1#ifndef _ASM_GENERIC_DIV64_H
2#define _ASM_GENERIC_DIV64_H
3/*
4 * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
5 * Based on former asm-ppc/div64.h and asm-m68knommu/div64.h
6 *
7 * Optimization for constant divisors on 32-bit machines:
8 * Copyright (C) 2006-2015 Nicolas Pitre
9 *
10 * The semantics of do_div() are:
11 *
12 * u32 do_div(u64 *n, u32 base)
13 * {
14 *	u32 remainder = *n % base;
15 *	*n = *n / base;
16 *	return remainder;
17 * }
18 *
19 * NOTE: macro parameter n is evaluated multiple times,
20 *       beware of side effects!
21 */
22
23#include <linux/types.h>
24#include <linux/compiler.h>
25
26#if BITS_PER_LONG == 64
27
28# define do_div(n,base) ({					\
29	u32 __base = (base);				\
30	u32 __rem;						\
31	__rem = ((u64)(n)) % __base;			\
32	(n) = ((u64)(n)) / __base;				\
33	__rem;							\
34 })
35
36#elif BITS_PER_LONG == 32
37
38#include <linux/log2.h>
39
40/*
41 * If the divisor happens to be constant, we determine the appropriate
42 * inverse at compile time to turn the division into a few inline
43 * multiplications which ought to be much faster. And yet only if compiling
44 * with a sufficiently recent gcc version to perform proper 64-bit constant
45 * propagation.
46 *
47 * (It is unfortunate that gcc doesn't perform all this internally.)
48 */
49
50#ifndef __div64_const32_is_OK
51#define __div64_const32_is_OK (__GNUC__ >= 4)
52#endif
53
54#define __div64_const32(n, ___b)					\
55({									\
56	/*								\
57	 * Multiplication by reciprocal of b: n / b = n * (p / b) / p	\
58	 *								\
59	 * We rely on the fact that most of this code gets optimized	\
60	 * away at compile time due to constant propagation and only	\
61	 * a few multiplication instructions should remain.		\
62	 * Hence this monstrous macro (static inline doesn't always	\
63	 * do the trick here).						\
64	 */								\
65	u64 ___res, ___x, ___t, ___m, ___n = (n);			\
66	u32 ___p, ___bias;						\
67									\
68	/* determine MSB of b */					\
69	___p = 1 << ilog2(___b);					\
70									\
71	/* compute m = ((p << 64) + b - 1) / b */			\
72	___m = (~0ULL / ___b) * ___p;					\
73	___m += (((~0ULL % ___b + 1) * ___p) + ___b - 1) / ___b;	\
74									\
75	/* one less than the dividend with highest result */		\
76	___x = ~0ULL / ___b * ___b - 1;					\
77									\
78	/* test our ___m with res = m * x / (p << 64) */		\
79	___res = ((___m & 0xffffffff) * (___x & 0xffffffff)) >> 32;	\
80	___t = ___res += (___m & 0xffffffff) * (___x >> 32);		\
81	___res += (___x & 0xffffffff) * (___m >> 32);			\
82	___t = (___res < ___t) ? (1ULL << 32) : 0;			\
83	___res = (___res >> 32) + ___t;					\
84	___res += (___m >> 32) * (___x >> 32);				\
85	___res /= ___p;							\
86									\
87	/* Now sanitize and optimize what we've got. */			\
88	if (~0ULL % (___b / (___b & -___b)) == 0) {			\
89		/* special case, can be simplified to ... */		\
90		___n /= (___b & -___b);					\
91		___m = ~0ULL / (___b / (___b & -___b));			\
92		___p = 1;						\
93		___bias = 1;						\
94	} else if (___res != ___x / ___b) {				\
95		/*							\
96		 * We can't get away without a bias to compensate	\
97		 * for bit truncation errors.  To avoid it we'd need an	\
98		 * additional bit to represent m which would overflow	\
99		 * a 64-bit variable.					\
100		 *							\
101		 * Instead we do m = p / b and n / b = (n * m + m) / p.	\
102		 */							\
103		___bias = 1;						\
104		/* Compute m = (p << 64) / b */				\
105		___m = (~0ULL / ___b) * ___p;				\
106		___m += ((~0ULL % ___b + 1) * ___p) / ___b;		\
107	} else {							\
108		/*							\
109		 * Reduce m / p, and try to clear bit 31 of m when	\
110		 * possible, otherwise that'll need extra overflow	\
111		 * handling later.					\
112		 */							\
113		u32 ___bits = -(___m & -___m);			\
114		___bits |= ___m >> 32;					\
115		___bits = (~___bits) << 1;				\
116		/*							\
117		 * If ___bits == 0 then setting bit 31 is  unavoidable.	\
118		 * Simply apply the maximum possible reduction in that	\
119		 * case. Otherwise the MSB of ___bits indicates the	\
120		 * best reduction we should apply.			\
121		 */							\
122		if (!___bits) {						\
123			___p /= (___m & -___m);				\
124			___m /= (___m & -___m);				\
125		} else {						\
126			___p >>= ilog2(___bits);			\
127			___m >>= ilog2(___bits);			\
128		}							\
129		/* No bias needed. */					\
130		___bias = 0;						\
131	}								\
132									\
133	/*								\
134	 * Now we have a combination of 2 conditions:			\
135	 *								\
136	 * 1) whether or not we need to apply a bias, and		\
137	 *								\
138	 * 2) whether or not there might be an overflow in the cross	\
139	 *    product determined by (___m & ((1 << 63) | (1 << 31))).	\
140	 *								\
141	 * Select the best way to do (m_bias + m * n) / (1 << 64).	\
142	 * From now on there will be actual runtime code generated.	\
143	 */								\
144	___res = __arch_xprod_64(___m, ___n, ___bias);			\
145									\
146	___res /= ___p;							\
147})
148
149#ifndef __arch_xprod_64
150/*
151 * Default C implementation for __arch_xprod_64()
152 *
153 * Prototype: u64 __arch_xprod_64(const u64 m, u64 n, bool bias)
154 * Semantic:  retval = ((bias ? m : 0) + m * n) >> 64
155 *
156 * The product is a 128-bit value, scaled down to 64 bits.
157 * Assuming constant propagation to optimize away unused conditional code.
158 * Architectures may provide their own optimized assembly implementation.
159 */
160static inline u64 __arch_xprod_64(const u64 m, u64 n, bool bias)
161{
162	u32 m_lo = m;
163	u32 m_hi = m >> 32;
164	u32 n_lo = n;
165	u32 n_hi = n >> 32;
166	u64 res, tmp;
167
168	if (!bias) {
169		res = ((u64)m_lo * n_lo) >> 32;
170	} else if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
171		/* there can't be any overflow here */
172		res = (m + (u64)m_lo * n_lo) >> 32;
173	} else {
174		res = m + (u64)m_lo * n_lo;
175		tmp = (res < m) ? (1ULL << 32) : 0;
176		res = (res >> 32) + tmp;
177	}
178
179	if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
180		/* there can't be any overflow here */
181		res += (u64)m_lo * n_hi;
182		res += (u64)m_hi * n_lo;
183		res >>= 32;
184	} else {
185		tmp = res += (u64)m_lo * n_hi;
186		res += (u64)m_hi * n_lo;
187		tmp = (res < tmp) ? (1ULL << 32) : 0;
188		res = (res >> 32) + tmp;
189	}
190
191	res += (u64)m_hi * n_hi;
192
193	return res;
194}
195#endif
196
197#ifndef __div64_32
198extern u32 __div64_32(u64 *dividend, u32 divisor);
199#endif
200
201/* The unnecessary pointer compare is there
202 * to check for type safety (n must be 64bit)
203 */
204# define do_div(n,base) ({				\
205	u32 __base = (base);			\
206	u32 __rem;					\
207	(void)(((typeof((n)) *)0) == ((u64 *)0));	\
208	if (__builtin_constant_p(__base) &&		\
209	    is_power_of_2(__base)) {			\
210		__rem = (n) & (__base - 1);		\
211		(n) >>= ilog2(__base);			\
212	} else if (__div64_const32_is_OK &&		\
213		   __builtin_constant_p(__base) &&	\
214		   __base != 0) {			\
215		u32 __res_lo, __n_lo = (n);	\
216		(n) = __div64_const32(n, __base);	\
217		/* the remainder can be computed with 32-bit regs */ \
218		__res_lo = (n);				\
219		__rem = __n_lo - __res_lo * __base;	\
220	} else if (likely(((n) >> 32) == 0)) {		\
221		__rem = (u32)(n) % __base;		\
222		(n) = (u32)(n) / __base;		\
223	} else						\
224		__rem = __div64_32(&(n), __base);	\
225	__rem;						\
226 })
227
228#else /* BITS_PER_LONG == ?? */
229
230# error do_div() does not yet support the C64
231
232#endif /* BITS_PER_LONG */
233
234/* Wrapper for do_div(). Doesn't modify dividend and returns
235 * the result, not remainder.
236 */
237static inline u64 lldiv(u64 dividend, u32 divisor)
238{
239	u64 __res = dividend;
240	do_div(__res, divisor);
241	return(__res);
242}
243
244#endif /* _ASM_GENERIC_DIV64_H */
245