1/*
2 * Copyright (c) 2004-2014 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/*
29 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
30 *	The Regents of the University of California.  All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 *    notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 *    notice, this list of conditions and the following disclaimer in the
39 *    documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 *    must display the following acknowledgement:
42 *	This product includes software developed by the University of
43 *	California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 *    may be used to endorse or promote products derived from this software
46 *    without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 */
61
62#define	_IP_VHL
63
64
65#include <sys/param.h>
66#include <sys/systm.h>
67#include <sys/kernel.h>
68#include <sys/sysctl.h>
69#include <sys/mbuf.h>
70#include <sys/domain.h>
71#include <sys/protosw.h>
72#include <sys/socket.h>
73#include <sys/socketvar.h>
74
75#include <kern/zalloc.h>
76
77#include <net/route.h>
78
79#include <netinet/in.h>
80#include <netinet/in_systm.h>
81#include <netinet/ip.h>
82#include <netinet/in_pcb.h>
83#include <netinet/ip_var.h>
84#if INET6
85#include <netinet6/in6_pcb.h>
86#include <netinet/ip6.h>
87#include <netinet6/ip6_var.h>
88#endif
89#include <netinet/tcp.h>
90//#define	TCPOUTFLAGS
91#include <netinet/tcp_fsm.h>
92#include <netinet/tcp_seq.h>
93#include <netinet/tcp_timer.h>
94#include <netinet/tcp_var.h>
95#include <netinet/tcpip.h>
96#if TCPDEBUG
97#include <netinet/tcp_debug.h>
98#endif
99#include <sys/kdebug.h>
100
101#if IPSEC
102#include <netinet6/ipsec.h>
103#endif /*IPSEC*/
104
105#include <libkern/OSAtomic.h>
106
107int	tcp_do_sack = 1;
108SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_do_sack, 0,
109	"Enable/Disable TCP SACK support");
110static int tcp_sack_maxholes = 128;
111SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack_maxholes, CTLFLAG_RW | CTLFLAG_LOCKED,
112	&tcp_sack_maxholes, 0,
113    "Maximum number of TCP SACK holes allowed per connection");
114
115static int tcp_sack_globalmaxholes = 65536;
116SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack_globalmaxholes, CTLFLAG_RW | CTLFLAG_LOCKED,
117	&tcp_sack_globalmaxholes, 0,
118    "Global maximum number of TCP SACK holes");
119
120static SInt32 tcp_sack_globalholes = 0;
121SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack_globalholes, CTLFLAG_RD | CTLFLAG_LOCKED,
122    &tcp_sack_globalholes, 0,
123    "Global number of TCP SACK holes currently allocated");
124
125extern struct zone *sack_hole_zone;
126
127/*
128 * This function is called upon receipt of new valid data (while not in header
129 * prediction mode), and it updates the ordered list of sacks.
130 */
131void
132tcp_update_sack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
133{
134	/*
135	 * First reported block MUST be the most recent one.  Subsequent
136	 * blocks SHOULD be in the order in which they arrived at the
137	 * receiver.  These two conditions make the implementation fully
138	 * compliant with RFC 2018.
139	 */
140	struct sackblk head_blk, saved_blks[MAX_SACK_BLKS];
141	int num_head, num_saved, i;
142
143	/* SACK block for the received segment. */
144	head_blk.start = rcv_start;
145	head_blk.end = rcv_end;
146
147	/*
148	 * Merge updated SACK blocks into head_blk, and
149	 * save unchanged SACK blocks into saved_blks[].
150	 * num_saved will have the number of the saved SACK blocks.
151	 */
152	num_saved = 0;
153	for (i = 0; i < tp->rcv_numsacks; i++) {
154		tcp_seq start = tp->sackblks[i].start;
155		tcp_seq end = tp->sackblks[i].end;
156		if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
157			/*
158			 * Discard this SACK block.
159			 */
160		} else if (SEQ_LEQ(head_blk.start, end) &&
161			   SEQ_GEQ(head_blk.end, start)) {
162			/*
163			 * Merge this SACK block into head_blk.
164			 * This SACK block itself will be discarded.
165			 */
166			if (SEQ_GT(head_blk.start, start))
167				head_blk.start = start;
168			if (SEQ_LT(head_blk.end, end))
169				head_blk.end = end;
170		} else {
171			/*
172			 * Save this SACK block.
173			 */
174			saved_blks[num_saved].start = start;
175			saved_blks[num_saved].end = end;
176			num_saved++;
177		}
178	}
179
180	/*
181	 * Update SACK list in tp->sackblks[].
182	 */
183	num_head = 0;
184	if (SEQ_GT(head_blk.start, tp->rcv_nxt)) {
185		/*
186		 * The received data segment is an out-of-order segment.
187		 * Put head_blk at the top of SACK list.
188		 */
189		tp->sackblks[0] = head_blk;
190		num_head = 1;
191		/*
192		 * If the number of saved SACK blocks exceeds its limit,
193		 * discard the last SACK block.
194		 */
195		if (num_saved >= MAX_SACK_BLKS)
196			num_saved--;
197	}
198	if (num_saved > 0) {
199		/*
200		 * Copy the saved SACK blocks back.
201		 */
202		bcopy(saved_blks, &tp->sackblks[num_head],
203		      sizeof(struct sackblk) * num_saved);
204	}
205
206	/* Save the number of SACK blocks. */
207	tp->rcv_numsacks = num_head + num_saved;
208
209	/* If we are requesting SACK recovery, reset the stretch-ack state
210	 * so that connection will generate more acks after recovery and
211	 * sender's cwnd will open.
212	 */
213	if ((tp->t_flags & TF_STRETCHACK) != 0 && tp->rcv_numsacks > 0)
214		tcp_reset_stretch_ack(tp);
215
216#if TRAFFIC_MGT
217	if (tp->acc_iaj > 0 && tp->rcv_numsacks > 0)
218		reset_acc_iaj(tp);
219#endif /* TRAFFIC_MGT */
220}
221
222/*
223 * Delete all receiver-side SACK information.
224 */
225void
226tcp_clean_sackreport( struct tcpcb *tp)
227{
228
229	tp->rcv_numsacks = 0;
230	bzero(&tp->sackblks[0], sizeof (struct sackblk) * MAX_SACK_BLKS);
231}
232
233/*
234 * Allocate struct sackhole.
235 */
236static struct sackhole *
237tcp_sackhole_alloc(struct tcpcb *tp, tcp_seq start, tcp_seq end)
238{
239	struct sackhole *hole;
240
241	if (tp->snd_numholes >= tcp_sack_maxholes ||
242	    tcp_sack_globalholes >= tcp_sack_globalmaxholes) {
243		tcpstat.tcps_sack_sboverflow++;
244		return NULL;
245	}
246
247	hole = (struct sackhole *)zalloc(sack_hole_zone);
248	if (hole == NULL)
249		return NULL;
250
251	hole->start = start;
252	hole->end = end;
253	hole->rxmit = start;
254
255	tp->snd_numholes++;
256	OSIncrementAtomic(&tcp_sack_globalholes);
257
258	return hole;
259}
260
261/*
262 * Free struct sackhole.
263 */
264static void
265tcp_sackhole_free(struct tcpcb *tp, struct sackhole *hole)
266{
267	zfree(sack_hole_zone, hole);
268
269	tp->snd_numholes--;
270	OSDecrementAtomic(&tcp_sack_globalholes);
271}
272
273/*
274 * Insert new SACK hole into scoreboard.
275 */
276static struct sackhole *
277tcp_sackhole_insert(struct tcpcb *tp, tcp_seq start, tcp_seq end,
278		    struct sackhole *after)
279{
280	struct sackhole *hole;
281
282	/* Allocate a new SACK hole. */
283	hole = tcp_sackhole_alloc(tp, start, end);
284	if (hole == NULL)
285		return NULL;
286	hole->rxmit_start = tcp_now;
287	/* Insert the new SACK hole into scoreboard */
288	if (after != NULL)
289		TAILQ_INSERT_AFTER(&tp->snd_holes, after, hole, scblink);
290	else
291		TAILQ_INSERT_TAIL(&tp->snd_holes, hole, scblink);
292
293	/* Update SACK hint. */
294	if (tp->sackhint.nexthole == NULL)
295		tp->sackhint.nexthole = hole;
296
297	return hole;
298}
299
300/*
301 * Remove SACK hole from scoreboard.
302 */
303static void
304tcp_sackhole_remove(struct tcpcb *tp, struct sackhole *hole)
305{
306	/* Update SACK hint. */
307	if (tp->sackhint.nexthole == hole)
308		tp->sackhint.nexthole = TAILQ_NEXT(hole, scblink);
309
310	/* Remove this SACK hole. */
311	TAILQ_REMOVE(&tp->snd_holes, hole, scblink);
312
313	/* Free this SACK hole. */
314	tcp_sackhole_free(tp, hole);
315}
316/*
317 * When a new ack with SACK is received, check if it indicates packet
318 * reordering. If there is packet reordering, the socket is marked and
319 * the late time offset by which the packet was reordered with
320 * respect to its closest neighboring packets is computed.
321 */
322static void
323tcp_sack_detect_reordering(struct tcpcb *tp, struct sackhole *s,
324    tcp_seq sacked_seq, tcp_seq snd_fack)
325{
326	int32_t rext = 0, reordered = 0;
327
328	/*
329	 * If the SACK hole is past snd_fack, this is from new SACK
330	 * information, so we can ignore it.
331	 */
332	if (SEQ_GT(s->end, snd_fack))
333		return;
334	/*
335	 * If there has been a retransmit timeout, then the timestamp on
336	 * the SACK segment will be newer. This might lead to a
337	 * false-positive. Avoid re-ordering detection in this case.
338	 */
339	if (tp->t_rxtshift > 0)
340		return;
341
342	/*
343	 * Detect reordering from SACK information by checking
344	 * if recently sacked data was never retransmitted from this hole.
345	 */
346	if (SEQ_LT(s->rxmit, sacked_seq)) {
347		reordered = 1;
348		tcpstat.tcps_avoid_rxmt++;
349	}
350
351	if (reordered) {
352		if (!(tp->t_flagsext & TF_PKTS_REORDERED)) {
353			tp->t_flagsext |= TF_PKTS_REORDERED;
354			tcpstat.tcps_detect_reordering++;
355		}
356
357		tcpstat.tcps_reordered_pkts++;
358
359		VERIFY(SEQ_GEQ(snd_fack, s->rxmit));
360
361		if (s->rxmit_start > 0) {
362			rext = timer_diff(tcp_now, 0, s->rxmit_start, 0);
363			if (rext < 0)
364				return;
365
366			/*
367			 * We take the maximum reorder window to schedule
368			 * DELAYFR timer as that will take care of jitter
369			 * on the network path.
370			 *
371			 * Computing average and standard deviation seems
372			 * to cause unnecessary retransmissions when there
373			 * is high jitter.
374			 *
375			 * We set a maximum of SRTT/2 and a minimum of
376			 * 10 ms on the reorder window.
377			 */
378			tp->t_reorderwin = max(tp->t_reorderwin, rext);
379			tp->t_reorderwin = min(tp->t_reorderwin,
380			    (tp->t_srtt >> (TCP_RTT_SHIFT - 1)));
381			tp->t_reorderwin = max(tp->t_reorderwin, 10);
382		}
383	}
384}
385
386/*
387 * Process cumulative ACK and the TCP SACK option to update the scoreboard.
388 * tp->snd_holes is an ordered list of holes (oldest to newest, in terms of
389 * the sequence space).
390 */
391void
392tcp_sack_doack(struct tcpcb *tp, struct tcpopt *to, struct tcphdr *th,
393	u_int32_t *newbytes_acked)
394{
395	struct sackhole *cur, *temp;
396	struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1], *sblkp;
397	int i, j, num_sack_blks;
398	tcp_seq old_snd_fack = 0, th_ack = th->th_ack;
399
400	num_sack_blks = 0;
401	/*
402	 * If SND.UNA will be advanced by SEG.ACK, and if SACK holes exist,
403	 * treat [SND.UNA, SEG.ACK) as if it is a SACK block.
404	 */
405	if (SEQ_LT(tp->snd_una, th_ack) && !TAILQ_EMPTY(&tp->snd_holes)) {
406		sack_blocks[num_sack_blks].start = tp->snd_una;
407		sack_blocks[num_sack_blks++].end = th_ack;
408	}
409	/*
410	 * Append received valid SACK blocks to sack_blocks[].
411	 * Check that the SACK block range is valid.
412	 */
413	for (i = 0; i < to->to_nsacks; i++) {
414		bcopy((to->to_sacks + i * TCPOLEN_SACK),
415		    &sack, sizeof(sack));
416		sack.start = ntohl(sack.start);
417		sack.end = ntohl(sack.end);
418		if (SEQ_GT(sack.end, sack.start) &&
419		    SEQ_GT(sack.start, tp->snd_una) &&
420		    SEQ_GT(sack.start, th_ack) &&
421		    SEQ_LT(sack.start, tp->snd_max) &&
422		    SEQ_GT(sack.end, tp->snd_una) &&
423		    SEQ_LEQ(sack.end, tp->snd_max))
424			sack_blocks[num_sack_blks++] = sack;
425	}
426
427	/*
428	 * Return if SND.UNA is not advanced and no valid SACK block
429	 * is received.
430	 */
431	if (num_sack_blks == 0)
432		return;
433
434	VERIFY(num_sack_blks <= (TCP_MAX_SACK + 1));
435	/*
436	 * Sort the SACK blocks so we can update the scoreboard
437	 * with just one pass. The overhead of sorting upto 4+1 elements
438	 * is less than making upto 4+1 passes over the scoreboard.
439	 */
440	for (i = 0; i < num_sack_blks; i++) {
441		for (j = i + 1; j < num_sack_blks; j++) {
442			if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
443				sack = sack_blocks[i];
444				sack_blocks[i] = sack_blocks[j];
445				sack_blocks[j] = sack;
446			}
447		}
448	}
449	if (TAILQ_EMPTY(&tp->snd_holes)) {
450		/*
451		 * Empty scoreboard. Need to initialize snd_fack (it may be
452		 * uninitialized or have a bogus value). Scoreboard holes
453		 * (from the sack blocks received) are created later below (in
454		 * the logic that adds holes to the tail of the scoreboard).
455		 */
456		tp->snd_fack = SEQ_MAX(tp->snd_una, th_ack);
457		*newbytes_acked += (tp->snd_fack - tp->snd_una);
458	}
459
460	old_snd_fack = tp->snd_fack;
461	/*
462	 * In the while-loop below, incoming SACK blocks (sack_blocks[])
463	 * and SACK holes (snd_holes) are traversed from their tails with
464	 * just one pass in order to reduce the number of compares especially
465	 * when the bandwidth-delay product is large.
466	 * Note: Typically, in the first RTT of SACK recovery, the highest
467	 * three or four SACK blocks with the same ack number are received.
468	 * In the second RTT, if retransmitted data segments are not lost,
469	 * the highest three or four SACK blocks with ack number advancing
470	 * are received.
471	 */
472	sblkp = &sack_blocks[num_sack_blks - 1];	/* Last SACK block */
473	if (SEQ_LT(tp->snd_fack, sblkp->start)) {
474		/*
475		 * The highest SACK block is beyond fack.
476		 * Append new SACK hole at the tail.
477		 * If the second or later highest SACK blocks are also
478		 * beyond the current fack, they will be inserted by
479		 * way of hole splitting in the while-loop below.
480		 */
481		temp = tcp_sackhole_insert(tp, tp->snd_fack,sblkp->start,NULL);
482		if (temp != NULL) {
483			tp->snd_fack = sblkp->end;
484			*newbytes_acked += (sblkp->end - sblkp->start);
485
486			/* Go to the previous sack block. */
487			sblkp--;
488		} else {
489			/*
490			 * We failed to add a new hole based on the current
491			 * sack block.  Skip over all the sack blocks that
492			 * fall completely to the right of snd_fack and proceed
493			 * to trim the scoreboard based on the remaining sack
494			 * blocks. This also trims the scoreboard for th_ack
495			 * (which is sack_blocks[0]).
496			 */
497			while (sblkp >= sack_blocks &&
498			       SEQ_LT(tp->snd_fack, sblkp->start))
499				sblkp--;
500			if (sblkp >= sack_blocks &&
501			    SEQ_LT(tp->snd_fack, sblkp->end)) {
502				*newbytes_acked += (sblkp->end - tp->snd_fack);
503				tp->snd_fack = sblkp->end;
504			}
505		}
506	} else if (SEQ_LT(tp->snd_fack, sblkp->end)) {
507		/* fack is advanced. */
508		*newbytes_acked += (sblkp->end - tp->snd_fack);
509		tp->snd_fack = sblkp->end;
510	}
511	/* We must have at least one SACK hole in scoreboard */
512	cur = TAILQ_LAST(&tp->snd_holes, sackhole_head); /* Last SACK hole */
513	/*
514	 * Since the incoming sack blocks are sorted, we can process them
515	 * making one sweep of the scoreboard.
516	 */
517	while (sblkp >= sack_blocks  && cur != NULL) {
518		if (SEQ_GEQ(sblkp->start, cur->end)) {
519			/*
520			 * SACKs data beyond the current hole.
521			 * Go to the previous sack block.
522			 */
523			sblkp--;
524			continue;
525		}
526		if (SEQ_LEQ(sblkp->end, cur->start)) {
527			/*
528			 * SACKs data before the current hole.
529			 * Go to the previous hole.
530			 */
531			cur = TAILQ_PREV(cur, sackhole_head, scblink);
532			continue;
533		}
534		tp->sackhint.sack_bytes_rexmit -= (cur->rxmit - cur->start);
535		if (SEQ_LEQ(sblkp->start, cur->start)) {
536			/* Data acks at least the beginning of hole */
537			if (SEQ_GEQ(sblkp->end, cur->end)) {
538				/* Acks entire hole, so delete hole */
539				*newbytes_acked += (cur->end - cur->start);
540
541				tcp_sack_detect_reordering(tp, cur,
542				    cur->end, old_snd_fack);
543				temp = cur;
544				cur = TAILQ_PREV(cur, sackhole_head, scblink);
545				tcp_sackhole_remove(tp, temp);
546				/*
547				 * The sack block may ack all or part of the next
548				 * hole too, so continue onto the next hole.
549				 */
550				continue;
551			} else {
552				/* Move start of hole forward */
553				*newbytes_acked += (sblkp->end - cur->start);
554				tcp_sack_detect_reordering(tp, cur,
555				    sblkp->end, old_snd_fack);
556				cur->start = sblkp->end;
557				cur->rxmit = SEQ_MAX(cur->rxmit, cur->start);
558			}
559		} else {
560			/* Data acks at least the end of hole */
561			if (SEQ_GEQ(sblkp->end, cur->end)) {
562				/* Move end of hole backward */
563				*newbytes_acked += (cur->end - sblkp->start);
564				tcp_sack_detect_reordering(tp, cur,
565				    cur->end, old_snd_fack);
566				cur->end = sblkp->start;
567				cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
568			} else {
569				/*
570				 * ACKs some data in the middle of a hole;
571				 * need to split current hole
572				 */
573				*newbytes_acked += (sblkp->end - sblkp->start);
574				tcp_sack_detect_reordering(tp, cur,
575				    sblkp->end, old_snd_fack);
576				temp = tcp_sackhole_insert(tp, sblkp->end,
577				    cur->end, cur);
578				if (temp != NULL) {
579					if (SEQ_GT(cur->rxmit, temp->rxmit)) {
580						temp->rxmit = cur->rxmit;
581						tp->sackhint.sack_bytes_rexmit
582							+= (temp->rxmit
583							    - temp->start);
584					}
585					cur->end = sblkp->start;
586					cur->rxmit = SEQ_MIN(cur->rxmit,
587							     cur->end);
588					/*
589					 * Reset the rxmit_start to that of
590					 * the current hole as that will
591					 * help to compute the reorder
592					 * window correctly
593					 */
594					temp->rxmit_start = cur->rxmit_start;
595				}
596			}
597		}
598		tp->sackhint.sack_bytes_rexmit += (cur->rxmit - cur->start);
599		/*
600		 * Testing sblkp->start against cur->start tells us whether
601		 * we're done with the sack block or the sack hole.
602		 * Accordingly, we advance one or the other.
603		 */
604		if (SEQ_LEQ(sblkp->start, cur->start))
605			cur = TAILQ_PREV(cur, sackhole_head, scblink);
606		else
607			sblkp--;
608	}
609}
610
611/*
612 * Free all SACK holes to clear the scoreboard.
613 */
614void
615tcp_free_sackholes(struct tcpcb *tp)
616{
617	struct sackhole *q;
618
619	while ((q = TAILQ_FIRST(&tp->snd_holes)) != NULL)
620		tcp_sackhole_remove(tp, q);
621	tp->sackhint.sack_bytes_rexmit = 0;
622	tp->sackhint.nexthole = NULL;
623	tp->sack_newdata = 0;
624
625}
626
627/*
628 * Partial ack handling within a sack recovery episode.
629 * Keeping this very simple for now. When a partial ack
630 * is received, force snd_cwnd to a value that will allow
631 * the sender to transmit no more than 2 segments.
632 * If necessary, a better scheme can be adopted at a
633 * later point, but for now, the goal is to prevent the
634 * sender from bursting a large amount of data in the midst
635 * of sack recovery.
636 */
637void
638tcp_sack_partialack(tp, th)
639	struct tcpcb *tp;
640	struct tcphdr *th;
641{
642	int num_segs = 1;
643
644	tp->t_timer[TCPT_REXMT] = 0;
645	tp->t_rtttime = 0;
646	/* send one or 2 segments based on how much new data was acked */
647	if (((BYTES_ACKED(th, tp)) / tp->t_maxseg) > 2)
648		num_segs = 2;
649	tp->snd_cwnd = (tp->sackhint.sack_bytes_rexmit +
650		(tp->snd_nxt - tp->sack_newdata) +
651		num_segs * tp->t_maxseg);
652	if (tp->snd_cwnd > tp->snd_ssthresh)
653		tp->snd_cwnd = tp->snd_ssthresh;
654	tp->t_flags |= TF_ACKNOW;
655	(void) tcp_output(tp);
656}
657
658/*
659 * Debug version of tcp_sack_output() that walks the scoreboard. Used for
660 * now to sanity check the hint.
661 */
662static struct sackhole *
663tcp_sack_output_debug(struct tcpcb *tp, int *sack_bytes_rexmt)
664{
665	struct sackhole *p;
666
667	*sack_bytes_rexmt = 0;
668	TAILQ_FOREACH(p, &tp->snd_holes, scblink) {
669		if (SEQ_LT(p->rxmit, p->end)) {
670			if (SEQ_LT(p->rxmit, tp->snd_una)) {/* old SACK hole */
671				continue;
672			}
673			*sack_bytes_rexmt += (p->rxmit - p->start);
674			break;
675		}
676		*sack_bytes_rexmt += (p->rxmit - p->start);
677	}
678	return (p);
679}
680
681/*
682 * Returns the next hole to retransmit and the number of retransmitted bytes
683 * from the scoreboard. We store both the next hole and the number of
684 * retransmitted bytes as hints (and recompute these on the fly upon SACK/ACK
685 * reception). This avoids scoreboard traversals completely.
686 *
687 * The loop here will traverse *at most* one link. Here's the argument.
688 * For the loop to traverse more than 1 link before finding the next hole to
689 * retransmit, we would need to have at least 1 node following the current hint
690 * with (rxmit == end). But, for all holes following the current hint,
691 * (start == rxmit), since we have not yet retransmitted from them. Therefore,
692 * in order to traverse more 1 link in the loop below, we need to have at least
693 * one node following the current hint with (start == rxmit == end).
694 * But that can't happen, (start == end) means that all the data in that hole
695 * has been sacked, in which case, the hole would have been removed from the
696 * scoreboard.
697 */
698struct sackhole *
699tcp_sack_output(struct tcpcb *tp, int *sack_bytes_rexmt)
700{
701	struct sackhole *hole = NULL, *dbg_hole = NULL;
702	int dbg_bytes_rexmt;
703
704	dbg_hole = tcp_sack_output_debug(tp, &dbg_bytes_rexmt);
705	*sack_bytes_rexmt = tp->sackhint.sack_bytes_rexmit;
706	hole = tp->sackhint.nexthole;
707	if (hole == NULL || SEQ_LT(hole->rxmit, hole->end))
708		goto out;
709	while ((hole = TAILQ_NEXT(hole, scblink)) != NULL) {
710		if (SEQ_LT(hole->rxmit, hole->end)) {
711			tp->sackhint.nexthole = hole;
712			break;
713		}
714	}
715out:
716	if (dbg_hole != hole) {
717		printf("%s: Computed sack hole not the same as cached value\n", __func__);
718		hole = dbg_hole;
719	}
720	if (*sack_bytes_rexmt != dbg_bytes_rexmt) {
721		printf("%s: Computed sack_bytes_retransmitted (%d) not "
722		       "the same as cached value (%d)\n",
723		       __func__, dbg_bytes_rexmt, *sack_bytes_rexmt);
724		*sack_bytes_rexmt = dbg_bytes_rexmt;
725	}
726	return (hole);
727}
728
729/*
730 * After a timeout, the SACK list may be rebuilt.  This SACK information
731 * should be used to avoid retransmitting SACKed data.  This function
732 * traverses the SACK list to see if snd_nxt should be moved forward.
733 */
734void
735tcp_sack_adjust(struct tcpcb *tp)
736{
737	struct sackhole *p, *cur = TAILQ_FIRST(&tp->snd_holes);
738
739	if (cur == NULL)
740		return; /* No holes */
741	if (SEQ_GEQ(tp->snd_nxt, tp->snd_fack))
742		return; /* We're already beyond any SACKed blocks */
743	/*
744	 * Two cases for which we want to advance snd_nxt:
745	 * i) snd_nxt lies between end of one hole and beginning of another
746	 * ii) snd_nxt lies between end of last hole and snd_fack
747	 */
748	while ((p = TAILQ_NEXT(cur, scblink)) != NULL) {
749		if (SEQ_LT(tp->snd_nxt, cur->end))
750			return;
751		if (SEQ_GEQ(tp->snd_nxt, p->start))
752			cur = p;
753		else {
754			tp->snd_nxt = p->start;
755			return;
756		}
757	}
758	if (SEQ_LT(tp->snd_nxt, cur->end))
759		return;
760	tp->snd_nxt = tp->snd_fack;
761	return;
762}
763
764/*
765 * This function returns true if more than (tcprexmtthresh - 1) * SMSS
766 * bytes with sequence numbers greater than snd_una have been SACKed.
767 */
768boolean_t
769tcp_sack_byte_islost(struct tcpcb *tp)
770{
771	u_int32_t unacked_bytes, sndhole_bytes = 0;
772	struct sackhole *sndhole;
773	if (!SACK_ENABLED(tp) || IN_FASTRECOVERY(tp) ||
774	    TAILQ_EMPTY(&tp->snd_holes) ||
775	    (tp->t_flagsext & TF_PKTS_REORDERED))
776		return (FALSE);
777
778	unacked_bytes = tp->snd_max - tp->snd_una;
779
780	TAILQ_FOREACH(sndhole, &tp->snd_holes, scblink) {
781		sndhole_bytes += (sndhole->end - sndhole->start);
782	}
783
784	VERIFY(unacked_bytes >= sndhole_bytes);
785	return ((unacked_bytes - sndhole_bytes) >
786	    ((tcprexmtthresh - 1) * tp->t_maxseg));
787}
788