes are already set up as desired).
2187 This is done only when optimizing; if not optimizing,
2188 it should be possible for the user to alter a variable
2189 with the debugger in between statements
2190 and the next statement should reexamine the variable
2191 to compute the condition codes. */
2192
2193 if (optimize)
2194 {
2195 if (set
2196 && GET_CODE (SET_DEST (set)) == CC0
2197 && insn != last_ignored_compare)
2198 {
2199 if (GET_CODE (SET_SRC (set)) == SUBREG)
2200 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2201 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2202 {
2203 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2204 XEXP (SET_SRC (set), 0)
2205 = alter_subreg (&XEXP (SET_SRC (set), 0));
2206 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2207 XEXP (SET_SRC (set), 1)
2208 = alter_subreg (&XEXP (SET_SRC (set), 1));
2209 }
2210 if ((cc_status.value1 != 0
2211 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2212 || (cc_status.value2 != 0
2213 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2214 {
2215 /* Don't delete insn if it has an addressing side-effect. */
2216 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2217 /* or if anything in it is volatile. */
2218 && ! volatile_refs_p (PATTERN (insn)))
2219 {
2220 /* We don't really delete the insn; just ignore it. */
2221 last_ignored_compare = insn;
2222 break;
2223 }
2224 }
2225 }
2226 }
2227#endif
2228
2229#ifdef HAVE_cc0
2230 /* If this is a conditional branch, maybe modify it
2231 if the cc's are in a nonstandard state
2232 so that it accomplishes the same thing that it would
2233 do straightforwardly if the cc's were set up normally. */
2234
2235 if (cc_status.flags != 0
2236 && JUMP_P (insn)
2237 && GET_CODE (body) == SET
2238 && SET_DEST (body) == pc_rtx
2239 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2240 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2241 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2242 {
2243 /* This function may alter the contents of its argument
2244 and clear some of the cc_status.flags bits.
2245 It may also return 1 meaning condition now always true
2246 or -1 meaning condition now always false
2247 or 2 meaning condition nontrivial but altered. */
2248 int result = alter_cond (XEXP (SET_SRC (body), 0));
2249 /* If condition now has fixed value, replace the IF_THEN_ELSE
2250 with its then-operand or its else-operand. */
2251 if (result == 1)
2252 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2253 if (result == -1)
2254 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2255
2256 /* The jump is now either unconditional or a no-op.
2257 If it has become a no-op, don't try to output it.
2258 (It would not be recognized.) */
2259 if (SET_SRC (body) == pc_rtx)
2260 {
2261 delete_insn (insn);
2262 break;
2263 }
2264 else if (GET_CODE (SET_SRC (body)) == RETURN)
2265 /* Replace (set (pc) (return)) with (return). */
2266 PATTERN (insn) = body = SET_SRC (body);
2267
2268 /* Rerecognize the instruction if it has changed. */
2269 if (result != 0)
2270 INSN_CODE (insn) = -1;
2271 }
2272
2273 /* Make same adjustments to instructions that examine the
2274 condition codes without jumping and instructions that
2275 handle conditional moves (if this machine has either one). */
2276
2277 if (cc_status.flags != 0
2278 && set != 0)
2279 {
2280 rtx cond_rtx, then_rtx, else_rtx;
2281
2282 if (!JUMP_P (insn)
2283 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2284 {
2285 cond_rtx = XEXP (SET_SRC (set), 0);
2286 then_rtx = XEXP (SET_SRC (set), 1);
2287 else_rtx = XEXP (SET_SRC (set), 2);
2288 }
2289 else
2290 {
2291 cond_rtx = SET_SRC (set);
2292 then_rtx = const_true_rtx;
2293 else_rtx = const0_rtx;
2294 }
2295
2296 switch (GET_CODE (cond_rtx))
2297 {
2298 case GTU:
2299 case GT:
2300 case LTU:
2301 case LT:
2302 case GEU:
2303 case GE:
2304 case LEU:
2305 case LE:
2306 case EQ:
2307 case NE:
2308 {
2309 int result;
2310 if (XEXP (cond_rtx, 0) != cc0_rtx)
2311 break;
2312 result = alter_cond (cond_rtx);
2313 if (result == 1)
2314 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2315 else if (result == -1)
2316 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2317 else if (result == 2)
2318 INSN_CODE (insn) = -1;
2319 if (SET_DEST (set) == SET_SRC (set))
2320 delete_insn (insn);
2321 }
2322 break;
2323
2324 default:
2325 break;
2326 }
2327 }
2328
2329#endif
2330
2331#ifdef HAVE_peephole
2332 /* Do machine-specific peephole optimizations if desired. */
2333
2334 if (optimize && !flag_no_peephole && !nopeepholes)
2335 {
2336 rtx next = peephole (insn);
2337 /* When peepholing, if there were notes within the peephole,
2338 emit them before the peephole. */
2339 if (next != 0 && next != NEXT_INSN (insn))
2340 {
2341 rtx note, prev = PREV_INSN (insn);
2342
2343 for (note = NEXT_INSN (insn); note != next;
2344 note = NEXT_INSN (note))
2345 final_scan_insn (note, file, optimize, nopeepholes, seen);
2346
2347 /* Put the notes in the proper position for a later
2348 rescan. For example, the SH target can do this
2349 when generating a far jump in a delayed branch
2350 sequence. */
2351 note = NEXT_INSN (insn);
2352 PREV_INSN (note) = prev;
2353 NEXT_INSN (prev) = note;
2354 NEXT_INSN (PREV_INSN (next)) = insn;
2355 PREV_INSN (insn) = PREV_INSN (next);
2356 NEXT_INSN (insn) = next;
2357 PREV_INSN (next) = insn;
2358 }
2359
2360 /* PEEPHOLE might have changed this. */
2361 body = PATTERN (insn);
2362 }
2363#endif
2364
2365 /* Try to recognize the instruction.
2366 If successful, verify that the operands satisfy the
2367 constraints for the instruction. Crash if they don't,
2368 since `reload' should have changed them so that they do. */
2369
2370 insn_code_number = recog_memoized (insn);
2371 cleanup_subreg_operands (insn);
2372
2373 /* Dump the insn in the assembly for debugging. */
2374 if (flag_dump_rtl_in_asm)
2375 {
2376 print_rtx_head = ASM_COMMENT_START;
2377 print_rtl_single (asm_out_file, insn);
2378 print_rtx_head = "";
2379 }
2380
2381 if (! constrain_operands_cached (1))
2382 fatal_insn_not_found (insn);
2383
2384 /* Some target machines need to prescan each insn before
2385 it is output. */
2386
2387#ifdef FINAL_PRESCAN_INSN
2388 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2389#endif
2390
2391#ifdef HAVE_conditional_execution
2392 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2393 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2394#endif
2395
2396#ifdef HAVE_cc0
2397 cc_prev_status = cc_status;
2398
2399 /* Update `cc_status' for this instruction.
2400 The instruction's output routine may change it further.
2401 If the output routine for a jump insn needs to depend
2402 on the cc status, it should look at cc_prev_status. */
2403
2404 NOTICE_UPDATE_CC (body, insn);
2405#endif
2406
2407 current_output_insn = debug_insn = insn;
2408
2409#if defined (DWARF2_UNWIND_INFO)
2410 if (CALL_P (insn) && dwarf2out_do_frame ())
2411 dwarf2out_frame_debug (insn, false);
2412#endif
2413
2414 /* Find the proper template for this insn. */
2415 template = get_insn_template (insn_code_number, insn);
2416
2417 /* If the C code returns 0, it means that it is a jump insn
2418 which follows a deleted test insn, and that test insn
2419 needs to be reinserted. */
2420 if (template == 0)
2421 {
2422 rtx prev;
2423
2424 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2425
2426 /* We have already processed the notes between the setter and
2427 the user. Make sure we don't process them again, this is
2428 particularly important if one of the notes is a block
2429 scope note or an EH note. */
2430 for (prev = insn;
2431 prev != last_ignored_compare;
2432 prev = PREV_INSN (prev))
2433 {
2434 if (NOTE_P (prev))
2435 delete_insn (prev); /* Use delete_note. */
2436 }
2437
2438 return prev;
2439 }
2440
2441 /* If the template is the string "#", it means that this insn must
2442 be split. */
2443 if (template[0] == '#' && template[1] == '\0')
2444 {
2445 rtx new = try_split (body, insn, 0);
2446
2447 /* If we didn't split the insn, go away. */
2448 if (new == insn && PATTERN (new) == body)
2449 fatal_insn ("could not split insn", insn);
2450
2451#ifdef HAVE_ATTR_length
2452 /* This instruction should have been split in shorten_branches,
2453 to ensure that we would have valid length info for the
2454 splitees. */
2455 gcc_unreachable ();
2456#endif
2457
2458 return new;
2459 }
2460
2461#ifdef TARGET_UNWIND_INFO
2462 /* ??? This will put the directives in the wrong place if
2463 get_insn_template outputs assembly directly. However calling it
2464 before get_insn_template breaks if the insns is split. */
2465 targetm.asm_out.unwind_emit (asm_out_file, insn);
2466#endif
2467
2468 /* Output assembler code from the template. */
2469 output_asm_insn (template, recog_data.operand);
2470
2471 /* If necessary, report the effect that the instruction has on
2472 the unwind info. We've already done this for delay slots
2473 and call instructions. */
2474#if defined (DWARF2_UNWIND_INFO)
2475 if (final_sequence == 0
2476#if !defined (HAVE_prologue)
2477 && !ACCUMULATE_OUTGOING_ARGS
2478#endif
2479 && dwarf2out_do_frame ())
2480 dwarf2out_frame_debug (insn, true);
2481#endif
2482
2483 current_output_insn = debug_insn = 0;
2484 }
2485 }
2486 return NEXT_INSN (insn);
2487}
2488
2489/* Return whether a source line note needs to be emitted before INSN. */
2490
2491static bool
2492notice_source_line (rtx insn)
2493{
2494 const char *filename = insn_file (insn);
2495 int linenum = insn_line (insn);
2496
2497 if (filename
2498 && (force_source_line
2499 || filename != last_filename
2500 || last_linenum != linenum))
2501 {
2502 force_source_line = false;
2503 last_filename = filename;
2504 last_linenum = linenum;
2505 high_block_linenum = MAX (last_linenum, high_block_linenum);
2506 high_function_linenum = MAX (last_linenum, high_function_linenum);
2507 return true;
2508 }
2509 return false;
2510}
2511
2512/* For each operand in INSN, simplify (subreg (reg)) so that it refers
2513 directly to the desired hard register. */
2514
2515void
2516cleanup_subreg_operands (rtx insn)
2517{
2518 int i;
2519 extract_insn_cached (insn);
2520 for (i = 0; i < recog_data.n_operands; i++)
2521 {
2522 /* The following test cannot use recog_data.operand when testing
2523 for a SUBREG: the underlying object might have been changed
2524 already if we are inside a match_operator expression that
2525 matches the else clause. Instead we test the underlying
2526 expression directly. */
2527 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2528 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2529 else if (GET_CODE (recog_data.operand[i]) == PLUS
2530 || GET_CODE (recog_data.operand[i]) == MULT
2531 || MEM_P (recog_data.operand[i]))
2532 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2533 }
2534
2535 for (i = 0; i < recog_data.n_dups; i++)
2536 {
2537 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2538 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2539 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2540 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2541 || MEM_P (*recog_data.dup_loc[i]))
2542 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2543 }
2544}
2545
2546/* If X is a SUBREG, replace it with a REG or a MEM,
2547 based on the thing it is a subreg of. */
2548
2549rtx
2550alter_subreg (rtx *xp)
2551{
2552 rtx x = *xp;
2553 rtx y = SUBREG_REG (x);
2554
2555 /* simplify_subreg does not remove subreg from volatile references.
2556 We are required to. */
2557 if (MEM_P (y))
2558 {
2559 int offset = SUBREG_BYTE (x);
2560
2561 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
2562 contains 0 instead of the proper offset. See simplify_subreg. */
2563 if (offset == 0
2564 && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
2565 {
2566 int difference = GET_MODE_SIZE (GET_MODE (y))
2567 - GET_MODE_SIZE (GET_MODE (x));
2568 if (WORDS_BIG_ENDIAN)
2569 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
2570 if (BYTES_BIG_ENDIAN)
2571 offset += difference % UNITS_PER_WORD;
2572 }
2573
2574 *xp = adjust_address (y, GET_MODE (x), offset);
2575 }
2576 else
2577 {
2578 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2579 SUBREG_BYTE (x));
2580
2581 if (new != 0)
2582 *xp = new;
2583 else if (REG_P (y))
2584 {
2585 /* Simplify_subreg can't handle some REG cases, but we have to. */
2586 unsigned int regno = subreg_regno (x);
2587 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
2588 }
2589 }
2590
2591 return *xp;
2592}
2593
2594/* Do alter_subreg on all the SUBREGs contained in X. */
2595
2596static rtx
2597walk_alter_subreg (rtx *xp)
2598{
2599 rtx x = *xp;
2600 switch (GET_CODE (x))
2601 {
2602 case PLUS:
2603 case MULT:
2604 case AND:
2605 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2606 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2607 break;
2608
2609 case MEM:
2610 case ZERO_EXTEND:
2611 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2612 break;
2613
2614 case SUBREG:
2615 return alter_subreg (xp);
2616
2617 default:
2618 break;
2619 }
2620
2621 return *xp;
2622}
2623
2624#ifdef HAVE_cc0
2625
2626/* Given BODY, the body of a jump instruction, alter the jump condition
2627 as required by the bits that are set in cc_status.flags.
2628 Not all of the bits there can be handled at this level in all cases.
2629
2630 The value is normally 0.
2631 1 means that the condition has become always true.
2632 -1 means that the condition has become always false.
2633 2 means that COND has been altered. */
2634
2635static int
2636alter_cond (rtx cond)
2637{
2638 int value = 0;
2639
2640 if (cc_status.flags & CC_REVERSED)
2641 {
2642 value = 2;
2643 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2644 }
2645
2646 if (cc_status.flags & CC_INVERTED)
2647 {
2648 value = 2;
2649 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2650 }
2651
2652 if (cc_status.flags & CC_NOT_POSITIVE)
2653 switch (GET_CODE (cond))
2654 {
2655 case LE:
2656 case LEU:
2657 case GEU:
2658 /* Jump becomes unconditional. */
2659 return 1;
2660
2661 case GT:
2662 case GTU:
2663 case LTU:
2664 /* Jump becomes no-op. */
2665 return -1;
2666
2667 case GE:
2668 PUT_CODE (cond, EQ);
2669 value = 2;
2670 break;
2671
2672 case LT:
2673 PUT_CODE (cond, NE);
2674 value = 2;
2675 break;
2676
2677 default:
2678 break;
2679 }
2680
2681 if (cc_status.flags & CC_NOT_NEGATIVE)
2682 switch (GET_CODE (cond))
2683 {
2684 case GE:
2685 case GEU:
2686 /* Jump becomes unconditional. */
2687 return 1;
2688
2689 case LT:
2690 case LTU:
2691 /* Jump becomes no-op. */
2692 return -1;
2693
2694 case LE:
2695 case LEU:
2696 PUT_CODE (cond, EQ);
2697 value = 2;
2698 break;
2699
2700 case GT:
2701 case GTU:
2702 PUT_CODE (cond, NE);
2703 value = 2;
2704 break;
2705
2706 default:
2707 break;
2708 }
2709
2710 if (cc_status.flags & CC_NO_OVERFLOW)
2711 switch (GET_CODE (cond))
2712 {
2713 case GEU:
2714 /* Jump becomes unconditional. */
2715 return 1;
2716
2717 case LEU:
2718 PUT_CODE (cond, EQ);
2719 value = 2;
2720 break;
2721
2722 case GTU:
2723 PUT_CODE (cond, NE);
2724 value = 2;
2725 break;
2726
2727 case LTU:
2728 /* Jump becomes no-op. */
2729 return -1;
2730
2731 default:
2732 break;
2733 }
2734
2735 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2736 switch (GET_CODE (cond))
2737 {
2738 default:
2739 gcc_unreachable ();
2740
2741 case NE:
2742 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2743 value = 2;
2744 break;
2745
2746 case EQ:
2747 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2748 value = 2;
2749 break;
2750 }
2751
2752 if (cc_status.flags & CC_NOT_SIGNED)
2753 /* The flags are valid if signed condition operators are converted
2754 to unsigned. */
2755 switch (GET_CODE (cond))
2756 {
2757 case LE:
2758 PUT_CODE (cond, LEU);
2759 value = 2;
2760 break;
2761
2762 case LT:
2763 PUT_CODE (cond, LTU);
2764 value = 2;
2765 break;
2766
2767 case GT:
2768 PUT_CODE (cond, GTU);
2769 value = 2;
2770 break;
2771
2772 case GE:
2773 PUT_CODE (cond, GEU);
2774 value = 2;
2775 break;
2776
2777 default:
2778 break;
2779 }
2780
2781 return value;
2782}
2783#endif
2784
2785/* Report inconsistency between the assembler template and the operands.
2786 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2787
2788void
2789output_operand_lossage (const char *cmsgid, ...)
2790{
2791 char *fmt_string;
2792 char *new_message;
2793 const char *pfx_str;
2794 va_list ap;
2795
2796 va_start (ap, cmsgid);
2797
2798 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
2799 asprintf (&fmt_string, "%s%s", pfx_str, _(cmsgid));
2800 vasprintf (&new_message, fmt_string, ap);
2801
2802 if (this_is_asm_operands)
2803 error_for_asm (this_is_asm_operands, "%s", new_message);
2804 else
2805 internal_error ("%s", new_message);
2806
2807 free (fmt_string);
2808 free (new_message);
2809 va_end (ap);
2810}
2811
2812/* Output of assembler code from a template, and its subroutines. */
2813
2814/* Annotate the assembly with a comment describing the pattern and
2815 alternative used. */
2816
2817static void
2818output_asm_name (void)
2819{
2820 if (debug_insn)
2821 {
2822 int num = INSN_CODE (debug_insn);
2823 fprintf (asm_out_file, "\t%s %d\t%s",
2824 ASM_COMMENT_START, INSN_UID (debug_insn),
2825 insn_data[num].name);
2826 if (insn_data[num].n_alternatives > 1)
2827 fprintf (asm_out_file, "/%d", which_alternative + 1);
2828#ifdef HAVE_ATTR_length
2829 fprintf (asm_out_file, "\t[length = %d]",
2830 get_attr_length (debug_insn));
2831#endif
2832 /* Clear this so only the first assembler insn
2833 of any rtl insn will get the special comment for -dp. */
2834 debug_insn = 0;
2835 }
2836}
2837
2838/* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2839 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2840 corresponds to the address of the object and 0 if to the object. */
2841
2842static tree
2843get_mem_expr_from_op (rtx op, int *paddressp)
2844{
2845 tree expr;
2846 int inner_addressp;
2847
2848 *paddressp = 0;
2849
2850 if (REG_P (op))
2851 return REG_EXPR (op);
2852 else if (!MEM_P (op))
2853 return 0;
2854
2855 if (MEM_EXPR (op) != 0)
2856 return MEM_EXPR (op);
2857
2858 /* Otherwise we have an address, so indicate it and look at the address. */
2859 *paddressp = 1;
2860 op = XEXP (op, 0);
2861
2862 /* First check if we have a decl for the address, then look at the right side
2863 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2864 But don't allow the address to itself be indirect. */
2865 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2866 return expr;
2867 else if (GET_CODE (op) == PLUS
2868 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2869 return expr;
2870
2871 while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
2872 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
2873 op = XEXP (op, 0);
2874
2875 expr = get_mem_expr_from_op (op, &inner_addressp);
2876 return inner_addressp ? 0 : expr;
2877}
2878
2879/* Output operand names for assembler instructions. OPERANDS is the
2880 operand vector, OPORDER is the order to write the operands, and NOPS
2881 is the number of operands to write. */
2882
2883static void
2884output_asm_operand_names (rtx *operands, int *oporder, int nops)
2885{
2886 int wrote = 0;
2887 int i;
2888
2889 for (i = 0; i < nops; i++)
2890 {
2891 int addressp;
2892 rtx op = operands[oporder[i]];
2893 tree expr = get_mem_expr_from_op (op, &addressp);
2894
2895 fprintf (asm_out_file, "%c%s",
2896 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2897 wrote = 1;
2898 if (expr)
2899 {
2900 fprintf (asm_out_file, "%s",
2901 addressp ? "*" : "");
2902 print_mem_expr (asm_out_file, expr);
2903 wrote = 1;
2904 }
2905 else if (REG_P (op) && ORIGINAL_REGNO (op)
2906 && ORIGINAL_REGNO (op) != REGNO (op))
2907 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
2908 }
2909}
2910
2911/* Output text from TEMPLATE to the assembler output file,
2912 obeying %-directions to substitute operands taken from
2913 the vector OPERANDS.
2914
2915 %N (for N a digit) means print operand N in usual manner.
2916 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2917 and print the label name with no punctuation.
2918 %cN means require operand N to be a constant
2919 and print the constant expression with no punctuation.
2920 %aN means expect operand N to be a memory address
2921 (not a memory reference!) and print a reference
2922 to that address.
2923 %nN means expect operand N to be a constant
2924 and print a constant expression for minus the value
2925 of the operand, with no other punctuation. */
2926
2927void
2928output_asm_insn (const char *template, rtx *operands)
2929{
2930 const char *p;
2931 int c;
2932#ifdef ASSEMBLER_DIALECT
2933 int dialect = 0;
2934#endif
2935 int oporder[MAX_RECOG_OPERANDS];
2936 char opoutput[MAX_RECOG_OPERANDS];
2937 int ops = 0;
2938
2939 /* An insn may return a null string template
2940 in a case where no assembler code is needed. */
2941 if (*template == 0)
2942 return;
2943
2944 memset (opoutput, 0, sizeof opoutput);
2945 p = template;
2946 putc ('\t', asm_out_file);
2947
2948#ifdef ASM_OUTPUT_OPCODE
2949 ASM_OUTPUT_OPCODE (asm_out_file, p);
2950#endif
2951
2952 while ((c = *p++))
2953 switch (c)
2954 {
2955 case '\n':
2956 if (flag_verbose_asm)
2957 output_asm_operand_names (operands, oporder, ops);
2958 if (flag_print_asm_name)
2959 output_asm_name ();
2960
2961 ops = 0;
2962 memset (opoutput, 0, sizeof opoutput);
2963
2964 putc (c, asm_out_file);
2965#ifdef ASM_OUTPUT_OPCODE
2966 while ((c = *p) == '\t')
2967 {
2968 putc (c, asm_out_file);
2969 p++;
2970 }
2971 ASM_OUTPUT_OPCODE (asm_out_file, p);
2972#endif
2973 break;
2974
2975#ifdef ASSEMBLER_DIALECT
2976 case '{':
2977 {
2978 int i;
2979
2980 if (dialect)
2981 output_operand_lossage ("nested assembly dialect alternatives");
2982 else
2983 dialect = 1;
2984
2985 /* If we want the first dialect, do nothing. Otherwise, skip
2986 DIALECT_NUMBER of strings ending with '|'. */
2987 for (i = 0; i < dialect_number; i++)
2988 {
2989 while (*p && *p != '}' && *p++ != '|')
2990 ;
2991 if (*p == '}')
2992 break;
2993 if (*p == '|')
2994 p++;
2995 }
2996
2997 if (*p == '\0')
2998 output_operand_lossage ("unterminated assembly dialect alternative");
2999 }
3000 break;
3001
3002 case '|':
3003 if (dialect)
3004 {
3005 /* Skip to close brace. */
3006 do
3007 {
3008 if (*p == '\0')
3009 {
3010 output_operand_lossage ("unterminated assembly dialect alternative");
3011 break;
3012 }
3013 }
3014 while (*p++ != '}');
3015 dialect = 0;
3016 }
3017 else
3018 putc (c, asm_out_file);
3019 break;
3020
3021 case '}':
3022 if (! dialect)
3023 putc (c, asm_out_file);
3024 dialect = 0;
3025 break;
3026#endif
3027
3028 case '%':
3029 /* %% outputs a single %. */
3030 if (*p == '%')
3031 {
3032 p++;
3033 putc (c, asm_out_file);
3034 }
3035 /* %= outputs a number which is unique to each insn in the entire
3036 compilation. This is useful for making local labels that are
3037 referred to more than once in a given insn. */
3038 else if (*p == '=')
3039 {
3040 p++;
3041 fprintf (asm_out_file, "%d", insn_counter);
3042 }
3043 /* % followed by a letter and some digits
3044 outputs an operand in a special way depending on the letter.
3045 Letters `acln' are implemented directly.
3046 Other letters are passed to `output_operand' so that
3047 the PRINT_OPERAND macro can define them. */
3048 else if (ISALPHA (*p))
3049 {
3050 int letter = *p++;
3051 unsigned long opnum;
3052 char *endptr;
3053
3054 opnum = strtoul (p, &endptr, 10);
3055
3056 if (endptr == p)
3057 output_operand_lossage ("operand number missing "
3058 "after %%-letter");
3059 else if (this_is_asm_operands && opnum >= insn_noperands)
3060 output_operand_lossage ("operand number out of range");
3061 else if (letter == 'l')
3062 output_asm_label (operands[opnum]);
3063 else if (letter == 'a')
3064 output_address (operands[opnum]);
3065 else if (letter == 'c')
3066 {
3067 if (CONSTANT_ADDRESS_P (operands[opnum]))
3068 output_addr_const (asm_out_file, operands[opnum]);
3069 else
3070 output_operand (operands[opnum], 'c');
3071 }
3072 else if (letter == 'n')
3073 {
3074 if (GET_CODE (operands[opnum]) == CONST_INT)
3075 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3076 - INTVAL (operands[opnum]));
3077 else
3078 {
3079 putc ('-', asm_out_file);
3080 output_addr_const (asm_out_file, operands[opnum]);
3081 }
3082 }
3083 else
3084 output_operand (operands[opnum], letter);
3085
3086 if (!opoutput[opnum])
3087 oporder[ops++] = opnum;
3088 opoutput[opnum] = 1;
3089
3090 p = endptr;
3091 c = *p;
3092 }
3093 /* % followed by a digit outputs an operand the default way. */
3094 else if (ISDIGIT (*p))
3095 {
3096 unsigned long opnum;
3097 char *endptr;
3098
3099 opnum = strtoul (p, &endptr, 10);
3100 if (this_is_asm_operands && opnum >= insn_noperands)
3101 output_operand_lossage ("operand number out of range");
3102 else
3103 output_operand (operands[opnum], 0);
3104
3105 if (!opoutput[opnum])
3106 oporder[ops++] = opnum;
3107 opoutput[opnum] = 1;
3108
3109 p = endptr;
3110 c = *p;
3111 }
3112 /* % followed by punctuation: output something for that
3113 punctuation character alone, with no operand.
3114 The PRINT_OPERAND macro decides what is actually done. */
3115#ifdef PRINT_OPERAND_PUNCT_VALID_P
3116 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3117 output_operand (NULL_RTX, *p++);
3118#endif
3119 else
3120 output_operand_lossage ("invalid %%-code");
3121 break;
3122
3123 default:
3124 putc (c, asm_out_file);
3125 }
3126
3127 /* Write out the variable names for operands, if we know them. */
3128 if (flag_verbose_asm)
3129 output_asm_operand_names (operands, oporder, ops);
3130 if (flag_print_asm_name)
3131 output_asm_name ();
3132
3133 putc ('\n', asm_out_file);
3134}
3135
3136/* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3137
3138void
3139output_asm_label (rtx x)
3140{
3141 char buf[256];
3142
3143 if (GET_CODE (x) == LABEL_REF)
3144 x = XEXP (x, 0);
3145 if (LABEL_P (x)
3146 || (NOTE_P (x)
3147 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3148 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3149 else
3150 output_operand_lossage ("'%%l' operand isn't a label");
3151
3152 assemble_name (asm_out_file, buf);
3153}
3154
3155/* Print operand X using machine-dependent assembler syntax.
3156 The macro PRINT_OPERAND is defined just to control this function.
3157 CODE is a non-digit that preceded the operand-number in the % spec,
3158 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3159 between the % and the digits.
3160 When CODE is a non-letter, X is 0.
3161
3162 The meanings of the letters are machine-dependent and controlled
3163 by PRINT_OPERAND. */
3164
3165static void
3166output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3167{
3168 if (x && GET_CODE (x) == SUBREG)
3169 x = alter_subreg (&x);
3170
3171 /* X must not be a pseudo reg. */
3172 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3173
3174 PRINT_OPERAND (asm_out_file, x, code);
3175}
3176
3177/* Print a memory reference operand for address X
3178 using machine-dependent assembler syntax.
3179 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3180
3181void
3182output_address (rtx x)
3183{
3184 walk_alter_subreg (&x);
3185 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3186}
3187
3188/* Print an integer constant expression in assembler syntax.
3189 Addition and subtraction are the only arithmetic
3190 that may appear in these expressions. */
3191
3192void
3193output_addr_const (FILE *file, rtx x)
3194{
3195 char buf[256];
3196
3197 restart:
3198 switch (GET_CODE (x))
3199 {
3200 case PC:
3201 putc ('.', file);
3202 break;
3203
3204 case SYMBOL_REF:
3205 if (SYMBOL_REF_DECL (x))
3206 mark_decl_referenced (SYMBOL_REF_DECL (x));
3207#ifdef ASM_OUTPUT_SYMBOL_REF
3208 ASM_OUTPUT_SYMBOL_REF (file, x);
3209#else
3210 assemble_name (file, XSTR (x, 0));
3211#endif
3212 break;
3213
3214 case LABEL_REF:
3215 x = XEXP (x, 0);
3216 /* Fall through. */
3217 case CODE_LABEL:
3218 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3219#ifdef ASM_OUTPUT_LABEL_REF
3220 ASM_OUTPUT_LABEL_REF (file, buf);
3221#else
3222 assemble_name (file, buf);
3223#endif
3224 break;
3225
3226 case CONST_INT:
3227 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3228 break;
3229
3230 case CONST:
3231 /* This used to output parentheses around the expression,
3232 but that does not work on the 386 (either ATT or BSD assembler). */
3233 output_addr_const (file, XEXP (x, 0));
3234 break;
3235
3236 case CONST_DOUBLE:
3237 if (GET_MODE (x) == VOIDmode)
3238 {
3239 /* We can use %d if the number is one word and positive. */
3240 if (CONST_DOUBLE_HIGH (x))
3241 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3242 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3243 else if (CONST_DOUBLE_LOW (x) < 0)
3244 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3245 else
3246 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3247 }
3248 else
3249 /* We can't handle floating point constants;
3250 PRINT_OPERAND must handle them. */
3251 output_operand_lossage ("floating constant misused");
3252 break;
3253
3254 case PLUS:
3255 /* Some assemblers need integer constants to appear last (eg masm). */
3256 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3257 {
3258 output_addr_const (file, XEXP (x, 1));
3259 if (INTVAL (XEXP (x, 0)) >= 0)
3260 fprintf (file, "+");
3261 output_addr_const (file, XEXP (x, 0));
3262 }
3263 else
3264 {
3265 output_addr_const (file, XEXP (x, 0));
3266 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3267 || INTVAL (XEXP (x, 1)) >= 0)
3268 fprintf (file, "+");
3269 output_addr_const (file, XEXP (x, 1));
3270 }
3271 break;
3272
3273 case MINUS:
3274 /* Avoid outputting things like x-x or x+5-x,
3275 since some assemblers can't handle that. */
3276 x = simplify_subtraction (x);
3277 if (GET_CODE (x) != MINUS)
3278 goto restart;
3279
3280 output_addr_const (file, XEXP (x, 0));
3281 fprintf (file, "-");
3282 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3283 || GET_CODE (XEXP (x, 1)) == PC
3284 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3285 output_addr_const (file, XEXP (x, 1));
3286 else
3287 {
3288 fputs (targetm.asm_out.open_paren, file);
3289 output_addr_const (file, XEXP (x, 1));
3290 fputs (targetm.asm_out.close_paren, file);
3291 }
3292 break;
3293
3294 case ZERO_EXTEND:
3295 case SIGN_EXTEND:
3296 case SUBREG:
3297 output_addr_const (file, XEXP (x, 0));
3298 break;
3299
3300 default:
3301#ifdef OUTPUT_ADDR_CONST_EXTRA
3302 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3303 break;
3304
3305 fail:
3306#endif
3307 output_operand_lossage ("invalid expression as operand");
3308 }
3309}
3310
3311/* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3312 %R prints the value of REGISTER_PREFIX.
3313 %L prints the value of LOCAL_LABEL_PREFIX.
3314 %U prints the value of USER_LABEL_PREFIX.
3315 %I prints the value of IMMEDIATE_PREFIX.
3316 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3317 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3318
3319 We handle alternate assembler dialects here, just like output_asm_insn. */
3320
3321void
3322asm_fprintf (FILE *file, const char *p, ...)
3323{
3324 char buf[10];
3325 char *q, c;
3326 va_list argptr;
3327
3328 va_start (argptr, p);
3329
3330 buf[0] = '%';
3331
3332 while ((c = *p++))
3333 switch (c)
3334 {
3335#ifdef ASSEMBLER_DIALECT
3336 case '{':
3337 {
3338 int i;
3339
3340 /* If we want the first dialect, do nothing. Otherwise, skip
3341 DIALECT_NUMBER of strings ending with '|'. */
3342 for (i = 0; i < dialect_number; i++)
3343 {
3344 while (*p && *p++ != '|')
3345 ;
3346
3347 if (*p == '|')
3348 p++;
3349 }
3350 }
3351 break;
3352
3353 case '|':
3354 /* Skip to close brace. */
3355 while (*p && *p++ != '}')
3356 ;
3357 break;
3358
3359 case '}':
3360 break;
3361#endif
3362
3363 case '%':
3364 c = *p++;
3365 q = &buf[1];
3366 while (strchr ("-+ #0", c))
3367 {
3368 *q++ = c;
3369 c = *p++;
3370 }
3371 while (ISDIGIT (c) || c == '.')
3372 {
3373 *q++ = c;
3374 c = *p++;
3375 }
3376 switch (c)
3377 {
3378 case '%':
3379 putc ('%', file);
3380 break;
3381
3382 case 'd': case 'i': case 'u':
3383 case 'x': case 'X': case 'o':
3384 case 'c':
3385 *q++ = c;
3386 *q = 0;
3387 fprintf (file, buf, va_arg (argptr, int));
3388 break;
3389
3390 case 'w':
3391 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3392 'o' cases, but we do not check for those cases. It
3393 means that the value is a HOST_WIDE_INT, which may be
3394 either `long' or `long long'. */
3395 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3396 q += strlen (HOST_WIDE_INT_PRINT);
3397 *q++ = *p++;
3398 *q = 0;
3399 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3400 break;
3401
3402 case 'l':
3403 *q++ = c;
3404#ifdef HAVE_LONG_LONG
3405 if (*p == 'l')
3406 {
3407 *q++ = *p++;
3408 *q++ = *p++;
3409 *q = 0;
3410 fprintf (file, buf, va_arg (argptr, long long));
3411 }
3412 else
3413#endif
3414 {
3415 *q++ = *p++;
3416 *q = 0;
3417 fprintf (file, buf, va_arg (argptr, long));
3418 }
3419
3420 break;
3421
3422 case 's':
3423 *q++ = c;
3424 *q = 0;
3425 fprintf (file, buf, va_arg (argptr, char *));
3426 break;
3427
3428 case 'O':
3429#ifdef ASM_OUTPUT_OPCODE
3430 ASM_OUTPUT_OPCODE (asm_out_file, p);
3431#endif
3432 break;
3433
3434 case 'R':
3435#ifdef REGISTER_PREFIX
3436 fprintf (file, "%s", REGISTER_PREFIX);
3437#endif
3438 break;
3439
3440 case 'I':
3441#ifdef IMMEDIATE_PREFIX
3442 fprintf (file, "%s", IMMEDIATE_PREFIX);
3443#endif
3444 break;
3445
3446 case 'L':
3447#ifdef LOCAL_LABEL_PREFIX
3448 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3449#endif
3450 break;
3451
3452 case 'U':
3453 fputs (user_label_prefix, file);
3454 break;
3455
3456#ifdef ASM_FPRINTF_EXTENSIONS
3457 /* Uppercase letters are reserved for general use by asm_fprintf
3458 and so are not available to target specific code. In order to
3459 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3460 they are defined here. As they get turned into real extensions
3461 to asm_fprintf they should be removed from this list. */
3462 case 'A': case 'B': case 'C': case 'D': case 'E':
3463 case 'F': case 'G': case 'H': case 'J': case 'K':
3464 case 'M': case 'N': case 'P': case 'Q': case 'S':
3465 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3466 break;
3467
3468 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3469#endif
3470 default:
3471 gcc_unreachable ();
3472 }
3473 break;
3474
3475 default:
3476 putc (c, file);
3477 }
3478 va_end (argptr);
3479}
3480
3481/* Split up a CONST_DOUBLE or integer constant rtx
3482 into two rtx's for single words,
3483 storing in *FIRST the word that comes first in memory in the target
3484 and in *SECOND the other. */
3485
3486void
3487split_double (rtx value, rtx *first, rtx *second)
3488{
3489 if (GET_CODE (value) == CONST_INT)
3490 {
3491 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3492 {
3493 /* In this case the CONST_INT holds both target words.
3494 Extract the bits from it into two word-sized pieces.
3495 Sign extend each half to HOST_WIDE_INT. */
3496 unsigned HOST_WIDE_INT low, high;
3497 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3498
3499 /* Set sign_bit to the most significant bit of a word. */
3500 sign_bit = 1;
3501 sign_bit <<= BITS_PER_WORD - 1;
3502
3503 /* Set mask so that all bits of the word are set. We could
3504 have used 1 << BITS_PER_WORD instead of basing the
3505 calculation on sign_bit. However, on machines where
3506 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3507 compiler warning, even though the code would never be
3508 executed. */
3509 mask = sign_bit << 1;
3510 mask--;
3511
3512 /* Set sign_extend as any remaining bits. */
3513 sign_extend = ~mask;
3514
3515 /* Pick the lower word and sign-extend it. */
3516 low = INTVAL (value);
3517 low &= mask;
3518 if (low & sign_bit)
3519 low |= sign_extend;
3520
3521 /* Pick the higher word, shifted to the least significant
3522 bits, and sign-extend it. */
3523 high = INTVAL (value);
3524 high >>= BITS_PER_WORD - 1;
3525 high >>= 1;
3526 high &= mask;
3527 if (high & sign_bit)
3528 high |= sign_extend;
3529
3530 /* Store the words in the target machine order. */
3531 if (WORDS_BIG_ENDIAN)
3532 {
3533 *first = GEN_INT (high);
3534 *second = GEN_INT (low);
3535 }
3536 else
3537 {
3538 *first = GEN_INT (low);
3539 *second = GEN_INT (high);
3540 }
3541 }
3542 else
3543 {
3544 /* The rule for using CONST_INT for a wider mode
3545 is that we regard the value as signed.
3546 So sign-extend it. */
3547 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3548 if (WORDS_BIG_ENDIAN)
3549 {
3550 *first = high;
3551 *second = value;
3552 }
3553 else
3554 {
3555 *first = value;
3556 *second = high;
3557 }
3558 }
3559 }
3560 else if (GET_CODE (value) != CONST_DOUBLE)
3561 {
3562 if (WORDS_BIG_ENDIAN)
3563 {
3564 *first = const0_rtx;
3565 *second = value;
3566 }
3567 else
3568 {
3569 *first = value;
3570 *second = const0_rtx;
3571 }
3572 }
3573 else if (GET_MODE (value) == VOIDmode
3574 /* This is the old way we did CONST_DOUBLE integers. */
3575 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3576 {
3577 /* In an integer, the words are defined as most and least significant.
3578 So order them by the target's convention. */
3579 if (WORDS_BIG_ENDIAN)
3580 {
3581 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3582 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3583 }
3584 else
3585 {
3586 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3587 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3588 }
3589 }
3590 else
3591 {
3592 REAL_VALUE_TYPE r;
3593 long l[2];
3594 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3595
3596 /* Note, this converts the REAL_VALUE_TYPE to the target's
3597 format, splits up the floating point double and outputs
3598 exactly 32 bits of it into each of l[0] and l[1] --
3599 not necessarily BITS_PER_WORD bits. */
3600 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3601
3602 /* If 32 bits is an entire word for the target, but not for the host,
3603 then sign-extend on the host so that the number will look the same
3604 way on the host that it would on the target. See for instance
3605 simplify_unary_operation. The #if is needed to avoid compiler
3606 warnings. */
3607
3608#if HOST_BITS_PER_LONG > 32
3609 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3610 {
3611 if (l[0] & ((long) 1 << 31))
3612 l[0] |= ((long) (-1) << 32);
3613 if (l[1] & ((long) 1 << 31))
3614 l[1] |= ((long) (-1) << 32);
3615 }
3616#endif
3617
3618 *first = GEN_INT (l[0]);
3619 *second = GEN_INT (l[1]);
3620 }
3621}
3622
3623/* Return nonzero if this function has no function calls. */
3624
3625int
3626leaf_function_p (void)
3627{
3628 rtx insn;
3629 rtx link;
3630
3631 if (current_function_profile || profile_arc_flag)
3632 return 0;
3633
3634 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3635 {
3636 if (CALL_P (insn)
3637 && ! SIBLING_CALL_P (insn))
3638 return 0;
3639 if (NONJUMP_INSN_P (insn)
3640 && GET_CODE (PATTERN (insn)) == SEQUENCE
3641 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3642 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3643 return 0;
3644 }
3645 for (link = current_function_epilogue_delay_list;
3646 link;
3647 link = XEXP (link, 1))
3648 {
3649 insn = XEXP (link, 0);
3650
3651 if (CALL_P (insn)
3652 && ! SIBLING_CALL_P (insn))
3653 return 0;
3654 if (NONJUMP_INSN_P (insn)
3655 && GET_CODE (PATTERN (insn)) == SEQUENCE
3656 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3657 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3658 return 0;
3659 }
3660
3661 return 1;
3662}
3663
3664/* Return 1 if branch is a forward branch.
3665 Uses insn_shuid array, so it works only in the final pass. May be used by
3666 output templates to customary add branch prediction hints.
3667 */
3668int
3669final_forward_branch_p (rtx insn)
3670{
3671 int insn_id, label_id;
3672
3673 gcc_assert (uid_shuid);
3674 insn_id = INSN_SHUID (insn);
3675 label_id = INSN_SHUID (JUMP_LABEL (insn));
3676 /* We've hit some insns that does not have id information available. */
3677 gcc_assert (insn_id && label_id);
3678 return insn_id < label_id;
3679}
3680
3681/* On some machines, a function with no call insns
3682 can run faster if it doesn't create its own register window.
3683 When output, the leaf function should use only the "output"
3684 registers. Ordinarily, the function would be compiled to use
3685 the "input" registers to find its arguments; it is a candidate
3686 for leaf treatment if it uses only the "input" registers.
3687 Leaf function treatment means renumbering so the function
3688 uses the "output" registers instead. */
3689
3690#ifdef LEAF_REGISTERS
3691
3692/* Return 1 if this function uses only the registers that can be
3693 safely renumbered. */
3694
3695int
3696only_leaf_regs_used (void)
3697{
3698 int i;
3699 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3700
3701 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3702 if ((regs_ever_live[i] || global_regs[i])
3703 && ! permitted_reg_in_leaf_functions[i])
3704 return 0;
3705
3706 if (current_function_uses_pic_offset_table
3707 && pic_offset_table_rtx != 0
3708 && REG_P (pic_offset_table_rtx)
3709 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3710 return 0;
3711
3712 return 1;
3713}
3714
3715/* Scan all instructions and renumber all registers into those
3716 available in leaf functions. */
3717
3718static void
3719leaf_renumber_regs (rtx first)
3720{
3721 rtx insn;
3722
3723 /* Renumber only the actual patterns.
3724 The reg-notes can contain frame pointer refs,
3725 and renumbering them could crash, and should not be needed. */
3726 for (insn = first; insn; insn = NEXT_INSN (insn))
3727 if (INSN_P (insn))
3728 leaf_renumber_regs_insn (PATTERN (insn));
3729 for (insn = current_function_epilogue_delay_list;
3730 insn;
3731 insn = XEXP (insn, 1))
3732 if (INSN_P (XEXP (insn, 0)))
3733 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3734}
3735
3736/* Scan IN_RTX and its subexpressions, and renumber all regs into those
3737 available in leaf functions. */
3738
3739void
3740leaf_renumber_regs_insn (rtx in_rtx)
3741{
3742 int i, j;
3743 const char *format_ptr;
3744
3745 if (in_rtx == 0)
3746 return;
3747
3748 /* Renumber all input-registers into output-registers.
3749 renumbered_regs would be 1 for an output-register;
3750 they */
3751
3752 if (REG_P (in_rtx))
3753 {
3754 int newreg;
3755
3756 /* Don't renumber the same reg twice. */
3757 if (in_rtx->used)
3758 return;
3759
3760 newreg = REGNO (in_rtx);
3761 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3762 to reach here as part of a REG_NOTE. */
3763 if (newreg >= FIRST_PSEUDO_REGISTER)
3764 {
3765 in_rtx->used = 1;
3766 return;
3767 }
3768 newreg = LEAF_REG_REMAP (newreg);
3769 gcc_assert (newreg >= 0);
3770 regs_ever_live[REGNO (in_rtx)] = 0;
3771 regs_ever_live[newreg] = 1;
3772 REGNO (in_rtx) = newreg;
3773 in_rtx->used = 1;
3774 }
3775
3776 if (INSN_P (in_rtx))
3777 {
3778 /* Inside a SEQUENCE, we find insns.
3779 Renumber just the patterns of these insns,
3780 just as we do for the top-level insns. */
3781 leaf_renumber_regs_insn (PATTERN (in_rtx));
3782 return;
3783 }
3784
3785 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3786
3787 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3788 switch (*format_ptr++)
3789 {
3790 case 'e':
3791 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3792 break;
3793
3794 case 'E':
3795 if (NULL != XVEC (in_rtx, i))
3796 {
3797 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3798 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3799 }
3800 break;
3801
3802 case 'S':
3803 case 's':
3804 case '0':
3805 case 'i':
3806 case 'w':
3807 case 'n':
3808 case 'u':
3809 break;
3810
3811 default:
3812 gcc_unreachable ();
3813 }
3814}
3815#endif
3816
3817
3818/* When -gused is used, emit debug info for only used symbols. But in
3819 addition to the standard intercepted debug_hooks there are some direct
3820 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3821 Those routines may also be called from a higher level intercepted routine. So
3822 to prevent recording data for an inner call to one of these for an intercept,
3823 we maintain an intercept nesting counter (debug_nesting). We only save the
3824 intercepted arguments if the nesting is 1. */
3825int debug_nesting = 0;
3826
3827static tree *symbol_queue;
3828int symbol_queue_index = 0;
3829static int symbol_queue_size = 0;
3830
3831/* Generate the symbols for any queued up type symbols we encountered
3832 while generating the type info for some originally used symbol.
3833 This might generate additional entries in the queue. Only when
3834 the nesting depth goes to 0 is this routine called. */
3835
3836void
3837debug_flush_symbol_queue (void)
3838{
3839 int i;
3840
3841 /* Make sure that additionally queued items are not flushed
3842 prematurely. */
3843
3844 ++debug_nesting;
3845
3846 for (i = 0; i < symbol_queue_index; ++i)
3847 {
3848 /* If we pushed queued symbols then such symbols must be
3849 output no matter what anyone else says. Specifically,
3850 we need to make sure dbxout_symbol() thinks the symbol was
3851 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3852 which may be set for outside reasons. */
3853 int saved_tree_used = TREE_USED (symbol_queue[i]);
3854 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
3855 TREE_USED (symbol_queue[i]) = 1;
3856 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
3857
3858#ifdef DBX_DEBUGGING_INFO
3859 dbxout_symbol (symbol_queue[i], 0);
3860#endif
3861
3862 TREE_USED (symbol_queue[i]) = saved_tree_used;
3863 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
3864 }
3865
3866 symbol_queue_index = 0;
3867 --debug_nesting;
3868}
3869
3870/* Queue a type symbol needed as part of the definition of a decl
3871 symbol. These symbols are generated when debug_flush_symbol_queue()
3872 is called. */
3873
3874void
3875debug_queue_symbol (tree decl)
3876{
3877 if (symbol_queue_index >= symbol_queue_size)
3878 {
3879 symbol_queue_size += 10;
3880 symbol_queue = xrealloc (symbol_queue,
3881 symbol_queue_size * sizeof (tree));
3882 }
3883
3884 symbol_queue[symbol_queue_index++] = decl;
3885}
3886
3887/* Free symbol queue. */
3888void
3889debug_free_queue (void)
3890{
3891 if (symbol_queue)
3892 {
3893 free (symbol_queue);
3894 symbol_queue = NULL;
3895 symbol_queue_size = 0;
3896 }
3897}
3898
3899/* Turn the RTL into assembly. */
3900static unsigned int
3901rest_of_handle_final (void)
3902{
3903 rtx x;
3904 const char *fnname;
3905
3906 /* Get the function's name, as described by its RTL. This may be
3907 different from the DECL_NAME name used in the source file. */
3908
3909 x = DECL_RTL (current_function_decl);
3910 gcc_assert (MEM_P (x));
3911 x = XEXP (x, 0);
3912 gcc_assert (GET_CODE (x) == SYMBOL_REF);
3913 fnname = XSTR (x, 0);
3914
3915 assemble_start_function (current_function_decl, fnname);
3916 final_start_function (get_insns (), asm_out_file, optimize);
3917 final (get_insns (), asm_out_file, optimize);
3918 final_end_function ();
3919
3920#ifdef TARGET_UNWIND_INFO
3921 /* ??? The IA-64 ".handlerdata" directive must be issued before
3922 the ".endp" directive that closes the procedure descriptor. */
3923 output_function_exception_table ();
3924#endif
3925
3926 assemble_end_function (current_function_decl, fnname);
3927
3928#ifndef TARGET_UNWIND_INFO
3929 /* Otherwise, it feels unclean to switch sections in the middle. */
3930 output_function_exception_table ();
3931#endif
3932
3933 user_defined_section_attribute = false;
3934
3935 if (! quiet_flag)
3936 fflush (asm_out_file);
3937
3938 /* Release all memory allocated by flow. */
3939 free_basic_block_vars ();
3940
3941 /* Write DBX symbols if requested. */
3942
3943 /* Note that for those inline functions where we don't initially
3944 know for certain that we will be generating an out-of-line copy,
3945 the first invocation of this routine (rest_of_compilation) will
3946 skip over this code by doing a `goto exit_rest_of_compilation;'.
3947 Later on, wrapup_global_declarations will (indirectly) call
3948 rest_of_compilation again for those inline functions that need
3949 to have out-of-line copies generated. During that call, we
3950 *will* be routed past here. */
3951
3952 timevar_push (TV_SYMOUT);
3953 (*debug_hooks->function_decl) (current_function_decl);
3954 timevar_pop (TV_SYMOUT);
3955 return 0;
3956}
3957
3958struct tree_opt_pass pass_final =
3959{
3960 NULL, /* name */
3961 NULL, /* gate */
3962 rest_of_handle_final, /* execute */
3963 NULL, /* sub */
3964 NULL, /* next */
3965 0, /* static_pass_number */
3966 TV_FINAL, /* tv_id */
3967 0, /* properties_required */
3968 0, /* properties_provided */
3969 0, /* properties_destroyed */
3970 0, /* todo_flags_start */
3971 TODO_ggc_collect, /* todo_flags_finish */
3972 0 /* letter */
3973};
3974
3975
3976static unsigned int
3977rest_of_handle_shorten_branches (void)
3978{
3979 /* Shorten branches. */
3980 shorten_branches (get_insns ());
3981 return 0;
3982}
3983
3984struct tree_opt_pass pass_shorten_branches =
3985{
3986 "shorten", /* name */
3987 NULL, /* gate */
3988 rest_of_handle_shorten_branches, /* execute */
3989 NULL, /* sub */
3990 NULL, /* next */
3991 0, /* static_pass_number */
3992 TV_FINAL, /* tv_id */
3993 0, /* properties_required */
3994 0, /* properties_provided */
3995 0, /* properties_destroyed */
3996 0, /* todo_flags_start */
3997 TODO_dump_func, /* todo_flags_finish */
3998 0 /* letter */
3999};
4000
4001
4002static unsigned int
4003rest_of_clean_state (void)
4004{
4005 rtx insn, next;
4006
4007 /* It is very important to decompose the RTL instruction chain here:
4008 debug information keeps pointing into CODE_LABEL insns inside the function
4009 body. If these remain pointing to the other insns, we end up preserving
4010 whole RTL chain and attached detailed debug info in memory. */
4011 for (insn = get_insns (); insn; insn = next)
4012 {
4013 next = NEXT_INSN (insn);
4014 NEXT_INSN (insn) = NULL;
4015 PREV_INSN (insn) = NULL;
4016 }
4017
4018 /* In case the function was not output,
4019 don't leave any temporary anonymous types
4020 queued up for sdb output. */
4021#ifdef SDB_DEBUGGING_INFO
4022 if (write_symbols == SDB_DEBUG)
4023 sdbout_types (NULL_TREE);
4024#endif
4025
4026 reload_completed = 0;
4027 epilogue_completed = 0;
4028 flow2_completed = 0;
4029 no_new_pseudos = 0;
4030#ifdef STACK_REGS
4031 regstack_completed = 0;
4032#endif
4033
4034 /* Clear out the insn_length contents now that they are no
4035 longer valid. */
4036 init_insn_lengths ();
4037
4038 /* Show no temporary slots allocated. */
4039 init_temp_slots ();
4040
4041 free_basic_block_vars ();
4042 free_bb_for_insn ();
4043
4044
4045 if (targetm.binds_local_p (current_function_decl))
4046 {
4047 int pref = cfun->preferred_stack_boundary;
4048 if (cfun->stack_alignment_needed > cfun->preferred_stack_boundary)
4049 pref = cfun->stack_alignment_needed;
4050 cgraph_rtl_info (current_function_decl)->preferred_incoming_stack_boundary
4051 = pref;
4052 }
4053
4054 /* Make sure volatile mem refs aren't considered valid operands for
4055 arithmetic insns. We must call this here if this is a nested inline
4056 function, since the above code leaves us in the init_recog state,
4057 and the function context push/pop code does not save/restore volatile_ok.
4058
4059 ??? Maybe it isn't necessary for expand_start_function to call this
4060 anymore if we do it here? */
4061
4062 init_recog_no_volatile ();
4063
4064 /* We're done with this function. Free up memory if we can. */
4065 free_after_parsing (cfun);
4066 free_after_compilation (cfun);
4067 return 0;
4068}
4069
4070struct tree_opt_pass pass_clean_state =
4071{
4072 NULL, /* name */
4073 NULL, /* gate */
4074 rest_of_clean_state, /* execute */
4075 NULL, /* sub */
4076 NULL, /* next */
4077 0, /* static_pass_number */
4078 TV_FINAL, /* tv_id */
4079 0, /* properties_required */
4080 0, /* properties_provided */
4081 PROP_rtl, /* properties_destroyed */
4082 0, /* todo_flags_start */
4083 0, /* todo_flags_finish */
4084 0 /* letter */
4085};
4086