1// SPDX-License-Identifier: GPL-2.0+
2/*
3 *
4 * ZFS filesystem ported to u-boot by
5 * Jorgen Lundman <lundman at lundman.net>
6 *
7 *	GRUB  --  GRand Unified Bootloader
8 *	Copyright (C) 1999,2000,2001,2002,2003,2004
9 *	Free Software Foundation, Inc.
10 *	Copyright 2004	Sun Microsystems, Inc.
11 */
12
13#include <common.h>
14#include <log.h>
15#include <malloc.h>
16#include <linux/stat.h>
17#include <linux/time.h>
18#include <linux/ctype.h>
19#include <asm/byteorder.h>
20#include "zfs_common.h"
21#include "div64.h"
22
23struct blk_desc *zfs_dev_desc;
24
25/*
26 * The zfs plug-in routines for GRUB are:
27 *
28 * zfs_mount() - locates a valid uberblock of the root pool and reads
29 *		in its MOS at the memory address MOS.
30 *
31 * zfs_open() - locates a plain file object by following the MOS
32 *		and places its dnode at the memory address DNODE.
33 *
34 * zfs_read() - read in the data blocks pointed by the DNODE.
35 *
36 */
37
38#include <zfs/zfs.h>
39#include <zfs/zio.h>
40#include <zfs/dnode.h>
41#include <zfs/uberblock_impl.h>
42#include <zfs/vdev_impl.h>
43#include <zfs/zio_checksum.h>
44#include <zfs/zap_impl.h>
45#include <zfs/zap_leaf.h>
46#include <zfs/zfs_znode.h>
47#include <zfs/dmu.h>
48#include <zfs/dmu_objset.h>
49#include <zfs/sa_impl.h>
50#include <zfs/dsl_dir.h>
51#include <zfs/dsl_dataset.h>
52
53
54#define	ZPOOL_PROP_BOOTFS		"bootfs"
55
56
57/*
58 * For nvlist manipulation. (from nvpair.h)
59 */
60#define	NV_ENCODE_NATIVE	0
61#define	NV_ENCODE_XDR		1
62#define	NV_BIG_ENDIAN			0
63#define	NV_LITTLE_ENDIAN	1
64#define	DATA_TYPE_UINT64	8
65#define	DATA_TYPE_STRING	9
66#define	DATA_TYPE_NVLIST	19
67#define	DATA_TYPE_NVLIST_ARRAY	20
68
69
70/*
71 * Macros to get fields in a bp or DVA.
72 */
73#define	P2PHASE(x, align)		((x) & ((align) - 1))
74#define	DVA_OFFSET_TO_PHYS_SECTOR(offset)					\
75	((offset + VDEV_LABEL_START_SIZE) >> SPA_MINBLOCKSHIFT)
76
77/*
78 * return x rounded down to an align boundary
79 * eg, P2ALIGN(1200, 1024) == 1024 (1*align)
80 * eg, P2ALIGN(1024, 1024) == 1024 (1*align)
81 * eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align)
82 * eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align)
83 */
84#define	P2ALIGN(x, align)		((x) & -(align))
85
86/*
87 * FAT ZAP data structures
88 */
89#define	ZFS_CRC64_POLY 0xC96C5795D7870F42ULL	/* ECMA-182, reflected form */
90#define	ZAP_HASH_IDX(hash, n)	(((n) == 0) ? 0 : ((hash) >> (64 - (n))))
91#define	CHAIN_END	0xffff	/* end of the chunk chain */
92
93/*
94 * The amount of space within the chunk available for the array is:
95 * chunk size - space for type (1) - space for next pointer (2)
96 */
97#define	ZAP_LEAF_ARRAY_BYTES (ZAP_LEAF_CHUNKSIZE - 3)
98
99#define	ZAP_LEAF_HASH_SHIFT(bs)	(bs - 5)
100#define	ZAP_LEAF_HASH_NUMENTRIES(bs) (1 << ZAP_LEAF_HASH_SHIFT(bs))
101#define	LEAF_HASH(bs, h)												\
102	((ZAP_LEAF_HASH_NUMENTRIES(bs)-1) &									\
103	 ((h) >> (64 - ZAP_LEAF_HASH_SHIFT(bs)-l->l_hdr.lh_prefix_len)))
104
105/*
106 * The amount of space available for chunks is:
107 * block size shift - hash entry size (2) * number of hash
108 * entries - header space (2*chunksize)
109 */
110#define	ZAP_LEAF_NUMCHUNKS(bs)						\
111	(((1<<bs) - 2*ZAP_LEAF_HASH_NUMENTRIES(bs)) /	\
112	 ZAP_LEAF_CHUNKSIZE - 2)
113
114/*
115 * The chunks start immediately after the hash table.  The end of the
116 * hash table is at l_hash + HASH_NUMENTRIES, which we simply cast to a
117 * chunk_t.
118 */
119#define	ZAP_LEAF_CHUNK(l, bs, idx)										\
120	((zap_leaf_chunk_t *)(l->l_hash + ZAP_LEAF_HASH_NUMENTRIES(bs)))[idx]
121#define	ZAP_LEAF_ENTRY(l, bs, idx) (&ZAP_LEAF_CHUNK(l, bs, idx).l_entry)
122
123
124/*
125 * Decompression Entry - lzjb
126 */
127#ifndef	NBBY
128#define	NBBY	8
129#endif
130
131
132
133typedef int zfs_decomp_func_t(void *s_start, void *d_start,
134							  uint32_t s_len, uint32_t d_len);
135typedef struct decomp_entry {
136	char *name;
137	zfs_decomp_func_t *decomp_func;
138} decomp_entry_t;
139
140typedef struct dnode_end {
141	dnode_phys_t dn;
142	zfs_endian_t endian;
143} dnode_end_t;
144
145struct zfs_data {
146	/* cache for a file block of the currently zfs_open()-ed file */
147	char *file_buf;
148	uint64_t file_start;
149	uint64_t file_end;
150
151	/* XXX: ashift is per vdev, not per pool.  We currently only ever touch
152	 * a single vdev, but when/if raid-z or stripes are supported, this
153	 * may need revision.
154	 */
155	uint64_t vdev_ashift;
156	uint64_t label_txg;
157	uint64_t pool_guid;
158
159	/* cache for a dnode block */
160	dnode_phys_t *dnode_buf;
161	dnode_phys_t *dnode_mdn;
162	uint64_t dnode_start;
163	uint64_t dnode_end;
164	zfs_endian_t dnode_endian;
165
166	uberblock_t current_uberblock;
167
168	dnode_end_t mos;
169	dnode_end_t mdn;
170	dnode_end_t dnode;
171
172	uint64_t vdev_phys_sector;
173
174	int (*userhook)(const char *, const struct zfs_dirhook_info *);
175	struct zfs_dirhook_info *dirinfo;
176
177};
178
179
180
181
182static int
183zlib_decompress(void *s, void *d,
184				uint32_t slen, uint32_t dlen)
185{
186	if (zlib_decompress(s, d, slen, dlen) < 0)
187		return ZFS_ERR_BAD_FS;
188	return ZFS_ERR_NONE;
189}
190
191static decomp_entry_t decomp_table[ZIO_COMPRESS_FUNCTIONS] = {
192	{"inherit", NULL},		/* ZIO_COMPRESS_INHERIT */
193	{"on", lzjb_decompress},	/* ZIO_COMPRESS_ON */
194	{"off", NULL},		/* ZIO_COMPRESS_OFF */
195	{"lzjb", lzjb_decompress},	/* ZIO_COMPRESS_LZJB */
196	{"empty", NULL},		/* ZIO_COMPRESS_EMPTY */
197	{"gzip-1", zlib_decompress},  /* ZIO_COMPRESS_GZIP1 */
198	{"gzip-2", zlib_decompress},  /* ZIO_COMPRESS_GZIP2 */
199	{"gzip-3", zlib_decompress},  /* ZIO_COMPRESS_GZIP3 */
200	{"gzip-4", zlib_decompress},  /* ZIO_COMPRESS_GZIP4 */
201	{"gzip-5", zlib_decompress},  /* ZIO_COMPRESS_GZIP5 */
202	{"gzip-6", zlib_decompress},  /* ZIO_COMPRESS_GZIP6 */
203	{"gzip-7", zlib_decompress},  /* ZIO_COMPRESS_GZIP7 */
204	{"gzip-8", zlib_decompress},  /* ZIO_COMPRESS_GZIP8 */
205	{"gzip-9", zlib_decompress},  /* ZIO_COMPRESS_GZIP9 */
206};
207
208
209
210static int zio_read_data(blkptr_t *bp, zfs_endian_t endian,
211						 void *buf, struct zfs_data *data);
212
213static int
214zio_read(blkptr_t *bp, zfs_endian_t endian, void **buf,
215		 size_t *size, struct zfs_data *data);
216
217/*
218 * Our own version of log2().  Same thing as highbit()-1.
219 */
220static int
221zfs_log2(uint64_t num)
222{
223	int i = 0;
224
225	while (num > 1) {
226		i++;
227		num = num >> 1;
228	}
229
230	return i;
231}
232
233
234/* Checksum Functions */
235static void
236zio_checksum_off(const void *buf __attribute__ ((unused)),
237				 uint64_t size __attribute__ ((unused)),
238				 zfs_endian_t endian __attribute__ ((unused)),
239				 zio_cksum_t *zcp)
240{
241	ZIO_SET_CHECKSUM(zcp, 0, 0, 0, 0);
242}
243
244/* Checksum Table and Values */
245static zio_checksum_info_t zio_checksum_table[ZIO_CHECKSUM_FUNCTIONS] = {
246	{NULL, 0, 0, "inherit"},
247	{NULL, 0, 0, "on"},
248	{zio_checksum_off, 0, 0, "off"},
249	{zio_checksum_SHA256, 1, 1, "label"},
250	{zio_checksum_SHA256, 1, 1, "gang_header"},
251	{NULL, 0, 0, "zilog"},
252	{fletcher_2_endian, 0, 0, "fletcher2"},
253	{fletcher_4_endian, 1, 0, "fletcher4"},
254	{zio_checksum_SHA256, 1, 0, "SHA256"},
255	{NULL, 0, 0, "zilog2"},
256};
257
258/*
259 * zio_checksum_verify: Provides support for checksum verification.
260 *
261 * Fletcher2, Fletcher4, and SHA256 are supported.
262 *
263 */
264static int
265zio_checksum_verify(zio_cksum_t zc, uint32_t checksum,
266					zfs_endian_t endian, char *buf, int size)
267{
268	zio_eck_t *zec = (zio_eck_t *) (buf + size) - 1;
269	zio_checksum_info_t *ci = &zio_checksum_table[checksum];
270	zio_cksum_t actual_cksum, expected_cksum;
271
272	if (checksum >= ZIO_CHECKSUM_FUNCTIONS || ci->ci_func == NULL) {
273		printf("zfs unknown checksum function %d\n", checksum);
274		return ZFS_ERR_NOT_IMPLEMENTED_YET;
275	}
276
277	if (ci->ci_eck) {
278		expected_cksum = zec->zec_cksum;
279		zec->zec_cksum = zc;
280		ci->ci_func(buf, size, endian, &actual_cksum);
281		zec->zec_cksum = expected_cksum;
282		zc = expected_cksum;
283	} else {
284		ci->ci_func(buf, size, endian, &actual_cksum);
285	}
286
287	if ((actual_cksum.zc_word[0] != zc.zc_word[0])
288		|| (actual_cksum.zc_word[1] != zc.zc_word[1])
289		|| (actual_cksum.zc_word[2] != zc.zc_word[2])
290		|| (actual_cksum.zc_word[3] != zc.zc_word[3])) {
291		return ZFS_ERR_BAD_FS;
292	}
293
294	return ZFS_ERR_NONE;
295}
296
297/*
298 * vdev_uberblock_compare takes two uberblock structures and returns an integer
299 * indicating the more recent of the two.
300 *	Return Value = 1 if ub2 is more recent
301 *	Return Value = -1 if ub1 is more recent
302 * The most recent uberblock is determined using its transaction number and
303 * timestamp.  The uberblock with the highest transaction number is
304 * considered "newer".	If the transaction numbers of the two blocks match, the
305 * timestamps are compared to determine the "newer" of the two.
306 */
307static int
308vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
309{
310	zfs_endian_t ub1_endian, ub2_endian;
311	if (zfs_to_cpu64(ub1->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC)
312		ub1_endian = LITTLE_ENDIAN;
313	else
314		ub1_endian = BIG_ENDIAN;
315	if (zfs_to_cpu64(ub2->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC)
316		ub2_endian = LITTLE_ENDIAN;
317	else
318		ub2_endian = BIG_ENDIAN;
319
320	if (zfs_to_cpu64(ub1->ub_txg, ub1_endian)
321		< zfs_to_cpu64(ub2->ub_txg, ub2_endian))
322		return -1;
323	if (zfs_to_cpu64(ub1->ub_txg, ub1_endian)
324		> zfs_to_cpu64(ub2->ub_txg, ub2_endian))
325		return 1;
326
327	if (zfs_to_cpu64(ub1->ub_timestamp, ub1_endian)
328		< zfs_to_cpu64(ub2->ub_timestamp, ub2_endian))
329		return -1;
330	if (zfs_to_cpu64(ub1->ub_timestamp, ub1_endian)
331		> zfs_to_cpu64(ub2->ub_timestamp, ub2_endian))
332		return 1;
333
334	return 0;
335}
336
337/*
338 * Three pieces of information are needed to verify an uberblock: the magic
339 * number, the version number, and the checksum.
340 *
341 * Currently Implemented: version number, magic number, label txg
342 * Need to Implement: checksum
343 *
344 */
345static int
346uberblock_verify(uberblock_t *uber, int offset, struct zfs_data *data)
347{
348	int err;
349	zfs_endian_t endian = UNKNOWN_ENDIAN;
350	zio_cksum_t zc;
351
352	if (uber->ub_txg < data->label_txg) {
353		debug("ignoring partially written label: uber_txg < label_txg %llu %llu\n",
354			  uber->ub_txg, data->label_txg);
355		return ZFS_ERR_BAD_FS;
356	}
357
358	if (zfs_to_cpu64(uber->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC
359		&& zfs_to_cpu64(uber->ub_version, LITTLE_ENDIAN) > 0
360		&& zfs_to_cpu64(uber->ub_version, LITTLE_ENDIAN) <= SPA_VERSION)
361		endian = LITTLE_ENDIAN;
362
363	if (zfs_to_cpu64(uber->ub_magic, BIG_ENDIAN) == UBERBLOCK_MAGIC
364		&& zfs_to_cpu64(uber->ub_version, BIG_ENDIAN) > 0
365		&& zfs_to_cpu64(uber->ub_version, BIG_ENDIAN) <= SPA_VERSION)
366		endian = BIG_ENDIAN;
367
368	if (endian == UNKNOWN_ENDIAN) {
369		printf("invalid uberblock magic\n");
370		return ZFS_ERR_BAD_FS;
371	}
372
373	memset(&zc, 0, sizeof(zc));
374	zc.zc_word[0] = cpu_to_zfs64(offset, endian);
375	err = zio_checksum_verify(zc, ZIO_CHECKSUM_LABEL, endian,
376							  (char *) uber, UBERBLOCK_SIZE(data->vdev_ashift));
377
378	if (!err) {
379		/* Check that the data pointed by the rootbp is usable. */
380		void *osp = NULL;
381		size_t ospsize;
382		err = zio_read(&uber->ub_rootbp, endian, &osp, &ospsize, data);
383		free(osp);
384
385		if (!err && ospsize < OBJSET_PHYS_SIZE_V14) {
386			printf("uberblock rootbp points to invalid data\n");
387			return ZFS_ERR_BAD_FS;
388		}
389	}
390
391	return err;
392}
393
394/*
395 * Find the best uberblock.
396 * Return:
397 *	  Success - Pointer to the best uberblock.
398 *	  Failure - NULL
399 */
400static uberblock_t *find_bestub(char *ub_array, struct zfs_data *data)
401{
402	const uint64_t sector = data->vdev_phys_sector;
403	uberblock_t *ubbest = NULL;
404	uberblock_t *ubnext;
405	unsigned int i, offset, pickedub = 0;
406	int err = ZFS_ERR_NONE;
407
408	const unsigned int UBCOUNT = UBERBLOCK_COUNT(data->vdev_ashift);
409	const uint64_t UBBYTES = UBERBLOCK_SIZE(data->vdev_ashift);
410
411	for (i = 0; i < UBCOUNT; i++) {
412		ubnext = (uberblock_t *) (i * UBBYTES + ub_array);
413		offset = (sector << SPA_MINBLOCKSHIFT) + VDEV_PHYS_SIZE + (i * UBBYTES);
414
415		err = uberblock_verify(ubnext, offset, data);
416		if (err)
417			continue;
418
419		if (ubbest == NULL || vdev_uberblock_compare(ubnext, ubbest) > 0) {
420			ubbest = ubnext;
421			pickedub = i;
422		}
423	}
424
425	if (ubbest)
426		debug("zfs Found best uberblock at idx %d, txg %llu\n",
427			  pickedub, (unsigned long long) ubbest->ub_txg);
428
429	return ubbest;
430}
431
432static inline size_t
433get_psize(blkptr_t *bp, zfs_endian_t endian)
434{
435	return (((zfs_to_cpu64((bp)->blk_prop, endian) >> 16) & 0xffff) + 1)
436			<< SPA_MINBLOCKSHIFT;
437}
438
439static uint64_t
440dva_get_offset(dva_t *dva, zfs_endian_t endian)
441{
442	return zfs_to_cpu64((dva)->dva_word[1],
443							 endian) << SPA_MINBLOCKSHIFT;
444}
445
446/*
447 * Read a block of data based on the gang block address dva,
448 * and put its data in buf.
449 *
450 */
451static int
452zio_read_gang(blkptr_t *bp, zfs_endian_t endian, dva_t *dva, void *buf,
453			  struct zfs_data *data)
454{
455	zio_gbh_phys_t *zio_gb;
456	uint64_t offset, sector;
457	unsigned i;
458	int err;
459	zio_cksum_t zc;
460
461	memset(&zc, 0, sizeof(zc));
462
463	zio_gb = malloc(SPA_GANGBLOCKSIZE);
464	if (!zio_gb)
465		return ZFS_ERR_OUT_OF_MEMORY;
466
467	offset = dva_get_offset(dva, endian);
468	sector = DVA_OFFSET_TO_PHYS_SECTOR(offset);
469
470	/* read in the gang block header */
471	err = zfs_devread(sector, 0, SPA_GANGBLOCKSIZE, (char *) zio_gb);
472
473	if (err) {
474		free(zio_gb);
475		return err;
476	}
477
478	/* XXX */
479	/* self checksuming the gang block header */
480	ZIO_SET_CHECKSUM(&zc, DVA_GET_VDEV(dva),
481					 dva_get_offset(dva, endian), bp->blk_birth, 0);
482	err = zio_checksum_verify(zc, ZIO_CHECKSUM_GANG_HEADER, endian,
483							  (char *) zio_gb, SPA_GANGBLOCKSIZE);
484	if (err) {
485		free(zio_gb);
486		return err;
487	}
488
489	endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
490
491	for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
492		if (zio_gb->zg_blkptr[i].blk_birth == 0)
493			continue;
494
495		err = zio_read_data(&zio_gb->zg_blkptr[i], endian, buf, data);
496		if (err) {
497			free(zio_gb);
498			return err;
499		}
500		buf = (char *) buf + get_psize(&zio_gb->zg_blkptr[i], endian);
501	}
502	free(zio_gb);
503	return ZFS_ERR_NONE;
504}
505
506/*
507 * Read in a block of raw data to buf.
508 */
509static int
510zio_read_data(blkptr_t *bp, zfs_endian_t endian, void *buf,
511			  struct zfs_data *data)
512{
513	int i, psize;
514	int err = ZFS_ERR_NONE;
515
516	psize = get_psize(bp, endian);
517
518	/* pick a good dva from the block pointer */
519	for (i = 0; i < SPA_DVAS_PER_BP; i++) {
520		uint64_t offset, sector;
521
522		if (bp->blk_dva[i].dva_word[0] == 0 && bp->blk_dva[i].dva_word[1] == 0)
523			continue;
524
525		if ((zfs_to_cpu64(bp->blk_dva[i].dva_word[1], endian)>>63) & 1) {
526			err = zio_read_gang(bp, endian, &bp->blk_dva[i], buf, data);
527		} else {
528			/* read in a data block */
529			offset = dva_get_offset(&bp->blk_dva[i], endian);
530			sector = DVA_OFFSET_TO_PHYS_SECTOR(offset);
531
532			err = zfs_devread(sector, 0, psize, buf);
533		}
534
535		if (!err) {
536			/*Check the underlying checksum before we rule this DVA as "good"*/
537			uint32_t checkalgo = (zfs_to_cpu64((bp)->blk_prop, endian) >> 40) & 0xff;
538
539			err = zio_checksum_verify(bp->blk_cksum, checkalgo, endian, buf, psize);
540			if (!err)
541				return ZFS_ERR_NONE;
542		}
543
544		/* If read failed or checksum bad, reset the error.	 Hopefully we've got some more DVA's to try.*/
545	}
546
547	if (!err) {
548		printf("couldn't find a valid DVA\n");
549		err = ZFS_ERR_BAD_FS;
550	}
551
552	return err;
553}
554
555/*
556 * Read in a block of data, verify its checksum, decompress if needed,
557 * and put the uncompressed data in buf.
558 */
559static int
560zio_read(blkptr_t *bp, zfs_endian_t endian, void **buf,
561		 size_t *size, struct zfs_data *data)
562{
563	size_t lsize, psize;
564	unsigned int comp;
565	char *compbuf = NULL;
566	int err;
567
568	*buf = NULL;
569
570	comp = (zfs_to_cpu64((bp)->blk_prop, endian)>>32) & 0xff;
571	lsize = (BP_IS_HOLE(bp) ? 0 :
572			 (((zfs_to_cpu64((bp)->blk_prop, endian) & 0xffff) + 1)
573			  << SPA_MINBLOCKSHIFT));
574	psize = get_psize(bp, endian);
575
576	if (size)
577		*size = lsize;
578
579	if (comp >= ZIO_COMPRESS_FUNCTIONS) {
580		printf("compression algorithm %u not supported\n", (unsigned int) comp);
581		return ZFS_ERR_NOT_IMPLEMENTED_YET;
582	}
583
584	if (comp != ZIO_COMPRESS_OFF && decomp_table[comp].decomp_func == NULL) {
585		printf("compression algorithm %s not supported\n", decomp_table[comp].name);
586		return ZFS_ERR_NOT_IMPLEMENTED_YET;
587	}
588
589	if (comp != ZIO_COMPRESS_OFF) {
590		compbuf = malloc(psize);
591		if (!compbuf)
592			return ZFS_ERR_OUT_OF_MEMORY;
593	} else {
594		compbuf = *buf = malloc(lsize);
595	}
596
597	err = zio_read_data(bp, endian, compbuf, data);
598	if (err) {
599		free(compbuf);
600		*buf = NULL;
601		return err;
602	}
603
604	if (comp != ZIO_COMPRESS_OFF) {
605		*buf = malloc(lsize);
606		if (!*buf) {
607			free(compbuf);
608			return ZFS_ERR_OUT_OF_MEMORY;
609		}
610
611		err = decomp_table[comp].decomp_func(compbuf, *buf, psize, lsize);
612		free(compbuf);
613		if (err) {
614			free(*buf);
615			*buf = NULL;
616			return err;
617		}
618	}
619
620	return ZFS_ERR_NONE;
621}
622
623/*
624 * Get the block from a block id.
625 * push the block onto the stack.
626 *
627 */
628static int
629dmu_read(dnode_end_t *dn, uint64_t blkid, void **buf,
630		 zfs_endian_t *endian_out, struct zfs_data *data)
631{
632	int idx, level;
633	blkptr_t *bp_array = dn->dn.dn_blkptr;
634	int epbs = dn->dn.dn_indblkshift - SPA_BLKPTRSHIFT;
635	blkptr_t *bp;
636	void *tmpbuf = 0;
637	zfs_endian_t endian;
638	int err = ZFS_ERR_NONE;
639
640	bp = malloc(sizeof(blkptr_t));
641	if (!bp)
642		return ZFS_ERR_OUT_OF_MEMORY;
643
644	endian = dn->endian;
645	for (level = dn->dn.dn_nlevels - 1; level >= 0; level--) {
646		idx = (blkid >> (epbs * level)) & ((1 << epbs) - 1);
647		*bp = bp_array[idx];
648		if (bp_array != dn->dn.dn_blkptr) {
649			free(bp_array);
650			bp_array = 0;
651		}
652
653		if (BP_IS_HOLE(bp)) {
654			size_t size = zfs_to_cpu16(dn->dn.dn_datablkszsec,
655											dn->endian)
656				<< SPA_MINBLOCKSHIFT;
657			*buf = malloc(size);
658			if (!*buf) {
659				err = ZFS_ERR_OUT_OF_MEMORY;
660				break;
661			}
662			memset(*buf, 0, size);
663			endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
664			break;
665		}
666		if (level == 0) {
667			err = zio_read(bp, endian, buf, 0, data);
668			endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
669			break;
670		}
671		err = zio_read(bp, endian, &tmpbuf, 0, data);
672		endian = (zfs_to_cpu64(bp->blk_prop, endian) >> 63) & 1;
673		if (err)
674			break;
675		bp_array = tmpbuf;
676	}
677	if (bp_array != dn->dn.dn_blkptr)
678		free(bp_array);
679	if (endian_out)
680		*endian_out = endian;
681
682	free(bp);
683	return err;
684}
685
686/*
687 * mzap_lookup: Looks up property described by "name" and returns the value
688 * in "value".
689 */
690static int
691mzap_lookup(mzap_phys_t *zapobj, zfs_endian_t endian,
692			int objsize, char *name, uint64_t * value)
693{
694	int i, chunks;
695	mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk;
696
697	chunks = objsize / MZAP_ENT_LEN - 1;
698	for (i = 0; i < chunks; i++) {
699		if (strcmp(mzap_ent[i].mze_name, name) == 0) {
700			*value = zfs_to_cpu64(mzap_ent[i].mze_value, endian);
701			return ZFS_ERR_NONE;
702		}
703	}
704
705	printf("couldn't find '%s'\n", name);
706	return ZFS_ERR_FILE_NOT_FOUND;
707}
708
709static int
710mzap_iterate(mzap_phys_t *zapobj, zfs_endian_t endian, int objsize,
711			 int (*hook)(const char *name,
712						 uint64_t val,
713						 struct zfs_data *data),
714			 struct zfs_data *data)
715{
716	int i, chunks;
717	mzap_ent_phys_t *mzap_ent = zapobj->mz_chunk;
718
719	chunks = objsize / MZAP_ENT_LEN - 1;
720	for (i = 0; i < chunks; i++) {
721		if (hook(mzap_ent[i].mze_name,
722				 zfs_to_cpu64(mzap_ent[i].mze_value, endian),
723				 data))
724			return 1;
725	}
726
727	return 0;
728}
729
730static uint64_t
731zap_hash(uint64_t salt, const char *name)
732{
733	static uint64_t table[256];
734	const uint8_t *cp;
735	uint8_t c;
736	uint64_t crc = salt;
737
738	if (table[128] == 0) {
739		uint64_t *ct = NULL;
740		int i, j;
741		for (i = 0; i < 256; i++) {
742			for (ct = table + i, *ct = i, j = 8; j > 0; j--)
743				*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
744		}
745	}
746
747	for (cp = (const uint8_t *) name; (c = *cp) != '\0'; cp++)
748		crc = (crc >> 8) ^ table[(crc ^ c) & 0xFF];
749
750	/*
751	 * Only use 28 bits, since we need 4 bits in the cookie for the
752	 * collision differentiator.  We MUST use the high bits, since
753	 * those are the onces that we first pay attention to when
754	 * chosing the bucket.
755	 */
756	crc &= ~((1ULL << (64 - ZAP_HASHBITS)) - 1);
757
758	return crc;
759}
760
761/*
762 * Only to be used on 8-bit arrays.
763 * array_len is actual len in bytes (not encoded le_value_length).
764 * buf is null-terminated.
765 */
766/* XXX */
767static int
768zap_leaf_array_equal(zap_leaf_phys_t *l, zfs_endian_t endian,
769					 int blksft, int chunk, int array_len, const char *buf)
770{
771	int bseen = 0;
772
773	while (bseen < array_len) {
774		struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, blksft, chunk).l_array;
775		int toread = min(array_len - bseen, ZAP_LEAF_ARRAY_BYTES);
776
777		if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft))
778			return 0;
779
780		if (memcmp(la->la_array, buf + bseen, toread) != 0)
781			break;
782		chunk = zfs_to_cpu16(la->la_next, endian);
783		bseen += toread;
784	}
785	return (bseen == array_len);
786}
787
788/* XXX */
789static int
790zap_leaf_array_get(zap_leaf_phys_t *l, zfs_endian_t endian, int blksft,
791				   int chunk, int array_len, char *buf)
792{
793	int bseen = 0;
794
795	while (bseen < array_len) {
796		struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, blksft, chunk).l_array;
797		int toread = min(array_len - bseen, ZAP_LEAF_ARRAY_BYTES);
798
799		if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft))
800			/* Don't use errno because this error is to be ignored.  */
801			return ZFS_ERR_BAD_FS;
802
803		memcpy(buf + bseen, la->la_array,  toread);
804		chunk = zfs_to_cpu16(la->la_next, endian);
805		bseen += toread;
806	}
807	return ZFS_ERR_NONE;
808}
809
810
811/*
812 * Given a zap_leaf_phys_t, walk thru the zap leaf chunks to get the
813 * value for the property "name".
814 *
815 */
816/* XXX */
817static int
818zap_leaf_lookup(zap_leaf_phys_t *l, zfs_endian_t endian,
819				int blksft, uint64_t h,
820				const char *name, uint64_t *value)
821{
822	uint16_t chunk;
823	struct zap_leaf_entry *le;
824
825	/* Verify if this is a valid leaf block */
826	if (zfs_to_cpu64(l->l_hdr.lh_block_type, endian) != ZBT_LEAF) {
827		printf("invalid leaf type\n");
828		return ZFS_ERR_BAD_FS;
829	}
830	if (zfs_to_cpu32(l->l_hdr.lh_magic, endian) != ZAP_LEAF_MAGIC) {
831		printf("invalid leaf magic\n");
832		return ZFS_ERR_BAD_FS;
833	}
834
835	for (chunk = zfs_to_cpu16(l->l_hash[LEAF_HASH(blksft, h)], endian);
836		 chunk != CHAIN_END; chunk = le->le_next) {
837
838		if (chunk >= ZAP_LEAF_NUMCHUNKS(blksft)) {
839			printf("invalid chunk number\n");
840			return ZFS_ERR_BAD_FS;
841		}
842
843		le = ZAP_LEAF_ENTRY(l, blksft, chunk);
844
845		/* Verify the chunk entry */
846		if (le->le_type != ZAP_CHUNK_ENTRY) {
847			printf("invalid chunk entry\n");
848			return ZFS_ERR_BAD_FS;
849		}
850
851		if (zfs_to_cpu64(le->le_hash, endian) != h)
852			continue;
853
854		if (zap_leaf_array_equal(l, endian, blksft,
855								 zfs_to_cpu16(le->le_name_chunk, endian),
856								 zfs_to_cpu16(le->le_name_length, endian),
857								 name)) {
858			struct zap_leaf_array *la;
859
860			if (le->le_int_size != 8 || le->le_value_length != 1) {
861				printf("invalid leaf chunk entry\n");
862				return ZFS_ERR_BAD_FS;
863			}
864			/* get the uint64_t property value */
865			la = &ZAP_LEAF_CHUNK(l, blksft, le->le_value_chunk).l_array;
866
867			*value = be64_to_cpu(la->la_array64);
868
869			return ZFS_ERR_NONE;
870		}
871	}
872
873	printf("couldn't find '%s'\n", name);
874	return ZFS_ERR_FILE_NOT_FOUND;
875}
876
877
878/* Verify if this is a fat zap header block */
879static int
880zap_verify(zap_phys_t *zap)
881{
882	if (zap->zap_magic != (uint64_t) ZAP_MAGIC) {
883		printf("bad ZAP magic\n");
884		return ZFS_ERR_BAD_FS;
885	}
886
887	if (zap->zap_flags != 0) {
888		printf("bad ZAP flags\n");
889		return ZFS_ERR_BAD_FS;
890	}
891
892	if (zap->zap_salt == 0) {
893		printf("bad ZAP salt\n");
894		return ZFS_ERR_BAD_FS;
895	}
896
897	return ZFS_ERR_NONE;
898}
899
900/*
901 * Fat ZAP lookup
902 *
903 */
904/* XXX */
905static int
906fzap_lookup(dnode_end_t *zap_dnode, zap_phys_t *zap,
907			char *name, uint64_t *value, struct zfs_data *data)
908{
909	void *l;
910	uint64_t hash, idx, blkid;
911	int blksft = zfs_log2(zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec,
912											zap_dnode->endian) << DNODE_SHIFT);
913	int err;
914	zfs_endian_t leafendian;
915
916	err = zap_verify(zap);
917	if (err)
918		return err;
919
920	hash = zap_hash(zap->zap_salt, name);
921
922	/* get block id from index */
923	if (zap->zap_ptrtbl.zt_numblks != 0) {
924		printf("external pointer tables not supported\n");
925		return ZFS_ERR_NOT_IMPLEMENTED_YET;
926	}
927	idx = ZAP_HASH_IDX(hash, zap->zap_ptrtbl.zt_shift);
928	blkid = ((uint64_t *) zap)[idx + (1 << (blksft - 3 - 1))];
929
930	/* Get the leaf block */
931	if ((1U << blksft) < sizeof(zap_leaf_phys_t)) {
932		printf("ZAP leaf is too small\n");
933		return ZFS_ERR_BAD_FS;
934	}
935	err = dmu_read(zap_dnode, blkid, &l, &leafendian, data);
936	if (err)
937		return err;
938
939	err = zap_leaf_lookup(l, leafendian, blksft, hash, name, value);
940	free(l);
941	return err;
942}
943
944/* XXX */
945static int
946fzap_iterate(dnode_end_t *zap_dnode, zap_phys_t *zap,
947			 int (*hook)(const char *name,
948						 uint64_t val,
949						 struct zfs_data *data),
950			 struct zfs_data *data)
951{
952	zap_leaf_phys_t *l;
953	void *l_in;
954	uint64_t idx, blkid;
955	uint16_t chunk;
956	int blksft = zfs_log2(zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec,
957											zap_dnode->endian) << DNODE_SHIFT);
958	int err;
959	zfs_endian_t endian;
960
961	if (zap_verify(zap))
962		return 0;
963
964	/* get block id from index */
965	if (zap->zap_ptrtbl.zt_numblks != 0) {
966		printf("external pointer tables not supported\n");
967		return 0;
968	}
969	/* Get the leaf block */
970	if ((1U << blksft) < sizeof(zap_leaf_phys_t)) {
971		printf("ZAP leaf is too small\n");
972		return 0;
973	}
974	for (idx = 0; idx < zap->zap_ptrtbl.zt_numblks; idx++) {
975		blkid = ((uint64_t *) zap)[idx + (1 << (blksft - 3 - 1))];
976
977		err = dmu_read(zap_dnode, blkid, &l_in, &endian, data);
978		l = l_in;
979		if (err)
980			continue;
981
982		/* Verify if this is a valid leaf block */
983		if (zfs_to_cpu64(l->l_hdr.lh_block_type, endian) != ZBT_LEAF) {
984			free(l);
985			continue;
986		}
987		if (zfs_to_cpu32(l->l_hdr.lh_magic, endian) != ZAP_LEAF_MAGIC) {
988			free(l);
989			continue;
990		}
991
992		for (chunk = 0; chunk < ZAP_LEAF_NUMCHUNKS(blksft); chunk++) {
993			char *buf;
994			struct zap_leaf_array *la;
995			struct zap_leaf_entry *le;
996			uint64_t val;
997			le = ZAP_LEAF_ENTRY(l, blksft, chunk);
998
999			/* Verify the chunk entry */
1000			if (le->le_type != ZAP_CHUNK_ENTRY)
1001				continue;
1002
1003			buf = malloc(zfs_to_cpu16(le->le_name_length, endian)
1004						 + 1);
1005			if (zap_leaf_array_get(l, endian, blksft, le->le_name_chunk,
1006								   le->le_name_length, buf)) {
1007				free(buf);
1008				continue;
1009			}
1010			buf[le->le_name_length] = 0;
1011
1012			if (le->le_int_size != 8
1013				|| zfs_to_cpu16(le->le_value_length, endian) != 1)
1014				continue;
1015
1016			/* get the uint64_t property value */
1017			la = &ZAP_LEAF_CHUNK(l, blksft, le->le_value_chunk).l_array;
1018			val = be64_to_cpu(la->la_array64);
1019			if (hook(buf, val, data))
1020				return 1;
1021			free(buf);
1022		}
1023	}
1024	return 0;
1025}
1026
1027
1028/*
1029 * Read in the data of a zap object and find the value for a matching
1030 * property name.
1031 *
1032 */
1033static int
1034zap_lookup(dnode_end_t *zap_dnode, char *name, uint64_t *val,
1035		   struct zfs_data *data)
1036{
1037	uint64_t block_type;
1038	int size;
1039	void *zapbuf;
1040	int err;
1041	zfs_endian_t endian;
1042
1043	/* Read in the first block of the zap object data. */
1044	size = zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec,
1045							 zap_dnode->endian) << SPA_MINBLOCKSHIFT;
1046	err = dmu_read(zap_dnode, 0, &zapbuf, &endian, data);
1047	if (err)
1048		return err;
1049	block_type = zfs_to_cpu64(*((uint64_t *) zapbuf), endian);
1050
1051	if (block_type == ZBT_MICRO) {
1052		err = (mzap_lookup(zapbuf, endian, size, name, val));
1053		free(zapbuf);
1054		return err;
1055	} else if (block_type == ZBT_HEADER) {
1056		/* this is a fat zap */
1057		err = (fzap_lookup(zap_dnode, zapbuf, name, val, data));
1058		free(zapbuf);
1059		return err;
1060	}
1061
1062	printf("unknown ZAP type\n");
1063	free(zapbuf);
1064	return ZFS_ERR_BAD_FS;
1065}
1066
1067static int
1068zap_iterate(dnode_end_t *zap_dnode,
1069			int (*hook)(const char *name, uint64_t val,
1070						struct zfs_data *data),
1071			struct zfs_data *data)
1072{
1073	uint64_t block_type;
1074	int size;
1075	void *zapbuf;
1076	int err;
1077	int ret;
1078	zfs_endian_t endian;
1079
1080	/* Read in the first block of the zap object data. */
1081	size = zfs_to_cpu16(zap_dnode->dn.dn_datablkszsec, zap_dnode->endian) << SPA_MINBLOCKSHIFT;
1082	err = dmu_read(zap_dnode, 0, &zapbuf, &endian, data);
1083	if (err)
1084		return 0;
1085	block_type = zfs_to_cpu64(*((uint64_t *) zapbuf), endian);
1086
1087	if (block_type == ZBT_MICRO) {
1088		ret = mzap_iterate(zapbuf, endian, size, hook, data);
1089		free(zapbuf);
1090		return ret;
1091	} else if (block_type == ZBT_HEADER) {
1092		/* this is a fat zap */
1093		ret = fzap_iterate(zap_dnode, zapbuf, hook, data);
1094		free(zapbuf);
1095		return ret;
1096	}
1097	printf("unknown ZAP type\n");
1098	free(zapbuf);
1099	return 0;
1100}
1101
1102
1103/*
1104 * Get the dnode of an object number from the metadnode of an object set.
1105 *
1106 * Input
1107 *	mdn - metadnode to get the object dnode
1108 *	objnum - object number for the object dnode
1109 *	buf - data buffer that holds the returning dnode
1110 */
1111static int
1112dnode_get(dnode_end_t *mdn, uint64_t objnum, uint8_t type,
1113		  dnode_end_t *buf, struct zfs_data *data)
1114{
1115	uint64_t blkid, blksz;	/* the block id this object dnode is in */
1116	int epbs;			/* shift of number of dnodes in a block */
1117	int idx;			/* index within a block */
1118	void *dnbuf;
1119	int err;
1120	zfs_endian_t endian;
1121
1122	blksz = zfs_to_cpu16(mdn->dn.dn_datablkszsec,
1123							  mdn->endian) << SPA_MINBLOCKSHIFT;
1124
1125	epbs = zfs_log2(blksz) - DNODE_SHIFT;
1126	blkid = objnum >> epbs;
1127	idx = objnum & ((1 << epbs) - 1);
1128
1129	if (data->dnode_buf != NULL && memcmp(data->dnode_mdn, mdn,
1130										  sizeof(*mdn)) == 0
1131		&& objnum >= data->dnode_start && objnum < data->dnode_end) {
1132		memmove(&(buf->dn), &(data->dnode_buf)[idx], DNODE_SIZE);
1133		buf->endian = data->dnode_endian;
1134		if (type && buf->dn.dn_type != type)  {
1135			printf("incorrect dnode type: %02X != %02x\n", buf->dn.dn_type, type);
1136			return ZFS_ERR_BAD_FS;
1137		}
1138		return ZFS_ERR_NONE;
1139	}
1140
1141	err = dmu_read(mdn, blkid, &dnbuf, &endian, data);
1142	if (err)
1143		return err;
1144
1145	free(data->dnode_buf);
1146	free(data->dnode_mdn);
1147	data->dnode_mdn = malloc(sizeof(*mdn));
1148	if (!data->dnode_mdn) {
1149		data->dnode_buf = 0;
1150	} else {
1151		memcpy(data->dnode_mdn, mdn, sizeof(*mdn));
1152		data->dnode_buf = dnbuf;
1153		data->dnode_start = blkid << epbs;
1154		data->dnode_end = (blkid + 1) << epbs;
1155		data->dnode_endian = endian;
1156	}
1157
1158	memmove(&(buf->dn), (dnode_phys_t *) dnbuf + idx, DNODE_SIZE);
1159	buf->endian = endian;
1160	if (type && buf->dn.dn_type != type) {
1161		printf("incorrect dnode type\n");
1162		return ZFS_ERR_BAD_FS;
1163	}
1164
1165	return ZFS_ERR_NONE;
1166}
1167
1168/*
1169 * Get the file dnode for a given file name where mdn is the meta dnode
1170 * for this ZFS object set. When found, place the file dnode in dn.
1171 * The 'path' argument will be mangled.
1172 *
1173 */
1174static int
1175dnode_get_path(dnode_end_t *mdn, const char *path_in, dnode_end_t *dn,
1176			   struct zfs_data *data)
1177{
1178	uint64_t objnum, version;
1179	char *cname, ch;
1180	int err = ZFS_ERR_NONE;
1181	char *path, *path_buf;
1182	struct dnode_chain {
1183		struct dnode_chain *next;
1184		dnode_end_t dn;
1185	};
1186	struct dnode_chain *dnode_path = 0, *dn_new, *root;
1187
1188	dn_new = malloc(sizeof(*dn_new));
1189	if (!dn_new)
1190		return ZFS_ERR_OUT_OF_MEMORY;
1191	dn_new->next = 0;
1192	dnode_path = root = dn_new;
1193
1194	err = dnode_get(mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE,
1195					&(dnode_path->dn), data);
1196	if (err) {
1197		free(dn_new);
1198		return err;
1199	}
1200
1201	err = zap_lookup(&(dnode_path->dn), ZPL_VERSION_STR, &version, data);
1202	if (err) {
1203		free(dn_new);
1204		return err;
1205	}
1206	if (version > ZPL_VERSION) {
1207		free(dn_new);
1208		printf("too new ZPL version\n");
1209		return ZFS_ERR_NOT_IMPLEMENTED_YET;
1210	}
1211
1212	err = zap_lookup(&(dnode_path->dn), ZFS_ROOT_OBJ, &objnum, data);
1213	if (err) {
1214		free(dn_new);
1215		return err;
1216	}
1217
1218	err = dnode_get(mdn, objnum, 0, &(dnode_path->dn), data);
1219	if (err) {
1220		free(dn_new);
1221		return err;
1222	}
1223
1224	path = path_buf = strdup(path_in);
1225	if (!path_buf) {
1226		free(dn_new);
1227		return ZFS_ERR_OUT_OF_MEMORY;
1228	}
1229
1230	while (1) {
1231		/* skip leading slashes */
1232		while (*path == '/')
1233			path++;
1234		if (!*path)
1235			break;
1236		/* get the next component name */
1237		cname = path;
1238		while (*path && *path != '/')
1239			path++;
1240		/* Skip dot.  */
1241		if (cname + 1 == path && cname[0] == '.')
1242			continue;
1243		/* Handle double dot.  */
1244		if (cname + 2 == path && cname[0] == '.' && cname[1] == '.')  {
1245			if (dn_new->next) {
1246				dn_new = dnode_path;
1247				dnode_path = dn_new->next;
1248				free(dn_new);
1249			} else {
1250				printf("can't resolve ..\n");
1251				err = ZFS_ERR_FILE_NOT_FOUND;
1252				break;
1253			}
1254			continue;
1255		}
1256
1257		ch = *path;
1258		*path = 0;		/* ensure null termination */
1259
1260		if (dnode_path->dn.dn.dn_type != DMU_OT_DIRECTORY_CONTENTS) {
1261			free(path_buf);
1262			printf("not a directory\n");
1263			return ZFS_ERR_BAD_FILE_TYPE;
1264		}
1265		err = zap_lookup(&(dnode_path->dn), cname, &objnum, data);
1266		if (err)
1267			break;
1268
1269		dn_new = malloc(sizeof(*dn_new));
1270		if (!dn_new) {
1271			err = ZFS_ERR_OUT_OF_MEMORY;
1272			break;
1273		}
1274		dn_new->next = dnode_path;
1275		dnode_path = dn_new;
1276
1277		objnum = ZFS_DIRENT_OBJ(objnum);
1278		err = dnode_get(mdn, objnum, 0, &(dnode_path->dn), data);
1279		if (err)
1280			break;
1281
1282		*path = ch;
1283	}
1284
1285	if (!err)
1286		memcpy(dn, &(dnode_path->dn), sizeof(*dn));
1287
1288	while (dnode_path) {
1289		dn_new = dnode_path->next;
1290		free(dnode_path);
1291		dnode_path = dn_new;
1292	}
1293	free(path_buf);
1294	return err;
1295}
1296
1297
1298/*
1299 * Given a MOS metadnode, get the metadnode of a given filesystem name (fsname),
1300 * e.g. pool/rootfs, or a given object number (obj), e.g. the object number
1301 * of pool/rootfs.
1302 *
1303 * If no fsname and no obj are given, return the DSL_DIR metadnode.
1304 * If fsname is given, return its metadnode and its matching object number.
1305 * If only obj is given, return the metadnode for this object number.
1306 *
1307 */
1308static int
1309get_filesystem_dnode(dnode_end_t *mosmdn, char *fsname,
1310					 dnode_end_t *mdn, struct zfs_data *data)
1311{
1312	uint64_t objnum;
1313	int err;
1314
1315	err = dnode_get(mosmdn, DMU_POOL_DIRECTORY_OBJECT,
1316					DMU_OT_OBJECT_DIRECTORY, mdn, data);
1317	if (err)
1318		return err;
1319
1320	err = zap_lookup(mdn, DMU_POOL_ROOT_DATASET, &objnum, data);
1321	if (err)
1322		return err;
1323
1324	err = dnode_get(mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data);
1325	if (err)
1326		return err;
1327
1328	while (*fsname) {
1329		uint64_t childobj;
1330		char *cname, ch;
1331
1332		while (*fsname == '/')
1333			fsname++;
1334
1335		if (!*fsname || *fsname == '@')
1336			break;
1337
1338		cname = fsname;
1339		while (*fsname && !isspace(*fsname) && *fsname != '/')
1340			fsname++;
1341		ch = *fsname;
1342		*fsname = 0;
1343
1344		childobj = zfs_to_cpu64((((dsl_dir_phys_t *) DN_BONUS(&mdn->dn)))->dd_child_dir_zapobj, mdn->endian);
1345		err = dnode_get(mosmdn, childobj,
1346						DMU_OT_DSL_DIR_CHILD_MAP, mdn, data);
1347		if (err)
1348			return err;
1349
1350		err = zap_lookup(mdn, cname, &objnum, data);
1351		if (err)
1352			return err;
1353
1354		err = dnode_get(mosmdn, objnum, DMU_OT_DSL_DIR, mdn, data);
1355		if (err)
1356			return err;
1357
1358		*fsname = ch;
1359	}
1360	return ZFS_ERR_NONE;
1361}
1362
1363static int
1364make_mdn(dnode_end_t *mdn, struct zfs_data *data)
1365{
1366	void *osp;
1367	blkptr_t *bp;
1368	size_t ospsize;
1369	int err;
1370
1371	bp = &(((dsl_dataset_phys_t *) DN_BONUS(&mdn->dn))->ds_bp);
1372	err = zio_read(bp, mdn->endian, &osp, &ospsize, data);
1373	if (err)
1374		return err;
1375	if (ospsize < OBJSET_PHYS_SIZE_V14) {
1376		free(osp);
1377		printf("too small osp\n");
1378		return ZFS_ERR_BAD_FS;
1379	}
1380
1381	mdn->endian = (zfs_to_cpu64(bp->blk_prop, mdn->endian)>>63) & 1;
1382	memmove((char *) &(mdn->dn),
1383			(char *) &((objset_phys_t *) osp)->os_meta_dnode, DNODE_SIZE);
1384	free(osp);
1385	return ZFS_ERR_NONE;
1386}
1387
1388static int
1389dnode_get_fullpath(const char *fullpath, dnode_end_t *mdn,
1390				   uint64_t *mdnobj, dnode_end_t *dn, int *isfs,
1391				   struct zfs_data *data)
1392{
1393	char *fsname, *snapname;
1394	const char *ptr_at, *filename;
1395	uint64_t headobj;
1396	int err;
1397
1398	ptr_at = strchr(fullpath, '@');
1399	if (!ptr_at) {
1400		*isfs = 1;
1401		filename = 0;
1402		snapname = 0;
1403		fsname = strdup(fullpath);
1404	} else {
1405		const char *ptr_slash = strchr(ptr_at, '/');
1406
1407		*isfs = 0;
1408		fsname = malloc(ptr_at - fullpath + 1);
1409		if (!fsname)
1410			return ZFS_ERR_OUT_OF_MEMORY;
1411		memcpy(fsname, fullpath, ptr_at - fullpath);
1412		fsname[ptr_at - fullpath] = 0;
1413		if (ptr_at[1] && ptr_at[1] != '/') {
1414			snapname = malloc(ptr_slash - ptr_at);
1415			if (!snapname) {
1416				free(fsname);
1417				return ZFS_ERR_OUT_OF_MEMORY;
1418			}
1419			memcpy(snapname, ptr_at + 1, ptr_slash - ptr_at - 1);
1420			snapname[ptr_slash - ptr_at - 1] = 0;
1421		} else {
1422			snapname = 0;
1423		}
1424		if (ptr_slash)
1425			filename = ptr_slash;
1426		else
1427			filename = "/";
1428		printf("zfs fsname = '%s' snapname='%s' filename = '%s'\n",
1429			   fsname, snapname, filename);
1430	}
1431
1432
1433	err = get_filesystem_dnode(&(data->mos), fsname, dn, data);
1434
1435	if (err) {
1436		free(fsname);
1437		free(snapname);
1438		return err;
1439	}
1440
1441	headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&dn->dn))->dd_head_dataset_obj, dn->endian);
1442
1443	err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, mdn, data);
1444	if (err) {
1445		free(fsname);
1446		free(snapname);
1447		return err;
1448	}
1449
1450	if (snapname) {
1451		uint64_t snapobj;
1452
1453		snapobj = zfs_to_cpu64(((dsl_dataset_phys_t *) DN_BONUS(&mdn->dn))->ds_snapnames_zapobj, mdn->endian);
1454
1455		err = dnode_get(&(data->mos), snapobj,
1456						DMU_OT_DSL_DS_SNAP_MAP, mdn, data);
1457		if (!err)
1458			err = zap_lookup(mdn, snapname, &headobj, data);
1459		if (!err)
1460			err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, mdn, data);
1461		if (err) {
1462			free(fsname);
1463			free(snapname);
1464			return err;
1465		}
1466	}
1467
1468	if (mdnobj)
1469		*mdnobj = headobj;
1470
1471	make_mdn(mdn, data);
1472
1473	if (*isfs) {
1474		free(fsname);
1475		free(snapname);
1476		return ZFS_ERR_NONE;
1477	}
1478	err = dnode_get_path(mdn, filename, dn, data);
1479	free(fsname);
1480	free(snapname);
1481	return err;
1482}
1483
1484/*
1485 * For a given XDR packed nvlist, verify the first 4 bytes and move on.
1486 *
1487 * An XDR packed nvlist is encoded as (comments from nvs_xdr_create) :
1488 *
1489 *		encoding method/host endian		(4 bytes)
1490 *		nvl_version						(4 bytes)
1491 *		nvl_nvflag						(4 bytes)
1492 *	encoded nvpairs:
1493 *		encoded size of the nvpair		(4 bytes)
1494 *		decoded size of the nvpair		(4 bytes)
1495 *		name string size				(4 bytes)
1496 *		name string data				(sizeof(NV_ALIGN4(string))
1497 *		data type						(4 bytes)
1498 *		# of elements in the nvpair		(4 bytes)
1499 *		data
1500 *		2 zero's for the last nvpair
1501 *		(end of the entire list)	(8 bytes)
1502 *
1503 */
1504
1505static int
1506nvlist_find_value(char *nvlist, char *name, int valtype, char **val,
1507				  size_t *size_out, size_t *nelm_out)
1508{
1509	int name_len, type, encode_size;
1510	char *nvpair, *nvp_name;
1511
1512	/* Verify if the 1st and 2nd byte in the nvlist are valid. */
1513	/* NOTE: independently of what endianness header announces all
1514	   subsequent values are big-endian.  */
1515	if (nvlist[0] != NV_ENCODE_XDR || (nvlist[1] != NV_LITTLE_ENDIAN
1516									   && nvlist[1] != NV_BIG_ENDIAN)) {
1517		printf("zfs incorrect nvlist header\n");
1518		return ZFS_ERR_BAD_FS;
1519	}
1520
1521	/* skip the header, nvl_version, and nvl_nvflag */
1522	nvlist = nvlist + 4 * 3;
1523	/*
1524	 * Loop thru the nvpair list
1525	 * The XDR representation of an integer is in big-endian byte order.
1526	 */
1527	while ((encode_size = be32_to_cpu(*(uint32_t *) nvlist))) {
1528		int nelm;
1529
1530		nvpair = nvlist + 4 * 2;	/* skip the encode/decode size */
1531
1532		name_len = be32_to_cpu(*(uint32_t *) nvpair);
1533		nvpair += 4;
1534
1535		nvp_name = nvpair;
1536		nvpair = nvpair + ((name_len + 3) & ~3);	/* align */
1537
1538		type = be32_to_cpu(*(uint32_t *) nvpair);
1539		nvpair += 4;
1540
1541		nelm = be32_to_cpu(*(uint32_t *) nvpair);
1542		if (nelm < 1) {
1543			printf("empty nvpair\n");
1544			return ZFS_ERR_BAD_FS;
1545		}
1546
1547		nvpair += 4;
1548
1549		if ((strncmp(nvp_name, name, name_len) == 0) && type == valtype) {
1550			*val = nvpair;
1551			*size_out = encode_size;
1552			if (nelm_out)
1553				*nelm_out = nelm;
1554			return 1;
1555		}
1556
1557		nvlist += encode_size;	/* goto the next nvpair */
1558	}
1559	return 0;
1560}
1561
1562int is_word_aligned_ptr(void *ptr) {
1563	return ((uintptr_t)ptr & (sizeof(void *) - 1)) == 0;
1564}
1565
1566int
1567zfs_nvlist_lookup_uint64(char *nvlist, char *name, uint64_t *out)
1568{
1569	char *nvpair;
1570	size_t size;
1571	int found;
1572
1573	found = nvlist_find_value(nvlist, name, DATA_TYPE_UINT64, &nvpair, &size, 0);
1574	if (!found)
1575		return 0;
1576	if (size < sizeof(uint64_t)) {
1577		printf("invalid uint64\n");
1578		return ZFS_ERR_BAD_FS;
1579	}
1580
1581	/* On arm64, calling be64_to_cpu() on a value stored at a memory address
1582	 * that's not 8-byte aligned causes the CPU to reset. Avoid that by copying the
1583	 * value somewhere else if needed.
1584	 */
1585	if (!is_word_aligned_ptr((void *)nvpair)) {
1586		uint64_t *alignedptr = malloc(sizeof(uint64_t));
1587		if (!alignedptr)
1588			return 0;
1589		memcpy(alignedptr, nvpair, sizeof(uint64_t));
1590		*out = be64_to_cpu(*alignedptr);
1591		free(alignedptr);
1592		return 1;
1593	}
1594
1595	*out = be64_to_cpu(*(uint64_t *) nvpair);
1596	return 1;
1597}
1598
1599char *
1600zfs_nvlist_lookup_string(char *nvlist, char *name)
1601{
1602	char *nvpair;
1603	char *ret;
1604	size_t slen;
1605	size_t size;
1606	int found;
1607
1608	found = nvlist_find_value(nvlist, name, DATA_TYPE_STRING, &nvpair, &size, 0);
1609	if (!found)
1610		return 0;
1611	if (size < 4) {
1612		printf("invalid string\n");
1613		return 0;
1614	}
1615	slen = be32_to_cpu(*(uint32_t *) nvpair);
1616	if (slen > size - 4)
1617		slen = size - 4;
1618	ret = malloc(slen + 1);
1619	if (!ret)
1620		return 0;
1621	memcpy(ret, nvpair + 4, slen);
1622	ret[slen] = 0;
1623	return ret;
1624}
1625
1626char *
1627zfs_nvlist_lookup_nvlist(char *nvlist, char *name)
1628{
1629	char *nvpair;
1630	char *ret;
1631	size_t size;
1632	int found;
1633
1634	found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair,
1635							  &size, 0);
1636	if (!found)
1637		return 0;
1638
1639	/* Allocate 12 bytes in addition to the nvlist size: One uint32 before the
1640	 * nvlist to hold the encoding method, and two zero uint32's after the
1641	 * nvlist as the NULL terminator.
1642	 */
1643	ret = calloc(1, size + 3 * sizeof(uint32_t));
1644	if (!ret)
1645		return 0;
1646	memcpy(ret, nvlist, sizeof(uint32_t));
1647
1648	memcpy(ret + sizeof(uint32_t), nvpair, size);
1649	return ret;
1650}
1651
1652int
1653zfs_nvlist_lookup_nvlist_array_get_nelm(char *nvlist, char *name)
1654{
1655	char *nvpair;
1656	size_t nelm, size;
1657	int found;
1658
1659	found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair,
1660							  &size, &nelm);
1661	if (!found)
1662		return -1;
1663	return nelm;
1664}
1665
1666char *
1667zfs_nvlist_lookup_nvlist_array(char *nvlist, char *name,
1668									size_t index)
1669{
1670	char *nvpair, *nvpairptr;
1671	int found;
1672	char *ret;
1673	size_t size;
1674	unsigned i;
1675	size_t nelm;
1676
1677	found = nvlist_find_value(nvlist, name, DATA_TYPE_NVLIST, &nvpair,
1678							  &size, &nelm);
1679	if (!found)
1680		return 0;
1681	if (index >= nelm) {
1682		printf("trying to lookup past nvlist array\n");
1683		return 0;
1684	}
1685
1686	nvpairptr = nvpair;
1687
1688	for (i = 0; i < index; i++) {
1689		uint32_t encode_size;
1690
1691		/* skip the header, nvl_version, and nvl_nvflag */
1692		nvpairptr = nvpairptr + 4 * 2;
1693
1694		while (nvpairptr < nvpair + size
1695			   && (encode_size = be32_to_cpu(*(uint32_t *) nvpairptr)))
1696			nvlist += encode_size;	/* goto the next nvpair */
1697
1698		nvlist = nvlist + 4 * 2;	/* skip the ending 2 zeros - 8 bytes */
1699	}
1700
1701	if (nvpairptr >= nvpair + size
1702		|| nvpairptr + be32_to_cpu(*(uint32_t *) (nvpairptr + 4 * 2))
1703		>= nvpair + size) {
1704		printf("incorrect nvlist array\n");
1705		return 0;
1706	}
1707
1708	ret = calloc(1, be32_to_cpu(*(uint32_t *) (nvpairptr + 4 * 2))
1709				 + 3 * sizeof(uint32_t));
1710	if (!ret)
1711		return 0;
1712	memcpy(ret, nvlist, sizeof(uint32_t));
1713
1714	memcpy(ret + sizeof(uint32_t), nvpairptr, size);
1715	return ret;
1716}
1717
1718static int
1719int_zfs_fetch_nvlist(struct zfs_data *data, char **nvlist)
1720{
1721	int err;
1722
1723	*nvlist = malloc(VDEV_PHYS_SIZE);
1724	/* Read in the vdev name-value pair list (112K). */
1725	err = zfs_devread(data->vdev_phys_sector, 0, VDEV_PHYS_SIZE, *nvlist);
1726	if (err) {
1727		free(*nvlist);
1728		*nvlist = 0;
1729		return err;
1730	}
1731	return ZFS_ERR_NONE;
1732}
1733
1734/*
1735 * Check the disk label information and retrieve needed vdev name-value pairs.
1736 *
1737 */
1738static int
1739check_pool_label(struct zfs_data *data)
1740{
1741	uint64_t pool_state;
1742	char *nvlist;			/* for the pool */
1743	char *vdevnvlist;		/* for the vdev */
1744	uint64_t diskguid;
1745	uint64_t version;
1746	int found;
1747	int err;
1748
1749	err = int_zfs_fetch_nvlist(data, &nvlist);
1750	if (err)
1751		return err;
1752
1753	found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_STATE,
1754										  &pool_state);
1755	if (!found) {
1756		free(nvlist);
1757		printf("zfs pool state not found\n");
1758		return ZFS_ERR_BAD_FS;
1759	}
1760
1761	if (pool_state == POOL_STATE_DESTROYED) {
1762		free(nvlist);
1763		printf("zpool is marked as destroyed\n");
1764		return ZFS_ERR_BAD_FS;
1765	}
1766
1767	data->label_txg = 0;
1768	found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_TXG,
1769										  &data->label_txg);
1770	if (!found) {
1771		free(nvlist);
1772		printf("zfs pool txg not found\n");
1773		return ZFS_ERR_BAD_FS;
1774	}
1775
1776	/* not an active device */
1777	if (data->label_txg == 0) {
1778		free(nvlist);
1779		printf("zpool is not active\n");
1780		return ZFS_ERR_BAD_FS;
1781	}
1782
1783	found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_VERSION,
1784										  &version);
1785	if (!found) {
1786		free(nvlist);
1787		printf("zpool config version not found\n");
1788		return ZFS_ERR_BAD_FS;
1789	}
1790
1791	if (version > SPA_VERSION) {
1792		free(nvlist);
1793		printf("SPA version too new %llu > %llu\n",
1794			   (unsigned long long) version,
1795			   (unsigned long long) SPA_VERSION);
1796		return ZFS_ERR_NOT_IMPLEMENTED_YET;
1797	}
1798
1799	vdevnvlist = zfs_nvlist_lookup_nvlist(nvlist, ZPOOL_CONFIG_VDEV_TREE);
1800	if (!vdevnvlist) {
1801		free(nvlist);
1802		printf("ZFS config vdev tree not found\n");
1803		return ZFS_ERR_BAD_FS;
1804	}
1805
1806	found = zfs_nvlist_lookup_uint64(vdevnvlist, ZPOOL_CONFIG_ASHIFT,
1807										  &data->vdev_ashift);
1808	free(vdevnvlist);
1809	if (!found) {
1810		free(nvlist);
1811		printf("ZPOOL config ashift not found\n");
1812		return ZFS_ERR_BAD_FS;
1813	}
1814
1815	found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_GUID, &diskguid);
1816	if (!found) {
1817		free(nvlist);
1818		printf("ZPOOL config guid not found\n");
1819		return ZFS_ERR_BAD_FS;
1820	}
1821
1822	found = zfs_nvlist_lookup_uint64(nvlist, ZPOOL_CONFIG_POOL_GUID, &data->pool_guid);
1823	if (!found) {
1824		free(nvlist);
1825		printf("ZPOOL config pool guid not found\n");
1826		return ZFS_ERR_BAD_FS;
1827	}
1828
1829	free(nvlist);
1830
1831	printf("ZFS Pool GUID: %llu (%016llx) Label: GUID: %llu (%016llx), txg: %llu, SPA v%llu, ashift: %llu\n",
1832		   (unsigned long long) data->pool_guid,
1833		   (unsigned long long) data->pool_guid,
1834		   (unsigned long long) diskguid,
1835		   (unsigned long long) diskguid,
1836		   (unsigned long long) data->label_txg,
1837		   (unsigned long long) version,
1838		   (unsigned long long) data->vdev_ashift);
1839
1840	return ZFS_ERR_NONE;
1841}
1842
1843/*
1844 * vdev_label_start returns the physical disk offset (in bytes) of
1845 * label "l".
1846 */
1847static uint64_t vdev_label_start(uint64_t psize, int l)
1848{
1849	return (l * sizeof(vdev_label_t) + (l < VDEV_LABELS / 2 ?
1850										0 : psize -
1851										VDEV_LABELS * sizeof(vdev_label_t)));
1852}
1853
1854void
1855zfs_unmount(struct zfs_data *data)
1856{
1857	free(data->dnode_buf);
1858	free(data->dnode_mdn);
1859	free(data->file_buf);
1860	free(data);
1861}
1862
1863/*
1864 * zfs_mount() locates a valid uberblock of the root pool and read in its MOS
1865 * to the memory address MOS.
1866 *
1867 */
1868struct zfs_data *
1869zfs_mount(device_t dev)
1870{
1871	struct zfs_data *data = 0;
1872	int label = 0, bestlabel = -1;
1873	char *ub_array;
1874	uberblock_t *ubbest;
1875	uberblock_t *ubcur = NULL;
1876	void *osp = 0;
1877	size_t ospsize;
1878	int err;
1879
1880	data = malloc(sizeof(*data));
1881	if (!data)
1882		return 0;
1883	memset(data, 0, sizeof(*data));
1884
1885	ub_array = malloc(VDEV_UBERBLOCK_RING);
1886	if (!ub_array) {
1887		zfs_unmount(data);
1888		return 0;
1889	}
1890
1891	ubbest = malloc(sizeof(*ubbest));
1892	if (!ubbest) {
1893		free(ub_array);
1894		zfs_unmount(data);
1895		return 0;
1896	}
1897	memset(ubbest, 0, sizeof(*ubbest));
1898
1899	/*
1900	 * some eltorito stacks don't give us a size and
1901	 * we end up setting the size to MAXUINT, further
1902	 * some of these devices stop working once a single
1903	 * read past the end has been issued. Checking
1904	 * for a maximum part_length and skipping the backup
1905	 * labels at the end of the slice/partition/device
1906	 * avoids breaking down on such devices.
1907	 */
1908	const int vdevnum =
1909		dev->part_length == 0 ?
1910		VDEV_LABELS / 2 : VDEV_LABELS;
1911
1912	/* Size in bytes of the device (disk or partition) aligned to label size*/
1913	uint64_t device_size =
1914		dev->part_length << SECTOR_BITS;
1915
1916	const uint64_t alignedbytes =
1917		P2ALIGN(device_size, (uint64_t) sizeof(vdev_label_t));
1918
1919	for (label = 0; label < vdevnum; label++) {
1920		uint64_t labelstartbytes = vdev_label_start(alignedbytes, label);
1921		uint64_t labelstart = labelstartbytes >> SECTOR_BITS;
1922
1923		debug("zfs reading label %d at sector %llu (byte %llu)\n",
1924			  label, (unsigned long long) labelstart,
1925			  (unsigned long long) labelstartbytes);
1926
1927		data->vdev_phys_sector = labelstart +
1928			((VDEV_SKIP_SIZE + VDEV_BOOT_HEADER_SIZE) >> SECTOR_BITS);
1929
1930		err = check_pool_label(data);
1931		if (err) {
1932			printf("zfs error checking label %d\n", label);
1933			continue;
1934		}
1935
1936		/* Read in the uberblock ring (128K). */
1937		err = zfs_devread(data->vdev_phys_sector  +
1938						  (VDEV_PHYS_SIZE >> SECTOR_BITS),
1939						  0, VDEV_UBERBLOCK_RING, ub_array);
1940		if (err) {
1941			printf("zfs error reading uberblock ring for label %d\n", label);
1942			continue;
1943		}
1944
1945		ubcur = find_bestub(ub_array, data);
1946		if (!ubcur) {
1947			printf("zfs No good uberblocks found in label %d\n", label);
1948			continue;
1949		}
1950
1951		if (vdev_uberblock_compare(ubcur, ubbest) > 0) {
1952			/* Looks like the block is good, so use it.*/
1953			memcpy(ubbest, ubcur, sizeof(*ubbest));
1954			bestlabel = label;
1955			debug("zfs Current best uberblock found in label %d\n", label);
1956		}
1957	}
1958	free(ub_array);
1959
1960	/* We zero'd the structure to begin with.  If we never assigned to it,
1961	   magic will still be zero. */
1962	if (!ubbest->ub_magic) {
1963		printf("couldn't find a valid ZFS label\n");
1964		zfs_unmount(data);
1965		free(ubbest);
1966		return 0;
1967	}
1968
1969	debug("zfs ubbest %p in label %d\n", ubbest, bestlabel);
1970
1971	zfs_endian_t ub_endian =
1972		zfs_to_cpu64(ubbest->ub_magic, LITTLE_ENDIAN) == UBERBLOCK_MAGIC
1973		? LITTLE_ENDIAN : BIG_ENDIAN;
1974
1975	debug("zfs endian set to %s\n", !ub_endian ? "big" : "little");
1976
1977	err = zio_read(&ubbest->ub_rootbp, ub_endian, &osp, &ospsize, data);
1978
1979	if (err) {
1980		printf("couldn't zio_read object directory\n");
1981		zfs_unmount(data);
1982		free(osp);
1983		free(ubbest);
1984		return 0;
1985	}
1986
1987	if (ospsize < OBJSET_PHYS_SIZE_V14) {
1988		printf("osp too small\n");
1989		zfs_unmount(data);
1990		free(osp);
1991		free(ubbest);
1992		return 0;
1993	}
1994
1995	/* Got the MOS. Save it at the memory addr MOS. */
1996	memmove(&(data->mos.dn), &((objset_phys_t *) osp)->os_meta_dnode, DNODE_SIZE);
1997	data->mos.endian =
1998		(zfs_to_cpu64(ubbest->ub_rootbp.blk_prop, ub_endian) >> 63) & 1;
1999	memmove(&(data->current_uberblock), ubbest, sizeof(uberblock_t));
2000
2001	free(osp);
2002	free(ubbest);
2003
2004	return data;
2005}
2006
2007int
2008zfs_fetch_nvlist(device_t dev, char **nvlist)
2009{
2010	struct zfs_data *zfs;
2011	int err;
2012
2013	zfs = zfs_mount(dev);
2014	if (!zfs)
2015		return ZFS_ERR_BAD_FS;
2016	err = int_zfs_fetch_nvlist(zfs, nvlist);
2017	zfs_unmount(zfs);
2018	return err;
2019}
2020
2021/*
2022 * zfs_open() locates a file in the rootpool by following the
2023 * MOS and places the dnode of the file in the memory address DNODE.
2024 */
2025int
2026zfs_open(struct zfs_file *file, const char *fsfilename)
2027{
2028	struct zfs_data *data;
2029	int err;
2030	int isfs;
2031
2032	data = zfs_mount(file->device);
2033	if (!data)
2034		return ZFS_ERR_BAD_FS;
2035
2036	err = dnode_get_fullpath(fsfilename, &(data->mdn), 0,
2037							 &(data->dnode), &isfs, data);
2038	if (err) {
2039		zfs_unmount(data);
2040		return err;
2041	}
2042
2043	if (isfs) {
2044		zfs_unmount(data);
2045		printf("Missing @ or / separator\n");
2046		return ZFS_ERR_FILE_NOT_FOUND;
2047	}
2048
2049	/* We found the dnode for this file. Verify if it is a plain file. */
2050	if (data->dnode.dn.dn_type != DMU_OT_PLAIN_FILE_CONTENTS) {
2051		zfs_unmount(data);
2052		printf("not a file\n");
2053		return ZFS_ERR_BAD_FILE_TYPE;
2054	}
2055
2056	/* get the file size and set the file position to 0 */
2057
2058	/*
2059	 * For DMU_OT_SA we will need to locate the SIZE attribute
2060	 * attribute, which could be either in the bonus buffer
2061	 * or the "spill" block.
2062	 */
2063	if (data->dnode.dn.dn_bonustype == DMU_OT_SA) {
2064		void *sahdrp;
2065		int hdrsize;
2066
2067		if (data->dnode.dn.dn_bonuslen != 0) {
2068			sahdrp = (sa_hdr_phys_t *) DN_BONUS(&data->dnode.dn);
2069		} else if (data->dnode.dn.dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
2070			blkptr_t *bp = &data->dnode.dn.dn_spill;
2071
2072			err = zio_read(bp, data->dnode.endian, &sahdrp, NULL, data);
2073			if (err)
2074				return err;
2075		} else {
2076			printf("filesystem is corrupt :(\n");
2077			return ZFS_ERR_BAD_FS;
2078		}
2079
2080		hdrsize = SA_HDR_SIZE(((sa_hdr_phys_t *) sahdrp));
2081		file->size = *(uint64_t *) ((char *) sahdrp + hdrsize + SA_SIZE_OFFSET);
2082		if ((data->dnode.dn.dn_bonuslen == 0) &&
2083			(data->dnode.dn.dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2084			free(sahdrp);
2085	} else {
2086		file->size = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&data->dnode.dn))->zp_size, data->dnode.endian);
2087	}
2088
2089	file->data = data;
2090	file->offset = 0;
2091
2092	return ZFS_ERR_NONE;
2093}
2094
2095uint64_t
2096zfs_read(zfs_file_t file, char *buf, uint64_t len)
2097{
2098	struct zfs_data *data = (struct zfs_data *) file->data;
2099	int blksz, movesize;
2100	uint64_t length;
2101	int64_t red;
2102	int err;
2103
2104	if (data->file_buf == NULL) {
2105		data->file_buf = malloc(SPA_MAXBLOCKSIZE);
2106		if (!data->file_buf)
2107			return -1;
2108		data->file_start = data->file_end = 0;
2109	}
2110
2111	/*
2112	 * If offset is in memory, move it into the buffer provided and return.
2113	 */
2114	if (file->offset >= data->file_start
2115		&& file->offset + len <= data->file_end) {
2116		memmove(buf, data->file_buf + file->offset - data->file_start,
2117				len);
2118		return len;
2119	}
2120
2121	blksz = zfs_to_cpu16(data->dnode.dn.dn_datablkszsec,
2122							  data->dnode.endian) << SPA_MINBLOCKSHIFT;
2123
2124	/*
2125	 * Entire Dnode is too big to fit into the space available.	 We
2126	 * will need to read it in chunks.	This could be optimized to
2127	 * read in as large a chunk as there is space available, but for
2128	 * now, this only reads in one data block at a time.
2129	 */
2130	length = len;
2131	red = 0;
2132	while (length) {
2133		void *t;
2134		/*
2135		 * Find requested blkid and the offset within that block.
2136		 */
2137		uint64_t blkid = file->offset + red;
2138		uint64_t blkoff = do_div(blkid, blksz);
2139		free(data->file_buf);
2140		data->file_buf = 0;
2141
2142		err = dmu_read(&(data->dnode), blkid, &t,
2143					   0, data);
2144		data->file_buf = t;
2145		if (err)
2146			return -1;
2147
2148		data->file_start = blkid * blksz;
2149		data->file_end = data->file_start + blksz;
2150
2151		movesize = min(length, data->file_end - (int)file->offset - red);
2152
2153		memmove(buf, data->file_buf + blkoff, movesize);
2154		buf += movesize;
2155		length -= movesize;
2156		red += movesize;
2157	}
2158
2159	return len;
2160}
2161
2162int
2163zfs_close(zfs_file_t file)
2164{
2165	zfs_unmount((struct zfs_data *) file->data);
2166	return ZFS_ERR_NONE;
2167}
2168
2169int
2170zfs_getmdnobj(device_t dev, const char *fsfilename,
2171				   uint64_t *mdnobj)
2172{
2173	struct zfs_data *data;
2174	int err;
2175	int isfs;
2176
2177	data = zfs_mount(dev);
2178	if (!data)
2179		return ZFS_ERR_BAD_FS;
2180
2181	err = dnode_get_fullpath(fsfilename, &(data->mdn), mdnobj,
2182							 &(data->dnode), &isfs, data);
2183	zfs_unmount(data);
2184	return err;
2185}
2186
2187static void
2188fill_fs_info(struct zfs_dirhook_info *info,
2189			 dnode_end_t mdn, struct zfs_data *data)
2190{
2191	int err;
2192	dnode_end_t dn;
2193	uint64_t objnum;
2194	uint64_t headobj;
2195
2196	memset(info, 0, sizeof(*info));
2197
2198	info->dir = 1;
2199
2200	if (mdn.dn.dn_type == DMU_OT_DSL_DIR) {
2201		headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&mdn.dn))->dd_head_dataset_obj, mdn.endian);
2202
2203		err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, &mdn, data);
2204		if (err) {
2205			printf("zfs failed here 1\n");
2206			return;
2207		}
2208	}
2209	make_mdn(&mdn, data);
2210	err = dnode_get(&mdn, MASTER_NODE_OBJ, DMU_OT_MASTER_NODE,
2211					&dn, data);
2212	if (err) {
2213		printf("zfs failed here 2\n");
2214		return;
2215	}
2216
2217	err = zap_lookup(&dn, ZFS_ROOT_OBJ, &objnum, data);
2218	if (err) {
2219		printf("zfs failed here 3\n");
2220		return;
2221	}
2222
2223	err = dnode_get(&mdn, objnum, 0, &dn, data);
2224	if (err) {
2225		printf("zfs failed here 4\n");
2226		return;
2227	}
2228
2229	info->mtimeset = 1;
2230	info->mtime = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&dn.dn))->zp_mtime[0], dn.endian);
2231
2232	return;
2233}
2234
2235static int iterate_zap(const char *name, uint64_t val, struct zfs_data *data)
2236{
2237	struct zfs_dirhook_info info;
2238	dnode_end_t dn;
2239
2240	memset(&info, 0, sizeof(info));
2241
2242	dnode_get(&(data->mdn), val, 0, &dn, data);
2243	info.mtimeset = 1;
2244	info.mtime = zfs_to_cpu64(((znode_phys_t *) DN_BONUS(&dn.dn))->zp_mtime[0], dn.endian);
2245	info.dir = (dn.dn.dn_type == DMU_OT_DIRECTORY_CONTENTS);
2246	debug("zfs type=%d, name=%s\n",
2247		  (int)dn.dn.dn_type, (char *)name);
2248	if (!data->userhook)
2249		return 0;
2250	return data->userhook(name, &info);
2251}
2252
2253static int iterate_zap_fs(const char *name, uint64_t val, struct zfs_data *data)
2254{
2255	struct zfs_dirhook_info info;
2256	dnode_end_t mdn;
2257	int err;
2258	err = dnode_get(&(data->mos), val, 0, &mdn, data);
2259	if (err)
2260		return 0;
2261	if (mdn.dn.dn_type != DMU_OT_DSL_DIR)
2262		return 0;
2263
2264	fill_fs_info(&info, mdn, data);
2265
2266	if (!data->userhook)
2267		return 0;
2268	return data->userhook(name, &info);
2269}
2270
2271static int iterate_zap_snap(const char *name, uint64_t val, struct zfs_data *data)
2272{
2273	struct zfs_dirhook_info info;
2274	char *name2;
2275	int ret = 0;
2276	dnode_end_t mdn;
2277	int err;
2278
2279	err = dnode_get(&(data->mos), val, 0, &mdn, data);
2280	if (err)
2281		return 0;
2282
2283	if (mdn.dn.dn_type != DMU_OT_DSL_DATASET)
2284		return 0;
2285
2286	fill_fs_info(&info, mdn, data);
2287
2288	name2 = malloc(strlen(name) + 2);
2289	name2[0] = '@';
2290	memcpy(name2 + 1, name, strlen(name) + 1);
2291	if (data->userhook)
2292		ret = data->userhook(name2, &info);
2293	free(name2);
2294	return ret;
2295}
2296
2297int
2298zfs_ls(device_t device, const char *path,
2299	   int (*hook)(const char *, const struct zfs_dirhook_info *))
2300{
2301	struct zfs_data *data;
2302	int err;
2303	int isfs;
2304
2305	data = zfs_mount(device);
2306	if (!data)
2307		return ZFS_ERR_BAD_FS;
2308
2309	data->userhook = hook;
2310
2311	err = dnode_get_fullpath(path, &(data->mdn), 0, &(data->dnode), &isfs, data);
2312	if (err) {
2313		zfs_unmount(data);
2314		return err;
2315	}
2316	if (isfs) {
2317		uint64_t childobj, headobj;
2318		uint64_t snapobj;
2319		dnode_end_t dn;
2320		struct zfs_dirhook_info info;
2321
2322		fill_fs_info(&info, data->dnode, data);
2323		hook("@", &info);
2324
2325		childobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&data->dnode.dn))->dd_child_dir_zapobj, data->dnode.endian);
2326		headobj = zfs_to_cpu64(((dsl_dir_phys_t *) DN_BONUS(&data->dnode.dn))->dd_head_dataset_obj, data->dnode.endian);
2327		err = dnode_get(&(data->mos), childobj,
2328						DMU_OT_DSL_DIR_CHILD_MAP, &dn, data);
2329		if (err) {
2330			zfs_unmount(data);
2331			return err;
2332		}
2333
2334
2335		zap_iterate(&dn, iterate_zap_fs, data);
2336
2337		err = dnode_get(&(data->mos), headobj, DMU_OT_DSL_DATASET, &dn, data);
2338		if (err) {
2339			zfs_unmount(data);
2340			return err;
2341		}
2342
2343		snapobj = zfs_to_cpu64(((dsl_dataset_phys_t *) DN_BONUS(&dn.dn))->ds_snapnames_zapobj, dn.endian);
2344
2345		err = dnode_get(&(data->mos), snapobj,
2346						DMU_OT_DSL_DS_SNAP_MAP, &dn, data);
2347		if (err) {
2348			zfs_unmount(data);
2349			return err;
2350		}
2351
2352		zap_iterate(&dn, iterate_zap_snap, data);
2353	} else {
2354		if (data->dnode.dn.dn_type != DMU_OT_DIRECTORY_CONTENTS) {
2355			zfs_unmount(data);
2356			printf("not a directory\n");
2357			return ZFS_ERR_BAD_FILE_TYPE;
2358		}
2359		zap_iterate(&(data->dnode), iterate_zap, data);
2360	}
2361	zfs_unmount(data);
2362	return ZFS_ERR_NONE;
2363}
2364