1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
4 * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
5 * (C) Copyright 2008 Armadeus Systems nc
6 * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
7 * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
8 */
9
10#include <cpu_func.h>
11#include <dm.h>
12#include <env.h>
13#include <log.h>
14#include <malloc.h>
15#include <memalign.h>
16#include <miiphy.h>
17#include <net.h>
18#include <netdev.h>
19#include <asm/cache.h>
20#include <asm/global_data.h>
21#include <linux/delay.h>
22#include <power/regulator.h>
23
24#include <asm/io.h>
25#include <linux/errno.h>
26#include <linux/compiler.h>
27
28#include <asm/arch/clock.h>
29#include <asm/arch/imx-regs.h>
30#include <asm/mach-imx/sys_proto.h>
31#include <asm-generic/gpio.h>
32#include <dm/device_compat.h>
33#include <dm/lists.h>
34
35#include "fec_mxc.h"
36#include <eth_phy.h>
37
38DECLARE_GLOBAL_DATA_PTR;
39
40/*
41 * Timeout the transfer after 5 mS. This is usually a bit more, since
42 * the code in the tightloops this timeout is used in adds some overhead.
43 */
44#define FEC_XFER_TIMEOUT	5000
45
46/*
47 * The standard 32-byte DMA alignment does not work on mx6solox, which requires
48 * 64-byte alignment in the DMA RX FEC buffer.
49 * Introduce the FEC_DMA_RX_MINALIGN which can cover mx6solox needs and also
50 * satisfies the alignment on other SoCs (32-bytes)
51 */
52#define FEC_DMA_RX_MINALIGN	64
53
54#ifndef CONFIG_MII
55#error "CONFIG_MII has to be defined!"
56#endif
57
58/*
59 * The i.MX28 operates with packets in big endian. We need to swap them before
60 * sending and after receiving.
61 */
62#ifdef CONFIG_MX28
63#define CFG_FEC_MXC_SWAP_PACKET
64#endif
65
66#define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
67
68/* Check various alignment issues at compile time */
69#if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
70#error "ARCH_DMA_MINALIGN must be multiple of 16!"
71#endif
72
73#if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
74	(PKTALIGN % ARCH_DMA_MINALIGN != 0))
75#error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
76#endif
77
78#undef DEBUG
79
80#ifdef CFG_FEC_MXC_SWAP_PACKET
81static void swap_packet(uint32_t *packet, int length)
82{
83	int i;
84
85	for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
86		packet[i] = __swab32(packet[i]);
87}
88#endif
89
90/* MII-interface related functions */
91static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyaddr,
92		uint8_t regaddr)
93{
94	uint32_t reg;		/* convenient holder for the PHY register */
95	uint32_t phy;		/* convenient holder for the PHY */
96	uint32_t start;
97	int val;
98
99	/*
100	 * reading from any PHY's register is done by properly
101	 * programming the FEC's MII data register.
102	 */
103	writel(FEC_IEVENT_MII, &eth->ievent);
104	reg = regaddr << FEC_MII_DATA_RA_SHIFT;
105	phy = phyaddr << FEC_MII_DATA_PA_SHIFT;
106
107	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
108			phy | reg, &eth->mii_data);
109
110	/* wait for the related interrupt */
111	start = get_timer(0);
112	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
113		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
114			printf("Read MDIO failed...\n");
115			return -1;
116		}
117	}
118
119	/* clear mii interrupt bit */
120	writel(FEC_IEVENT_MII, &eth->ievent);
121
122	/* it's now safe to read the PHY's register */
123	val = (unsigned short)readl(&eth->mii_data);
124	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr,
125	      regaddr, val);
126	return val;
127}
128
129#ifndef imx_get_fecclk
130u32 __weak imx_get_fecclk(void)
131{
132	return 0;
133}
134#endif
135
136static int fec_get_clk_rate(void *udev, int idx)
137{
138	struct fec_priv *fec;
139	struct udevice *dev;
140	int ret;
141
142	if (IS_ENABLED(CONFIG_IMX8) ||
143	    CONFIG_IS_ENABLED(CLK_CCF)) {
144		dev = udev;
145		if (!dev) {
146			ret = uclass_get_device_by_seq(UCLASS_ETH, idx, &dev);
147			if (ret < 0) {
148				debug("Can't get FEC udev: %d\n", ret);
149				return ret;
150			}
151		}
152
153		fec = dev_get_priv(dev);
154		if (fec)
155			return fec->clk_rate;
156
157		return -EINVAL;
158	} else {
159		return imx_get_fecclk();
160	}
161}
162
163static void fec_mii_setspeed(struct ethernet_regs *eth)
164{
165	/*
166	 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
167	 * and do not drop the Preamble.
168	 *
169	 * The i.MX28 and i.MX6 types have another field in the MSCR (aka
170	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
171	 * versions are RAZ there, so just ignore the difference and write the
172	 * register always.
173	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
174	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
175	 * output.
176	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
177	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
178	 * holdtime cannot result in a value greater than 3.
179	 */
180	u32 pclk;
181	u32 speed;
182	u32 hold;
183	int ret;
184
185	ret = fec_get_clk_rate(NULL, 0);
186	if (ret < 0) {
187		printf("Can't find FEC0 clk rate: %d\n", ret);
188		return;
189	}
190	pclk = ret;
191	speed = DIV_ROUND_UP(pclk, 5000000);
192	hold = DIV_ROUND_UP(pclk, 100000000) - 1;
193
194#ifdef FEC_QUIRK_ENET_MAC
195	speed--;
196#endif
197	writel(speed << 1 | hold << 8, &eth->mii_speed);
198	debug("%s: mii_speed %08x\n", __func__, readl(&eth->mii_speed));
199}
200
201static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyaddr,
202		uint8_t regaddr, uint16_t data)
203{
204	uint32_t reg;		/* convenient holder for the PHY register */
205	uint32_t phy;		/* convenient holder for the PHY */
206	uint32_t start;
207
208	reg = regaddr << FEC_MII_DATA_RA_SHIFT;
209	phy = phyaddr << FEC_MII_DATA_PA_SHIFT;
210
211	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
212		FEC_MII_DATA_TA | phy | reg | data, &eth->mii_data);
213
214	/* wait for the MII interrupt */
215	start = get_timer(0);
216	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
217		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
218			printf("Write MDIO failed...\n");
219			return -1;
220		}
221	}
222
223	/* clear MII interrupt bit */
224	writel(FEC_IEVENT_MII, &eth->ievent);
225	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr,
226	      regaddr, data);
227
228	return 0;
229}
230
231static int fec_phy_read(struct mii_dev *bus, int phyaddr, int dev_addr,
232			int regaddr)
233{
234	return fec_mdio_read(bus->priv, phyaddr, regaddr);
235}
236
237static int fec_phy_write(struct mii_dev *bus, int phyaddr, int dev_addr,
238			 int regaddr, u16 data)
239{
240	return fec_mdio_write(bus->priv, phyaddr, regaddr, data);
241}
242
243#ifndef CONFIG_PHYLIB
244static int miiphy_restart_aneg(struct eth_device *dev)
245{
246	int ret = 0;
247#if !defined(CONFIG_FEC_MXC_NO_ANEG)
248	struct fec_priv *fec = (struct fec_priv *)dev->priv;
249	struct ethernet_regs *eth = fec->bus->priv;
250
251	/*
252	 * Wake up from sleep if necessary
253	 * Reset PHY, then delay 300ns
254	 */
255	fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
256	udelay(1000);
257
258	/* Set the auto-negotiation advertisement register bits */
259	fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
260		       LPA_100FULL | LPA_100HALF | LPA_10FULL |
261		       LPA_10HALF | PHY_ANLPAR_PSB_802_3);
262	fec_mdio_write(eth, fec->phy_id, MII_BMCR,
263		       BMCR_ANENABLE | BMCR_ANRESTART);
264
265	if (fec->mii_postcall)
266		ret = fec->mii_postcall(fec->phy_id);
267
268#endif
269	return ret;
270}
271
272static int miiphy_wait_aneg(struct eth_device *dev)
273{
274	uint32_t start;
275	int status;
276	struct fec_priv *fec = (struct fec_priv *)dev->priv;
277	struct ethernet_regs *eth = fec->bus->priv;
278
279	/* Wait for AN completion */
280	start = get_timer(0);
281	do {
282		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
283			printf("%s: Autonegotiation timeout\n", dev->name);
284			return -1;
285		}
286
287		status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
288		if (status < 0) {
289			printf("%s: Autonegotiation failed. status: %d\n",
290			       dev->name, status);
291			return -1;
292		}
293	} while (!(status & BMSR_LSTATUS));
294
295	return 0;
296}
297#endif
298
299static int fec_rx_task_enable(struct fec_priv *fec)
300{
301	writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active);
302	return 0;
303}
304
305static int fec_rx_task_disable(struct fec_priv *fec)
306{
307	return 0;
308}
309
310static int fec_tx_task_enable(struct fec_priv *fec)
311{
312	writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active);
313	return 0;
314}
315
316static int fec_tx_task_disable(struct fec_priv *fec)
317{
318	return 0;
319}
320
321/**
322 * Initialize receive task's buffer descriptors
323 * @param[in] fec all we know about the device yet
324 * @param[in] count receive buffer count to be allocated
325 * @param[in] dsize desired size of each receive buffer
326 * Return: 0 on success
327 *
328 * Init all RX descriptors to default values.
329 */
330static void fec_rbd_init(struct fec_priv *fec, int count, int dsize)
331{
332	uint32_t size;
333	ulong data;
334	int i;
335
336	/*
337	 * Reload the RX descriptors with default values and wipe
338	 * the RX buffers.
339	 */
340	size = roundup(dsize, ARCH_DMA_MINALIGN);
341	for (i = 0; i < count; i++) {
342		data = fec->rbd_base[i].data_pointer;
343		memset((void *)data, 0, dsize);
344		flush_dcache_range(data, data + size);
345
346		fec->rbd_base[i].status = FEC_RBD_EMPTY;
347		fec->rbd_base[i].data_length = 0;
348	}
349
350	/* Mark the last RBD to close the ring. */
351	fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
352	fec->rbd_index = 0;
353
354	flush_dcache_range((ulong)fec->rbd_base,
355			   (ulong)fec->rbd_base + size);
356}
357
358/**
359 * Initialize transmit task's buffer descriptors
360 * @param[in] fec all we know about the device yet
361 *
362 * Transmit buffers are created externally. We only have to init the BDs here.\n
363 * Note: There is a race condition in the hardware. When only one BD is in
364 * use it must be marked with the WRAP bit to use it for every transmitt.
365 * This bit in combination with the READY bit results into double transmit
366 * of each data buffer. It seems the state machine checks READY earlier then
367 * resetting it after the first transfer.
368 * Using two BDs solves this issue.
369 */
370static void fec_tbd_init(struct fec_priv *fec)
371{
372	ulong addr = (ulong)fec->tbd_base;
373	unsigned size = roundup(2 * sizeof(struct fec_bd),
374				ARCH_DMA_MINALIGN);
375
376	memset(fec->tbd_base, 0, size);
377	fec->tbd_base[0].status = 0;
378	fec->tbd_base[1].status = FEC_TBD_WRAP;
379	fec->tbd_index = 0;
380	flush_dcache_range(addr, addr + size);
381}
382
383/**
384 * Mark the given read buffer descriptor as free
385 * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
386 * @param[in] prbd buffer descriptor to mark free again
387 */
388static void fec_rbd_clean(int last, struct fec_bd *prbd)
389{
390	unsigned short flags = FEC_RBD_EMPTY;
391	if (last)
392		flags |= FEC_RBD_WRAP;
393	writew(flags, &prbd->status);
394	writew(0, &prbd->data_length);
395}
396
397static int fec_get_hwaddr(int dev_id, unsigned char *mac)
398{
399	imx_get_mac_from_fuse(dev_id, mac);
400	return !is_valid_ethaddr(mac);
401}
402
403static int fecmxc_set_hwaddr(struct udevice *dev)
404{
405	struct fec_priv *fec = dev_get_priv(dev);
406	struct eth_pdata *pdata = dev_get_plat(dev);
407	uchar *mac = pdata->enetaddr;
408
409	writel(0, &fec->eth->iaddr1);
410	writel(0, &fec->eth->iaddr2);
411	writel(0, &fec->eth->gaddr1);
412	writel(0, &fec->eth->gaddr2);
413
414	/* Set physical address */
415	writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
416	       &fec->eth->paddr1);
417	writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
418
419	return 0;
420}
421
422/* Do initial configuration of the FEC registers */
423static void fec_reg_setup(struct fec_priv *fec)
424{
425	uint32_t rcntrl;
426
427	/* Set interrupt mask register */
428	writel(0x00000000, &fec->eth->imask);
429
430	/* Clear FEC-Lite interrupt event register(IEVENT) */
431	writel(0xffffffff, &fec->eth->ievent);
432
433	/* Set FEC-Lite receive control register(R_CNTRL): */
434
435	/* Start with frame length = 1518, common for all modes. */
436	rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
437	if (fec->xcv_type != SEVENWIRE)		/* xMII modes */
438		rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
439	if (fec->xcv_type == RGMII)
440		rcntrl |= FEC_RCNTRL_RGMII;
441	else if (fec->xcv_type == RMII)
442		rcntrl |= FEC_RCNTRL_RMII;
443
444	if (fec->promisc)
445		rcntrl |= 0x8;
446
447	writel(rcntrl, &fec->eth->r_cntrl);
448}
449
450/**
451 * Start the FEC engine
452 * @param[in] dev Our device to handle
453 */
454static int fec_open(struct udevice *dev)
455{
456	struct fec_priv *fec = dev_get_priv(dev);
457	int speed;
458	ulong addr, size;
459	int i;
460
461	debug("fec_open: fec_open(dev)\n");
462	/* full-duplex, heartbeat disabled */
463	writel(1 << 2, &fec->eth->x_cntrl);
464	fec->rbd_index = 0;
465
466	/* Invalidate all descriptors */
467	for (i = 0; i < FEC_RBD_NUM - 1; i++)
468		fec_rbd_clean(0, &fec->rbd_base[i]);
469	fec_rbd_clean(1, &fec->rbd_base[i]);
470
471	/* Flush the descriptors into RAM */
472	size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
473			ARCH_DMA_MINALIGN);
474	addr = (ulong)fec->rbd_base;
475	flush_dcache_range(addr, addr + size);
476
477#ifdef FEC_QUIRK_ENET_MAC
478	/* Enable ENET HW endian SWAP */
479	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
480	       &fec->eth->ecntrl);
481	/* Enable ENET store and forward mode */
482	writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
483	       &fec->eth->x_wmrk);
484#endif
485	/* Enable FEC-Lite controller */
486	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
487	       &fec->eth->ecntrl);
488
489#ifdef FEC_ENET_ENABLE_TXC_DELAY
490	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_TXC_DLY,
491	       &fec->eth->ecntrl);
492#endif
493
494#ifdef FEC_ENET_ENABLE_RXC_DELAY
495	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RXC_DLY,
496	       &fec->eth->ecntrl);
497#endif
498
499#if defined(CONFIG_MX53) || defined(CONFIG_MX6SL)
500	udelay(100);
501
502	/* setup the MII gasket for RMII mode */
503	/* disable the gasket */
504	writew(0, &fec->eth->miigsk_enr);
505
506	/* wait for the gasket to be disabled */
507	while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
508		udelay(2);
509
510	/* configure gasket for RMII, 50 MHz, no loopback, and no echo */
511	writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
512
513	/* re-enable the gasket */
514	writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
515
516	/* wait until MII gasket is ready */
517	int max_loops = 10;
518	while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
519		if (--max_loops <= 0) {
520			printf("WAIT for MII Gasket ready timed out\n");
521			break;
522		}
523	}
524#endif
525
526#ifdef CONFIG_PHYLIB
527	{
528		/* Start up the PHY */
529		int ret = phy_startup(fec->phydev);
530
531		if (ret) {
532			printf("Could not initialize PHY %s\n",
533			       fec->phydev->dev->name);
534			return ret;
535		}
536		speed = fec->phydev->speed;
537	}
538#else
539	miiphy_wait_aneg(edev);
540	speed = miiphy_speed(edev->name, fec->phy_id);
541	miiphy_duplex(edev->name, fec->phy_id);
542#endif
543
544#ifdef FEC_QUIRK_ENET_MAC
545	{
546		u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
547		u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T;
548		if (speed == _1000BASET)
549			ecr |= FEC_ECNTRL_SPEED;
550		else if (speed != _100BASET)
551			rcr |= FEC_RCNTRL_RMII_10T;
552		writel(ecr, &fec->eth->ecntrl);
553		writel(rcr, &fec->eth->r_cntrl);
554	}
555#endif
556	debug("%s:Speed=%i\n", __func__, speed);
557
558	/* Enable SmartDMA receive task */
559	fec_rx_task_enable(fec);
560
561	udelay(100000);
562	return 0;
563}
564
565static int fecmxc_init(struct udevice *dev)
566{
567	struct fec_priv *fec = dev_get_priv(dev);
568	u8 *mib_ptr = (uint8_t *)&fec->eth->rmon_t_drop;
569	u8 *i;
570	ulong addr;
571
572	/* Initialize MAC address */
573	fecmxc_set_hwaddr(dev);
574
575	/* Setup transmit descriptors, there are two in total. */
576	fec_tbd_init(fec);
577
578	/* Setup receive descriptors. */
579	fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE);
580
581	fec_reg_setup(fec);
582
583	if (fec->xcv_type != SEVENWIRE)
584		fec_mii_setspeed(fec->bus->priv);
585
586	/* Set Opcode/Pause Duration Register */
587	writel(0x00010020, &fec->eth->op_pause);	/* FIXME 0xffff0020; */
588	writel(0x2, &fec->eth->x_wmrk);
589
590	/* Set multicast address filter */
591	writel(0x00000000, &fec->eth->gaddr1);
592	writel(0x00000000, &fec->eth->gaddr2);
593
594	/* Do not access reserved register */
595	if (!is_mx6ul() && !is_mx6ull() && !is_imx8() && !is_imx8m() && !is_imx8ulp() &&
596	    !is_imx93()) {
597		/* clear MIB RAM */
598		for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
599			writel(0, i);
600
601		/* FIFO receive start register */
602		writel(0x520, &fec->eth->r_fstart);
603	}
604
605	/* size and address of each buffer */
606	writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
607
608	addr = (ulong)fec->tbd_base;
609	writel((uint32_t)addr, &fec->eth->etdsr);
610
611	addr = (ulong)fec->rbd_base;
612	writel((uint32_t)addr, &fec->eth->erdsr);
613
614#ifndef CONFIG_PHYLIB
615	if (fec->xcv_type != SEVENWIRE)
616		miiphy_restart_aneg(dev);
617#endif
618	fec_open(dev);
619	return 0;
620}
621
622/**
623 * Halt the FEC engine
624 * @param[in] dev Our device to handle
625 */
626static void fecmxc_halt(struct udevice *dev)
627{
628	struct fec_priv *fec = dev_get_priv(dev);
629	int counter = 0xffff;
630
631	/* issue graceful stop command to the FEC transmitter if necessary */
632	writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
633	       &fec->eth->x_cntrl);
634
635	debug("eth_halt: wait for stop regs\n");
636	/* wait for graceful stop to register */
637	while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
638		udelay(1);
639
640	/* Disable SmartDMA tasks */
641	fec_tx_task_disable(fec);
642	fec_rx_task_disable(fec);
643
644	/*
645	 * Disable the Ethernet Controller
646	 * Note: this will also reset the BD index counter!
647	 */
648	writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
649	       &fec->eth->ecntrl);
650	fec->rbd_index = 0;
651	fec->tbd_index = 0;
652	debug("eth_halt: done\n");
653}
654
655/**
656 * Transmit one frame
657 * @param[in] dev Our ethernet device to handle
658 * @param[in] packet Pointer to the data to be transmitted
659 * @param[in] length Data count in bytes
660 * Return: 0 on success
661 */
662static int fecmxc_send(struct udevice *dev, void *packet, int length)
663{
664	unsigned int status;
665	u32 size;
666	ulong addr, end;
667	int timeout = FEC_XFER_TIMEOUT;
668	int ret = 0;
669
670	/*
671	 * This routine transmits one frame.  This routine only accepts
672	 * 6-byte Ethernet addresses.
673	 */
674	struct fec_priv *fec = dev_get_priv(dev);
675
676	/*
677	 * Check for valid length of data.
678	 */
679	if ((length > 1500) || (length <= 0)) {
680		printf("Payload (%d) too large\n", length);
681		return -1;
682	}
683
684	/*
685	 * Setup the transmit buffer. We are always using the first buffer for
686	 * transmission, the second will be empty and only used to stop the DMA
687	 * engine. We also flush the packet to RAM here to avoid cache trouble.
688	 */
689#ifdef CFG_FEC_MXC_SWAP_PACKET
690	swap_packet((uint32_t *)packet, length);
691#endif
692
693	addr = (ulong)packet;
694	end = roundup(addr + length, ARCH_DMA_MINALIGN);
695	addr &= ~(ARCH_DMA_MINALIGN - 1);
696	flush_dcache_range(addr, end);
697
698	writew(length, &fec->tbd_base[fec->tbd_index].data_length);
699	writel((uint32_t)addr, &fec->tbd_base[fec->tbd_index].data_pointer);
700
701	/*
702	 * update BD's status now
703	 * This block:
704	 * - is always the last in a chain (means no chain)
705	 * - should transmitt the CRC
706	 * - might be the last BD in the list, so the address counter should
707	 *   wrap (-> keep the WRAP flag)
708	 */
709	status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
710	status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
711	writew(status, &fec->tbd_base[fec->tbd_index].status);
712
713	/*
714	 * Flush data cache. This code flushes both TX descriptors to RAM.
715	 * After this code, the descriptors will be safely in RAM and we
716	 * can start DMA.
717	 */
718	size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
719	addr = (ulong)fec->tbd_base;
720	flush_dcache_range(addr, addr + size);
721
722	/*
723	 * Below we read the DMA descriptor's last four bytes back from the
724	 * DRAM. This is important in order to make sure that all WRITE
725	 * operations on the bus that were triggered by previous cache FLUSH
726	 * have completed.
727	 *
728	 * Otherwise, on MX28, it is possible to observe a corruption of the
729	 * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM
730	 * for the bus structure of MX28. The scenario is as follows:
731	 *
732	 * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going
733	 *    to DRAM due to flush_dcache_range()
734	 * 2) ARM core writes the FEC registers via AHB_ARB2
735	 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3
736	 *
737	 * Note that 2) does sometimes finish before 1) due to reordering of
738	 * WRITE accesses on the AHB bus, therefore triggering 3) before the
739	 * DMA descriptor is fully written into DRAM. This results in occasional
740	 * corruption of the DMA descriptor.
741	 */
742	readl(addr + size - 4);
743
744	/* Enable SmartDMA transmit task */
745	fec_tx_task_enable(fec);
746
747	/*
748	 * Wait until frame is sent. On each turn of the wait cycle, we must
749	 * invalidate data cache to see what's really in RAM. Also, we need
750	 * barrier here.
751	 */
752	while (--timeout) {
753		if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR))
754			break;
755	}
756
757	if (!timeout) {
758		ret = -EINVAL;
759		goto out;
760	}
761
762	/*
763	 * The TDAR bit is cleared when the descriptors are all out from TX
764	 * but on mx6solox we noticed that the READY bit is still not cleared
765	 * right after TDAR.
766	 * These are two distinct signals, and in IC simulation, we found that
767	 * TDAR always gets cleared prior than the READY bit of last BD becomes
768	 * cleared.
769	 * In mx6solox, we use a later version of FEC IP. It looks like that
770	 * this intrinsic behaviour of TDAR bit has changed in this newer FEC
771	 * version.
772	 *
773	 * Fix this by polling the READY bit of BD after the TDAR polling,
774	 * which covers the mx6solox case and does not harm the other SoCs.
775	 */
776	timeout = FEC_XFER_TIMEOUT;
777	while (--timeout) {
778		invalidate_dcache_range(addr, addr + size);
779		if (!(readw(&fec->tbd_base[fec->tbd_index].status) &
780		    FEC_TBD_READY))
781			break;
782	}
783
784	if (!timeout)
785		ret = -EINVAL;
786
787out:
788	debug("fec_send: status 0x%x index %d ret %i\n",
789	      readw(&fec->tbd_base[fec->tbd_index].status),
790	      fec->tbd_index, ret);
791	/* for next transmission use the other buffer */
792	if (fec->tbd_index)
793		fec->tbd_index = 0;
794	else
795		fec->tbd_index = 1;
796
797	return ret;
798}
799
800/**
801 * Pull one frame from the card
802 * @param[in] dev Our ethernet device to handle
803 * Return: Length of packet read
804 */
805static int fecmxc_recv(struct udevice *dev, int flags, uchar **packetp)
806{
807	struct fec_priv *fec = dev_get_priv(dev);
808	struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
809	unsigned long ievent;
810	int frame_length, len = 0;
811	uint16_t bd_status;
812	ulong addr, size, end;
813	int i;
814
815	*packetp = memalign(ARCH_DMA_MINALIGN, FEC_MAX_PKT_SIZE);
816	if (*packetp == 0) {
817		printf("%s: error allocating packetp\n", __func__);
818		return -ENOMEM;
819	}
820
821	/* Check if any critical events have happened */
822	ievent = readl(&fec->eth->ievent);
823	writel(ievent, &fec->eth->ievent);
824	debug("fec_recv: ievent 0x%lx\n", ievent);
825	if (ievent & FEC_IEVENT_BABR) {
826		fecmxc_halt(dev);
827		fecmxc_init(dev);
828		printf("some error: 0x%08lx\n", ievent);
829		return 0;
830	}
831	if (ievent & FEC_IEVENT_HBERR) {
832		/* Heartbeat error */
833		writel(0x00000001 | readl(&fec->eth->x_cntrl),
834		       &fec->eth->x_cntrl);
835	}
836	if (ievent & FEC_IEVENT_GRA) {
837		/* Graceful stop complete */
838		if (readl(&fec->eth->x_cntrl) & 0x00000001) {
839			fecmxc_halt(dev);
840			writel(~0x00000001 & readl(&fec->eth->x_cntrl),
841			       &fec->eth->x_cntrl);
842			fecmxc_init(dev);
843		}
844	}
845
846	/*
847	 * Read the buffer status. Before the status can be read, the data cache
848	 * must be invalidated, because the data in RAM might have been changed
849	 * by DMA. The descriptors are properly aligned to cachelines so there's
850	 * no need to worry they'd overlap.
851	 *
852	 * WARNING: By invalidating the descriptor here, we also invalidate
853	 * the descriptors surrounding this one. Therefore we can NOT change the
854	 * contents of this descriptor nor the surrounding ones. The problem is
855	 * that in order to mark the descriptor as processed, we need to change
856	 * the descriptor. The solution is to mark the whole cache line when all
857	 * descriptors in the cache line are processed.
858	 */
859	addr = (ulong)rbd;
860	addr &= ~(ARCH_DMA_MINALIGN - 1);
861	size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
862	invalidate_dcache_range(addr, addr + size);
863
864	bd_status = readw(&rbd->status);
865	debug("fec_recv: status 0x%x\n", bd_status);
866
867	if (!(bd_status & FEC_RBD_EMPTY)) {
868		if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
869		    ((readw(&rbd->data_length) - 4) > 14)) {
870			/* Get buffer address and size */
871			addr = readl(&rbd->data_pointer);
872			frame_length = readw(&rbd->data_length) - 4;
873			/* Invalidate data cache over the buffer */
874			end = roundup(addr + frame_length, ARCH_DMA_MINALIGN);
875			addr &= ~(ARCH_DMA_MINALIGN - 1);
876			invalidate_dcache_range(addr, end);
877
878			/* Fill the buffer and pass it to upper layers */
879#ifdef CFG_FEC_MXC_SWAP_PACKET
880			swap_packet((uint32_t *)addr, frame_length);
881#endif
882
883			memcpy(*packetp, (char *)addr, frame_length);
884			len = frame_length;
885		} else {
886			if (bd_status & FEC_RBD_ERR)
887				debug("error frame: 0x%08lx 0x%08x\n",
888				      addr, bd_status);
889		}
890
891		/*
892		 * Free the current buffer, restart the engine and move forward
893		 * to the next buffer. Here we check if the whole cacheline of
894		 * descriptors was already processed and if so, we mark it free
895		 * as whole.
896		 */
897		size = RXDESC_PER_CACHELINE - 1;
898		if ((fec->rbd_index & size) == size) {
899			i = fec->rbd_index - size;
900			addr = (ulong)&fec->rbd_base[i];
901			for (; i <= fec->rbd_index ; i++) {
902				fec_rbd_clean(i == (FEC_RBD_NUM - 1),
903					      &fec->rbd_base[i]);
904			}
905			flush_dcache_range(addr,
906					   addr + ARCH_DMA_MINALIGN);
907		}
908
909		fec_rx_task_enable(fec);
910		fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
911	}
912	debug("fec_recv: stop\n");
913
914	return len;
915}
916
917static void fec_set_dev_name(char *dest, int dev_id)
918{
919	sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id);
920}
921
922static int fec_alloc_descs(struct fec_priv *fec)
923{
924	unsigned int size;
925	int i;
926	uint8_t *data;
927	ulong addr;
928
929	/* Allocate TX descriptors. */
930	size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
931	fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
932	if (!fec->tbd_base)
933		goto err_tx;
934
935	/* Allocate RX descriptors. */
936	size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
937	fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
938	if (!fec->rbd_base)
939		goto err_rx;
940
941	memset(fec->rbd_base, 0, size);
942
943	/* Allocate RX buffers. */
944
945	/* Maximum RX buffer size. */
946	size = roundup(FEC_MAX_PKT_SIZE, FEC_DMA_RX_MINALIGN);
947	for (i = 0; i < FEC_RBD_NUM; i++) {
948		data = memalign(FEC_DMA_RX_MINALIGN, size);
949		if (!data) {
950			printf("%s: error allocating rxbuf %d\n", __func__, i);
951			goto err_ring;
952		}
953
954		memset(data, 0, size);
955
956		addr = (ulong)data;
957		fec->rbd_base[i].data_pointer = (uint32_t)addr;
958		fec->rbd_base[i].status = FEC_RBD_EMPTY;
959		fec->rbd_base[i].data_length = 0;
960		/* Flush the buffer to memory. */
961		flush_dcache_range(addr, addr + size);
962	}
963
964	/* Mark the last RBD to close the ring. */
965	fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
966
967	fec->rbd_index = 0;
968	fec->tbd_index = 0;
969
970	return 0;
971
972err_ring:
973	for (; i >= 0; i--) {
974		addr = fec->rbd_base[i].data_pointer;
975		free((void *)addr);
976	}
977	free(fec->rbd_base);
978err_rx:
979	free(fec->tbd_base);
980err_tx:
981	return -ENOMEM;
982}
983
984static void fec_free_descs(struct fec_priv *fec)
985{
986	int i;
987	ulong addr;
988
989	for (i = 0; i < FEC_RBD_NUM; i++) {
990		addr = fec->rbd_base[i].data_pointer;
991		free((void *)addr);
992	}
993	free(fec->rbd_base);
994	free(fec->tbd_base);
995}
996
997struct mii_dev *fec_get_miibus(ulong base_addr, int dev_id)
998{
999	struct ethernet_regs *eth = (struct ethernet_regs *)base_addr;
1000	struct mii_dev *bus;
1001	int ret;
1002
1003	bus = mdio_alloc();
1004	if (!bus) {
1005		printf("mdio_alloc failed\n");
1006		return NULL;
1007	}
1008	bus->read = fec_phy_read;
1009	bus->write = fec_phy_write;
1010	bus->priv = eth;
1011	fec_set_dev_name(bus->name, dev_id);
1012
1013	ret = mdio_register(bus);
1014	if (ret) {
1015		printf("mdio_register failed\n");
1016		free(bus);
1017		return NULL;
1018	}
1019	fec_mii_setspeed(eth);
1020	return bus;
1021}
1022
1023#ifdef CONFIG_DM_MDIO
1024struct dm_fec_mdio_priv {
1025	struct ethernet_regs *regs;
1026};
1027
1028static int dm_fec_mdio_read(struct udevice *dev, int addr, int devad, int reg)
1029{
1030	struct dm_fec_mdio_priv *priv = dev_get_priv(dev);
1031
1032	return fec_mdio_read(priv->regs, addr, reg);
1033}
1034
1035static int dm_fec_mdio_write(struct udevice *dev, int addr, int devad, int reg, u16 data)
1036{
1037	struct dm_fec_mdio_priv *priv = dev_get_priv(dev);
1038
1039	return fec_mdio_write(priv->regs, addr, reg, data);
1040}
1041
1042static const struct mdio_ops dm_fec_mdio_ops = {
1043	.read = dm_fec_mdio_read,
1044	.write = dm_fec_mdio_write,
1045};
1046
1047static int dm_fec_mdio_probe(struct udevice *dev)
1048{
1049	struct dm_fec_mdio_priv *priv = dev_get_priv(dev);
1050
1051	priv->regs = (struct ethernet_regs *)ofnode_get_addr(dev_ofnode(dev->parent));
1052
1053	return 0;
1054}
1055
1056U_BOOT_DRIVER(fec_mdio) = {
1057	.name		= "fec_mdio",
1058	.id		= UCLASS_MDIO,
1059	.probe		= dm_fec_mdio_probe,
1060	.ops		= &dm_fec_mdio_ops,
1061	.priv_auto	= sizeof(struct dm_fec_mdio_priv),
1062};
1063
1064static int dm_fec_bind_mdio(struct udevice *dev)
1065{
1066	struct udevice *mdiodev;
1067	const char *name;
1068	ofnode mdio;
1069	int ret = -ENODEV;
1070
1071	/* for a UCLASS_MDIO driver we need to bind and probe manually
1072	 * for an internal MDIO bus that has no dt compatible of its own
1073	 */
1074	ofnode_for_each_subnode(mdio, dev_ofnode(dev)) {
1075		name = ofnode_get_name(mdio);
1076
1077		if (strcmp(name, "mdio"))
1078			continue;
1079
1080		ret = device_bind_driver_to_node(dev, "fec_mdio",
1081						 name, mdio, &mdiodev);
1082		if (ret) {
1083			printf("%s bind %s failed: %d\n", __func__, name, ret);
1084			break;
1085		}
1086
1087		/* need to probe it as there is no compatible to do so */
1088		ret = uclass_get_device_by_ofnode(UCLASS_MDIO, mdio, &mdiodev);
1089		if (!ret)
1090			return 0;
1091		printf("%s probe %s failed: %d\n", __func__, name, ret);
1092	}
1093
1094	return ret;
1095}
1096#endif
1097
1098static int fecmxc_read_rom_hwaddr(struct udevice *dev)
1099{
1100	struct fec_priv *priv = dev_get_priv(dev);
1101	struct eth_pdata *pdata = dev_get_plat(dev);
1102
1103	return fec_get_hwaddr(priv->dev_id, pdata->enetaddr);
1104}
1105
1106static int fecmxc_set_promisc(struct udevice *dev, bool enable)
1107{
1108	struct fec_priv *priv = dev_get_priv(dev);
1109
1110	priv->promisc = enable;
1111
1112	return 0;
1113}
1114
1115static int fecmxc_free_pkt(struct udevice *dev, uchar *packet, int length)
1116{
1117	if (packet)
1118		free(packet);
1119
1120	return 0;
1121}
1122
1123static const struct eth_ops fecmxc_ops = {
1124	.start			= fecmxc_init,
1125	.send			= fecmxc_send,
1126	.recv			= fecmxc_recv,
1127	.free_pkt		= fecmxc_free_pkt,
1128	.stop			= fecmxc_halt,
1129	.write_hwaddr		= fecmxc_set_hwaddr,
1130	.read_rom_hwaddr	= fecmxc_read_rom_hwaddr,
1131	.set_promisc		= fecmxc_set_promisc,
1132};
1133
1134static int device_get_phy_addr(struct fec_priv *priv, struct udevice *dev)
1135{
1136	struct ofnode_phandle_args phandle_args;
1137	int reg, ret;
1138
1139	ret = dev_read_phandle_with_args(dev, "phy-handle", NULL, 0, 0,
1140					 &phandle_args);
1141	if (ret) {
1142		priv->phy_of_node = ofnode_find_subnode(dev_ofnode(dev),
1143							"fixed-link");
1144		if (ofnode_valid(priv->phy_of_node))
1145			return 0;
1146		debug("Failed to find phy-handle (err = %d)\n", ret);
1147		return ret;
1148	}
1149
1150	if (!ofnode_is_enabled(phandle_args.node))
1151		return -ENOENT;
1152
1153	priv->phy_of_node = phandle_args.node;
1154	reg = ofnode_read_u32_default(phandle_args.node, "reg", 0);
1155
1156	return reg;
1157}
1158
1159static int fec_phy_init(struct fec_priv *priv, struct udevice *dev)
1160{
1161	struct phy_device *phydev = NULL;
1162	int addr;
1163
1164	addr = device_get_phy_addr(priv, dev);
1165#ifdef CFG_FEC_MXC_PHYADDR
1166	addr = CFG_FEC_MXC_PHYADDR;
1167#endif
1168
1169	if (IS_ENABLED(CONFIG_DM_MDIO))
1170		phydev = dm_eth_phy_connect(dev);
1171	if (!phydev)
1172		phydev = phy_connect(priv->bus, addr, dev, priv->interface);
1173	if (!phydev)
1174		return -ENODEV;
1175
1176	priv->phydev = phydev;
1177	priv->phydev->node = priv->phy_of_node;
1178	phy_config(phydev);
1179
1180	return 0;
1181}
1182
1183#if CONFIG_IS_ENABLED(DM_GPIO)
1184/* FEC GPIO reset */
1185static void fec_gpio_reset(struct fec_priv *priv)
1186{
1187	debug("fec_gpio_reset: fec_gpio_reset(dev)\n");
1188	if (dm_gpio_is_valid(&priv->phy_reset_gpio)) {
1189		dm_gpio_set_value(&priv->phy_reset_gpio, 1);
1190		mdelay(priv->reset_delay);
1191		dm_gpio_set_value(&priv->phy_reset_gpio, 0);
1192		if (priv->reset_post_delay)
1193			mdelay(priv->reset_post_delay);
1194	}
1195}
1196#endif
1197
1198static int fecmxc_set_ref_clk(struct clk *clk_ref, phy_interface_t interface)
1199{
1200	unsigned int freq;
1201	int ret;
1202
1203	if (!CONFIG_IS_ENABLED(CLK_CCF))
1204		return 0;
1205
1206	if (interface == PHY_INTERFACE_MODE_MII)
1207		freq = 25000000;
1208	else if (interface == PHY_INTERFACE_MODE_RMII)
1209		freq = 50000000;
1210	else if (interface == PHY_INTERFACE_MODE_RGMII ||
1211		 interface == PHY_INTERFACE_MODE_RGMII_ID ||
1212		 interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1213		 interface == PHY_INTERFACE_MODE_RGMII_TXID)
1214		freq = 125000000;
1215	else
1216		return -EINVAL;
1217
1218	ret = clk_set_rate(clk_ref, freq);
1219	if (ret < 0)
1220		return ret;
1221
1222	return 0;
1223}
1224
1225static int fecmxc_probe(struct udevice *dev)
1226{
1227	bool dm_mii_bus = true;
1228	struct eth_pdata *pdata = dev_get_plat(dev);
1229	struct fec_priv *priv = dev_get_priv(dev);
1230	struct mii_dev *bus = NULL;
1231	uint32_t start;
1232	int ret;
1233
1234	ret = board_interface_eth_init(dev, pdata->phy_interface);
1235	if (ret)
1236		return ret;
1237
1238	if (IS_ENABLED(CONFIG_IMX_MODULE_FUSE)) {
1239		if (enet_fused((ulong)priv->eth)) {
1240			printf("SoC fuse indicates Ethernet@0x%lx is unavailable.\n", (ulong)priv->eth);
1241			return -ENODEV;
1242		}
1243	}
1244
1245	if (IS_ENABLED(CONFIG_IMX8)) {
1246		ret = clk_get_by_name(dev, "ipg", &priv->ipg_clk);
1247		if (ret < 0) {
1248			debug("Can't get FEC ipg clk: %d\n", ret);
1249			return ret;
1250		}
1251		ret = clk_enable(&priv->ipg_clk);
1252		if (ret < 0) {
1253			debug("Can't enable FEC ipg clk: %d\n", ret);
1254			return ret;
1255		}
1256
1257		priv->clk_rate = clk_get_rate(&priv->ipg_clk);
1258	} else if (CONFIG_IS_ENABLED(CLK_CCF)) {
1259		ret = clk_get_by_name(dev, "ipg", &priv->ipg_clk);
1260		if (ret < 0) {
1261			debug("Can't get FEC ipg clk: %d\n", ret);
1262			return ret;
1263		}
1264		ret = clk_enable(&priv->ipg_clk);
1265		if(ret)
1266			return ret;
1267
1268		ret = clk_get_by_name(dev, "ahb", &priv->ahb_clk);
1269		if (ret < 0) {
1270			debug("Can't get FEC ahb clk: %d\n", ret);
1271			return ret;
1272		}
1273		ret = clk_enable(&priv->ahb_clk);
1274		if (ret)
1275			return ret;
1276
1277		ret = clk_get_by_name(dev, "enet_out", &priv->clk_enet_out);
1278		if (!ret) {
1279			ret = clk_enable(&priv->clk_enet_out);
1280			if (ret)
1281				return ret;
1282		}
1283
1284		ret = clk_get_by_name(dev, "enet_clk_ref", &priv->clk_ref);
1285		if (!ret) {
1286			ret = fecmxc_set_ref_clk(&priv->clk_ref,
1287						 pdata->phy_interface);
1288			if (ret)
1289				return ret;
1290
1291			ret = clk_enable(&priv->clk_ref);
1292			if (ret)
1293				return ret;
1294		}
1295
1296		ret = clk_get_by_name(dev, "ptp", &priv->clk_ptp);
1297		if (!ret) {
1298			ret = clk_enable(&priv->clk_ptp);
1299			if (ret)
1300				return ret;
1301		}
1302
1303		priv->clk_rate = clk_get_rate(&priv->ipg_clk);
1304	}
1305
1306	ret = fec_alloc_descs(priv);
1307	if (ret)
1308		return ret;
1309
1310#ifdef CONFIG_DM_REGULATOR
1311	if (priv->phy_supply) {
1312		ret = regulator_set_enable_if_allowed(priv->phy_supply, true);
1313		if (ret) {
1314			printf("%s: Error enabling phy supply\n", dev->name);
1315			return ret;
1316		}
1317	}
1318#endif
1319
1320#if CONFIG_IS_ENABLED(DM_GPIO)
1321	fec_gpio_reset(priv);
1322#endif
1323	/* Reset chip. */
1324	writel(readl(&priv->eth->ecntrl) | FEC_ECNTRL_RESET,
1325	       &priv->eth->ecntrl);
1326	start = get_timer(0);
1327	while (readl(&priv->eth->ecntrl) & FEC_ECNTRL_RESET) {
1328		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
1329			printf("FEC MXC: Timeout resetting chip\n");
1330			goto err_timeout;
1331		}
1332		udelay(10);
1333	}
1334
1335	fec_reg_setup(priv);
1336
1337	priv->dev_id = dev_seq(dev);
1338
1339#ifdef CONFIG_DM_MDIO
1340	ret = dm_fec_bind_mdio(dev);
1341	if (ret && ret != -ENODEV)
1342		return ret;
1343#endif
1344
1345#ifdef CONFIG_DM_ETH_PHY
1346	bus = eth_phy_get_mdio_bus(dev);
1347#endif
1348
1349	if (!bus) {
1350		dm_mii_bus = false;
1351#ifdef CONFIG_FEC_MXC_MDIO_BASE
1352		bus = fec_get_miibus((ulong)CONFIG_FEC_MXC_MDIO_BASE,
1353				     dev_seq(dev));
1354#else
1355		bus = fec_get_miibus((ulong)priv->eth, dev_seq(dev));
1356#endif
1357	}
1358	if (!bus) {
1359		ret = -ENOMEM;
1360		goto err_mii;
1361	}
1362
1363#ifdef CONFIG_DM_ETH_PHY
1364	eth_phy_set_mdio_bus(dev, bus);
1365#endif
1366
1367	priv->bus = bus;
1368	priv->interface = pdata->phy_interface;
1369	switch (priv->interface) {
1370	case PHY_INTERFACE_MODE_MII:
1371		priv->xcv_type = MII100;
1372		break;
1373	case PHY_INTERFACE_MODE_RMII:
1374		priv->xcv_type = RMII;
1375		break;
1376	case PHY_INTERFACE_MODE_RGMII:
1377	case PHY_INTERFACE_MODE_RGMII_ID:
1378	case PHY_INTERFACE_MODE_RGMII_RXID:
1379	case PHY_INTERFACE_MODE_RGMII_TXID:
1380		priv->xcv_type = RGMII;
1381		break;
1382	default:
1383		priv->xcv_type = MII100;
1384		printf("Unsupported interface type %d defaulting to MII100\n",
1385		       priv->interface);
1386		break;
1387	}
1388
1389	ret = fec_phy_init(priv, dev);
1390	if (ret)
1391		goto err_phy;
1392
1393	return 0;
1394
1395err_phy:
1396	if (!dm_mii_bus) {
1397		mdio_unregister(bus);
1398		free(bus);
1399	}
1400err_mii:
1401err_timeout:
1402	fec_free_descs(priv);
1403	return ret;
1404}
1405
1406static int fecmxc_remove(struct udevice *dev)
1407{
1408	struct fec_priv *priv = dev_get_priv(dev);
1409
1410	free(priv->phydev);
1411	fec_free_descs(priv);
1412	mdio_unregister(priv->bus);
1413	mdio_free(priv->bus);
1414
1415#ifdef CONFIG_DM_REGULATOR
1416	if (priv->phy_supply)
1417		regulator_set_enable(priv->phy_supply, false);
1418#endif
1419
1420	return 0;
1421}
1422
1423static int fecmxc_of_to_plat(struct udevice *dev)
1424{
1425	int ret = 0;
1426	struct eth_pdata *pdata = dev_get_plat(dev);
1427	struct fec_priv *priv = dev_get_priv(dev);
1428
1429	pdata->iobase = dev_read_addr(dev);
1430	priv->eth = (struct ethernet_regs *)pdata->iobase;
1431
1432	pdata->phy_interface = dev_read_phy_mode(dev);
1433	if (pdata->phy_interface == PHY_INTERFACE_MODE_NA)
1434		return -EINVAL;
1435
1436#ifdef CONFIG_DM_REGULATOR
1437	device_get_supply_regulator(dev, "phy-supply", &priv->phy_supply);
1438#endif
1439
1440#if CONFIG_IS_ENABLED(DM_GPIO)
1441	ret = gpio_request_by_name(dev, "phy-reset-gpios", 0,
1442				   &priv->phy_reset_gpio, GPIOD_IS_OUT | GPIOD_IS_OUT_ACTIVE);
1443	if (ret < 0)
1444		return 0; /* property is optional, don't return error! */
1445
1446	priv->reset_delay = dev_read_u32_default(dev, "phy-reset-duration", 1);
1447	if (priv->reset_delay > 1000) {
1448		printf("FEC MXC: phy reset duration should be <= 1000ms\n");
1449		/* property value wrong, use default value */
1450		priv->reset_delay = 1;
1451	}
1452
1453	priv->reset_post_delay = dev_read_u32_default(dev,
1454						      "phy-reset-post-delay",
1455						      0);
1456	if (priv->reset_post_delay > 1000) {
1457		printf("FEC MXC: phy reset post delay should be <= 1000ms\n");
1458		/* property value wrong, use default value */
1459		priv->reset_post_delay = 0;
1460	}
1461#endif
1462
1463	return 0;
1464}
1465
1466static const struct udevice_id fecmxc_ids[] = {
1467	{ .compatible = "fsl,imx28-fec" },
1468	{ .compatible = "fsl,imx6q-fec" },
1469	{ .compatible = "fsl,imx6sl-fec" },
1470	{ .compatible = "fsl,imx6sx-fec" },
1471	{ .compatible = "fsl,imx6ul-fec" },
1472	{ .compatible = "fsl,imx53-fec" },
1473	{ .compatible = "fsl,imx7d-fec" },
1474	{ .compatible = "fsl,mvf600-fec" },
1475	{ .compatible = "fsl,imx93-fec" },
1476	{ }
1477};
1478
1479U_BOOT_DRIVER(fecmxc_gem) = {
1480	.name	= "fecmxc",
1481	.id	= UCLASS_ETH,
1482	.of_match = fecmxc_ids,
1483	.of_to_plat = fecmxc_of_to_plat,
1484	.probe	= fecmxc_probe,
1485	.remove	= fecmxc_remove,
1486	.ops	= &fecmxc_ops,
1487	.priv_auto	= sizeof(struct fec_priv),
1488	.plat_auto	= sizeof(struct eth_pdata),
1489};
1490