1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * NXP FlexSPI(FSPI) controller driver.
4 *
5 * Copyright (c) 2019 Michael Walle <michael@walle.cc>
6 * Copyright (c) 2019 NXP
7 *
8 * This driver was originally ported from the linux kernel v5.4-rc3, which had
9 * the following notes:
10 *
11 * FlexSPI is a flexsible SPI host controller which supports two SPI
12 * channels and up to 4 external devices. Each channel supports
13 * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
14 * data lines).
15 *
16 * FlexSPI controller is driven by the LUT(Look-up Table) registers
17 * LUT registers are a look-up-table for sequences of instructions.
18 * A valid sequence consists of four LUT registers.
19 * Maximum 32 LUT sequences can be programmed simultaneously.
20 *
21 * LUTs are being created at run-time based on the commands passed
22 * from the spi-mem framework, thus using single LUT index.
23 *
24 * Software triggered Flash read/write access by IP Bus.
25 *
26 * Memory mapped read access by AHB Bus.
27 *
28 * Based on SPI MEM interface and spi-fsl-qspi.c driver.
29 *
30 * Author:
31 *     Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
32 *     Boris Brezillon <bbrezillon@kernel.org>
33 *     Frieder Schrempf <frieder.schrempf@kontron.de>
34 */
35
36#include <common.h>
37#include <clk.h>
38#include <dm.h>
39#include <dm/device_compat.h>
40#include <malloc.h>
41#include <spi.h>
42#include <spi-mem.h>
43#include <asm/io.h>
44#ifdef CONFIG_FSL_LAYERSCAPE
45#include <asm/arch/clock.h>
46#include <asm/arch/soc.h>
47#include <asm/arch/speed.h>
48#endif
49#include <linux/bitops.h>
50#include <linux/kernel.h>
51#include <linux/sizes.h>
52#include <linux/iopoll.h>
53#include <linux/bug.h>
54#include <linux/err.h>
55
56/*
57 * The driver only uses one single LUT entry, that is updated on
58 * each call of exec_op(). Index 0 is preset at boot with a basic
59 * read operation, so let's use the last entry (31).
60 */
61#define	SEQID_LUT			31
62
63/* Registers used by the driver */
64#define FSPI_MCR0			0x00
65#define FSPI_MCR0_AHB_TIMEOUT(x)	((x) << 24)
66#define FSPI_MCR0_IP_TIMEOUT(x)		((x) << 16)
67#define FSPI_MCR0_LEARN_EN		BIT(15)
68#define FSPI_MCR0_SCRFRUN_EN		BIT(14)
69#define FSPI_MCR0_OCTCOMB_EN		BIT(13)
70#define FSPI_MCR0_DOZE_EN		BIT(12)
71#define FSPI_MCR0_HSEN			BIT(11)
72#define FSPI_MCR0_SERCLKDIV		BIT(8)
73#define FSPI_MCR0_ATDF_EN		BIT(7)
74#define FSPI_MCR0_ARDF_EN		BIT(6)
75#define FSPI_MCR0_RXCLKSRC(x)		((x) << 4)
76#define FSPI_MCR0_END_CFG(x)		((x) << 2)
77#define FSPI_MCR0_MDIS			BIT(1)
78#define FSPI_MCR0_SWRST			BIT(0)
79
80#define FSPI_MCR1			0x04
81#define FSPI_MCR1_SEQ_TIMEOUT(x)	((x) << 16)
82#define FSPI_MCR1_AHB_TIMEOUT(x)	(x)
83
84#define FSPI_MCR2			0x08
85#define FSPI_MCR2_IDLE_WAIT(x)		((x) << 24)
86#define FSPI_MCR2_SAMEDEVICEEN		BIT(15)
87#define FSPI_MCR2_CLRLRPHS		BIT(14)
88#define FSPI_MCR2_ABRDATSZ		BIT(8)
89#define FSPI_MCR2_ABRLEARN		BIT(7)
90#define FSPI_MCR2_ABR_READ		BIT(6)
91#define FSPI_MCR2_ABRWRITE		BIT(5)
92#define FSPI_MCR2_ABRDUMMY		BIT(4)
93#define FSPI_MCR2_ABR_MODE		BIT(3)
94#define FSPI_MCR2_ABRCADDR		BIT(2)
95#define FSPI_MCR2_ABRRADDR		BIT(1)
96#define FSPI_MCR2_ABR_CMD		BIT(0)
97
98#define FSPI_AHBCR			0x0c
99#define FSPI_AHBCR_RDADDROPT		BIT(6)
100#define FSPI_AHBCR_PREF_EN		BIT(5)
101#define FSPI_AHBCR_BUFF_EN		BIT(4)
102#define FSPI_AHBCR_CACH_EN		BIT(3)
103#define FSPI_AHBCR_CLRTXBUF		BIT(2)
104#define FSPI_AHBCR_CLRRXBUF		BIT(1)
105#define FSPI_AHBCR_PAR_EN		BIT(0)
106
107#define FSPI_INTEN			0x10
108#define FSPI_INTEN_SCLKSBWR		BIT(9)
109#define FSPI_INTEN_SCLKSBRD		BIT(8)
110#define FSPI_INTEN_DATALRNFL		BIT(7)
111#define FSPI_INTEN_IPTXWE		BIT(6)
112#define FSPI_INTEN_IPRXWA		BIT(5)
113#define FSPI_INTEN_AHBCMDERR		BIT(4)
114#define FSPI_INTEN_IPCMDERR		BIT(3)
115#define FSPI_INTEN_AHBCMDGE		BIT(2)
116#define FSPI_INTEN_IPCMDGE		BIT(1)
117#define FSPI_INTEN_IPCMDDONE		BIT(0)
118
119#define FSPI_INTR			0x14
120#define FSPI_INTR_SCLKSBWR		BIT(9)
121#define FSPI_INTR_SCLKSBRD		BIT(8)
122#define FSPI_INTR_DATALRNFL		BIT(7)
123#define FSPI_INTR_IPTXWE		BIT(6)
124#define FSPI_INTR_IPRXWA		BIT(5)
125#define FSPI_INTR_AHBCMDERR		BIT(4)
126#define FSPI_INTR_IPCMDERR		BIT(3)
127#define FSPI_INTR_AHBCMDGE		BIT(2)
128#define FSPI_INTR_IPCMDGE		BIT(1)
129#define FSPI_INTR_IPCMDDONE		BIT(0)
130
131#define FSPI_LUTKEY			0x18
132#define FSPI_LUTKEY_VALUE		0x5AF05AF0
133
134#define FSPI_LCKCR			0x1C
135
136#define FSPI_LCKER_LOCK			0x1
137#define FSPI_LCKER_UNLOCK		0x2
138
139#define FSPI_BUFXCR_INVALID_MSTRID	0xE
140#define FSPI_AHBRX_BUF0CR0		0x20
141#define FSPI_AHBRX_BUF1CR0		0x24
142#define FSPI_AHBRX_BUF2CR0		0x28
143#define FSPI_AHBRX_BUF3CR0		0x2C
144#define FSPI_AHBRX_BUF4CR0		0x30
145#define FSPI_AHBRX_BUF5CR0		0x34
146#define FSPI_AHBRX_BUF6CR0		0x38
147#define FSPI_AHBRX_BUF7CR0		0x3C
148#define FSPI_AHBRXBUF0CR7_PREF		BIT(31)
149
150#define FSPI_AHBRX_BUF0CR1		0x40
151#define FSPI_AHBRX_BUF1CR1		0x44
152#define FSPI_AHBRX_BUF2CR1		0x48
153#define FSPI_AHBRX_BUF3CR1		0x4C
154#define FSPI_AHBRX_BUF4CR1		0x50
155#define FSPI_AHBRX_BUF5CR1		0x54
156#define FSPI_AHBRX_BUF6CR1		0x58
157#define FSPI_AHBRX_BUF7CR1		0x5C
158
159#define FSPI_FLSHA1CR0			0x60
160#define FSPI_FLSHA2CR0			0x64
161#define FSPI_FLSHB1CR0			0x68
162#define FSPI_FLSHB2CR0			0x6C
163#define FSPI_FLSHXCR0_SZ_KB		10
164#define FSPI_FLSHXCR0_SZ(x)		((x) >> FSPI_FLSHXCR0_SZ_KB)
165
166#define FSPI_FLSHA1CR1			0x70
167#define FSPI_FLSHA2CR1			0x74
168#define FSPI_FLSHB1CR1			0x78
169#define FSPI_FLSHB2CR1			0x7C
170#define FSPI_FLSHXCR1_CSINTR(x)		((x) << 16)
171#define FSPI_FLSHXCR1_CAS(x)		((x) << 11)
172#define FSPI_FLSHXCR1_WA		BIT(10)
173#define FSPI_FLSHXCR1_TCSH(x)		((x) << 5)
174#define FSPI_FLSHXCR1_TCSS(x)		(x)
175
176#define FSPI_FLSHA1CR2			0x80
177#define FSPI_FLSHA2CR2			0x84
178#define FSPI_FLSHB1CR2			0x88
179#define FSPI_FLSHB2CR2			0x8C
180#define FSPI_FLSHXCR2_CLRINSP		BIT(24)
181#define FSPI_FLSHXCR2_AWRWAIT		BIT(16)
182#define FSPI_FLSHXCR2_AWRSEQN_SHIFT	13
183#define FSPI_FLSHXCR2_AWRSEQI_SHIFT	8
184#define FSPI_FLSHXCR2_ARDSEQN_SHIFT	5
185#define FSPI_FLSHXCR2_ARDSEQI_SHIFT	0
186
187#define FSPI_IPCR0			0xA0
188
189#define FSPI_IPCR1			0xA4
190#define FSPI_IPCR1_IPAREN		BIT(31)
191#define FSPI_IPCR1_SEQNUM_SHIFT		24
192#define FSPI_IPCR1_SEQID_SHIFT		16
193#define FSPI_IPCR1_IDATSZ(x)		(x)
194
195#define FSPI_IPCMD			0xB0
196#define FSPI_IPCMD_TRG			BIT(0)
197
198#define FSPI_DLPR			0xB4
199
200#define FSPI_IPRXFCR			0xB8
201#define FSPI_IPRXFCR_CLR		BIT(0)
202#define FSPI_IPRXFCR_DMA_EN		BIT(1)
203#define FSPI_IPRXFCR_WMRK(x)		((x) << 2)
204
205#define FSPI_IPTXFCR			0xBC
206#define FSPI_IPTXFCR_CLR		BIT(0)
207#define FSPI_IPTXFCR_DMA_EN		BIT(1)
208#define FSPI_IPTXFCR_WMRK(x)		((x) << 2)
209
210#define FSPI_DLLACR			0xC0
211#define FSPI_DLLACR_OVRDEN		BIT(8)
212
213#define FSPI_DLLBCR			0xC4
214#define FSPI_DLLBCR_OVRDEN		BIT(8)
215
216#define FSPI_STS0			0xE0
217#define FSPI_STS0_DLPHB(x)		((x) << 8)
218#define FSPI_STS0_DLPHA(x)		((x) << 4)
219#define FSPI_STS0_CMD_SRC(x)		((x) << 2)
220#define FSPI_STS0_ARB_IDLE		BIT(1)
221#define FSPI_STS0_SEQ_IDLE		BIT(0)
222
223#define FSPI_STS1			0xE4
224#define FSPI_STS1_IP_ERRCD(x)		((x) << 24)
225#define FSPI_STS1_IP_ERRID(x)		((x) << 16)
226#define FSPI_STS1_AHB_ERRCD(x)		((x) << 8)
227#define FSPI_STS1_AHB_ERRID(x)		(x)
228
229#define FSPI_AHBSPNST			0xEC
230#define FSPI_AHBSPNST_DATLFT(x)		((x) << 16)
231#define FSPI_AHBSPNST_BUFID(x)		((x) << 1)
232#define FSPI_AHBSPNST_ACTIVE		BIT(0)
233
234#define FSPI_IPRXFSTS			0xF0
235#define FSPI_IPRXFSTS_RDCNTR(x)		((x) << 16)
236#define FSPI_IPRXFSTS_FILL(x)		(x)
237
238#define FSPI_IPTXFSTS			0xF4
239#define FSPI_IPTXFSTS_WRCNTR(x)		((x) << 16)
240#define FSPI_IPTXFSTS_FILL(x)		(x)
241
242#define FSPI_RFDR			0x100
243#define FSPI_TFDR			0x180
244
245#define FSPI_LUT_BASE			0x200
246#define FSPI_LUT_OFFSET			(SEQID_LUT * 4 * 4)
247#define FSPI_LUT_REG(idx) \
248	(FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
249
250/* register map end */
251
252/* Instruction set for the LUT register. */
253#define LUT_STOP			0x00
254#define LUT_CMD				0x01
255#define LUT_ADDR			0x02
256#define LUT_CADDR_SDR			0x03
257#define LUT_MODE			0x04
258#define LUT_MODE2			0x05
259#define LUT_MODE4			0x06
260#define LUT_MODE8			0x07
261#define LUT_NXP_WRITE			0x08
262#define LUT_NXP_READ			0x09
263#define LUT_LEARN_SDR			0x0A
264#define LUT_DATSZ_SDR			0x0B
265#define LUT_DUMMY			0x0C
266#define LUT_DUMMY_RWDS_SDR		0x0D
267#define LUT_JMP_ON_CS			0x1F
268#define LUT_CMD_DDR			0x21
269#define LUT_ADDR_DDR			0x22
270#define LUT_CADDR_DDR			0x23
271#define LUT_MODE_DDR			0x24
272#define LUT_MODE2_DDR			0x25
273#define LUT_MODE4_DDR			0x26
274#define LUT_MODE8_DDR			0x27
275#define LUT_WRITE_DDR			0x28
276#define LUT_READ_DDR			0x29
277#define LUT_LEARN_DDR			0x2A
278#define LUT_DATSZ_DDR			0x2B
279#define LUT_DUMMY_DDR			0x2C
280#define LUT_DUMMY_RWDS_DDR		0x2D
281
282/*
283 * Calculate number of required PAD bits for LUT register.
284 *
285 * The pad stands for the number of IO lines [0:7].
286 * For example, the octal read needs eight IO lines,
287 * so you should use LUT_PAD(8). This macro
288 * returns 3 i.e. use eight (2^3) IP lines for read.
289 */
290#define LUT_PAD(x) (fls(x) - 1)
291
292/*
293 * Macro for constructing the LUT entries with the following
294 * register layout:
295 *
296 *  ---------------------------------------------------
297 *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
298 *  ---------------------------------------------------
299 */
300#define PAD_SHIFT		8
301#define INSTR_SHIFT		10
302#define OPRND_SHIFT		16
303
304/* Macros for constructing the LUT register. */
305#define LUT_DEF(idx, ins, pad, opr)			  \
306	((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
307	(opr)) << (((idx) % 2) * OPRND_SHIFT))
308
309#define POLL_TOUT		5000
310#define NXP_FSPI_MAX_CHIPSELECT		4
311
312/* Access flash memory using IP bus only */
313#define FSPI_QUIRK_USE_IP_ONLY		BIT(0)
314
315struct nxp_fspi_devtype_data {
316	unsigned int rxfifo;
317	unsigned int txfifo;
318	unsigned int ahb_buf_size;
319	unsigned int quirks;
320	bool little_endian;
321};
322
323static struct nxp_fspi_devtype_data lx2160a_data = {
324	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
325	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
326	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
327	.quirks = 0,
328	.little_endian = true,  /* little-endian    */
329};
330
331static struct nxp_fspi_devtype_data imx8mm_data = {
332	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
333	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
334	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
335	.quirks = 0,
336	.little_endian = true,  /* little-endian    */
337};
338
339struct nxp_fspi {
340	struct udevice *dev;
341	void __iomem *iobase;
342	void __iomem *ahb_addr;
343	u32 memmap_phy;
344	u32 memmap_phy_size;
345	struct clk clk, clk_en;
346	struct nxp_fspi_devtype_data *devtype_data;
347};
348
349static inline int needs_ip_only(struct nxp_fspi *f)
350{
351	return f->devtype_data->quirks & FSPI_QUIRK_USE_IP_ONLY;
352}
353
354/*
355 * R/W functions for big- or little-endian registers:
356 * The FSPI controller's endianness is independent of
357 * the CPU core's endianness. So far, although the CPU
358 * core is little-endian the FSPI controller can use
359 * big-endian or little-endian.
360 */
361static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
362{
363	if (f->devtype_data->little_endian)
364		out_le32(addr, val);
365	else
366		out_be32(addr, val);
367}
368
369static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
370{
371	if (f->devtype_data->little_endian)
372		return in_le32(addr);
373	else
374		return in_be32(addr);
375}
376
377static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
378{
379	switch (width) {
380	case 1:
381	case 2:
382	case 4:
383	case 8:
384		return 0;
385	}
386
387	return -ENOTSUPP;
388}
389
390static bool nxp_fspi_supports_op(struct spi_slave *slave,
391				 const struct spi_mem_op *op)
392{
393	struct nxp_fspi *f;
394	struct udevice *bus;
395	int ret;
396
397	bus = slave->dev->parent;
398	f = dev_get_priv(bus);
399
400	ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
401
402	if (op->addr.nbytes)
403		ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
404
405	if (op->dummy.nbytes)
406		ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
407
408	if (op->data.nbytes)
409		ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
410
411	if (ret)
412		return false;
413
414	/*
415	 * The number of address bytes should be equal to or less than 4 bytes.
416	 */
417	if (op->addr.nbytes > 4)
418		return false;
419
420	/*
421	 * If requested address value is greater than controller assigned
422	 * memory mapped space, return error as it didn't fit in the range
423	 * of assigned address space.
424	 */
425	if (op->addr.val >= f->memmap_phy_size)
426		return false;
427
428	/* Max 64 dummy clock cycles supported */
429	if (op->dummy.buswidth &&
430	    (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
431		return false;
432
433	/* Max data length, check controller limits and alignment */
434	if (op->data.dir == SPI_MEM_DATA_IN &&
435	    (op->data.nbytes > f->devtype_data->ahb_buf_size ||
436	     (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
437	      !IS_ALIGNED(op->data.nbytes, 8))))
438		return false;
439
440	if (op->data.dir == SPI_MEM_DATA_OUT &&
441	    op->data.nbytes > f->devtype_data->txfifo)
442		return false;
443
444	return spi_mem_default_supports_op(slave, op);
445}
446
447/* Instead of busy looping invoke readl_poll_sleep_timeout functionality. */
448static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
449				u32 mask, u32 delay_us,
450				u32 timeout_us, bool c)
451{
452	u32 reg;
453
454	if (!f->devtype_data->little_endian)
455		mask = (u32)cpu_to_be32(mask);
456
457	if (c)
458		return readl_poll_sleep_timeout(base, reg, (reg & mask),
459						delay_us, timeout_us);
460	else
461		return readl_poll_sleep_timeout(base, reg, !(reg & mask),
462						delay_us, timeout_us);
463}
464
465/*
466 * If the slave device content being changed by Write/Erase, need to
467 * invalidate the AHB buffer. This can be achieved by doing the reset
468 * of controller after setting MCR0[SWRESET] bit.
469 */
470static inline void nxp_fspi_invalid(struct nxp_fspi *f)
471{
472	u32 reg;
473	int ret;
474
475	reg = fspi_readl(f, f->iobase + FSPI_MCR0);
476	fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
477
478	/* w1c register, wait unit clear */
479	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
480				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
481	WARN_ON(ret);
482}
483
484static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
485				 const struct spi_mem_op *op)
486{
487	void __iomem *base = f->iobase;
488	u32 lutval[4] = {};
489	int lutidx = 1, i;
490
491	/* cmd */
492	lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
493			     op->cmd.opcode);
494
495	/* addr bytes */
496	if (op->addr.nbytes) {
497		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
498					      LUT_PAD(op->addr.buswidth),
499					      op->addr.nbytes * 8);
500		lutidx++;
501	}
502
503	/* dummy bytes, if needed */
504	if (op->dummy.nbytes) {
505		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
506		/*
507		 * Due to FlexSPI controller limitation number of PAD for dummy
508		 * buswidth needs to be programmed as equal to data buswidth.
509		 */
510					      LUT_PAD(op->data.buswidth),
511					      op->dummy.nbytes * 8 /
512					      op->dummy.buswidth);
513		lutidx++;
514	}
515
516	/* read/write data bytes */
517	if (op->data.nbytes) {
518		lutval[lutidx / 2] |= LUT_DEF(lutidx,
519					      op->data.dir == SPI_MEM_DATA_IN ?
520					      LUT_NXP_READ : LUT_NXP_WRITE,
521					      LUT_PAD(op->data.buswidth),
522					      0);
523		lutidx++;
524	}
525
526	/* stop condition. */
527	lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
528
529	/* unlock LUT */
530	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
531	fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
532
533	/* fill LUT */
534	for (i = 0; i < ARRAY_SIZE(lutval); i++)
535		fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));
536
537	dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x], size: 0x%08x\n",
538		op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes);
539
540	/* lock LUT */
541	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
542	fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
543}
544
545#if CONFIG_IS_ENABLED(CLK)
546static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
547{
548	int ret;
549
550	ret = clk_enable(&f->clk_en);
551	if (ret)
552		return ret;
553
554	ret = clk_enable(&f->clk);
555	if (ret) {
556		clk_disable(&f->clk_en);
557		return ret;
558	}
559
560	return 0;
561}
562
563static void nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
564{
565	clk_disable(&f->clk);
566	clk_disable(&f->clk_en);
567}
568#endif
569
570/*
571 * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
572 * register and start base address of the slave device.
573 *
574 *							    (Higher address)
575 *				--------    <-- FLSHB2CR0
576 *				|  B2  |
577 *				|      |
578 *	B2 start address -->	--------    <-- FLSHB1CR0
579 *				|  B1  |
580 *				|      |
581 *	B1 start address -->	--------    <-- FLSHA2CR0
582 *				|  A2  |
583 *				|      |
584 *	A2 start address -->	--------    <-- FLSHA1CR0
585 *				|  A1  |
586 *				|      |
587 *	A1 start address -->	--------		    (Lower address)
588 *
589 *
590 * Start base address defines the starting address range for given CS and
591 * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS.
592 *
593 * But, different targets are having different combinations of number of CS,
594 * some targets only have single CS or two CS covering controller's full
595 * memory mapped space area.
596 * Thus, implementation is being done as independent of the size and number
597 * of the connected slave device.
598 * Assign controller memory mapped space size as the size to the connected
599 * slave device.
600 * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
601 * chip-select Flash configuration register.
602 *
603 * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
604 * memory mapped size of the controller.
605 * Value for rest of the CS FLSHxxCR0 register would be zero.
606 *
607 */
608static void nxp_fspi_select_mem(struct nxp_fspi *f, int chip_select)
609{
610	u64 size_kb;
611
612	/* Reset FLSHxxCR0 registers */
613	fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
614	fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
615	fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
616	fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
617
618	/* Assign controller memory mapped space as size, KBytes, of flash. */
619	size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
620
621	fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
622		    4 * chip_select);
623
624	dev_dbg(f->dev, "Slave device [CS:%x] selected\n", chip_select);
625}
626
627static void nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
628{
629	u32 len = op->data.nbytes;
630
631	/* Read out the data directly from the AHB buffer. */
632	memcpy_fromio(op->data.buf.in, (f->ahb_addr + op->addr.val), len);
633}
634
635static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
636				 const struct spi_mem_op *op)
637{
638	void __iomem *base = f->iobase;
639	int i, ret;
640	u8 *buf = (u8 *)op->data.buf.out;
641
642	/* clear the TX FIFO. */
643	fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
644
645	/*
646	 * Default value of water mark level is 8 bytes, hence in single
647	 * write request controller can write max 8 bytes of data.
648	 */
649
650	for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
651		/* Wait for TXFIFO empty */
652		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
653					   FSPI_INTR_IPTXWE, 0,
654					   POLL_TOUT, true);
655		WARN_ON(ret);
656
657		fspi_writel(f, *(u32 *)(buf + i), base + FSPI_TFDR);
658		fspi_writel(f, *(u32 *)(buf + i + 4), base + FSPI_TFDR + 4);
659		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
660	}
661
662	if (i < op->data.nbytes) {
663		u32 data = 0;
664		int j;
665		/* Wait for TXFIFO empty */
666		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
667					   FSPI_INTR_IPTXWE, 0,
668					   POLL_TOUT, true);
669		WARN_ON(ret);
670
671		for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) {
672			memcpy(&data, buf + i + j, 4);
673			fspi_writel(f, data, base + FSPI_TFDR + j);
674		}
675		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
676	}
677}
678
679static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
680				 const struct spi_mem_op *op)
681{
682	void __iomem *base = f->iobase;
683	int i, ret;
684	int len = op->data.nbytes;
685	u8 *buf = (u8 *)op->data.buf.in;
686
687	/*
688	 * Default value of water mark level is 8 bytes, hence in single
689	 * read request controller can read max 8 bytes of data.
690	 */
691	for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
692		/* Wait for RXFIFO available */
693		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
694					   FSPI_INTR_IPRXWA, 0,
695					   POLL_TOUT, true);
696		WARN_ON(ret);
697
698		*(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
699		*(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
700		/* move the FIFO pointer */
701		fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
702	}
703
704	if (i < len) {
705		u32 tmp;
706		int size, j;
707
708		buf = op->data.buf.in + i;
709		/* Wait for RXFIFO available */
710		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
711					   FSPI_INTR_IPRXWA, 0,
712					   POLL_TOUT, true);
713		WARN_ON(ret);
714
715		len = op->data.nbytes - i;
716		for (j = 0; j < op->data.nbytes - i; j += 4) {
717			tmp = fspi_readl(f, base + FSPI_RFDR + j);
718			size = min(len, 4);
719			memcpy(buf + j, &tmp, size);
720			len -= size;
721		}
722	}
723
724	/* invalid the RXFIFO */
725	fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
726	/* move the FIFO pointer */
727	fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
728}
729
730static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
731{
732	void __iomem *base = f->iobase;
733	int seqnum = 0;
734	int err = 0;
735	u32 reg;
736
737	reg = fspi_readl(f, base + FSPI_IPRXFCR);
738	/* invalid RXFIFO first */
739	reg &= ~FSPI_IPRXFCR_DMA_EN;
740	reg = reg | FSPI_IPRXFCR_CLR;
741	fspi_writel(f, reg, base + FSPI_IPRXFCR);
742
743	fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
744	/*
745	 * Always start the sequence at the same index since we update
746	 * the LUT at each exec_op() call. And also specify the DATA
747	 * length, since it's has not been specified in the LUT.
748	 */
749	fspi_writel(f, op->data.nbytes |
750		 (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
751		 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
752		 base + FSPI_IPCR1);
753
754	/* Trigger the LUT now. */
755	fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
756
757	/* Wait for the completion. */
758	err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
759				   FSPI_STS0_ARB_IDLE, 1, 1000 * 1000, true);
760
761	/* Invoke IP data read, if request is of data read. */
762	if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
763		nxp_fspi_read_rxfifo(f, op);
764
765	return err;
766}
767
768static int nxp_fspi_exec_op(struct spi_slave *slave,
769			    const struct spi_mem_op *op)
770{
771	struct nxp_fspi *f;
772	struct udevice *bus;
773	int err = 0;
774
775	bus = slave->dev->parent;
776	f = dev_get_priv(bus);
777
778	/* Wait for controller being ready. */
779	err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
780				   FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
781	WARN_ON(err);
782
783	nxp_fspi_prepare_lut(f, op);
784	/*
785	 * If we have large chunks of data, we read them through the AHB bus by
786	 * accessing the mapped memory. In all other cases we use IP commands
787	 * to access the flash. Read via AHB bus may be corrupted due to
788	 * existence of an errata and therefore discard AHB read in such cases.
789	 */
790	if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
791	    op->data.dir == SPI_MEM_DATA_IN &&
792	    !needs_ip_only(f)) {
793		nxp_fspi_read_ahb(f, op);
794	} else {
795		if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
796			nxp_fspi_fill_txfifo(f, op);
797
798		err = nxp_fspi_do_op(f, op);
799	}
800
801	/* Invalidate the data in the AHB buffer. */
802	nxp_fspi_invalid(f);
803
804	return err;
805}
806
807static int nxp_fspi_adjust_op_size(struct spi_slave *slave,
808				   struct spi_mem_op *op)
809{
810	struct nxp_fspi *f;
811	struct udevice *bus;
812
813	bus = slave->dev->parent;
814	f = dev_get_priv(bus);
815
816	if (op->data.dir == SPI_MEM_DATA_OUT) {
817		if (op->data.nbytes > f->devtype_data->txfifo)
818			op->data.nbytes = f->devtype_data->txfifo;
819	} else {
820		if (op->data.nbytes > f->devtype_data->ahb_buf_size)
821			op->data.nbytes = f->devtype_data->ahb_buf_size;
822		else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
823			op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
824	}
825
826	/* Limit data bytes to RX FIFO in case of IP read only */
827	if (needs_ip_only(f) &&
828	    op->data.dir == SPI_MEM_DATA_IN &&
829	    op->data.nbytes > f->devtype_data->rxfifo)
830		op->data.nbytes = f->devtype_data->rxfifo;
831
832	return 0;
833}
834
835#ifdef CONFIG_FSL_LAYERSCAPE
836static void erratum_err050568(struct nxp_fspi *f)
837{
838	struct sys_info sysinfo;
839	u32 svr = 0, freq = 0;
840
841	/* Check for LS1028A variants */
842	svr = SVR_SOC_VER(get_svr());
843	if (svr != SVR_LS1017A ||
844	    svr != SVR_LS1018A ||
845	    svr != SVR_LS1027A ||
846	    svr != SVR_LS1028A) {
847		dev_dbg(f->dev, "Errata applicable only for LS1028A variants\n");
848		return;
849	}
850
851	/* Read PLL frequency */
852	get_sys_info(&sysinfo);
853	freq = sysinfo.freq_systembus / 1000000; /* Convert to MHz */
854	dev_dbg(f->dev, "svr: %08x, Frequency: %dMhz\n", svr, freq);
855
856	/* Use IP bus only if PLL is 300MHz */
857	if (freq == 300)
858		f->devtype_data->quirks |= FSPI_QUIRK_USE_IP_ONLY;
859}
860#endif
861
862static int nxp_fspi_default_setup(struct nxp_fspi *f)
863{
864	void __iomem *base = f->iobase;
865	int ret, i;
866	u32 reg;
867
868#if CONFIG_IS_ENABLED(CLK)
869	/* the default frequency, we will change it later if necessary. */
870	ret = clk_set_rate(&f->clk, 20000000);
871	if (ret < 0)
872		return ret;
873
874	ret = nxp_fspi_clk_prep_enable(f);
875	if (ret)
876		return ret;
877#endif
878
879#ifdef CONFIG_FSL_LAYERSCAPE
880	/*
881	 * ERR050568: Flash access by FlexSPI AHB command may not work with
882	 * platform frequency equal to 300 MHz on LS1028A.
883	 * LS1028A reuses LX2160A compatible entry. Make errata applicable for
884	 * Layerscape LS1028A platform family.
885	 */
886	if (device_is_compatible(f->dev, "nxp,lx2160a-fspi"))
887		erratum_err050568(f);
888#endif
889
890	/* Reset the module */
891	/* w1c register, wait unit clear */
892	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
893				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
894	WARN_ON(ret);
895
896	/* Disable the module */
897	fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
898
899	/* Reset the DLL register to default value */
900	fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
901	fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
902
903	/* enable module */
904	fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) | FSPI_MCR0_IP_TIMEOUT(0xFF),
905		    base + FSPI_MCR0);
906
907	/*
908	 * Disable same device enable bit and configure all slave devices
909	 * independently.
910	 */
911	reg = fspi_readl(f, f->iobase + FSPI_MCR2);
912	reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
913	fspi_writel(f, reg, base + FSPI_MCR2);
914
915	/* AHB configuration for access buffer 0~7. */
916	for (i = 0; i < 7; i++)
917		fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
918
919	/*
920	 * Set ADATSZ with the maximum AHB buffer size to improve the read
921	 * performance.
922	 */
923	fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
924		    FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
925
926	/* prefetch and no start address alignment limitation */
927	fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
928		    base + FSPI_AHBCR);
929
930	/* Reset the flashx control1 registers */
931	reg = FSPI_FLSHXCR1_TCSH(0x3) | FSPI_FLSHXCR1_TCSS(0x3);
932	fspi_writel(f, reg, base + FSPI_FLSHA1CR1);
933	fspi_writel(f, reg, base + FSPI_FLSHA2CR1);
934	fspi_writel(f, reg, base + FSPI_FLSHB1CR1);
935	fspi_writel(f, reg, base + FSPI_FLSHB2CR1);
936
937	/* AHB Read - Set lut sequence ID for all CS. */
938	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2);
939	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2);
940	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2);
941	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2);
942
943	return 0;
944}
945
946static int nxp_fspi_probe(struct udevice *bus)
947{
948	struct nxp_fspi *f = dev_get_priv(bus);
949
950	f->devtype_data =
951		(struct nxp_fspi_devtype_data *)dev_get_driver_data(bus);
952	nxp_fspi_default_setup(f);
953
954	return 0;
955}
956
957static int nxp_fspi_claim_bus(struct udevice *dev)
958{
959	struct nxp_fspi *f;
960	struct udevice *bus;
961	struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev);
962
963	bus = dev->parent;
964	f = dev_get_priv(bus);
965
966	nxp_fspi_select_mem(f, slave_plat->cs);
967
968	return 0;
969}
970
971static int nxp_fspi_set_speed(struct udevice *bus, uint speed)
972{
973#if CONFIG_IS_ENABLED(CLK)
974	struct nxp_fspi *f = dev_get_priv(bus);
975	int ret;
976
977	nxp_fspi_clk_disable_unprep(f);
978
979	ret = clk_set_rate(&f->clk, speed);
980	if (ret < 0)
981		return ret;
982
983	ret = nxp_fspi_clk_prep_enable(f);
984	if (ret)
985		return ret;
986#endif
987	return 0;
988}
989
990static int nxp_fspi_set_mode(struct udevice *bus, uint mode)
991{
992	/* Nothing to do */
993	return 0;
994}
995
996static int nxp_fspi_of_to_plat(struct udevice *bus)
997{
998	struct nxp_fspi *f = dev_get_priv(bus);
999#if CONFIG_IS_ENABLED(CLK)
1000	int ret;
1001#endif
1002
1003	fdt_addr_t iobase;
1004	fdt_addr_t iobase_size;
1005	fdt_addr_t ahb_addr;
1006	fdt_addr_t ahb_size;
1007
1008	f->dev = bus;
1009
1010	iobase = devfdt_get_addr_size_name(bus, "fspi_base", &iobase_size);
1011	if (iobase == FDT_ADDR_T_NONE) {
1012		dev_err(bus, "fspi_base regs missing\n");
1013		return -ENODEV;
1014	}
1015	f->iobase = map_physmem(iobase, iobase_size, MAP_NOCACHE);
1016
1017	ahb_addr = devfdt_get_addr_size_name(bus, "fspi_mmap", &ahb_size);
1018	if (ahb_addr == FDT_ADDR_T_NONE) {
1019		dev_err(bus, "fspi_mmap regs missing\n");
1020		return -ENODEV;
1021	}
1022	f->ahb_addr = map_physmem(ahb_addr, ahb_size, MAP_NOCACHE);
1023	f->memmap_phy_size = ahb_size;
1024
1025#if CONFIG_IS_ENABLED(CLK)
1026	ret = clk_get_by_name(bus, "fspi_en", &f->clk_en);
1027	if (ret) {
1028		dev_err(bus, "failed to get fspi_en clock\n");
1029		return ret;
1030	}
1031
1032	ret = clk_get_by_name(bus, "fspi", &f->clk);
1033	if (ret) {
1034		dev_err(bus, "failed to get fspi clock\n");
1035		return ret;
1036	}
1037#endif
1038
1039	dev_dbg(bus, "iobase=<0x%llx>, ahb_addr=<0x%llx>\n", iobase, ahb_addr);
1040
1041	return 0;
1042}
1043
1044static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
1045	.adjust_op_size = nxp_fspi_adjust_op_size,
1046	.supports_op = nxp_fspi_supports_op,
1047	.exec_op = nxp_fspi_exec_op,
1048};
1049
1050static const struct dm_spi_ops nxp_fspi_ops = {
1051	.claim_bus	= nxp_fspi_claim_bus,
1052	.set_speed	= nxp_fspi_set_speed,
1053	.set_mode	= nxp_fspi_set_mode,
1054	.mem_ops        = &nxp_fspi_mem_ops,
1055};
1056
1057static const struct udevice_id nxp_fspi_ids[] = {
1058	{ .compatible = "nxp,lx2160a-fspi", .data = (ulong)&lx2160a_data, },
1059	{ .compatible = "nxp,imx8mm-fspi", .data = (ulong)&imx8mm_data, },
1060	{ .compatible = "nxp,imx8mp-fspi", .data = (ulong)&imx8mm_data, },
1061	{ }
1062};
1063
1064U_BOOT_DRIVER(nxp_fspi) = {
1065	.name	= "nxp_fspi",
1066	.id	= UCLASS_SPI,
1067	.of_match = nxp_fspi_ids,
1068	.ops	= &nxp_fspi_ops,
1069	.of_to_plat = nxp_fspi_of_to_plat,
1070	.priv_auto	= sizeof(struct nxp_fspi),
1071	.probe	= nxp_fspi_probe,
1072};
1073