1272343Sngie// SPDX-License-Identifier: GPL-2.0
2272343Sngie/*
3272343Sngie * Copyright 2008 Freescale Semiconductor, Inc.
4272343Sngie */
5272343Sngie
6272343Sngie#include <common.h>
7272343Sngie#include <fsl_ddr_sdram.h>
8272343Sngie#include <log.h>
9272343Sngie#include <asm/bitops.h>
10272343Sngie
11272343Sngie#include <fsl_ddr.h>
12272343Sngie
13272343Sngie/*
14272343Sngie * Calculate the Density of each Physical Rank.
15272343Sngie * Returned size is in bytes.
16272343Sngie *
17272343Sngie * Study these table from Byte 31 of JEDEC SPD Spec.
18272343Sngie *
19272343Sngie *		DDR I	DDR II
20272343Sngie *	Bit	Size	Size
21272343Sngie *	---	-----	------
22272343Sngie *	7 high	512MB	512MB
23272343Sngie *	6	256MB	256MB
24272343Sngie *	5	128MB	128MB
25272343Sngie *	4	 64MB	 16GB
26272343Sngie *	3	 32MB	  8GB
27272343Sngie *	2	 16MB	  4GB
28272343Sngie *	1	  2GB	  2GB
29272343Sngie *	0 low	  1GB	  1GB
30272343Sngie *
31272343Sngie * Reorder Table to be linear by stripping the bottom
32272343Sngie * 2 or 5 bits off and shifting them up to the top.
33272343Sngie */
34272343Sngie
35272343Sngiestatic unsigned long long
36272343Sngiecompute_ranksize(unsigned int mem_type, unsigned char row_dens)
37272343Sngie{
38272343Sngie	unsigned long long bsize;
39272343Sngie
40272343Sngie	/* Bottom 2 bits up to the top. */
41272343Sngie	bsize = ((row_dens >> 2) | ((row_dens & 3) << 6));
42272343Sngie	bsize <<= 24ULL;
43272343Sngie	debug("DDR: DDR I rank density = 0x%16llx\n", bsize);
44272343Sngie
45272343Sngie	return bsize;
46272343Sngie}
47272343Sngie
48272343Sngie/*
49272343Sngie * Convert a two-nibble BCD value into a cycle time.
50272343Sngie * While the spec calls for nano-seconds, picos are returned.
51272343Sngie *
52272343Sngie * This implements the tables for bytes 9, 23 and 25 for both
53272343Sngie * DDR I and II.  No allowance for distinguishing the invalid
54272343Sngie * fields absent for DDR I yet present in DDR II is made.
55272343Sngie * (That is, cycle times of .25, .33, .66 and .75 ns are
56272343Sngie * allowed for both DDR II and I.)
57272343Sngie */
58272343Sngiestatic unsigned int
59272343Sngieconvert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val)
60272343Sngie{
61272343Sngie	/* Table look up the lower nibble, allow DDR I & II. */
62272343Sngie	unsigned int tenths_ps[16] = {
63272343Sngie		0,
64272343Sngie		100,
65272343Sngie		200,
66272343Sngie		300,
67272343Sngie		400,
68272343Sngie		500,
69272343Sngie		600,
70272343Sngie		700,
71272343Sngie		800,
72272343Sngie		900,
73272343Sngie		250,	/* This and the next 3 entries valid ... */
74272343Sngie		330,	/* ...  only for tCK calculations. */
75272343Sngie		660,
76272343Sngie		750,
77272343Sngie		0,	/* undefined */
78272343Sngie		0	/* undefined */
79272343Sngie	};
80272343Sngie
81272343Sngie	unsigned int whole_ns = (spd_val & 0xF0) >> 4;
82272343Sngie	unsigned int tenth_ns = spd_val & 0x0F;
83272343Sngie	unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns];
84272343Sngie
85272343Sngie	return ps;
86272343Sngie}
87272343Sngie
88272343Sngiestatic unsigned int
89272343Sngieconvert_bcd_hundredths_to_cycle_time_ps(unsigned int spd_val)
90272343Sngie{
91272343Sngie	unsigned int tenth_ns = (spd_val & 0xF0) >> 4;
92272343Sngie	unsigned int hundredth_ns = spd_val & 0x0F;
93272343Sngie	unsigned int ps = tenth_ns * 100 + hundredth_ns * 10;
94272343Sngie
95272343Sngie	return ps;
96272343Sngie}
97272343Sngie
98272343Sngiestatic unsigned int byte40_table_ps[8] = {
99272343Sngie	0,
100272343Sngie	250,
101272343Sngie	330,
102272343Sngie	500,
103272343Sngie	660,
104272343Sngie	750,
105272343Sngie	0,	/* supposed to be RFC, but not sure what that means */
106272343Sngie	0	/* Undefined */
107272343Sngie};
108272343Sngie
109272343Sngiestatic unsigned int
110272343Sngiecompute_trfc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trfc)
111272343Sngie{
112272343Sngie	return ((trctrfc_ext & 0x1) * 256 + trfc) * 1000
113272343Sngie		+ byte40_table_ps[(trctrfc_ext >> 1) & 0x7];
114272343Sngie}
115272343Sngie
116272343Sngiestatic unsigned int
117272343Sngiecompute_trc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trc)
118272343Sngie{
119272343Sngie	return trc * 1000 + byte40_table_ps[(trctrfc_ext >> 4) & 0x7];
120272343Sngie}
121272343Sngie
122272343Sngie/*
123272343Sngie * tCKmax from DDR I SPD Byte 43
124272343Sngie *
125272343Sngie * Bits 7:2 == whole ns
126272343Sngie * Bits 1:0 == quarter ns
127272343Sngie *    00    == 0.00 ns
128272343Sngie *    01    == 0.25 ns
129272343Sngie *    10    == 0.50 ns
130272343Sngie *    11    == 0.75 ns
131272343Sngie *
132272343Sngie * Returns picoseconds.
133272343Sngie */
134272343Sngiestatic unsigned int
135272343Sngiecompute_tckmax_from_spd_ps(unsigned int byte43)
136272343Sngie{
137272343Sngie	return (byte43 >> 2) * 1000 + (byte43 & 0x3) * 250;
138272343Sngie}
139272343Sngie
140272343Sngie/*
141272343Sngie * Determine Refresh Rate.  Ignore self refresh bit on DDR I.
142272343Sngie * Table from SPD Spec, Byte 12, converted to picoseconds and
143272343Sngie * filled in with "default" normal values.
144272343Sngie */
145272343Sngiestatic unsigned int
146272343Sngiedetermine_refresh_rate_ps(const unsigned int spd_refresh)
147272343Sngie{
148272343Sngie	unsigned int refresh_time_ps[8] = {
149272343Sngie		15625000,	/* 0 Normal    1.00x */
150272343Sngie		3900000,	/* 1 Reduced    .25x */
151272343Sngie		7800000,	/* 2 Extended   .50x */
152272343Sngie		31300000,	/* 3 Extended  2.00x */
153272343Sngie		62500000,	/* 4 Extended  4.00x */
154272343Sngie		125000000,	/* 5 Extended  8.00x */
155272343Sngie		15625000,	/* 6 Normal    1.00x  filler */
156272343Sngie		15625000,	/* 7 Normal    1.00x  filler */
157272343Sngie	};
158272343Sngie
159272343Sngie	return refresh_time_ps[spd_refresh & 0x7];
160272343Sngie}
161272343Sngie
162272343Sngie/*
163272343Sngie * The purpose of this function is to compute a suitable
164272343Sngie * CAS latency given the DRAM clock period.  The SPD only
165272343Sngie * defines at most 3 CAS latencies.  Typically the slower in
166 * frequency the DIMM runs at, the shorter its CAS latency can be.
167 * If the DIMM is operating at a sufficiently low frequency,
168 * it may be able to run at a CAS latency shorter than the
169 * shortest SPD-defined CAS latency.
170 *
171 * If a CAS latency is not found, 0 is returned.
172 *
173 * Do this by finding in the standard speed bin table the longest
174 * tCKmin that doesn't exceed the value of mclk_ps (tCK).
175 *
176 * An assumption made is that the SDRAM device allows the
177 * CL to be programmed for a value that is lower than those
178 * advertised by the SPD.  This is not always the case,
179 * as those modes not defined in the SPD are optional.
180 *
181 * CAS latency de-rating based upon values JEDEC Standard No. 79-E
182 * Table 11.
183 *
184 * ordinal 2, ddr1_speed_bins[1] contains tCK for CL=2
185 */
186				  /*   CL2.0 CL2.5 CL3.0  */
187unsigned short ddr1_speed_bins[] = {0, 7500, 6000, 5000 };
188
189unsigned int
190compute_derated_DDR1_CAS_latency(unsigned int mclk_ps)
191{
192	const unsigned int num_speed_bins = ARRAY_SIZE(ddr1_speed_bins);
193	unsigned int lowest_tCKmin_found = 0;
194	unsigned int lowest_tCKmin_CL = 0;
195	unsigned int i;
196
197	debug("mclk_ps = %u\n", mclk_ps);
198
199	for (i = 0; i < num_speed_bins; i++) {
200		unsigned int x = ddr1_speed_bins[i];
201		debug("i=%u, x = %u, lowest_tCKmin_found = %u\n",
202		      i, x, lowest_tCKmin_found);
203		if (x && lowest_tCKmin_found <= x && x <= mclk_ps) {
204			lowest_tCKmin_found = x;
205			lowest_tCKmin_CL = i + 1;
206		}
207	}
208
209	debug("lowest_tCKmin_CL = %u\n", lowest_tCKmin_CL);
210
211	return lowest_tCKmin_CL;
212}
213
214/*
215 * ddr_compute_dimm_parameters for DDR1 SPD
216 *
217 * Compute DIMM parameters based upon the SPD information in spd.
218 * Writes the results to the dimm_params_t structure pointed by pdimm.
219 *
220 * FIXME: use #define for the retvals
221 */
222unsigned int ddr_compute_dimm_parameters(const unsigned int ctrl_num,
223					 const ddr1_spd_eeprom_t *spd,
224					 dimm_params_t *pdimm,
225					 unsigned int dimm_number)
226{
227	unsigned int retval;
228
229	if (spd->mem_type) {
230		if (spd->mem_type != SPD_MEMTYPE_DDR) {
231			printf("DIMM %u: is not a DDR1 SPD.\n", dimm_number);
232			return 1;
233		}
234	} else {
235		memset(pdimm, 0, sizeof(dimm_params_t));
236		return 1;
237	}
238
239	retval = ddr1_spd_check(spd);
240	if (retval) {
241		printf("DIMM %u: failed checksum\n", dimm_number);
242		return 2;
243	}
244
245	/*
246	 * The part name in ASCII in the SPD EEPROM is not null terminated.
247	 * Guarantee null termination here by presetting all bytes to 0
248	 * and copying the part name in ASCII from the SPD onto it
249	 */
250	memset(pdimm->mpart, 0, sizeof(pdimm->mpart));
251	memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1);
252
253	/* DIMM organization parameters */
254	pdimm->n_ranks = spd->nrows;
255	pdimm->rank_density = compute_ranksize(spd->mem_type, spd->bank_dens);
256	pdimm->capacity = pdimm->n_ranks * pdimm->rank_density;
257	pdimm->data_width = spd->dataw_lsb;
258	pdimm->primary_sdram_width = spd->primw;
259	pdimm->ec_sdram_width = spd->ecw;
260
261	/*
262	 * FIXME: Need to determine registered_dimm status.
263	 *     1 == register buffered
264	 *     0 == unbuffered
265	 */
266	pdimm->registered_dimm = 0;	/* unbuffered */
267
268	/* SDRAM device parameters */
269	pdimm->n_row_addr = spd->nrow_addr;
270	pdimm->n_col_addr = spd->ncol_addr;
271	pdimm->n_banks_per_sdram_device = spd->nbanks;
272	pdimm->edc_config = spd->config;
273	pdimm->burst_lengths_bitmask = spd->burstl;
274
275	/*
276	 * Calculate the Maximum Data Rate based on the Minimum Cycle time.
277	 * The SPD clk_cycle field (tCKmin) is measured in tenths of
278	 * nanoseconds and represented as BCD.
279	 */
280	pdimm->tckmin_x_ps
281		= convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle);
282	pdimm->tckmin_x_minus_1_ps
283		= convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle2);
284	pdimm->tckmin_x_minus_2_ps
285		= convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle3);
286
287	pdimm->tckmax_ps = compute_tckmax_from_spd_ps(spd->tckmax);
288
289	/*
290	 * Compute CAS latencies defined by SPD
291	 * The SPD caslat_x should have at least 1 and at most 3 bits set.
292	 *
293	 * If cas_lat after masking is 0, the __ilog2 function returns
294	 * 255 into the variable.   This behavior is abused once.
295	 */
296	pdimm->caslat_x  = __ilog2(spd->cas_lat);
297	pdimm->caslat_x_minus_1 = __ilog2(spd->cas_lat
298					  & ~(1 << pdimm->caslat_x));
299	pdimm->caslat_x_minus_2 = __ilog2(spd->cas_lat
300					  & ~(1 << pdimm->caslat_x)
301					  & ~(1 << pdimm->caslat_x_minus_1));
302
303	/* Compute CAS latencies below that defined by SPD */
304	pdimm->caslat_lowest_derated = compute_derated_DDR1_CAS_latency(
305					get_memory_clk_period_ps(ctrl_num));
306
307	/* Compute timing parameters */
308	pdimm->trcd_ps = spd->trcd * 250;
309	pdimm->trp_ps = spd->trp * 250;
310	pdimm->tras_ps = spd->tras * 1000;
311
312	pdimm->twr_ps = mclk_to_picos(ctrl_num, 3);
313	pdimm->twtr_ps = mclk_to_picos(ctrl_num, 1);
314	pdimm->trfc_ps = compute_trfc_ps_from_spd(0, spd->trfc);
315
316	pdimm->trrd_ps = spd->trrd * 250;
317	pdimm->trc_ps = compute_trc_ps_from_spd(0, spd->trc);
318
319	pdimm->refresh_rate_ps = determine_refresh_rate_ps(spd->refresh);
320
321	pdimm->tis_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_setup);
322	pdimm->tih_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_hold);
323	pdimm->tds_ps
324		= convert_bcd_hundredths_to_cycle_time_ps(spd->data_setup);
325	pdimm->tdh_ps
326		= convert_bcd_hundredths_to_cycle_time_ps(spd->data_hold);
327
328	pdimm->trtp_ps = mclk_to_picos(ctrl_num, 2);	/* By the book. */
329	pdimm->tdqsq_max_ps = spd->tdqsq * 10;
330	pdimm->tqhs_ps = spd->tqhs * 10;
331
332	return 0;
333}
334