1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright 2004-2007 Freescale Semiconductor, Inc.
4 * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
5 * Copyright 2009 Ilya Yanok, <yanok@emcraft.com>
6 */
7
8#include <common.h>
9#include <log.h>
10#include <nand.h>
11#include <linux/delay.h>
12#include <linux/err.h>
13#include <linux/mtd/rawnand.h>
14#include <asm/io.h>
15#if defined(CONFIG_MX51) || defined(CONFIG_MX53)
16#include <asm/arch/imx-regs.h>
17#endif
18#include <linux/printk.h>
19#include "mxc_nand.h"
20
21#define DRIVER_NAME "mxc_nand"
22
23struct mxc_nand_host {
24	struct nand_chip		*nand;
25
26	struct mxc_nand_regs __iomem	*regs;
27#ifdef MXC_NFC_V3_2
28	struct mxc_nand_ip_regs __iomem	*ip_regs;
29#endif
30	int				spare_only;
31	int				status_request;
32	int				pagesize_2k;
33	int				clk_act;
34	uint16_t			col_addr;
35	unsigned int			page_addr;
36};
37
38static struct mxc_nand_host mxc_host;
39static struct mxc_nand_host *host = &mxc_host;
40
41/* Define delays in microsec for NAND device operations */
42#define TROP_US_DELAY   2000
43/* Macros to get byte and bit positions of ECC */
44#define COLPOS(x)  ((x) >> 3)
45#define BITPOS(x) ((x) & 0xf)
46
47/* Define single bit Error positions in Main & Spare area */
48#define MAIN_SINGLEBIT_ERROR 0x4
49#define SPARE_SINGLEBIT_ERROR 0x1
50
51/* OOB placement block for use with hardware ecc generation */
52#if defined(MXC_NFC_V1)
53#ifndef CFG_SYS_NAND_LARGEPAGE
54static struct nand_ecclayout nand_hw_eccoob = {
55	.eccbytes = 5,
56	.eccpos = {6, 7, 8, 9, 10},
57	.oobfree = { {0, 5}, {11, 5}, }
58};
59#else
60static struct nand_ecclayout nand_hw_eccoob2k = {
61	.eccbytes = 20,
62	.eccpos = {
63		6, 7, 8, 9, 10,
64		22, 23, 24, 25, 26,
65		38, 39, 40, 41, 42,
66		54, 55, 56, 57, 58,
67	},
68	.oobfree = { {2, 4}, {11, 11}, {27, 11}, {43, 11}, {59, 5} },
69};
70#endif
71#elif defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
72#ifndef CFG_SYS_NAND_LARGEPAGE
73static struct nand_ecclayout nand_hw_eccoob = {
74	.eccbytes = 9,
75	.eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15},
76	.oobfree = { {2, 5} }
77};
78#else
79static struct nand_ecclayout nand_hw_eccoob2k = {
80	.eccbytes = 36,
81	.eccpos = {
82		7, 8, 9, 10, 11, 12, 13, 14, 15,
83		23, 24, 25, 26, 27, 28, 29, 30, 31,
84		39, 40, 41, 42, 43, 44, 45, 46, 47,
85		55, 56, 57, 58, 59, 60, 61, 62, 63,
86	},
87	.oobfree = { {2, 5}, {16, 7}, {32, 7}, {48, 7} },
88};
89#endif
90#endif
91
92static int is_16bit_nand(void)
93{
94#if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT)
95	return 1;
96#else
97	return 0;
98#endif
99}
100
101static uint32_t *mxc_nand_memcpy32(uint32_t *dest, uint32_t *source, size_t size)
102{
103	uint32_t *d = dest;
104
105	size >>= 2;
106	while (size--)
107		__raw_writel(__raw_readl(source++), d++);
108	return dest;
109}
110
111/*
112 * This function polls the NANDFC to wait for the basic operation to
113 * complete by checking the INT bit.
114 */
115static void wait_op_done(struct mxc_nand_host *host, int max_retries,
116				uint16_t param)
117{
118	uint32_t tmp;
119
120	while (max_retries-- > 0) {
121#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
122		tmp = readnfc(&host->regs->config2);
123		if (tmp & NFC_V1_V2_CONFIG2_INT) {
124			tmp &= ~NFC_V1_V2_CONFIG2_INT;
125			writenfc(tmp, &host->regs->config2);
126#elif defined(MXC_NFC_V3_2)
127		tmp = readnfc(&host->ip_regs->ipc);
128		if (tmp & NFC_V3_IPC_INT) {
129			tmp &= ~NFC_V3_IPC_INT;
130			writenfc(tmp, &host->ip_regs->ipc);
131#endif
132			break;
133		}
134		udelay(1);
135	}
136	if (max_retries < 0) {
137		pr_debug("%s(%d): INT not set\n",
138				__func__, param);
139	}
140}
141
142/*
143 * This function issues the specified command to the NAND device and
144 * waits for completion.
145 */
146static void send_cmd(struct mxc_nand_host *host, uint16_t cmd)
147{
148	pr_debug("send_cmd(host, 0x%x)\n", cmd);
149
150	writenfc(cmd, &host->regs->flash_cmd);
151	writenfc(NFC_CMD, &host->regs->operation);
152
153	/* Wait for operation to complete */
154	wait_op_done(host, TROP_US_DELAY, cmd);
155}
156
157/*
158 * This function sends an address (or partial address) to the
159 * NAND device. The address is used to select the source/destination for
160 * a NAND command.
161 */
162static void send_addr(struct mxc_nand_host *host, uint16_t addr)
163{
164	pr_debug("send_addr(host, 0x%x)\n", addr);
165
166	writenfc(addr, &host->regs->flash_addr);
167	writenfc(NFC_ADDR, &host->regs->operation);
168
169	/* Wait for operation to complete */
170	wait_op_done(host, TROP_US_DELAY, addr);
171}
172
173/*
174 * This function requests the NANDFC to initiate the transfer
175 * of data currently in the NANDFC RAM buffer to the NAND device.
176 */
177static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id,
178			int spare_only)
179{
180	if (spare_only)
181		pr_debug("send_prog_page (%d)\n", spare_only);
182
183	if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
184		int i;
185		/*
186		 *  The controller copies the 64 bytes of spare data from
187		 *  the first 16 bytes of each of the 4 64 byte spare buffers.
188		 *  Copy the contiguous data starting in spare_area[0] to
189		 *  the four spare area buffers.
190		 */
191		for (i = 1; i < 4; i++) {
192			void __iomem *src = &host->regs->spare_area[0][i * 16];
193			void __iomem *dst = &host->regs->spare_area[i][0];
194
195			mxc_nand_memcpy32(dst, src, 16);
196		}
197	}
198
199#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
200	writenfc(buf_id, &host->regs->buf_addr);
201#elif defined(MXC_NFC_V3_2)
202	uint32_t tmp = readnfc(&host->regs->config1);
203	tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
204	tmp |= NFC_V3_CONFIG1_RBA(buf_id);
205	writenfc(tmp, &host->regs->config1);
206#endif
207
208	/* Configure spare or page+spare access */
209	if (!host->pagesize_2k) {
210		uint32_t config1 = readnfc(&host->regs->config1);
211		if (spare_only)
212			config1 |= NFC_CONFIG1_SP_EN;
213		else
214			config1 &= ~NFC_CONFIG1_SP_EN;
215		writenfc(config1, &host->regs->config1);
216	}
217
218	writenfc(NFC_INPUT, &host->regs->operation);
219
220	/* Wait for operation to complete */
221	wait_op_done(host, TROP_US_DELAY, spare_only);
222}
223
224/*
225 * Requests NANDFC to initiate the transfer of data from the
226 * NAND device into in the NANDFC ram buffer.
227 */
228static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id,
229		int spare_only)
230{
231	pr_debug("send_read_page (%d)\n", spare_only);
232
233#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
234	writenfc(buf_id, &host->regs->buf_addr);
235#elif defined(MXC_NFC_V3_2)
236	uint32_t tmp = readnfc(&host->regs->config1);
237	tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
238	tmp |= NFC_V3_CONFIG1_RBA(buf_id);
239	writenfc(tmp, &host->regs->config1);
240#endif
241
242	/* Configure spare or page+spare access */
243	if (!host->pagesize_2k) {
244		uint32_t config1 = readnfc(&host->regs->config1);
245		if (spare_only)
246			config1 |= NFC_CONFIG1_SP_EN;
247		else
248			config1 &= ~NFC_CONFIG1_SP_EN;
249		writenfc(config1, &host->regs->config1);
250	}
251
252	writenfc(NFC_OUTPUT, &host->regs->operation);
253
254	/* Wait for operation to complete */
255	wait_op_done(host, TROP_US_DELAY, spare_only);
256
257	if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
258		int i;
259
260		/*
261		 *  The controller copies the 64 bytes of spare data to
262		 *  the first 16 bytes of each of the 4 spare buffers.
263		 *  Make the data contiguous starting in spare_area[0].
264		 */
265		for (i = 1; i < 4; i++) {
266			void __iomem *src = &host->regs->spare_area[i][0];
267			void __iomem *dst = &host->regs->spare_area[0][i * 16];
268
269			mxc_nand_memcpy32(dst, src, 16);
270		}
271	}
272}
273
274/* Request the NANDFC to perform a read of the NAND device ID. */
275static void send_read_id(struct mxc_nand_host *host)
276{
277	uint32_t tmp;
278
279#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
280	/* NANDFC buffer 0 is used for device ID output */
281	writenfc(0x0, &host->regs->buf_addr);
282#elif defined(MXC_NFC_V3_2)
283	tmp = readnfc(&host->regs->config1);
284	tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
285	writenfc(tmp, &host->regs->config1);
286#endif
287
288	/* Read ID into main buffer */
289	tmp = readnfc(&host->regs->config1);
290	tmp &= ~NFC_CONFIG1_SP_EN;
291	writenfc(tmp, &host->regs->config1);
292
293	writenfc(NFC_ID, &host->regs->operation);
294
295	/* Wait for operation to complete */
296	wait_op_done(host, TROP_US_DELAY, 0);
297}
298
299/*
300 * This function requests the NANDFC to perform a read of the
301 * NAND device status and returns the current status.
302 */
303static uint16_t get_dev_status(struct mxc_nand_host *host)
304{
305#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
306	void __iomem *main_buf = host->regs->main_area[1];
307	uint32_t store;
308#endif
309	uint32_t ret, tmp;
310	/* Issue status request to NAND device */
311
312#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
313	/* store the main area1 first word, later do recovery */
314	store = readl(main_buf);
315	/* NANDFC buffer 1 is used for device status */
316	writenfc(1, &host->regs->buf_addr);
317#endif
318
319	/* Read status into main buffer */
320	tmp = readnfc(&host->regs->config1);
321	tmp &= ~NFC_CONFIG1_SP_EN;
322	writenfc(tmp, &host->regs->config1);
323
324	writenfc(NFC_STATUS, &host->regs->operation);
325
326	/* Wait for operation to complete */
327	wait_op_done(host, TROP_US_DELAY, 0);
328
329#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
330	/*
331	 *  Status is placed in first word of main buffer
332	 * get status, then recovery area 1 data
333	 */
334	ret = readw(main_buf);
335	writel(store, main_buf);
336#elif defined(MXC_NFC_V3_2)
337	ret = readnfc(&host->regs->config1) >> 16;
338#endif
339
340	return ret;
341}
342
343/* This function is used by upper layer to checks if device is ready */
344static int mxc_nand_dev_ready(struct mtd_info *mtd)
345{
346	/*
347	 * NFC handles R/B internally. Therefore, this function
348	 * always returns status as ready.
349	 */
350	return 1;
351}
352
353static void _mxc_nand_enable_hwecc(struct mtd_info *mtd, int on)
354{
355	struct nand_chip *nand_chip = mtd_to_nand(mtd);
356	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
357#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
358	uint16_t tmp = readnfc(&host->regs->config1);
359
360	if (on)
361		tmp |= NFC_V1_V2_CONFIG1_ECC_EN;
362	else
363		tmp &= ~NFC_V1_V2_CONFIG1_ECC_EN;
364	writenfc(tmp, &host->regs->config1);
365#elif defined(MXC_NFC_V3_2)
366	uint32_t tmp = readnfc(&host->ip_regs->config2);
367
368	if (on)
369		tmp |= NFC_V3_CONFIG2_ECC_EN;
370	else
371		tmp &= ~NFC_V3_CONFIG2_ECC_EN;
372	writenfc(tmp, &host->ip_regs->config2);
373#endif
374}
375
376#ifdef CONFIG_MXC_NAND_HWECC
377static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
378{
379	/*
380	 * If HW ECC is enabled, we turn it on during init. There is
381	 * no need to enable again here.
382	 */
383}
384
385#if defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
386static int mxc_nand_read_oob_syndrome(struct mtd_info *mtd,
387				      struct nand_chip *chip,
388				      int page)
389{
390	struct mxc_nand_host *host = nand_get_controller_data(chip);
391	uint8_t *buf = chip->oob_poi;
392	int length = mtd->oobsize;
393	int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
394	uint8_t *bufpoi = buf;
395	int i, toread;
396
397	pr_debug("%s: Reading OOB area of page %u to oob %p\n",
398			 __func__, page, buf);
399
400	chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page);
401	for (i = 0; i < chip->ecc.steps; i++) {
402		toread = min_t(int, length, chip->ecc.prepad);
403		if (toread) {
404			chip->read_buf(mtd, bufpoi, toread);
405			bufpoi += toread;
406			length -= toread;
407		}
408		bufpoi += chip->ecc.bytes;
409		host->col_addr += chip->ecc.bytes;
410		length -= chip->ecc.bytes;
411
412		toread = min_t(int, length, chip->ecc.postpad);
413		if (toread) {
414			chip->read_buf(mtd, bufpoi, toread);
415			bufpoi += toread;
416			length -= toread;
417		}
418	}
419	if (length > 0)
420		chip->read_buf(mtd, bufpoi, length);
421
422	_mxc_nand_enable_hwecc(mtd, 0);
423	chip->cmdfunc(mtd, NAND_CMD_READOOB,
424			mtd->writesize + chip->ecc.prepad, page);
425	bufpoi = buf + chip->ecc.prepad;
426	length = mtd->oobsize - chip->ecc.prepad;
427	for (i = 0; i < chip->ecc.steps; i++) {
428		toread = min_t(int, length, chip->ecc.bytes);
429		chip->read_buf(mtd, bufpoi, toread);
430		bufpoi += eccpitch;
431		length -= eccpitch;
432		host->col_addr += chip->ecc.postpad + chip->ecc.prepad;
433	}
434	_mxc_nand_enable_hwecc(mtd, 1);
435	return 1;
436}
437
438static int mxc_nand_read_page_raw_syndrome(struct mtd_info *mtd,
439					   struct nand_chip *chip,
440					   uint8_t *buf,
441					   int oob_required,
442					   int page)
443{
444	struct mxc_nand_host *host = nand_get_controller_data(chip);
445	int eccsize = chip->ecc.size;
446	int eccbytes = chip->ecc.bytes;
447	int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
448	uint8_t *oob = chip->oob_poi;
449	int steps, size;
450	int n;
451
452	_mxc_nand_enable_hwecc(mtd, 0);
453	chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
454
455	for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) {
456		host->col_addr = n * eccsize;
457		chip->read_buf(mtd, buf, eccsize);
458		buf += eccsize;
459
460		host->col_addr = mtd->writesize + n * eccpitch;
461		if (chip->ecc.prepad) {
462			chip->read_buf(mtd, oob, chip->ecc.prepad);
463			oob += chip->ecc.prepad;
464		}
465
466		chip->read_buf(mtd, oob, eccbytes);
467		oob += eccbytes;
468
469		if (chip->ecc.postpad) {
470			chip->read_buf(mtd, oob, chip->ecc.postpad);
471			oob += chip->ecc.postpad;
472		}
473	}
474
475	size = mtd->oobsize - (oob - chip->oob_poi);
476	if (size)
477		chip->read_buf(mtd, oob, size);
478	_mxc_nand_enable_hwecc(mtd, 1);
479
480	return 0;
481}
482
483static int mxc_nand_read_page_syndrome(struct mtd_info *mtd,
484				       struct nand_chip *chip,
485				       uint8_t *buf,
486				       int oob_required,
487				       int page)
488{
489	struct mxc_nand_host *host = nand_get_controller_data(chip);
490	int n, eccsize = chip->ecc.size;
491	int eccbytes = chip->ecc.bytes;
492	int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
493	int eccsteps = chip->ecc.steps;
494	uint8_t *p = buf;
495	uint8_t *oob = chip->oob_poi;
496
497	pr_debug("Reading page %u to buf %p oob %p\n",
498		 page, buf, oob);
499
500	/* first read the data area and the available portion of OOB */
501	for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) {
502		int stat;
503
504		host->col_addr = n * eccsize;
505
506		chip->read_buf(mtd, p, eccsize);
507
508		host->col_addr = mtd->writesize + n * eccpitch;
509
510		if (chip->ecc.prepad) {
511			chip->read_buf(mtd, oob, chip->ecc.prepad);
512			oob += chip->ecc.prepad;
513		}
514
515		stat = chip->ecc.correct(mtd, p, oob, NULL);
516
517		if (stat < 0)
518			mtd->ecc_stats.failed++;
519		else
520			mtd->ecc_stats.corrected += stat;
521		oob += eccbytes;
522
523		if (chip->ecc.postpad) {
524			chip->read_buf(mtd, oob, chip->ecc.postpad);
525			oob += chip->ecc.postpad;
526		}
527	}
528
529	/* Calculate remaining oob bytes */
530	n = mtd->oobsize - (oob - chip->oob_poi);
531	if (n)
532		chip->read_buf(mtd, oob, n);
533
534	/* Then switch ECC off and read the OOB area to get the ECC code */
535	_mxc_nand_enable_hwecc(mtd, 0);
536	chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page);
537	eccsteps = chip->ecc.steps;
538	oob = chip->oob_poi + chip->ecc.prepad;
539	for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) {
540		host->col_addr = mtd->writesize +
541				 n * eccpitch +
542				 chip->ecc.prepad;
543		chip->read_buf(mtd, oob, eccbytes);
544		oob += eccbytes + chip->ecc.postpad;
545	}
546	_mxc_nand_enable_hwecc(mtd, 1);
547	return 0;
548}
549
550static int mxc_nand_write_oob_syndrome(struct mtd_info *mtd,
551				       struct nand_chip *chip, int page)
552{
553	struct mxc_nand_host *host = nand_get_controller_data(chip);
554	int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
555	int length = mtd->oobsize;
556	int i, len, status, steps = chip->ecc.steps;
557	const uint8_t *bufpoi = chip->oob_poi;
558
559	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
560	for (i = 0; i < steps; i++) {
561		len = min_t(int, length, eccpitch);
562
563		chip->write_buf(mtd, bufpoi, len);
564		bufpoi += len;
565		length -= len;
566		host->col_addr += chip->ecc.prepad + chip->ecc.postpad;
567	}
568	if (length > 0)
569		chip->write_buf(mtd, bufpoi, length);
570
571	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
572	status = chip->waitfunc(mtd, chip);
573	return status & NAND_STATUS_FAIL ? -EIO : 0;
574}
575
576static int mxc_nand_write_page_raw_syndrome(struct mtd_info *mtd,
577					     struct nand_chip *chip,
578					     const uint8_t *buf,
579					     int oob_required, int page)
580{
581	struct mxc_nand_host *host = nand_get_controller_data(chip);
582	int eccsize = chip->ecc.size;
583	int eccbytes = chip->ecc.bytes;
584	int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
585	uint8_t *oob = chip->oob_poi;
586	int steps, size;
587	int n;
588
589	for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) {
590		host->col_addr = n * eccsize;
591		chip->write_buf(mtd, buf, eccsize);
592		buf += eccsize;
593
594		host->col_addr = mtd->writesize + n * eccpitch;
595
596		if (chip->ecc.prepad) {
597			chip->write_buf(mtd, oob, chip->ecc.prepad);
598			oob += chip->ecc.prepad;
599		}
600
601		host->col_addr += eccbytes;
602		oob += eccbytes;
603
604		if (chip->ecc.postpad) {
605			chip->write_buf(mtd, oob, chip->ecc.postpad);
606			oob += chip->ecc.postpad;
607		}
608	}
609
610	size = mtd->oobsize - (oob - chip->oob_poi);
611	if (size)
612		chip->write_buf(mtd, oob, size);
613	return 0;
614}
615
616static int mxc_nand_write_page_syndrome(struct mtd_info *mtd,
617					 struct nand_chip *chip,
618					 const uint8_t *buf,
619					 int oob_required, int page)
620{
621	struct mxc_nand_host *host = nand_get_controller_data(chip);
622	int i, n, eccsize = chip->ecc.size;
623	int eccbytes = chip->ecc.bytes;
624	int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
625	int eccsteps = chip->ecc.steps;
626	const uint8_t *p = buf;
627	uint8_t *oob = chip->oob_poi;
628
629	chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
630
631	for (i = n = 0;
632	     eccsteps;
633	     n++, eccsteps--, i += eccbytes, p += eccsize) {
634		host->col_addr = n * eccsize;
635
636		chip->write_buf(mtd, p, eccsize);
637
638		host->col_addr = mtd->writesize + n * eccpitch;
639
640		if (chip->ecc.prepad) {
641			chip->write_buf(mtd, oob, chip->ecc.prepad);
642			oob += chip->ecc.prepad;
643		}
644
645		chip->write_buf(mtd, oob, eccbytes);
646		oob += eccbytes;
647
648		if (chip->ecc.postpad) {
649			chip->write_buf(mtd, oob, chip->ecc.postpad);
650			oob += chip->ecc.postpad;
651		}
652	}
653
654	/* Calculate remaining oob bytes */
655	i = mtd->oobsize - (oob - chip->oob_poi);
656	if (i)
657		chip->write_buf(mtd, oob, i);
658	return 0;
659}
660
661static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
662				 u_char *read_ecc, u_char *calc_ecc)
663{
664	struct nand_chip *nand_chip = mtd_to_nand(mtd);
665	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
666	uint32_t ecc_status = readl(&host->regs->ecc_status_result);
667	int subpages = mtd->writesize / nand_chip->subpagesize;
668	int pg2blk_shift = nand_chip->phys_erase_shift -
669			   nand_chip->page_shift;
670
671	do {
672		if ((ecc_status & 0xf) > 4) {
673			static int last_bad = -1;
674
675			if (last_bad != host->page_addr >> pg2blk_shift) {
676				last_bad = host->page_addr >> pg2blk_shift;
677				printk(KERN_DEBUG
678				       "MXC_NAND: HWECC uncorrectable ECC error"
679				       " in block %u page %u subpage %d\n",
680				       last_bad, host->page_addr,
681				       mtd->writesize / nand_chip->subpagesize
682					    - subpages);
683			}
684			return -EBADMSG;
685		}
686		ecc_status >>= 4;
687		subpages--;
688	} while (subpages > 0);
689
690	return 0;
691}
692#else
693#define mxc_nand_read_page_syndrome NULL
694#define mxc_nand_read_page_raw_syndrome NULL
695#define mxc_nand_read_oob_syndrome NULL
696#define mxc_nand_write_page_syndrome NULL
697#define mxc_nand_write_page_raw_syndrome NULL
698#define mxc_nand_write_oob_syndrome NULL
699
700static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
701				 u_char *read_ecc, u_char *calc_ecc)
702{
703	struct nand_chip *nand_chip = mtd_to_nand(mtd);
704	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
705
706	/*
707	 * 1-Bit errors are automatically corrected in HW.  No need for
708	 * additional correction.  2-Bit errors cannot be corrected by
709	 * HW ECC, so we need to return failure
710	 */
711	uint16_t ecc_status = readnfc(&host->regs->ecc_status_result);
712
713	if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
714		pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
715		return -EBADMSG;
716	}
717
718	return 0;
719}
720#endif
721
722static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
723				  u_char *ecc_code)
724{
725	return 0;
726}
727#endif
728
729static u_char mxc_nand_read_byte(struct mtd_info *mtd)
730{
731	struct nand_chip *nand_chip = mtd_to_nand(mtd);
732	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
733	uint8_t ret = 0;
734	uint16_t col;
735	uint16_t __iomem *main_buf =
736		(uint16_t __iomem *)host->regs->main_area[0];
737	uint16_t __iomem *spare_buf =
738		(uint16_t __iomem *)host->regs->spare_area[0];
739	union {
740		uint16_t word;
741		uint8_t bytes[2];
742	} nfc_word;
743
744	/* Check for status request */
745	if (host->status_request)
746		return get_dev_status(host) & 0xFF;
747
748	/* Get column for 16-bit access */
749	col = host->col_addr >> 1;
750
751	/* If we are accessing the spare region */
752	if (host->spare_only)
753		nfc_word.word = readw(&spare_buf[col]);
754	else
755		nfc_word.word = readw(&main_buf[col]);
756
757	/* Pick upper/lower byte of word from RAM buffer */
758	ret = nfc_word.bytes[host->col_addr & 0x1];
759
760	/* Update saved column address */
761	if (nand_chip->options & NAND_BUSWIDTH_16)
762		host->col_addr += 2;
763	else
764		host->col_addr++;
765
766	return ret;
767}
768
769static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
770{
771	struct nand_chip *nand_chip = mtd_to_nand(mtd);
772	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
773	uint16_t col, ret;
774	uint16_t __iomem *p;
775
776	pr_debug("mxc_nand_read_word(col = %d)\n", host->col_addr);
777
778	col = host->col_addr;
779	/* Adjust saved column address */
780	if (col < mtd->writesize && host->spare_only)
781		col += mtd->writesize;
782
783	if (col < mtd->writesize) {
784		p = (uint16_t __iomem *)(host->regs->main_area[0] +
785				(col >> 1));
786	} else {
787		p = (uint16_t __iomem *)(host->regs->spare_area[0] +
788				((col - mtd->writesize) >> 1));
789	}
790
791	if (col & 1) {
792		union {
793			uint16_t word;
794			uint8_t bytes[2];
795		} nfc_word[3];
796
797		nfc_word[0].word = readw(p);
798		nfc_word[1].word = readw(p + 1);
799
800		nfc_word[2].bytes[0] = nfc_word[0].bytes[1];
801		nfc_word[2].bytes[1] = nfc_word[1].bytes[0];
802
803		ret = nfc_word[2].word;
804	} else {
805		ret = readw(p);
806	}
807
808	/* Update saved column address */
809	host->col_addr = col + 2;
810
811	return ret;
812}
813
814/*
815 * Write data of length len to buffer buf. The data to be
816 * written on NAND Flash is first copied to RAMbuffer. After the Data Input
817 * Operation by the NFC, the data is written to NAND Flash
818 */
819static void mxc_nand_write_buf(struct mtd_info *mtd,
820				const u_char *buf, int len)
821{
822	struct nand_chip *nand_chip = mtd_to_nand(mtd);
823	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
824	int n, col, i = 0;
825
826	pr_debug("mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr,
827		 len);
828
829	col = host->col_addr;
830
831	/* Adjust saved column address */
832	if (col < mtd->writesize && host->spare_only)
833		col += mtd->writesize;
834
835	n = mtd->writesize + mtd->oobsize - col;
836	n = min(len, n);
837
838	pr_debug("%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n);
839
840	while (n > 0) {
841		void __iomem *p;
842
843		if (col < mtd->writesize) {
844			p = host->regs->main_area[0] + (col & ~3);
845		} else {
846			p = host->regs->spare_area[0] -
847						mtd->writesize + (col & ~3);
848		}
849
850		pr_debug("%s:%d: p = %p\n", __func__,
851			 __LINE__, p);
852
853		if (((col | (unsigned long)&buf[i]) & 3) || n < 4) {
854			union {
855				uint32_t word;
856				uint8_t bytes[4];
857			} nfc_word;
858
859			nfc_word.word = readl(p);
860			nfc_word.bytes[col & 3] = buf[i++];
861			n--;
862			col++;
863
864			writel(nfc_word.word, p);
865		} else {
866			int m = mtd->writesize - col;
867
868			if (col >= mtd->writesize)
869				m += mtd->oobsize;
870
871			m = min(n, m) & ~3;
872
873			pr_debug("%s:%d: n = %d, m = %d, i = %d, col = %d\n",
874				 __func__,  __LINE__, n, m, i, col);
875
876			mxc_nand_memcpy32(p, (uint32_t *)&buf[i], m);
877			col += m;
878			i += m;
879			n -= m;
880		}
881	}
882	/* Update saved column address */
883	host->col_addr = col;
884}
885
886/*
887 * Read the data buffer from the NAND Flash. To read the data from NAND
888 * Flash first the data output cycle is initiated by the NFC, which copies
889 * the data to RAMbuffer. This data of length len is then copied to buffer buf.
890 */
891static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
892{
893	struct nand_chip *nand_chip = mtd_to_nand(mtd);
894	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
895	int n, col, i = 0;
896
897	pr_debug("mxc_nand_read_buf(col = %d, len = %d)\n", host->col_addr,
898		 len);
899
900	col = host->col_addr;
901
902	/* Adjust saved column address */
903	if (col < mtd->writesize && host->spare_only)
904		col += mtd->writesize;
905
906	n = mtd->writesize + mtd->oobsize - col;
907	n = min(len, n);
908
909	while (n > 0) {
910		void __iomem *p;
911
912		if (col < mtd->writesize) {
913			p = host->regs->main_area[0] + (col & ~3);
914		} else {
915			p = host->regs->spare_area[0] -
916					mtd->writesize + (col & ~3);
917		}
918
919		if (((col | (int)&buf[i]) & 3) || n < 4) {
920			union {
921				uint32_t word;
922				uint8_t bytes[4];
923			} nfc_word;
924
925			nfc_word.word = readl(p);
926			buf[i++] = nfc_word.bytes[col & 3];
927			n--;
928			col++;
929		} else {
930			int m = mtd->writesize - col;
931
932			if (col >= mtd->writesize)
933				m += mtd->oobsize;
934
935			m = min(n, m) & ~3;
936			mxc_nand_memcpy32((uint32_t *)&buf[i], p, m);
937
938			col += m;
939			i += m;
940			n -= m;
941		}
942	}
943	/* Update saved column address */
944	host->col_addr = col;
945}
946
947/*
948 * This function is used by upper layer for select and
949 * deselect of the NAND chip
950 */
951static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
952{
953	struct nand_chip *nand_chip = mtd_to_nand(mtd);
954	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
955
956	switch (chip) {
957	case -1:
958		/* TODO: Disable the NFC clock */
959		if (host->clk_act)
960			host->clk_act = 0;
961		break;
962	case 0:
963		/* TODO: Enable the NFC clock */
964		if (!host->clk_act)
965			host->clk_act = 1;
966		break;
967
968	default:
969		break;
970	}
971}
972
973/*
974 * Used by the upper layer to write command to NAND Flash for
975 * different operations to be carried out on NAND Flash
976 */
977void mxc_nand_command(struct mtd_info *mtd, unsigned command,
978				int column, int page_addr)
979{
980	struct nand_chip *nand_chip = mtd_to_nand(mtd);
981	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
982
983	pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
984		 command, column, page_addr);
985
986	/* Reset command state information */
987	host->status_request = false;
988
989	/* Command pre-processing step */
990	switch (command) {
991
992	case NAND_CMD_STATUS:
993		host->col_addr = 0;
994		host->status_request = true;
995		break;
996
997	case NAND_CMD_READ0:
998		host->page_addr = page_addr;
999		host->col_addr = column;
1000		host->spare_only = false;
1001		break;
1002
1003	case NAND_CMD_READOOB:
1004		host->col_addr = column;
1005		host->spare_only = true;
1006		if (host->pagesize_2k)
1007			command = NAND_CMD_READ0; /* only READ0 is valid */
1008		break;
1009
1010	case NAND_CMD_SEQIN:
1011		if (column >= mtd->writesize) {
1012			/*
1013			 * before sending SEQIN command for partial write,
1014			 * we need read one page out. FSL NFC does not support
1015			 * partial write. It always sends out 512+ecc+512+ecc
1016			 * for large page nand flash. But for small page nand
1017			 * flash, it does support SPARE ONLY operation.
1018			 */
1019			if (host->pagesize_2k) {
1020				/* call ourself to read a page */
1021				mxc_nand_command(mtd, NAND_CMD_READ0, 0,
1022						page_addr);
1023			}
1024
1025			host->col_addr = column - mtd->writesize;
1026			host->spare_only = true;
1027
1028			/* Set program pointer to spare region */
1029			if (!host->pagesize_2k)
1030				send_cmd(host, NAND_CMD_READOOB);
1031		} else {
1032			host->spare_only = false;
1033			host->col_addr = column;
1034
1035			/* Set program pointer to page start */
1036			if (!host->pagesize_2k)
1037				send_cmd(host, NAND_CMD_READ0);
1038		}
1039		break;
1040
1041	case NAND_CMD_PAGEPROG:
1042		send_prog_page(host, 0, host->spare_only);
1043
1044		if (host->pagesize_2k && is_mxc_nfc_1()) {
1045			/* data in 4 areas */
1046			send_prog_page(host, 1, host->spare_only);
1047			send_prog_page(host, 2, host->spare_only);
1048			send_prog_page(host, 3, host->spare_only);
1049		}
1050
1051		break;
1052	}
1053
1054	/* Write out the command to the device. */
1055	send_cmd(host, command);
1056
1057	/* Write out column address, if necessary */
1058	if (column != -1) {
1059		/*
1060		 * MXC NANDFC can only perform full page+spare or
1061		 * spare-only read/write. When the upper layers perform
1062		 * a read/write buffer operation, we will use the saved
1063		 * column address to index into the full page.
1064		 */
1065		send_addr(host, 0);
1066		if (host->pagesize_2k)
1067			/* another col addr cycle for 2k page */
1068			send_addr(host, 0);
1069	}
1070
1071	/* Write out page address, if necessary */
1072	if (page_addr != -1) {
1073		u32 page_mask = nand_chip->pagemask;
1074		do {
1075			send_addr(host, page_addr & 0xFF);
1076			page_addr >>= 8;
1077			page_mask >>= 8;
1078		} while (page_mask);
1079	}
1080
1081	/* Command post-processing step */
1082	switch (command) {
1083
1084	case NAND_CMD_RESET:
1085		break;
1086
1087	case NAND_CMD_READOOB:
1088	case NAND_CMD_READ0:
1089		if (host->pagesize_2k) {
1090			/* send read confirm command */
1091			send_cmd(host, NAND_CMD_READSTART);
1092			/* read for each AREA */
1093			send_read_page(host, 0, host->spare_only);
1094			if (is_mxc_nfc_1()) {
1095				send_read_page(host, 1, host->spare_only);
1096				send_read_page(host, 2, host->spare_only);
1097				send_read_page(host, 3, host->spare_only);
1098			}
1099		} else {
1100			send_read_page(host, 0, host->spare_only);
1101		}
1102		break;
1103
1104	case NAND_CMD_READID:
1105		host->col_addr = 0;
1106		send_read_id(host);
1107		break;
1108
1109	case NAND_CMD_PAGEPROG:
1110		break;
1111
1112	case NAND_CMD_STATUS:
1113		break;
1114
1115	case NAND_CMD_ERASE2:
1116		break;
1117	}
1118}
1119
1120#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1121
1122static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
1123static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
1124
1125static struct nand_bbt_descr bbt_main_descr = {
1126	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
1127		   NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1128	.offs =	0,
1129	.len = 4,
1130	.veroffs = 4,
1131	.maxblocks = 4,
1132	.pattern = bbt_pattern,
1133};
1134
1135static struct nand_bbt_descr bbt_mirror_descr = {
1136	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
1137		   NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1138	.offs =	0,
1139	.len = 4,
1140	.veroffs = 4,
1141	.maxblocks = 4,
1142	.pattern = mirror_pattern,
1143};
1144
1145#endif
1146
1147int board_nand_init(struct nand_chip *this)
1148{
1149	struct mtd_info *mtd;
1150#if defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
1151	uint32_t tmp;
1152#endif
1153
1154#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1155	this->bbt_options |= NAND_BBT_USE_FLASH;
1156	this->bbt_td = &bbt_main_descr;
1157	this->bbt_md = &bbt_mirror_descr;
1158#endif
1159
1160	/* structures must be linked */
1161	mtd = &this->mtd;
1162	host->nand = this;
1163
1164	/* 5 us command delay time */
1165	this->chip_delay = 5;
1166
1167	nand_set_controller_data(this, host);
1168	this->dev_ready = mxc_nand_dev_ready;
1169	this->cmdfunc = mxc_nand_command;
1170	this->select_chip = mxc_nand_select_chip;
1171	this->read_byte = mxc_nand_read_byte;
1172	this->read_word = mxc_nand_read_word;
1173	this->write_buf = mxc_nand_write_buf;
1174	this->read_buf = mxc_nand_read_buf;
1175
1176	host->regs = (struct mxc_nand_regs __iomem *)CFG_MXC_NAND_REGS_BASE;
1177#ifdef MXC_NFC_V3_2
1178	host->ip_regs =
1179		(struct mxc_nand_ip_regs __iomem *)CFG_MXC_NAND_IP_REGS_BASE;
1180#endif
1181	host->clk_act = 1;
1182
1183#ifdef CONFIG_MXC_NAND_HWECC
1184	this->ecc.calculate = mxc_nand_calculate_ecc;
1185	this->ecc.hwctl = mxc_nand_enable_hwecc;
1186	this->ecc.correct = mxc_nand_correct_data;
1187	if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
1188		this->ecc.mode = NAND_ECC_HW_SYNDROME;
1189		this->ecc.read_page = mxc_nand_read_page_syndrome;
1190		this->ecc.read_page_raw = mxc_nand_read_page_raw_syndrome;
1191		this->ecc.read_oob = mxc_nand_read_oob_syndrome;
1192		this->ecc.write_page = mxc_nand_write_page_syndrome;
1193		this->ecc.write_page_raw = mxc_nand_write_page_raw_syndrome;
1194		this->ecc.write_oob = mxc_nand_write_oob_syndrome;
1195		this->ecc.bytes = 9;
1196		this->ecc.prepad = 7;
1197	} else {
1198		this->ecc.mode = NAND_ECC_HW;
1199	}
1200
1201	if (is_mxc_nfc_1())
1202		this->ecc.strength = 1;
1203	else
1204		this->ecc.strength = 4;
1205
1206	host->pagesize_2k = 0;
1207
1208	this->ecc.size = 512;
1209	_mxc_nand_enable_hwecc(mtd, 1);
1210#else
1211	this->ecc.layout = &nand_soft_eccoob;
1212	this->ecc.mode = NAND_ECC_SOFT;
1213	_mxc_nand_enable_hwecc(mtd, 0);
1214#endif
1215	/* Reset NAND */
1216	this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1217
1218	/* NAND bus width determines access functions used by upper layer */
1219	if (is_16bit_nand())
1220		this->options |= NAND_BUSWIDTH_16;
1221
1222#ifdef CFG_SYS_NAND_LARGEPAGE
1223	host->pagesize_2k = 1;
1224	this->ecc.layout = &nand_hw_eccoob2k;
1225#else
1226	host->pagesize_2k = 0;
1227	this->ecc.layout = &nand_hw_eccoob;
1228#endif
1229
1230#if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
1231#ifdef MXC_NFC_V2_1
1232	tmp = readnfc(&host->regs->config1);
1233	tmp |= NFC_V2_CONFIG1_ONE_CYCLE;
1234	tmp |= NFC_V2_CONFIG1_ECC_MODE_4;
1235	writenfc(tmp, &host->regs->config1);
1236	if (host->pagesize_2k)
1237		writenfc(64/2, &host->regs->spare_area_size);
1238	else
1239		writenfc(16/2, &host->regs->spare_area_size);
1240#endif
1241
1242	/*
1243	 * preset operation
1244	 * Unlock the internal RAM Buffer
1245	 */
1246	writenfc(0x2, &host->regs->config);
1247
1248	/* Blocks to be unlocked */
1249	writenfc(0x0, &host->regs->unlockstart_blkaddr);
1250	/* Originally (Freescale LTIB 2.6.21) 0x4000 was written to the
1251	 * unlockend_blkaddr, but the magic 0x4000 does not always work
1252	 * when writing more than some 32 megabytes (on 2k page nands)
1253	 * However 0xFFFF doesn't seem to have this kind
1254	 * of limitation (tried it back and forth several times).
1255	 * The linux kernel driver sets this to 0xFFFF for the v2 controller
1256	 * only, but probably this was not tested there for v1.
1257	 * The very same limitation seems to apply to this kernel driver.
1258	 * This might be NAND chip specific and the i.MX31 datasheet is
1259	 * extremely vague about the semantics of this register.
1260	 */
1261	writenfc(0xFFFF, &host->regs->unlockend_blkaddr);
1262
1263	/* Unlock Block Command for given address range */
1264	writenfc(0x4, &host->regs->wrprot);
1265#elif defined(MXC_NFC_V3_2)
1266	writenfc(NFC_V3_CONFIG1_RBA(0), &host->regs->config1);
1267	writenfc(NFC_V3_IPC_CREQ, &host->ip_regs->ipc);
1268
1269	/* Unlock the internal RAM Buffer */
1270	writenfc(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
1271			&host->ip_regs->wrprot);
1272
1273	/* Blocks to be unlocked */
1274	for (tmp = 0; tmp < CONFIG_SYS_NAND_MAX_CHIPS; tmp++)
1275		writenfc(0x0 | 0xFFFF << 16,
1276				&host->ip_regs->wrprot_unlock_blkaddr[tmp]);
1277
1278	writenfc(0, &host->ip_regs->ipc);
1279
1280	tmp = readnfc(&host->ip_regs->config2);
1281	tmp &= ~(NFC_V3_CONFIG2_SPAS_MASK | NFC_V3_CONFIG2_EDC_MASK |
1282			NFC_V3_CONFIG2_ECC_MODE_8 | NFC_V3_CONFIG2_PS_MASK);
1283	tmp |= NFC_V3_CONFIG2_ONE_CYCLE;
1284
1285	if (host->pagesize_2k) {
1286		tmp |= NFC_V3_CONFIG2_SPAS(64/2);
1287		tmp |= NFC_V3_CONFIG2_PS_2048;
1288	} else {
1289		tmp |= NFC_V3_CONFIG2_SPAS(16/2);
1290		tmp |= NFC_V3_CONFIG2_PS_512;
1291	}
1292
1293	writenfc(tmp, &host->ip_regs->config2);
1294
1295	tmp = NFC_V3_CONFIG3_NUM_OF_DEVS(0) |
1296			NFC_V3_CONFIG3_NO_SDMA |
1297			NFC_V3_CONFIG3_RBB_MODE |
1298			NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1299			NFC_V3_CONFIG3_ADD_OP(0);
1300
1301	if (!(this->options & NAND_BUSWIDTH_16))
1302		tmp |= NFC_V3_CONFIG3_FW8;
1303
1304	writenfc(tmp, &host->ip_regs->config3);
1305
1306	writenfc(0, &host->ip_regs->delay_line);
1307#endif
1308
1309	return 0;
1310}
1311