1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright 2008-2014 Freescale Semiconductor, Inc.
4 * Copyright 2021 NXP
5 */
6
7/*
8 * Generic driver for Freescale DDR/DDR2/DDR3 memory controller.
9 * Based on code from spd_sdram.c
10 * Author: James Yang [at freescale.com]
11 */
12
13#include <common.h>
14#include <display_options.h>
15#include <dm.h>
16#include <i2c.h>
17#include <fsl_ddr_sdram.h>
18#include <fsl_ddr.h>
19#include <init.h>
20#include <log.h>
21#include <asm/bitops.h>
22
23/*
24 * CFG_SYS_FSL_DDR_SDRAM_BASE_PHY is the physical address from the view
25 * of DDR controllers. It is the same as CFG_SYS_DDR_SDRAM_BASE for
26 * all Power SoCs. But it could be different for ARM SoCs. For example,
27 * fsl_lsch3 has a mapping mechanism to map DDR memory to ranges (in order) of
28 * 0x00_8000_0000 ~ 0x00_ffff_ffff
29 * 0x80_8000_0000 ~ 0xff_ffff_ffff
30 */
31#ifndef CFG_SYS_FSL_DDR_SDRAM_BASE_PHY
32#ifdef CONFIG_MPC83xx
33#define CFG_SYS_FSL_DDR_SDRAM_BASE_PHY CFG_SYS_SDRAM_BASE
34#else
35#define CFG_SYS_FSL_DDR_SDRAM_BASE_PHY CFG_SYS_DDR_SDRAM_BASE
36#endif
37#endif
38
39#ifdef CONFIG_PPC
40#include <asm/fsl_law.h>
41
42void fsl_ddr_set_lawbar(
43		const common_timing_params_t *memctl_common_params,
44		unsigned int memctl_interleaved,
45		unsigned int ctrl_num);
46#endif
47
48void fsl_ddr_set_intl3r(const unsigned int granule_size);
49#if defined(SPD_EEPROM_ADDRESS) || \
50    defined(SPD_EEPROM_ADDRESS1) || defined(SPD_EEPROM_ADDRESS2) || \
51    defined(SPD_EEPROM_ADDRESS3) || defined(SPD_EEPROM_ADDRESS4)
52#if (CONFIG_SYS_NUM_DDR_CTLRS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
53u8 spd_i2c_addr[CONFIG_SYS_NUM_DDR_CTLRS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
54	[0][0] = SPD_EEPROM_ADDRESS,
55};
56#elif (CONFIG_SYS_NUM_DDR_CTLRS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
57u8 spd_i2c_addr[CONFIG_SYS_NUM_DDR_CTLRS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
58	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
59	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
60};
61#elif (CONFIG_SYS_NUM_DDR_CTLRS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
62u8 spd_i2c_addr[CONFIG_SYS_NUM_DDR_CTLRS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
63	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
64	[1][0] = SPD_EEPROM_ADDRESS2,	/* controller 2 */
65};
66#elif (CONFIG_SYS_NUM_DDR_CTLRS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
67u8 spd_i2c_addr[CONFIG_SYS_NUM_DDR_CTLRS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
68	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
69	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
70	[1][0] = SPD_EEPROM_ADDRESS3,	/* controller 2 */
71	[1][1] = SPD_EEPROM_ADDRESS4,	/* controller 2 */
72};
73#elif (CONFIG_SYS_NUM_DDR_CTLRS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
74u8 spd_i2c_addr[CONFIG_SYS_NUM_DDR_CTLRS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
75	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
76	[1][0] = SPD_EEPROM_ADDRESS2,	/* controller 2 */
77	[2][0] = SPD_EEPROM_ADDRESS3,	/* controller 3 */
78};
79#elif (CONFIG_SYS_NUM_DDR_CTLRS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
80u8 spd_i2c_addr[CONFIG_SYS_NUM_DDR_CTLRS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
81	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
82	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
83	[1][0] = SPD_EEPROM_ADDRESS3,	/* controller 2 */
84	[1][1] = SPD_EEPROM_ADDRESS4,	/* controller 2 */
85	[2][0] = SPD_EEPROM_ADDRESS5,	/* controller 3 */
86	[2][1] = SPD_EEPROM_ADDRESS6,	/* controller 3 */
87};
88
89#endif
90
91#if CONFIG_IS_ENABLED(DM_I2C)
92#define DEV_TYPE struct udevice
93#else
94/* Local udevice */
95struct ludevice {
96	u8 chip;
97};
98
99#define DEV_TYPE struct ludevice
100
101#endif
102
103#define SPD_SPA0_ADDRESS	0x36
104#define SPD_SPA1_ADDRESS	0x37
105
106static int ddr_i2c_read(DEV_TYPE *dev, unsigned int addr,
107			int alen, uint8_t *buf, int len)
108{
109	int ret;
110
111#if CONFIG_IS_ENABLED(DM_I2C)
112	ret = dm_i2c_read(dev, 0, buf, len);
113#else
114	ret = i2c_read(dev->chip, addr, alen, buf, len);
115#endif
116
117	return ret;
118}
119
120#ifdef CONFIG_SYS_FSL_DDR4
121static int ddr_i2c_dummy_write(unsigned int chip_addr)
122{
123	uint8_t buf = 0;
124
125#if CONFIG_IS_ENABLED(DM_I2C)
126	struct udevice *dev;
127	int ret;
128
129	ret = i2c_get_chip_for_busnum(CONFIG_SYS_SPD_BUS_NUM, chip_addr,
130				      1, &dev);
131	if (ret) {
132		printf("%s: Cannot find udev for a bus %d\n", __func__,
133		       CONFIG_SYS_SPD_BUS_NUM);
134		return ret;
135	}
136
137	return dm_i2c_write(dev, 0, &buf, 1);
138#else
139	return i2c_write(chip_addr, 0, 1, &buf, 1);
140#endif
141
142	return 0;
143}
144#endif
145
146static void __get_spd(generic_spd_eeprom_t *spd, u8 i2c_address)
147{
148	int ret;
149	DEV_TYPE *dev;
150
151#if CONFIG_IS_ENABLED(DM_I2C)
152	ret = i2c_get_chip_for_busnum(CONFIG_SYS_SPD_BUS_NUM, i2c_address,
153				      1, &dev);
154	if (ret) {
155		printf("%s: Cannot find udev for a bus %d\n", __func__,
156		       CONFIG_SYS_SPD_BUS_NUM);
157		return;
158	}
159#else /* Non DM I2C support - will be removed */
160	struct ludevice ldev = {
161		.chip = i2c_address,
162	};
163	dev = &ldev;
164
165	i2c_set_bus_num(CONFIG_SYS_SPD_BUS_NUM);
166#endif
167
168#ifdef CONFIG_SYS_FSL_DDR4
169	/*
170	 * DDR4 SPD has 384 to 512 bytes
171	 * To access the lower 256 bytes, we need to set EE page address to 0
172	 * To access the upper 256 bytes, we need to set EE page address to 1
173	 * See Jedec standar No. 21-C for detail
174	 */
175	ddr_i2c_dummy_write(SPD_SPA0_ADDRESS);
176	ret = ddr_i2c_read(dev, 0, 1, (uchar *)spd, 256);
177	if (!ret) {
178		ddr_i2c_dummy_write(SPD_SPA1_ADDRESS);
179		ret = ddr_i2c_read(dev, 0, 1, (uchar *)((ulong)spd + 256),
180				   min(256,
181				       (int)sizeof(generic_spd_eeprom_t)
182				       - 256));
183	}
184
185#else
186	ret = ddr_i2c_read(dev, 0, 1, (uchar *)spd,
187			   sizeof(generic_spd_eeprom_t));
188#endif
189
190	if (ret) {
191		if (i2c_address ==
192#ifdef SPD_EEPROM_ADDRESS
193				SPD_EEPROM_ADDRESS
194#elif defined(SPD_EEPROM_ADDRESS1)
195				SPD_EEPROM_ADDRESS1
196#endif
197				) {
198			printf("DDR: failed to read SPD from address %u\n",
199				i2c_address);
200		} else {
201			debug("DDR: failed to read SPD from address %u\n",
202				i2c_address);
203		}
204		memset(spd, 0, sizeof(generic_spd_eeprom_t));
205	}
206}
207
208__attribute__((weak, alias("__get_spd")))
209void get_spd(generic_spd_eeprom_t *spd, u8 i2c_address);
210
211/* This function allows boards to update SPD address */
212__weak void update_spd_address(unsigned int ctrl_num,
213			       unsigned int slot,
214			       unsigned int *addr)
215{
216}
217
218void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
219		      unsigned int ctrl_num, unsigned int dimm_slots_per_ctrl)
220{
221	unsigned int i;
222	unsigned int i2c_address = 0;
223
224	if (ctrl_num >= CONFIG_SYS_NUM_DDR_CTLRS) {
225		printf("%s unexpected ctrl_num = %u\n", __FUNCTION__, ctrl_num);
226		return;
227	}
228
229	for (i = 0; i < dimm_slots_per_ctrl; i++) {
230		i2c_address = spd_i2c_addr[ctrl_num][i];
231		update_spd_address(ctrl_num, i, &i2c_address);
232		get_spd(&(ctrl_dimms_spd[i]), i2c_address);
233	}
234}
235#else
236void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
237		      unsigned int ctrl_num, unsigned int dimm_slots_per_ctrl)
238{
239}
240#endif /* SPD_EEPROM_ADDRESSx */
241
242/*
243 * ASSUMPTIONS:
244 *    - Same number of CONFIG_DIMM_SLOTS_PER_CTLR on each controller
245 *    - Same memory data bus width on all controllers
246 *
247 * NOTES:
248 *
249 * The memory controller and associated documentation use confusing
250 * terminology when referring to the orgranization of DRAM.
251 *
252 * Here is a terminology translation table:
253 *
254 * memory controller/documention  |industry   |this code  |signals
255 * -------------------------------|-----------|-----------|-----------------
256 * physical bank/bank		  |rank       |rank	  |chip select (CS)
257 * logical bank/sub-bank	  |bank       |bank	  |bank address (BA)
258 * page/row			  |row	      |page	  |row address
259 * ???				  |column     |column	  |column address
260 *
261 * The naming confusion is further exacerbated by the descriptions of the
262 * memory controller interleaving feature, where accesses are interleaved
263 * _BETWEEN_ two seperate memory controllers.  This is configured only in
264 * CS0_CONFIG[INTLV_CTL] of each memory controller.
265 *
266 * memory controller documentation | number of chip selects
267 *				   | per memory controller supported
268 * --------------------------------|-----------------------------------------
269 * cache line interleaving	   | 1 (CS0 only)
270 * page interleaving		   | 1 (CS0 only)
271 * bank interleaving		   | 1 (CS0 only)
272 * superbank interleraving	   | depends on bank (chip select)
273 *				   |   interleraving [rank interleaving]
274 *				   |   mode used on every memory controller
275 *
276 * Even further confusing is the existence of the interleaving feature
277 * _WITHIN_ each memory controller.  The feature is referred to in
278 * documentation as chip select interleaving or bank interleaving,
279 * although it is configured in the DDR_SDRAM_CFG field.
280 *
281 * Name of field		| documentation name	| this code
282 * -----------------------------|-----------------------|------------------
283 * DDR_SDRAM_CFG[BA_INTLV_CTL]	| Bank (chip select)	| rank interleaving
284 *				|  interleaving
285 */
286
287const char *step_string_tbl[] = {
288	"STEP_GET_SPD",
289	"STEP_COMPUTE_DIMM_PARMS",
290	"STEP_COMPUTE_COMMON_PARMS",
291	"STEP_GATHER_OPTS",
292	"STEP_ASSIGN_ADDRESSES",
293	"STEP_COMPUTE_REGS",
294	"STEP_PROGRAM_REGS",
295	"STEP_ALL"
296};
297
298const char * step_to_string(unsigned int step) {
299
300	unsigned int s = __ilog2(step);
301
302	if (s <= 31) {
303		if ((1 << s) != step)
304			return step_string_tbl[7];
305	} else {
306		if ((1 << (s - 32)) != step)
307			return step_string_tbl[7];
308	}
309	if (s >= ARRAY_SIZE(step_string_tbl)) {
310		printf("Error for the step in %s\n", __func__);
311		s = 0;
312	}
313
314	return step_string_tbl[s];
315}
316
317static unsigned long long __step_assign_addresses(fsl_ddr_info_t *pinfo,
318			  unsigned int dbw_cap_adj[])
319{
320	unsigned int i, j;
321	unsigned long long total_mem, current_mem_base, total_ctlr_mem;
322	unsigned long long rank_density, ctlr_density = 0;
323	unsigned int first_ctrl = pinfo->first_ctrl;
324	unsigned int last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
325
326	/*
327	 * If a reduced data width is requested, but the SPD
328	 * specifies a physically wider device, adjust the
329	 * computed dimm capacities accordingly before
330	 * assigning addresses.
331	 */
332	for (i = first_ctrl; i <= last_ctrl; i++) {
333		unsigned int found = 0;
334
335		switch (pinfo->memctl_opts[i].data_bus_width) {
336		case 2:
337			/* 16-bit */
338			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
339				unsigned int dw;
340				if (!pinfo->dimm_params[i][j].n_ranks)
341					continue;
342				dw = pinfo->dimm_params[i][j].primary_sdram_width;
343				if ((dw == 72 || dw == 64)) {
344					dbw_cap_adj[i] = 2;
345					break;
346				} else if ((dw == 40 || dw == 32)) {
347					dbw_cap_adj[i] = 1;
348					break;
349				}
350			}
351			break;
352
353		case 1:
354			/* 32-bit */
355			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
356				unsigned int dw;
357				dw = pinfo->dimm_params[i][j].data_width;
358				if (pinfo->dimm_params[i][j].n_ranks
359				    && (dw == 72 || dw == 64)) {
360					/*
361					 * FIXME: can't really do it
362					 * like this because this just
363					 * further reduces the memory
364					 */
365					found = 1;
366					break;
367				}
368			}
369			if (found) {
370				dbw_cap_adj[i] = 1;
371			}
372			break;
373
374		case 0:
375			/* 64-bit */
376			break;
377
378		default:
379			printf("unexpected data bus width "
380				"specified controller %u\n", i);
381			return 1;
382		}
383		debug("dbw_cap_adj[%d]=%d\n", i, dbw_cap_adj[i]);
384	}
385
386	current_mem_base = pinfo->mem_base;
387	total_mem = 0;
388	if (pinfo->memctl_opts[first_ctrl].memctl_interleaving) {
389		rank_density = pinfo->dimm_params[first_ctrl][0].rank_density >>
390					dbw_cap_adj[first_ctrl];
391		switch (pinfo->memctl_opts[first_ctrl].ba_intlv_ctl &
392					FSL_DDR_CS0_CS1_CS2_CS3) {
393		case FSL_DDR_CS0_CS1_CS2_CS3:
394			ctlr_density = 4 * rank_density;
395			break;
396		case FSL_DDR_CS0_CS1:
397		case FSL_DDR_CS0_CS1_AND_CS2_CS3:
398			ctlr_density = 2 * rank_density;
399			break;
400		case FSL_DDR_CS2_CS3:
401		default:
402			ctlr_density = rank_density;
403			break;
404		}
405		debug("rank density is 0x%llx, ctlr density is 0x%llx\n",
406			rank_density, ctlr_density);
407		for (i = first_ctrl; i <= last_ctrl; i++) {
408			if (pinfo->memctl_opts[i].memctl_interleaving) {
409				switch (pinfo->memctl_opts[i].memctl_interleaving_mode) {
410				case FSL_DDR_256B_INTERLEAVING:
411				case FSL_DDR_CACHE_LINE_INTERLEAVING:
412				case FSL_DDR_PAGE_INTERLEAVING:
413				case FSL_DDR_BANK_INTERLEAVING:
414				case FSL_DDR_SUPERBANK_INTERLEAVING:
415					total_ctlr_mem = 2 * ctlr_density;
416					break;
417				case FSL_DDR_3WAY_1KB_INTERLEAVING:
418				case FSL_DDR_3WAY_4KB_INTERLEAVING:
419				case FSL_DDR_3WAY_8KB_INTERLEAVING:
420					total_ctlr_mem = 3 * ctlr_density;
421					break;
422				case FSL_DDR_4WAY_1KB_INTERLEAVING:
423				case FSL_DDR_4WAY_4KB_INTERLEAVING:
424				case FSL_DDR_4WAY_8KB_INTERLEAVING:
425					total_ctlr_mem = 4 * ctlr_density;
426					break;
427				default:
428					panic("Unknown interleaving mode");
429				}
430				pinfo->common_timing_params[i].base_address =
431							current_mem_base;
432				pinfo->common_timing_params[i].total_mem =
433							total_ctlr_mem;
434				total_mem = current_mem_base + total_ctlr_mem;
435				debug("ctrl %d base 0x%llx\n", i, current_mem_base);
436				debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
437			} else {
438				/* when 3rd controller not interleaved */
439				current_mem_base = total_mem;
440				total_ctlr_mem = 0;
441				pinfo->common_timing_params[i].base_address =
442							current_mem_base;
443				for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
444					unsigned long long cap =
445						pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
446					pinfo->dimm_params[i][j].base_address =
447						current_mem_base;
448					debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
449					current_mem_base += cap;
450					total_ctlr_mem += cap;
451				}
452				debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
453				pinfo->common_timing_params[i].total_mem =
454							total_ctlr_mem;
455				total_mem += total_ctlr_mem;
456			}
457		}
458	} else {
459		/*
460		 * Simple linear assignment if memory
461		 * controllers are not interleaved.
462		 */
463		for (i = first_ctrl; i <= last_ctrl; i++) {
464			total_ctlr_mem = 0;
465			pinfo->common_timing_params[i].base_address =
466						current_mem_base;
467			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
468				/* Compute DIMM base addresses. */
469				unsigned long long cap =
470					pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
471				pinfo->dimm_params[i][j].base_address =
472					current_mem_base;
473				debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
474				current_mem_base += cap;
475				total_ctlr_mem += cap;
476			}
477			debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
478			pinfo->common_timing_params[i].total_mem =
479							total_ctlr_mem;
480			total_mem += total_ctlr_mem;
481		}
482	}
483	debug("Total mem by %s is 0x%llx\n", __func__, total_mem);
484
485	return total_mem;
486}
487
488/* Use weak function to allow board file to override the address assignment */
489__attribute__((weak, alias("__step_assign_addresses")))
490unsigned long long step_assign_addresses(fsl_ddr_info_t *pinfo,
491			  unsigned int dbw_cap_adj[]);
492
493unsigned long long
494fsl_ddr_compute(fsl_ddr_info_t *pinfo, unsigned int start_step,
495				       unsigned int size_only)
496{
497	unsigned int i, j;
498	unsigned long long total_mem = 0;
499	int assert_reset = 0;
500	unsigned int first_ctrl =  pinfo->first_ctrl;
501	unsigned int last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
502	__maybe_unused int retval;
503	__maybe_unused bool goodspd = false;
504	__maybe_unused int dimm_slots_per_ctrl = pinfo->dimm_slots_per_ctrl;
505
506	fsl_ddr_cfg_regs_t *ddr_reg = pinfo->fsl_ddr_config_reg;
507	common_timing_params_t *timing_params = pinfo->common_timing_params;
508	if (pinfo->board_need_mem_reset)
509		assert_reset = pinfo->board_need_mem_reset();
510
511	/* data bus width capacity adjust shift amount */
512	unsigned int dbw_capacity_adjust[CONFIG_SYS_NUM_DDR_CTLRS];
513
514	for (i = first_ctrl; i <= last_ctrl; i++)
515		dbw_capacity_adjust[i] = 0;
516
517	debug("starting at step %u (%s)\n",
518	      start_step, step_to_string(start_step));
519
520	switch (start_step) {
521	case STEP_GET_SPD:
522#if defined(CONFIG_DDR_SPD) || defined(CONFIG_SPD_EEPROM)
523		/* STEP 1:  Gather all DIMM SPD data */
524		for (i = first_ctrl; i <= last_ctrl; i++) {
525			fsl_ddr_get_spd(pinfo->spd_installed_dimms[i], i,
526					dimm_slots_per_ctrl);
527		}
528
529	case STEP_COMPUTE_DIMM_PARMS:
530		/* STEP 2:  Compute DIMM parameters from SPD data */
531
532		for (i = first_ctrl; i <= last_ctrl; i++) {
533			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
534				generic_spd_eeprom_t *spd =
535					&(pinfo->spd_installed_dimms[i][j]);
536				dimm_params_t *pdimm =
537					&(pinfo->dimm_params[i][j]);
538				retval = compute_dimm_parameters(
539							i, spd, pdimm, j);
540#ifdef CONFIG_SYS_DDR_RAW_TIMING
541				if (!j && retval) {
542					printf("SPD error on controller %d! "
543					"Trying fallback to raw timing "
544					"calculation\n", i);
545					retval = fsl_ddr_get_dimm_params(pdimm,
546									 i, j);
547				}
548#else
549				if (retval == 2) {
550					printf("Error: compute_dimm_parameters"
551					" non-zero returned FATAL value "
552					"for memctl=%u dimm=%u\n", i, j);
553					return 0;
554				}
555#endif
556				if (retval) {
557					debug("Warning: compute_dimm_parameters"
558					" non-zero return value for memctl=%u "
559					"dimm=%u\n", i, j);
560				} else {
561					goodspd = true;
562				}
563			}
564		}
565		if (!goodspd) {
566			/*
567			 * No valid SPD found
568			 * Throw an error if this is for main memory, i.e.
569			 * first_ctrl == 0. Otherwise, siliently return 0
570			 * as the memory size.
571			 */
572			if (first_ctrl == 0)
573				printf("Error: No valid SPD detected.\n");
574
575			return 0;
576		}
577#elif defined(CONFIG_SYS_DDR_RAW_TIMING)
578	case STEP_COMPUTE_DIMM_PARMS:
579		for (i = first_ctrl; i <= last_ctrl; i++) {
580			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
581				dimm_params_t *pdimm =
582					&(pinfo->dimm_params[i][j]);
583				fsl_ddr_get_dimm_params(pdimm, i, j);
584			}
585		}
586		debug("Filling dimm parameters from board specific file\n");
587#endif
588	case STEP_COMPUTE_COMMON_PARMS:
589		/*
590		 * STEP 3: Compute a common set of timing parameters
591		 * suitable for all of the DIMMs on each memory controller
592		 */
593		for (i = first_ctrl; i <= last_ctrl; i++) {
594			debug("Computing lowest common DIMM"
595				" parameters for memctl=%u\n", i);
596			compute_lowest_common_dimm_parameters
597				(i,
598				 pinfo->dimm_params[i],
599				 &timing_params[i],
600				 CONFIG_DIMM_SLOTS_PER_CTLR);
601		}
602
603	case STEP_GATHER_OPTS:
604		/* STEP 4:  Gather configuration requirements from user */
605		for (i = first_ctrl; i <= last_ctrl; i++) {
606			debug("Reloading memory controller "
607				"configuration options for memctl=%u\n", i);
608			/*
609			 * This "reloads" the memory controller options
610			 * to defaults.  If the user "edits" an option,
611			 * next_step points to the step after this,
612			 * which is currently STEP_ASSIGN_ADDRESSES.
613			 */
614			populate_memctl_options(
615					&timing_params[i],
616					&pinfo->memctl_opts[i],
617					pinfo->dimm_params[i], i);
618			/*
619			 * For RDIMMs, JEDEC spec requires clocks to be stable
620			 * before reset signal is deasserted. For the boards
621			 * using fixed parameters, this function should be
622			 * be called from board init file.
623			 */
624			if (timing_params[i].all_dimms_registered)
625				assert_reset = 1;
626		}
627		if (assert_reset && !size_only) {
628			if (pinfo->board_mem_reset) {
629				debug("Asserting mem reset\n");
630				pinfo->board_mem_reset();
631			} else {
632				debug("Asserting mem reset missing\n");
633			}
634		}
635
636	case STEP_ASSIGN_ADDRESSES:
637		/* STEP 5:  Assign addresses to chip selects */
638		check_interleaving_options(pinfo);
639		total_mem = step_assign_addresses(pinfo, dbw_capacity_adjust);
640		debug("Total mem %llu assigned\n", total_mem);
641
642	case STEP_COMPUTE_REGS:
643		/* STEP 6:  compute controller register values */
644		debug("FSL Memory ctrl register computation\n");
645		for (i = first_ctrl; i <= last_ctrl; i++) {
646			if (timing_params[i].ndimms_present == 0) {
647				memset(&ddr_reg[i], 0,
648					sizeof(fsl_ddr_cfg_regs_t));
649				continue;
650			}
651
652			compute_fsl_memctl_config_regs
653				(i,
654				 &pinfo->memctl_opts[i],
655				 &ddr_reg[i], &timing_params[i],
656				 pinfo->dimm_params[i],
657				 dbw_capacity_adjust[i],
658				 size_only);
659		}
660
661	default:
662		break;
663	}
664
665	{
666		/*
667		 * Compute the amount of memory available just by
668		 * looking for the highest valid CSn_BNDS value.
669		 * This allows us to also experiment with using
670		 * only CS0 when using dual-rank DIMMs.
671		 */
672		unsigned int max_end = 0;
673
674		for (i = first_ctrl; i <= last_ctrl; i++) {
675			for (j = 0; j < CONFIG_CHIP_SELECTS_PER_CTRL; j++) {
676				fsl_ddr_cfg_regs_t *reg = &ddr_reg[i];
677				if (reg->cs[j].config & 0x80000000) {
678					unsigned int end;
679					/*
680					 * 0xfffffff is a special value we put
681					 * for unused bnds
682					 */
683					if (reg->cs[j].bnds == 0xffffffff)
684						continue;
685					end = reg->cs[j].bnds & 0xffff;
686					if (end > max_end) {
687						max_end = end;
688					}
689				}
690			}
691		}
692
693		total_mem = 1 + (((unsigned long long)max_end << 24ULL) |
694			    0xFFFFFFULL) - pinfo->mem_base;
695	}
696
697	return total_mem;
698}
699
700phys_size_t __fsl_ddr_sdram(fsl_ddr_info_t *pinfo)
701{
702	unsigned int i, first_ctrl, last_ctrl;
703#ifdef CONFIG_PPC
704	unsigned int law_memctl = LAW_TRGT_IF_DDR_1;
705#endif
706	unsigned long long total_memory;
707	int deassert_reset = 0;
708
709	first_ctrl = pinfo->first_ctrl;
710	last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
711
712	/* Compute it once normally. */
713#ifdef CONFIG_FSL_DDR_INTERACTIVE
714	if (tstc() && (getchar() == 'd')) {	/* we got a key press of 'd' */
715		total_memory = fsl_ddr_interactive(pinfo, 0);
716	} else if (fsl_ddr_interactive_env_var_exists()) {
717		total_memory = fsl_ddr_interactive(pinfo, 1);
718	} else
719#endif
720		total_memory = fsl_ddr_compute(pinfo, STEP_GET_SPD, 0);
721
722	/* setup 3-way interleaving before enabling DDRC */
723	switch (pinfo->memctl_opts[first_ctrl].memctl_interleaving_mode) {
724	case FSL_DDR_3WAY_1KB_INTERLEAVING:
725	case FSL_DDR_3WAY_4KB_INTERLEAVING:
726	case FSL_DDR_3WAY_8KB_INTERLEAVING:
727		fsl_ddr_set_intl3r(
728			pinfo->memctl_opts[first_ctrl].
729			memctl_interleaving_mode);
730		break;
731	default:
732		break;
733	}
734
735	/*
736	 * Program configuration registers.
737	 * JEDEC specs requires clocks to be stable before deasserting reset
738	 * for RDIMMs. Clocks start after chip select is enabled and clock
739	 * control register is set. During step 1, all controllers have their
740	 * registers set but not enabled. Step 2 proceeds after deasserting
741	 * reset through board FPGA or GPIO.
742	 * For non-registered DIMMs, initialization can go through but it is
743	 * also OK to follow the same flow.
744	 */
745	if (pinfo->board_need_mem_reset)
746		deassert_reset = pinfo->board_need_mem_reset();
747	for (i = first_ctrl; i <= last_ctrl; i++) {
748		if (pinfo->common_timing_params[i].all_dimms_registered)
749			deassert_reset = 1;
750	}
751	for (i = first_ctrl; i <= last_ctrl; i++) {
752		debug("Programming controller %u\n", i);
753		if (pinfo->common_timing_params[i].ndimms_present == 0) {
754			debug("No dimms present on controller %u; "
755					"skipping programming\n", i);
756			continue;
757		}
758		/*
759		 * The following call with step = 1 returns before enabling
760		 * the controller. It has to finish with step = 2 later.
761		 */
762		fsl_ddr_set_memctl_regs(&(pinfo->fsl_ddr_config_reg[i]), i,
763					deassert_reset ? 1 : 0);
764	}
765	if (deassert_reset) {
766		/* Use board FPGA or GPIO to deassert reset signal */
767		if (pinfo->board_mem_de_reset) {
768			debug("Deasserting mem reset\n");
769			pinfo->board_mem_de_reset();
770		} else {
771			debug("Deasserting mem reset missing\n");
772		}
773		for (i = first_ctrl; i <= last_ctrl; i++) {
774			/* Call with step = 2 to continue initialization */
775			fsl_ddr_set_memctl_regs(&(pinfo->fsl_ddr_config_reg[i]),
776						i, 2);
777		}
778	}
779
780#ifdef CONFIG_FSL_DDR_SYNC_REFRESH
781	fsl_ddr_sync_memctl_refresh(first_ctrl, last_ctrl);
782#endif
783
784#ifdef CONFIG_PPC
785	/* program LAWs */
786	for (i = first_ctrl; i <= last_ctrl; i++) {
787		if (pinfo->memctl_opts[i].memctl_interleaving) {
788			switch (pinfo->memctl_opts[i].
789				memctl_interleaving_mode) {
790			case FSL_DDR_CACHE_LINE_INTERLEAVING:
791			case FSL_DDR_PAGE_INTERLEAVING:
792			case FSL_DDR_BANK_INTERLEAVING:
793			case FSL_DDR_SUPERBANK_INTERLEAVING:
794				if (i % 2)
795					break;
796				if (i == 0) {
797					law_memctl = LAW_TRGT_IF_DDR_INTRLV;
798					fsl_ddr_set_lawbar(
799						&pinfo->common_timing_params[i],
800						law_memctl, i);
801				}
802#if CONFIG_SYS_NUM_DDR_CTLRS > 3
803				else if (i == 2) {
804					law_memctl = LAW_TRGT_IF_DDR_INTLV_34;
805					fsl_ddr_set_lawbar(
806						&pinfo->common_timing_params[i],
807						law_memctl, i);
808				}
809#endif
810				break;
811			case FSL_DDR_3WAY_1KB_INTERLEAVING:
812			case FSL_DDR_3WAY_4KB_INTERLEAVING:
813			case FSL_DDR_3WAY_8KB_INTERLEAVING:
814				law_memctl = LAW_TRGT_IF_DDR_INTLV_123;
815				if (i == 0) {
816					fsl_ddr_set_lawbar(
817						&pinfo->common_timing_params[i],
818						law_memctl, i);
819				}
820				break;
821			case FSL_DDR_4WAY_1KB_INTERLEAVING:
822			case FSL_DDR_4WAY_4KB_INTERLEAVING:
823			case FSL_DDR_4WAY_8KB_INTERLEAVING:
824				law_memctl = LAW_TRGT_IF_DDR_INTLV_1234;
825				if (i == 0)
826					fsl_ddr_set_lawbar(
827						&pinfo->common_timing_params[i],
828						law_memctl, i);
829				/* place holder for future 4-way interleaving */
830				break;
831			default:
832				break;
833			}
834		} else {
835			switch (i) {
836			case 0:
837				law_memctl = LAW_TRGT_IF_DDR_1;
838				break;
839			case 1:
840				law_memctl = LAW_TRGT_IF_DDR_2;
841				break;
842			case 2:
843				law_memctl = LAW_TRGT_IF_DDR_3;
844				break;
845			case 3:
846				law_memctl = LAW_TRGT_IF_DDR_4;
847				break;
848			default:
849				break;
850			}
851			fsl_ddr_set_lawbar(&pinfo->common_timing_params[i],
852					   law_memctl, i);
853		}
854	}
855#endif
856
857	debug("total_memory by %s = %llu\n", __func__, total_memory);
858
859#if !defined(CONFIG_PHYS_64BIT)
860	/*
861	 * Show warning about big DDR moodules. But avoid warning for 4 GB DDR
862	 * modules when U-Boot supports RAM of maximal size 4 GB - 1 byte.
863	 */
864	if ((first_ctrl == 0) && (total_memory - 1 > (phys_size_t)~0ULL)) {
865		puts("Detected ");
866		print_size(total_memory, " of memory\n");
867#ifndef CONFIG_SPL_BUILD
868		puts("       "); /* re-align to match init_dram print */
869#endif
870		puts("This U-Boot only supports <= ");
871		print_size((unsigned long long)((phys_size_t)~0ULL)+1, " of DDR\n");
872#ifndef CONFIG_SPL_BUILD
873		puts("       "); /* re-align to match init_dram print */
874#endif
875		puts("You could rebuild it with CONFIG_PHYS_64BIT\n");
876#ifndef CONFIG_SPL_BUILD
877		puts("       "); /* re-align to match init_dram print */
878#endif
879	}
880#endif
881
882	/* Ensure that total_memory does not overflow on return */
883	if (total_memory > (phys_size_t)~0ULL)
884		total_memory = (phys_size_t)~0ULL;
885
886	return total_memory;
887}
888
889/*
890 * fsl_ddr_sdram(void) -- this is the main function to be
891 * called by dram_init() in the board file.
892 *
893 * It returns amount of memory configured in bytes.
894 */
895phys_size_t fsl_ddr_sdram(void)
896{
897	fsl_ddr_info_t info;
898
899	/* Reset info structure. */
900	memset(&info, 0, sizeof(fsl_ddr_info_t));
901	info.mem_base = CFG_SYS_FSL_DDR_SDRAM_BASE_PHY;
902	info.first_ctrl = 0;
903	info.num_ctrls = CONFIG_SYS_FSL_DDR_MAIN_NUM_CTRLS;
904	info.dimm_slots_per_ctrl = CONFIG_DIMM_SLOTS_PER_CTLR;
905	info.board_need_mem_reset = board_need_mem_reset;
906	info.board_mem_reset = board_assert_mem_reset;
907	info.board_mem_de_reset = board_deassert_mem_reset;
908	remove_unused_controllers(&info);
909
910	return __fsl_ddr_sdram(&info);
911}
912
913#ifdef CONFIG_SYS_FSL_OTHER_DDR_NUM_CTRLS
914phys_size_t fsl_other_ddr_sdram(unsigned long long base,
915				unsigned int first_ctrl,
916				unsigned int num_ctrls,
917				unsigned int dimm_slots_per_ctrl,
918				int (*board_need_reset)(void),
919				void (*board_reset)(void),
920				void (*board_de_reset)(void))
921{
922	fsl_ddr_info_t info;
923
924	/* Reset info structure. */
925	memset(&info, 0, sizeof(fsl_ddr_info_t));
926	info.mem_base = base;
927	info.first_ctrl = first_ctrl;
928	info.num_ctrls = num_ctrls;
929	info.dimm_slots_per_ctrl = dimm_slots_per_ctrl;
930	info.board_need_mem_reset = board_need_reset;
931	info.board_mem_reset = board_reset;
932	info.board_mem_de_reset = board_de_reset;
933
934	return __fsl_ddr_sdram(&info);
935}
936#endif
937
938/*
939 * fsl_ddr_sdram_size(first_ctrl, last_intlv) - This function only returns the
940 * size of the total memory without setting ddr control registers.
941 */
942phys_size_t
943fsl_ddr_sdram_size(void)
944{
945	fsl_ddr_info_t  info;
946	unsigned long long total_memory = 0;
947
948	memset(&info, 0 , sizeof(fsl_ddr_info_t));
949	info.mem_base = CFG_SYS_FSL_DDR_SDRAM_BASE_PHY;
950	info.first_ctrl = 0;
951	info.num_ctrls = CONFIG_SYS_FSL_DDR_MAIN_NUM_CTRLS;
952	info.dimm_slots_per_ctrl = CONFIG_DIMM_SLOTS_PER_CTLR;
953	info.board_need_mem_reset = NULL;
954	remove_unused_controllers(&info);
955
956	/* Compute it once normally. */
957	total_memory = fsl_ddr_compute(&info, STEP_GET_SPD, 1);
958
959	/* Ensure that total_memory does not overflow on return */
960	if (total_memory > (phys_size_t)~0ULL)
961		total_memory = (phys_size_t)~0ULL;
962
963	return total_memory;
964}
965