1/*
2 * Boot a Marvell SoC, with Xmodem over UART0.
3 *  supports Kirkwood, Dove, Avanta, Armada 370, Armada XP, Armada 375,
4 *           Armada 38x and Armada 39x.
5 *
6 * (c) 2012 Daniel Stodden <daniel.stodden@gmail.com>
7 * (c) 2021 Pali Roh��r <pali@kernel.org>
8 * (c) 2021 Marek Beh��n <kabel@kernel.org>
9 *
10 * References:
11 * - "88F6180, 88F6190, 88F6192, and 88F6281: Integrated Controller: Functional
12 *   Specifications" December 2, 2008. Chapter 24.2 "BootROM Firmware".
13 *   https://web.archive.org/web/20130730091033/https://www.marvell.com/embedded-processors/kirkwood/assets/FS_88F6180_9x_6281_OpenSource.pdf
14 * - "88AP510: High-Performance SoC with Integrated CPU, 2D/3D Graphics
15 *   Processor, and High-Definition Video Decoder: Functional Specifications"
16 *   August 3, 2011. Chapter 5 "BootROM Firmware"
17 *   https://web.archive.org/web/20120130172443/https://www.marvell.com/application-processors/armada-500/assets/Armada-510-Functional-Spec.pdf
18 * - "88F6665, 88F6660, 88F6658, 88F6655, 88F6655F, 88F6650, 88F6650F, 88F6610,
19 *   and 88F6610F Avanta LP Family Integrated Single/Dual CPU Ecosystem for
20 *   Gateway (GW), Home Gateway Unit (HGU), and Single Family Unit (SFU)
21 *   Functional Specifications" Doc. No. MV-S108952-00, Rev. A. November 7, 2013.
22 *   Chapter 7 "Boot Flow"
23 *   CONFIDENTIAL, no public documentation available
24 * - "88F6710, 88F6707, and 88F6W11: ARMADA(R) 370 SoC: Functional Specifications"
25 *   May 26, 2014. Chapter 6 "BootROM Firmware".
26 *   https://web.archive.org/web/20140617183701/https://www.marvell.com/embedded-processors/armada-300/assets/ARMADA370-FunctionalSpec-datasheet.pdf
27 * - "MV78230, MV78260, and MV78460: ARMADA(R) XP Family of Highly Integrated
28 *   Multi-Core ARMv7 Based SoC Processors: Functional Specifications"
29 *   May 29, 2014. Chapter 6 "BootROM Firmware".
30 *   https://web.archive.org/web/20180829171131/https://www.marvell.com/embedded-processors/armada-xp/assets/ARMADA-XP-Functional-SpecDatasheet.pdf
31 * - "BobCat2 Control and Management Subsystem Functional Specifications"
32 *   Doc. No. MV-S109400-00, Rev. A. December 4, 2014.
33 *   Chapter 1.6 BootROM Firmware
34 *   CONFIDENTIAL, no public documentation available
35 * - "AlleyCat3 and PONCat3 Highly Integrated 1/10 Gigabit Ethernet Switch
36 *   Control and Management Subsystem: Functional Specifications"
37 *   Doc. No. MV-S109693-00, Rev. A. May 20, 2014.
38 *   Chapter 1.6 BootROM Firmware
39 *   CONFIDENTIAL, no public documentation available
40 * - "ARMADA(R) 375 Value-Performance Dual Core CPU System on Chip: Functional
41 *   Specifications" Doc. No. MV-S109377-00, Rev. A. September 18, 2013.
42 *   Chapter 7 "Boot Sequence"
43 *   CONFIDENTIAL, no public documentation available
44 * - "88F6810, 88F6811, 88F6821, 88F6W21, 88F6820, and 88F6828: ARMADA(R) 38x
45 *   Family High-Performance Single/Dual CPU System on Chip: Functional
46 *   Specifications" Doc. No. MV-S109094-00, Rev. C. August 2, 2015.
47 *   Chapter 7 "Boot Flow"
48 *   CONFIDENTIAL, no public documentation available
49 * - "88F6920, 88F6925 and 88F6928: ARMADA(R) 39x High-Performance Dual Core CPU
50 *   System on Chip Functional Specifications" Doc. No. MV-S109896-00, Rev. B.
51 *   December 22, 2015. Chapter 7 "Boot Flow"
52 *   CONFIDENTIAL, no public documentation available
53 * - "Marvell boot image parser", Marvell U-Boot 2013.01, version 18.06. September 17, 2015.
54 *   https://github.com/MarvellEmbeddedProcessors/u-boot-marvell/blob/u-boot-2013.01-armada-18.06/tools/marvell/doimage_mv/hdrparser.c
55 * - "Marvell doimage Tool", Marvell U-Boot 2013.01, version 18.06. August 30, 2015.
56 *   https://github.com/MarvellEmbeddedProcessors/u-boot-marvell/blob/u-boot-2013.01-armada-18.06/tools/marvell/doimage_mv/doimage.c
57 *
58 * Storage location / offset of different image types:
59 * - IBR_HDR_SPI_ID (0x5A):
60 *   SPI image can be stored at any 2 MB aligned offset in the first 16 MB of
61 *   SPI-NOR or parallel-NOR. Despite the type name it really can be stored on
62 *   parallel-NOR and cannot be stored on other SPI devices, like SPI-NAND.
63 *   So it should have been named NOR image, not SPI image. This image type
64 *   supports XIP - Execute In Place directly from NOR memory. Destination
65 *   address of the XIP image is set to 0xFFFFFFFF and execute address to the
66 *   absolute offset in bytes from the beginning of NOR memory.
67 *
68 * - IBR_HDR_NAND_ID (0x8B):
69 *   NAND image can be stored either at any 2 MB aligned offset in the first
70 *   16 MB of SPI-NAND or at any blocksize aligned offset in the first 64 MB
71 *   of parallel-NAND.
72 *
73 * - IBR_HDR_PEX_ID (0x9C):
74 *   PEX image is used for booting from PCI Express device. Source address
75 *   stored in image is ignored by BootROM. It is not the BootROM who parses
76 *   or loads data part of the PEX image. BootROM just configures SoC to the
77 *   PCIe endpoint mode and let the PCIe device on the other end of the PCIe
78 *   link (which must be in Root Complex mode) to load kwbimage into SoC's
79 *   memory and tell BootROM physical address.
80 *
81 * - IBR_HDR_UART_ID (0x69):
82 *   UART image can be transfered via xmodem protocol over first UART.
83 *   Unlike all other image types, header size stored in the image must be
84 *   multiply of the 128 bytes (for all other image types it can be any size)
85 *   and data part of the image does not have to contain 32-bit checksum
86 *   (all other image types must have valid 32-bit checksum in its data part).
87 *   And data size stored in the image is ignored. A38x BootROM determinates
88 *   size of the data part implicitly by the end of the xmodem transfer.
89 *   A38x BootROM has a bug which cause that BootROM loads data part of UART
90 *   image into RAM target address increased by one byte when source address
91 *   and header size stored in the image header are not same. So UART image
92 *   should be constructed in a way that there is no gap between header and
93 *   data part.
94 *
95 * - IBR_HDR_I2C_ID (0x4D):
96 *   It is unknown for what kind of storage is used this image. It is not
97 *   specified in any document from References section.
98 *
99 * - IBR_HDR_SATA_ID (0x78):
100 *   SATA image can be stored at sector 1 (after the MBR table), sector 34
101 *   (after the GPT table) or at any next sector which is aligned to 2 MB and
102 *   is in the first 16 MB of SATA disk. Note that source address in SATA image
103 *   is stored in sector unit and not in bytes like for any other images.
104 *   Unfortunately sector size is disk specific, in most cases it is 512 bytes
105 *   but there are also Native 4K SATA disks which have 4096 bytes long sectors.
106 *
107 * - IBR_HDR_SDIO_ID (0xAE):
108 *   SDIO image can be stored on different medias:
109 *   - SD(SC) card
110 *   - SDHC/SDXC card
111 *   - eMMC HW boot partition
112 *   - eMMC user data partition / MMC card
113 *   It cannot be stored on SDIO card despite the image name.
114 *
115 *   For SD(SC)/SDHC/SDXC cards, image can be stored at the same locations as
116 *   the SATA image (sector 1, sector 34 or any 2 MB aligned sector) but within
117 *   the first 64 MB. SDHC and SDXC cards have fixed 512 bytes long sector size.
118 *   Old SD(SC) cards unfortunately can have also different sector sizes, mostly
119 *   1024 bytes long sector sizes and also can be changed at runtime.
120 *
121 *   For MMC-compatible devices, image can be stored at offset 0 or at offset
122 *   2 MB. If MMC device supports HW boot partitions then image must be stored
123 *   on the HW partition as is configured in the EXT_CSC register (it can be
124 *   either boot or user data).
125 *
126 *   Note that source address for SDIO image is stored in byte unit, like for
127 *   any other images (except SATA). Marvell Functional Specifications for
128 *   A38x and A39x SoCs say that source address is in sector units, but this
129 *   is purely incorrect information. A385 BootROM really expects source address
130 *   for SDIO images in bytes and also Marvell tools generate SDIO image with
131 *   source address in byte units.
132 */
133
134#include "kwbimage.h"
135#include "mkimage.h"
136#include "version.h"
137
138#include <stdlib.h>
139#include <stdio.h>
140#include <string.h>
141#include <stdarg.h>
142#include <image.h>
143#include <libgen.h>
144#include <fcntl.h>
145#include <errno.h>
146#include <unistd.h>
147#include <stdint.h>
148#include <time.h>
149#include <sys/stat.h>
150#include <pthread.h>
151
152#ifdef __linux__
153#include "termios_linux.h"
154#else
155#include <termios.h>
156#endif
157
158/*
159 * These functions are in <term.h> header file, but this header file conflicts
160 * with "termios_linux.h" header file. So declare these functions manually.
161 */
162extern int setupterm(const char *, int, int *);
163extern char *tigetstr(const char *);
164
165/*
166 * Marvell BootROM UART Sensing
167 */
168
169static unsigned char kwboot_msg_boot[] = {
170	0xBB, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77
171};
172
173static unsigned char kwboot_msg_debug[] = {
174	0xDD, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77
175};
176
177/* Defines known to work on Kirkwood */
178#define KWBOOT_MSG_RSP_TIMEO	50 /* ms */
179
180/* Defines known to work on Armada XP */
181#define KWBOOT_MSG_RSP_TIMEO_AXP	10 /* ms */
182
183/*
184 * Xmodem Transfers
185 */
186
187#define SOH	1	/* sender start of block header */
188#define EOT	4	/* sender end of block transfer */
189#define ACK	6	/* target block ack */
190#define NAK	21	/* target block negative ack */
191
192#define KWBOOT_XM_BLKSZ	128 /* xmodem block size */
193
194struct kwboot_block {
195	uint8_t soh;
196	uint8_t pnum;
197	uint8_t _pnum;
198	uint8_t data[KWBOOT_XM_BLKSZ];
199	uint8_t csum;
200} __packed;
201
202#define KWBOOT_BLK_RSP_TIMEO 2000 /* ms */
203#define KWBOOT_HDR_RSP_TIMEO 10000 /* ms */
204
205/* ARM code to change baudrate */
206static unsigned char kwboot_baud_code[] = {
207				/* ; #define UART_BASE 0xd0012000             */
208				/* ; #define DLL       0x00                   */
209				/* ; #define DLH       0x04                   */
210				/* ; #define LCR       0x0c                   */
211				/* ; #define   DLAB    0x80                   */
212				/* ; #define LSR       0x14                   */
213				/* ; #define   TEMT    0x40                   */
214				/* ; #define DIV_ROUND(a, b) ((a + b/2) / b)  */
215				/* ;                                          */
216				/* ; u32 set_baudrate(u32 old_b, u32 new_b) { */
217				/* ;   while                                  */
218				/* ;      (!(readl(UART_BASE + LSR) & TEMT)); */
219				/* ;   u32 lcr = readl(UART_BASE + LCR);      */
220				/* ;   writel(UART_BASE + LCR, lcr | DLAB);   */
221				/* ;   u8 old_dll = readl(UART_BASE + DLL);   */
222				/* ;   u8 old_dlh = readl(UART_BASE + DLH);   */
223				/* ;   u16 old_dl = old_dll | (old_dlh << 8); */
224				/* ;   u32 clk = old_b * old_dl;              */
225				/* ;   u16 new_dl = DIV_ROUND(clk, new_b);    */
226				/* ;   u8 new_dll = new_dl & 0xff;            */
227				/* ;   u8 new_dlh = (new_dl >> 8) & 0xff;     */
228				/* ;   writel(UART_BASE + DLL, new_dll);      */
229				/* ;   writel(UART_BASE + DLH, new_dlh);      */
230				/* ;   writel(UART_BASE + LCR, lcr & ~DLAB);  */
231				/* ;   msleep(5);                             */
232				/* ;   return 0;                              */
233				/* ; }                                        */
234
235				/*  ; r0 = UART_BASE                          */
236	0x0d, 0x02, 0xa0, 0xe3, /* mov   r0, #0xd0000000                      */
237	0x12, 0x0a, 0x80, 0xe3, /* orr   r0, r0, #0x12000                     */
238
239				/*  ; Wait until Transmitter FIFO is Empty    */
240				/* .Lloop_txempty:                            */
241				/*  ; r1 = UART_BASE[LSR] & TEMT              */
242	0x14, 0x10, 0x90, 0xe5, /* ldr   r1, [r0, #0x14]                      */
243	0x40, 0x00, 0x11, 0xe3, /* tst   r1, #0x40                            */
244	0xfc, 0xff, 0xff, 0x0a, /* beq   .Lloop_txempty                       */
245
246				/*  ; Set Divisor Latch Access Bit            */
247				/*  ; UART_BASE[LCR] |= DLAB                  */
248	0x0c, 0x10, 0x90, 0xe5, /* ldr   r1, [r0, #0x0c]                      */
249	0x80, 0x10, 0x81, 0xe3, /* orr   r1, r1, #0x80                        */
250	0x0c, 0x10, 0x80, 0xe5, /* str   r1, [r0, #0x0c]                      */
251
252				/*  ; Read current Divisor Latch              */
253				/*  ; r1 = UART_BASE[DLH]<<8 | UART_BASE[DLL] */
254	0x00, 0x10, 0x90, 0xe5, /* ldr   r1, [r0, #0x00]                      */
255	0xff, 0x10, 0x01, 0xe2, /* and   r1, r1, #0xff                        */
256	0x01, 0x20, 0xa0, 0xe1, /* mov   r2, r1                               */
257	0x04, 0x10, 0x90, 0xe5, /* ldr   r1, [r0, #0x04]                      */
258	0xff, 0x10, 0x01, 0xe2, /* and   r1, r1, #0xff                        */
259	0x41, 0x14, 0xa0, 0xe1, /* asr   r1, r1, #8                           */
260	0x02, 0x10, 0x81, 0xe1, /* orr   r1, r1, r2                           */
261
262				/*  ; Read old baudrate value                 */
263				/*  ; r2 = old_baudrate                       */
264	0x74, 0x20, 0x9f, 0xe5, /* ldr   r2, old_baudrate                     */
265
266				/*  ; Calculate base clock                    */
267				/*  ; r1 = r2 * r1                            */
268	0x92, 0x01, 0x01, 0xe0, /* mul   r1, r2, r1                           */
269
270				/*  ; Read new baudrate value                 */
271				/*  ; r2 = new_baudrate                       */
272	0x70, 0x20, 0x9f, 0xe5, /* ldr   r2, new_baudrate                     */
273
274				/*  ; Calculate new Divisor Latch             */
275				/*  ; r1 = DIV_ROUND(r1, r2) =                */
276				/*  ;    = (r1 + r2/2) / r2                   */
277	0xa2, 0x10, 0x81, 0xe0, /* add   r1, r1, r2, lsr #1                   */
278	0x02, 0x40, 0xa0, 0xe1, /* mov   r4, r2                               */
279	0xa1, 0x00, 0x54, 0xe1, /* cmp   r4, r1, lsr #1                       */
280				/* .Lloop_div1:                               */
281	0x84, 0x40, 0xa0, 0x91, /* movls r4, r4, lsl #1                       */
282	0xa1, 0x00, 0x54, 0xe1, /* cmp   r4, r1, lsr #1                       */
283	0xfc, 0xff, 0xff, 0x9a, /* bls   .Lloop_div1                          */
284	0x00, 0x30, 0xa0, 0xe3, /* mov   r3, #0                               */
285				/* .Lloop_div2:                               */
286	0x04, 0x00, 0x51, 0xe1, /* cmp   r1, r4                               */
287	0x04, 0x10, 0x41, 0x20, /* subhs r1, r1, r4                           */
288	0x03, 0x30, 0xa3, 0xe0, /* adc   r3, r3, r3                           */
289	0xa4, 0x40, 0xa0, 0xe1, /* mov   r4, r4, lsr #1                       */
290	0x02, 0x00, 0x54, 0xe1, /* cmp   r4, r2                               */
291	0xf9, 0xff, 0xff, 0x2a, /* bhs   .Lloop_div2                          */
292	0x03, 0x10, 0xa0, 0xe1, /* mov   r1, r3                               */
293
294				/*  ; Set new Divisor Latch Low               */
295				/*  ; UART_BASE[DLL] = r1 & 0xff              */
296	0x01, 0x20, 0xa0, 0xe1, /* mov   r2, r1                               */
297	0xff, 0x20, 0x02, 0xe2, /* and   r2, r2, #0xff                        */
298	0x00, 0x20, 0x80, 0xe5, /* str   r2, [r0, #0x00]                      */
299
300				/*  ; Set new Divisor Latch High              */
301				/*  ; UART_BASE[DLH] = r1>>8 & 0xff           */
302	0x41, 0x24, 0xa0, 0xe1, /* asr   r2, r1, #8                           */
303	0xff, 0x20, 0x02, 0xe2, /* and   r2, r2, #0xff                        */
304	0x04, 0x20, 0x80, 0xe5, /* str   r2, [r0, #0x04]                      */
305
306				/*  ; Clear Divisor Latch Access Bit          */
307				/*  ; UART_BASE[LCR] &= ~DLAB                 */
308	0x0c, 0x10, 0x90, 0xe5, /* ldr   r1, [r0, #0x0c]                      */
309	0x80, 0x10, 0xc1, 0xe3, /* bic   r1, r1, #0x80                        */
310	0x0c, 0x10, 0x80, 0xe5, /* str   r1, [r0, #0x0c]                      */
311
312				/*  ; Loop 0x2dc000 (2998272) cycles          */
313				/*  ; which is about 5ms on 1200 MHz CPU      */
314				/*  ; r1 = 0x2dc000                           */
315	0xb7, 0x19, 0xa0, 0xe3, /* mov   r1, #0x2dc000                        */
316				/* .Lloop_sleep:                              */
317	0x01, 0x10, 0x41, 0xe2, /* sub   r1, r1, #1                           */
318	0x00, 0x00, 0x51, 0xe3, /* cmp   r1, #0                               */
319	0xfc, 0xff, 0xff, 0x1a, /* bne   .Lloop_sleep                         */
320
321				/*  ; Jump to the end of execution            */
322	0x01, 0x00, 0x00, 0xea, /* b     end                                  */
323
324				/*  ; Placeholder for old baudrate value      */
325				/* old_baudrate:                              */
326	0x00, 0x00, 0x00, 0x00, /* .word 0                                    */
327
328				/*  ; Placeholder for new baudrate value      */
329				/* new_baudrate:                              */
330	0x00, 0x00, 0x00, 0x00, /* .word 0                                    */
331
332				/* end:                                       */
333};
334
335/* ARM code from binary header executed by BootROM before changing baudrate */
336static unsigned char kwboot_baud_code_binhdr_pre[] = {
337				/* ; #define UART_BASE 0xd0012000             */
338				/* ; #define THR       0x00                   */
339				/* ; #define LSR       0x14                   */
340				/* ; #define   THRE    0x20                   */
341				/* ;                                          */
342				/* ; void send_preamble(void) {               */
343				/* ;   const u8 *str = "$baudratechange";     */
344				/* ;   u8 c;                                  */
345				/* ;   do {                                   */
346				/* ;       while                              */
347				/* ;       ((readl(UART_BASE + LSR) & THRE)); */
348				/* ;       c = *str++;                        */
349				/* ;       writel(UART_BASE + THR, c);        */
350				/* ;   } while (c);                           */
351				/* ; }                                        */
352
353				/*  ; Preserve registers for BootROM          */
354	0xfe, 0x5f, 0x2d, 0xe9, /* push  { r1 - r12, lr }                     */
355
356				/*  ; r0 = UART_BASE                          */
357	0x0d, 0x02, 0xa0, 0xe3, /* mov   r0, #0xd0000000                      */
358	0x12, 0x0a, 0x80, 0xe3, /* orr   r0, r0, #0x12000                     */
359
360				/*  ; r2 = address of preamble string         */
361	0x00, 0x20, 0x8f, 0xe2, /* adr   r2, .Lstr_preamble                   */
362
363				/*  ; Skip preamble data section              */
364	0x03, 0x00, 0x00, 0xea, /* b     .Lloop_preamble                      */
365
366				/*  ; Preamble string                         */
367				/* .Lstr_preamble:                            */
368	0x24, 0x62, 0x61, 0x75, /* .asciz "$baudratechange"                   */
369	0x64, 0x72, 0x61, 0x74,
370	0x65, 0x63, 0x68, 0x61,
371	0x6e, 0x67, 0x65, 0x00,
372
373				/*  ; Send preamble string over UART          */
374				/* .Lloop_preamble:                           */
375				/*                                            */
376				/*  ; Wait until Transmitter Holding is Empty */
377				/* .Lloop_thre:                               */
378				/*  ; r1 = UART_BASE[LSR] & THRE              */
379	0x14, 0x10, 0x90, 0xe5, /* ldr   r1, [r0, #0x14]                      */
380	0x20, 0x00, 0x11, 0xe3, /* tst   r1, #0x20                            */
381	0xfc, 0xff, 0xff, 0x0a, /* beq   .Lloop_thre                          */
382
383				/*  ; Put character into Transmitter FIFO     */
384				/*  ; r1 = *r2++                              */
385	0x01, 0x10, 0xd2, 0xe4, /* ldrb  r1, [r2], #1                         */
386				/*  ; UART_BASE[THR] = r1                     */
387	0x00, 0x10, 0x80, 0xe5, /* str   r1, [r0, #0x0]                       */
388
389				/*  ; Loop until end of preamble string       */
390	0x00, 0x00, 0x51, 0xe3, /* cmp   r1, #0                               */
391	0xf8, 0xff, 0xff, 0x1a, /* bne   .Lloop_preamble                      */
392};
393
394/* ARM code for returning from binary header back to BootROM */
395static unsigned char kwboot_baud_code_binhdr_post[] = {
396				/*  ; Return 0 - no error                     */
397	0x00, 0x00, 0xa0, 0xe3, /* mov   r0, #0                               */
398	0xfe, 0x9f, 0xbd, 0xe8, /* pop   { r1 - r12, pc }                     */
399};
400
401/* ARM code for jumping to the original image exec_addr */
402static unsigned char kwboot_baud_code_data_jump[] = {
403	0x04, 0xf0, 0x1f, 0xe5, /* ldr   pc, exec_addr                        */
404				/*  ; Placeholder for exec_addr               */
405				/* exec_addr:                                 */
406	0x00, 0x00, 0x00, 0x00, /* .word 0                                    */
407};
408
409static const char kwb_baud_magic[16] = "$baudratechange";
410
411static int kwboot_verbose;
412
413static int msg_rsp_timeo = KWBOOT_MSG_RSP_TIMEO;
414static int blk_rsp_timeo = KWBOOT_BLK_RSP_TIMEO;
415
416static ssize_t
417kwboot_write(int fd, const char *buf, size_t len)
418{
419	ssize_t tot = 0;
420
421	while (tot < len) {
422		ssize_t wr = write(fd, buf + tot, len - tot);
423
424		if (wr < 0 && errno == EINTR)
425			continue;
426		else if (wr < 0)
427			return wr;
428
429		tot += wr;
430	}
431
432	return tot;
433}
434
435static void
436kwboot_printv(const char *fmt, ...)
437{
438	va_list ap;
439
440	if (kwboot_verbose) {
441		va_start(ap, fmt);
442		vprintf(fmt, ap);
443		va_end(ap);
444		fflush(stdout);
445	}
446}
447
448static void
449__spinner(void)
450{
451	const char seq[] = { '-', '\\', '|', '/' };
452	const int div = 8;
453	static int state, bs;
454
455	if (state % div == 0) {
456		fputc(bs, stdout);
457		fputc(seq[state / div % sizeof(seq)], stdout);
458		fflush(stdout);
459	}
460
461	bs = '\b';
462	state++;
463}
464
465static void
466kwboot_spinner(void)
467{
468	if (kwboot_verbose)
469		__spinner();
470}
471
472static void
473__progress(int pct, char c)
474{
475	const int width = 70;
476	static const char *nl = "";
477	static int pos;
478
479	if (pos % width == 0)
480		printf("%s%3d %% [", nl, pct);
481
482	fputc(c, stdout);
483
484	nl = "]\n";
485	pos = (pos + 1) % width;
486
487	if (pct == 100) {
488		while (pos && pos++ < width)
489			fputc(' ', stdout);
490		fputs(nl, stdout);
491		nl = "";
492		pos = 0;
493	}
494
495	fflush(stdout);
496
497}
498
499static void
500kwboot_progress(int _pct, char c)
501{
502	static int pct;
503
504	if (_pct != -1)
505		pct = _pct;
506
507	if (kwboot_verbose)
508		__progress(pct, c);
509
510	if (pct == 100)
511		pct = 0;
512}
513
514static int
515kwboot_tty_recv(int fd, void *buf, size_t len, int timeo)
516{
517	int rc, nfds;
518	fd_set rfds;
519	struct timeval tv;
520	ssize_t n;
521
522	rc = -1;
523
524	FD_ZERO(&rfds);
525	FD_SET(fd, &rfds);
526
527	tv.tv_sec = 0;
528	tv.tv_usec = timeo * 1000;
529	if (tv.tv_usec > 1000000) {
530		tv.tv_sec += tv.tv_usec / 1000000;
531		tv.tv_usec %= 1000000;
532	}
533
534	do {
535		nfds = select(fd + 1, &rfds, NULL, NULL, &tv);
536		if (nfds < 0 && errno == EINTR)
537			continue;
538		else if (nfds < 0)
539			goto out;
540		else if (!nfds) {
541			errno = ETIMEDOUT;
542			goto out;
543		}
544
545		n = read(fd, buf, len);
546		if (n < 0 && errno == EINTR)
547			continue;
548		else if (n <= 0)
549			goto out;
550
551		buf = (char *)buf + n;
552		len -= n;
553	} while (len > 0);
554
555	rc = 0;
556out:
557	return rc;
558}
559
560static int
561kwboot_tty_send(int fd, const void *buf, size_t len, int nodrain)
562{
563	if (!buf)
564		return 0;
565
566	if (kwboot_write(fd, buf, len) < 0)
567		return -1;
568
569	if (nodrain)
570		return 0;
571
572	return tcdrain(fd);
573}
574
575static int
576kwboot_tty_send_char(int fd, unsigned char c)
577{
578	return kwboot_tty_send(fd, &c, 1, 0);
579}
580
581static speed_t
582kwboot_tty_baudrate_to_speed(int baudrate)
583{
584	switch (baudrate) {
585#ifdef B4000000
586	case 4000000:
587		return B4000000;
588#endif
589#ifdef B3500000
590	case 3500000:
591		return B3500000;
592#endif
593#ifdef B3000000
594	case 3000000:
595		return B3000000;
596#endif
597#ifdef B2500000
598	case 2500000:
599		return B2500000;
600#endif
601#ifdef B2000000
602	case 2000000:
603		return B2000000;
604#endif
605#ifdef B1500000
606	case 1500000:
607		return B1500000;
608#endif
609#ifdef B1152000
610	case 1152000:
611		return B1152000;
612#endif
613#ifdef B1000000
614	case 1000000:
615		return B1000000;
616#endif
617#ifdef B921600
618	case 921600:
619		return B921600;
620#endif
621#ifdef B614400
622	case 614400:
623		return B614400;
624#endif
625#ifdef B576000
626	case 576000:
627		return B576000;
628#endif
629#ifdef B500000
630	case 500000:
631		return B500000;
632#endif
633#ifdef B460800
634	case 460800:
635		return B460800;
636#endif
637#ifdef B307200
638	case 307200:
639		return B307200;
640#endif
641#ifdef B230400
642	case 230400:
643		return B230400;
644#endif
645#ifdef B153600
646	case 153600:
647		return B153600;
648#endif
649#ifdef B115200
650	case 115200:
651		return B115200;
652#endif
653#ifdef B76800
654	case 76800:
655		return B76800;
656#endif
657#ifdef B57600
658	case 57600:
659		return B57600;
660#endif
661#ifdef B38400
662	case 38400:
663		return B38400;
664#endif
665#ifdef B19200
666	case 19200:
667		return B19200;
668#endif
669#ifdef B9600
670	case 9600:
671		return B9600;
672#endif
673#ifdef B4800
674	case 4800:
675		return B4800;
676#endif
677#ifdef B2400
678	case 2400:
679		return B2400;
680#endif
681#ifdef B1800
682	case 1800:
683		return B1800;
684#endif
685#ifdef B1200
686	case 1200:
687		return B1200;
688#endif
689#ifdef B600
690	case 600:
691		return B600;
692#endif
693#ifdef B300
694	case 300:
695		return B300;
696#endif
697#ifdef B200
698	case 200:
699		return B200;
700#endif
701#ifdef B150
702	case 150:
703		return B150;
704#endif
705#ifdef B134
706	case 134:
707		return B134;
708#endif
709#ifdef B110
710	case 110:
711		return B110;
712#endif
713#ifdef B75
714	case 75:
715		return B75;
716#endif
717#ifdef B50
718	case 50:
719		return B50;
720#endif
721	default:
722#ifdef BOTHER
723		return BOTHER;
724#else
725		return B0;
726#endif
727	}
728}
729
730static int
731_is_within_tolerance(int value, int reference, int tolerance)
732{
733	return 100 * value >= reference * (100 - tolerance) &&
734	       100 * value <= reference * (100 + tolerance);
735}
736
737static int
738kwboot_tty_change_baudrate(int fd, int baudrate)
739{
740	struct termios tio;
741	speed_t speed;
742	int rc;
743
744	rc = tcgetattr(fd, &tio);
745	if (rc)
746		return rc;
747
748	speed = kwboot_tty_baudrate_to_speed(baudrate);
749	if (speed == B0) {
750		errno = EINVAL;
751		return -1;
752	}
753
754#ifdef BOTHER
755	if (speed == BOTHER)
756		tio.c_ospeed = tio.c_ispeed = baudrate;
757#endif
758
759	rc = cfsetospeed(&tio, speed);
760	if (rc)
761		return rc;
762
763	rc = cfsetispeed(&tio, speed);
764	if (rc)
765		return rc;
766
767	rc = tcsetattr(fd, TCSANOW, &tio);
768	if (rc)
769		return rc;
770
771	rc = tcgetattr(fd, &tio);
772	if (rc)
773		return rc;
774
775	if (cfgetospeed(&tio) != speed || cfgetispeed(&tio) != speed)
776		goto baud_fail;
777
778#ifdef BOTHER
779	/*
780	 * Check whether set baudrate is within 3% tolerance.
781	 * If BOTHER is defined, Linux always fills out c_ospeed / c_ispeed
782	 * with real values.
783	 */
784	if (!_is_within_tolerance(tio.c_ospeed, baudrate, 3))
785		goto baud_fail;
786
787	if (!_is_within_tolerance(tio.c_ispeed, baudrate, 3))
788		goto baud_fail;
789#endif
790
791	return 0;
792
793baud_fail:
794	fprintf(stderr, "Could not set baudrate to requested value\n");
795	errno = EINVAL;
796	return -1;
797}
798
799static int
800kwboot_open_tty(const char *path, int baudrate)
801{
802	int rc, fd, flags;
803	struct termios tio;
804
805	rc = -1;
806
807	fd = open(path, O_RDWR | O_NOCTTY | O_NDELAY);
808	if (fd < 0)
809		goto out;
810
811	rc = tcgetattr(fd, &tio);
812	if (rc)
813		goto out;
814
815	cfmakeraw(&tio);
816	tio.c_cflag |= CREAD | CLOCAL;
817	tio.c_cflag &= ~(CSTOPB | HUPCL | CRTSCTS);
818	tio.c_cc[VMIN] = 1;
819	tio.c_cc[VTIME] = 0;
820
821	rc = tcsetattr(fd, TCSANOW, &tio);
822	if (rc)
823		goto out;
824
825	flags = fcntl(fd, F_GETFL);
826	if (flags < 0)
827		goto out;
828
829	rc = fcntl(fd, F_SETFL, flags & ~O_NDELAY);
830	if (rc)
831		goto out;
832
833	rc = kwboot_tty_change_baudrate(fd, baudrate);
834	if (rc)
835		goto out;
836
837	rc = fd;
838out:
839	if (rc < 0) {
840		if (fd >= 0)
841			close(fd);
842	}
843
844	return rc;
845}
846
847static void *
848kwboot_msg_write_handler(void *arg)
849{
850	int tty = *(int *)((void **)arg)[0];
851	const void *msg = ((void **)arg)[1];
852	int rsp_timeo = msg_rsp_timeo;
853	int i, dummy_oldtype;
854
855	/* allow to cancel this thread at any time */
856	pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &dummy_oldtype);
857
858	while (1) {
859		/* write 128 samples of message pattern into the output queue without waiting */
860		for (i = 0; i < 128; i++) {
861			if (kwboot_tty_send(tty, msg, 8, 1) < 0) {
862				perror("\nFailed to send message pattern");
863				exit(1);
864			}
865		}
866		/* wait until output queue is transmitted and then make pause */
867		if (tcdrain(tty) < 0) {
868			perror("\nFailed to send message pattern");
869			exit(1);
870		}
871		/* BootROM requires pause on UART after it detects message pattern */
872		usleep(rsp_timeo * 1000);
873	}
874}
875
876static int
877kwboot_msg_start_thread(pthread_t *thread, int *tty, void *msg)
878{
879	void *arg[2];
880	int rc;
881
882	arg[0] = tty;
883	arg[1] = msg;
884	rc = pthread_create(thread, NULL, kwboot_msg_write_handler, arg);
885	if (rc) {
886		errno = rc;
887		return -1;
888	}
889
890	return 0;
891}
892
893static int
894kwboot_msg_stop_thread(pthread_t thread)
895{
896	int rc;
897
898	rc = pthread_cancel(thread);
899	if (rc) {
900		errno = rc;
901		return -1;
902	}
903
904	rc = pthread_join(thread, NULL);
905	if (rc) {
906		errno = rc;
907		return -1;
908	}
909
910	return 0;
911}
912
913static int
914kwboot_bootmsg(int tty)
915{
916	struct kwboot_block block;
917	pthread_t write_thread;
918	int rc, err;
919	char c;
920
921	/* flush input and output queue */
922	tcflush(tty, TCIOFLUSH);
923
924	rc = kwboot_msg_start_thread(&write_thread, &tty, kwboot_msg_boot);
925	if (rc) {
926		perror("Failed to start write thread");
927		return rc;
928	}
929
930	kwboot_printv("Sending boot message. Please reboot the target...");
931
932	err = 0;
933	while (1) {
934		kwboot_spinner();
935
936		rc = kwboot_tty_recv(tty, &c, 1, msg_rsp_timeo);
937		if (rc && errno == ETIMEDOUT) {
938			continue;
939		} else if (rc) {
940			err = errno;
941			break;
942		}
943
944		if (c == NAK)
945			break;
946	}
947
948	kwboot_printv("\n");
949
950	rc = kwboot_msg_stop_thread(write_thread);
951	if (rc) {
952		perror("Failed to stop write thread");
953		return rc;
954	}
955
956	if (err) {
957		errno = err;
958		perror("Failed to read response for boot message pattern");
959		return -1;
960	}
961
962	/*
963	 * At this stage we have sent more boot message patterns and BootROM
964	 * (at least on Armada XP and 385) started interpreting sent bytes as
965	 * part of xmodem packets. If BootROM is expecting SOH byte as start of
966	 * a xmodem packet and it receives byte 0xff, then it throws it away and
967	 * sends a NAK reply to host. If BootROM does not receive any byte for
968	 * 2s when expecting some continuation of the xmodem packet, it throws
969	 * away the partially received xmodem data and sends NAK reply to host.
970	 *
971	 * Therefore for starting xmodem transfer we have two options: Either
972	 * wait 2s or send 132 0xff bytes (which is the size of xmodem packet)
973	 * to ensure that BootROM throws away any partially received data.
974	 */
975
976	/* flush output queue with remaining boot message patterns */
977	rc = tcflush(tty, TCOFLUSH);
978	if (rc) {
979		perror("Failed to flush output queue");
980		return rc;
981	}
982
983	/* send one xmodem packet with 0xff bytes to force BootROM to re-sync */
984	memset(&block, 0xff, sizeof(block));
985	rc = kwboot_tty_send(tty, &block, sizeof(block), 0);
986	if (rc) {
987		perror("Failed to send sync sequence");
988		return rc;
989	}
990
991	/*
992	 * Sending 132 bytes via 115200B/8-N-1 takes 11.45 ms, reading 132 bytes
993	 * takes 11.45 ms, so waiting for 30 ms should be enough.
994	 */
995	usleep(30 * 1000);
996
997	/* flush remaining NAK replies from input queue */
998	rc = tcflush(tty, TCIFLUSH);
999	if (rc) {
1000		perror("Failed to flush input queue");
1001		return rc;
1002	}
1003
1004	return 0;
1005}
1006
1007static int
1008kwboot_debugmsg(int tty)
1009{
1010	unsigned char buf[8192];
1011	pthread_t write_thread;
1012	int rc, err, i, pos;
1013	size_t off;
1014
1015	/* flush input and output queue */
1016	tcflush(tty, TCIOFLUSH);
1017
1018	rc = kwboot_msg_start_thread(&write_thread, &tty, kwboot_msg_debug);
1019	if (rc) {
1020		perror("Failed to start write thread");
1021		return rc;
1022	}
1023
1024	kwboot_printv("Sending debug message. Please reboot the target...");
1025	kwboot_spinner();
1026
1027	err = 0;
1028	off = 0;
1029	while (1) {
1030		/* Read immediately all bytes in queue without waiting */
1031		rc = read(tty, buf + off, sizeof(buf) - off);
1032		if ((rc < 0 && errno == EINTR) || rc == 0) {
1033			continue;
1034		} else if (rc < 0) {
1035			err = errno;
1036			break;
1037		}
1038		off += rc - 1;
1039
1040		kwboot_spinner();
1041
1042		/*
1043		 * Check if we received at least 4 debug message patterns
1044		 * (console echo from BootROM) in cyclic buffer
1045		 */
1046
1047		for (pos = 0; pos < sizeof(kwboot_msg_debug); pos++)
1048			if (buf[off] == kwboot_msg_debug[(pos + off) % sizeof(kwboot_msg_debug)])
1049				break;
1050
1051		for (i = off; i >= 0; i--)
1052			if (buf[i] != kwboot_msg_debug[(pos + i) % sizeof(kwboot_msg_debug)])
1053				break;
1054
1055		off -= i;
1056
1057		if (off >= 4 * sizeof(kwboot_msg_debug))
1058			break;
1059
1060		/* If not move valid suffix from end of the buffer to the beginning of buffer */
1061		memmove(buf, buf + i + 1, off);
1062	}
1063
1064	kwboot_printv("\n");
1065
1066	rc = kwboot_msg_stop_thread(write_thread);
1067	if (rc) {
1068		perror("Failed to stop write thread");
1069		return rc;
1070	}
1071
1072	if (err) {
1073		errno = err;
1074		perror("Failed to read response for debug message pattern");
1075		return -1;
1076	}
1077
1078	/* flush output queue with remaining debug message patterns */
1079	rc = tcflush(tty, TCOFLUSH);
1080	if (rc) {
1081		perror("Failed to flush output queue");
1082		return rc;
1083	}
1084
1085	kwboot_printv("Clearing input buffer...\n");
1086
1087	/*
1088	 * Wait until BootROM transmit all remaining echo characters.
1089	 * Experimentally it was measured that for Armada 385 BootROM
1090	 * it is required to wait at least 0.415s. So wait 0.5s.
1091	 */
1092	usleep(500 * 1000);
1093
1094	/*
1095	 * In off variable is stored number of characters received after the
1096	 * successful detection of echo reply. So these characters are console
1097	 * echo for other following debug message patterns. BootROM may have in
1098	 * its output queue other echo characters which were being transmitting
1099	 * before above sleep call. So read remaining number of echo characters
1100	 * sent by the BootROM now.
1101	 */
1102	while ((rc = kwboot_tty_recv(tty, &buf[0], 1, 0)) == 0)
1103		off++;
1104	if (errno != ETIMEDOUT) {
1105		perror("Failed to read response");
1106		return rc;
1107	}
1108
1109	/*
1110	 * Clear every echo character set by the BootROM by backspace byte.
1111	 * This is required prior writing any command to the BootROM debug
1112	 * because BootROM command line buffer has limited size. If length
1113	 * of the command is larger than buffer size then it looks like
1114	 * that Armada 385 BootROM crashes after sending ENTER. So erase it.
1115	 * Experimentally it was measured that for Armada 385 BootROM it is
1116	 * required to send at least 3 backspace bytes for one echo character.
1117	 * This is unknown why. But lets do it.
1118	 */
1119	off *= 3;
1120	memset(buf, '\x08', sizeof(buf));
1121	while (off > sizeof(buf)) {
1122		rc = kwboot_tty_send(tty, buf, sizeof(buf), 1);
1123		if (rc) {
1124			perror("Failed to send clear sequence");
1125			return rc;
1126		}
1127		off -= sizeof(buf);
1128	}
1129	rc = kwboot_tty_send(tty, buf, off, 0);
1130	if (rc) {
1131		perror("Failed to send clear sequence");
1132		return rc;
1133	}
1134
1135	usleep(msg_rsp_timeo * 1000);
1136	rc = tcflush(tty, TCIFLUSH);
1137	if (rc) {
1138		perror("Failed to flush input queue");
1139		return rc;
1140	}
1141
1142	return 0;
1143}
1144
1145static size_t
1146kwboot_xm_makeblock(struct kwboot_block *block, const void *data,
1147		    size_t size, int pnum)
1148{
1149	size_t i, n;
1150
1151	block->soh = SOH;
1152	block->pnum = pnum;
1153	block->_pnum = ~block->pnum;
1154
1155	n = size < KWBOOT_XM_BLKSZ ? size : KWBOOT_XM_BLKSZ;
1156	memcpy(&block->data[0], data, n);
1157	memset(&block->data[n], 0, KWBOOT_XM_BLKSZ - n);
1158
1159	block->csum = 0;
1160	for (i = 0; i < n; i++)
1161		block->csum += block->data[i];
1162
1163	return n;
1164}
1165
1166static uint64_t
1167_now(void)
1168{
1169	struct timespec ts;
1170
1171	if (clock_gettime(CLOCK_MONOTONIC, &ts)) {
1172		static int err_print;
1173
1174		if (!err_print) {
1175			perror("clock_gettime() does not work");
1176			err_print = 1;
1177		}
1178
1179		/* this will just make the timeout not work */
1180		return -1ULL;
1181	}
1182
1183	return ts.tv_sec * 1000ULL + (ts.tv_nsec + 500000) / 1000000;
1184}
1185
1186static int
1187_is_xm_reply(char c)
1188{
1189	return c == ACK || c == NAK;
1190}
1191
1192static int
1193_xm_reply_to_error(int c)
1194{
1195	int rc = -1;
1196
1197	switch (c) {
1198	case ACK:
1199		rc = 0;
1200		break;
1201	case NAK:
1202		errno = EBADMSG;
1203		break;
1204	default:
1205		errno = EPROTO;
1206		break;
1207	}
1208
1209	return rc;
1210}
1211
1212static int
1213kwboot_baud_magic_handle(int fd, char c, int baudrate)
1214{
1215	static size_t rcv_len;
1216
1217	if (rcv_len < sizeof(kwb_baud_magic)) {
1218		/* try to recognize whole magic word */
1219		if (c == kwb_baud_magic[rcv_len]) {
1220			rcv_len++;
1221		} else {
1222			printf("%.*s%c", (int)rcv_len, kwb_baud_magic, c);
1223			fflush(stdout);
1224			rcv_len = 0;
1225		}
1226	}
1227
1228	if (rcv_len == sizeof(kwb_baud_magic)) {
1229		/* magic word received */
1230		kwboot_printv("\nChanging baudrate to %d Bd\n", baudrate);
1231
1232		return kwboot_tty_change_baudrate(fd, baudrate) ? : 1;
1233	} else {
1234		return 0;
1235	}
1236}
1237
1238static int
1239kwboot_xm_recv_reply(int fd, char *c, int stop_on_non_xm,
1240		     int ignore_nak_reply,
1241		     int allow_non_xm, int *non_xm_print,
1242		     int baudrate, int *baud_changed)
1243{
1244	int timeout = allow_non_xm ? KWBOOT_HDR_RSP_TIMEO : blk_rsp_timeo;
1245	uint64_t recv_until = _now() + timeout;
1246	int rc;
1247
1248	while (1) {
1249		rc = kwboot_tty_recv(fd, c, 1, timeout);
1250		if (rc) {
1251			if (errno != ETIMEDOUT)
1252				return rc;
1253			else if (allow_non_xm && *non_xm_print)
1254				return -1;
1255			else
1256				*c = NAK;
1257		}
1258
1259		/* If received xmodem reply, end. */
1260		if (_is_xm_reply(*c)) {
1261			if (*c == NAK && ignore_nak_reply) {
1262				timeout = recv_until - _now();
1263				if (timeout >= 0)
1264					continue;
1265			}
1266			break;
1267		}
1268
1269		/*
1270		 * If receiving/printing non-xmodem text output is allowed and
1271		 * such a byte was received, we want to increase receiving time
1272		 * and either:
1273		 * - print the byte, if it is not part of baudrate change magic
1274		 *   sequence while baudrate change was requested (-B option)
1275		 * - change baudrate
1276		 * Otherwise decrease timeout by time elapsed.
1277		 */
1278		if (allow_non_xm) {
1279			recv_until = _now() + timeout;
1280
1281			if (baudrate && !*baud_changed) {
1282				rc = kwboot_baud_magic_handle(fd, *c, baudrate);
1283				if (rc == 1)
1284					*baud_changed = 1;
1285				else if (!rc)
1286					*non_xm_print = 1;
1287				else
1288					return rc;
1289			} else if (!baudrate || !*baud_changed) {
1290				putchar(*c);
1291				fflush(stdout);
1292				*non_xm_print = 1;
1293			}
1294		} else {
1295			if (stop_on_non_xm)
1296				break;
1297			timeout = recv_until - _now();
1298			if (timeout < 0) {
1299				errno = ETIMEDOUT;
1300				return -1;
1301			}
1302		}
1303	}
1304
1305	return 0;
1306}
1307
1308static int
1309kwboot_xm_sendblock(int fd, struct kwboot_block *block, int allow_non_xm,
1310		    int *done_print, int baudrate, int allow_retries)
1311{
1312	int non_xm_print, baud_changed;
1313	int rc, err, retries;
1314	char c;
1315
1316	*done_print = 0;
1317	non_xm_print = 0;
1318	baud_changed = 0;
1319
1320	retries = 0;
1321	do {
1322		rc = kwboot_tty_send(fd, block, sizeof(*block), 1);
1323		if (rc)
1324			goto err;
1325
1326		if (allow_non_xm && !*done_print) {
1327			kwboot_progress(100, '.');
1328			kwboot_printv("Done\n");
1329			*done_print = 1;
1330		}
1331
1332		rc = kwboot_xm_recv_reply(fd, &c, retries < 3,
1333					  retries > 8,
1334					  allow_non_xm, &non_xm_print,
1335					  baudrate, &baud_changed);
1336		if (rc)
1337			goto err;
1338
1339		if (!allow_non_xm && c != ACK) {
1340			if (c == NAK && allow_retries && retries + 1 < 16)
1341				kwboot_progress(-1, '+');
1342			else
1343				kwboot_progress(-1, 'E');
1344		}
1345	} while (c == NAK && allow_retries && retries++ < 16);
1346
1347	if (non_xm_print)
1348		kwboot_printv("\n");
1349
1350	if (allow_non_xm && baudrate && !baud_changed) {
1351		fprintf(stderr, "Baudrate was not changed\n");
1352		errno = EPROTO;
1353		return -1;
1354	}
1355
1356	return _xm_reply_to_error(c);
1357err:
1358	err = errno;
1359	kwboot_printv("\n");
1360	errno = err;
1361	return rc;
1362}
1363
1364static int
1365kwboot_xm_finish(int fd)
1366{
1367	int rc, retries;
1368	char c;
1369
1370	kwboot_printv("Finishing transfer\n");
1371
1372	retries = 0;
1373	do {
1374		rc = kwboot_tty_send_char(fd, EOT);
1375		if (rc)
1376			return rc;
1377
1378		rc = kwboot_xm_recv_reply(fd, &c, retries < 3,
1379					  retries > 8,
1380					  0, NULL, 0, NULL);
1381		if (rc)
1382			return rc;
1383	} while (c == NAK && retries++ < 16);
1384
1385	return _xm_reply_to_error(c);
1386}
1387
1388static int
1389kwboot_xmodem_one(int tty, int *pnum, int header, const uint8_t *data,
1390		  size_t size, int baudrate)
1391{
1392	int done_print = 0;
1393	size_t sent, left;
1394	int rc;
1395
1396	kwboot_printv("Sending boot image %s (%zu bytes)...\n",
1397		      header ? "header" : "data", size);
1398
1399	left = size;
1400	sent = 0;
1401
1402	while (sent < size) {
1403		struct kwboot_block block;
1404		int last_block;
1405		size_t blksz;
1406
1407		blksz = kwboot_xm_makeblock(&block, data, left, (*pnum)++);
1408		data += blksz;
1409
1410		last_block = (left <= blksz);
1411
1412		/*
1413		 * Handling of repeated xmodem packets is completely broken in
1414		 * Armada 385 BootROM - it completely ignores xmodem packet
1415		 * numbers, they are only used for checksum verification.
1416		 * BootROM can handle a retry of the xmodem packet only during
1417		 * the transmission of kwbimage header and only if BootROM
1418		 * itself sent NAK response to previous attempt (it does it on
1419		 * checksum failure). During the transmission of kwbimage data
1420		 * part, BootROM always expects next xmodem packet, even if it
1421		 * sent NAK to previous attempt - there is absolutely no way to
1422		 * repair incorrectly transmitted xmodem packet during kwbimage
1423		 * data part upload. Also, if kwboot receives non-ACK/NAK
1424		 * response (meaning that original BootROM response was damaged
1425		 * on UART) there is no way to detect if BootROM accepted xmodem
1426		 * packet or not and no way to check if kwboot could repeat the
1427		 * packet or not.
1428		 *
1429		 * Stop transfer and return failure if kwboot receives unknown
1430		 * reply if non-xmodem reply is not allowed (for all xmodem
1431		 * packets except the last header packet) or when non-ACK reply
1432		 * is received during data part transfer.
1433		 */
1434		rc = kwboot_xm_sendblock(tty, &block, header && last_block,
1435					 &done_print, baudrate, header);
1436		if (rc)
1437			goto out;
1438
1439		sent += blksz;
1440		left -= blksz;
1441
1442		if (!done_print)
1443			kwboot_progress(sent * 100 / size, '.');
1444	}
1445
1446	if (!done_print)
1447		kwboot_printv("Done\n");
1448
1449	return 0;
1450out:
1451	kwboot_printv("\n");
1452	return rc;
1453}
1454
1455static int
1456kwboot_xmodem(int tty, const void *_img, size_t size, int baudrate)
1457{
1458	const uint8_t *img = _img;
1459	int rc, pnum;
1460	size_t hdrsz;
1461
1462	hdrsz = kwbheader_size(img);
1463
1464	/*
1465	 * If header size is not aligned to xmodem block size (which applies
1466	 * for all images in kwbimage v0 format) then we have to ensure that
1467	 * the last xmodem block of header contains beginning of the data
1468	 * followed by the header. So align header size to xmodem block size.
1469	 */
1470	hdrsz += (KWBOOT_XM_BLKSZ - hdrsz % KWBOOT_XM_BLKSZ) % KWBOOT_XM_BLKSZ;
1471	if (hdrsz > size)
1472		hdrsz = size;
1473
1474	pnum = 1;
1475
1476	rc = kwboot_xmodem_one(tty, &pnum, 1, img, hdrsz, baudrate);
1477	if (rc)
1478		return rc;
1479
1480	/*
1481	 * If we have already sent image data as a part of the last
1482	 * xmodem header block then we have nothing more to send.
1483	 */
1484	if (hdrsz < size) {
1485		img += hdrsz;
1486		size -= hdrsz;
1487		rc = kwboot_xmodem_one(tty, &pnum, 0, img, size, 0);
1488		if (rc)
1489			return rc;
1490	}
1491
1492	rc = kwboot_xm_finish(tty);
1493	if (rc)
1494		return rc;
1495
1496	if (baudrate) {
1497		kwboot_printv("\nChanging baudrate back to 115200 Bd\n\n");
1498		rc = kwboot_tty_change_baudrate(tty, 115200);
1499		if (rc)
1500			return rc;
1501	}
1502
1503	return 0;
1504}
1505
1506static int
1507kwboot_term_pipe(int in, int out, const char *quit, int *s, const char *kbs, int *k)
1508{
1509	char buf[128];
1510	ssize_t nin, noff;
1511
1512	nin = read(in, buf, sizeof(buf));
1513	if (nin <= 0)
1514		return -1;
1515
1516	noff = 0;
1517
1518	if (quit || kbs) {
1519		int i;
1520
1521		for (i = 0; i < nin; i++) {
1522			if ((quit || kbs) &&
1523			    (!quit || buf[i] != quit[*s]) &&
1524			    (!kbs || buf[i] != kbs[*k])) {
1525				const char *prefix;
1526				int plen;
1527
1528				if (quit && kbs) {
1529					prefix = (*s >= *k) ? quit : kbs;
1530					plen = (*s >= *k) ? *s : *k;
1531				} else if (quit) {
1532					prefix = quit;
1533					plen = *s;
1534				} else {
1535					prefix = kbs;
1536					plen = *k;
1537				}
1538
1539				if (plen > i && kwboot_write(out, prefix, plen - i) < 0)
1540					return -1;
1541			}
1542
1543			if (quit && buf[i] == quit[*s]) {
1544				(*s)++;
1545				if (!quit[*s]) {
1546					nin = (i > *s) ? (i - *s) : 0;
1547					break;
1548				}
1549			} else if (quit) {
1550				*s = 0;
1551			}
1552
1553			if (kbs && buf[i] == kbs[*k]) {
1554				(*k)++;
1555				if (!kbs[*k]) {
1556					if (i > *k + noff &&
1557					    kwboot_write(out, buf + noff, i - *k - noff) < 0)
1558						return -1;
1559					/*
1560					 * Replace backspace key by '\b' (0x08)
1561					 * byte which is the only recognized
1562					 * backspace byte by Marvell BootROM.
1563					 */
1564					if (write(out, "\x08", 1) < 0)
1565						return -1;
1566					noff = i + 1;
1567					*k = 0;
1568				}
1569			} else if (kbs) {
1570				*k = 0;
1571			}
1572		}
1573
1574		if (i == nin) {
1575			i = 0;
1576			if (quit && i < *s)
1577				i = *s;
1578			if (kbs && i < *k)
1579				i = *k;
1580			nin -= (nin > i) ? i : nin;
1581		}
1582	}
1583
1584	if (nin > noff && kwboot_write(out, buf + noff, nin - noff) < 0)
1585		return -1;
1586
1587	return 0;
1588}
1589
1590static int
1591kwboot_terminal(int tty)
1592{
1593	int rc, in, s, k;
1594	const char *kbs = NULL;
1595	const char *quit = "\34c";
1596	struct termios otio, tio;
1597
1598	rc = -1;
1599
1600	in = STDIN_FILENO;
1601	if (isatty(in)) {
1602		rc = tcgetattr(in, &otio);
1603		if (!rc) {
1604			tio = otio;
1605			cfmakeraw(&tio);
1606			rc = tcsetattr(in, TCSANOW, &tio);
1607		}
1608		if (rc) {
1609			perror("tcsetattr");
1610			goto out;
1611		}
1612
1613		/*
1614		 * Get sequence for backspace key used by the current
1615		 * terminal. Every occurrence of this sequence will be
1616		 * replaced by '\b' byte which is the only recognized
1617		 * backspace byte by Marvell BootROM.
1618		 *
1619		 * Note that we cannot read this sequence from termios
1620		 * c_cc[VERASE] as VERASE is valid only when ICANON is
1621		 * set in termios c_lflag, which is not case for us.
1622		 *
1623		 * Also most terminals do not set termios c_cc[VERASE]
1624		 * as c_cc[VERASE] can specify only one-byte sequence
1625		 * and instead let applications to read (possible
1626		 * multi-byte) sequence for backspace key from "kbs"
1627		 * terminfo database based on $TERM env variable.
1628		 *
1629		 * So read "kbs" from terminfo database via tigetstr()
1630		 * call after successful setupterm(). Most terminals
1631		 * use byte 0x7F for backspace key, so replacement with
1632		 * '\b' is required.
1633		 */
1634		if (setupterm(NULL, STDOUT_FILENO, &rc) == 0) {
1635			kbs = tigetstr("kbs");
1636			if (kbs == (char *)-1)
1637				kbs = NULL;
1638		}
1639
1640		kwboot_printv("[Type Ctrl-%c + %c to quit]\r\n",
1641			      quit[0] | 0100, quit[1]);
1642	} else
1643		in = -1;
1644
1645	rc = 0;
1646	s = 0;
1647	k = 0;
1648
1649	do {
1650		fd_set rfds;
1651		int nfds = 0;
1652
1653		FD_ZERO(&rfds);
1654		FD_SET(tty, &rfds);
1655		nfds = nfds < tty ? tty : nfds;
1656
1657		if (in >= 0) {
1658			FD_SET(in, &rfds);
1659			nfds = nfds < in ? in : nfds;
1660		}
1661
1662		nfds = select(nfds + 1, &rfds, NULL, NULL, NULL);
1663		if (nfds < 0)
1664			break;
1665
1666		if (FD_ISSET(tty, &rfds)) {
1667			rc = kwboot_term_pipe(tty, STDOUT_FILENO, NULL, NULL, NULL, NULL);
1668			if (rc)
1669				break;
1670		}
1671
1672		if (in >= 0 && FD_ISSET(in, &rfds)) {
1673			rc = kwboot_term_pipe(in, tty, quit, &s, kbs, &k);
1674			if (rc)
1675				break;
1676		}
1677	} while (quit[s] != 0);
1678
1679	if (in >= 0)
1680		tcsetattr(in, TCSANOW, &otio);
1681	printf("\n");
1682out:
1683	return rc;
1684}
1685
1686static void *
1687kwboot_read_image(const char *path, size_t *size, size_t reserve)
1688{
1689	int rc, fd;
1690	void *img;
1691	off_t len;
1692	off_t tot;
1693
1694	rc = -1;
1695	img = NULL;
1696
1697	fd = open(path, O_RDONLY);
1698	if (fd < 0)
1699		goto out;
1700
1701	len = lseek(fd, 0, SEEK_END);
1702	if (len == (off_t)-1)
1703		goto out;
1704
1705	if (lseek(fd, 0, SEEK_SET) == (off_t)-1)
1706		goto out;
1707
1708	img = malloc(len + reserve);
1709	if (!img)
1710		goto out;
1711
1712	tot = 0;
1713	while (tot < len) {
1714		ssize_t rd = read(fd, img + tot, len - tot);
1715
1716		if (rd < 0)
1717			goto out;
1718
1719		tot += rd;
1720
1721		if (!rd && tot < len) {
1722			errno = EIO;
1723			goto out;
1724		}
1725	}
1726
1727	rc = 0;
1728	*size = len;
1729out:
1730	if (rc && img) {
1731		free(img);
1732		img = NULL;
1733	}
1734	if (fd >= 0)
1735		close(fd);
1736
1737	return img;
1738}
1739
1740static uint8_t
1741kwboot_hdr_csum8(const void *hdr)
1742{
1743	const uint8_t *data = hdr;
1744	uint8_t csum;
1745	size_t size;
1746
1747	size = kwbheader_size_for_csum(hdr);
1748
1749	for (csum = 0; size-- > 0; data++)
1750		csum += *data;
1751
1752	return csum;
1753}
1754
1755static uint32_t *
1756kwboot_img_csum32_ptr(void *img)
1757{
1758	struct main_hdr_v1 *hdr = img;
1759	uint32_t datasz;
1760
1761	datasz = le32_to_cpu(hdr->blocksize) - sizeof(uint32_t);
1762
1763	return img + le32_to_cpu(hdr->srcaddr) + datasz;
1764}
1765
1766static uint32_t
1767kwboot_img_csum32(const void *img)
1768{
1769	const struct main_hdr_v1 *hdr = img;
1770	uint32_t datasz, csum = 0;
1771	const uint32_t *data;
1772
1773	datasz = le32_to_cpu(hdr->blocksize) - sizeof(csum);
1774	if (datasz % sizeof(uint32_t))
1775		return 0;
1776
1777	data = img + le32_to_cpu(hdr->srcaddr);
1778	while (datasz > 0) {
1779		csum += le32_to_cpu(*data++);
1780		datasz -= 4;
1781	}
1782
1783	return cpu_to_le32(csum);
1784}
1785
1786static int
1787kwboot_img_is_secure(void *img)
1788{
1789	struct opt_hdr_v1 *ohdr;
1790
1791	for_each_opt_hdr_v1 (ohdr, img)
1792		if (ohdr->headertype == OPT_HDR_V1_SECURE_TYPE)
1793			return 1;
1794
1795	return 0;
1796}
1797
1798static int
1799kwboot_img_has_ddr_init(void *img)
1800{
1801	const struct register_set_hdr_v1 *rhdr;
1802	const struct main_hdr_v0 *hdr0;
1803	struct opt_hdr_v1 *ohdr;
1804	u32 ohdrsz;
1805	int last;
1806
1807	/*
1808	 * kwbimage v0 image headers contain DDR init code either in
1809	 * extension header or in binary code header.
1810	 */
1811	if (kwbimage_version(img) == 0) {
1812		hdr0 = img;
1813		return hdr0->ext || hdr0->bin;
1814	}
1815
1816	/*
1817	 * kwbimage v1 image headers contain DDR init code either in binary
1818	 * code header or in a register set list header with SDRAM_SETUP.
1819	 */
1820	for_each_opt_hdr_v1 (ohdr, img) {
1821		if (ohdr->headertype == OPT_HDR_V1_BINARY_TYPE)
1822			return 1;
1823		if (ohdr->headertype == OPT_HDR_V1_REGISTER_TYPE) {
1824			rhdr = (const struct register_set_hdr_v1 *)ohdr;
1825			ohdrsz = opt_hdr_v1_size(ohdr);
1826			if (ohdrsz >= sizeof(*ohdr) + sizeof(rhdr->data[0].last_entry)) {
1827				ohdrsz -= sizeof(*ohdr) + sizeof(rhdr->data[0].last_entry);
1828				last = ohdrsz / sizeof(rhdr->data[0].entry);
1829				if (rhdr->data[last].last_entry.delay ==
1830				    REGISTER_SET_HDR_OPT_DELAY_SDRAM_SETUP)
1831					return 1;
1832			}
1833		}
1834	}
1835
1836	return 0;
1837}
1838
1839static void *
1840kwboot_img_grow_data_right(void *img, size_t *size, size_t grow)
1841{
1842	struct main_hdr_v1 *hdr = img;
1843	void *result;
1844
1845	/*
1846	 * 32-bit checksum comes after end of image code, so we will be putting
1847	 * new code there. So we get this pointer and then increase data size
1848	 * (since increasing data size changes kwboot_img_csum32_ptr() return
1849	 *  value).
1850	 */
1851	result = kwboot_img_csum32_ptr(img);
1852	hdr->blocksize = cpu_to_le32(le32_to_cpu(hdr->blocksize) + grow);
1853	*size += grow;
1854
1855	return result;
1856}
1857
1858static void
1859kwboot_img_grow_hdr(void *img, size_t *size, size_t grow)
1860{
1861	uint32_t hdrsz, datasz, srcaddr;
1862	struct main_hdr_v1 *hdr = img;
1863	struct opt_hdr_v1 *ohdr;
1864	uint8_t *data;
1865
1866	srcaddr = le32_to_cpu(hdr->srcaddr);
1867
1868	/* calculate real used space in kwbimage header */
1869	if (kwbimage_version(img) == 0) {
1870		hdrsz = kwbheader_size(img);
1871	} else {
1872		hdrsz = sizeof(*hdr);
1873		for_each_opt_hdr_v1 (ohdr, hdr)
1874			hdrsz += opt_hdr_v1_size(ohdr);
1875	}
1876
1877	data = (uint8_t *)img + srcaddr;
1878	datasz = *size - srcaddr;
1879
1880	/* only move data if there is not enough space */
1881	if (hdrsz + grow > srcaddr) {
1882		size_t need = hdrsz + grow - srcaddr;
1883
1884		/* move data by enough bytes */
1885		memmove(data + need, data, datasz);
1886
1887		hdr->srcaddr = cpu_to_le32(srcaddr + need);
1888		*size += need;
1889	}
1890
1891	if (kwbimage_version(img) == 1) {
1892		hdrsz += grow;
1893		if (hdrsz > kwbheader_size(img)) {
1894			hdr->headersz_msb = hdrsz >> 16;
1895			hdr->headersz_lsb = cpu_to_le16(hdrsz & 0xffff);
1896		}
1897	}
1898}
1899
1900static void *
1901kwboot_add_bin_ohdr_v1(void *img, size_t *size, uint32_t binsz)
1902{
1903	struct main_hdr_v1 *hdr = img;
1904	struct opt_hdr_v1 *ohdr;
1905	uint32_t num_args;
1906	uint32_t offset;
1907	uint32_t ohdrsz;
1908	uint8_t *prev_ext;
1909
1910	if (hdr->ext) {
1911		for_each_opt_hdr_v1 (ohdr, img)
1912			if (opt_hdr_v1_next(ohdr) == NULL)
1913				break;
1914
1915		prev_ext = opt_hdr_v1_ext(ohdr);
1916		ohdr = _opt_hdr_v1_next(ohdr);
1917	} else {
1918		ohdr = (void *)(hdr + 1);
1919		prev_ext = &hdr->ext;
1920	}
1921
1922	/*
1923	 * ARM executable code inside the BIN header on some mvebu platforms
1924	 * (e.g. A370, AXP) must always be aligned with the 128-bit boundary.
1925	 * This requirement can be met by inserting dummy arguments into
1926	 * BIN header, if needed.
1927	 */
1928	offset = &ohdr->data[4] - (char *)img;
1929	num_args = ((16 - offset % 16) % 16) / sizeof(uint32_t);
1930
1931	ohdrsz = sizeof(*ohdr) + 4 + 4 * num_args + binsz + 4;
1932	kwboot_img_grow_hdr(hdr, size, ohdrsz);
1933
1934	*prev_ext = 1;
1935
1936	ohdr->headertype = OPT_HDR_V1_BINARY_TYPE;
1937	ohdr->headersz_msb = ohdrsz >> 16;
1938	ohdr->headersz_lsb = cpu_to_le16(ohdrsz & 0xffff);
1939
1940	memset(&ohdr->data[0], 0, ohdrsz - sizeof(*ohdr));
1941	*(uint32_t *)&ohdr->data[0] = cpu_to_le32(num_args);
1942
1943	return &ohdr->data[4 + 4 * num_args];
1944}
1945
1946static void
1947_inject_baudrate_change_code(void *img, size_t *size, int for_data,
1948			     int old_baud, int new_baud)
1949{
1950	struct main_hdr_v1 *hdr = img;
1951	uint32_t orig_datasz;
1952	uint32_t codesz;
1953	uint8_t *code;
1954
1955	if (for_data) {
1956		orig_datasz = le32_to_cpu(hdr->blocksize) - sizeof(uint32_t);
1957
1958		codesz = sizeof(kwboot_baud_code) +
1959			 sizeof(kwboot_baud_code_data_jump);
1960		code = kwboot_img_grow_data_right(img, size, codesz);
1961	} else {
1962		codesz = sizeof(kwboot_baud_code_binhdr_pre) +
1963			 sizeof(kwboot_baud_code) +
1964			 sizeof(kwboot_baud_code_binhdr_post);
1965		code = kwboot_add_bin_ohdr_v1(img, size, codesz);
1966
1967		codesz = sizeof(kwboot_baud_code_binhdr_pre);
1968		memcpy(code, kwboot_baud_code_binhdr_pre, codesz);
1969		code += codesz;
1970	}
1971
1972	codesz = sizeof(kwboot_baud_code) - 2 * sizeof(uint32_t);
1973	memcpy(code, kwboot_baud_code, codesz);
1974	code += codesz;
1975	*(uint32_t *)code = cpu_to_le32(old_baud);
1976	code += sizeof(uint32_t);
1977	*(uint32_t *)code = cpu_to_le32(new_baud);
1978	code += sizeof(uint32_t);
1979
1980	if (for_data) {
1981		codesz = sizeof(kwboot_baud_code_data_jump) - sizeof(uint32_t);
1982		memcpy(code, kwboot_baud_code_data_jump, codesz);
1983		code += codesz;
1984		*(uint32_t *)code = hdr->execaddr;
1985		code += sizeof(uint32_t);
1986		hdr->execaddr = cpu_to_le32(le32_to_cpu(hdr->destaddr) + orig_datasz);
1987	} else {
1988		codesz = sizeof(kwboot_baud_code_binhdr_post);
1989		memcpy(code, kwboot_baud_code_binhdr_post, codesz);
1990		code += codesz;
1991	}
1992}
1993
1994static int
1995kwboot_img_guess_sata_blksz(void *img, uint32_t blkoff, uint32_t data_size, size_t total_size)
1996{
1997	uint32_t sum, *ptr, *end;
1998	int blksz;
1999
2000	/*
2001	 * Try all possible sector sizes which are power of two,
2002	 * at least 512 bytes and up to the 32 kB.
2003	 */
2004	for (blksz = 512; blksz < 0x10000; blksz *= 2) {
2005		if (blkoff * blksz > total_size ||
2006		    blkoff * blksz + data_size > total_size ||
2007		    data_size % 4)
2008			break;
2009
2010		/*
2011		 * Calculate data checksum and if it matches
2012		 * then tried blksz should be correct.
2013		 */
2014		ptr = img + blkoff * blksz;
2015		end = (void *)ptr + data_size - 4;
2016		for (sum = 0; ptr < end; ptr++)
2017			sum += *ptr;
2018
2019		if (sum == *end)
2020			return blksz;
2021	}
2022
2023	/* Fallback to 512 bytes */
2024	return 512;
2025}
2026
2027static const char *
2028kwboot_img_type(uint8_t blockid)
2029{
2030	switch (blockid) {
2031	case IBR_HDR_I2C_ID: return "I2C";
2032	case IBR_HDR_SPI_ID: return "SPI";
2033	case IBR_HDR_NAND_ID: return "NAND";
2034	case IBR_HDR_SATA_ID: return "SATA";
2035	case IBR_HDR_PEX_ID: return "PEX";
2036	case IBR_HDR_UART_ID: return "UART";
2037	case IBR_HDR_SDIO_ID: return "SDIO";
2038	default: return "unknown";
2039	}
2040}
2041
2042static int
2043kwboot_img_patch(void *img, size_t *size, int baudrate)
2044{
2045	struct main_hdr_v1 *hdr;
2046	struct opt_hdr_v1 *ohdr;
2047	uint32_t srcaddr;
2048	uint8_t csum;
2049	size_t hdrsz;
2050	int image_ver;
2051	int is_secure;
2052
2053	hdr = img;
2054
2055	if (*size < sizeof(struct main_hdr_v1)) {
2056		fprintf(stderr, "Invalid image header size\n");
2057		goto err;
2058	}
2059
2060	image_ver = kwbimage_version(img);
2061	if (image_ver != 0 && image_ver != 1) {
2062		fprintf(stderr, "Invalid image header version\n");
2063		goto err;
2064	}
2065
2066	hdrsz = kwbheader_size(hdr);
2067
2068	if (*size < hdrsz) {
2069		fprintf(stderr, "Invalid image header size\n");
2070		goto err;
2071	}
2072
2073	kwboot_printv("Detected kwbimage v%d with %s boot signature\n", image_ver, kwboot_img_type(hdr->blockid));
2074
2075	csum = kwboot_hdr_csum8(hdr) - hdr->checksum;
2076	if (csum != hdr->checksum) {
2077		fprintf(stderr, "Image has invalid header checksum stored in image header\n");
2078		goto err;
2079	}
2080
2081	srcaddr = le32_to_cpu(hdr->srcaddr);
2082
2083	switch (hdr->blockid) {
2084	case IBR_HDR_SATA_ID:
2085		hdr->srcaddr = cpu_to_le32(srcaddr * kwboot_img_guess_sata_blksz(img, srcaddr, le32_to_cpu(hdr->blocksize), *size));
2086		break;
2087
2088	case IBR_HDR_PEX_ID:
2089		if (srcaddr == 0xFFFFFFFF)
2090			hdr->srcaddr = cpu_to_le32(hdrsz);
2091		break;
2092
2093	case IBR_HDR_SPI_ID:
2094		if (hdr->destaddr == cpu_to_le32(0xFFFFFFFF)) {
2095			kwboot_printv("Patching destination and execution addresses from SPI/NOR XIP area to DDR area 0x00800000\n");
2096			hdr->destaddr = cpu_to_le32(0x00800000 + le32_to_cpu(hdr->srcaddr));
2097			hdr->execaddr = cpu_to_le32(0x00800000 + le32_to_cpu(hdr->execaddr));
2098		}
2099		break;
2100	}
2101
2102	if (hdrsz > le32_to_cpu(hdr->srcaddr)) {
2103		fprintf(stderr, "Image has invalid data offset stored in image header\n");
2104		goto err;
2105	}
2106
2107	if (*size < le32_to_cpu(hdr->srcaddr) + le32_to_cpu(hdr->blocksize)) {
2108		fprintf(stderr, "Image has invalid data size stored in image header\n");
2109		goto err;
2110	}
2111
2112	for_each_opt_hdr_v1 (ohdr, hdr) {
2113		if (!opt_hdr_v1_valid_size(ohdr, (const uint8_t *)hdr + hdrsz)) {
2114			fprintf(stderr, "Invalid optional image header\n");
2115			goto err;
2116		}
2117	}
2118
2119	/*
2120	 * The 32-bit data checksum is optional for UART image. If it is not
2121	 * present (checksum detected as invalid) then grow data part of the
2122	 * image for the checksum, so it can be inserted there.
2123	 */
2124	if (kwboot_img_csum32(img) != *kwboot_img_csum32_ptr(img)) {
2125		if (hdr->blockid != IBR_HDR_UART_ID) {
2126			fprintf(stderr, "Image has invalid data checksum\n");
2127			goto err;
2128		}
2129		kwboot_img_grow_data_right(img, size, sizeof(uint32_t));
2130		/* Update the 32-bit data checksum */
2131		*kwboot_img_csum32_ptr(img) = kwboot_img_csum32(img);
2132	}
2133
2134	if (!kwboot_img_has_ddr_init(img) &&
2135	    (le32_to_cpu(hdr->destaddr) < 0x40000000 ||
2136	     le32_to_cpu(hdr->destaddr) + le32_to_cpu(hdr->blocksize) > 0x40034000)) {
2137		fprintf(stderr, "Image does not contain DDR init code needed for UART booting\n");
2138		goto err;
2139	}
2140
2141	is_secure = kwboot_img_is_secure(img);
2142
2143	if (hdr->blockid != IBR_HDR_UART_ID) {
2144		if (is_secure) {
2145			fprintf(stderr,
2146				"Image has secure header with signature for non-UART booting\n");
2147			goto err;
2148		}
2149
2150		kwboot_printv("Patching image boot signature to UART\n");
2151		hdr->blockid = IBR_HDR_UART_ID;
2152	}
2153
2154	if (!is_secure) {
2155		if (image_ver == 1) {
2156			/*
2157			 * Tell BootROM to send BootROM messages to UART port
2158			 * number 0 (used also for UART booting) with default
2159			 * baudrate (which should be 115200) and do not touch
2160			 * UART MPP configuration.
2161			 */
2162			hdr->flags |= 0x1;
2163			hdr->options &= ~0x1F;
2164			hdr->options |= MAIN_HDR_V1_OPT_BAUD_DEFAULT;
2165			hdr->options |= 0 << 3;
2166		}
2167		if (image_ver == 0)
2168			((struct main_hdr_v0 *)img)->nandeccmode = IBR_HDR_ECC_DISABLED;
2169		hdr->nandpagesize = 0;
2170	}
2171
2172	if (baudrate) {
2173		if (image_ver == 0) {
2174			fprintf(stderr,
2175				"Cannot inject code for changing baudrate into v0 image header\n");
2176			goto err;
2177		}
2178
2179		if (is_secure) {
2180			fprintf(stderr,
2181				"Cannot inject code for changing baudrate into image with secure header\n");
2182			goto err;
2183		}
2184
2185		/*
2186		 * First inject code that changes the baudrate from the default
2187		 * value of 115200 Bd to requested value. This code is inserted
2188		 * as a new opt hdr, so it is executed by BootROM after the
2189		 * header part is received.
2190		 */
2191		kwboot_printv("Injecting binary header code for changing baudrate to %d Bd\n",
2192			      baudrate);
2193		_inject_baudrate_change_code(img, size, 0, 115200, baudrate);
2194
2195		/*
2196		 * Now inject code that changes the baudrate back to 115200 Bd.
2197		 * This code is appended after the data part of the image, and
2198		 * execaddr is changed so that it is executed before U-Boot
2199		 * proper.
2200		 */
2201		kwboot_printv("Injecting code for changing baudrate back\n");
2202		_inject_baudrate_change_code(img, size, 1, baudrate, 115200);
2203
2204		/* Update the 32-bit data checksum */
2205		*kwboot_img_csum32_ptr(img) = kwboot_img_csum32(img);
2206
2207		/* recompute header size */
2208		hdrsz = kwbheader_size(hdr);
2209	}
2210
2211	if (hdrsz % KWBOOT_XM_BLKSZ) {
2212		size_t grow = KWBOOT_XM_BLKSZ - hdrsz % KWBOOT_XM_BLKSZ;
2213
2214		if (is_secure) {
2215			fprintf(stderr, "Cannot align image with secure header\n");
2216			goto err;
2217		}
2218
2219		kwboot_printv("Aligning image header to Xmodem block size\n");
2220		kwboot_img_grow_hdr(img, size, grow);
2221		hdrsz += grow;
2222
2223		/*
2224		 * kwbimage v1 contains header size field and for UART type it
2225		 * must be set to the aligned xmodem header size because BootROM
2226		 * rounds header size down to xmodem block size.
2227		 */
2228		if (kwbimage_version(img) == 1) {
2229			hdr->headersz_msb = hdrsz >> 16;
2230			hdr->headersz_lsb = cpu_to_le16(hdrsz & 0xffff);
2231		}
2232	}
2233
2234	/* Header size and source address must be same for UART type due to A38x BootROM bug */
2235	if (hdrsz != le32_to_cpu(hdr->srcaddr)) {
2236		if (is_secure) {
2237			fprintf(stderr, "Cannot align image with secure header\n");
2238			goto err;
2239		}
2240
2241		kwboot_printv("Removing gap between image header and data\n");
2242		memmove(img + hdrsz, img + le32_to_cpu(hdr->srcaddr), le32_to_cpu(hdr->blocksize));
2243		hdr->srcaddr = cpu_to_le32(hdrsz);
2244	}
2245
2246	hdr->checksum = kwboot_hdr_csum8(hdr) - csum;
2247
2248	*size = le32_to_cpu(hdr->srcaddr) + le32_to_cpu(hdr->blocksize);
2249	return 0;
2250err:
2251	errno = EINVAL;
2252	return -1;
2253}
2254
2255static void
2256kwboot_usage(FILE *stream, char *progname)
2257{
2258	fprintf(stream,
2259		"Usage: %s [OPTIONS] [-b <image> | -D <image> | -b | -d ] [-B <baud> ] [-t] <TTY>\n",
2260		progname);
2261	fprintf(stream, "\n");
2262	fprintf(stream,
2263		"  -b <image>: boot <image> with preamble (Kirkwood, Avanta, Armada 370/XP/375/38x/39x)\n");
2264	fprintf(stream,
2265		"  -D <image>: boot <image> without preamble (Dove)\n");
2266	fprintf(stream, "  -b: enter xmodem boot mode\n");
2267	fprintf(stream, "  -d: enter console debug mode\n");
2268	fprintf(stream, "  -a: use timings for Armada XP\n");
2269	fprintf(stream, "  -s <resp-timeo>: use specific response-timeout\n");
2270	fprintf(stream,
2271		"  -o <block-timeo>: use specific xmodem block timeout\n");
2272	fprintf(stream, "\n");
2273	fprintf(stream, "  -t: mini terminal\n");
2274	fprintf(stream, "\n");
2275	fprintf(stream, "  -B <baud>: set baud rate\n");
2276	fprintf(stream, "\n");
2277}
2278
2279int
2280main(int argc, char **argv)
2281{
2282	const char *ttypath, *imgpath;
2283	int rv, rc, tty, term;
2284	int bootmsg;
2285	int debugmsg;
2286	void *img;
2287	size_t size;
2288	size_t after_img_rsv;
2289	int baudrate;
2290	int prev_optind;
2291	int c;
2292
2293	rv = 1;
2294	tty = -1;
2295	bootmsg = 0;
2296	debugmsg = 0;
2297	imgpath = NULL;
2298	img = NULL;
2299	term = 0;
2300	size = 0;
2301	after_img_rsv = KWBOOT_XM_BLKSZ;
2302	baudrate = 115200;
2303
2304	printf("kwboot version %s\n", PLAIN_VERSION);
2305
2306	kwboot_verbose = isatty(STDOUT_FILENO);
2307
2308	do {
2309		prev_optind = optind;
2310		c = getopt(argc, argv, "hbptaB:dD:q:s:o:");
2311		if (c < 0)
2312			break;
2313
2314		switch (c) {
2315		case 'b':
2316			if (imgpath || bootmsg || debugmsg)
2317				goto usage;
2318			bootmsg = 1;
2319			if (prev_optind == optind)
2320				goto usage;
2321			/* Option -b could have optional argument which specify image path */
2322			if (optind < argc && argv[optind] && argv[optind][0] != '-')
2323				imgpath = argv[optind++];
2324			break;
2325
2326		case 'D':
2327			if (imgpath || bootmsg || debugmsg)
2328				goto usage;
2329			bootmsg = 0;
2330			imgpath = optarg;
2331			break;
2332
2333		case 'd':
2334			if (imgpath || bootmsg || debugmsg)
2335				goto usage;
2336			debugmsg = 1;
2337			break;
2338
2339		case 'p':
2340			/* nop, for backward compatibility */
2341			break;
2342
2343		case 't':
2344			term = 1;
2345			break;
2346
2347		case 'a':
2348			msg_rsp_timeo = KWBOOT_MSG_RSP_TIMEO_AXP;
2349			break;
2350
2351		case 'q':
2352			/* nop, for backward compatibility */
2353			break;
2354
2355		case 's':
2356			msg_rsp_timeo = atoi(optarg);
2357			break;
2358
2359		case 'o':
2360			blk_rsp_timeo = atoi(optarg);
2361			break;
2362
2363		case 'B':
2364			baudrate = atoi(optarg);
2365			break;
2366
2367		case 'h':
2368			rv = 0;
2369		default:
2370			goto usage;
2371		}
2372	} while (1);
2373
2374	if (!bootmsg && !term && !debugmsg && !imgpath)
2375		goto usage;
2376
2377	/*
2378	 * If there is no remaining argument but optional imgpath was parsed
2379	 * then it means that optional imgpath was eaten by getopt parser.
2380	 * Reassing imgpath to required ttypath argument.
2381	 */
2382	if (optind == argc && imgpath) {
2383		ttypath = imgpath;
2384		imgpath = NULL;
2385	} else if (optind + 1 == argc) {
2386		ttypath = argv[optind];
2387	} else {
2388		goto usage;
2389	}
2390
2391	/* boot and debug message use baudrate 115200 */
2392	if (((bootmsg && !imgpath) || debugmsg) && baudrate != 115200) {
2393		fprintf(stderr, "Baudrate other than 115200 cannot be used for this operation.\n");
2394		goto usage;
2395	}
2396
2397	tty = kwboot_open_tty(ttypath, baudrate);
2398	if (tty < 0) {
2399		perror(ttypath);
2400		goto out;
2401	}
2402
2403	/*
2404	 * initial baudrate for image transfer is always 115200,
2405	 * the change to different baudrate is done only after the header is sent
2406	 */
2407	if (imgpath && baudrate != 115200) {
2408		rc = kwboot_tty_change_baudrate(tty, 115200);
2409		if (rc) {
2410			perror(ttypath);
2411			goto out;
2412		}
2413	}
2414
2415	if (baudrate == 115200)
2416		/* do not change baudrate during Xmodem to the same value */
2417		baudrate = 0;
2418	else
2419		/* ensure we have enough space for baudrate change code */
2420		after_img_rsv += sizeof(struct opt_hdr_v1) + 8 + 16 +
2421				 sizeof(kwboot_baud_code_binhdr_pre) +
2422				 sizeof(kwboot_baud_code) +
2423				 sizeof(kwboot_baud_code_binhdr_post) +
2424				 KWBOOT_XM_BLKSZ +
2425				 sizeof(kwboot_baud_code) +
2426				 sizeof(kwboot_baud_code_data_jump) +
2427				 sizeof(uint32_t) +
2428				 KWBOOT_XM_BLKSZ;
2429
2430	if (imgpath) {
2431		img = kwboot_read_image(imgpath, &size, after_img_rsv);
2432		if (!img) {
2433			perror(imgpath);
2434			goto out;
2435		}
2436
2437		rc = kwboot_img_patch(img, &size, baudrate);
2438		if (rc) {
2439			fprintf(stderr, "%s: Invalid image.\n", imgpath);
2440			goto out;
2441		}
2442	}
2443
2444	if (debugmsg) {
2445		rc = kwboot_debugmsg(tty);
2446		if (rc)
2447			goto out;
2448	} else if (bootmsg) {
2449		rc = kwboot_bootmsg(tty);
2450		if (rc)
2451			goto out;
2452	}
2453
2454	if (img) {
2455		rc = kwboot_xmodem(tty, img, size, baudrate);
2456		if (rc) {
2457			perror("xmodem");
2458			goto out;
2459		}
2460	}
2461
2462	if (term) {
2463		rc = kwboot_terminal(tty);
2464		if (rc && !(errno == EINTR)) {
2465			perror("terminal");
2466			goto out;
2467		}
2468	}
2469
2470	rv = 0;
2471out:
2472	if (tty >= 0)
2473		close(tty);
2474
2475	if (img)
2476		free(img);
2477
2478	return rv;
2479
2480usage:
2481	kwboot_usage(rv ? stderr : stdout, basename(argv[0]));
2482	goto out;
2483}
2484