1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Artem Bityutskiy (���������������� ����������)
8 *          Adrian Hunter
9 */
10
11/*
12 * This file implements UBIFS initialization and VFS superblock operations. Some
13 * initialization stuff which is rather large and complex is placed at
14 * corresponding subsystems, but most of it is here.
15 */
16
17#ifndef __UBOOT__
18#include <log.h>
19#include <dm/devres.h>
20#include <linux/init.h>
21#include <linux/slab.h>
22#include <linux/module.h>
23#include <linux/ctype.h>
24#include <linux/kthread.h>
25#include <linux/parser.h>
26#include <linux/seq_file.h>
27#include <linux/mount.h>
28#include <linux/math64.h>
29#include <linux/writeback.h>
30#else
31
32#include <common.h>
33#include <malloc.h>
34#include <memalign.h>
35#include <linux/bitops.h>
36#include <linux/bug.h>
37#include <linux/log2.h>
38#include <linux/printk.h>
39#include <linux/stat.h>
40#include <linux/err.h>
41#include "ubifs.h"
42#include <ubi_uboot.h>
43#include <linux/stringify.h>
44#include <mtd/ubi-user.h>
45
46struct dentry;
47struct file;
48struct iattr;
49struct kstat;
50struct vfsmount;
51
52#define INODE_LOCKED_MAX	64
53
54struct super_block *ubifs_sb;
55
56static struct inode *inodes_locked_down[INODE_LOCKED_MAX];
57
58int set_anon_super(struct super_block *s, void *data)
59{
60	return 0;
61}
62
63struct inode *iget_locked(struct super_block *sb, unsigned long ino)
64{
65	struct inode *inode;
66
67	inode = (struct inode *)malloc_cache_aligned(
68			sizeof(struct ubifs_inode));
69	if (inode) {
70		inode->i_ino = ino;
71		inode->i_sb = sb;
72		list_add(&inode->i_sb_list, &sb->s_inodes);
73		inode->i_state = I_LOCK | I_NEW;
74	}
75
76	return inode;
77}
78
79void iget_failed(struct inode *inode)
80{
81}
82
83int ubifs_iput(struct inode *inode)
84{
85	list_del_init(&inode->i_sb_list);
86
87	free(inode);
88	return 0;
89}
90
91/*
92 * Lock (save) inode in inode array for readback after recovery
93 */
94void iput(struct inode *inode)
95{
96	int i;
97	struct inode *ino;
98
99	/*
100	 * Search end of list
101	 */
102	for (i = 0; i < INODE_LOCKED_MAX; i++) {
103		if (inodes_locked_down[i] == NULL)
104			break;
105	}
106
107	if (i >= INODE_LOCKED_MAX) {
108		dbg_gen("Error, can't lock (save) more inodes while recovery!!!");
109		return;
110	}
111
112	/*
113	 * Allocate and use new inode
114	 */
115	ino = (struct inode *)malloc_cache_aligned(sizeof(struct ubifs_inode));
116	memcpy(ino, inode, sizeof(struct ubifs_inode));
117
118	/*
119	 * Finally save inode in array
120	 */
121	inodes_locked_down[i] = ino;
122}
123
124/* from fs/inode.c */
125/**
126 * clear_nlink - directly zero an inode's link count
127 * @inode: inode
128 *
129 * This is a low-level filesystem helper to replace any
130 * direct filesystem manipulation of i_nlink.  See
131 * drop_nlink() for why we care about i_nlink hitting zero.
132 */
133void clear_nlink(struct inode *inode)
134{
135	if (inode->i_nlink) {
136		inode->__i_nlink = 0;
137		atomic_long_inc(&inode->i_sb->s_remove_count);
138	}
139}
140EXPORT_SYMBOL(clear_nlink);
141
142/**
143 * set_nlink - directly set an inode's link count
144 * @inode: inode
145 * @nlink: new nlink (should be non-zero)
146 *
147 * This is a low-level filesystem helper to replace any
148 * direct filesystem manipulation of i_nlink.
149 */
150void set_nlink(struct inode *inode, unsigned int nlink)
151{
152	if (!nlink) {
153		clear_nlink(inode);
154	} else {
155		/* Yes, some filesystems do change nlink from zero to one */
156		if (inode->i_nlink == 0)
157			atomic_long_dec(&inode->i_sb->s_remove_count);
158
159		inode->__i_nlink = nlink;
160	}
161}
162EXPORT_SYMBOL(set_nlink);
163
164/* from include/linux/fs.h */
165static inline void i_uid_write(struct inode *inode, uid_t uid)
166{
167	inode->i_uid.val = uid;
168}
169
170static inline void i_gid_write(struct inode *inode, gid_t gid)
171{
172	inode->i_gid.val = gid;
173}
174
175void unlock_new_inode(struct inode *inode)
176{
177	return;
178}
179#endif
180
181/*
182 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
183 * allocating too much.
184 */
185#define UBIFS_KMALLOC_OK (128*1024)
186
187/* Slab cache for UBIFS inodes */
188struct kmem_cache *ubifs_inode_slab;
189
190#ifndef __UBOOT__
191/* UBIFS TNC shrinker description */
192static struct shrinker ubifs_shrinker_info = {
193	.scan_objects = ubifs_shrink_scan,
194	.count_objects = ubifs_shrink_count,
195	.seeks = DEFAULT_SEEKS,
196};
197#endif
198
199/**
200 * validate_inode - validate inode.
201 * @c: UBIFS file-system description object
202 * @inode: the inode to validate
203 *
204 * This is a helper function for 'ubifs_iget()' which validates various fields
205 * of a newly built inode to make sure they contain sane values and prevent
206 * possible vulnerabilities. Returns zero if the inode is all right and
207 * a non-zero error code if not.
208 */
209static int validate_inode(struct ubifs_info *c, const struct inode *inode)
210{
211	int err;
212	const struct ubifs_inode *ui = ubifs_inode(inode);
213
214	if (inode->i_size > c->max_inode_sz) {
215		ubifs_err(c, "inode is too large (%lld)",
216			  (long long)inode->i_size);
217		return 1;
218	}
219
220	if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
221		ubifs_err(c, "unknown compression type %d", ui->compr_type);
222		return 2;
223	}
224
225	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
226		return 3;
227
228	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
229		return 4;
230
231	if (ui->xattr && !S_ISREG(inode->i_mode))
232		return 5;
233
234	if (!ubifs_compr_present(ui->compr_type)) {
235		ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
236			   inode->i_ino, ubifs_compr_name(ui->compr_type));
237	}
238
239	err = dbg_check_dir(c, inode);
240	return err;
241}
242
243struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
244{
245	int err;
246	union ubifs_key key;
247	struct ubifs_ino_node *ino;
248	struct ubifs_info *c = sb->s_fs_info;
249	struct inode *inode;
250	struct ubifs_inode *ui;
251#ifdef __UBOOT__
252	int i;
253#endif
254
255	dbg_gen("inode %lu", inum);
256
257#ifdef __UBOOT__
258	/*
259	 * U-Boot special handling of locked down inodes via recovery
260	 * e.g. ubifs_recover_size()
261	 */
262	for (i = 0; i < INODE_LOCKED_MAX; i++) {
263		/*
264		 * Exit on last entry (NULL), inode not found in list
265		 */
266		if (inodes_locked_down[i] == NULL)
267			break;
268
269		if (inodes_locked_down[i]->i_ino == inum) {
270			/*
271			 * We found the locked down inode in our array,
272			 * so just return this pointer instead of creating
273			 * a new one.
274			 */
275			return inodes_locked_down[i];
276		}
277	}
278#endif
279
280	inode = iget_locked(sb, inum);
281	if (!inode)
282		return ERR_PTR(-ENOMEM);
283	if (!(inode->i_state & I_NEW))
284		return inode;
285	ui = ubifs_inode(inode);
286
287	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
288	if (!ino) {
289		err = -ENOMEM;
290		goto out;
291	}
292
293	ino_key_init(c, &key, inode->i_ino);
294
295	err = ubifs_tnc_lookup(c, &key, ino);
296	if (err)
297		goto out_ino;
298
299	inode->i_flags |= (S_NOCMTIME | S_NOATIME);
300	set_nlink(inode, le32_to_cpu(ino->nlink));
301	i_uid_write(inode, le32_to_cpu(ino->uid));
302	i_gid_write(inode, le32_to_cpu(ino->gid));
303	inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
304	inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
305	inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
306	inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
307	inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
308	inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
309	inode->i_mode = le32_to_cpu(ino->mode);
310	inode->i_size = le64_to_cpu(ino->size);
311
312	ui->data_len    = le32_to_cpu(ino->data_len);
313	ui->flags       = le32_to_cpu(ino->flags);
314	ui->compr_type  = le16_to_cpu(ino->compr_type);
315	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
316	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
317	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
318	ui->xattr_names = le32_to_cpu(ino->xattr_names);
319	ui->synced_i_size = ui->ui_size = inode->i_size;
320
321	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
322
323	err = validate_inode(c, inode);
324	if (err)
325		goto out_invalid;
326
327#ifndef __UBOOT__
328	switch (inode->i_mode & S_IFMT) {
329	case S_IFREG:
330		inode->i_mapping->a_ops = &ubifs_file_address_operations;
331		inode->i_op = &ubifs_file_inode_operations;
332		inode->i_fop = &ubifs_file_operations;
333		if (ui->xattr) {
334			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
335			if (!ui->data) {
336				err = -ENOMEM;
337				goto out_ino;
338			}
339			memcpy(ui->data, ino->data, ui->data_len);
340			((char *)ui->data)[ui->data_len] = '\0';
341		} else if (ui->data_len != 0) {
342			err = 10;
343			goto out_invalid;
344		}
345		break;
346	case S_IFDIR:
347		inode->i_op  = &ubifs_dir_inode_operations;
348		inode->i_fop = &ubifs_dir_operations;
349		if (ui->data_len != 0) {
350			err = 11;
351			goto out_invalid;
352		}
353		break;
354	case S_IFLNK:
355		inode->i_op = &ubifs_symlink_inode_operations;
356		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
357			err = 12;
358			goto out_invalid;
359		}
360		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
361		if (!ui->data) {
362			err = -ENOMEM;
363			goto out_ino;
364		}
365		memcpy(ui->data, ino->data, ui->data_len);
366		((char *)ui->data)[ui->data_len] = '\0';
367		inode->i_link = ui->data;
368		break;
369	case S_IFBLK:
370	case S_IFCHR:
371	{
372		dev_t rdev;
373		union ubifs_dev_desc *dev;
374
375		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
376		if (!ui->data) {
377			err = -ENOMEM;
378			goto out_ino;
379		}
380
381		dev = (union ubifs_dev_desc *)ino->data;
382		if (ui->data_len == sizeof(dev->new))
383			rdev = new_decode_dev(le32_to_cpu(dev->new));
384		else if (ui->data_len == sizeof(dev->huge))
385			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
386		else {
387			err = 13;
388			goto out_invalid;
389		}
390		memcpy(ui->data, ino->data, ui->data_len);
391		inode->i_op = &ubifs_file_inode_operations;
392		init_special_inode(inode, inode->i_mode, rdev);
393		break;
394	}
395	case S_IFSOCK:
396	case S_IFIFO:
397		inode->i_op = &ubifs_file_inode_operations;
398		init_special_inode(inode, inode->i_mode, 0);
399		if (ui->data_len != 0) {
400			err = 14;
401			goto out_invalid;
402		}
403		break;
404	default:
405		err = 15;
406		goto out_invalid;
407	}
408#else
409	if ((inode->i_mode & S_IFMT) == S_IFLNK) {
410		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
411			err = 12;
412			goto out_invalid;
413		}
414		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
415		if (!ui->data) {
416			err = -ENOMEM;
417			goto out_ino;
418		}
419		memcpy(ui->data, ino->data, ui->data_len);
420		((char *)ui->data)[ui->data_len] = '\0';
421	}
422#endif
423
424	kfree(ino);
425#ifndef __UBOOT__
426	ubifs_set_inode_flags(inode);
427#endif
428	unlock_new_inode(inode);
429	return inode;
430
431out_invalid:
432	ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
433	ubifs_dump_node(c, ino);
434	ubifs_dump_inode(c, inode);
435	err = -EINVAL;
436out_ino:
437	kfree(ino);
438out:
439	ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
440	iget_failed(inode);
441	return ERR_PTR(err);
442}
443
444static struct inode *ubifs_alloc_inode(struct super_block *sb)
445{
446	struct ubifs_inode *ui;
447
448	ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
449	if (!ui)
450		return NULL;
451
452	memset((void *)ui + sizeof(struct inode), 0,
453	       sizeof(struct ubifs_inode) - sizeof(struct inode));
454	mutex_init(&ui->ui_mutex);
455	spin_lock_init(&ui->ui_lock);
456	return &ui->vfs_inode;
457};
458
459#ifndef __UBOOT__
460static void ubifs_i_callback(struct rcu_head *head)
461{
462	struct inode *inode = container_of(head, struct inode, i_rcu);
463	struct ubifs_inode *ui = ubifs_inode(inode);
464	kmem_cache_free(ubifs_inode_slab, ui);
465}
466
467static void ubifs_destroy_inode(struct inode *inode)
468{
469	struct ubifs_inode *ui = ubifs_inode(inode);
470
471	kfree(ui->data);
472	call_rcu(&inode->i_rcu, ubifs_i_callback);
473}
474
475/*
476 * Note, Linux write-back code calls this without 'i_mutex'.
477 */
478static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
479{
480	int err = 0;
481	struct ubifs_info *c = inode->i_sb->s_fs_info;
482	struct ubifs_inode *ui = ubifs_inode(inode);
483
484	ubifs_assert(!ui->xattr);
485	if (is_bad_inode(inode))
486		return 0;
487
488	mutex_lock(&ui->ui_mutex);
489	/*
490	 * Due to races between write-back forced by budgeting
491	 * (see 'sync_some_inodes()') and background write-back, the inode may
492	 * have already been synchronized, do not do this again. This might
493	 * also happen if it was synchronized in an VFS operation, e.g.
494	 * 'ubifs_link()'.
495	 */
496	if (!ui->dirty) {
497		mutex_unlock(&ui->ui_mutex);
498		return 0;
499	}
500
501	/*
502	 * As an optimization, do not write orphan inodes to the media just
503	 * because this is not needed.
504	 */
505	dbg_gen("inode %lu, mode %#x, nlink %u",
506		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
507	if (inode->i_nlink) {
508		err = ubifs_jnl_write_inode(c, inode);
509		if (err)
510			ubifs_err(c, "can't write inode %lu, error %d",
511				  inode->i_ino, err);
512		else
513			err = dbg_check_inode_size(c, inode, ui->ui_size);
514	}
515
516	ui->dirty = 0;
517	mutex_unlock(&ui->ui_mutex);
518	ubifs_release_dirty_inode_budget(c, ui);
519	return err;
520}
521
522static void ubifs_evict_inode(struct inode *inode)
523{
524	int err;
525	struct ubifs_info *c = inode->i_sb->s_fs_info;
526	struct ubifs_inode *ui = ubifs_inode(inode);
527
528	if (ui->xattr)
529		/*
530		 * Extended attribute inode deletions are fully handled in
531		 * 'ubifs_removexattr()'. These inodes are special and have
532		 * limited usage, so there is nothing to do here.
533		 */
534		goto out;
535
536	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
537	ubifs_assert(!atomic_read(&inode->i_count));
538
539	truncate_inode_pages_final(&inode->i_data);
540
541	if (inode->i_nlink)
542		goto done;
543
544	if (is_bad_inode(inode))
545		goto out;
546
547	ui->ui_size = inode->i_size = 0;
548	err = ubifs_jnl_delete_inode(c, inode);
549	if (err)
550		/*
551		 * Worst case we have a lost orphan inode wasting space, so a
552		 * simple error message is OK here.
553		 */
554		ubifs_err(c, "can't delete inode %lu, error %d",
555			  inode->i_ino, err);
556
557out:
558	if (ui->dirty)
559		ubifs_release_dirty_inode_budget(c, ui);
560	else {
561		/* We've deleted something - clean the "no space" flags */
562		c->bi.nospace = c->bi.nospace_rp = 0;
563		smp_wmb();
564	}
565done:
566	clear_inode(inode);
567}
568#endif
569
570static void ubifs_dirty_inode(struct inode *inode, int flags)
571{
572	struct ubifs_inode *ui = ubifs_inode(inode);
573
574	ubifs_assert(mutex_is_locked(&ui->ui_mutex));
575	if (!ui->dirty) {
576		ui->dirty = 1;
577		dbg_gen("inode %lu",  inode->i_ino);
578	}
579}
580
581#ifndef __UBOOT__
582static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
583{
584	struct ubifs_info *c = dentry->d_sb->s_fs_info;
585	unsigned long long free;
586	__le32 *uuid = (__le32 *)c->uuid;
587
588	free = ubifs_get_free_space(c);
589	dbg_gen("free space %lld bytes (%lld blocks)",
590		free, free >> UBIFS_BLOCK_SHIFT);
591
592	buf->f_type = UBIFS_SUPER_MAGIC;
593	buf->f_bsize = UBIFS_BLOCK_SIZE;
594	buf->f_blocks = c->block_cnt;
595	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
596	if (free > c->report_rp_size)
597		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
598	else
599		buf->f_bavail = 0;
600	buf->f_files = 0;
601	buf->f_ffree = 0;
602	buf->f_namelen = UBIFS_MAX_NLEN;
603	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
604	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
605	ubifs_assert(buf->f_bfree <= c->block_cnt);
606	return 0;
607}
608
609static int ubifs_show_options(struct seq_file *s, struct dentry *root)
610{
611	struct ubifs_info *c = root->d_sb->s_fs_info;
612
613	if (c->mount_opts.unmount_mode == 2)
614		seq_puts(s, ",fast_unmount");
615	else if (c->mount_opts.unmount_mode == 1)
616		seq_puts(s, ",norm_unmount");
617
618	if (c->mount_opts.bulk_read == 2)
619		seq_puts(s, ",bulk_read");
620	else if (c->mount_opts.bulk_read == 1)
621		seq_puts(s, ",no_bulk_read");
622
623	if (c->mount_opts.chk_data_crc == 2)
624		seq_puts(s, ",chk_data_crc");
625	else if (c->mount_opts.chk_data_crc == 1)
626		seq_puts(s, ",no_chk_data_crc");
627
628	if (c->mount_opts.override_compr) {
629		seq_printf(s, ",compr=%s",
630			   ubifs_compr_name(c->mount_opts.compr_type));
631	}
632
633	return 0;
634}
635
636static int ubifs_sync_fs(struct super_block *sb, int wait)
637{
638	int i, err;
639	struct ubifs_info *c = sb->s_fs_info;
640
641	/*
642	 * Zero @wait is just an advisory thing to help the file system shove
643	 * lots of data into the queues, and there will be the second
644	 * '->sync_fs()' call, with non-zero @wait.
645	 */
646	if (!wait)
647		return 0;
648
649	/*
650	 * Synchronize write buffers, because 'ubifs_run_commit()' does not
651	 * do this if it waits for an already running commit.
652	 */
653	for (i = 0; i < c->jhead_cnt; i++) {
654		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
655		if (err)
656			return err;
657	}
658
659	/*
660	 * Strictly speaking, it is not necessary to commit the journal here,
661	 * synchronizing write-buffers would be enough. But committing makes
662	 * UBIFS free space predictions much more accurate, so we want to let
663	 * the user be able to get more accurate results of 'statfs()' after
664	 * they synchronize the file system.
665	 */
666	err = ubifs_run_commit(c);
667	if (err)
668		return err;
669
670	return ubi_sync(c->vi.ubi_num);
671}
672#endif
673
674/**
675 * init_constants_early - initialize UBIFS constants.
676 * @c: UBIFS file-system description object
677 *
678 * This function initialize UBIFS constants which do not need the superblock to
679 * be read. It also checks that the UBI volume satisfies basic UBIFS
680 * requirements. Returns zero in case of success and a negative error code in
681 * case of failure.
682 */
683static int init_constants_early(struct ubifs_info *c)
684{
685	if (c->vi.corrupted) {
686		ubifs_warn(c, "UBI volume is corrupted - read-only mode");
687		c->ro_media = 1;
688	}
689
690	if (c->di.ro_mode) {
691		ubifs_msg(c, "read-only UBI device");
692		c->ro_media = 1;
693	}
694
695	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
696		ubifs_msg(c, "static UBI volume - read-only mode");
697		c->ro_media = 1;
698	}
699
700	c->leb_cnt = c->vi.size;
701	c->leb_size = c->vi.usable_leb_size;
702	c->leb_start = c->di.leb_start;
703	c->half_leb_size = c->leb_size / 2;
704	c->min_io_size = c->di.min_io_size;
705	c->min_io_shift = fls(c->min_io_size) - 1;
706	c->max_write_size = c->di.max_write_size;
707	c->max_write_shift = fls(c->max_write_size) - 1;
708
709	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
710		ubifs_err(c, "too small LEBs (%d bytes), min. is %d bytes",
711			  c->leb_size, UBIFS_MIN_LEB_SZ);
712		return -EINVAL;
713	}
714
715	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
716		ubifs_err(c, "too few LEBs (%d), min. is %d",
717			  c->leb_cnt, UBIFS_MIN_LEB_CNT);
718		return -EINVAL;
719	}
720
721	if (!is_power_of_2(c->min_io_size)) {
722		ubifs_err(c, "bad min. I/O size %d", c->min_io_size);
723		return -EINVAL;
724	}
725
726	/*
727	 * Maximum write size has to be greater or equivalent to min. I/O
728	 * size, and be multiple of min. I/O size.
729	 */
730	if (c->max_write_size < c->min_io_size ||
731	    c->max_write_size % c->min_io_size ||
732	    !is_power_of_2(c->max_write_size)) {
733		ubifs_err(c, "bad write buffer size %d for %d min. I/O unit",
734			  c->max_write_size, c->min_io_size);
735		return -EINVAL;
736	}
737
738	/*
739	 * UBIFS aligns all node to 8-byte boundary, so to make function in
740	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
741	 * less than 8.
742	 */
743	if (c->min_io_size < 8) {
744		c->min_io_size = 8;
745		c->min_io_shift = 3;
746		if (c->max_write_size < c->min_io_size) {
747			c->max_write_size = c->min_io_size;
748			c->max_write_shift = c->min_io_shift;
749		}
750	}
751
752	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
753	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
754
755	/*
756	 * Initialize node length ranges which are mostly needed for node
757	 * length validation.
758	 */
759	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
760	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
761	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
762	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
763	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
764	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
765
766	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
767	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
768	c->ranges[UBIFS_ORPH_NODE].min_len =
769				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
770	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
771	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
772	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
773	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
774	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
775	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
776	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
777	/*
778	 * Minimum indexing node size is amended later when superblock is
779	 * read and the key length is known.
780	 */
781	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
782	/*
783	 * Maximum indexing node size is amended later when superblock is
784	 * read and the fanout is known.
785	 */
786	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
787
788	/*
789	 * Initialize dead and dark LEB space watermarks. See gc.c for comments
790	 * about these values.
791	 */
792	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
793	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
794
795	/*
796	 * Calculate how many bytes would be wasted at the end of LEB if it was
797	 * fully filled with data nodes of maximum size. This is used in
798	 * calculations when reporting free space.
799	 */
800	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
801
802	/* Buffer size for bulk-reads */
803	c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
804	if (c->max_bu_buf_len > c->leb_size)
805		c->max_bu_buf_len = c->leb_size;
806	return 0;
807}
808
809/**
810 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
811 * @c: UBIFS file-system description object
812 * @lnum: LEB the write-buffer was synchronized to
813 * @free: how many free bytes left in this LEB
814 * @pad: how many bytes were padded
815 *
816 * This is a callback function which is called by the I/O unit when the
817 * write-buffer is synchronized. We need this to correctly maintain space
818 * accounting in bud logical eraseblocks. This function returns zero in case of
819 * success and a negative error code in case of failure.
820 *
821 * This function actually belongs to the journal, but we keep it here because
822 * we want to keep it static.
823 */
824static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
825{
826	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
827}
828
829/*
830 * init_constants_sb - initialize UBIFS constants.
831 * @c: UBIFS file-system description object
832 *
833 * This is a helper function which initializes various UBIFS constants after
834 * the superblock has been read. It also checks various UBIFS parameters and
835 * makes sure they are all right. Returns zero in case of success and a
836 * negative error code in case of failure.
837 */
838static int init_constants_sb(struct ubifs_info *c)
839{
840	int tmp, err;
841	long long tmp64;
842
843	c->main_bytes = (long long)c->main_lebs * c->leb_size;
844	c->max_znode_sz = sizeof(struct ubifs_znode) +
845				c->fanout * sizeof(struct ubifs_zbranch);
846
847	tmp = ubifs_idx_node_sz(c, 1);
848	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
849	c->min_idx_node_sz = ALIGN(tmp, 8);
850
851	tmp = ubifs_idx_node_sz(c, c->fanout);
852	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
853	c->max_idx_node_sz = ALIGN(tmp, 8);
854
855	/* Make sure LEB size is large enough to fit full commit */
856	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
857	tmp = ALIGN(tmp, c->min_io_size);
858	if (tmp > c->leb_size) {
859		ubifs_err(c, "too small LEB size %d, at least %d needed",
860			  c->leb_size, tmp);
861		return -EINVAL;
862	}
863
864	/*
865	 * Make sure that the log is large enough to fit reference nodes for
866	 * all buds plus one reserved LEB.
867	 */
868	tmp64 = c->max_bud_bytes + c->leb_size - 1;
869	c->max_bud_cnt = div_u64(tmp64, c->leb_size);
870	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
871	tmp /= c->leb_size;
872	tmp += 1;
873	if (c->log_lebs < tmp) {
874		ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
875			  c->log_lebs, tmp);
876		return -EINVAL;
877	}
878
879	/*
880	 * When budgeting we assume worst-case scenarios when the pages are not
881	 * be compressed and direntries are of the maximum size.
882	 *
883	 * Note, data, which may be stored in inodes is budgeted separately, so
884	 * it is not included into 'c->bi.inode_budget'.
885	 */
886	c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
887	c->bi.inode_budget = UBIFS_INO_NODE_SZ;
888	c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
889
890	/*
891	 * When the amount of flash space used by buds becomes
892	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
893	 * The writers are unblocked when the commit is finished. To avoid
894	 * writers to be blocked UBIFS initiates background commit in advance,
895	 * when number of bud bytes becomes above the limit defined below.
896	 */
897	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
898
899	/*
900	 * Ensure minimum journal size. All the bytes in the journal heads are
901	 * considered to be used, when calculating the current journal usage.
902	 * Consequently, if the journal is too small, UBIFS will treat it as
903	 * always full.
904	 */
905	tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
906	if (c->bg_bud_bytes < tmp64)
907		c->bg_bud_bytes = tmp64;
908	if (c->max_bud_bytes < tmp64 + c->leb_size)
909		c->max_bud_bytes = tmp64 + c->leb_size;
910
911	err = ubifs_calc_lpt_geom(c);
912	if (err)
913		return err;
914
915	/* Initialize effective LEB size used in budgeting calculations */
916	c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
917	return 0;
918}
919
920/*
921 * init_constants_master - initialize UBIFS constants.
922 * @c: UBIFS file-system description object
923 *
924 * This is a helper function which initializes various UBIFS constants after
925 * the master node has been read. It also checks various UBIFS parameters and
926 * makes sure they are all right.
927 */
928static void init_constants_master(struct ubifs_info *c)
929{
930	long long tmp64;
931
932	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
933	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
934
935	/*
936	 * Calculate total amount of FS blocks. This number is not used
937	 * internally because it does not make much sense for UBIFS, but it is
938	 * necessary to report something for the 'statfs()' call.
939	 *
940	 * Subtract the LEB reserved for GC, the LEB which is reserved for
941	 * deletions, minimum LEBs for the index, and assume only one journal
942	 * head is available.
943	 */
944	tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
945	tmp64 *= (long long)c->leb_size - c->leb_overhead;
946	tmp64 = ubifs_reported_space(c, tmp64);
947	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
948}
949
950/**
951 * take_gc_lnum - reserve GC LEB.
952 * @c: UBIFS file-system description object
953 *
954 * This function ensures that the LEB reserved for garbage collection is marked
955 * as "taken" in lprops. We also have to set free space to LEB size and dirty
956 * space to zero, because lprops may contain out-of-date information if the
957 * file-system was un-mounted before it has been committed. This function
958 * returns zero in case of success and a negative error code in case of
959 * failure.
960 */
961static int take_gc_lnum(struct ubifs_info *c)
962{
963	int err;
964
965	if (c->gc_lnum == -1) {
966		ubifs_err(c, "no LEB for GC");
967		return -EINVAL;
968	}
969
970	/* And we have to tell lprops that this LEB is taken */
971	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
972				  LPROPS_TAKEN, 0, 0);
973	return err;
974}
975
976/**
977 * alloc_wbufs - allocate write-buffers.
978 * @c: UBIFS file-system description object
979 *
980 * This helper function allocates and initializes UBIFS write-buffers. Returns
981 * zero in case of success and %-ENOMEM in case of failure.
982 */
983static int alloc_wbufs(struct ubifs_info *c)
984{
985	int i, err;
986
987	c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
988			    GFP_KERNEL);
989	if (!c->jheads)
990		return -ENOMEM;
991
992	/* Initialize journal heads */
993	for (i = 0; i < c->jhead_cnt; i++) {
994		INIT_LIST_HEAD(&c->jheads[i].buds_list);
995		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
996		if (err)
997			return err;
998
999		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
1000		c->jheads[i].wbuf.jhead = i;
1001		c->jheads[i].grouped = 1;
1002	}
1003
1004	/*
1005	 * Garbage Collector head does not need to be synchronized by timer.
1006	 * Also GC head nodes are not grouped.
1007	 */
1008	c->jheads[GCHD].wbuf.no_timer = 1;
1009	c->jheads[GCHD].grouped = 0;
1010
1011	return 0;
1012}
1013
1014/**
1015 * free_wbufs - free write-buffers.
1016 * @c: UBIFS file-system description object
1017 */
1018static void free_wbufs(struct ubifs_info *c)
1019{
1020	int i;
1021
1022	if (c->jheads) {
1023		for (i = 0; i < c->jhead_cnt; i++) {
1024			kfree(c->jheads[i].wbuf.buf);
1025			kfree(c->jheads[i].wbuf.inodes);
1026		}
1027		kfree(c->jheads);
1028		c->jheads = NULL;
1029	}
1030}
1031
1032/**
1033 * free_orphans - free orphans.
1034 * @c: UBIFS file-system description object
1035 */
1036static void free_orphans(struct ubifs_info *c)
1037{
1038	struct ubifs_orphan *orph;
1039
1040	while (c->orph_dnext) {
1041		orph = c->orph_dnext;
1042		c->orph_dnext = orph->dnext;
1043		list_del(&orph->list);
1044		kfree(orph);
1045	}
1046
1047	while (!list_empty(&c->orph_list)) {
1048		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
1049		list_del(&orph->list);
1050		kfree(orph);
1051		ubifs_err(c, "orphan list not empty at unmount");
1052	}
1053
1054	vfree(c->orph_buf);
1055	c->orph_buf = NULL;
1056}
1057
1058/**
1059 * free_buds - free per-bud objects.
1060 * @c: UBIFS file-system description object
1061 */
1062static void free_buds(struct ubifs_info *c)
1063{
1064	struct ubifs_bud *bud, *n;
1065
1066	rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
1067		kfree(bud);
1068}
1069
1070/**
1071 * check_volume_empty - check if the UBI volume is empty.
1072 * @c: UBIFS file-system description object
1073 *
1074 * This function checks if the UBIFS volume is empty by looking if its LEBs are
1075 * mapped or not. The result of checking is stored in the @c->empty variable.
1076 * Returns zero in case of success and a negative error code in case of
1077 * failure.
1078 */
1079static int check_volume_empty(struct ubifs_info *c)
1080{
1081	int lnum, err;
1082
1083	c->empty = 1;
1084	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
1085		err = ubifs_is_mapped(c, lnum);
1086		if (unlikely(err < 0))
1087			return err;
1088		if (err == 1) {
1089			c->empty = 0;
1090			break;
1091		}
1092
1093		cond_resched();
1094	}
1095
1096	return 0;
1097}
1098
1099/*
1100 * UBIFS mount options.
1101 *
1102 * Opt_fast_unmount: do not run a journal commit before un-mounting
1103 * Opt_norm_unmount: run a journal commit before un-mounting
1104 * Opt_bulk_read: enable bulk-reads
1105 * Opt_no_bulk_read: disable bulk-reads
1106 * Opt_chk_data_crc: check CRCs when reading data nodes
1107 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
1108 * Opt_override_compr: override default compressor
1109 * Opt_err: just end of array marker
1110 */
1111enum {
1112	Opt_fast_unmount,
1113	Opt_norm_unmount,
1114	Opt_bulk_read,
1115	Opt_no_bulk_read,
1116	Opt_chk_data_crc,
1117	Opt_no_chk_data_crc,
1118	Opt_override_compr,
1119	Opt_err,
1120};
1121
1122#ifndef __UBOOT__
1123static const match_table_t tokens = {
1124	{Opt_fast_unmount, "fast_unmount"},
1125	{Opt_norm_unmount, "norm_unmount"},
1126	{Opt_bulk_read, "bulk_read"},
1127	{Opt_no_bulk_read, "no_bulk_read"},
1128	{Opt_chk_data_crc, "chk_data_crc"},
1129	{Opt_no_chk_data_crc, "no_chk_data_crc"},
1130	{Opt_override_compr, "compr=%s"},
1131	{Opt_err, NULL},
1132};
1133
1134/**
1135 * parse_standard_option - parse a standard mount option.
1136 * @option: the option to parse
1137 *
1138 * Normally, standard mount options like "sync" are passed to file-systems as
1139 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
1140 * be present in the options string. This function tries to deal with this
1141 * situation and parse standard options. Returns 0 if the option was not
1142 * recognized, and the corresponding integer flag if it was.
1143 *
1144 * UBIFS is only interested in the "sync" option, so do not check for anything
1145 * else.
1146 */
1147static int parse_standard_option(const char *option)
1148{
1149
1150	pr_notice("UBIFS: parse %s\n", option);
1151	if (!strcmp(option, "sync"))
1152		return MS_SYNCHRONOUS;
1153	return 0;
1154}
1155
1156/**
1157 * ubifs_parse_options - parse mount parameters.
1158 * @c: UBIFS file-system description object
1159 * @options: parameters to parse
1160 * @is_remount: non-zero if this is FS re-mount
1161 *
1162 * This function parses UBIFS mount options and returns zero in case success
1163 * and a negative error code in case of failure.
1164 */
1165static int ubifs_parse_options(struct ubifs_info *c, char *options,
1166			       int is_remount)
1167{
1168	char *p;
1169	substring_t args[MAX_OPT_ARGS];
1170
1171	if (!options)
1172		return 0;
1173
1174	while ((p = strsep(&options, ","))) {
1175		int token;
1176
1177		if (!*p)
1178			continue;
1179
1180		token = match_token(p, tokens, args);
1181		switch (token) {
1182		/*
1183		 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1184		 * We accept them in order to be backward-compatible. But this
1185		 * should be removed at some point.
1186		 */
1187		case Opt_fast_unmount:
1188			c->mount_opts.unmount_mode = 2;
1189			break;
1190		case Opt_norm_unmount:
1191			c->mount_opts.unmount_mode = 1;
1192			break;
1193		case Opt_bulk_read:
1194			c->mount_opts.bulk_read = 2;
1195			c->bulk_read = 1;
1196			break;
1197		case Opt_no_bulk_read:
1198			c->mount_opts.bulk_read = 1;
1199			c->bulk_read = 0;
1200			break;
1201		case Opt_chk_data_crc:
1202			c->mount_opts.chk_data_crc = 2;
1203			c->no_chk_data_crc = 0;
1204			break;
1205		case Opt_no_chk_data_crc:
1206			c->mount_opts.chk_data_crc = 1;
1207			c->no_chk_data_crc = 1;
1208			break;
1209		case Opt_override_compr:
1210		{
1211			char *name = match_strdup(&args[0]);
1212
1213			if (!name)
1214				return -ENOMEM;
1215			if (!strcmp(name, "none"))
1216				c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1217			else if (!strcmp(name, "lzo"))
1218				c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1219			else if (!strcmp(name, "zlib"))
1220				c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1221			else {
1222				ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1223				kfree(name);
1224				return -EINVAL;
1225			}
1226			kfree(name);
1227			c->mount_opts.override_compr = 1;
1228			c->default_compr = c->mount_opts.compr_type;
1229			break;
1230		}
1231		default:
1232		{
1233			unsigned long flag;
1234			struct super_block *sb = c->vfs_sb;
1235
1236			flag = parse_standard_option(p);
1237			if (!flag) {
1238				ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1239					  p);
1240				return -EINVAL;
1241			}
1242			sb->s_flags |= flag;
1243			break;
1244		}
1245		}
1246	}
1247
1248	return 0;
1249}
1250#endif
1251
1252/**
1253 * destroy_journal - destroy journal data structures.
1254 * @c: UBIFS file-system description object
1255 *
1256 * This function destroys journal data structures including those that may have
1257 * been created by recovery functions.
1258 */
1259static void destroy_journal(struct ubifs_info *c)
1260{
1261	while (!list_empty(&c->unclean_leb_list)) {
1262		struct ubifs_unclean_leb *ucleb;
1263
1264		ucleb = list_entry(c->unclean_leb_list.next,
1265				   struct ubifs_unclean_leb, list);
1266		list_del(&ucleb->list);
1267		kfree(ucleb);
1268	}
1269	while (!list_empty(&c->old_buds)) {
1270		struct ubifs_bud *bud;
1271
1272		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1273		list_del(&bud->list);
1274		kfree(bud);
1275	}
1276	ubifs_destroy_idx_gc(c);
1277	ubifs_destroy_size_tree(c);
1278	ubifs_tnc_close(c);
1279	free_buds(c);
1280}
1281
1282/**
1283 * bu_init - initialize bulk-read information.
1284 * @c: UBIFS file-system description object
1285 */
1286static void bu_init(struct ubifs_info *c)
1287{
1288	ubifs_assert(c->bulk_read == 1);
1289
1290	if (c->bu.buf)
1291		return; /* Already initialized */
1292
1293again:
1294	c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1295	if (!c->bu.buf) {
1296		if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1297			c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1298			goto again;
1299		}
1300
1301		/* Just disable bulk-read */
1302		ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1303			   c->max_bu_buf_len);
1304		c->mount_opts.bulk_read = 1;
1305		c->bulk_read = 0;
1306		return;
1307	}
1308}
1309
1310#ifndef __UBOOT__
1311/**
1312 * check_free_space - check if there is enough free space to mount.
1313 * @c: UBIFS file-system description object
1314 *
1315 * This function makes sure UBIFS has enough free space to be mounted in
1316 * read/write mode. UBIFS must always have some free space to allow deletions.
1317 */
1318static int check_free_space(struct ubifs_info *c)
1319{
1320	ubifs_assert(c->dark_wm > 0);
1321	if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1322		ubifs_err(c, "insufficient free space to mount in R/W mode");
1323		ubifs_dump_budg(c, &c->bi);
1324		ubifs_dump_lprops(c);
1325		return -ENOSPC;
1326	}
1327	return 0;
1328}
1329#endif
1330
1331/**
1332 * mount_ubifs - mount UBIFS file-system.
1333 * @c: UBIFS file-system description object
1334 *
1335 * This function mounts UBIFS file system. Returns zero in case of success and
1336 * a negative error code in case of failure.
1337 */
1338static int mount_ubifs(struct ubifs_info *c)
1339{
1340	int err;
1341	long long x;
1342#ifndef CONFIG_UBIFS_SILENCE_MSG
1343	long long y;
1344#endif
1345	size_t sz;
1346
1347	c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
1348	/* Suppress error messages while probing if MS_SILENT is set */
1349	c->probing = !!(c->vfs_sb->s_flags & MS_SILENT);
1350#ifdef __UBOOT__
1351	if (!c->ro_mount) {
1352		printf("UBIFS: only ro mode in U-Boot allowed.\n");
1353		return -EACCES;
1354	}
1355#endif
1356
1357	err = init_constants_early(c);
1358	if (err)
1359		return err;
1360
1361	err = ubifs_debugging_init(c);
1362	if (err)
1363		return err;
1364
1365	err = check_volume_empty(c);
1366	if (err)
1367		goto out_free;
1368
1369	if (c->empty && (c->ro_mount || c->ro_media)) {
1370		/*
1371		 * This UBI volume is empty, and read-only, or the file system
1372		 * is mounted read-only - we cannot format it.
1373		 */
1374		ubifs_err(c, "can't format empty UBI volume: read-only %s",
1375			  c->ro_media ? "UBI volume" : "mount");
1376		err = -EROFS;
1377		goto out_free;
1378	}
1379
1380	if (c->ro_media && !c->ro_mount) {
1381		ubifs_err(c, "cannot mount read-write - read-only media");
1382		err = -EROFS;
1383		goto out_free;
1384	}
1385
1386	/*
1387	 * The requirement for the buffer is that it should fit indexing B-tree
1388	 * height amount of integers. We assume the height if the TNC tree will
1389	 * never exceed 64.
1390	 */
1391	err = -ENOMEM;
1392	c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1393	if (!c->bottom_up_buf)
1394		goto out_free;
1395
1396	c->sbuf = vmalloc(c->leb_size);
1397	if (!c->sbuf)
1398		goto out_free;
1399
1400#ifndef __UBOOT__
1401	if (!c->ro_mount) {
1402		c->ileb_buf = vmalloc(c->leb_size);
1403		if (!c->ileb_buf)
1404			goto out_free;
1405	}
1406#endif
1407
1408	if (c->bulk_read == 1)
1409		bu_init(c);
1410
1411#ifndef __UBOOT__
1412	if (!c->ro_mount) {
1413		c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ,
1414					       GFP_KERNEL);
1415		if (!c->write_reserve_buf)
1416			goto out_free;
1417	}
1418#endif
1419
1420	c->mounting = 1;
1421
1422	err = ubifs_read_superblock(c);
1423	if (err)
1424		goto out_free;
1425
1426	c->probing = 0;
1427
1428	/*
1429	 * Make sure the compressor which is set as default in the superblock
1430	 * or overridden by mount options is actually compiled in.
1431	 */
1432	if (!ubifs_compr_present(c->default_compr)) {
1433		ubifs_err(c, "'compressor \"%s\" is not compiled in",
1434			  ubifs_compr_name(c->default_compr));
1435		err = -ENOTSUPP;
1436		goto out_free;
1437	}
1438
1439	err = init_constants_sb(c);
1440	if (err)
1441		goto out_free;
1442
1443	sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1444	sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1445	c->cbuf = kmalloc(sz, GFP_NOFS);
1446	if (!c->cbuf) {
1447		err = -ENOMEM;
1448		goto out_free;
1449	}
1450
1451	err = alloc_wbufs(c);
1452	if (err)
1453		goto out_cbuf;
1454
1455	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1456#ifndef __UBOOT__
1457	if (!c->ro_mount) {
1458		/* Create background thread */
1459		c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1460		if (IS_ERR(c->bgt)) {
1461			err = PTR_ERR(c->bgt);
1462			c->bgt = NULL;
1463			ubifs_err(c, "cannot spawn \"%s\", error %d",
1464				  c->bgt_name, err);
1465			goto out_wbufs;
1466		}
1467		wake_up_process(c->bgt);
1468	}
1469#endif
1470
1471	err = ubifs_read_master(c);
1472	if (err)
1473		goto out_master;
1474
1475	init_constants_master(c);
1476
1477	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1478		ubifs_msg(c, "recovery needed");
1479		c->need_recovery = 1;
1480	}
1481
1482#ifndef __UBOOT__
1483	if (c->need_recovery && !c->ro_mount) {
1484		err = ubifs_recover_inl_heads(c, c->sbuf);
1485		if (err)
1486			goto out_master;
1487	}
1488#endif
1489
1490	err = ubifs_lpt_init(c, 1, !c->ro_mount);
1491	if (err)
1492		goto out_master;
1493
1494#ifndef __UBOOT__
1495	if (!c->ro_mount && c->space_fixup) {
1496		err = ubifs_fixup_free_space(c);
1497		if (err)
1498			goto out_lpt;
1499	}
1500
1501	if (!c->ro_mount && !c->need_recovery) {
1502		/*
1503		 * Set the "dirty" flag so that if we reboot uncleanly we
1504		 * will notice this immediately on the next mount.
1505		 */
1506		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1507		err = ubifs_write_master(c);
1508		if (err)
1509			goto out_lpt;
1510	}
1511#endif
1512
1513	err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1514	if (err)
1515		goto out_lpt;
1516
1517	err = ubifs_replay_journal(c);
1518	if (err)
1519		goto out_journal;
1520
1521	/* Calculate 'min_idx_lebs' after journal replay */
1522	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1523
1524	err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1525	if (err)
1526		goto out_orphans;
1527
1528	if (!c->ro_mount) {
1529#ifndef __UBOOT__
1530		int lnum;
1531
1532		err = check_free_space(c);
1533		if (err)
1534			goto out_orphans;
1535
1536		/* Check for enough log space */
1537		lnum = c->lhead_lnum + 1;
1538		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1539			lnum = UBIFS_LOG_LNUM;
1540		if (lnum == c->ltail_lnum) {
1541			err = ubifs_consolidate_log(c);
1542			if (err)
1543				goto out_orphans;
1544		}
1545
1546		if (c->need_recovery) {
1547			err = ubifs_recover_size(c);
1548			if (err)
1549				goto out_orphans;
1550			err = ubifs_rcvry_gc_commit(c);
1551			if (err)
1552				goto out_orphans;
1553		} else {
1554			err = take_gc_lnum(c);
1555			if (err)
1556				goto out_orphans;
1557
1558			/*
1559			 * GC LEB may contain garbage if there was an unclean
1560			 * reboot, and it should be un-mapped.
1561			 */
1562			err = ubifs_leb_unmap(c, c->gc_lnum);
1563			if (err)
1564				goto out_orphans;
1565		}
1566
1567		err = dbg_check_lprops(c);
1568		if (err)
1569			goto out_orphans;
1570#endif
1571	} else if (c->need_recovery) {
1572		err = ubifs_recover_size(c);
1573		if (err)
1574			goto out_orphans;
1575	} else {
1576		/*
1577		 * Even if we mount read-only, we have to set space in GC LEB
1578		 * to proper value because this affects UBIFS free space
1579		 * reporting. We do not want to have a situation when
1580		 * re-mounting from R/O to R/W changes amount of free space.
1581		 */
1582		err = take_gc_lnum(c);
1583		if (err)
1584			goto out_orphans;
1585	}
1586
1587#ifndef __UBOOT__
1588	spin_lock(&ubifs_infos_lock);
1589	list_add_tail(&c->infos_list, &ubifs_infos);
1590	spin_unlock(&ubifs_infos_lock);
1591#endif
1592
1593	if (c->need_recovery) {
1594		if (c->ro_mount)
1595			ubifs_msg(c, "recovery deferred");
1596		else {
1597			c->need_recovery = 0;
1598			ubifs_msg(c, "recovery completed");
1599			/*
1600			 * GC LEB has to be empty and taken at this point. But
1601			 * the journal head LEBs may also be accounted as
1602			 * "empty taken" if they are empty.
1603			 */
1604			ubifs_assert(c->lst.taken_empty_lebs > 0);
1605		}
1606	} else
1607		ubifs_assert(c->lst.taken_empty_lebs > 0);
1608
1609	err = dbg_check_filesystem(c);
1610	if (err)
1611		goto out_infos;
1612
1613	err = dbg_debugfs_init_fs(c);
1614	if (err)
1615		goto out_infos;
1616
1617	c->mounting = 0;
1618
1619	ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1620		  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1621		  c->ro_mount ? ", R/O mode" : "");
1622	x = (long long)c->main_lebs * c->leb_size;
1623#ifndef CONFIG_UBIFS_SILENCE_MSG
1624	y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1625#endif
1626	ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1627		  c->leb_size, c->leb_size >> 10, c->min_io_size,
1628		  c->max_write_size);
1629	ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1630		  x, x >> 20, c->main_lebs,
1631		  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1632	ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1633		  c->report_rp_size, c->report_rp_size >> 10);
1634	ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1635		  c->fmt_version, c->ro_compat_version,
1636		  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1637		  c->big_lpt ? ", big LPT model" : ", small LPT model");
1638
1639	dbg_gen("default compressor:  %s", ubifs_compr_name(c->default_compr));
1640	dbg_gen("data journal heads:  %d",
1641		c->jhead_cnt - NONDATA_JHEADS_CNT);
1642	dbg_gen("log LEBs:            %d (%d - %d)",
1643		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1644	dbg_gen("LPT area LEBs:       %d (%d - %d)",
1645		c->lpt_lebs, c->lpt_first, c->lpt_last);
1646	dbg_gen("orphan area LEBs:    %d (%d - %d)",
1647		c->orph_lebs, c->orph_first, c->orph_last);
1648	dbg_gen("main area LEBs:      %d (%d - %d)",
1649		c->main_lebs, c->main_first, c->leb_cnt - 1);
1650	dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1651	dbg_gen("total index bytes:   %lld (%lld KiB, %lld MiB)",
1652		c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1653		c->bi.old_idx_sz >> 20);
1654	dbg_gen("key hash type:       %d", c->key_hash_type);
1655	dbg_gen("tree fanout:         %d", c->fanout);
1656	dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1657	dbg_gen("max. znode size      %d", c->max_znode_sz);
1658	dbg_gen("max. index node size %d", c->max_idx_node_sz);
1659	dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1660		UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1661	dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1662		UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1663	dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1664		UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1665	dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1666		UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1667		UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1668	dbg_gen("dead watermark:      %d", c->dead_wm);
1669	dbg_gen("dark watermark:      %d", c->dark_wm);
1670	dbg_gen("LEB overhead:        %d", c->leb_overhead);
1671	x = (long long)c->main_lebs * c->dark_wm;
1672	dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1673		x, x >> 10, x >> 20);
1674	dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1675		c->max_bud_bytes, c->max_bud_bytes >> 10,
1676		c->max_bud_bytes >> 20);
1677	dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1678		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1679		c->bg_bud_bytes >> 20);
1680	dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1681		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1682	dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1683	dbg_gen("commit number:       %llu", c->cmt_no);
1684
1685	return 0;
1686
1687out_infos:
1688	spin_lock(&ubifs_infos_lock);
1689	list_del(&c->infos_list);
1690	spin_unlock(&ubifs_infos_lock);
1691out_orphans:
1692	free_orphans(c);
1693out_journal:
1694	destroy_journal(c);
1695out_lpt:
1696	ubifs_lpt_free(c, 0);
1697out_master:
1698	kfree(c->mst_node);
1699	kfree(c->rcvrd_mst_node);
1700	if (c->bgt)
1701		kthread_stop(c->bgt);
1702#ifndef __UBOOT__
1703out_wbufs:
1704#endif
1705	free_wbufs(c);
1706out_cbuf:
1707	kfree(c->cbuf);
1708out_free:
1709	kfree(c->write_reserve_buf);
1710	kfree(c->bu.buf);
1711	vfree(c->ileb_buf);
1712	vfree(c->sbuf);
1713	kfree(c->bottom_up_buf);
1714	ubifs_debugging_exit(c);
1715	return err;
1716}
1717
1718/**
1719 * ubifs_umount - un-mount UBIFS file-system.
1720 * @c: UBIFS file-system description object
1721 *
1722 * Note, this function is called to free allocated resourced when un-mounting,
1723 * as well as free resources when an error occurred while we were half way
1724 * through mounting (error path cleanup function). So it has to make sure the
1725 * resource was actually allocated before freeing it.
1726 */
1727#ifndef __UBOOT__
1728static void ubifs_umount(struct ubifs_info *c)
1729#else
1730void ubifs_umount(struct ubifs_info *c)
1731#endif
1732{
1733	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1734		c->vi.vol_id);
1735
1736	dbg_debugfs_exit_fs(c);
1737	spin_lock(&ubifs_infos_lock);
1738	list_del(&c->infos_list);
1739	spin_unlock(&ubifs_infos_lock);
1740
1741#ifndef __UBOOT__
1742	if (c->bgt)
1743		kthread_stop(c->bgt);
1744
1745	destroy_journal(c);
1746#endif
1747	free_wbufs(c);
1748	free_orphans(c);
1749	ubifs_lpt_free(c, 0);
1750
1751	kfree(c->cbuf);
1752	kfree(c->rcvrd_mst_node);
1753	kfree(c->mst_node);
1754	kfree(c->write_reserve_buf);
1755	kfree(c->bu.buf);
1756	vfree(c->ileb_buf);
1757	vfree(c->sbuf);
1758	kfree(c->bottom_up_buf);
1759	ubifs_debugging_exit(c);
1760#ifdef __UBOOT__
1761	ubi_close_volume(c->ubi);
1762	mutex_unlock(&c->umount_mutex);
1763	/* Finally free U-Boot's global copy of superblock */
1764	if (ubifs_sb != NULL) {
1765		free(ubifs_sb->s_fs_info);
1766		free(ubifs_sb);
1767	}
1768#endif
1769}
1770
1771#ifndef __UBOOT__
1772/**
1773 * ubifs_remount_rw - re-mount in read-write mode.
1774 * @c: UBIFS file-system description object
1775 *
1776 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1777 * mode. This function allocates the needed resources and re-mounts UBIFS in
1778 * read-write mode.
1779 */
1780static int ubifs_remount_rw(struct ubifs_info *c)
1781{
1782	int err, lnum;
1783
1784	if (c->rw_incompat) {
1785		ubifs_err(c, "the file-system is not R/W-compatible");
1786		ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1787			  c->fmt_version, c->ro_compat_version,
1788			  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1789		return -EROFS;
1790	}
1791
1792	mutex_lock(&c->umount_mutex);
1793	dbg_save_space_info(c);
1794	c->remounting_rw = 1;
1795	c->ro_mount = 0;
1796
1797	if (c->space_fixup) {
1798		err = ubifs_fixup_free_space(c);
1799		if (err)
1800			goto out;
1801	}
1802
1803	err = check_free_space(c);
1804	if (err)
1805		goto out;
1806
1807	if (c->old_leb_cnt != c->leb_cnt) {
1808		struct ubifs_sb_node *sup;
1809
1810		sup = ubifs_read_sb_node(c);
1811		if (IS_ERR(sup)) {
1812			err = PTR_ERR(sup);
1813			goto out;
1814		}
1815		sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1816		err = ubifs_write_sb_node(c, sup);
1817		kfree(sup);
1818		if (err)
1819			goto out;
1820	}
1821
1822	if (c->need_recovery) {
1823		ubifs_msg(c, "completing deferred recovery");
1824		err = ubifs_write_rcvrd_mst_node(c);
1825		if (err)
1826			goto out;
1827		err = ubifs_recover_size(c);
1828		if (err)
1829			goto out;
1830		err = ubifs_clean_lebs(c, c->sbuf);
1831		if (err)
1832			goto out;
1833		err = ubifs_recover_inl_heads(c, c->sbuf);
1834		if (err)
1835			goto out;
1836	} else {
1837		/* A readonly mount is not allowed to have orphans */
1838		ubifs_assert(c->tot_orphans == 0);
1839		err = ubifs_clear_orphans(c);
1840		if (err)
1841			goto out;
1842	}
1843
1844	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1845		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1846		err = ubifs_write_master(c);
1847		if (err)
1848			goto out;
1849	}
1850
1851	c->ileb_buf = vmalloc(c->leb_size);
1852	if (!c->ileb_buf) {
1853		err = -ENOMEM;
1854		goto out;
1855	}
1856
1857	c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL);
1858	if (!c->write_reserve_buf) {
1859		err = -ENOMEM;
1860		goto out;
1861	}
1862
1863	err = ubifs_lpt_init(c, 0, 1);
1864	if (err)
1865		goto out;
1866
1867	/* Create background thread */
1868	c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1869	if (IS_ERR(c->bgt)) {
1870		err = PTR_ERR(c->bgt);
1871		c->bgt = NULL;
1872		ubifs_err(c, "cannot spawn \"%s\", error %d",
1873			  c->bgt_name, err);
1874		goto out;
1875	}
1876	wake_up_process(c->bgt);
1877
1878	c->orph_buf = vmalloc(c->leb_size);
1879	if (!c->orph_buf) {
1880		err = -ENOMEM;
1881		goto out;
1882	}
1883
1884	/* Check for enough log space */
1885	lnum = c->lhead_lnum + 1;
1886	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1887		lnum = UBIFS_LOG_LNUM;
1888	if (lnum == c->ltail_lnum) {
1889		err = ubifs_consolidate_log(c);
1890		if (err)
1891			goto out;
1892	}
1893
1894	if (c->need_recovery)
1895		err = ubifs_rcvry_gc_commit(c);
1896	else
1897		err = ubifs_leb_unmap(c, c->gc_lnum);
1898	if (err)
1899		goto out;
1900
1901	dbg_gen("re-mounted read-write");
1902	c->remounting_rw = 0;
1903
1904	if (c->need_recovery) {
1905		c->need_recovery = 0;
1906		ubifs_msg(c, "deferred recovery completed");
1907	} else {
1908		/*
1909		 * Do not run the debugging space check if the were doing
1910		 * recovery, because when we saved the information we had the
1911		 * file-system in a state where the TNC and lprops has been
1912		 * modified in memory, but all the I/O operations (including a
1913		 * commit) were deferred. So the file-system was in
1914		 * "non-committed" state. Now the file-system is in committed
1915		 * state, and of course the amount of free space will change
1916		 * because, for example, the old index size was imprecise.
1917		 */
1918		err = dbg_check_space_info(c);
1919	}
1920
1921	mutex_unlock(&c->umount_mutex);
1922	return err;
1923
1924out:
1925	c->ro_mount = 1;
1926	vfree(c->orph_buf);
1927	c->orph_buf = NULL;
1928	if (c->bgt) {
1929		kthread_stop(c->bgt);
1930		c->bgt = NULL;
1931	}
1932	free_wbufs(c);
1933	kfree(c->write_reserve_buf);
1934	c->write_reserve_buf = NULL;
1935	vfree(c->ileb_buf);
1936	c->ileb_buf = NULL;
1937	ubifs_lpt_free(c, 1);
1938	c->remounting_rw = 0;
1939	mutex_unlock(&c->umount_mutex);
1940	return err;
1941}
1942
1943/**
1944 * ubifs_remount_ro - re-mount in read-only mode.
1945 * @c: UBIFS file-system description object
1946 *
1947 * We assume VFS has stopped writing. Possibly the background thread could be
1948 * running a commit, however kthread_stop will wait in that case.
1949 */
1950static void ubifs_remount_ro(struct ubifs_info *c)
1951{
1952	int i, err;
1953
1954	ubifs_assert(!c->need_recovery);
1955	ubifs_assert(!c->ro_mount);
1956
1957	mutex_lock(&c->umount_mutex);
1958	if (c->bgt) {
1959		kthread_stop(c->bgt);
1960		c->bgt = NULL;
1961	}
1962
1963	dbg_save_space_info(c);
1964
1965	for (i = 0; i < c->jhead_cnt; i++)
1966		ubifs_wbuf_sync(&c->jheads[i].wbuf);
1967
1968	c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1969	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1970	c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1971	err = ubifs_write_master(c);
1972	if (err)
1973		ubifs_ro_mode(c, err);
1974
1975	vfree(c->orph_buf);
1976	c->orph_buf = NULL;
1977	kfree(c->write_reserve_buf);
1978	c->write_reserve_buf = NULL;
1979	vfree(c->ileb_buf);
1980	c->ileb_buf = NULL;
1981	ubifs_lpt_free(c, 1);
1982	c->ro_mount = 1;
1983	err = dbg_check_space_info(c);
1984	if (err)
1985		ubifs_ro_mode(c, err);
1986	mutex_unlock(&c->umount_mutex);
1987}
1988
1989static void ubifs_put_super(struct super_block *sb)
1990{
1991	int i;
1992	struct ubifs_info *c = sb->s_fs_info;
1993
1994	ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1995
1996	/*
1997	 * The following asserts are only valid if there has not been a failure
1998	 * of the media. For example, there will be dirty inodes if we failed
1999	 * to write them back because of I/O errors.
2000	 */
2001	if (!c->ro_error) {
2002		ubifs_assert(c->bi.idx_growth == 0);
2003		ubifs_assert(c->bi.dd_growth == 0);
2004		ubifs_assert(c->bi.data_growth == 0);
2005	}
2006
2007	/*
2008	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
2009	 * and file system un-mount. Namely, it prevents the shrinker from
2010	 * picking this superblock for shrinking - it will be just skipped if
2011	 * the mutex is locked.
2012	 */
2013	mutex_lock(&c->umount_mutex);
2014	if (!c->ro_mount) {
2015		/*
2016		 * First of all kill the background thread to make sure it does
2017		 * not interfere with un-mounting and freeing resources.
2018		 */
2019		if (c->bgt) {
2020			kthread_stop(c->bgt);
2021			c->bgt = NULL;
2022		}
2023
2024		/*
2025		 * On fatal errors c->ro_error is set to 1, in which case we do
2026		 * not write the master node.
2027		 */
2028		if (!c->ro_error) {
2029			int err;
2030
2031			/* Synchronize write-buffers */
2032			for (i = 0; i < c->jhead_cnt; i++)
2033				ubifs_wbuf_sync(&c->jheads[i].wbuf);
2034
2035			/*
2036			 * We are being cleanly unmounted which means the
2037			 * orphans were killed - indicate this in the master
2038			 * node. Also save the reserved GC LEB number.
2039			 */
2040			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
2041			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
2042			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
2043			err = ubifs_write_master(c);
2044			if (err)
2045				/*
2046				 * Recovery will attempt to fix the master area
2047				 * next mount, so we just print a message and
2048				 * continue to unmount normally.
2049				 */
2050				ubifs_err(c, "failed to write master node, error %d",
2051					  err);
2052		} else {
2053#ifndef __UBOOT__
2054			for (i = 0; i < c->jhead_cnt; i++)
2055				/* Make sure write-buffer timers are canceled */
2056				hrtimer_cancel(&c->jheads[i].wbuf.timer);
2057#endif
2058		}
2059	}
2060
2061	ubifs_umount(c);
2062#ifndef __UBOOT__
2063	bdi_destroy(&c->bdi);
2064	ubi_close_volume(c->ubi);
2065	mutex_unlock(&c->umount_mutex);
2066#endif
2067}
2068#endif
2069
2070#ifndef __UBOOT__
2071static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
2072{
2073	int err;
2074	struct ubifs_info *c = sb->s_fs_info;
2075
2076	sync_filesystem(sb);
2077	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
2078
2079	err = ubifs_parse_options(c, data, 1);
2080	if (err) {
2081		ubifs_err(c, "invalid or unknown remount parameter");
2082		return err;
2083	}
2084
2085	if (c->ro_mount && !(*flags & MS_RDONLY)) {
2086		if (c->ro_error) {
2087			ubifs_msg(c, "cannot re-mount R/W due to prior errors");
2088			return -EROFS;
2089		}
2090		if (c->ro_media) {
2091			ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
2092			return -EROFS;
2093		}
2094		err = ubifs_remount_rw(c);
2095		if (err)
2096			return err;
2097	} else if (!c->ro_mount && (*flags & MS_RDONLY)) {
2098		if (c->ro_error) {
2099			ubifs_msg(c, "cannot re-mount R/O due to prior errors");
2100			return -EROFS;
2101		}
2102		ubifs_remount_ro(c);
2103	}
2104
2105	if (c->bulk_read == 1)
2106		bu_init(c);
2107	else {
2108		dbg_gen("disable bulk-read");
2109		kfree(c->bu.buf);
2110		c->bu.buf = NULL;
2111	}
2112
2113	ubifs_assert(c->lst.taken_empty_lebs > 0);
2114	return 0;
2115}
2116#endif
2117
2118const struct super_operations ubifs_super_operations = {
2119	.alloc_inode   = ubifs_alloc_inode,
2120#ifndef __UBOOT__
2121	.destroy_inode = ubifs_destroy_inode,
2122	.put_super     = ubifs_put_super,
2123	.write_inode   = ubifs_write_inode,
2124	.evict_inode   = ubifs_evict_inode,
2125	.statfs        = ubifs_statfs,
2126#endif
2127	.dirty_inode   = ubifs_dirty_inode,
2128#ifndef __UBOOT__
2129	.remount_fs    = ubifs_remount_fs,
2130	.show_options  = ubifs_show_options,
2131	.sync_fs       = ubifs_sync_fs,
2132#endif
2133};
2134
2135/**
2136 * open_ubi - parse UBI device name string and open the UBI device.
2137 * @name: UBI volume name
2138 * @mode: UBI volume open mode
2139 *
2140 * The primary method of mounting UBIFS is by specifying the UBI volume
2141 * character device node path. However, UBIFS may also be mounted withoug any
2142 * character device node using one of the following methods:
2143 *
2144 * o ubiX_Y    - mount UBI device number X, volume Y;
2145 * o ubiY      - mount UBI device number 0, volume Y;
2146 * o ubiX:NAME - mount UBI device X, volume with name NAME;
2147 * o ubi:NAME  - mount UBI device 0, volume with name NAME.
2148 *
2149 * Alternative '!' separator may be used instead of ':' (because some shells
2150 * like busybox may interpret ':' as an NFS host name separator). This function
2151 * returns UBI volume description object in case of success and a negative
2152 * error code in case of failure.
2153 */
2154static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2155{
2156#ifndef __UBOOT__
2157	struct ubi_volume_desc *ubi;
2158#endif
2159	int dev, vol;
2160	char *endptr;
2161
2162#ifndef __UBOOT__
2163	/* First, try to open using the device node path method */
2164	ubi = ubi_open_volume_path(name, mode);
2165	if (!IS_ERR(ubi))
2166		return ubi;
2167#endif
2168
2169	/* Try the "nodev" method */
2170	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2171		return ERR_PTR(-EINVAL);
2172
2173	/* ubi:NAME method */
2174	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2175		return ubi_open_volume_nm(0, name + 4, mode);
2176
2177	if (!isdigit(name[3]))
2178		return ERR_PTR(-EINVAL);
2179
2180	dev = simple_strtoul(name + 3, &endptr, 0);
2181
2182	/* ubiY method */
2183	if (*endptr == '\0')
2184		return ubi_open_volume(0, dev, mode);
2185
2186	/* ubiX_Y method */
2187	if (*endptr == '_' && isdigit(endptr[1])) {
2188		vol = simple_strtoul(endptr + 1, &endptr, 0);
2189		if (*endptr != '\0')
2190			return ERR_PTR(-EINVAL);
2191		return ubi_open_volume(dev, vol, mode);
2192	}
2193
2194	/* ubiX:NAME method */
2195	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2196		return ubi_open_volume_nm(dev, ++endptr, mode);
2197
2198	return ERR_PTR(-EINVAL);
2199}
2200
2201static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2202{
2203	struct ubifs_info *c;
2204
2205	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2206	if (c) {
2207		spin_lock_init(&c->cnt_lock);
2208		spin_lock_init(&c->cs_lock);
2209		spin_lock_init(&c->buds_lock);
2210		spin_lock_init(&c->space_lock);
2211		spin_lock_init(&c->orphan_lock);
2212		init_rwsem(&c->commit_sem);
2213		mutex_init(&c->lp_mutex);
2214		mutex_init(&c->tnc_mutex);
2215		mutex_init(&c->log_mutex);
2216		mutex_init(&c->umount_mutex);
2217		mutex_init(&c->bu_mutex);
2218		mutex_init(&c->write_reserve_mutex);
2219		init_waitqueue_head(&c->cmt_wq);
2220		c->buds = RB_ROOT;
2221		c->old_idx = RB_ROOT;
2222		c->size_tree = RB_ROOT;
2223		c->orph_tree = RB_ROOT;
2224		INIT_LIST_HEAD(&c->infos_list);
2225		INIT_LIST_HEAD(&c->idx_gc);
2226		INIT_LIST_HEAD(&c->replay_list);
2227		INIT_LIST_HEAD(&c->replay_buds);
2228		INIT_LIST_HEAD(&c->uncat_list);
2229		INIT_LIST_HEAD(&c->empty_list);
2230		INIT_LIST_HEAD(&c->freeable_list);
2231		INIT_LIST_HEAD(&c->frdi_idx_list);
2232		INIT_LIST_HEAD(&c->unclean_leb_list);
2233		INIT_LIST_HEAD(&c->old_buds);
2234		INIT_LIST_HEAD(&c->orph_list);
2235		INIT_LIST_HEAD(&c->orph_new);
2236		c->no_chk_data_crc = 1;
2237
2238		c->highest_inum = UBIFS_FIRST_INO;
2239		c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2240
2241		ubi_get_volume_info(ubi, &c->vi);
2242		ubi_get_device_info(c->vi.ubi_num, &c->di);
2243	}
2244	return c;
2245}
2246
2247static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2248{
2249	struct ubifs_info *c = sb->s_fs_info;
2250	struct inode *root;
2251	int err;
2252
2253	c->vfs_sb = sb;
2254#ifndef __UBOOT__
2255	/* Re-open the UBI device in read-write mode */
2256	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2257#else
2258	/* U-Boot read only mode */
2259	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READONLY);
2260#endif
2261
2262	if (IS_ERR(c->ubi)) {
2263		err = PTR_ERR(c->ubi);
2264		goto out;
2265	}
2266
2267#ifndef __UBOOT__
2268	/*
2269	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2270	 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2271	 * which means the user would have to wait not just for their own I/O
2272	 * but the read-ahead I/O as well i.e. completely pointless.
2273	 *
2274	 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
2275	 */
2276	c->bdi.name = "ubifs",
2277	c->bdi.capabilities = 0;
2278	err  = bdi_init(&c->bdi);
2279	if (err)
2280		goto out_close;
2281	err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
2282			   c->vi.ubi_num, c->vi.vol_id);
2283	if (err)
2284		goto out_bdi;
2285
2286	err = ubifs_parse_options(c, data, 0);
2287	if (err)
2288		goto out_bdi;
2289
2290	sb->s_bdi = &c->bdi;
2291#endif
2292	sb->s_fs_info = c;
2293	sb->s_magic = UBIFS_SUPER_MAGIC;
2294	sb->s_blocksize = UBIFS_BLOCK_SIZE;
2295	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2296	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2297	if (c->max_inode_sz > MAX_LFS_FILESIZE)
2298		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2299	sb->s_op = &ubifs_super_operations;
2300#ifndef __UBOOT__
2301	sb->s_xattr = ubifs_xattr_handlers;
2302#endif
2303
2304	mutex_lock(&c->umount_mutex);
2305	err = mount_ubifs(c);
2306	if (err) {
2307		ubifs_assert(err < 0);
2308		goto out_unlock;
2309	}
2310
2311	/* Read the root inode */
2312	root = ubifs_iget(sb, UBIFS_ROOT_INO);
2313	if (IS_ERR(root)) {
2314		err = PTR_ERR(root);
2315		goto out_umount;
2316	}
2317
2318#ifndef __UBOOT__
2319	sb->s_root = d_make_root(root);
2320	if (!sb->s_root) {
2321		err = -ENOMEM;
2322		goto out_umount;
2323	}
2324#else
2325	sb->s_root = NULL;
2326#endif
2327
2328	mutex_unlock(&c->umount_mutex);
2329	return 0;
2330
2331out_umount:
2332	ubifs_umount(c);
2333#ifdef __UBOOT__
2334	goto out;
2335#endif
2336out_unlock:
2337	mutex_unlock(&c->umount_mutex);
2338#ifndef __UBOOT__
2339out_bdi:
2340	bdi_destroy(&c->bdi);
2341out_close:
2342#endif
2343	ubi_close_volume(c->ubi);
2344out:
2345	return err;
2346}
2347
2348static int sb_test(struct super_block *sb, void *data)
2349{
2350	struct ubifs_info *c1 = data;
2351	struct ubifs_info *c = sb->s_fs_info;
2352
2353	return c->vi.cdev == c1->vi.cdev;
2354}
2355
2356static int sb_set(struct super_block *sb, void *data)
2357{
2358	sb->s_fs_info = data;
2359	return set_anon_super(sb, NULL);
2360}
2361
2362static struct super_block *alloc_super(struct file_system_type *type, int flags)
2363{
2364	struct super_block *s;
2365	int err;
2366
2367	s = kzalloc(sizeof(struct super_block),  GFP_USER);
2368	if (!s) {
2369		err = -ENOMEM;
2370		return ERR_PTR(err);
2371	}
2372
2373#ifndef __UBOOT__
2374	INIT_HLIST_NODE(&s->s_instances);
2375#endif
2376	INIT_LIST_HEAD(&s->s_inodes);
2377	s->s_time_gran = 1000000000;
2378	s->s_flags = flags;
2379
2380	return s;
2381}
2382
2383/**
2384 *	sget	-	find or create a superblock
2385 *	@type:	filesystem type superblock should belong to
2386 *	@test:	comparison callback
2387 *	@set:	setup callback
2388 *	@flags:	mount flags
2389 *	@data:	argument to each of them
2390 */
2391struct super_block *sget(struct file_system_type *type,
2392			int (*test)(struct super_block *,void *),
2393			int (*set)(struct super_block *,void *),
2394			int flags,
2395			void *data)
2396{
2397	struct super_block *s = NULL;
2398#ifndef __UBOOT__
2399	struct super_block *old;
2400#endif
2401	int err;
2402
2403#ifndef __UBOOT__
2404retry:
2405	spin_lock(&sb_lock);
2406	if (test) {
2407		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
2408			if (!test(old, data))
2409				continue;
2410			if (!grab_super(old))
2411				goto retry;
2412			if (s) {
2413				up_write(&s->s_umount);
2414				destroy_super(s);
2415				s = NULL;
2416			}
2417			return old;
2418		}
2419	}
2420#endif
2421	if (!s) {
2422		spin_unlock(&sb_lock);
2423		s = alloc_super(type, flags);
2424		if (!s)
2425			return ERR_PTR(-ENOMEM);
2426#ifndef __UBOOT__
2427		goto retry;
2428#endif
2429	}
2430
2431	err = set(s, data);
2432	if (err) {
2433#ifndef __UBOOT__
2434		spin_unlock(&sb_lock);
2435		up_write(&s->s_umount);
2436		destroy_super(s);
2437#endif
2438		return ERR_PTR(err);
2439	}
2440	s->s_type = type;
2441#ifndef __UBOOT__
2442	strlcpy(s->s_id, type->name, sizeof(s->s_id));
2443	list_add_tail(&s->s_list, &super_blocks);
2444	hlist_add_head(&s->s_instances, &type->fs_supers);
2445	spin_unlock(&sb_lock);
2446	get_filesystem(type);
2447	register_shrinker(&s->s_shrink);
2448#else
2449	strncpy(s->s_id, type->name, sizeof(s->s_id));
2450#endif
2451	return s;
2452}
2453
2454EXPORT_SYMBOL(sget);
2455
2456
2457static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2458			const char *name, void *data)
2459{
2460	struct ubi_volume_desc *ubi;
2461	struct ubifs_info *c;
2462	struct super_block *sb;
2463	int err;
2464
2465	dbg_gen("name %s, flags %#x", name, flags);
2466
2467	/*
2468	 * Get UBI device number and volume ID. Mount it read-only so far
2469	 * because this might be a new mount point, and UBI allows only one
2470	 * read-write user at a time.
2471	 */
2472	ubi = open_ubi(name, UBI_READONLY);
2473	if (IS_ERR(ubi)) {
2474		pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d\n",
2475		       current->pid, name, (int)PTR_ERR(ubi));
2476		return ERR_CAST(ubi);
2477	}
2478
2479	c = alloc_ubifs_info(ubi);
2480	if (!c) {
2481		err = -ENOMEM;
2482		goto out_close;
2483	}
2484
2485	dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2486
2487	sb = sget(fs_type, sb_test, sb_set, flags, c);
2488	if (IS_ERR(sb)) {
2489		err = PTR_ERR(sb);
2490		kfree(c);
2491		goto out_close;
2492	}
2493
2494	if (sb->s_root) {
2495		struct ubifs_info *c1 = sb->s_fs_info;
2496		kfree(c);
2497		/* A new mount point for already mounted UBIFS */
2498		dbg_gen("this ubi volume is already mounted");
2499		if (!!(flags & MS_RDONLY) != c1->ro_mount) {
2500			err = -EBUSY;
2501			goto out_deact;
2502		}
2503	} else {
2504		err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2505		if (err)
2506			goto out_deact;
2507		/* We do not support atime */
2508		sb->s_flags |= MS_ACTIVE | MS_NOATIME;
2509	}
2510
2511	/* 'fill_super()' opens ubi again so we must close it here */
2512	ubi_close_volume(ubi);
2513
2514#ifdef __UBOOT__
2515	ubifs_sb = sb;
2516	return 0;
2517#else
2518	return dget(sb->s_root);
2519#endif
2520
2521out_deact:
2522#ifndef __UBOOT__
2523	deactivate_locked_super(sb);
2524#endif
2525out_close:
2526	ubi_close_volume(ubi);
2527	return ERR_PTR(err);
2528}
2529
2530static void kill_ubifs_super(struct super_block *s)
2531{
2532	struct ubifs_info *c = s->s_fs_info;
2533#ifndef __UBOOT__
2534	kill_anon_super(s);
2535#endif
2536	kfree(c);
2537}
2538
2539static struct file_system_type ubifs_fs_type = {
2540	.name    = "ubifs",
2541	.owner   = THIS_MODULE,
2542	.mount   = ubifs_mount,
2543	.kill_sb = kill_ubifs_super,
2544};
2545#ifndef __UBOOT__
2546MODULE_ALIAS_FS("ubifs");
2547
2548/*
2549 * Inode slab cache constructor.
2550 */
2551static void inode_slab_ctor(void *obj)
2552{
2553	struct ubifs_inode *ui = obj;
2554	inode_init_once(&ui->vfs_inode);
2555}
2556
2557static int __init ubifs_init(void)
2558#else
2559int ubifs_init(void)
2560#endif
2561{
2562	int err;
2563
2564	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2565
2566	/* Make sure node sizes are 8-byte aligned */
2567	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2568	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2569	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2570	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2571	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2572	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2573	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2574	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2575	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2576	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2577	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2578
2579	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2580	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2581	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2582	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2583	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2584	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2585
2586	/* Check min. node size */
2587	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2588	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2589	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2590	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2591
2592	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2593	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2594	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2595	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2596
2597	/* Defined node sizes */
2598	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2599	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2600	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2601	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2602
2603	/*
2604	 * We use 2 bit wide bit-fields to store compression type, which should
2605	 * be amended if more compressors are added. The bit-fields are:
2606	 * @compr_type in 'struct ubifs_inode', @default_compr in
2607	 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2608	 */
2609	BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2610
2611	/*
2612	 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2613	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2614	 */
2615	if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2616		pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes\n",
2617		       current->pid, (unsigned int)PAGE_CACHE_SIZE);
2618		return -EINVAL;
2619	}
2620
2621#ifndef __UBOOT__
2622	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2623				sizeof(struct ubifs_inode), 0,
2624				SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2625				&inode_slab_ctor);
2626	if (!ubifs_inode_slab)
2627		return -ENOMEM;
2628
2629	err = register_shrinker(&ubifs_shrinker_info);
2630	if (err)
2631		goto out_slab;
2632#endif
2633
2634	err = ubifs_compressors_init();
2635	if (err)
2636		goto out_shrinker;
2637
2638#ifndef __UBOOT__
2639	err = dbg_debugfs_init();
2640	if (err)
2641		goto out_compr;
2642
2643	err = register_filesystem(&ubifs_fs_type);
2644	if (err) {
2645		pr_err("UBIFS error (pid %d): cannot register file system, error %d\n",
2646		       current->pid, err);
2647		goto out_dbg;
2648	}
2649#endif
2650	return 0;
2651
2652#ifndef __UBOOT__
2653out_dbg:
2654	dbg_debugfs_exit();
2655out_compr:
2656	ubifs_compressors_exit();
2657#endif
2658out_shrinker:
2659#ifndef __UBOOT__
2660	unregister_shrinker(&ubifs_shrinker_info);
2661out_slab:
2662#endif
2663	kmem_cache_destroy(ubifs_inode_slab);
2664	return err;
2665}
2666/* late_initcall to let compressors initialize first */
2667late_initcall(ubifs_init);
2668
2669#ifndef __UBOOT__
2670static void __exit ubifs_exit(void)
2671{
2672	ubifs_assert(list_empty(&ubifs_infos));
2673	ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2674
2675	dbg_debugfs_exit();
2676	ubifs_compressors_exit();
2677	unregister_shrinker(&ubifs_shrinker_info);
2678
2679	/*
2680	 * Make sure all delayed rcu free inodes are flushed before we
2681	 * destroy cache.
2682	 */
2683	rcu_barrier();
2684	kmem_cache_destroy(ubifs_inode_slab);
2685	unregister_filesystem(&ubifs_fs_type);
2686}
2687module_exit(ubifs_exit);
2688
2689MODULE_LICENSE("GPL");
2690MODULE_VERSION(__stringify(UBIFS_VERSION));
2691MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2692MODULE_DESCRIPTION("UBIFS - UBI File System");
2693#else
2694int uboot_ubifs_mount(char *vol_name)
2695{
2696	struct dentry *ret;
2697	int flags;
2698
2699	/*
2700	 * First unmount if allready mounted
2701	 */
2702	if (ubifs_sb)
2703		ubifs_umount(ubifs_sb->s_fs_info);
2704
2705	/*
2706	 * Mount in read-only mode
2707	 */
2708	flags = MS_RDONLY;
2709	ret = ubifs_mount(&ubifs_fs_type, flags, vol_name, NULL);
2710	if (IS_ERR(ret)) {
2711		printf("Error reading superblock on volume '%s' " \
2712			"errno=%d!\n", vol_name, (int)PTR_ERR(ret));
2713		return -1;
2714	}
2715
2716	return 0;
2717}
2718#endif
2719