1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 2020 Marvell International Ltd.
4 */
5
6#ifndef __CVMX_LMCX_DEFS_H__
7#define __CVMX_LMCX_DEFS_H__
8
9#define CVMX_LMCX_BANK_CONFLICT1(offs)			\
10	((0x000360ull) + ((offs) & 3) * 0x1000000ull)
11#define CVMX_LMCX_BANK_CONFLICT2(offs)			\
12	((0x000368ull) + ((offs) & 3) * 0x1000000ull)
13#define CVMX_LMCX_BIST_RESULT(offs)			\
14	((0x0000F8ull) + ((offs) & 1) * 0x60000000ull)
15#define CVMX_LMCX_CHAR_CTL(offs)			\
16	((0x000220ull) + ((offs) & 3) * 0x1000000ull)
17#define CVMX_LMCX_CHAR_DQ_ERR_COUNT(offs)		\
18	((0x000040ull) + ((offs) & 3) * 0x1000000ull)
19#define CVMX_LMCX_CHAR_MASK0(offs)			\
20	((0x000228ull) + ((offs) & 3) * 0x1000000ull)
21#define CVMX_LMCX_CHAR_MASK1(offs)			\
22	((0x000230ull) + ((offs) & 3) * 0x1000000ull)
23#define CVMX_LMCX_CHAR_MASK2(offs)			\
24	((0x000238ull) + ((offs) & 3) * 0x1000000ull)
25#define CVMX_LMCX_CHAR_MASK3(offs)			\
26	((0x000240ull) + ((offs) & 3) * 0x1000000ull)
27#define CVMX_LMCX_CHAR_MASK4(offs)			\
28	((0x000318ull) + ((offs) & 3) * 0x1000000ull)
29#define CVMX_LMCX_COMP_CTL(offs)			\
30	((0x000028ull) + ((offs) & 1) * 0x60000000ull)
31#define CVMX_LMCX_COMP_CTL2(offs)			\
32	((0x0001B8ull) + ((offs) & 3) * 0x1000000ull)
33#define CVMX_LMCX_CONFIG(offs)				\
34	((0x000188ull) + ((offs) & 3) * 0x1000000ull)
35#define CVMX_LMCX_CONTROL(offs)				\
36	((0x000190ull) + ((offs) & 3) * 0x1000000ull)
37#define CVMX_LMCX_CTL(offs)				\
38	((0x000010ull) + ((offs) & 1) * 0x60000000ull)
39#define CVMX_LMCX_CTL1(offs)				\
40	((0x000090ull) + ((offs) & 1) * 0x60000000ull)
41#define CVMX_LMCX_DBTRAIN_CTL(offs)			\
42	((0x0003F8ull) + ((offs) & 3) * 0x1000000ull)
43#define CVMX_LMCX_DCLK_CNT(offs)			\
44	((0x0001E0ull) + ((offs) & 3) * 0x1000000ull)
45#define CVMX_LMCX_DCLK_CNT_HI(offs)			\
46	((0x000070ull) + ((offs) & 1) * 0x60000000ull)
47#define CVMX_LMCX_DCLK_CNT_LO(offs)			\
48	((0x000068ull) + ((offs) & 1) * 0x60000000ull)
49#define CVMX_LMCX_DCLK_CTL(offs)			\
50	((0x0000B8ull) + ((offs) & 1) * 0x60000000ull)
51#define CVMX_LMCX_DDR2_CTL(offs)			\
52	((0x000018ull) + ((offs) & 1) * 0x60000000ull)
53#define CVMX_LMCX_DDR4_DIMM_CTL(offs)			\
54	((0x0003F0ull) + ((offs) & 3) * 0x1000000ull)
55#define CVMX_LMCX_DDR_PLL_CTL(offs)			\
56	((0x000258ull) + ((offs) & 3) * 0x1000000ull)
57#define CVMX_LMCX_DELAY_CFG(offs)			\
58	((0x000088ull) + ((offs) & 1) * 0x60000000ull)
59#define CVMX_LMCX_DIMMX_DDR4_PARAMS0(offs, id)				\
60	((0x0000D0ull) + (((offs) & 1) + ((id) & 3) * 0x200000ull) * 8)
61#define CVMX_LMCX_DIMMX_DDR4_PARAMS1(offs, id)				\
62	((0x000140ull) + (((offs) & 1) + ((id) & 3) * 0x200000ull) * 8)
63#define CVMX_LMCX_DIMMX_PARAMS(offs, id)				\
64	((0x000270ull) + (((offs) & 1) + ((id) & 3) * 0x200000ull) * 8)
65#define CVMX_LMCX_DIMM_CTL(offs)			\
66	((0x000310ull) + ((offs) & 3) * 0x1000000ull)
67#define CVMX_LMCX_DLL_CTL(offs)				\
68	((0x0000C0ull) + ((offs) & 1) * 0x60000000ull)
69#define CVMX_LMCX_DLL_CTL2(offs)			\
70	((0x0001C8ull) + ((offs) & 3) * 0x1000000ull)
71#define CVMX_LMCX_DLL_CTL3(offs)			\
72	((0x000218ull) + ((offs) & 3) * 0x1000000ull)
73#define CVMX_LMCX_ECC_PARITY_TEST(offs)			\
74	((0x000108ull) + ((offs) & 3) * 0x1000000ull)
75#define CVMX_LMCX_EXT_CONFIG(offs)			\
76	((0x000030ull) + ((offs) & 3) * 0x1000000ull)
77#define CVMX_LMCX_EXT_CONFIG2(offs)			\
78	((0x000090ull) + ((offs) & 3) * 0x1000000ull)
79#define CVMX_LMCX_GENERAL_PURPOSE0(offs)		\
80	((0x000340ull) + ((offs) & 3) * 0x1000000ull)
81#define CVMX_LMCX_GENERAL_PURPOSE1(offs)		\
82	((0x000348ull) + ((offs) & 3) * 0x1000000ull)
83#define CVMX_LMCX_GENERAL_PURPOSE2(offs)		\
84	((0x000350ull) + ((offs) & 3) * 0x1000000ull)
85#define CVMX_LMCX_IFB_CNT(offs)				\
86	((0x0001D0ull) + ((offs) & 3) * 0x1000000ull)
87#define CVMX_LMCX_IFB_CNT_HI(offs)			\
88	((0x000050ull) + ((offs) & 1) * 0x60000000ull)
89#define CVMX_LMCX_IFB_CNT_LO(offs)			\
90	((0x000048ull) + ((offs) & 1) * 0x60000000ull)
91#define CVMX_LMCX_INT(offs)				\
92	((0x0001F0ull) + ((offs) & 3) * 0x1000000ull)
93#define CVMX_LMCX_INT_EN(offs)				\
94	((0x0001E8ull) + ((offs) & 3) * 0x1000000ull)
95#define CVMX_LMCX_LANEX_CRC_SWIZ(x, id)					\
96	((0x000380ull) + (((offs) & 15) + ((id) & 3) * 0x200000ull) * 8)
97#define CVMX_LMCX_MEM_CFG0(offs)			\
98	((0x000000ull) + ((offs) & 1) * 0x60000000ull)
99#define CVMX_LMCX_MEM_CFG1(offs)			\
100	((0x000008ull) + ((offs) & 1) * 0x60000000ull)
101#define CVMX_LMCX_MODEREG_PARAMS0(offs)			\
102	((0x0001A8ull) + ((offs) & 3) * 0x1000000ull)
103#define CVMX_LMCX_MODEREG_PARAMS1(offs)			\
104	((0x000260ull) + ((offs) & 3) * 0x1000000ull)
105#define CVMX_LMCX_MODEREG_PARAMS2(offs)			\
106	((0x000050ull) + ((offs) & 3) * 0x1000000ull)
107#define CVMX_LMCX_MODEREG_PARAMS3(offs)			\
108	((0x000058ull) + ((offs) & 3) * 0x1000000ull)
109#define CVMX_LMCX_MPR_DATA0(offs)			\
110	((0x000070ull) + ((offs) & 3) * 0x1000000ull)
111#define CVMX_LMCX_MPR_DATA1(offs)			\
112	((0x000078ull) + ((offs) & 3) * 0x1000000ull)
113#define CVMX_LMCX_MPR_DATA2(offs)			\
114	((0x000080ull) + ((offs) & 3) * 0x1000000ull)
115#define CVMX_LMCX_MR_MPR_CTL(offs)			\
116	((0x000068ull) + ((offs) & 3) * 0x1000000ull)
117#define CVMX_LMCX_NS_CTL(offs)				\
118	((0x000178ull) + ((offs) & 3) * 0x1000000ull)
119
120static inline uint64_t CVMX_LMCX_NXM(unsigned long offs)
121{
122	switch (cvmx_get_octeon_family()) {
123	case OCTEON_CNF71XX & OCTEON_FAMILY_MASK:
124	case OCTEON_CN61XX & OCTEON_FAMILY_MASK:
125	case OCTEON_CN70XX & OCTEON_FAMILY_MASK:
126	case OCTEON_CN66XX & OCTEON_FAMILY_MASK:
127	case OCTEON_CN63XX & OCTEON_FAMILY_MASK:
128		return (0x0000C8ull) + (offs) * 0x60000000ull;
129	case OCTEON_CNF75XX & OCTEON_FAMILY_MASK:
130	case OCTEON_CN73XX & OCTEON_FAMILY_MASK:
131		return (0x0000C8ull) + (offs) * 0x1000000ull;
132	case OCTEON_CN78XX & OCTEON_FAMILY_MASK:
133		if (OCTEON_IS_MODEL(OCTEON_CN78XX_PASS1_X))
134			return (0x0000C8ull) + (offs) * 0x1000000ull;
135		if (OCTEON_IS_MODEL(OCTEON_CN78XX))
136			return (0x0000C8ull) + (offs) * 0x1000000ull;
137	case OCTEON_CN68XX & OCTEON_FAMILY_MASK:
138		return (0x0000C8ull) + (offs) * 0x1000000ull;
139	}
140	return (0x0000C8ull) + (offs) * 0x1000000ull;
141}
142
143#define CVMX_LMCX_NXM_FADR(offs)			\
144	((0x000028ull) + ((offs) & 3) * 0x1000000ull)
145#define CVMX_LMCX_OPS_CNT(offs)				\
146	((0x0001D8ull) + ((offs) & 3) * 0x1000000ull)
147#define CVMX_LMCX_OPS_CNT_HI(offs)			\
148	((0x000060ull) + ((offs) & 1) * 0x60000000ull)
149#define CVMX_LMCX_OPS_CNT_LO(offs)			\
150	((0x000058ull) + ((offs) & 1) * 0x60000000ull)
151#define CVMX_LMCX_PHY_CTL(offs)				\
152	((0x000210ull) + ((offs) & 3) * 0x1000000ull)
153#define CVMX_LMCX_PHY_CTL2(offs)			\
154	((0x000250ull) + ((offs) & 3) * 0x1000000ull)
155#define CVMX_LMCX_PLL_BWCTL(offs)		\
156	((0x000040ull))
157#define CVMX_LMCX_PLL_CTL(offs)				\
158	((0x0000A8ull) + ((offs) & 1) * 0x60000000ull)
159#define CVMX_LMCX_PLL_STATUS(offs)			\
160	((0x0000B0ull) + ((offs) & 1) * 0x60000000ull)
161#define CVMX_LMCX_PPR_CTL(offs)				\
162	((0x0003E0ull) + ((offs) & 3) * 0x1000000ull)
163#define CVMX_LMCX_READ_LEVEL_CTL(offs)			\
164	((0x000140ull) + ((offs) & 1) * 0x60000000ull)
165#define CVMX_LMCX_READ_LEVEL_DBG(offs)			\
166	((0x000148ull) + ((offs) & 1) * 0x60000000ull)
167#define CVMX_LMCX_READ_LEVEL_RANKX(offs, id)				\
168	((0x000100ull) + (((offs) & 3) + ((id) & 1) * 0xC000000ull) * 8)
169#define CVMX_LMCX_REF_STATUS(offs)			\
170	((0x0000A0ull) + ((offs) & 3) * 0x1000000ull)
171#define CVMX_LMCX_RESET_CTL(offs)			\
172	((0x000180ull) + ((offs) & 3) * 0x1000000ull)
173#define CVMX_LMCX_RETRY_CONFIG(offs)			\
174	((0x000110ull) + ((offs) & 3) * 0x1000000ull)
175#define CVMX_LMCX_RETRY_STATUS(offs)			\
176	((0x000118ull) + ((offs) & 3) * 0x1000000ull)
177#define CVMX_LMCX_RLEVEL_CTL(offs)			\
178	((0x0002A0ull) + ((offs) & 3) * 0x1000000ull)
179#define CVMX_LMCX_RLEVEL_DBG(offs)			\
180	((0x0002A8ull) + ((offs) & 3) * 0x1000000ull)
181#define CVMX_LMCX_RLEVEL_RANKX(offs, id)				\
182	((0x000280ull) + (((offs) & 3) + ((id) & 3) * 0x200000ull) * 8)
183#define CVMX_LMCX_RODT_COMP_CTL(offs)			\
184	((0x0000A0ull) + ((offs) & 1) * 0x60000000ull)
185#define CVMX_LMCX_RODT_CTL(offs)			\
186	((0x000078ull) + ((offs) & 1) * 0x60000000ull)
187#define CVMX_LMCX_RODT_MASK(offs)			\
188	((0x000268ull) + ((offs) & 3) * 0x1000000ull)
189#define CVMX_LMCX_SCRAMBLED_FADR(offs)			\
190	((0x000330ull) + ((offs) & 3) * 0x1000000ull)
191#define CVMX_LMCX_SCRAMBLE_CFG0(offs)			\
192	((0x000320ull) + ((offs) & 3) * 0x1000000ull)
193#define CVMX_LMCX_SCRAMBLE_CFG1(offs)			\
194	((0x000328ull) + ((offs) & 3) * 0x1000000ull)
195#define CVMX_LMCX_SCRAMBLE_CFG2(offs)			\
196	((0x000338ull) + ((offs) & 3) * 0x1000000ull)
197#define CVMX_LMCX_SEQ_CTL(offs)				\
198	((0x000048ull) + ((offs) & 3) * 0x1000000ull)
199#define CVMX_LMCX_SLOT_CTL0(offs)			\
200	((0x0001F8ull) + ((offs) & 3) * 0x1000000ull)
201#define CVMX_LMCX_SLOT_CTL1(offs)			\
202	((0x000200ull) + ((offs) & 3) * 0x1000000ull)
203#define CVMX_LMCX_SLOT_CTL2(offs)			\
204	((0x000208ull) + ((offs) & 3) * 0x1000000ull)
205#define CVMX_LMCX_SLOT_CTL3(offs)			\
206	((0x000248ull) + ((offs) & 3) * 0x1000000ull)
207#define CVMX_LMCX_TIMING_PARAMS0(offs)			\
208	((0x000198ull) + ((offs) & 3) * 0x1000000ull)
209#define CVMX_LMCX_TIMING_PARAMS1(offs)			\
210	((0x0001A0ull) + ((offs) & 3) * 0x1000000ull)
211#define CVMX_LMCX_TIMING_PARAMS2(offs)			\
212	((0x000060ull) + ((offs) & 3) * 0x1000000ull)
213#define CVMX_LMCX_TRO_CTL(offs)				\
214	((0x000248ull) + ((offs) & 3) * 0x1000000ull)
215#define CVMX_LMCX_TRO_STAT(offs)			\
216	((0x000250ull) + ((offs) & 3) * 0x1000000ull)
217#define CVMX_LMCX_WLEVEL_CTL(offs)			\
218	((0x000300ull) + ((offs) & 3) * 0x1000000ull)
219#define CVMX_LMCX_WLEVEL_DBG(offs)			\
220	((0x000308ull) + ((offs) & 3) * 0x1000000ull)
221
222static inline uint64_t CVMX_LMCX_WLEVEL_RANKX(unsigned long offs,
223					      unsigned long id)
224{
225	switch (cvmx_get_octeon_family()) {
226	case OCTEON_CN70XX & OCTEON_FAMILY_MASK:
227		return (0x0002C0ull) + ((offs) + (id) * 0x200000ull) * 8;
228	case OCTEON_CNF75XX & OCTEON_FAMILY_MASK:
229	case OCTEON_CN73XX & OCTEON_FAMILY_MASK:
230		return (0x0002C0ull) + ((offs) + (id) * 0x200000ull) * 8;
231	case OCTEON_CN78XX & OCTEON_FAMILY_MASK:
232		if (OCTEON_IS_MODEL(OCTEON_CN78XX_PASS1_X))
233			return (0x0002C0ull) + ((offs) +
234						(id) * 0x200000ull) * 8;
235		if (OCTEON_IS_MODEL(OCTEON_CN78XX))
236			return (0x0002C0ull) + ((offs) +
237						(id) * 0x200000ull) * 8;
238
239	case OCTEON_CN66XX & OCTEON_FAMILY_MASK:
240	case OCTEON_CN63XX & OCTEON_FAMILY_MASK:
241		return (0x0002B0ull) + ((offs) + (id) * 0x0ull) * 8;
242	case OCTEON_CNF71XX & OCTEON_FAMILY_MASK:
243	case OCTEON_CN61XX & OCTEON_FAMILY_MASK:
244		return (0x0002B0ull) + ((offs) + (id) * 0x200000ull) * 8;
245	case OCTEON_CN68XX & OCTEON_FAMILY_MASK:
246		return (0x0002B0ull) + ((offs) + (id) * 0x200000ull) * 8;
247	}
248	return (0x0002C0ull) + ((offs) + (id) * 0x200000ull) * 8;
249}
250
251#define CVMX_LMCX_WODT_CTL0(offs)			\
252	((0x000030ull) + ((offs) & 1) * 0x60000000ull)
253#define CVMX_LMCX_WODT_CTL1(offs)			\
254	((0x000080ull) + ((offs) & 1) * 0x60000000ull)
255#define CVMX_LMCX_WODT_MASK(offs)			\
256	((0x0001B0ull) + ((offs) & 3) * 0x1000000ull)
257
258/**
259 * cvmx_lmc#_char_ctl
260 *
261 * This register provides an assortment of various control fields needed
262 * to characterize the DDR3 interface.
263 */
264union cvmx_lmcx_char_ctl {
265	u64 u64;
266	struct cvmx_lmcx_char_ctl_s {
267		uint64_t reserved_54_63:10;
268		uint64_t dq_char_byte_check:1;
269		uint64_t dq_char_check_lock:1;
270		uint64_t dq_char_check_enable:1;
271		uint64_t dq_char_bit_sel:3;
272		uint64_t dq_char_byte_sel:4;
273		uint64_t dr:1;
274		uint64_t skew_on:1;
275		uint64_t en:1;
276		uint64_t sel:1;
277		uint64_t prog:8;
278		uint64_t prbs:32;
279	} s;
280	struct cvmx_lmcx_char_ctl_cn61xx {
281		uint64_t reserved_44_63:20;
282		uint64_t dr:1;
283		uint64_t skew_on:1;
284		uint64_t en:1;
285		uint64_t sel:1;
286		uint64_t prog:8;
287		uint64_t prbs:32;
288	} cn61xx;
289	struct cvmx_lmcx_char_ctl_cn63xx {
290		uint64_t reserved_42_63:22;
291		uint64_t en:1;
292		uint64_t sel:1;
293		uint64_t prog:8;
294		uint64_t prbs:32;
295	} cn63xx;
296	struct cvmx_lmcx_char_ctl_cn63xx cn63xxp1;
297	struct cvmx_lmcx_char_ctl_cn61xx cn66xx;
298	struct cvmx_lmcx_char_ctl_cn61xx cn68xx;
299	struct cvmx_lmcx_char_ctl_cn63xx cn68xxp1;
300	struct cvmx_lmcx_char_ctl_cn70xx {
301		uint64_t reserved_53_63:11;
302		uint64_t dq_char_check_lock:1;
303		uint64_t dq_char_check_enable:1;
304		uint64_t dq_char_bit_sel:3;
305		uint64_t dq_char_byte_sel:4;
306		uint64_t dr:1;
307		uint64_t skew_on:1;
308		uint64_t en:1;
309		uint64_t sel:1;
310		uint64_t prog:8;
311		uint64_t prbs:32;
312	} cn70xx;
313	struct cvmx_lmcx_char_ctl_cn70xx cn70xxp1;
314	struct cvmx_lmcx_char_ctl_s cn73xx;
315	struct cvmx_lmcx_char_ctl_s cn78xx;
316	struct cvmx_lmcx_char_ctl_s cn78xxp1;
317	struct cvmx_lmcx_char_ctl_cn61xx cnf71xx;
318	struct cvmx_lmcx_char_ctl_s cnf75xx;
319};
320
321/**
322 * cvmx_lmc#_comp_ctl2
323 *
324 * LMC_COMP_CTL2 = LMC Compensation control
325 *
326 */
327union cvmx_lmcx_comp_ctl2 {
328	u64 u64;
329	struct cvmx_lmcx_comp_ctl2_s {
330		uint64_t reserved_51_63:13;
331		uint64_t rclk_char_mode:1;
332		uint64_t reserved_40_49:10;
333		uint64_t ptune_offset:4;
334		uint64_t reserved_12_35:24;
335		uint64_t cmd_ctl:4;
336		uint64_t ck_ctl:4;
337		uint64_t dqx_ctl:4;
338	} s;
339	struct cvmx_lmcx_comp_ctl2_cn61xx {
340		uint64_t reserved_34_63:30;
341		uint64_t ddr__ptune:4;
342		uint64_t ddr__ntune:4;
343		uint64_t m180:1;
344		uint64_t byp:1;
345		uint64_t ptune:4;
346		uint64_t ntune:4;
347		uint64_t rodt_ctl:4;
348		uint64_t cmd_ctl:4;
349		uint64_t ck_ctl:4;
350		uint64_t dqx_ctl:4;
351	} cn61xx;
352	struct cvmx_lmcx_comp_ctl2_cn61xx cn63xx;
353	struct cvmx_lmcx_comp_ctl2_cn61xx cn63xxp1;
354	struct cvmx_lmcx_comp_ctl2_cn61xx cn66xx;
355	struct cvmx_lmcx_comp_ctl2_cn61xx cn68xx;
356	struct cvmx_lmcx_comp_ctl2_cn61xx cn68xxp1;
357	struct cvmx_lmcx_comp_ctl2_cn70xx {
358		uint64_t reserved_51_63:13;
359		uint64_t rclk_char_mode:1;
360		uint64_t ddr__ptune:5;
361		uint64_t ddr__ntune:5;
362		uint64_t ptune_offset:4;
363		uint64_t ntune_offset:4;
364		uint64_t m180:1;
365		uint64_t byp:1;
366		uint64_t ptune:5;
367		uint64_t ntune:5;
368		uint64_t rodt_ctl:4;
369		uint64_t control_ctl:4;
370		uint64_t cmd_ctl:4;
371		uint64_t ck_ctl:4;
372		uint64_t dqx_ctl:4;
373	} cn70xx;
374	struct cvmx_lmcx_comp_ctl2_cn70xx cn70xxp1;
375	struct cvmx_lmcx_comp_ctl2_cn70xx cn73xx;
376	struct cvmx_lmcx_comp_ctl2_cn70xx cn78xx;
377	struct cvmx_lmcx_comp_ctl2_cn70xx cn78xxp1;
378	struct cvmx_lmcx_comp_ctl2_cn61xx cnf71xx;
379	struct cvmx_lmcx_comp_ctl2_cn70xx cnf75xx;
380};
381
382/**
383 * cvmx_lmc#_config
384 *
385 * This register controls certain parameters required for memory configuration.
386 * Note the following:
387 * * Priority order for hardware write operations to
388 * LMC()_CONFIG/LMC()_FADR/LMC()_ECC_SYND: DED error > SEC error.
389 * * The self-refresh entry sequence(s) power the DLL up/down (depending on
390 * LMC()_MODEREG_PARAMS0[DLL]) when LMC()_CONFIG[SREF_WITH_DLL] is set.
391 * * Prior to the self-refresh exit sequence, LMC()_MODEREG_PARAMS0 should
392 * be reprogrammed
393 * (if needed) to the appropriate values.
394 *
395 * See LMC initialization sequence for the LMC bringup sequence.
396 */
397union cvmx_lmcx_config {
398	u64 u64;
399	struct cvmx_lmcx_config_s {
400		uint64_t lrdimm_ena:1;
401		uint64_t bg2_enable:1;
402		uint64_t mode_x4dev:1;
403		uint64_t mode32b:1;
404		uint64_t scrz:1;
405		uint64_t early_unload_d1_r1:1;
406		uint64_t early_unload_d1_r0:1;
407		uint64_t early_unload_d0_r1:1;
408		uint64_t early_unload_d0_r0:1;
409		uint64_t init_status:4;
410		uint64_t mirrmask:4;
411		uint64_t rankmask:4;
412		uint64_t rank_ena:1;
413		uint64_t sref_with_dll:1;
414		uint64_t early_dqx:1;
415		uint64_t reserved_18_39:22;
416		uint64_t reset:1;
417		uint64_t ecc_adr:1;
418		uint64_t forcewrite:4;
419		uint64_t idlepower:3;
420		uint64_t pbank_lsb:4;
421		uint64_t row_lsb:3;
422		uint64_t ecc_ena:1;
423		uint64_t init_start:1;
424	} s;
425	struct cvmx_lmcx_config_cn61xx {
426		uint64_t reserved_61_63:3;
427		uint64_t mode32b:1;
428		uint64_t scrz:1;
429		uint64_t early_unload_d1_r1:1;
430		uint64_t early_unload_d1_r0:1;
431		uint64_t early_unload_d0_r1:1;
432		uint64_t early_unload_d0_r0:1;
433		uint64_t init_status:4;
434		uint64_t mirrmask:4;
435		uint64_t rankmask:4;
436		uint64_t rank_ena:1;
437		uint64_t sref_with_dll:1;
438		uint64_t early_dqx:1;
439		uint64_t sequence:3;
440		uint64_t ref_zqcs_int:19;
441		uint64_t reset:1;
442		uint64_t ecc_adr:1;
443		uint64_t forcewrite:4;
444		uint64_t idlepower:3;
445		uint64_t pbank_lsb:4;
446		uint64_t row_lsb:3;
447		uint64_t ecc_ena:1;
448		uint64_t init_start:1;
449	} cn61xx;
450	struct cvmx_lmcx_config_cn63xx {
451		uint64_t reserved_59_63:5;
452		uint64_t early_unload_d1_r1:1;
453		uint64_t early_unload_d1_r0:1;
454		uint64_t early_unload_d0_r1:1;
455		uint64_t early_unload_d0_r0:1;
456		uint64_t init_status:4;
457		uint64_t mirrmask:4;
458		uint64_t rankmask:4;
459		uint64_t rank_ena:1;
460		uint64_t sref_with_dll:1;
461		uint64_t early_dqx:1;
462		uint64_t sequence:3;
463		uint64_t ref_zqcs_int:19;
464		uint64_t reset:1;
465		uint64_t ecc_adr:1;
466		uint64_t forcewrite:4;
467		uint64_t idlepower:3;
468		uint64_t pbank_lsb:4;
469		uint64_t row_lsb:3;
470		uint64_t ecc_ena:1;
471		uint64_t init_start:1;
472	} cn63xx;
473	struct cvmx_lmcx_config_cn63xxp1 {
474		uint64_t reserved_55_63:9;
475		uint64_t init_status:4;
476		uint64_t mirrmask:4;
477		uint64_t rankmask:4;
478		uint64_t rank_ena:1;
479		uint64_t sref_with_dll:1;
480		uint64_t early_dqx:1;
481		uint64_t sequence:3;
482		uint64_t ref_zqcs_int:19;
483		uint64_t reset:1;
484		uint64_t ecc_adr:1;
485		uint64_t forcewrite:4;
486		uint64_t idlepower:3;
487		uint64_t pbank_lsb:4;
488		uint64_t row_lsb:3;
489		uint64_t ecc_ena:1;
490		uint64_t init_start:1;
491	} cn63xxp1;
492	struct cvmx_lmcx_config_cn66xx {
493		uint64_t reserved_60_63:4;
494		uint64_t scrz:1;
495		uint64_t early_unload_d1_r1:1;
496		uint64_t early_unload_d1_r0:1;
497		uint64_t early_unload_d0_r1:1;
498		uint64_t early_unload_d0_r0:1;
499		uint64_t init_status:4;
500		uint64_t mirrmask:4;
501		uint64_t rankmask:4;
502		uint64_t rank_ena:1;
503		uint64_t sref_with_dll:1;
504		uint64_t early_dqx:1;
505		uint64_t sequence:3;
506		uint64_t ref_zqcs_int:19;
507		uint64_t reset:1;
508		uint64_t ecc_adr:1;
509		uint64_t forcewrite:4;
510		uint64_t idlepower:3;
511		uint64_t pbank_lsb:4;
512		uint64_t row_lsb:3;
513		uint64_t ecc_ena:1;
514		uint64_t init_start:1;
515	} cn66xx;
516	struct cvmx_lmcx_config_cn63xx cn68xx;
517	struct cvmx_lmcx_config_cn63xx cn68xxp1;
518	struct cvmx_lmcx_config_cn70xx {
519		uint64_t reserved_63_63:1;
520		uint64_t bg2_enable:1;
521		uint64_t mode_x4dev:1;
522		uint64_t mode32b:1;
523		uint64_t scrz:1;
524		uint64_t early_unload_d1_r1:1;
525		uint64_t early_unload_d1_r0:1;
526		uint64_t early_unload_d0_r1:1;
527		uint64_t early_unload_d0_r0:1;
528		uint64_t init_status:4;
529		uint64_t mirrmask:4;
530		uint64_t rankmask:4;
531		uint64_t rank_ena:1;
532		uint64_t sref_with_dll:1;
533		uint64_t early_dqx:1;
534		uint64_t ref_zqcs_int:22;
535		uint64_t reset:1;
536		uint64_t ecc_adr:1;
537		uint64_t forcewrite:4;
538		uint64_t idlepower:3;
539		uint64_t pbank_lsb:4;
540		uint64_t row_lsb:3;
541		uint64_t ecc_ena:1;
542		uint64_t reserved_0_0:1;
543	} cn70xx;
544	struct cvmx_lmcx_config_cn70xx cn70xxp1;
545	struct cvmx_lmcx_config_cn73xx {
546		uint64_t lrdimm_ena:1;
547		uint64_t bg2_enable:1;
548		uint64_t mode_x4dev:1;
549		uint64_t mode32b:1;
550		uint64_t scrz:1;
551		uint64_t early_unload_d1_r1:1;
552		uint64_t early_unload_d1_r0:1;
553		uint64_t early_unload_d0_r1:1;
554		uint64_t early_unload_d0_r0:1;
555		uint64_t init_status:4;
556		uint64_t mirrmask:4;
557		uint64_t rankmask:4;
558		uint64_t rank_ena:1;
559		uint64_t sref_with_dll:1;
560		uint64_t early_dqx:1;
561		uint64_t ref_zqcs_int:22;
562		uint64_t reset:1;
563		uint64_t ecc_adr:1;
564		uint64_t forcewrite:4;
565		uint64_t idlepower:3;
566		uint64_t pbank_lsb:4;
567		uint64_t row_lsb:3;
568		uint64_t ecc_ena:1;
569		uint64_t reserved_0_0:1;
570	} cn73xx;
571	struct cvmx_lmcx_config_cn73xx cn78xx;
572	struct cvmx_lmcx_config_cn73xx cn78xxp1;
573	struct cvmx_lmcx_config_cn61xx cnf71xx;
574	struct cvmx_lmcx_config_cn73xx cnf75xx;
575};
576
577/**
578 * cvmx_lmc#_control
579 *
580 * LMC_CONTROL = LMC Control
581 * This register is an assortment of various control fields needed by the
582 * memory controller
583 */
584union cvmx_lmcx_control {
585	u64 u64;
586	struct cvmx_lmcx_control_s {
587		uint64_t scramble_ena:1;
588		uint64_t thrcnt:12;
589		uint64_t persub:8;
590		uint64_t thrmax:4;
591		uint64_t crm_cnt:5;
592		uint64_t crm_thr:5;
593		uint64_t crm_max:5;
594		uint64_t rodt_bprch:1;
595		uint64_t wodt_bprch:1;
596		uint64_t bprch:2;
597		uint64_t ext_zqcs_dis:1;
598		uint64_t int_zqcs_dis:1;
599		uint64_t auto_dclkdis:1;
600		uint64_t xor_bank:1;
601		uint64_t max_write_batch:4;
602		uint64_t nxm_write_en:1;
603		uint64_t elev_prio_dis:1;
604		uint64_t inorder_wr:1;
605		uint64_t inorder_rd:1;
606		uint64_t throttle_wr:1;
607		uint64_t throttle_rd:1;
608		uint64_t fprch2:2;
609		uint64_t pocas:1;
610		uint64_t ddr2t:1;
611		uint64_t bwcnt:1;
612		uint64_t rdimm_ena:1;
613	} s;
614	struct cvmx_lmcx_control_s cn61xx;
615	struct cvmx_lmcx_control_cn63xx {
616		uint64_t reserved_24_63:40;
617		uint64_t rodt_bprch:1;
618		uint64_t wodt_bprch:1;
619		uint64_t bprch:2;
620		uint64_t ext_zqcs_dis:1;
621		uint64_t int_zqcs_dis:1;
622		uint64_t auto_dclkdis:1;
623		uint64_t xor_bank:1;
624		uint64_t max_write_batch:4;
625		uint64_t nxm_write_en:1;
626		uint64_t elev_prio_dis:1;
627		uint64_t inorder_wr:1;
628		uint64_t inorder_rd:1;
629		uint64_t throttle_wr:1;
630		uint64_t throttle_rd:1;
631		uint64_t fprch2:2;
632		uint64_t pocas:1;
633		uint64_t ddr2t:1;
634		uint64_t bwcnt:1;
635		uint64_t rdimm_ena:1;
636	} cn63xx;
637	struct cvmx_lmcx_control_cn63xx cn63xxp1;
638	struct cvmx_lmcx_control_cn66xx {
639		uint64_t scramble_ena:1;
640		uint64_t reserved_24_62:39;
641		uint64_t rodt_bprch:1;
642		uint64_t wodt_bprch:1;
643		uint64_t bprch:2;
644		uint64_t ext_zqcs_dis:1;
645		uint64_t int_zqcs_dis:1;
646		uint64_t auto_dclkdis:1;
647		uint64_t xor_bank:1;
648		uint64_t max_write_batch:4;
649		uint64_t nxm_write_en:1;
650		uint64_t elev_prio_dis:1;
651		uint64_t inorder_wr:1;
652		uint64_t inorder_rd:1;
653		uint64_t throttle_wr:1;
654		uint64_t throttle_rd:1;
655		uint64_t fprch2:2;
656		uint64_t pocas:1;
657		uint64_t ddr2t:1;
658		uint64_t bwcnt:1;
659		uint64_t rdimm_ena:1;
660	} cn66xx;
661	struct cvmx_lmcx_control_cn68xx {
662		uint64_t reserved_63_63:1;
663		uint64_t thrcnt:12;
664		uint64_t persub:8;
665		uint64_t thrmax:4;
666		uint64_t crm_cnt:5;
667		uint64_t crm_thr:5;
668		uint64_t crm_max:5;
669		uint64_t rodt_bprch:1;
670		uint64_t wodt_bprch:1;
671		uint64_t bprch:2;
672		uint64_t ext_zqcs_dis:1;
673		uint64_t int_zqcs_dis:1;
674		uint64_t auto_dclkdis:1;
675		uint64_t xor_bank:1;
676		uint64_t max_write_batch:4;
677		uint64_t nxm_write_en:1;
678		uint64_t elev_prio_dis:1;
679		uint64_t inorder_wr:1;
680		uint64_t inorder_rd:1;
681		uint64_t throttle_wr:1;
682		uint64_t throttle_rd:1;
683		uint64_t fprch2:2;
684		uint64_t pocas:1;
685		uint64_t ddr2t:1;
686		uint64_t bwcnt:1;
687		uint64_t rdimm_ena:1;
688	} cn68xx;
689	struct cvmx_lmcx_control_cn68xx cn68xxp1;
690	struct cvmx_lmcx_control_s cn70xx;
691	struct cvmx_lmcx_control_s cn70xxp1;
692	struct cvmx_lmcx_control_s cn73xx;
693	struct cvmx_lmcx_control_s cn78xx;
694	struct cvmx_lmcx_control_s cn78xxp1;
695	struct cvmx_lmcx_control_cn66xx cnf71xx;
696	struct cvmx_lmcx_control_s cnf75xx;
697};
698
699/**
700 * cvmx_lmc#_ctl
701 *
702 * LMC_CTL = LMC Control
703 * This register is an assortment of various control fields needed by the
704 * memory controller
705 */
706union cvmx_lmcx_ctl {
707	u64 u64;
708	struct cvmx_lmcx_ctl_s {
709		uint64_t reserved_32_63:32;
710		uint64_t ddr__nctl:4;
711		uint64_t ddr__pctl:4;
712		uint64_t slow_scf:1;
713		uint64_t xor_bank:1;
714		uint64_t max_write_batch:4;
715		uint64_t pll_div2:1;
716		uint64_t pll_bypass:1;
717		uint64_t rdimm_ena:1;
718		uint64_t r2r_slot:1;
719		uint64_t inorder_mwf:1;
720		uint64_t inorder_mrf:1;
721		uint64_t reserved_10_11:2;
722		uint64_t fprch2:1;
723		uint64_t bprch:1;
724		uint64_t sil_lat:2;
725		uint64_t tskw:2;
726		uint64_t qs_dic:2;
727		uint64_t dic:2;
728	} s;
729	struct cvmx_lmcx_ctl_cn30xx {
730		uint64_t reserved_32_63:32;
731		uint64_t ddr__nctl:4;
732		uint64_t ddr__pctl:4;
733		uint64_t slow_scf:1;
734		uint64_t xor_bank:1;
735		uint64_t max_write_batch:4;
736		uint64_t pll_div2:1;
737		uint64_t pll_bypass:1;
738		uint64_t rdimm_ena:1;
739		uint64_t r2r_slot:1;
740		uint64_t inorder_mwf:1;
741		uint64_t inorder_mrf:1;
742		uint64_t dreset:1;
743		uint64_t mode32b:1;
744		uint64_t fprch2:1;
745		uint64_t bprch:1;
746		uint64_t sil_lat:2;
747		uint64_t tskw:2;
748		uint64_t qs_dic:2;
749		uint64_t dic:2;
750	} cn30xx;
751	struct cvmx_lmcx_ctl_cn30xx cn31xx;
752	struct cvmx_lmcx_ctl_cn38xx {
753		uint64_t reserved_32_63:32;
754		uint64_t ddr__nctl:4;
755		uint64_t ddr__pctl:4;
756		uint64_t slow_scf:1;
757		uint64_t xor_bank:1;
758		uint64_t max_write_batch:4;
759		uint64_t reserved_16_17:2;
760		uint64_t rdimm_ena:1;
761		uint64_t r2r_slot:1;
762		uint64_t inorder_mwf:1;
763		uint64_t inorder_mrf:1;
764		uint64_t set_zero:1;
765		uint64_t mode128b:1;
766		uint64_t fprch2:1;
767		uint64_t bprch:1;
768		uint64_t sil_lat:2;
769		uint64_t tskw:2;
770		uint64_t qs_dic:2;
771		uint64_t dic:2;
772	} cn38xx;
773	struct cvmx_lmcx_ctl_cn38xx cn38xxp2;
774	struct cvmx_lmcx_ctl_cn50xx {
775		uint64_t reserved_32_63:32;
776		uint64_t ddr__nctl:4;
777		uint64_t ddr__pctl:4;
778		uint64_t slow_scf:1;
779		uint64_t xor_bank:1;
780		uint64_t max_write_batch:4;
781		uint64_t reserved_17_17:1;
782		uint64_t pll_bypass:1;
783		uint64_t rdimm_ena:1;
784		uint64_t r2r_slot:1;
785		uint64_t inorder_mwf:1;
786		uint64_t inorder_mrf:1;
787		uint64_t dreset:1;
788		uint64_t mode32b:1;
789		uint64_t fprch2:1;
790		uint64_t bprch:1;
791		uint64_t sil_lat:2;
792		uint64_t tskw:2;
793		uint64_t qs_dic:2;
794		uint64_t dic:2;
795	} cn50xx;
796	struct cvmx_lmcx_ctl_cn52xx {
797		uint64_t reserved_32_63:32;
798		uint64_t ddr__nctl:4;
799		uint64_t ddr__pctl:4;
800		uint64_t slow_scf:1;
801		uint64_t xor_bank:1;
802		uint64_t max_write_batch:4;
803		uint64_t reserved_16_17:2;
804		uint64_t rdimm_ena:1;
805		uint64_t r2r_slot:1;
806		uint64_t inorder_mwf:1;
807		uint64_t inorder_mrf:1;
808		uint64_t dreset:1;
809		uint64_t mode32b:1;
810		uint64_t fprch2:1;
811		uint64_t bprch:1;
812		uint64_t sil_lat:2;
813		uint64_t tskw:2;
814		uint64_t qs_dic:2;
815		uint64_t dic:2;
816	} cn52xx;
817	struct cvmx_lmcx_ctl_cn52xx cn52xxp1;
818	struct cvmx_lmcx_ctl_cn52xx cn56xx;
819	struct cvmx_lmcx_ctl_cn52xx cn56xxp1;
820	struct cvmx_lmcx_ctl_cn58xx {
821		uint64_t reserved_32_63:32;
822		uint64_t ddr__nctl:4;
823		uint64_t ddr__pctl:4;
824		uint64_t slow_scf:1;
825		uint64_t xor_bank:1;
826		uint64_t max_write_batch:4;
827		uint64_t reserved_16_17:2;
828		uint64_t rdimm_ena:1;
829		uint64_t r2r_slot:1;
830		uint64_t inorder_mwf:1;
831		uint64_t inorder_mrf:1;
832		uint64_t dreset:1;
833		uint64_t mode128b:1;
834		uint64_t fprch2:1;
835		uint64_t bprch:1;
836		uint64_t sil_lat:2;
837		uint64_t tskw:2;
838		uint64_t qs_dic:2;
839		uint64_t dic:2;
840	} cn58xx;
841	struct cvmx_lmcx_ctl_cn58xx cn58xxp1;
842};
843
844/**
845 * cvmx_lmc#_ctl1
846 *
847 * LMC_CTL1 = LMC Control1
848 * This register is an assortment of various control fields needed by the
849 * memory controller
850 */
851union cvmx_lmcx_ctl1 {
852	u64 u64;
853	struct cvmx_lmcx_ctl1_s {
854		uint64_t reserved_21_63:43;
855		uint64_t ecc_adr:1;
856		uint64_t forcewrite:4;
857		uint64_t idlepower:3;
858		uint64_t sequence:3;
859		uint64_t sil_mode:1;
860		uint64_t dcc_enable:1;
861		uint64_t reserved_2_7:6;
862		uint64_t data_layout:2;
863	} s;
864	struct cvmx_lmcx_ctl1_cn30xx {
865		uint64_t reserved_2_63:62;
866		uint64_t data_layout:2;
867	} cn30xx;
868	struct cvmx_lmcx_ctl1_cn50xx {
869		uint64_t reserved_10_63:54;
870		uint64_t sil_mode:1;
871		uint64_t dcc_enable:1;
872		uint64_t reserved_2_7:6;
873		uint64_t data_layout:2;
874	} cn50xx;
875	struct cvmx_lmcx_ctl1_cn52xx {
876		uint64_t reserved_21_63:43;
877		uint64_t ecc_adr:1;
878		uint64_t forcewrite:4;
879		uint64_t idlepower:3;
880		uint64_t sequence:3;
881		uint64_t sil_mode:1;
882		uint64_t dcc_enable:1;
883		uint64_t reserved_0_7:8;
884	} cn52xx;
885	struct cvmx_lmcx_ctl1_cn52xx cn52xxp1;
886	struct cvmx_lmcx_ctl1_cn52xx cn56xx;
887	struct cvmx_lmcx_ctl1_cn52xx cn56xxp1;
888	struct cvmx_lmcx_ctl1_cn58xx {
889		uint64_t reserved_10_63:54;
890		uint64_t sil_mode:1;
891		uint64_t dcc_enable:1;
892		uint64_t reserved_0_7:8;
893	} cn58xx;
894	struct cvmx_lmcx_ctl1_cn58xx cn58xxp1;
895};
896
897/**
898 * cvmx_lmc#_dbtrain_ctl
899 *
900 * Reserved.
901 *
902 */
903union cvmx_lmcx_dbtrain_ctl {
904	u64 u64;
905	struct cvmx_lmcx_dbtrain_ctl_s {
906		uint64_t reserved_63_63:1;
907		uint64_t lfsr_pattern_sel:1;
908		uint64_t cmd_count_ext:2;
909		uint64_t db_output_impedance:3;
910		uint64_t db_sel:1;
911		uint64_t tccd_sel:1;
912		uint64_t rw_train:1;
913		uint64_t read_dq_count:7;
914		uint64_t read_cmd_count:5;
915		uint64_t write_ena:1;
916		uint64_t activate:1;
917		uint64_t prank:2;
918		uint64_t lrank:3;
919		uint64_t row_a:18;
920		uint64_t bg:2;
921		uint64_t ba:2;
922		uint64_t column_a:13;
923	} s;
924	struct cvmx_lmcx_dbtrain_ctl_cn73xx {
925		uint64_t reserved_60_63:4;
926		uint64_t db_output_impedance:3;
927		uint64_t db_sel:1;
928		uint64_t tccd_sel:1;
929		uint64_t rw_train:1;
930		uint64_t read_dq_count:7;
931		uint64_t read_cmd_count:5;
932		uint64_t write_ena:1;
933		uint64_t activate:1;
934		uint64_t prank:2;
935		uint64_t lrank:3;
936		uint64_t row_a:18;
937		uint64_t bg:2;
938		uint64_t ba:2;
939		uint64_t column_a:13;
940	} cn73xx;
941	struct cvmx_lmcx_dbtrain_ctl_s cn78xx;
942	struct cvmx_lmcx_dbtrain_ctl_cnf75xx {
943		uint64_t reserved_62_63:2;
944		uint64_t cmd_count_ext:2;
945		uint64_t db_output_impedance:3;
946		uint64_t db_sel:1;
947		uint64_t tccd_sel:1;
948		uint64_t rw_train:1;
949		uint64_t read_dq_count:7;
950		uint64_t read_cmd_count:5;
951		uint64_t write_ena:1;
952		uint64_t activate:1;
953		uint64_t prank:2;
954		uint64_t lrank:3;
955		uint64_t row_a:18;
956		uint64_t bg:2;
957		uint64_t ba:2;
958		uint64_t column_a:13;
959	} cnf75xx;
960};
961
962/**
963 * cvmx_lmc#_dclk_cnt
964 *
965 * LMC_DCLK_CNT  = Performance Counters
966 *
967 */
968union cvmx_lmcx_dclk_cnt {
969	u64 u64;
970	struct cvmx_lmcx_dclk_cnt_s {
971		uint64_t dclkcnt:64;
972	} s;
973	struct cvmx_lmcx_dclk_cnt_s cn61xx;
974	struct cvmx_lmcx_dclk_cnt_s cn63xx;
975	struct cvmx_lmcx_dclk_cnt_s cn63xxp1;
976	struct cvmx_lmcx_dclk_cnt_s cn66xx;
977	struct cvmx_lmcx_dclk_cnt_s cn68xx;
978	struct cvmx_lmcx_dclk_cnt_s cn68xxp1;
979	struct cvmx_lmcx_dclk_cnt_s cn70xx;
980	struct cvmx_lmcx_dclk_cnt_s cn70xxp1;
981	struct cvmx_lmcx_dclk_cnt_s cn73xx;
982	struct cvmx_lmcx_dclk_cnt_s cn78xx;
983	struct cvmx_lmcx_dclk_cnt_s cn78xxp1;
984	struct cvmx_lmcx_dclk_cnt_s cnf71xx;
985	struct cvmx_lmcx_dclk_cnt_s cnf75xx;
986};
987
988/**
989 * cvmx_lmc#_dclk_cnt_hi
990 *
991 * LMC_DCLK_CNT_HI  = Performance Counters
992 *
993 */
994union cvmx_lmcx_dclk_cnt_hi {
995	u64 u64;
996	struct cvmx_lmcx_dclk_cnt_hi_s {
997		uint64_t reserved_32_63:32;
998		uint64_t dclkcnt_hi:32;
999	} s;
1000	struct cvmx_lmcx_dclk_cnt_hi_s cn30xx;
1001	struct cvmx_lmcx_dclk_cnt_hi_s cn31xx;
1002	struct cvmx_lmcx_dclk_cnt_hi_s cn38xx;
1003	struct cvmx_lmcx_dclk_cnt_hi_s cn38xxp2;
1004	struct cvmx_lmcx_dclk_cnt_hi_s cn50xx;
1005	struct cvmx_lmcx_dclk_cnt_hi_s cn52xx;
1006	struct cvmx_lmcx_dclk_cnt_hi_s cn52xxp1;
1007	struct cvmx_lmcx_dclk_cnt_hi_s cn56xx;
1008	struct cvmx_lmcx_dclk_cnt_hi_s cn56xxp1;
1009	struct cvmx_lmcx_dclk_cnt_hi_s cn58xx;
1010	struct cvmx_lmcx_dclk_cnt_hi_s cn58xxp1;
1011};
1012
1013/**
1014 * cvmx_lmc#_dclk_cnt_lo
1015 *
1016 * LMC_DCLK_CNT_LO  = Performance Counters
1017 *
1018 */
1019union cvmx_lmcx_dclk_cnt_lo {
1020	u64 u64;
1021	struct cvmx_lmcx_dclk_cnt_lo_s {
1022		uint64_t reserved_32_63:32;
1023		uint64_t dclkcnt_lo:32;
1024	} s;
1025	struct cvmx_lmcx_dclk_cnt_lo_s cn30xx;
1026	struct cvmx_lmcx_dclk_cnt_lo_s cn31xx;
1027	struct cvmx_lmcx_dclk_cnt_lo_s cn38xx;
1028	struct cvmx_lmcx_dclk_cnt_lo_s cn38xxp2;
1029	struct cvmx_lmcx_dclk_cnt_lo_s cn50xx;
1030	struct cvmx_lmcx_dclk_cnt_lo_s cn52xx;
1031	struct cvmx_lmcx_dclk_cnt_lo_s cn52xxp1;
1032	struct cvmx_lmcx_dclk_cnt_lo_s cn56xx;
1033	struct cvmx_lmcx_dclk_cnt_lo_s cn56xxp1;
1034	struct cvmx_lmcx_dclk_cnt_lo_s cn58xx;
1035	struct cvmx_lmcx_dclk_cnt_lo_s cn58xxp1;
1036};
1037
1038/**
1039 * cvmx_lmc#_dclk_ctl
1040 *
1041 * LMC_DCLK_CTL = LMC DCLK generation control
1042 *
1043 *
1044 * Notes:
1045 * This CSR is only relevant for LMC1. LMC0_DCLK_CTL is not used.
1046 *
1047 */
1048union cvmx_lmcx_dclk_ctl {
1049	u64 u64;
1050	struct cvmx_lmcx_dclk_ctl_s {
1051		uint64_t reserved_8_63:56;
1052		uint64_t off90_ena:1;
1053		uint64_t dclk90_byp:1;
1054		uint64_t dclk90_ld:1;
1055		uint64_t dclk90_vlu:5;
1056	} s;
1057	struct cvmx_lmcx_dclk_ctl_s cn56xx;
1058	struct cvmx_lmcx_dclk_ctl_s cn56xxp1;
1059};
1060
1061/**
1062 * cvmx_lmc#_ddr2_ctl
1063 *
1064 * LMC_DDR2_CTL = LMC DDR2 & DLL Control Register
1065 *
1066 */
1067union cvmx_lmcx_ddr2_ctl {
1068	u64 u64;
1069	struct cvmx_lmcx_ddr2_ctl_s {
1070		uint64_t reserved_32_63:32;
1071		uint64_t bank8:1;
1072		uint64_t burst8:1;
1073		uint64_t addlat:3;
1074		uint64_t pocas:1;
1075		uint64_t bwcnt:1;
1076		uint64_t twr:3;
1077		uint64_t silo_hc:1;
1078		uint64_t ddr_eof:4;
1079		uint64_t tfaw:5;
1080		uint64_t crip_mode:1;
1081		uint64_t ddr2t:1;
1082		uint64_t odt_ena:1;
1083		uint64_t qdll_ena:1;
1084		uint64_t dll90_vlu:5;
1085		uint64_t dll90_byp:1;
1086		uint64_t rdqs:1;
1087		uint64_t ddr2:1;
1088	} s;
1089	struct cvmx_lmcx_ddr2_ctl_cn30xx {
1090		uint64_t reserved_32_63:32;
1091		uint64_t bank8:1;
1092		uint64_t burst8:1;
1093		uint64_t addlat:3;
1094		uint64_t pocas:1;
1095		uint64_t bwcnt:1;
1096		uint64_t twr:3;
1097		uint64_t silo_hc:1;
1098		uint64_t ddr_eof:4;
1099		uint64_t tfaw:5;
1100		uint64_t crip_mode:1;
1101		uint64_t ddr2t:1;
1102		uint64_t odt_ena:1;
1103		uint64_t qdll_ena:1;
1104		uint64_t dll90_vlu:5;
1105		uint64_t dll90_byp:1;
1106		uint64_t reserved_1_1:1;
1107		uint64_t ddr2:1;
1108	} cn30xx;
1109	struct cvmx_lmcx_ddr2_ctl_cn30xx cn31xx;
1110	struct cvmx_lmcx_ddr2_ctl_s cn38xx;
1111	struct cvmx_lmcx_ddr2_ctl_s cn38xxp2;
1112	struct cvmx_lmcx_ddr2_ctl_s cn50xx;
1113	struct cvmx_lmcx_ddr2_ctl_s cn52xx;
1114	struct cvmx_lmcx_ddr2_ctl_s cn52xxp1;
1115	struct cvmx_lmcx_ddr2_ctl_s cn56xx;
1116	struct cvmx_lmcx_ddr2_ctl_s cn56xxp1;
1117	struct cvmx_lmcx_ddr2_ctl_s cn58xx;
1118	struct cvmx_lmcx_ddr2_ctl_s cn58xxp1;
1119};
1120
1121/**
1122 * cvmx_lmc#_ddr4_dimm_ctl
1123 *
1124 * Bits 0-21 of this register are used only when LMC()_CONTROL[RDIMM_ENA] = 1.
1125 *
1126 * During an RCW initialization sequence, bits 0-21 control LMC's write
1127 * operations to the extended DDR4 control words in the JEDEC standard
1128 * registering clock driver on an RDIMM.
1129 */
1130union cvmx_lmcx_ddr4_dimm_ctl {
1131	u64 u64;
1132	struct cvmx_lmcx_ddr4_dimm_ctl_s {
1133		uint64_t reserved_28_63:36;
1134		uint64_t rank_timing_enable:1;
1135		uint64_t bodt_trans_mode:1;
1136		uint64_t trans_mode_ena:1;
1137		uint64_t read_preamble_mode:1;
1138		uint64_t buff_config_da3:1;
1139		uint64_t mpr_over_ena:1;
1140		uint64_t ddr4_dimm1_wmask:11;
1141		uint64_t ddr4_dimm0_wmask:11;
1142	} s;
1143	struct cvmx_lmcx_ddr4_dimm_ctl_cn70xx {
1144		uint64_t reserved_22_63:42;
1145		uint64_t ddr4_dimm1_wmask:11;
1146		uint64_t ddr4_dimm0_wmask:11;
1147	} cn70xx;
1148	struct cvmx_lmcx_ddr4_dimm_ctl_cn70xx cn70xxp1;
1149	struct cvmx_lmcx_ddr4_dimm_ctl_s cn73xx;
1150	struct cvmx_lmcx_ddr4_dimm_ctl_s cn78xx;
1151	struct cvmx_lmcx_ddr4_dimm_ctl_s cn78xxp1;
1152	struct cvmx_lmcx_ddr4_dimm_ctl_s cnf75xx;
1153};
1154
1155/**
1156 * cvmx_lmc#_ddr_pll_ctl
1157 *
1158 * This register controls the DDR_CK frequency. For details, refer to CK
1159 * speed programming. See LMC initialization sequence for the initialization
1160 * sequence.
1161 * DDR PLL bringup sequence:
1162 *
1163 * 1. Write [CLKF], [CLKR], [DDR_PS_EN].
1164 *
1165 * 2. Wait 128 ref clock cycles (7680 core-clock cycles).
1166 *
1167 * 3. Write 1 to [RESET_N].
1168 *
1169 * 4. Wait 1152 ref clocks (1152*16 core-clock cycles).
1170 *
1171 * 5. Write 0 to [DDR_DIV_RESET].
1172 *
1173 * 6. Wait 10 ref clock cycles (160 core-clock cycles) before bringing up
1174 * the DDR interface.
1175 */
1176union cvmx_lmcx_ddr_pll_ctl {
1177	u64 u64;
1178	struct cvmx_lmcx_ddr_pll_ctl_s {
1179		uint64_t reserved_45_63:19;
1180		uint64_t dclk_alt_refclk_sel:1;
1181		uint64_t bwadj:12;
1182		uint64_t dclk_invert:1;
1183		uint64_t phy_dcok:1;
1184		uint64_t ddr4_mode:1;
1185		uint64_t pll_fbslip:1;
1186		uint64_t pll_lock:1;
1187		uint64_t reserved_18_26:9;
1188		uint64_t diffamp:4;
1189		uint64_t cps:3;
1190		uint64_t reserved_8_10:3;
1191		uint64_t reset_n:1;
1192		uint64_t clkf:7;
1193	} s;
1194	struct cvmx_lmcx_ddr_pll_ctl_cn61xx {
1195		uint64_t reserved_27_63:37;
1196		uint64_t jtg_test_mode:1;
1197		uint64_t dfm_div_reset:1;
1198		uint64_t dfm_ps_en:3;
1199		uint64_t ddr_div_reset:1;
1200		uint64_t ddr_ps_en:3;
1201		uint64_t diffamp:4;
1202		uint64_t cps:3;
1203		uint64_t cpb:3;
1204		uint64_t reset_n:1;
1205		uint64_t clkf:7;
1206	} cn61xx;
1207	struct cvmx_lmcx_ddr_pll_ctl_cn61xx cn63xx;
1208	struct cvmx_lmcx_ddr_pll_ctl_cn61xx cn63xxp1;
1209	struct cvmx_lmcx_ddr_pll_ctl_cn61xx cn66xx;
1210	struct cvmx_lmcx_ddr_pll_ctl_cn61xx cn68xx;
1211	struct cvmx_lmcx_ddr_pll_ctl_cn61xx cn68xxp1;
1212	struct cvmx_lmcx_ddr_pll_ctl_cn70xx {
1213		uint64_t reserved_31_63:33;
1214		uint64_t phy_dcok:1;
1215		uint64_t ddr4_mode:1;
1216		uint64_t pll_fbslip:1;
1217		uint64_t pll_lock:1;
1218		uint64_t pll_rfslip:1;
1219		uint64_t clkr:2;
1220		uint64_t jtg_test_mode:1;
1221		uint64_t ddr_div_reset:1;
1222		uint64_t ddr_ps_en:4;
1223		uint64_t reserved_8_17:10;
1224		uint64_t reset_n:1;
1225		uint64_t clkf:7;
1226	} cn70xx;
1227	struct cvmx_lmcx_ddr_pll_ctl_cn70xx cn70xxp1;
1228	struct cvmx_lmcx_ddr_pll_ctl_cn73xx {
1229		uint64_t reserved_45_63:19;
1230		uint64_t dclk_alt_refclk_sel:1;
1231		uint64_t bwadj:12;
1232		uint64_t dclk_invert:1;
1233		uint64_t phy_dcok:1;
1234		uint64_t ddr4_mode:1;
1235		uint64_t pll_fbslip:1;
1236		uint64_t pll_lock:1;
1237		uint64_t pll_rfslip:1;
1238		uint64_t clkr:2;
1239		uint64_t jtg_test_mode:1;
1240		uint64_t ddr_div_reset:1;
1241		uint64_t ddr_ps_en:4;
1242		uint64_t reserved_9_17:9;
1243		uint64_t clkf_ext:1;
1244		uint64_t reset_n:1;
1245		uint64_t clkf:7;
1246	} cn73xx;
1247	struct cvmx_lmcx_ddr_pll_ctl_cn73xx cn78xx;
1248	struct cvmx_lmcx_ddr_pll_ctl_cn73xx cn78xxp1;
1249	struct cvmx_lmcx_ddr_pll_ctl_cn61xx cnf71xx;
1250	struct cvmx_lmcx_ddr_pll_ctl_cn73xx cnf75xx;
1251};
1252
1253/**
1254 * cvmx_lmc#_delay_cfg
1255 *
1256 * LMC_DELAY_CFG = Open-loop delay line settings
1257 *
1258 *
1259 * Notes:
1260 * The DQ bits add OUTGOING delay only to dq, dqs_[p,n], cb, cbs_[p,n], dqm.
1261 * Delay is approximately 50-80ps per setting depending on process/voltage.
1262 * There is no need to add incoming delay since by default all strobe bits
1263 * are delayed internally by 90 degrees (as was always the case in previous
1264 * passes and past chips.
1265 *
1266 * The CMD add delay to all command bits DDR_RAS, DDR_CAS, DDR_A<15:0>,
1267 * DDR_BA<2:0>, DDR_n_CS<1:0>_L, DDR_WE, DDR_CKE and DDR_ODT_<7:0>.
1268 * Again, delay is 50-80ps per tap.
1269 *
1270 * The CLK bits add delay to all clock signals DDR_CK_<5:0>_P and
1271 * DDR_CK_<5:0>_N.  Again, delay is 50-80ps per tap.
1272 *
1273 * The usage scenario is the following: There is too much delay on command
1274 * signals and setup on command is not met. The user can then delay the
1275 * clock until setup is met.
1276 *
1277 * At the same time though, dq/dqs should be delayed because there is also
1278 * a DDR spec tying dqs with clock. If clock is too much delayed with
1279 * respect to dqs, writes will start to fail.
1280 *
1281 * This scheme should eliminate the board need of adding routing delay to
1282 * clock signals to make high frequencies work.
1283 */
1284union cvmx_lmcx_delay_cfg {
1285	u64 u64;
1286	struct cvmx_lmcx_delay_cfg_s {
1287		uint64_t reserved_15_63:49;
1288		uint64_t dq:5;
1289		uint64_t cmd:5;
1290		uint64_t clk:5;
1291	} s;
1292	struct cvmx_lmcx_delay_cfg_s cn30xx;
1293	struct cvmx_lmcx_delay_cfg_cn38xx {
1294		uint64_t reserved_14_63:50;
1295		uint64_t dq:4;
1296		uint64_t reserved_9_9:1;
1297		uint64_t cmd:4;
1298		uint64_t reserved_4_4:1;
1299		uint64_t clk:4;
1300	} cn38xx;
1301	struct cvmx_lmcx_delay_cfg_cn38xx cn50xx;
1302	struct cvmx_lmcx_delay_cfg_cn38xx cn52xx;
1303	struct cvmx_lmcx_delay_cfg_cn38xx cn52xxp1;
1304	struct cvmx_lmcx_delay_cfg_cn38xx cn56xx;
1305	struct cvmx_lmcx_delay_cfg_cn38xx cn56xxp1;
1306	struct cvmx_lmcx_delay_cfg_cn38xx cn58xx;
1307	struct cvmx_lmcx_delay_cfg_cn38xx cn58xxp1;
1308};
1309
1310/**
1311 * cvmx_lmc#_dimm#_ddr4_params0
1312 *
1313 * This register contains values to be programmed into the extra DDR4 control
1314 * words in the corresponding (registered) DIMM. These are control words
1315 * RC1x through RC8x.
1316 */
1317union cvmx_lmcx_dimmx_ddr4_params0 {
1318	u64 u64;
1319	struct cvmx_lmcx_dimmx_ddr4_params0_s {
1320		uint64_t rc8x:8;
1321		uint64_t rc7x:8;
1322		uint64_t rc6x:8;
1323		uint64_t rc5x:8;
1324		uint64_t rc4x:8;
1325		uint64_t rc3x:8;
1326		uint64_t rc2x:8;
1327		uint64_t rc1x:8;
1328	} s;
1329	struct cvmx_lmcx_dimmx_ddr4_params0_s cn70xx;
1330	struct cvmx_lmcx_dimmx_ddr4_params0_s cn70xxp1;
1331	struct cvmx_lmcx_dimmx_ddr4_params0_s cn73xx;
1332	struct cvmx_lmcx_dimmx_ddr4_params0_s cn78xx;
1333	struct cvmx_lmcx_dimmx_ddr4_params0_s cn78xxp1;
1334	struct cvmx_lmcx_dimmx_ddr4_params0_s cnf75xx;
1335};
1336
1337/**
1338 * cvmx_lmc#_dimm#_ddr4_params1
1339 *
1340 * This register contains values to be programmed into the extra DDR4 control
1341 * words in the corresponding (registered) DIMM. These are control words
1342 * RC9x through RCBx.
1343 */
1344union cvmx_lmcx_dimmx_ddr4_params1 {
1345	u64 u64;
1346	struct cvmx_lmcx_dimmx_ddr4_params1_s {
1347		uint64_t reserved_24_63:40;
1348		uint64_t rcbx:8;
1349		uint64_t rcax:8;
1350		uint64_t rc9x:8;
1351	} s;
1352	struct cvmx_lmcx_dimmx_ddr4_params1_s cn70xx;
1353	struct cvmx_lmcx_dimmx_ddr4_params1_s cn70xxp1;
1354	struct cvmx_lmcx_dimmx_ddr4_params1_s cn73xx;
1355	struct cvmx_lmcx_dimmx_ddr4_params1_s cn78xx;
1356	struct cvmx_lmcx_dimmx_ddr4_params1_s cn78xxp1;
1357	struct cvmx_lmcx_dimmx_ddr4_params1_s cnf75xx;
1358};
1359
1360/**
1361 * cvmx_lmc#_dimm#_params
1362 *
1363 * This register contains values to be programmed into each control word in
1364 * the corresponding (registered) DIMM. The control words allow optimization
1365 * of the device properties for different raw card designs. Note that LMC
1366 * only uses this CSR when LMC()_CONTROL[RDIMM_ENA]=1. During a power-up/init
1367 * sequence, LMC writes these fields into the control words in the JEDEC
1368 * standard DDR3 SSTE32882 registering clock driver or DDR4 Register
1369 * DDR4RCD01 on an RDIMM when corresponding LMC()_DIMM_CTL[DIMM*_WMASK]
1370 * bits are set.
1371 */
1372union cvmx_lmcx_dimmx_params {
1373	u64 u64;
1374	struct cvmx_lmcx_dimmx_params_s {
1375		uint64_t rc15:4;
1376		uint64_t rc14:4;
1377		uint64_t rc13:4;
1378		uint64_t rc12:4;
1379		uint64_t rc11:4;
1380		uint64_t rc10:4;
1381		uint64_t rc9:4;
1382		uint64_t rc8:4;
1383		uint64_t rc7:4;
1384		uint64_t rc6:4;
1385		uint64_t rc5:4;
1386		uint64_t rc4:4;
1387		uint64_t rc3:4;
1388		uint64_t rc2:4;
1389		uint64_t rc1:4;
1390		uint64_t rc0:4;
1391	} s;
1392	struct cvmx_lmcx_dimmx_params_s cn61xx;
1393	struct cvmx_lmcx_dimmx_params_s cn63xx;
1394	struct cvmx_lmcx_dimmx_params_s cn63xxp1;
1395	struct cvmx_lmcx_dimmx_params_s cn66xx;
1396	struct cvmx_lmcx_dimmx_params_s cn68xx;
1397	struct cvmx_lmcx_dimmx_params_s cn68xxp1;
1398	struct cvmx_lmcx_dimmx_params_s cn70xx;
1399	struct cvmx_lmcx_dimmx_params_s cn70xxp1;
1400	struct cvmx_lmcx_dimmx_params_s cn73xx;
1401	struct cvmx_lmcx_dimmx_params_s cn78xx;
1402	struct cvmx_lmcx_dimmx_params_s cn78xxp1;
1403	struct cvmx_lmcx_dimmx_params_s cnf71xx;
1404	struct cvmx_lmcx_dimmx_params_s cnf75xx;
1405};
1406
1407/**
1408 * cvmx_lmc#_dimm_ctl
1409 *
1410 * Note that this CSR is only used when LMC()_CONTROL[RDIMM_ENA] = 1. During
1411 * a power-up/init sequence, this CSR controls LMC's write operations to the
1412 * control words in the JEDEC standard DDR3 SSTE32882 registering clock
1413 * driver or DDR4 Register DDR4RCD01 on an RDIMM.
1414 */
1415union cvmx_lmcx_dimm_ctl {
1416	u64 u64;
1417	struct cvmx_lmcx_dimm_ctl_s {
1418		uint64_t reserved_46_63:18;
1419		uint64_t parity:1;
1420		uint64_t tcws:13;
1421		uint64_t dimm1_wmask:16;
1422		uint64_t dimm0_wmask:16;
1423	} s;
1424	struct cvmx_lmcx_dimm_ctl_s cn61xx;
1425	struct cvmx_lmcx_dimm_ctl_s cn63xx;
1426	struct cvmx_lmcx_dimm_ctl_s cn63xxp1;
1427	struct cvmx_lmcx_dimm_ctl_s cn66xx;
1428	struct cvmx_lmcx_dimm_ctl_s cn68xx;
1429	struct cvmx_lmcx_dimm_ctl_s cn68xxp1;
1430	struct cvmx_lmcx_dimm_ctl_s cn70xx;
1431	struct cvmx_lmcx_dimm_ctl_s cn70xxp1;
1432	struct cvmx_lmcx_dimm_ctl_s cn73xx;
1433	struct cvmx_lmcx_dimm_ctl_s cn78xx;
1434	struct cvmx_lmcx_dimm_ctl_s cn78xxp1;
1435	struct cvmx_lmcx_dimm_ctl_s cnf71xx;
1436	struct cvmx_lmcx_dimm_ctl_s cnf75xx;
1437};
1438
1439/**
1440 * cvmx_lmc#_dll_ctl
1441 *
1442 * LMC_DLL_CTL = LMC DLL control and DCLK reset
1443 *
1444 */
1445union cvmx_lmcx_dll_ctl {
1446	u64 u64;
1447	struct cvmx_lmcx_dll_ctl_s {
1448		uint64_t reserved_8_63:56;
1449		uint64_t dreset:1;
1450		uint64_t dll90_byp:1;
1451		uint64_t dll90_ena:1;
1452		uint64_t dll90_vlu:5;
1453	} s;
1454	struct cvmx_lmcx_dll_ctl_s cn52xx;
1455	struct cvmx_lmcx_dll_ctl_s cn52xxp1;
1456	struct cvmx_lmcx_dll_ctl_s cn56xx;
1457	struct cvmx_lmcx_dll_ctl_s cn56xxp1;
1458};
1459
1460/**
1461 * cvmx_lmc#_dll_ctl2
1462 *
1463 * See LMC initialization sequence for the initialization sequence.
1464 *
1465 */
1466union cvmx_lmcx_dll_ctl2 {
1467	u64 u64;
1468	struct cvmx_lmcx_dll_ctl2_s {
1469		uint64_t reserved_0_63:64;
1470	} s;
1471	struct cvmx_lmcx_dll_ctl2_cn61xx {
1472		uint64_t reserved_16_63:48;
1473		uint64_t intf_en:1;
1474		uint64_t dll_bringup:1;
1475		uint64_t dreset:1;
1476		uint64_t quad_dll_ena:1;
1477		uint64_t byp_sel:4;
1478		uint64_t byp_setting:8;
1479	} cn61xx;
1480	struct cvmx_lmcx_dll_ctl2_cn63xx {
1481		uint64_t reserved_15_63:49;
1482		uint64_t dll_bringup:1;
1483		uint64_t dreset:1;
1484		uint64_t quad_dll_ena:1;
1485		uint64_t byp_sel:4;
1486		uint64_t byp_setting:8;
1487	} cn63xx;
1488	struct cvmx_lmcx_dll_ctl2_cn63xx cn63xxp1;
1489	struct cvmx_lmcx_dll_ctl2_cn63xx cn66xx;
1490	struct cvmx_lmcx_dll_ctl2_cn61xx cn68xx;
1491	struct cvmx_lmcx_dll_ctl2_cn61xx cn68xxp1;
1492	struct cvmx_lmcx_dll_ctl2_cn70xx {
1493		uint64_t reserved_17_63:47;
1494		uint64_t intf_en:1;
1495		uint64_t dll_bringup:1;
1496		uint64_t dreset:1;
1497		uint64_t quad_dll_ena:1;
1498		uint64_t byp_sel:4;
1499		uint64_t byp_setting:9;
1500	} cn70xx;
1501	struct cvmx_lmcx_dll_ctl2_cn70xx cn70xxp1;
1502	struct cvmx_lmcx_dll_ctl2_cn70xx cn73xx;
1503	struct cvmx_lmcx_dll_ctl2_cn70xx cn78xx;
1504	struct cvmx_lmcx_dll_ctl2_cn70xx cn78xxp1;
1505	struct cvmx_lmcx_dll_ctl2_cn61xx cnf71xx;
1506	struct cvmx_lmcx_dll_ctl2_cn70xx cnf75xx;
1507};
1508
1509/**
1510 * cvmx_lmc#_dll_ctl3
1511 *
1512 * LMC_DLL_CTL3 = LMC DLL control and DCLK reset
1513 *
1514 */
1515union cvmx_lmcx_dll_ctl3 {
1516	u64 u64;
1517	struct cvmx_lmcx_dll_ctl3_s {
1518		uint64_t reserved_50_63:14;
1519		uint64_t wr_deskew_ena:1;
1520		uint64_t wr_deskew_ld:1;
1521		uint64_t bit_select:4;
1522		uint64_t reserved_0_43:44;
1523	} s;
1524	struct cvmx_lmcx_dll_ctl3_cn61xx {
1525		uint64_t reserved_41_63:23;
1526		uint64_t dclk90_fwd:1;
1527		uint64_t ddr_90_dly_byp:1;
1528		uint64_t dclk90_recal_dis:1;
1529		uint64_t dclk90_byp_sel:1;
1530		uint64_t dclk90_byp_setting:8;
1531		uint64_t dll_fast:1;
1532		uint64_t dll90_setting:8;
1533		uint64_t fine_tune_mode:1;
1534		uint64_t dll_mode:1;
1535		uint64_t dll90_byte_sel:4;
1536		uint64_t offset_ena:1;
1537		uint64_t load_offset:1;
1538		uint64_t mode_sel:2;
1539		uint64_t byte_sel:4;
1540		uint64_t offset:6;
1541	} cn61xx;
1542	struct cvmx_lmcx_dll_ctl3_cn63xx {
1543		uint64_t reserved_29_63:35;
1544		uint64_t dll_fast:1;
1545		uint64_t dll90_setting:8;
1546		uint64_t fine_tune_mode:1;
1547		uint64_t dll_mode:1;
1548		uint64_t dll90_byte_sel:4;
1549		uint64_t offset_ena:1;
1550		uint64_t load_offset:1;
1551		uint64_t mode_sel:2;
1552		uint64_t byte_sel:4;
1553		uint64_t offset:6;
1554	} cn63xx;
1555	struct cvmx_lmcx_dll_ctl3_cn63xx cn63xxp1;
1556	struct cvmx_lmcx_dll_ctl3_cn63xx cn66xx;
1557	struct cvmx_lmcx_dll_ctl3_cn61xx cn68xx;
1558	struct cvmx_lmcx_dll_ctl3_cn61xx cn68xxp1;
1559	struct cvmx_lmcx_dll_ctl3_cn70xx {
1560		uint64_t reserved_44_63:20;
1561		uint64_t dclk90_fwd:1;
1562		uint64_t ddr_90_dly_byp:1;
1563		uint64_t dclk90_recal_dis:1;
1564		uint64_t dclk90_byp_sel:1;
1565		uint64_t dclk90_byp_setting:9;
1566		uint64_t dll_fast:1;
1567		uint64_t dll90_setting:9;
1568		uint64_t fine_tune_mode:1;
1569		uint64_t dll_mode:1;
1570		uint64_t dll90_byte_sel:4;
1571		uint64_t offset_ena:1;
1572		uint64_t load_offset:1;
1573		uint64_t mode_sel:2;
1574		uint64_t byte_sel:4;
1575		uint64_t offset:7;
1576	} cn70xx;
1577	struct cvmx_lmcx_dll_ctl3_cn70xx cn70xxp1;
1578	struct cvmx_lmcx_dll_ctl3_cn73xx {
1579		uint64_t reserved_50_63:14;
1580		uint64_t wr_deskew_ena:1;
1581		uint64_t wr_deskew_ld:1;
1582		uint64_t bit_select:4;
1583		uint64_t dclk90_fwd:1;
1584		uint64_t ddr_90_dly_byp:1;
1585		uint64_t dclk90_recal_dis:1;
1586		uint64_t dclk90_byp_sel:1;
1587		uint64_t dclk90_byp_setting:9;
1588		uint64_t dll_fast:1;
1589		uint64_t dll90_setting:9;
1590		uint64_t fine_tune_mode:1;
1591		uint64_t dll_mode:1;
1592		uint64_t dll90_byte_sel:4;
1593		uint64_t offset_ena:1;
1594		uint64_t load_offset:1;
1595		uint64_t mode_sel:2;
1596		uint64_t byte_sel:4;
1597		uint64_t offset:7;
1598	} cn73xx;
1599	struct cvmx_lmcx_dll_ctl3_cn73xx cn78xx;
1600	struct cvmx_lmcx_dll_ctl3_cn73xx cn78xxp1;
1601	struct cvmx_lmcx_dll_ctl3_cn61xx cnf71xx;
1602	struct cvmx_lmcx_dll_ctl3_cn73xx cnf75xx;
1603};
1604
1605/**
1606 * cvmx_lmc#_dual_memcfg
1607 *
1608 * This register controls certain parameters of dual-memory configuration.
1609 *
1610 * This register enables the design to have two separate memory
1611 * configurations, selected dynamically by the reference address. Note
1612 * however, that both configurations share LMC()_CONTROL[XOR_BANK],
1613 * LMC()_CONFIG [PBANK_LSB], LMC()_CONFIG[RANK_ENA], and all timing parameters.
1614 *
1615 * In this description:
1616 * * config0 refers to the normal memory configuration that is defined by the
1617 * LMC()_CONFIG[ROW_LSB] parameter
1618 * * config1 refers to the dual (or second) memory configuration that is
1619 * defined by this register.
1620 */
1621union cvmx_lmcx_dual_memcfg {
1622	u64 u64;
1623	struct cvmx_lmcx_dual_memcfg_s {
1624		uint64_t reserved_20_63:44;
1625		uint64_t bank8:1;
1626		uint64_t row_lsb:3;
1627		uint64_t reserved_8_15:8;
1628		uint64_t cs_mask:8;
1629	} s;
1630	struct cvmx_lmcx_dual_memcfg_s cn50xx;
1631	struct cvmx_lmcx_dual_memcfg_s cn52xx;
1632	struct cvmx_lmcx_dual_memcfg_s cn52xxp1;
1633	struct cvmx_lmcx_dual_memcfg_s cn56xx;
1634	struct cvmx_lmcx_dual_memcfg_s cn56xxp1;
1635	struct cvmx_lmcx_dual_memcfg_s cn58xx;
1636	struct cvmx_lmcx_dual_memcfg_s cn58xxp1;
1637	struct cvmx_lmcx_dual_memcfg_cn61xx {
1638		uint64_t reserved_19_63:45;
1639		uint64_t row_lsb:3;
1640		uint64_t reserved_8_15:8;
1641		uint64_t cs_mask:8;
1642	} cn61xx;
1643	struct cvmx_lmcx_dual_memcfg_cn61xx cn63xx;
1644	struct cvmx_lmcx_dual_memcfg_cn61xx cn63xxp1;
1645	struct cvmx_lmcx_dual_memcfg_cn61xx cn66xx;
1646	struct cvmx_lmcx_dual_memcfg_cn61xx cn68xx;
1647	struct cvmx_lmcx_dual_memcfg_cn61xx cn68xxp1;
1648	struct cvmx_lmcx_dual_memcfg_cn70xx {
1649		uint64_t reserved_19_63:45;
1650		uint64_t row_lsb:3;
1651		uint64_t reserved_4_15:12;
1652		uint64_t cs_mask:4;
1653	} cn70xx;
1654	struct cvmx_lmcx_dual_memcfg_cn70xx cn70xxp1;
1655	struct cvmx_lmcx_dual_memcfg_cn70xx cn73xx;
1656	struct cvmx_lmcx_dual_memcfg_cn70xx cn78xx;
1657	struct cvmx_lmcx_dual_memcfg_cn70xx cn78xxp1;
1658	struct cvmx_lmcx_dual_memcfg_cn61xx cnf71xx;
1659	struct cvmx_lmcx_dual_memcfg_cn70xx cnf75xx;
1660};
1661
1662/**
1663 * cvmx_lmc#_ecc_parity_test
1664 *
1665 * This register has bits to control the generation of ECC and command
1666 * address parity errors. ECC error is generated by enabling
1667 * [CA_PARITY_CORRUPT_ENA] and selecting any of the [ECC_CORRUPT_IDX]
1668 * index of the dataword from the cacheline to be corrupted.
1669 * User needs to select which bit of the 128-bit dataword to corrupt by
1670 * asserting any of the CHAR_MASK0 and CHAR_MASK2 bits. (CHAR_MASK0 and
1671 * CHAR_MASK2 corresponds to the lower and upper 64-bit signal that can
1672 * corrupt any individual bit of the data).
1673 *
1674 * Command address parity error is generated by enabling
1675 * [CA_PARITY_CORRUPT_ENA] and selecting the DDR command that the parity
1676 * is to be corrupted with through [CA_PARITY_SEL].
1677 */
1678union cvmx_lmcx_ecc_parity_test {
1679	u64 u64;
1680	struct cvmx_lmcx_ecc_parity_test_s {
1681		uint64_t reserved_12_63:52;
1682		uint64_t ecc_corrupt_ena:1;
1683		uint64_t ecc_corrupt_idx:3;
1684		uint64_t reserved_6_7:2;
1685		uint64_t ca_parity_corrupt_ena:1;
1686		uint64_t ca_parity_sel:5;
1687	} s;
1688	struct cvmx_lmcx_ecc_parity_test_s cn73xx;
1689	struct cvmx_lmcx_ecc_parity_test_s cn78xx;
1690	struct cvmx_lmcx_ecc_parity_test_s cn78xxp1;
1691	struct cvmx_lmcx_ecc_parity_test_s cnf75xx;
1692};
1693
1694/**
1695 * cvmx_lmc#_ecc_synd
1696 *
1697 * LMC_ECC_SYND = MRD ECC Syndromes
1698 *
1699 */
1700union cvmx_lmcx_ecc_synd {
1701	u64 u64;
1702	struct cvmx_lmcx_ecc_synd_s {
1703		uint64_t reserved_32_63:32;
1704		uint64_t mrdsyn3:8;
1705		uint64_t mrdsyn2:8;
1706		uint64_t mrdsyn1:8;
1707		uint64_t mrdsyn0:8;
1708	} s;
1709	struct cvmx_lmcx_ecc_synd_s cn30xx;
1710	struct cvmx_lmcx_ecc_synd_s cn31xx;
1711	struct cvmx_lmcx_ecc_synd_s cn38xx;
1712	struct cvmx_lmcx_ecc_synd_s cn38xxp2;
1713	struct cvmx_lmcx_ecc_synd_s cn50xx;
1714	struct cvmx_lmcx_ecc_synd_s cn52xx;
1715	struct cvmx_lmcx_ecc_synd_s cn52xxp1;
1716	struct cvmx_lmcx_ecc_synd_s cn56xx;
1717	struct cvmx_lmcx_ecc_synd_s cn56xxp1;
1718	struct cvmx_lmcx_ecc_synd_s cn58xx;
1719	struct cvmx_lmcx_ecc_synd_s cn58xxp1;
1720	struct cvmx_lmcx_ecc_synd_s cn61xx;
1721	struct cvmx_lmcx_ecc_synd_s cn63xx;
1722	struct cvmx_lmcx_ecc_synd_s cn63xxp1;
1723	struct cvmx_lmcx_ecc_synd_s cn66xx;
1724	struct cvmx_lmcx_ecc_synd_s cn68xx;
1725	struct cvmx_lmcx_ecc_synd_s cn68xxp1;
1726	struct cvmx_lmcx_ecc_synd_s cn70xx;
1727	struct cvmx_lmcx_ecc_synd_s cn70xxp1;
1728	struct cvmx_lmcx_ecc_synd_s cn73xx;
1729	struct cvmx_lmcx_ecc_synd_s cn78xx;
1730	struct cvmx_lmcx_ecc_synd_s cn78xxp1;
1731	struct cvmx_lmcx_ecc_synd_s cnf71xx;
1732	struct cvmx_lmcx_ecc_synd_s cnf75xx;
1733};
1734
1735/**
1736 * cvmx_lmc#_ext_config
1737 *
1738 * This register has additional configuration and control bits for the LMC.
1739 *
1740 */
1741union cvmx_lmcx_ext_config {
1742	u64 u64;
1743	struct cvmx_lmcx_ext_config_s {
1744		uint64_t reserved_61_63:3;
1745		uint64_t bc4_dqs_ena:1;
1746		uint64_t ref_block:1;
1747		uint64_t mrs_side:1;
1748		uint64_t mrs_one_side:1;
1749		uint64_t mrs_bside_invert_disable:1;
1750		uint64_t dimm_sel_invert_off:1;
1751		uint64_t dimm_sel_force_invert:1;
1752		uint64_t coalesce_address_mode:1;
1753		uint64_t dimm1_cid:2;
1754		uint64_t dimm0_cid:2;
1755		uint64_t rcd_parity_check:1;
1756		uint64_t reserved_46_47:2;
1757		uint64_t error_alert_n_sample:1;
1758		uint64_t ea_int_polarity:1;
1759		uint64_t reserved_43_43:1;
1760		uint64_t par_addr_mask:3;
1761		uint64_t reserved_38_39:2;
1762		uint64_t mrs_cmd_override:1;
1763		uint64_t mrs_cmd_select:1;
1764		uint64_t reserved_33_35:3;
1765		uint64_t invert_data:1;
1766		uint64_t reserved_30_31:2;
1767		uint64_t cmd_rti:1;
1768		uint64_t cal_ena:1;
1769		uint64_t reserved_27_27:1;
1770		uint64_t par_include_a17:1;
1771		uint64_t par_include_bg1:1;
1772		uint64_t gen_par:1;
1773		uint64_t reserved_21_23:3;
1774		uint64_t vrefint_seq_deskew:1;
1775		uint64_t read_ena_bprch:1;
1776		uint64_t read_ena_fprch:1;
1777		uint64_t slot_ctl_reset_force:1;
1778		uint64_t ref_int_lsbs:9;
1779		uint64_t drive_ena_bprch:1;
1780		uint64_t drive_ena_fprch:1;
1781		uint64_t dlcram_flip_synd:2;
1782		uint64_t dlcram_cor_dis:1;
1783		uint64_t dlc_nxm_rd:1;
1784		uint64_t l2c_nxm_rd:1;
1785		uint64_t l2c_nxm_wr:1;
1786	} s;
1787	struct cvmx_lmcx_ext_config_cn70xx {
1788		uint64_t reserved_21_63:43;
1789		uint64_t vrefint_seq_deskew:1;
1790		uint64_t read_ena_bprch:1;
1791		uint64_t read_ena_fprch:1;
1792		uint64_t slot_ctl_reset_force:1;
1793		uint64_t ref_int_lsbs:9;
1794		uint64_t drive_ena_bprch:1;
1795		uint64_t drive_ena_fprch:1;
1796		uint64_t dlcram_flip_synd:2;
1797		uint64_t dlcram_cor_dis:1;
1798		uint64_t dlc_nxm_rd:1;
1799		uint64_t l2c_nxm_rd:1;
1800		uint64_t l2c_nxm_wr:1;
1801	} cn70xx;
1802	struct cvmx_lmcx_ext_config_cn70xx cn70xxp1;
1803	struct cvmx_lmcx_ext_config_cn73xx {
1804		uint64_t reserved_60_63:4;
1805		uint64_t ref_block:1;
1806		uint64_t mrs_side:1;
1807		uint64_t mrs_one_side:1;
1808		uint64_t mrs_bside_invert_disable:1;
1809		uint64_t dimm_sel_invert_off:1;
1810		uint64_t dimm_sel_force_invert:1;
1811		uint64_t coalesce_address_mode:1;
1812		uint64_t dimm1_cid:2;
1813		uint64_t dimm0_cid:2;
1814		uint64_t rcd_parity_check:1;
1815		uint64_t reserved_46_47:2;
1816		uint64_t error_alert_n_sample:1;
1817		uint64_t ea_int_polarity:1;
1818		uint64_t reserved_43_43:1;
1819		uint64_t par_addr_mask:3;
1820		uint64_t reserved_38_39:2;
1821		uint64_t mrs_cmd_override:1;
1822		uint64_t mrs_cmd_select:1;
1823		uint64_t reserved_33_35:3;
1824		uint64_t invert_data:1;
1825		uint64_t reserved_30_31:2;
1826		uint64_t cmd_rti:1;
1827		uint64_t cal_ena:1;
1828		uint64_t reserved_27_27:1;
1829		uint64_t par_include_a17:1;
1830		uint64_t par_include_bg1:1;
1831		uint64_t gen_par:1;
1832		uint64_t reserved_21_23:3;
1833		uint64_t vrefint_seq_deskew:1;
1834		uint64_t read_ena_bprch:1;
1835		uint64_t read_ena_fprch:1;
1836		uint64_t slot_ctl_reset_force:1;
1837		uint64_t ref_int_lsbs:9;
1838		uint64_t drive_ena_bprch:1;
1839		uint64_t drive_ena_fprch:1;
1840		uint64_t dlcram_flip_synd:2;
1841		uint64_t dlcram_cor_dis:1;
1842		uint64_t dlc_nxm_rd:1;
1843		uint64_t l2c_nxm_rd:1;
1844		uint64_t l2c_nxm_wr:1;
1845	} cn73xx;
1846	struct cvmx_lmcx_ext_config_s cn78xx;
1847	struct cvmx_lmcx_ext_config_s cn78xxp1;
1848	struct cvmx_lmcx_ext_config_cn73xx cnf75xx;
1849};
1850
1851/**
1852 * cvmx_lmc#_ext_config2
1853 *
1854 * This register has additional configuration and control bits for the LMC.
1855 *
1856 */
1857union cvmx_lmcx_ext_config2 {
1858	u64 u64;
1859	struct cvmx_lmcx_ext_config2_s {
1860		uint64_t reserved_27_63:37;
1861		uint64_t sref_auto_idle_thres:5;
1862		uint64_t sref_auto_enable:1;
1863		uint64_t delay_unload_r3:1;
1864		uint64_t delay_unload_r2:1;
1865		uint64_t delay_unload_r1:1;
1866		uint64_t delay_unload_r0:1;
1867		uint64_t early_dqx2:1;
1868		uint64_t xor_bank_sel:4;
1869		uint64_t reserved_10_11:2;
1870		uint64_t row_col_switch:1;
1871		uint64_t trr_on:1;
1872		uint64_t mac:3;
1873		uint64_t macram_scrub_done:1;
1874		uint64_t macram_scrub:1;
1875		uint64_t macram_flip_synd:2;
1876		uint64_t macram_cor_dis:1;
1877	} s;
1878	struct cvmx_lmcx_ext_config2_cn73xx {
1879		uint64_t reserved_10_63:54;
1880		uint64_t row_col_switch:1;
1881		uint64_t trr_on:1;
1882		uint64_t mac:3;
1883		uint64_t macram_scrub_done:1;
1884		uint64_t macram_scrub:1;
1885		uint64_t macram_flip_synd:2;
1886		uint64_t macram_cor_dis:1;
1887	} cn73xx;
1888	struct cvmx_lmcx_ext_config2_s cn78xx;
1889	struct cvmx_lmcx_ext_config2_cnf75xx {
1890		uint64_t reserved_21_63:43;
1891		uint64_t delay_unload_r3:1;
1892		uint64_t delay_unload_r2:1;
1893		uint64_t delay_unload_r1:1;
1894		uint64_t delay_unload_r0:1;
1895		uint64_t early_dqx2:1;
1896		uint64_t xor_bank_sel:4;
1897		uint64_t reserved_10_11:2;
1898		uint64_t row_col_switch:1;
1899		uint64_t trr_on:1;
1900		uint64_t mac:3;
1901		uint64_t macram_scrub_done:1;
1902		uint64_t macram_scrub:1;
1903		uint64_t macram_flip_synd:2;
1904		uint64_t macram_cor_dis:1;
1905	} cnf75xx;
1906};
1907
1908/**
1909 * cvmx_lmc#_fadr
1910 *
1911 * This register only captures the first transaction with ECC errors. A DED
1912 * error can over-write this register with its failing addresses if the
1913 * first error was a SEC. If you write LMC()_INT -> SEC_ERR/DED_ERR, it
1914 * clears the error bits and captures the next failing address. If FDIMM
1915 * is 1, that means the error is in the high DIMM. LMC()_FADR captures the
1916 * failing pre-scrambled address location (split into DIMM, bunk, bank, etc).
1917 * If scrambling is off, then LMC()_FADR will also capture the failing
1918 * physical location in the DRAM parts. LMC()_SCRAMBLED_FADR captures the
1919 * actual failing address location in the physical DRAM parts, i.e.,
1920 * If scrambling is on, LMC()_SCRAMBLED_FADR contains the failing physical
1921 * location in the DRAM parts (split into DIMM, bunk, bank, etc.)
1922 * If scrambling is off, the pre-scramble and post-scramble addresses are
1923 * the same; and so the contents of LMC()_SCRAMBLED_FADR match the contents
1924 * of LMC()_FADR.
1925 */
1926union cvmx_lmcx_fadr {
1927	u64 u64;
1928	struct cvmx_lmcx_fadr_s {
1929		uint64_t reserved_43_63:21;
1930		uint64_t fcid:3;
1931		uint64_t fill_order:2;
1932		uint64_t reserved_0_37:38;
1933	} s;
1934	struct cvmx_lmcx_fadr_cn30xx {
1935		uint64_t reserved_32_63:32;
1936		uint64_t fdimm:2;
1937		uint64_t fbunk:1;
1938		uint64_t fbank:3;
1939		uint64_t frow:14;
1940		uint64_t fcol:12;
1941	} cn30xx;
1942	struct cvmx_lmcx_fadr_cn30xx cn31xx;
1943	struct cvmx_lmcx_fadr_cn30xx cn38xx;
1944	struct cvmx_lmcx_fadr_cn30xx cn38xxp2;
1945	struct cvmx_lmcx_fadr_cn30xx cn50xx;
1946	struct cvmx_lmcx_fadr_cn30xx cn52xx;
1947	struct cvmx_lmcx_fadr_cn30xx cn52xxp1;
1948	struct cvmx_lmcx_fadr_cn30xx cn56xx;
1949	struct cvmx_lmcx_fadr_cn30xx cn56xxp1;
1950	struct cvmx_lmcx_fadr_cn30xx cn58xx;
1951	struct cvmx_lmcx_fadr_cn30xx cn58xxp1;
1952	struct cvmx_lmcx_fadr_cn61xx {
1953		uint64_t reserved_36_63:28;
1954		uint64_t fdimm:2;
1955		uint64_t fbunk:1;
1956		uint64_t fbank:3;
1957		uint64_t frow:16;
1958		uint64_t fcol:14;
1959	} cn61xx;
1960	struct cvmx_lmcx_fadr_cn61xx cn63xx;
1961	struct cvmx_lmcx_fadr_cn61xx cn63xxp1;
1962	struct cvmx_lmcx_fadr_cn61xx cn66xx;
1963	struct cvmx_lmcx_fadr_cn61xx cn68xx;
1964	struct cvmx_lmcx_fadr_cn61xx cn68xxp1;
1965	struct cvmx_lmcx_fadr_cn70xx {
1966		uint64_t reserved_40_63:24;
1967		uint64_t fill_order:2;
1968		uint64_t fdimm:1;
1969		uint64_t fbunk:1;
1970		uint64_t fbank:4;
1971		uint64_t frow:18;
1972		uint64_t fcol:14;
1973	} cn70xx;
1974	struct cvmx_lmcx_fadr_cn70xx cn70xxp1;
1975	struct cvmx_lmcx_fadr_cn73xx {
1976		uint64_t reserved_43_63:21;
1977		uint64_t fcid:3;
1978		uint64_t fill_order:2;
1979		uint64_t fdimm:1;
1980		uint64_t fbunk:1;
1981		uint64_t fbank:4;
1982		uint64_t frow:18;
1983		uint64_t fcol:14;
1984	} cn73xx;
1985	struct cvmx_lmcx_fadr_cn73xx cn78xx;
1986	struct cvmx_lmcx_fadr_cn73xx cn78xxp1;
1987	struct cvmx_lmcx_fadr_cn61xx cnf71xx;
1988	struct cvmx_lmcx_fadr_cn73xx cnf75xx;
1989};
1990
1991/**
1992 * cvmx_lmc#_general_purpose0
1993 */
1994union cvmx_lmcx_general_purpose0 {
1995	u64 u64;
1996	struct cvmx_lmcx_general_purpose0_s {
1997		uint64_t data:64;
1998	} s;
1999	struct cvmx_lmcx_general_purpose0_s cn73xx;
2000	struct cvmx_lmcx_general_purpose0_s cn78xx;
2001	struct cvmx_lmcx_general_purpose0_s cnf75xx;
2002};
2003
2004/**
2005 * cvmx_lmc#_general_purpose1
2006 */
2007union cvmx_lmcx_general_purpose1 {
2008	u64 u64;
2009	struct cvmx_lmcx_general_purpose1_s {
2010		uint64_t data:64;
2011	} s;
2012	struct cvmx_lmcx_general_purpose1_s cn73xx;
2013	struct cvmx_lmcx_general_purpose1_s cn78xx;
2014	struct cvmx_lmcx_general_purpose1_s cnf75xx;
2015};
2016
2017/**
2018 * cvmx_lmc#_general_purpose2
2019 */
2020union cvmx_lmcx_general_purpose2 {
2021	u64 u64;
2022	struct cvmx_lmcx_general_purpose2_s {
2023		uint64_t reserved_16_63:48;
2024		uint64_t data:16;
2025	} s;
2026	struct cvmx_lmcx_general_purpose2_s cn73xx;
2027	struct cvmx_lmcx_general_purpose2_s cn78xx;
2028	struct cvmx_lmcx_general_purpose2_s cnf75xx;
2029};
2030
2031/**
2032 * cvmx_lmc#_ifb_cnt
2033 *
2034 * LMC_IFB_CNT  = Performance Counters
2035 *
2036 */
2037union cvmx_lmcx_ifb_cnt {
2038	u64 u64;
2039	struct cvmx_lmcx_ifb_cnt_s {
2040		uint64_t ifbcnt:64;
2041	} s;
2042	struct cvmx_lmcx_ifb_cnt_s cn61xx;
2043	struct cvmx_lmcx_ifb_cnt_s cn63xx;
2044	struct cvmx_lmcx_ifb_cnt_s cn63xxp1;
2045	struct cvmx_lmcx_ifb_cnt_s cn66xx;
2046	struct cvmx_lmcx_ifb_cnt_s cn68xx;
2047	struct cvmx_lmcx_ifb_cnt_s cn68xxp1;
2048	struct cvmx_lmcx_ifb_cnt_s cn70xx;
2049	struct cvmx_lmcx_ifb_cnt_s cn70xxp1;
2050	struct cvmx_lmcx_ifb_cnt_s cn73xx;
2051	struct cvmx_lmcx_ifb_cnt_s cn78xx;
2052	struct cvmx_lmcx_ifb_cnt_s cn78xxp1;
2053	struct cvmx_lmcx_ifb_cnt_s cnf71xx;
2054	struct cvmx_lmcx_ifb_cnt_s cnf75xx;
2055};
2056
2057/**
2058 * cvmx_lmc#_ifb_cnt_hi
2059 *
2060 * LMC_IFB_CNT_HI  = Performance Counters
2061 *
2062 */
2063union cvmx_lmcx_ifb_cnt_hi {
2064	u64 u64;
2065	struct cvmx_lmcx_ifb_cnt_hi_s {
2066		uint64_t reserved_32_63:32;
2067		uint64_t ifbcnt_hi:32;
2068	} s;
2069	struct cvmx_lmcx_ifb_cnt_hi_s cn30xx;
2070	struct cvmx_lmcx_ifb_cnt_hi_s cn31xx;
2071	struct cvmx_lmcx_ifb_cnt_hi_s cn38xx;
2072	struct cvmx_lmcx_ifb_cnt_hi_s cn38xxp2;
2073	struct cvmx_lmcx_ifb_cnt_hi_s cn50xx;
2074	struct cvmx_lmcx_ifb_cnt_hi_s cn52xx;
2075	struct cvmx_lmcx_ifb_cnt_hi_s cn52xxp1;
2076	struct cvmx_lmcx_ifb_cnt_hi_s cn56xx;
2077	struct cvmx_lmcx_ifb_cnt_hi_s cn56xxp1;
2078	struct cvmx_lmcx_ifb_cnt_hi_s cn58xx;
2079	struct cvmx_lmcx_ifb_cnt_hi_s cn58xxp1;
2080};
2081
2082/**
2083 * cvmx_lmc#_ifb_cnt_lo
2084 *
2085 * LMC_IFB_CNT_LO  = Performance Counters
2086 *
2087 */
2088union cvmx_lmcx_ifb_cnt_lo {
2089	u64 u64;
2090	struct cvmx_lmcx_ifb_cnt_lo_s {
2091		uint64_t reserved_32_63:32;
2092		uint64_t ifbcnt_lo:32;
2093	} s;
2094	struct cvmx_lmcx_ifb_cnt_lo_s cn30xx;
2095	struct cvmx_lmcx_ifb_cnt_lo_s cn31xx;
2096	struct cvmx_lmcx_ifb_cnt_lo_s cn38xx;
2097	struct cvmx_lmcx_ifb_cnt_lo_s cn38xxp2;
2098	struct cvmx_lmcx_ifb_cnt_lo_s cn50xx;
2099	struct cvmx_lmcx_ifb_cnt_lo_s cn52xx;
2100	struct cvmx_lmcx_ifb_cnt_lo_s cn52xxp1;
2101	struct cvmx_lmcx_ifb_cnt_lo_s cn56xx;
2102	struct cvmx_lmcx_ifb_cnt_lo_s cn56xxp1;
2103	struct cvmx_lmcx_ifb_cnt_lo_s cn58xx;
2104	struct cvmx_lmcx_ifb_cnt_lo_s cn58xxp1;
2105};
2106
2107/**
2108 * cvmx_lmc#_int
2109 *
2110 * This register contains the different interrupt-summary bits of the LMC.
2111 *
2112 */
2113union cvmx_lmcx_int {
2114	u64 u64;
2115	struct cvmx_lmcx_int_s {
2116		uint64_t reserved_14_63:50;
2117		uint64_t macram_ded_err:1;
2118		uint64_t macram_sec_err:1;
2119		uint64_t ddr_err:1;
2120		uint64_t dlcram_ded_err:1;
2121		uint64_t dlcram_sec_err:1;
2122		uint64_t ded_err:4;
2123		uint64_t sec_err:4;
2124		uint64_t nxm_wr_err:1;
2125	} s;
2126	struct cvmx_lmcx_int_cn61xx {
2127		uint64_t reserved_9_63:55;
2128		uint64_t ded_err:4;
2129		uint64_t sec_err:4;
2130		uint64_t nxm_wr_err:1;
2131	} cn61xx;
2132	struct cvmx_lmcx_int_cn61xx cn63xx;
2133	struct cvmx_lmcx_int_cn61xx cn63xxp1;
2134	struct cvmx_lmcx_int_cn61xx cn66xx;
2135	struct cvmx_lmcx_int_cn61xx cn68xx;
2136	struct cvmx_lmcx_int_cn61xx cn68xxp1;
2137	struct cvmx_lmcx_int_cn70xx {
2138		uint64_t reserved_12_63:52;
2139		uint64_t ddr_err:1;
2140		uint64_t dlcram_ded_err:1;
2141		uint64_t dlcram_sec_err:1;
2142		uint64_t ded_err:4;
2143		uint64_t sec_err:4;
2144		uint64_t nxm_wr_err:1;
2145	} cn70xx;
2146	struct cvmx_lmcx_int_cn70xx cn70xxp1;
2147	struct cvmx_lmcx_int_s cn73xx;
2148	struct cvmx_lmcx_int_s cn78xx;
2149	struct cvmx_lmcx_int_s cn78xxp1;
2150	struct cvmx_lmcx_int_cn61xx cnf71xx;
2151	struct cvmx_lmcx_int_s cnf75xx;
2152};
2153
2154/**
2155 * cvmx_lmc#_int_en
2156 *
2157 * Unused CSR in O75.
2158 *
2159 */
2160union cvmx_lmcx_int_en {
2161	u64 u64;
2162	struct cvmx_lmcx_int_en_s {
2163		uint64_t reserved_6_63:58;
2164		uint64_t ddr_error_alert_ena:1;
2165		uint64_t dlcram_ded_ena:1;
2166		uint64_t dlcram_sec_ena:1;
2167		uint64_t intr_ded_ena:1;
2168		uint64_t intr_sec_ena:1;
2169		uint64_t intr_nxm_wr_ena:1;
2170	} s;
2171	struct cvmx_lmcx_int_en_cn61xx {
2172		uint64_t reserved_3_63:61;
2173		uint64_t intr_ded_ena:1;
2174		uint64_t intr_sec_ena:1;
2175		uint64_t intr_nxm_wr_ena:1;
2176	} cn61xx;
2177	struct cvmx_lmcx_int_en_cn61xx cn63xx;
2178	struct cvmx_lmcx_int_en_cn61xx cn63xxp1;
2179	struct cvmx_lmcx_int_en_cn61xx cn66xx;
2180	struct cvmx_lmcx_int_en_cn61xx cn68xx;
2181	struct cvmx_lmcx_int_en_cn61xx cn68xxp1;
2182	struct cvmx_lmcx_int_en_s cn70xx;
2183	struct cvmx_lmcx_int_en_s cn70xxp1;
2184	struct cvmx_lmcx_int_en_s cn73xx;
2185	struct cvmx_lmcx_int_en_s cn78xx;
2186	struct cvmx_lmcx_int_en_s cn78xxp1;
2187	struct cvmx_lmcx_int_en_cn61xx cnf71xx;
2188	struct cvmx_lmcx_int_en_s cnf75xx;
2189};
2190
2191/**
2192 * cvmx_lmc#_lane#_crc_swiz
2193 *
2194 * This register contains the CRC bit swizzle for even and odd ranks.
2195 *
2196 */
2197union cvmx_lmcx_lanex_crc_swiz {
2198	u64 u64;
2199	struct cvmx_lmcx_lanex_crc_swiz_s {
2200		uint64_t reserved_56_63:8;
2201		uint64_t r1_swiz7:3;
2202		uint64_t r1_swiz6:3;
2203		uint64_t r1_swiz5:3;
2204		uint64_t r1_swiz4:3;
2205		uint64_t r1_swiz3:3;
2206		uint64_t r1_swiz2:3;
2207		uint64_t r1_swiz1:3;
2208		uint64_t r1_swiz0:3;
2209		uint64_t reserved_24_31:8;
2210		uint64_t r0_swiz7:3;
2211		uint64_t r0_swiz6:3;
2212		uint64_t r0_swiz5:3;
2213		uint64_t r0_swiz4:3;
2214		uint64_t r0_swiz3:3;
2215		uint64_t r0_swiz2:3;
2216		uint64_t r0_swiz1:3;
2217		uint64_t r0_swiz0:3;
2218	} s;
2219	struct cvmx_lmcx_lanex_crc_swiz_s cn73xx;
2220	struct cvmx_lmcx_lanex_crc_swiz_s cn78xx;
2221	struct cvmx_lmcx_lanex_crc_swiz_s cn78xxp1;
2222	struct cvmx_lmcx_lanex_crc_swiz_s cnf75xx;
2223};
2224
2225/**
2226 * cvmx_lmc#_mem_cfg0
2227 *
2228 * Specify the RSL base addresses for the block
2229 *
2230 *                  LMC_MEM_CFG0 = LMC Memory Configuration Register0
2231 *
2232 * This register controls certain parameters of  Memory Configuration
2233 */
2234union cvmx_lmcx_mem_cfg0 {
2235	u64 u64;
2236	struct cvmx_lmcx_mem_cfg0_s {
2237		uint64_t reserved_32_63:32;
2238		uint64_t reset:1;
2239		uint64_t silo_qc:1;
2240		uint64_t bunk_ena:1;
2241		uint64_t ded_err:4;
2242		uint64_t sec_err:4;
2243		uint64_t intr_ded_ena:1;
2244		uint64_t intr_sec_ena:1;
2245		uint64_t tcl:4;
2246		uint64_t ref_int:6;
2247		uint64_t pbank_lsb:4;
2248		uint64_t row_lsb:3;
2249		uint64_t ecc_ena:1;
2250		uint64_t init_start:1;
2251	} s;
2252	struct cvmx_lmcx_mem_cfg0_s cn30xx;
2253	struct cvmx_lmcx_mem_cfg0_s cn31xx;
2254	struct cvmx_lmcx_mem_cfg0_s cn38xx;
2255	struct cvmx_lmcx_mem_cfg0_s cn38xxp2;
2256	struct cvmx_lmcx_mem_cfg0_s cn50xx;
2257	struct cvmx_lmcx_mem_cfg0_s cn52xx;
2258	struct cvmx_lmcx_mem_cfg0_s cn52xxp1;
2259	struct cvmx_lmcx_mem_cfg0_s cn56xx;
2260	struct cvmx_lmcx_mem_cfg0_s cn56xxp1;
2261	struct cvmx_lmcx_mem_cfg0_s cn58xx;
2262	struct cvmx_lmcx_mem_cfg0_s cn58xxp1;
2263};
2264
2265/**
2266 * cvmx_lmc#_mem_cfg1
2267 *
2268 * LMC_MEM_CFG1 = LMC Memory Configuration Register1
2269 *
2270 * This register controls the External Memory Configuration Timing Parameters.
2271 * Please refer to the appropriate DDR part spec from your memory vendor for
2272 * the various values in this CSR. The details of each of these timing
2273 * parameters can be found in the JEDEC spec or the vendor spec of the
2274 * memory parts.
2275 */
2276union cvmx_lmcx_mem_cfg1 {
2277	u64 u64;
2278	struct cvmx_lmcx_mem_cfg1_s {
2279		uint64_t reserved_32_63:32;
2280		uint64_t comp_bypass:1;
2281		uint64_t trrd:3;
2282		uint64_t caslat:3;
2283		uint64_t tmrd:3;
2284		uint64_t trfc:5;
2285		uint64_t trp:4;
2286		uint64_t twtr:4;
2287		uint64_t trcd:4;
2288		uint64_t tras:5;
2289	} s;
2290	struct cvmx_lmcx_mem_cfg1_s cn30xx;
2291	struct cvmx_lmcx_mem_cfg1_s cn31xx;
2292	struct cvmx_lmcx_mem_cfg1_cn38xx {
2293		uint64_t reserved_31_63:33;
2294		uint64_t trrd:3;
2295		uint64_t caslat:3;
2296		uint64_t tmrd:3;
2297		uint64_t trfc:5;
2298		uint64_t trp:4;
2299		uint64_t twtr:4;
2300		uint64_t trcd:4;
2301		uint64_t tras:5;
2302	} cn38xx;
2303	struct cvmx_lmcx_mem_cfg1_cn38xx cn38xxp2;
2304	struct cvmx_lmcx_mem_cfg1_s cn50xx;
2305	struct cvmx_lmcx_mem_cfg1_cn38xx cn52xx;
2306	struct cvmx_lmcx_mem_cfg1_cn38xx cn52xxp1;
2307	struct cvmx_lmcx_mem_cfg1_cn38xx cn56xx;
2308	struct cvmx_lmcx_mem_cfg1_cn38xx cn56xxp1;
2309	struct cvmx_lmcx_mem_cfg1_cn38xx cn58xx;
2310	struct cvmx_lmcx_mem_cfg1_cn38xx cn58xxp1;
2311};
2312
2313/**
2314 * cvmx_lmc#_modereg_params0
2315 *
2316 * These parameters are written into the DDR3/DDR4 MR0, MR1, MR2 and MR3
2317 * registers.
2318 *
2319 */
2320union cvmx_lmcx_modereg_params0 {
2321	u64 u64;
2322	struct cvmx_lmcx_modereg_params0_s {
2323		uint64_t reserved_28_63:36;
2324		uint64_t wrp_ext:1;
2325		uint64_t cl_ext:1;
2326		uint64_t al_ext:1;
2327		uint64_t ppd:1;
2328		uint64_t wrp:3;
2329		uint64_t dllr:1;
2330		uint64_t tm:1;
2331		uint64_t rbt:1;
2332		uint64_t cl:4;
2333		uint64_t bl:2;
2334		uint64_t qoff:1;
2335		uint64_t tdqs:1;
2336		uint64_t wlev:1;
2337		uint64_t al:2;
2338		uint64_t dll:1;
2339		uint64_t mpr:1;
2340		uint64_t mprloc:2;
2341		uint64_t cwl:3;
2342	} s;
2343	struct cvmx_lmcx_modereg_params0_cn61xx {
2344		uint64_t reserved_25_63:39;
2345		uint64_t ppd:1;
2346		uint64_t wrp:3;
2347		uint64_t dllr:1;
2348		uint64_t tm:1;
2349		uint64_t rbt:1;
2350		uint64_t cl:4;
2351		uint64_t bl:2;
2352		uint64_t qoff:1;
2353		uint64_t tdqs:1;
2354		uint64_t wlev:1;
2355		uint64_t al:2;
2356		uint64_t dll:1;
2357		uint64_t mpr:1;
2358		uint64_t mprloc:2;
2359		uint64_t cwl:3;
2360	} cn61xx;
2361	struct cvmx_lmcx_modereg_params0_cn61xx cn63xx;
2362	struct cvmx_lmcx_modereg_params0_cn61xx cn63xxp1;
2363	struct cvmx_lmcx_modereg_params0_cn61xx cn66xx;
2364	struct cvmx_lmcx_modereg_params0_cn61xx cn68xx;
2365	struct cvmx_lmcx_modereg_params0_cn61xx cn68xxp1;
2366	struct cvmx_lmcx_modereg_params0_cn61xx cn70xx;
2367	struct cvmx_lmcx_modereg_params0_cn61xx cn70xxp1;
2368	struct cvmx_lmcx_modereg_params0_s cn73xx;
2369	struct cvmx_lmcx_modereg_params0_s cn78xx;
2370	struct cvmx_lmcx_modereg_params0_s cn78xxp1;
2371	struct cvmx_lmcx_modereg_params0_cn61xx cnf71xx;
2372	struct cvmx_lmcx_modereg_params0_s cnf75xx;
2373};
2374
2375/**
2376 * cvmx_lmc#_modereg_params1
2377 *
2378 * These parameters are written into the DDR3 MR0, MR1, MR2 and MR3 registers.
2379 *
2380 */
2381union cvmx_lmcx_modereg_params1 {
2382	u64 u64;
2383	struct cvmx_lmcx_modereg_params1_s {
2384		uint64_t reserved_55_63:9;
2385		uint64_t rtt_wr_11_ext:1;
2386		uint64_t rtt_wr_10_ext:1;
2387		uint64_t rtt_wr_01_ext:1;
2388		uint64_t rtt_wr_00_ext:1;
2389		uint64_t db_output_impedance:3;
2390		uint64_t rtt_nom_11:3;
2391		uint64_t dic_11:2;
2392		uint64_t rtt_wr_11:2;
2393		uint64_t srt_11:1;
2394		uint64_t asr_11:1;
2395		uint64_t pasr_11:3;
2396		uint64_t rtt_nom_10:3;
2397		uint64_t dic_10:2;
2398		uint64_t rtt_wr_10:2;
2399		uint64_t srt_10:1;
2400		uint64_t asr_10:1;
2401		uint64_t pasr_10:3;
2402		uint64_t rtt_nom_01:3;
2403		uint64_t dic_01:2;
2404		uint64_t rtt_wr_01:2;
2405		uint64_t srt_01:1;
2406		uint64_t asr_01:1;
2407		uint64_t pasr_01:3;
2408		uint64_t rtt_nom_00:3;
2409		uint64_t dic_00:2;
2410		uint64_t rtt_wr_00:2;
2411		uint64_t srt_00:1;
2412		uint64_t asr_00:1;
2413		uint64_t pasr_00:3;
2414	} s;
2415	struct cvmx_lmcx_modereg_params1_cn61xx {
2416		uint64_t reserved_48_63:16;
2417		uint64_t rtt_nom_11:3;
2418		uint64_t dic_11:2;
2419		uint64_t rtt_wr_11:2;
2420		uint64_t srt_11:1;
2421		uint64_t asr_11:1;
2422		uint64_t pasr_11:3;
2423		uint64_t rtt_nom_10:3;
2424		uint64_t dic_10:2;
2425		uint64_t rtt_wr_10:2;
2426		uint64_t srt_10:1;
2427		uint64_t asr_10:1;
2428		uint64_t pasr_10:3;
2429		uint64_t rtt_nom_01:3;
2430		uint64_t dic_01:2;
2431		uint64_t rtt_wr_01:2;
2432		uint64_t srt_01:1;
2433		uint64_t asr_01:1;
2434		uint64_t pasr_01:3;
2435		uint64_t rtt_nom_00:3;
2436		uint64_t dic_00:2;
2437		uint64_t rtt_wr_00:2;
2438		uint64_t srt_00:1;
2439		uint64_t asr_00:1;
2440		uint64_t pasr_00:3;
2441	} cn61xx;
2442	struct cvmx_lmcx_modereg_params1_cn61xx cn63xx;
2443	struct cvmx_lmcx_modereg_params1_cn61xx cn63xxp1;
2444	struct cvmx_lmcx_modereg_params1_cn61xx cn66xx;
2445	struct cvmx_lmcx_modereg_params1_cn61xx cn68xx;
2446	struct cvmx_lmcx_modereg_params1_cn61xx cn68xxp1;
2447	struct cvmx_lmcx_modereg_params1_cn61xx cn70xx;
2448	struct cvmx_lmcx_modereg_params1_cn61xx cn70xxp1;
2449	struct cvmx_lmcx_modereg_params1_s cn73xx;
2450	struct cvmx_lmcx_modereg_params1_s cn78xx;
2451	struct cvmx_lmcx_modereg_params1_s cn78xxp1;
2452	struct cvmx_lmcx_modereg_params1_cn61xx cnf71xx;
2453	struct cvmx_lmcx_modereg_params1_s cnf75xx;
2454};
2455
2456/**
2457 * cvmx_lmc#_modereg_params2
2458 *
2459 * These parameters are written into the DDR4 mode registers.
2460 *
2461 */
2462union cvmx_lmcx_modereg_params2 {
2463	u64 u64;
2464	struct cvmx_lmcx_modereg_params2_s {
2465		uint64_t reserved_41_63:23;
2466		uint64_t vrefdq_train_en:1;
2467		uint64_t vref_range_11:1;
2468		uint64_t vref_value_11:6;
2469		uint64_t rtt_park_11:3;
2470		uint64_t vref_range_10:1;
2471		uint64_t vref_value_10:6;
2472		uint64_t rtt_park_10:3;
2473		uint64_t vref_range_01:1;
2474		uint64_t vref_value_01:6;
2475		uint64_t rtt_park_01:3;
2476		uint64_t vref_range_00:1;
2477		uint64_t vref_value_00:6;
2478		uint64_t rtt_park_00:3;
2479	} s;
2480	struct cvmx_lmcx_modereg_params2_s cn70xx;
2481	struct cvmx_lmcx_modereg_params2_cn70xxp1 {
2482		uint64_t reserved_40_63:24;
2483		uint64_t vref_range_11:1;
2484		uint64_t vref_value_11:6;
2485		uint64_t rtt_park_11:3;
2486		uint64_t vref_range_10:1;
2487		uint64_t vref_value_10:6;
2488		uint64_t rtt_park_10:3;
2489		uint64_t vref_range_01:1;
2490		uint64_t vref_value_01:6;
2491		uint64_t rtt_park_01:3;
2492		uint64_t vref_range_00:1;
2493		uint64_t vref_value_00:6;
2494		uint64_t rtt_park_00:3;
2495	} cn70xxp1;
2496	struct cvmx_lmcx_modereg_params2_s cn73xx;
2497	struct cvmx_lmcx_modereg_params2_s cn78xx;
2498	struct cvmx_lmcx_modereg_params2_s cn78xxp1;
2499	struct cvmx_lmcx_modereg_params2_s cnf75xx;
2500};
2501
2502/**
2503 * cvmx_lmc#_modereg_params3
2504 *
2505 * These parameters are written into the DDR4 mode registers.
2506 *
2507 */
2508union cvmx_lmcx_modereg_params3 {
2509	u64 u64;
2510	struct cvmx_lmcx_modereg_params3_s {
2511		uint64_t reserved_39_63:25;
2512		uint64_t xrank_add_tccd_l:3;
2513		uint64_t xrank_add_tccd_s:3;
2514		uint64_t mpr_fmt:2;
2515		uint64_t wr_cmd_lat:2;
2516		uint64_t fgrm:3;
2517		uint64_t temp_sense:1;
2518		uint64_t pda:1;
2519		uint64_t gd:1;
2520		uint64_t crc:1;
2521		uint64_t lpasr:2;
2522		uint64_t tccd_l:3;
2523		uint64_t rd_dbi:1;
2524		uint64_t wr_dbi:1;
2525		uint64_t dm:1;
2526		uint64_t ca_par_pers:1;
2527		uint64_t odt_pd:1;
2528		uint64_t par_lat_mode:3;
2529		uint64_t wr_preamble:1;
2530		uint64_t rd_preamble:1;
2531		uint64_t sre_abort:1;
2532		uint64_t cal:3;
2533		uint64_t vref_mon:1;
2534		uint64_t tc_ref:1;
2535		uint64_t max_pd:1;
2536	} s;
2537	struct cvmx_lmcx_modereg_params3_cn70xx {
2538		uint64_t reserved_33_63:31;
2539		uint64_t mpr_fmt:2;
2540		uint64_t wr_cmd_lat:2;
2541		uint64_t fgrm:3;
2542		uint64_t temp_sense:1;
2543		uint64_t pda:1;
2544		uint64_t gd:1;
2545		uint64_t crc:1;
2546		uint64_t lpasr:2;
2547		uint64_t tccd_l:3;
2548		uint64_t rd_dbi:1;
2549		uint64_t wr_dbi:1;
2550		uint64_t dm:1;
2551		uint64_t ca_par_pers:1;
2552		uint64_t odt_pd:1;
2553		uint64_t par_lat_mode:3;
2554		uint64_t wr_preamble:1;
2555		uint64_t rd_preamble:1;
2556		uint64_t sre_abort:1;
2557		uint64_t cal:3;
2558		uint64_t vref_mon:1;
2559		uint64_t tc_ref:1;
2560		uint64_t max_pd:1;
2561	} cn70xx;
2562	struct cvmx_lmcx_modereg_params3_cn70xx cn70xxp1;
2563	struct cvmx_lmcx_modereg_params3_s cn73xx;
2564	struct cvmx_lmcx_modereg_params3_s cn78xx;
2565	struct cvmx_lmcx_modereg_params3_s cn78xxp1;
2566	struct cvmx_lmcx_modereg_params3_s cnf75xx;
2567};
2568
2569/**
2570 * cvmx_lmc#_mpr_data0
2571 *
2572 * This register provides bits <63:0> of MPR data register.
2573 *
2574 */
2575union cvmx_lmcx_mpr_data0 {
2576	u64 u64;
2577	struct cvmx_lmcx_mpr_data0_s {
2578		uint64_t mpr_data:64;
2579	} s;
2580	struct cvmx_lmcx_mpr_data0_s cn70xx;
2581	struct cvmx_lmcx_mpr_data0_s cn70xxp1;
2582	struct cvmx_lmcx_mpr_data0_s cn73xx;
2583	struct cvmx_lmcx_mpr_data0_s cn78xx;
2584	struct cvmx_lmcx_mpr_data0_s cn78xxp1;
2585	struct cvmx_lmcx_mpr_data0_s cnf75xx;
2586};
2587
2588/**
2589 * cvmx_lmc#_mpr_data1
2590 *
2591 * This register provides bits <127:64> of MPR data register.
2592 *
2593 */
2594union cvmx_lmcx_mpr_data1 {
2595	u64 u64;
2596	struct cvmx_lmcx_mpr_data1_s {
2597		uint64_t mpr_data:64;
2598	} s;
2599	struct cvmx_lmcx_mpr_data1_s cn70xx;
2600	struct cvmx_lmcx_mpr_data1_s cn70xxp1;
2601	struct cvmx_lmcx_mpr_data1_s cn73xx;
2602	struct cvmx_lmcx_mpr_data1_s cn78xx;
2603	struct cvmx_lmcx_mpr_data1_s cn78xxp1;
2604	struct cvmx_lmcx_mpr_data1_s cnf75xx;
2605};
2606
2607/**
2608 * cvmx_lmc#_mpr_data2
2609 *
2610 * This register provides bits <143:128> of MPR data register.
2611 *
2612 */
2613union cvmx_lmcx_mpr_data2 {
2614	u64 u64;
2615	struct cvmx_lmcx_mpr_data2_s {
2616		uint64_t reserved_16_63:48;
2617		uint64_t mpr_data:16;
2618	} s;
2619	struct cvmx_lmcx_mpr_data2_s cn70xx;
2620	struct cvmx_lmcx_mpr_data2_s cn70xxp1;
2621	struct cvmx_lmcx_mpr_data2_s cn73xx;
2622	struct cvmx_lmcx_mpr_data2_s cn78xx;
2623	struct cvmx_lmcx_mpr_data2_s cn78xxp1;
2624	struct cvmx_lmcx_mpr_data2_s cnf75xx;
2625};
2626
2627/**
2628 * cvmx_lmc#_mr_mpr_ctl
2629 *
2630 * This register provides the control functions when programming the MPR
2631 * of DDR4 DRAMs.
2632 *
2633 */
2634union cvmx_lmcx_mr_mpr_ctl {
2635	u64 u64;
2636	struct cvmx_lmcx_mr_mpr_ctl_s {
2637		uint64_t reserved_61_63:3;
2638		uint64_t mr_wr_secure_key_ena:1;
2639		uint64_t pba_func_space:3;
2640		uint64_t mr_wr_bg1:1;
2641		uint64_t mpr_sample_dq_enable:1;
2642		uint64_t pda_early_dqx:1;
2643		uint64_t mr_wr_pba_enable:1;
2644		uint64_t mr_wr_use_default_value:1;
2645		uint64_t mpr_whole_byte_enable:1;
2646		uint64_t mpr_byte_select:4;
2647		uint64_t mpr_bit_select:2;
2648		uint64_t mpr_wr:1;
2649		uint64_t mpr_loc:2;
2650		uint64_t mr_wr_pda_enable:1;
2651		uint64_t mr_wr_pda_mask:18;
2652		uint64_t mr_wr_rank:2;
2653		uint64_t mr_wr_sel:3;
2654		uint64_t mr_wr_addr:18;
2655	} s;
2656	struct cvmx_lmcx_mr_mpr_ctl_cn70xx {
2657		uint64_t reserved_52_63:12;
2658		uint64_t mpr_whole_byte_enable:1;
2659		uint64_t mpr_byte_select:4;
2660		uint64_t mpr_bit_select:2;
2661		uint64_t mpr_wr:1;
2662		uint64_t mpr_loc:2;
2663		uint64_t mr_wr_pda_enable:1;
2664		uint64_t mr_wr_pda_mask:18;
2665		uint64_t mr_wr_rank:2;
2666		uint64_t mr_wr_sel:3;
2667		uint64_t mr_wr_addr:18;
2668	} cn70xx;
2669	struct cvmx_lmcx_mr_mpr_ctl_cn70xx cn70xxp1;
2670	struct cvmx_lmcx_mr_mpr_ctl_s cn73xx;
2671	struct cvmx_lmcx_mr_mpr_ctl_s cn78xx;
2672	struct cvmx_lmcx_mr_mpr_ctl_s cn78xxp1;
2673	struct cvmx_lmcx_mr_mpr_ctl_s cnf75xx;
2674};
2675
2676/**
2677 * cvmx_lmc#_ns_ctl
2678 *
2679 * This register contains control parameters for handling nonsecure accesses.
2680 *
2681 */
2682union cvmx_lmcx_ns_ctl {
2683	u64 u64;
2684	struct cvmx_lmcx_ns_ctl_s {
2685		uint64_t reserved_26_63:38;
2686		uint64_t ns_scramble_dis:1;
2687		uint64_t reserved_18_24:7;
2688		uint64_t adr_offset:18;
2689	} s;
2690	struct cvmx_lmcx_ns_ctl_s cn73xx;
2691	struct cvmx_lmcx_ns_ctl_s cn78xx;
2692	struct cvmx_lmcx_ns_ctl_s cnf75xx;
2693};
2694
2695/**
2696 * cvmx_lmc#_nxm
2697 *
2698 * Following is the decoding for mem_msb/rank:
2699 * 0x0: mem_msb = mem_adr[25].
2700 * 0x1: mem_msb = mem_adr[26].
2701 * 0x2: mem_msb = mem_adr[27].
2702 * 0x3: mem_msb = mem_adr[28].
2703 * 0x4: mem_msb = mem_adr[29].
2704 * 0x5: mem_msb = mem_adr[30].
2705 * 0x6: mem_msb = mem_adr[31].
2706 * 0x7: mem_msb = mem_adr[32].
2707 * 0x8: mem_msb = mem_adr[33].
2708 * 0x9: mem_msb = mem_adr[34].
2709 * 0xA: mem_msb = mem_adr[35].
2710 * 0xB: mem_msb = mem_adr[36].
2711 * 0xC-0xF = Reserved.
2712 *
2713 * For example, for a DIMM made of Samsung's K4B1G0846C-ZCF7 1Gb
2714 * (16M * 8 bit * 8 bank) parts, the column address width = 10; so with
2715 * 10b of col, 3b of bus, 3b of bank, row_lsb = 16.
2716 * Therefore, row = mem_adr[29:16] and mem_msb = 4.
2717 *
2718 * Note also that addresses greater than the max defined space (pbank_msb)
2719 * are also treated as NXM accesses.
2720 */
2721union cvmx_lmcx_nxm {
2722	u64 u64;
2723	struct cvmx_lmcx_nxm_s {
2724		uint64_t reserved_40_63:24;
2725		uint64_t mem_msb_d3_r1:4;
2726		uint64_t mem_msb_d3_r0:4;
2727		uint64_t mem_msb_d2_r1:4;
2728		uint64_t mem_msb_d2_r0:4;
2729		uint64_t mem_msb_d1_r1:4;
2730		uint64_t mem_msb_d1_r0:4;
2731		uint64_t mem_msb_d0_r1:4;
2732		uint64_t mem_msb_d0_r0:4;
2733		uint64_t cs_mask:8;
2734	} s;
2735	struct cvmx_lmcx_nxm_cn52xx {
2736		uint64_t reserved_8_63:56;
2737		uint64_t cs_mask:8;
2738	} cn52xx;
2739	struct cvmx_lmcx_nxm_cn52xx cn56xx;
2740	struct cvmx_lmcx_nxm_cn52xx cn58xx;
2741	struct cvmx_lmcx_nxm_s cn61xx;
2742	struct cvmx_lmcx_nxm_s cn63xx;
2743	struct cvmx_lmcx_nxm_s cn63xxp1;
2744	struct cvmx_lmcx_nxm_s cn66xx;
2745	struct cvmx_lmcx_nxm_s cn68xx;
2746	struct cvmx_lmcx_nxm_s cn68xxp1;
2747	struct cvmx_lmcx_nxm_cn70xx {
2748		uint64_t reserved_24_63:40;
2749		uint64_t mem_msb_d1_r1:4;
2750		uint64_t mem_msb_d1_r0:4;
2751		uint64_t mem_msb_d0_r1:4;
2752		uint64_t mem_msb_d0_r0:4;
2753		uint64_t reserved_4_7:4;
2754		uint64_t cs_mask:4;
2755	} cn70xx;
2756	struct cvmx_lmcx_nxm_cn70xx cn70xxp1;
2757	struct cvmx_lmcx_nxm_cn70xx cn73xx;
2758	struct cvmx_lmcx_nxm_cn70xx cn78xx;
2759	struct cvmx_lmcx_nxm_cn70xx cn78xxp1;
2760	struct cvmx_lmcx_nxm_s cnf71xx;
2761	struct cvmx_lmcx_nxm_cn70xx cnf75xx;
2762};
2763
2764/**
2765 * cvmx_lmc#_nxm_fadr
2766 *
2767 * This register captures only the first transaction with a NXM error while
2768 * an interrupt is pending, and only captures a subsequent event once the
2769 * interrupt is cleared by writing a one to LMC()_INT[NXM_ERR]. It captures
2770 * the actual L2C-LMC address provided to the LMC that caused the NXM error.
2771 * A read or write NXM error is captured only if enabled using the NXM
2772 * event enables.
2773 */
2774union cvmx_lmcx_nxm_fadr {
2775	u64 u64;
2776	struct cvmx_lmcx_nxm_fadr_s {
2777		uint64_t reserved_40_63:24;
2778		uint64_t nxm_faddr_ext:1;
2779		uint64_t nxm_src:1;
2780		uint64_t nxm_type:1;
2781		uint64_t nxm_faddr:37;
2782	} s;
2783	struct cvmx_lmcx_nxm_fadr_cn70xx {
2784		uint64_t reserved_39_63:25;
2785		uint64_t nxm_src:1;
2786		uint64_t nxm_type:1;
2787		uint64_t nxm_faddr:37;
2788	} cn70xx;
2789	struct cvmx_lmcx_nxm_fadr_cn70xx cn70xxp1;
2790	struct cvmx_lmcx_nxm_fadr_s cn73xx;
2791	struct cvmx_lmcx_nxm_fadr_s cn78xx;
2792	struct cvmx_lmcx_nxm_fadr_s cn78xxp1;
2793	struct cvmx_lmcx_nxm_fadr_s cnf75xx;
2794};
2795
2796/**
2797 * cvmx_lmc#_ops_cnt
2798 *
2799 * LMC_OPS_CNT  = Performance Counters
2800 *
2801 */
2802union cvmx_lmcx_ops_cnt {
2803	u64 u64;
2804	struct cvmx_lmcx_ops_cnt_s {
2805		uint64_t opscnt:64;
2806	} s;
2807	struct cvmx_lmcx_ops_cnt_s cn61xx;
2808	struct cvmx_lmcx_ops_cnt_s cn63xx;
2809	struct cvmx_lmcx_ops_cnt_s cn63xxp1;
2810	struct cvmx_lmcx_ops_cnt_s cn66xx;
2811	struct cvmx_lmcx_ops_cnt_s cn68xx;
2812	struct cvmx_lmcx_ops_cnt_s cn68xxp1;
2813	struct cvmx_lmcx_ops_cnt_s cn70xx;
2814	struct cvmx_lmcx_ops_cnt_s cn70xxp1;
2815	struct cvmx_lmcx_ops_cnt_s cn73xx;
2816	struct cvmx_lmcx_ops_cnt_s cn78xx;
2817	struct cvmx_lmcx_ops_cnt_s cn78xxp1;
2818	struct cvmx_lmcx_ops_cnt_s cnf71xx;
2819	struct cvmx_lmcx_ops_cnt_s cnf75xx;
2820};
2821
2822/**
2823 * cvmx_lmc#_ops_cnt_hi
2824 *
2825 * LMC_OPS_CNT_HI  = Performance Counters
2826 *
2827 */
2828union cvmx_lmcx_ops_cnt_hi {
2829	u64 u64;
2830	struct cvmx_lmcx_ops_cnt_hi_s {
2831		uint64_t reserved_32_63:32;
2832		uint64_t opscnt_hi:32;
2833	} s;
2834	struct cvmx_lmcx_ops_cnt_hi_s cn30xx;
2835	struct cvmx_lmcx_ops_cnt_hi_s cn31xx;
2836	struct cvmx_lmcx_ops_cnt_hi_s cn38xx;
2837	struct cvmx_lmcx_ops_cnt_hi_s cn38xxp2;
2838	struct cvmx_lmcx_ops_cnt_hi_s cn50xx;
2839	struct cvmx_lmcx_ops_cnt_hi_s cn52xx;
2840	struct cvmx_lmcx_ops_cnt_hi_s cn52xxp1;
2841	struct cvmx_lmcx_ops_cnt_hi_s cn56xx;
2842	struct cvmx_lmcx_ops_cnt_hi_s cn56xxp1;
2843	struct cvmx_lmcx_ops_cnt_hi_s cn58xx;
2844	struct cvmx_lmcx_ops_cnt_hi_s cn58xxp1;
2845};
2846
2847/**
2848 * cvmx_lmc#_ops_cnt_lo
2849 *
2850 * LMC_OPS_CNT_LO  = Performance Counters
2851 *
2852 */
2853union cvmx_lmcx_ops_cnt_lo {
2854	u64 u64;
2855	struct cvmx_lmcx_ops_cnt_lo_s {
2856		uint64_t reserved_32_63:32;
2857		uint64_t opscnt_lo:32;
2858	} s;
2859	struct cvmx_lmcx_ops_cnt_lo_s cn30xx;
2860	struct cvmx_lmcx_ops_cnt_lo_s cn31xx;
2861	struct cvmx_lmcx_ops_cnt_lo_s cn38xx;
2862	struct cvmx_lmcx_ops_cnt_lo_s cn38xxp2;
2863	struct cvmx_lmcx_ops_cnt_lo_s cn50xx;
2864	struct cvmx_lmcx_ops_cnt_lo_s cn52xx;
2865	struct cvmx_lmcx_ops_cnt_lo_s cn52xxp1;
2866	struct cvmx_lmcx_ops_cnt_lo_s cn56xx;
2867	struct cvmx_lmcx_ops_cnt_lo_s cn56xxp1;
2868	struct cvmx_lmcx_ops_cnt_lo_s cn58xx;
2869	struct cvmx_lmcx_ops_cnt_lo_s cn58xxp1;
2870};
2871
2872/**
2873 * cvmx_lmc#_phy_ctl
2874 *
2875 * LMC_PHY_CTL = LMC PHY Control
2876 *
2877 */
2878union cvmx_lmcx_phy_ctl {
2879	u64 u64;
2880	struct cvmx_lmcx_phy_ctl_s {
2881		uint64_t reserved_61_63:3;
2882		uint64_t dsk_dbg_load_dis:1;
2883		uint64_t dsk_dbg_overwrt_ena:1;
2884		uint64_t dsk_dbg_wr_mode:1;
2885		uint64_t data_rate_loopback:1;
2886		uint64_t dq_shallow_loopback:1;
2887		uint64_t dm_disable:1;
2888		uint64_t c1_sel:2;
2889		uint64_t c0_sel:2;
2890		uint64_t phy_reset:1;
2891		uint64_t dsk_dbg_rd_complete:1;
2892		uint64_t dsk_dbg_rd_data:10;
2893		uint64_t dsk_dbg_rd_start:1;
2894		uint64_t dsk_dbg_clk_scaler:2;
2895		uint64_t dsk_dbg_offset:2;
2896		uint64_t dsk_dbg_num_bits_sel:1;
2897		uint64_t dsk_dbg_byte_sel:4;
2898		uint64_t dsk_dbg_bit_sel:4;
2899		uint64_t dbi_mode_ena:1;
2900		uint64_t ddr_error_n_ena:1;
2901		uint64_t ref_pin_on:1;
2902		uint64_t dac_on:1;
2903		uint64_t int_pad_loopback_ena:1;
2904		uint64_t int_phy_loopback_ena:1;
2905		uint64_t phy_dsk_reset:1;
2906		uint64_t phy_dsk_byp:1;
2907		uint64_t phy_pwr_save_disable:1;
2908		uint64_t ten:1;
2909		uint64_t rx_always_on:1;
2910		uint64_t lv_mode:1;
2911		uint64_t ck_tune1:1;
2912		uint64_t ck_dlyout1:4;
2913		uint64_t ck_tune0:1;
2914		uint64_t ck_dlyout0:4;
2915		uint64_t loopback:1;
2916		uint64_t loopback_pos:1;
2917		uint64_t ts_stagger:1;
2918	} s;
2919	struct cvmx_lmcx_phy_ctl_cn61xx {
2920		uint64_t reserved_15_63:49;
2921		uint64_t rx_always_on:1;
2922		uint64_t lv_mode:1;
2923		uint64_t ck_tune1:1;
2924		uint64_t ck_dlyout1:4;
2925		uint64_t ck_tune0:1;
2926		uint64_t ck_dlyout0:4;
2927		uint64_t loopback:1;
2928		uint64_t loopback_pos:1;
2929		uint64_t ts_stagger:1;
2930	} cn61xx;
2931	struct cvmx_lmcx_phy_ctl_cn61xx cn63xx;
2932	struct cvmx_lmcx_phy_ctl_cn63xxp1 {
2933		uint64_t reserved_14_63:50;
2934		uint64_t lv_mode:1;
2935		uint64_t ck_tune1:1;
2936		uint64_t ck_dlyout1:4;
2937		uint64_t ck_tune0:1;
2938		uint64_t ck_dlyout0:4;
2939		uint64_t loopback:1;
2940		uint64_t loopback_pos:1;
2941		uint64_t ts_stagger:1;
2942	} cn63xxp1;
2943	struct cvmx_lmcx_phy_ctl_cn61xx cn66xx;
2944	struct cvmx_lmcx_phy_ctl_cn61xx cn68xx;
2945	struct cvmx_lmcx_phy_ctl_cn61xx cn68xxp1;
2946	struct cvmx_lmcx_phy_ctl_cn70xx {
2947		uint64_t reserved_51_63:13;
2948		uint64_t phy_reset:1;
2949		uint64_t dsk_dbg_rd_complete:1;
2950		uint64_t dsk_dbg_rd_data:10;
2951		uint64_t dsk_dbg_rd_start:1;
2952		uint64_t dsk_dbg_clk_scaler:2;
2953		uint64_t dsk_dbg_offset:2;
2954		uint64_t dsk_dbg_num_bits_sel:1;
2955		uint64_t dsk_dbg_byte_sel:4;
2956		uint64_t dsk_dbg_bit_sel:4;
2957		uint64_t dbi_mode_ena:1;
2958		uint64_t ddr_error_n_ena:1;
2959		uint64_t ref_pin_on:1;
2960		uint64_t dac_on:1;
2961		uint64_t int_pad_loopback_ena:1;
2962		uint64_t int_phy_loopback_ena:1;
2963		uint64_t phy_dsk_reset:1;
2964		uint64_t phy_dsk_byp:1;
2965		uint64_t phy_pwr_save_disable:1;
2966		uint64_t ten:1;
2967		uint64_t rx_always_on:1;
2968		uint64_t lv_mode:1;
2969		uint64_t ck_tune1:1;
2970		uint64_t ck_dlyout1:4;
2971		uint64_t ck_tune0:1;
2972		uint64_t ck_dlyout0:4;
2973		uint64_t loopback:1;
2974		uint64_t loopback_pos:1;
2975		uint64_t ts_stagger:1;
2976	} cn70xx;
2977	struct cvmx_lmcx_phy_ctl_cn70xx cn70xxp1;
2978	struct cvmx_lmcx_phy_ctl_cn73xx {
2979		uint64_t reserved_58_63:6;
2980		uint64_t data_rate_loopback:1;
2981		uint64_t dq_shallow_loopback:1;
2982		uint64_t dm_disable:1;
2983		uint64_t c1_sel:2;
2984		uint64_t c0_sel:2;
2985		uint64_t phy_reset:1;
2986		uint64_t dsk_dbg_rd_complete:1;
2987		uint64_t dsk_dbg_rd_data:10;
2988		uint64_t dsk_dbg_rd_start:1;
2989		uint64_t dsk_dbg_clk_scaler:2;
2990		uint64_t dsk_dbg_offset:2;
2991		uint64_t dsk_dbg_num_bits_sel:1;
2992		uint64_t dsk_dbg_byte_sel:4;
2993		uint64_t dsk_dbg_bit_sel:4;
2994		uint64_t dbi_mode_ena:1;
2995		uint64_t ddr_error_n_ena:1;
2996		uint64_t ref_pin_on:1;
2997		uint64_t dac_on:1;
2998		uint64_t int_pad_loopback_ena:1;
2999		uint64_t int_phy_loopback_ena:1;
3000		uint64_t phy_dsk_reset:1;
3001		uint64_t phy_dsk_byp:1;
3002		uint64_t phy_pwr_save_disable:1;
3003		uint64_t ten:1;
3004		uint64_t rx_always_on:1;
3005		uint64_t lv_mode:1;
3006		uint64_t ck_tune1:1;
3007		uint64_t ck_dlyout1:4;
3008		uint64_t ck_tune0:1;
3009		uint64_t ck_dlyout0:4;
3010		uint64_t loopback:1;
3011		uint64_t loopback_pos:1;
3012		uint64_t ts_stagger:1;
3013	} cn73xx;
3014	struct cvmx_lmcx_phy_ctl_s cn78xx;
3015	struct cvmx_lmcx_phy_ctl_s cn78xxp1;
3016	struct cvmx_lmcx_phy_ctl_cn61xx cnf71xx;
3017	struct cvmx_lmcx_phy_ctl_s cnf75xx;
3018};
3019
3020/**
3021 * cvmx_lmc#_phy_ctl2
3022 */
3023union cvmx_lmcx_phy_ctl2 {
3024	u64 u64;
3025	struct cvmx_lmcx_phy_ctl2_s {
3026		uint64_t reserved_27_63:37;
3027		uint64_t dqs8_dsk_adj:3;
3028		uint64_t dqs7_dsk_adj:3;
3029		uint64_t dqs6_dsk_adj:3;
3030		uint64_t dqs5_dsk_adj:3;
3031		uint64_t dqs4_dsk_adj:3;
3032		uint64_t dqs3_dsk_adj:3;
3033		uint64_t dqs2_dsk_adj:3;
3034		uint64_t dqs1_dsk_adj:3;
3035		uint64_t dqs0_dsk_adj:3;
3036	} s;
3037	struct cvmx_lmcx_phy_ctl2_s cn78xx;
3038	struct cvmx_lmcx_phy_ctl2_s cnf75xx;
3039};
3040
3041/**
3042 * cvmx_lmc#_pll_bwctl
3043 *
3044 * LMC_PLL_BWCTL  = DDR PLL Bandwidth Control Register
3045 *
3046 */
3047union cvmx_lmcx_pll_bwctl {
3048	u64 u64;
3049	struct cvmx_lmcx_pll_bwctl_s {
3050		uint64_t reserved_5_63:59;
3051		uint64_t bwupd:1;
3052		uint64_t bwctl:4;
3053	} s;
3054	struct cvmx_lmcx_pll_bwctl_s cn30xx;
3055	struct cvmx_lmcx_pll_bwctl_s cn31xx;
3056	struct cvmx_lmcx_pll_bwctl_s cn38xx;
3057	struct cvmx_lmcx_pll_bwctl_s cn38xxp2;
3058};
3059
3060/**
3061 * cvmx_lmc#_pll_ctl
3062 *
3063 * LMC_PLL_CTL = LMC pll control
3064 *
3065 *
3066 * Notes:
3067 * This CSR is only relevant for LMC0. LMC1_PLL_CTL is not used.
3068 *
3069 * Exactly one of EN2, EN4, EN6, EN8, EN12, EN16 must be set.
3070 *
3071 * The resultant DDR_CK frequency is the DDR2_REF_CLK
3072 * frequency multiplied by:
3073 *
3074 *     (CLKF + 1) / ((CLKR + 1) * EN(2,4,6,8,12,16))
3075 *
3076 * The PLL frequency, which is:
3077 *
3078 *     (DDR2_REF_CLK freq) * ((CLKF + 1) / (CLKR + 1))
3079 *
3080 * must reside between 1.2 and 2.5 GHz. A faster PLL frequency is
3081 * desirable if there is a choice.
3082 */
3083union cvmx_lmcx_pll_ctl {
3084	u64 u64;
3085	struct cvmx_lmcx_pll_ctl_s {
3086		uint64_t reserved_30_63:34;
3087		uint64_t bypass:1;
3088		uint64_t fasten_n:1;
3089		uint64_t div_reset:1;
3090		uint64_t reset_n:1;
3091		uint64_t clkf:12;
3092		uint64_t clkr:6;
3093		uint64_t reserved_6_7:2;
3094		uint64_t en16:1;
3095		uint64_t en12:1;
3096		uint64_t en8:1;
3097		uint64_t en6:1;
3098		uint64_t en4:1;
3099		uint64_t en2:1;
3100	} s;
3101	struct cvmx_lmcx_pll_ctl_cn50xx {
3102		uint64_t reserved_29_63:35;
3103		uint64_t fasten_n:1;
3104		uint64_t div_reset:1;
3105		uint64_t reset_n:1;
3106		uint64_t clkf:12;
3107		uint64_t clkr:6;
3108		uint64_t reserved_6_7:2;
3109		uint64_t en16:1;
3110		uint64_t en12:1;
3111		uint64_t en8:1;
3112		uint64_t en6:1;
3113		uint64_t en4:1;
3114		uint64_t en2:1;
3115	} cn50xx;
3116	struct cvmx_lmcx_pll_ctl_s cn52xx;
3117	struct cvmx_lmcx_pll_ctl_s cn52xxp1;
3118	struct cvmx_lmcx_pll_ctl_cn50xx cn56xx;
3119	struct cvmx_lmcx_pll_ctl_cn56xxp1 {
3120		uint64_t reserved_28_63:36;
3121		uint64_t div_reset:1;
3122		uint64_t reset_n:1;
3123		uint64_t clkf:12;
3124		uint64_t clkr:6;
3125		uint64_t reserved_6_7:2;
3126		uint64_t en16:1;
3127		uint64_t en12:1;
3128		uint64_t en8:1;
3129		uint64_t en6:1;
3130		uint64_t en4:1;
3131		uint64_t en2:1;
3132	} cn56xxp1;
3133	struct cvmx_lmcx_pll_ctl_cn56xxp1 cn58xx;
3134	struct cvmx_lmcx_pll_ctl_cn56xxp1 cn58xxp1;
3135};
3136
3137/**
3138 * cvmx_lmc#_pll_status
3139 *
3140 * LMC_PLL_STATUS = LMC pll status
3141 *
3142 */
3143union cvmx_lmcx_pll_status {
3144	u64 u64;
3145	struct cvmx_lmcx_pll_status_s {
3146		uint64_t reserved_32_63:32;
3147		uint64_t ddr__nctl:5;
3148		uint64_t ddr__pctl:5;
3149		uint64_t reserved_2_21:20;
3150		uint64_t rfslip:1;
3151		uint64_t fbslip:1;
3152	} s;
3153	struct cvmx_lmcx_pll_status_s cn50xx;
3154	struct cvmx_lmcx_pll_status_s cn52xx;
3155	struct cvmx_lmcx_pll_status_s cn52xxp1;
3156	struct cvmx_lmcx_pll_status_s cn56xx;
3157	struct cvmx_lmcx_pll_status_s cn56xxp1;
3158	struct cvmx_lmcx_pll_status_s cn58xx;
3159	struct cvmx_lmcx_pll_status_cn58xxp1 {
3160		uint64_t reserved_2_63:62;
3161		uint64_t rfslip:1;
3162		uint64_t fbslip:1;
3163	} cn58xxp1;
3164};
3165
3166/**
3167 * cvmx_lmc#_ppr_ctl
3168 *
3169 * This register contains programmable timing and control parameters used
3170 * when running the post package repair sequence. The timing fields
3171 * PPR_CTL[TPGMPST], PPR_CTL[TPGM_EXIT] and PPR_CTL[TPGM] need to be set as
3172 * to satisfy the minimum values mentioned in the JEDEC DDR4 spec before
3173 * running the PPR sequence. See LMC()_SEQ_CTL[SEQ_SEL,INIT_START] to run
3174 * the PPR sequence.
3175 *
3176 * Running hard PPR may require LMC to issue security key as four consecutive
3177 * MR0 commands, each with a unique address field A[17:0]. Set the security
3178 * key in the general purpose CSRs as follows:
3179 *
3180 * _ Security key 0 = LMC()_GENERAL_PURPOSE0[DATA]<17:0>.
3181 * _ Security key 1 = LMC()_GENERAL_PURPOSE0[DATA]<35:18>.
3182 * _ Security key 2 = LMC()_GENERAL_PURPOSE1[DATA]<17:0>.
3183 * _ Security key 3 = LMC()_GENERAL_PURPOSE1[DATA]<35:18>.
3184 */
3185union cvmx_lmcx_ppr_ctl {
3186	u64 u64;
3187	struct cvmx_lmcx_ppr_ctl_s {
3188		uint64_t reserved_27_63:37;
3189		uint64_t lrank_sel:3;
3190		uint64_t skip_issue_security:1;
3191		uint64_t sppr:1;
3192		uint64_t tpgm:10;
3193		uint64_t tpgm_exit:5;
3194		uint64_t tpgmpst:7;
3195	} s;
3196	struct cvmx_lmcx_ppr_ctl_cn73xx {
3197		uint64_t reserved_24_63:40;
3198		uint64_t skip_issue_security:1;
3199		uint64_t sppr:1;
3200		uint64_t tpgm:10;
3201		uint64_t tpgm_exit:5;
3202		uint64_t tpgmpst:7;
3203	} cn73xx;
3204	struct cvmx_lmcx_ppr_ctl_s cn78xx;
3205	struct cvmx_lmcx_ppr_ctl_cn73xx cnf75xx;
3206};
3207
3208/**
3209 * cvmx_lmc#_read_level_ctl
3210 *
3211 * Notes:
3212 * The HW writes and reads the cache block selected by ROW, COL, BNK and
3213 * the rank as part of a read-leveling sequence for a rank.
3214 * A cache block write is 16 72-bit words. PATTERN selects the write value.
3215 * For the first 8 words, the write value is the bit PATTERN<i> duplicated
3216 * into a 72-bit vector. The write value of the last 8 words is the inverse
3217 * of the write value of the first 8 words. See LMC*_READ_LEVEL_RANK*.
3218 */
3219union cvmx_lmcx_read_level_ctl {
3220	u64 u64;
3221	struct cvmx_lmcx_read_level_ctl_s {
3222		uint64_t reserved_44_63:20;
3223		uint64_t rankmask:4;
3224		uint64_t pattern:8;
3225		uint64_t row:16;
3226		uint64_t col:12;
3227		uint64_t reserved_3_3:1;
3228		uint64_t bnk:3;
3229	} s;
3230	struct cvmx_lmcx_read_level_ctl_s cn52xx;
3231	struct cvmx_lmcx_read_level_ctl_s cn52xxp1;
3232	struct cvmx_lmcx_read_level_ctl_s cn56xx;
3233	struct cvmx_lmcx_read_level_ctl_s cn56xxp1;
3234};
3235
3236/**
3237 * cvmx_lmc#_read_level_dbg
3238 *
3239 * Notes:
3240 * A given read of LMC*_READ_LEVEL_DBG returns the read-leveling pass/fail
3241 * results for all possible delay settings (i.e. the BITMASK) for only one
3242 * byte in the last rank that the HW read-leveled.
3243 * LMC*_READ_LEVEL_DBG[BYTE] selects the particular byte.
3244 * To get these pass/fail results for another different rank, you must run
3245 * the hardware read-leveling again. For example, it is possible to get the
3246 * BITMASK results for every byte of every rank if you run read-leveling
3247 * separately for each rank, probing LMC*_READ_LEVEL_DBG between each
3248 * read-leveling.
3249 */
3250union cvmx_lmcx_read_level_dbg {
3251	u64 u64;
3252	struct cvmx_lmcx_read_level_dbg_s {
3253		uint64_t reserved_32_63:32;
3254		uint64_t bitmask:16;
3255		uint64_t reserved_4_15:12;
3256		uint64_t byte:4;
3257	} s;
3258	struct cvmx_lmcx_read_level_dbg_s cn52xx;
3259	struct cvmx_lmcx_read_level_dbg_s cn52xxp1;
3260	struct cvmx_lmcx_read_level_dbg_s cn56xx;
3261	struct cvmx_lmcx_read_level_dbg_s cn56xxp1;
3262};
3263
3264/**
3265 * cvmx_lmc#_read_level_rank#
3266 *
3267 * Notes:
3268 * This is four CSRs per LMC, one per each rank.
3269 * Each CSR is written by HW during a read-leveling sequence for the rank.
3270 * (HW sets STATUS==3 after HW read-leveling completes for the rank.)
3271 * Each CSR may also be written by SW, but not while a read-leveling sequence
3272 * is in progress. (HW sets STATUS==1 after a CSR write.)
3273 * Deskew setting is measured in units of 1/4 DCLK, so the above BYTE*
3274 * values can range over 4 DCLKs.
3275 * SW initiates a HW read-leveling sequence by programming
3276 * LMC*_READ_LEVEL_CTL and writing INIT_START=1 with SEQUENCE=1.
3277 * See LMC*_READ_LEVEL_CTL.
3278 */
3279union cvmx_lmcx_read_level_rankx {
3280	u64 u64;
3281	struct cvmx_lmcx_read_level_rankx_s {
3282		uint64_t reserved_38_63:26;
3283		uint64_t status:2;
3284		uint64_t byte8:4;
3285		uint64_t byte7:4;
3286		uint64_t byte6:4;
3287		uint64_t byte5:4;
3288		uint64_t byte4:4;
3289		uint64_t byte3:4;
3290		uint64_t byte2:4;
3291		uint64_t byte1:4;
3292		uint64_t byte0:4;
3293	} s;
3294	struct cvmx_lmcx_read_level_rankx_s cn52xx;
3295	struct cvmx_lmcx_read_level_rankx_s cn52xxp1;
3296	struct cvmx_lmcx_read_level_rankx_s cn56xx;
3297	struct cvmx_lmcx_read_level_rankx_s cn56xxp1;
3298};
3299
3300/**
3301 * cvmx_lmc#_ref_status
3302 *
3303 * This register contains the status of the refresh pending counter.
3304 *
3305 */
3306union cvmx_lmcx_ref_status {
3307	u64 u64;
3308	struct cvmx_lmcx_ref_status_s {
3309		uint64_t reserved_4_63:60;
3310		uint64_t ref_pend_max_clr:1;
3311		uint64_t ref_count:3;
3312	} s;
3313	struct cvmx_lmcx_ref_status_s cn73xx;
3314	struct cvmx_lmcx_ref_status_s cn78xx;
3315	struct cvmx_lmcx_ref_status_s cnf75xx;
3316};
3317
3318/**
3319 * cvmx_lmc#_reset_ctl
3320 *
3321 * Specify the RSL base addresses for the block.
3322 *
3323 */
3324union cvmx_lmcx_reset_ctl {
3325	u64 u64;
3326	struct cvmx_lmcx_reset_ctl_s {
3327		uint64_t reserved_4_63:60;
3328		uint64_t ddr3psv:1;
3329		uint64_t ddr3psoft:1;
3330		uint64_t ddr3pwarm:1;
3331		uint64_t ddr3rst:1;
3332	} s;
3333	struct cvmx_lmcx_reset_ctl_s cn61xx;
3334	struct cvmx_lmcx_reset_ctl_s cn63xx;
3335	struct cvmx_lmcx_reset_ctl_s cn63xxp1;
3336	struct cvmx_lmcx_reset_ctl_s cn66xx;
3337	struct cvmx_lmcx_reset_ctl_s cn68xx;
3338	struct cvmx_lmcx_reset_ctl_s cn68xxp1;
3339	struct cvmx_lmcx_reset_ctl_s cn70xx;
3340	struct cvmx_lmcx_reset_ctl_s cn70xxp1;
3341	struct cvmx_lmcx_reset_ctl_s cn73xx;
3342	struct cvmx_lmcx_reset_ctl_s cn78xx;
3343	struct cvmx_lmcx_reset_ctl_s cn78xxp1;
3344	struct cvmx_lmcx_reset_ctl_s cnf71xx;
3345	struct cvmx_lmcx_reset_ctl_s cnf75xx;
3346};
3347
3348/**
3349 * cvmx_lmc#_retry_config
3350 *
3351 * This register configures automatic retry operation.
3352 *
3353 */
3354union cvmx_lmcx_retry_config {
3355	u64 u64;
3356	struct cvmx_lmcx_retry_config_s {
3357		uint64_t reserved_56_63:8;
3358		uint64_t max_errors:24;
3359		uint64_t reserved_13_31:19;
3360		uint64_t error_continue:1;
3361		uint64_t reserved_9_11:3;
3362		uint64_t auto_error_continue:1;
3363		uint64_t reserved_5_7:3;
3364		uint64_t pulse_count_auto_clr:1;
3365		uint64_t reserved_1_3:3;
3366		uint64_t retry_enable:1;
3367	} s;
3368	struct cvmx_lmcx_retry_config_s cn73xx;
3369	struct cvmx_lmcx_retry_config_s cn78xx;
3370	struct cvmx_lmcx_retry_config_s cnf75xx;
3371};
3372
3373/**
3374 * cvmx_lmc#_retry_status
3375 *
3376 * This register provides status on automatic retry operation.
3377 *
3378 */
3379union cvmx_lmcx_retry_status {
3380	u64 u64;
3381	struct cvmx_lmcx_retry_status_s {
3382		uint64_t clear_error_count:1;
3383		uint64_t clear_error_pulse_count:1;
3384		uint64_t reserved_57_61:5;
3385		uint64_t error_pulse_count_valid:1;
3386		uint64_t error_pulse_count_sat:1;
3387		uint64_t reserved_52_54:3;
3388		uint64_t error_pulse_count:4;
3389		uint64_t reserved_45_47:3;
3390		uint64_t error_sequence:5;
3391		uint64_t reserved_33_39:7;
3392		uint64_t error_type:1;
3393		uint64_t reserved_24_31:8;
3394		uint64_t error_count:24;
3395	} s;
3396	struct cvmx_lmcx_retry_status_s cn73xx;
3397	struct cvmx_lmcx_retry_status_s cn78xx;
3398	struct cvmx_lmcx_retry_status_s cnf75xx;
3399};
3400
3401/**
3402 * cvmx_lmc#_rlevel_ctl
3403 */
3404union cvmx_lmcx_rlevel_ctl {
3405	u64 u64;
3406	struct cvmx_lmcx_rlevel_ctl_s {
3407		uint64_t reserved_33_63:31;
3408		uint64_t tccd_sel:1;
3409		uint64_t pattern:8;
3410		uint64_t reserved_22_23:2;
3411		uint64_t delay_unload_3:1;
3412		uint64_t delay_unload_2:1;
3413		uint64_t delay_unload_1:1;
3414		uint64_t delay_unload_0:1;
3415		uint64_t bitmask:8;
3416		uint64_t or_dis:1;
3417		uint64_t offset_en:1;
3418		uint64_t offset:4;
3419		uint64_t byte:4;
3420	} s;
3421	struct cvmx_lmcx_rlevel_ctl_cn61xx {
3422		uint64_t reserved_22_63:42;
3423		uint64_t delay_unload_3:1;
3424		uint64_t delay_unload_2:1;
3425		uint64_t delay_unload_1:1;
3426		uint64_t delay_unload_0:1;
3427		uint64_t bitmask:8;
3428		uint64_t or_dis:1;
3429		uint64_t offset_en:1;
3430		uint64_t offset:4;
3431		uint64_t byte:4;
3432	} cn61xx;
3433	struct cvmx_lmcx_rlevel_ctl_cn61xx cn63xx;
3434	struct cvmx_lmcx_rlevel_ctl_cn63xxp1 {
3435		uint64_t reserved_9_63:55;
3436		uint64_t offset_en:1;
3437		uint64_t offset:4;
3438		uint64_t byte:4;
3439	} cn63xxp1;
3440	struct cvmx_lmcx_rlevel_ctl_cn61xx cn66xx;
3441	struct cvmx_lmcx_rlevel_ctl_cn61xx cn68xx;
3442	struct cvmx_lmcx_rlevel_ctl_cn61xx cn68xxp1;
3443	struct cvmx_lmcx_rlevel_ctl_cn70xx {
3444		uint64_t reserved_32_63:32;
3445		uint64_t pattern:8;
3446		uint64_t reserved_22_23:2;
3447		uint64_t delay_unload_3:1;
3448		uint64_t delay_unload_2:1;
3449		uint64_t delay_unload_1:1;
3450		uint64_t delay_unload_0:1;
3451		uint64_t bitmask:8;
3452		uint64_t or_dis:1;
3453		uint64_t offset_en:1;
3454		uint64_t offset:4;
3455		uint64_t byte:4;
3456	} cn70xx;
3457	struct cvmx_lmcx_rlevel_ctl_cn70xx cn70xxp1;
3458	struct cvmx_lmcx_rlevel_ctl_cn70xx cn73xx;
3459	struct cvmx_lmcx_rlevel_ctl_s cn78xx;
3460	struct cvmx_lmcx_rlevel_ctl_s cn78xxp1;
3461	struct cvmx_lmcx_rlevel_ctl_cn61xx cnf71xx;
3462	struct cvmx_lmcx_rlevel_ctl_s cnf75xx;
3463};
3464
3465/**
3466 * cvmx_lmc#_rlevel_dbg
3467 *
3468 * A given read of LMC()_RLEVEL_DBG returns the read leveling pass/fail
3469 * results for all possible delay settings (i.e. the BITMASK) for only
3470 * one byte in the last rank that the hardware ran read leveling on.
3471 * LMC()_RLEVEL_CTL[BYTE] selects the particular byte. To get these
3472 * pass/fail results for a different rank, you must run the hardware
3473 * read leveling again. For example, it is possible to get the [BITMASK]
3474 * results for every byte of every rank if you run read leveling separately
3475 * for each rank, probing LMC()_RLEVEL_DBG between each read- leveling.
3476 */
3477union cvmx_lmcx_rlevel_dbg {
3478	u64 u64;
3479	struct cvmx_lmcx_rlevel_dbg_s {
3480		uint64_t bitmask:64;
3481	} s;
3482	struct cvmx_lmcx_rlevel_dbg_s cn61xx;
3483	struct cvmx_lmcx_rlevel_dbg_s cn63xx;
3484	struct cvmx_lmcx_rlevel_dbg_s cn63xxp1;
3485	struct cvmx_lmcx_rlevel_dbg_s cn66xx;
3486	struct cvmx_lmcx_rlevel_dbg_s cn68xx;
3487	struct cvmx_lmcx_rlevel_dbg_s cn68xxp1;
3488	struct cvmx_lmcx_rlevel_dbg_s cn70xx;
3489	struct cvmx_lmcx_rlevel_dbg_s cn70xxp1;
3490	struct cvmx_lmcx_rlevel_dbg_s cn73xx;
3491	struct cvmx_lmcx_rlevel_dbg_s cn78xx;
3492	struct cvmx_lmcx_rlevel_dbg_s cn78xxp1;
3493	struct cvmx_lmcx_rlevel_dbg_s cnf71xx;
3494	struct cvmx_lmcx_rlevel_dbg_s cnf75xx;
3495};
3496
3497/**
3498 * cvmx_lmc#_rlevel_rank#
3499 *
3500 * Four of these CSRs exist per LMC, one for each rank. Read level setting
3501 * is measured in units of 1/4 CK, so the BYTEn values can range over 16 CK
3502 * cycles. Each CSR is written by hardware during a read leveling sequence
3503 * for the rank. (Hardware sets [STATUS] to 3 after hardware read leveling
3504 * completes for the rank.)
3505 *
3506 * If hardware is unable to find a match per LMC()_RLEVEL_CTL[OFFSET_EN] and
3507 * LMC()_RLEVEL_CTL[OFFSET], then hardware sets
3508 * LMC()_RLEVEL_RANK()[BYTEn<5:0>] to 0x0.
3509 *
3510 * Each CSR may also be written by software, but not while a read leveling
3511 * sequence is in progress. (Hardware sets [STATUS] to 1 after a CSR write.)
3512 * Software initiates a hardware read leveling sequence by programming
3513 * LMC()_RLEVEL_CTL and writing [INIT_START] = 1 with [SEQ_SEL]=1.
3514 * See LMC()_RLEVEL_CTL.
3515 *
3516 * LMC()_RLEVEL_RANKi values for ranks i without attached DRAM should be set
3517 * such that they do not increase the range of possible BYTE values for any
3518 * byte lane. The easiest way to do this is to set LMC()_RLEVEL_RANKi =
3519 * LMC()_RLEVEL_RANKj, where j is some rank with attached DRAM whose
3520 * LMC()_RLEVEL_RANKj is already fully initialized.
3521 */
3522union cvmx_lmcx_rlevel_rankx {
3523	u64 u64;
3524	struct cvmx_lmcx_rlevel_rankx_s {
3525		uint64_t reserved_56_63:8;
3526		uint64_t status:2;
3527		uint64_t byte8:6;
3528		uint64_t byte7:6;
3529		uint64_t byte6:6;
3530		uint64_t byte5:6;
3531		uint64_t byte4:6;
3532		uint64_t byte3:6;
3533		uint64_t byte2:6;
3534		uint64_t byte1:6;
3535		uint64_t byte0:6;
3536	} s;
3537	struct cvmx_lmcx_rlevel_rankx_s cn61xx;
3538	struct cvmx_lmcx_rlevel_rankx_s cn63xx;
3539	struct cvmx_lmcx_rlevel_rankx_s cn63xxp1;
3540	struct cvmx_lmcx_rlevel_rankx_s cn66xx;
3541	struct cvmx_lmcx_rlevel_rankx_s cn68xx;
3542	struct cvmx_lmcx_rlevel_rankx_s cn68xxp1;
3543	struct cvmx_lmcx_rlevel_rankx_s cn70xx;
3544	struct cvmx_lmcx_rlevel_rankx_s cn70xxp1;
3545	struct cvmx_lmcx_rlevel_rankx_s cn73xx;
3546	struct cvmx_lmcx_rlevel_rankx_s cn78xx;
3547	struct cvmx_lmcx_rlevel_rankx_s cn78xxp1;
3548	struct cvmx_lmcx_rlevel_rankx_s cnf71xx;
3549	struct cvmx_lmcx_rlevel_rankx_s cnf75xx;
3550};
3551
3552/**
3553 * cvmx_lmc#_rodt_comp_ctl
3554 *
3555 * LMC_RODT_COMP_CTL = LMC Compensation control
3556 *
3557 */
3558union cvmx_lmcx_rodt_comp_ctl {
3559	u64 u64;
3560	struct cvmx_lmcx_rodt_comp_ctl_s {
3561		uint64_t reserved_17_63:47;
3562		uint64_t enable:1;
3563		uint64_t reserved_12_15:4;
3564		uint64_t nctl:4;
3565		uint64_t reserved_5_7:3;
3566		uint64_t pctl:5;
3567	} s;
3568	struct cvmx_lmcx_rodt_comp_ctl_s cn50xx;
3569	struct cvmx_lmcx_rodt_comp_ctl_s cn52xx;
3570	struct cvmx_lmcx_rodt_comp_ctl_s cn52xxp1;
3571	struct cvmx_lmcx_rodt_comp_ctl_s cn56xx;
3572	struct cvmx_lmcx_rodt_comp_ctl_s cn56xxp1;
3573	struct cvmx_lmcx_rodt_comp_ctl_s cn58xx;
3574	struct cvmx_lmcx_rodt_comp_ctl_s cn58xxp1;
3575};
3576
3577/**
3578 * cvmx_lmc#_rodt_ctl
3579 *
3580 * LMC_RODT_CTL = Obsolete LMC Read OnDieTermination control
3581 * See the description in LMC_WODT_CTL1. On Reads, Octeon only supports
3582 * turning on ODT's in the lower 2 DIMM's with the masks as below.
3583 *
3584 * Notes:
3585 * When a given RANK in position N is selected, the RODT _HI and _LO masks
3586 * for that position are used.
3587 * Mask[3:0] is used for RODT control of the RANKs in positions 3, 2, 1,
3588 * and 0, respectively.
3589 * In  64b mode, DIMMs are assumed to be ordered in the following order:
3590 *  position 3: [unused        , DIMM1_RANK1_LO]
3591 *  position 2: [unused        , DIMM1_RANK0_LO]
3592 *  position 1: [unused        , DIMM0_RANK1_LO]
3593 *  position 0: [unused        , DIMM0_RANK0_LO]
3594 * In 128b mode, DIMMs are assumed to be ordered in the following order:
3595 *  position 3: [DIMM3_RANK1_HI, DIMM1_RANK1_LO]
3596 *  position 2: [DIMM3_RANK0_HI, DIMM1_RANK0_LO]
3597 *  position 1: [DIMM2_RANK1_HI, DIMM0_RANK1_LO]
3598 *  position 0: [DIMM2_RANK0_HI, DIMM0_RANK0_LO]
3599 */
3600union cvmx_lmcx_rodt_ctl {
3601	u64 u64;
3602	struct cvmx_lmcx_rodt_ctl_s {
3603		uint64_t reserved_32_63:32;
3604		uint64_t rodt_hi3:4;
3605		uint64_t rodt_hi2:4;
3606		uint64_t rodt_hi1:4;
3607		uint64_t rodt_hi0:4;
3608		uint64_t rodt_lo3:4;
3609		uint64_t rodt_lo2:4;
3610		uint64_t rodt_lo1:4;
3611		uint64_t rodt_lo0:4;
3612	} s;
3613	struct cvmx_lmcx_rodt_ctl_s cn30xx;
3614	struct cvmx_lmcx_rodt_ctl_s cn31xx;
3615	struct cvmx_lmcx_rodt_ctl_s cn38xx;
3616	struct cvmx_lmcx_rodt_ctl_s cn38xxp2;
3617	struct cvmx_lmcx_rodt_ctl_s cn50xx;
3618	struct cvmx_lmcx_rodt_ctl_s cn52xx;
3619	struct cvmx_lmcx_rodt_ctl_s cn52xxp1;
3620	struct cvmx_lmcx_rodt_ctl_s cn56xx;
3621	struct cvmx_lmcx_rodt_ctl_s cn56xxp1;
3622	struct cvmx_lmcx_rodt_ctl_s cn58xx;
3623	struct cvmx_lmcx_rodt_ctl_s cn58xxp1;
3624};
3625
3626/**
3627 * cvmx_lmc#_rodt_mask
3628 *
3629 * System designers may desire to terminate DQ/DQS lines for higher frequency
3630 * DDR operations, especially on a multirank system. DDR3 DQ/DQS I/Os have
3631 * built-in termination resistors that can be turned on or off by the
3632 * controller, after meeting TAOND and TAOF timing requirements.
3633 *
3634 * Each rank has its own ODT pin that fans out to all the memory parts in
3635 * that DIMM. System designers may prefer different combinations of ODT ONs
3636 * for read operations into different ranks. CNXXXX supports full
3637 * programmability by way of the mask register below. Each rank position has
3638 * its own 4-bit programmable field. When the controller does a read to that
3639 * rank, it sets the 4 ODT pins to the MASK pins below. For example, when
3640 * doing a read from Rank0, a system designer may desire to terminate the
3641 * lines with the resistor on DIMM0/Rank1. The mask [RODT_D0_R0] would then
3642 * be [0010].
3643 *
3644 * CNXXXX drives the appropriate mask values on the ODT pins by default.
3645 * If this feature is not required, write 0x0 in this register. Note that,
3646 * as per the JEDEC DDR3 specifications, the ODT pin for the rank that is
3647 * being read should always be 0x0. When a given RANK is selected, the RODT
3648 * mask for that rank is used. The resulting RODT mask is driven to the
3649 * DIMMs in the following manner:
3650 */
3651union cvmx_lmcx_rodt_mask {
3652	u64 u64;
3653	struct cvmx_lmcx_rodt_mask_s {
3654		uint64_t rodt_d3_r1:8;
3655		uint64_t rodt_d3_r0:8;
3656		uint64_t rodt_d2_r1:8;
3657		uint64_t rodt_d2_r0:8;
3658		uint64_t rodt_d1_r1:8;
3659		uint64_t rodt_d1_r0:8;
3660		uint64_t rodt_d0_r1:8;
3661		uint64_t rodt_d0_r0:8;
3662	} s;
3663	struct cvmx_lmcx_rodt_mask_s cn61xx;
3664	struct cvmx_lmcx_rodt_mask_s cn63xx;
3665	struct cvmx_lmcx_rodt_mask_s cn63xxp1;
3666	struct cvmx_lmcx_rodt_mask_s cn66xx;
3667	struct cvmx_lmcx_rodt_mask_s cn68xx;
3668	struct cvmx_lmcx_rodt_mask_s cn68xxp1;
3669	struct cvmx_lmcx_rodt_mask_cn70xx {
3670		uint64_t reserved_28_63:36;
3671		uint64_t rodt_d1_r1:4;
3672		uint64_t reserved_20_23:4;
3673		uint64_t rodt_d1_r0:4;
3674		uint64_t reserved_12_15:4;
3675		uint64_t rodt_d0_r1:4;
3676		uint64_t reserved_4_7:4;
3677		uint64_t rodt_d0_r0:4;
3678	} cn70xx;
3679	struct cvmx_lmcx_rodt_mask_cn70xx cn70xxp1;
3680	struct cvmx_lmcx_rodt_mask_cn70xx cn73xx;
3681	struct cvmx_lmcx_rodt_mask_cn70xx cn78xx;
3682	struct cvmx_lmcx_rodt_mask_cn70xx cn78xxp1;
3683	struct cvmx_lmcx_rodt_mask_s cnf71xx;
3684	struct cvmx_lmcx_rodt_mask_cn70xx cnf75xx;
3685};
3686
3687/**
3688 * cvmx_lmc#_scramble_cfg0
3689 *
3690 * LMC_SCRAMBLE_CFG0 = LMC Scramble Config0
3691 *
3692 */
3693union cvmx_lmcx_scramble_cfg0 {
3694	u64 u64;
3695	struct cvmx_lmcx_scramble_cfg0_s {
3696		uint64_t key:64;
3697	} s;
3698	struct cvmx_lmcx_scramble_cfg0_s cn61xx;
3699	struct cvmx_lmcx_scramble_cfg0_s cn66xx;
3700	struct cvmx_lmcx_scramble_cfg0_s cn70xx;
3701	struct cvmx_lmcx_scramble_cfg0_s cn70xxp1;
3702	struct cvmx_lmcx_scramble_cfg0_s cn73xx;
3703	struct cvmx_lmcx_scramble_cfg0_s cn78xx;
3704	struct cvmx_lmcx_scramble_cfg0_s cn78xxp1;
3705	struct cvmx_lmcx_scramble_cfg0_s cnf71xx;
3706	struct cvmx_lmcx_scramble_cfg0_s cnf75xx;
3707};
3708
3709/**
3710 * cvmx_lmc#_scramble_cfg1
3711 *
3712 * These registers set the aliasing that uses the lowest, legal chip select(s).
3713 *
3714 */
3715union cvmx_lmcx_scramble_cfg1 {
3716	u64 u64;
3717	struct cvmx_lmcx_scramble_cfg1_s {
3718		uint64_t key:64;
3719	} s;
3720	struct cvmx_lmcx_scramble_cfg1_s cn61xx;
3721	struct cvmx_lmcx_scramble_cfg1_s cn66xx;
3722	struct cvmx_lmcx_scramble_cfg1_s cn70xx;
3723	struct cvmx_lmcx_scramble_cfg1_s cn70xxp1;
3724	struct cvmx_lmcx_scramble_cfg1_s cn73xx;
3725	struct cvmx_lmcx_scramble_cfg1_s cn78xx;
3726	struct cvmx_lmcx_scramble_cfg1_s cn78xxp1;
3727	struct cvmx_lmcx_scramble_cfg1_s cnf71xx;
3728	struct cvmx_lmcx_scramble_cfg1_s cnf75xx;
3729};
3730
3731/**
3732 * cvmx_lmc#_scramble_cfg2
3733 */
3734union cvmx_lmcx_scramble_cfg2 {
3735	u64 u64;
3736	struct cvmx_lmcx_scramble_cfg2_s {
3737		uint64_t key:64;
3738	} s;
3739	struct cvmx_lmcx_scramble_cfg2_s cn73xx;
3740	struct cvmx_lmcx_scramble_cfg2_s cn78xx;
3741	struct cvmx_lmcx_scramble_cfg2_s cnf75xx;
3742};
3743
3744/**
3745 * cvmx_lmc#_scrambled_fadr
3746 *
3747 * LMC()_FADR captures the failing pre-scrambled address location (split into
3748 * DIMM, bunk, bank, etc). If scrambling is off, LMC()_FADR also captures the
3749 * failing physical location in the DRAM parts. LMC()_SCRAMBLED_FADR captures
3750 * the actual failing address location in the physical DRAM parts, i.e.:
3751 *
3752 * * If scrambling is on, LMC()_SCRAMBLED_FADR contains the failing physical
3753 * location in the
3754 * DRAM parts (split into DIMM, bunk, bank, etc).
3755 *
3756 * * If scrambling is off, the pre-scramble and post-scramble addresses are
3757 * the same, and so the
3758 * contents of LMC()_SCRAMBLED_FADR match the contents of LMC()_FADR.
3759 *
3760 * This register only captures the first transaction with ECC errors. A DED
3761 * error can over-write this register with its failing addresses if the first
3762 * error was a SEC. If you write LMC()_CONFIG -> SEC_ERR/DED_ERR, it clears
3763 * the error bits and captures the next failing address. If [FDIMM] is 1,
3764 * that means the error is in the higher DIMM.
3765 */
3766union cvmx_lmcx_scrambled_fadr {
3767	u64 u64;
3768	struct cvmx_lmcx_scrambled_fadr_s {
3769		uint64_t reserved_43_63:21;
3770		uint64_t fcid:3;
3771		uint64_t fill_order:2;
3772		uint64_t reserved_14_37:24;
3773		uint64_t fcol:14;
3774	} s;
3775	struct cvmx_lmcx_scrambled_fadr_cn61xx {
3776		uint64_t reserved_36_63:28;
3777		uint64_t fdimm:2;
3778		uint64_t fbunk:1;
3779		uint64_t fbank:3;
3780		uint64_t frow:16;
3781		uint64_t fcol:14;
3782	} cn61xx;
3783	struct cvmx_lmcx_scrambled_fadr_cn61xx cn66xx;
3784	struct cvmx_lmcx_scrambled_fadr_cn70xx {
3785		uint64_t reserved_40_63:24;
3786		uint64_t fill_order:2;
3787		uint64_t fdimm:1;
3788		uint64_t fbunk:1;
3789		uint64_t fbank:4;
3790		uint64_t frow:18;
3791		uint64_t fcol:14;
3792	} cn70xx;
3793	struct cvmx_lmcx_scrambled_fadr_cn70xx cn70xxp1;
3794	struct cvmx_lmcx_scrambled_fadr_cn73xx {
3795		uint64_t reserved_43_63:21;
3796		uint64_t fcid:3;
3797		uint64_t fill_order:2;
3798		uint64_t fdimm:1;
3799		uint64_t fbunk:1;
3800		uint64_t fbank:4;
3801		uint64_t frow:18;
3802		uint64_t fcol:14;
3803	} cn73xx;
3804	struct cvmx_lmcx_scrambled_fadr_cn73xx cn78xx;
3805	struct cvmx_lmcx_scrambled_fadr_cn73xx cn78xxp1;
3806	struct cvmx_lmcx_scrambled_fadr_cn61xx cnf71xx;
3807	struct cvmx_lmcx_scrambled_fadr_cn73xx cnf75xx;
3808};
3809
3810/**
3811 * cvmx_lmc#_seq_ctl
3812 *
3813 * This register is used to initiate the various control sequences in the LMC.
3814 *
3815 */
3816union cvmx_lmcx_seq_ctl {
3817	u64 u64;
3818	struct cvmx_lmcx_seq_ctl_s {
3819		uint64_t reserved_6_63:58;
3820		uint64_t seq_complete:1;
3821		uint64_t seq_sel:4;
3822		uint64_t init_start:1;
3823	} s;
3824	struct cvmx_lmcx_seq_ctl_s cn70xx;
3825	struct cvmx_lmcx_seq_ctl_s cn70xxp1;
3826	struct cvmx_lmcx_seq_ctl_s cn73xx;
3827	struct cvmx_lmcx_seq_ctl_s cn78xx;
3828	struct cvmx_lmcx_seq_ctl_s cn78xxp1;
3829	struct cvmx_lmcx_seq_ctl_s cnf75xx;
3830};
3831
3832/**
3833 * cvmx_lmc#_slot_ctl0
3834 *
3835 * This register is an assortment of control fields needed by the memory
3836 * controller. If software has not previously written to this register
3837 * (since the last DRESET), hardware updates the fields in this register to
3838 * the minimum allowed value when any of LMC()_RLEVEL_RANK(),
3839 * LMC()_WLEVEL_RANK(), LMC()_CONTROL, and LMC()_MODEREG_PARAMS0 registers
3840 * change. Ideally, only read this register after LMC has been initialized and
3841 * LMC()_RLEVEL_RANK(), LMC()_WLEVEL_RANK() have valid data.
3842 *
3843 * The interpretation of the fields in this register depends on
3844 * LMC(0)_CONFIG[DDR2T]:
3845 *
3846 * * If LMC()_CONFIG[DDR2T]=1, (FieldValue + 4) is the minimum CK cycles
3847 * between when the DRAM part registers CAS commands of the first and
3848 * second types from different cache blocks.
3849 *
3850 * If LMC()_CONFIG[DDR2T]=0, (FieldValue + 3) is the minimum CK cycles
3851 * between when the DRAM part registers CAS commands of the first and second
3852 * types from different cache blocks.
3853 * FieldValue = 0 is always illegal in this case.
3854 * The hardware-calculated minimums for these fields are shown in
3855 * LMC(0)_SLOT_CTL0 Hardware-Calculated Minimums.
3856 */
3857union cvmx_lmcx_slot_ctl0 {
3858	u64 u64;
3859	struct cvmx_lmcx_slot_ctl0_s {
3860		uint64_t reserved_50_63:14;
3861		uint64_t w2r_l_init_ext:1;
3862		uint64_t w2r_init_ext:1;
3863		uint64_t w2w_l_init:6;
3864		uint64_t w2r_l_init:6;
3865		uint64_t r2w_l_init:6;
3866		uint64_t r2r_l_init:6;
3867		uint64_t w2w_init:6;
3868		uint64_t w2r_init:6;
3869		uint64_t r2w_init:6;
3870		uint64_t r2r_init:6;
3871	} s;
3872	struct cvmx_lmcx_slot_ctl0_cn61xx {
3873		uint64_t reserved_24_63:40;
3874		uint64_t w2w_init:6;
3875		uint64_t w2r_init:6;
3876		uint64_t r2w_init:6;
3877		uint64_t r2r_init:6;
3878	} cn61xx;
3879	struct cvmx_lmcx_slot_ctl0_cn61xx cn63xx;
3880	struct cvmx_lmcx_slot_ctl0_cn61xx cn63xxp1;
3881	struct cvmx_lmcx_slot_ctl0_cn61xx cn66xx;
3882	struct cvmx_lmcx_slot_ctl0_cn61xx cn68xx;
3883	struct cvmx_lmcx_slot_ctl0_cn61xx cn68xxp1;
3884	struct cvmx_lmcx_slot_ctl0_cn70xx {
3885		uint64_t reserved_48_63:16;
3886		uint64_t w2w_l_init:6;
3887		uint64_t w2r_l_init:6;
3888		uint64_t r2w_l_init:6;
3889		uint64_t r2r_l_init:6;
3890		uint64_t w2w_init:6;
3891		uint64_t w2r_init:6;
3892		uint64_t r2w_init:6;
3893		uint64_t r2r_init:6;
3894	} cn70xx;
3895	struct cvmx_lmcx_slot_ctl0_cn70xx cn70xxp1;
3896	struct cvmx_lmcx_slot_ctl0_s cn73xx;
3897	struct cvmx_lmcx_slot_ctl0_s cn78xx;
3898	struct cvmx_lmcx_slot_ctl0_s cn78xxp1;
3899	struct cvmx_lmcx_slot_ctl0_cn61xx cnf71xx;
3900	struct cvmx_lmcx_slot_ctl0_s cnf75xx;
3901};
3902
3903/**
3904 * cvmx_lmc#_slot_ctl1
3905 *
3906 * This register is an assortment of control fields needed by the memory
3907 * controller. If software has not previously written to this register
3908 * (since the last DRESET), hardware updates the fields in this register to
3909 * the minimum allowed value when any of LMC()_RLEVEL_RANK(),
3910 * LMC()_WLEVEL_RANK(), LMC()_CONTROL and LMC()_MODEREG_PARAMS0 change.
3911 * Ideally, only read this register after LMC has been initialized and
3912 * LMC()_RLEVEL_RANK(), LMC()_WLEVEL_RANK() have valid data.
3913 *
3914 * The interpretation of the fields in this CSR depends on
3915 * LMC(0)_CONFIG[DDR2T]:
3916 *
3917 * * If LMC()_CONFIG[DDR2T]=1, (FieldValue + 4) is the minimum CK cycles
3918 * between when the DRAM part registers CAS commands of the first and
3919 * second types from different cache blocks.
3920 *
3921 * * If LMC()_CONFIG[DDR2T]=0, (FieldValue + 3) is the minimum CK cycles
3922 * between when the DRAM part registers CAS commands of the first and
3923 * second types from different cache blocks.
3924 * FieldValue = 0 is always illegal in this case.
3925 *
3926 * The hardware-calculated minimums for these fields are shown in
3927 * LMC(0)_SLOT_CTL1 Hardware-Calculated Minimums.
3928 */
3929union cvmx_lmcx_slot_ctl1 {
3930	u64 u64;
3931	struct cvmx_lmcx_slot_ctl1_s {
3932		uint64_t reserved_24_63:40;
3933		uint64_t w2w_xrank_init:6;
3934		uint64_t w2r_xrank_init:6;
3935		uint64_t r2w_xrank_init:6;
3936		uint64_t r2r_xrank_init:6;
3937	} s;
3938	struct cvmx_lmcx_slot_ctl1_s cn61xx;
3939	struct cvmx_lmcx_slot_ctl1_s cn63xx;
3940	struct cvmx_lmcx_slot_ctl1_s cn63xxp1;
3941	struct cvmx_lmcx_slot_ctl1_s cn66xx;
3942	struct cvmx_lmcx_slot_ctl1_s cn68xx;
3943	struct cvmx_lmcx_slot_ctl1_s cn68xxp1;
3944	struct cvmx_lmcx_slot_ctl1_s cn70xx;
3945	struct cvmx_lmcx_slot_ctl1_s cn70xxp1;
3946	struct cvmx_lmcx_slot_ctl1_s cn73xx;
3947	struct cvmx_lmcx_slot_ctl1_s cn78xx;
3948	struct cvmx_lmcx_slot_ctl1_s cn78xxp1;
3949	struct cvmx_lmcx_slot_ctl1_s cnf71xx;
3950	struct cvmx_lmcx_slot_ctl1_s cnf75xx;
3951};
3952
3953/**
3954 * cvmx_lmc#_slot_ctl2
3955 *
3956 * This register is an assortment of control fields needed by the memory
3957 * controller. If software has not previously written to this register
3958 * (since the last DRESET), hardware updates the fields in this register
3959 * to the minimum allowed value when any of LMC()_RLEVEL_RANK(),
3960 * LMC()_WLEVEL_RANK(), LMC()_CONTROL and LMC()_MODEREG_PARAMS0 change.
3961 * Ideally, only read this register after LMC has been initialized and
3962 * LMC()_RLEVEL_RANK(), LMC()_WLEVEL_RANK() have valid data.
3963 *
3964 * The interpretation of the fields in this CSR depends on LMC(0)_CONFIG[DDR2T]:
3965 *
3966 * * If LMC()_CONFIG[DDR2T] = 1, (FieldValue + 4) is the minimum CK cycles
3967 * between when the DRAM part registers CAS commands of the first and
3968 * second types from different cache blocks.
3969 *
3970 * * If LMC()_CONFIG[DDR2T] = 0, (FieldValue + 3) is the minimum CK cycles
3971 * between when the DRAM part registers CAS commands of the first and second
3972 * types from different cache blocks.
3973 * FieldValue = 0 is always illegal in this case.
3974 *
3975 * The hardware-calculated minimums for these fields are shown in LMC Registers.
3976 */
3977union cvmx_lmcx_slot_ctl2 {
3978	u64 u64;
3979	struct cvmx_lmcx_slot_ctl2_s {
3980		uint64_t reserved_24_63:40;
3981		uint64_t w2w_xdimm_init:6;
3982		uint64_t w2r_xdimm_init:6;
3983		uint64_t r2w_xdimm_init:6;
3984		uint64_t r2r_xdimm_init:6;
3985	} s;
3986	struct cvmx_lmcx_slot_ctl2_s cn61xx;
3987	struct cvmx_lmcx_slot_ctl2_s cn63xx;
3988	struct cvmx_lmcx_slot_ctl2_s cn63xxp1;
3989	struct cvmx_lmcx_slot_ctl2_s cn66xx;
3990	struct cvmx_lmcx_slot_ctl2_s cn68xx;
3991	struct cvmx_lmcx_slot_ctl2_s cn68xxp1;
3992	struct cvmx_lmcx_slot_ctl2_s cn70xx;
3993	struct cvmx_lmcx_slot_ctl2_s cn70xxp1;
3994	struct cvmx_lmcx_slot_ctl2_s cn73xx;
3995	struct cvmx_lmcx_slot_ctl2_s cn78xx;
3996	struct cvmx_lmcx_slot_ctl2_s cn78xxp1;
3997	struct cvmx_lmcx_slot_ctl2_s cnf71xx;
3998	struct cvmx_lmcx_slot_ctl2_s cnf75xx;
3999};
4000
4001/**
4002 * cvmx_lmc#_slot_ctl3
4003 *
4004 * This register is an assortment of control fields needed by the memory
4005 * controller. If software has not previously written to this register
4006 * (since the last DRESET), hardware updates the fields in this register
4007 * to the minimum allowed value when any of LMC()_RLEVEL_RANK(),
4008 * LMC()_WLEVEL_RANK(), LMC()_CONTROL and LMC()_MODEREG_PARAMS0 change.
4009 * Ideally, only read this register after LMC has been initialized and
4010 * LMC()_RLEVEL_RANK(), LMC()_WLEVEL_RANK() have valid data.
4011 *
4012 * The interpretation of the fields in this CSR depends on LMC(0)_CONFIG[DDR2T]:
4013 *
4014 * * If LMC()_CONFIG[DDR2T] = 1, (FieldValue + 4) is the minimum CK cycles
4015 * between when the DRAM part registers CAS commands of the first and
4016 * second types from different cache blocks.
4017 *
4018 * * If LMC()_CONFIG[DDR2T] = 0, (FieldValue + 3) is the minimum CK cycles
4019 * between when the DRAM part registers CAS commands of the first and second
4020 * types from different cache blocks.
4021 * FieldValue = 0 is always illegal in this case.
4022 *
4023 * The hardware-calculated minimums for these fields are shown in LMC Registers.
4024 */
4025union cvmx_lmcx_slot_ctl3 {
4026	u64 u64;
4027	struct cvmx_lmcx_slot_ctl3_s {
4028		uint64_t reserved_50_63:14;
4029		uint64_t w2r_l_xrank_init_ext:1;
4030		uint64_t w2r_xrank_init_ext:1;
4031		uint64_t w2w_l_xrank_init:6;
4032		uint64_t w2r_l_xrank_init:6;
4033		uint64_t r2w_l_xrank_init:6;
4034		uint64_t r2r_l_xrank_init:6;
4035		uint64_t w2w_xrank_init:6;
4036		uint64_t w2r_xrank_init:6;
4037		uint64_t r2w_xrank_init:6;
4038		uint64_t r2r_xrank_init:6;
4039	} s;
4040	struct cvmx_lmcx_slot_ctl3_s cn73xx;
4041	struct cvmx_lmcx_slot_ctl3_s cn78xx;
4042	struct cvmx_lmcx_slot_ctl3_s cnf75xx;
4043};
4044
4045/**
4046 * cvmx_lmc#_timing_params0
4047 */
4048union cvmx_lmcx_timing_params0 {
4049	u64 u64;
4050	struct cvmx_lmcx_timing_params0_s {
4051		uint64_t reserved_54_63:10;
4052		uint64_t tbcw:6;
4053		uint64_t reserved_26_47:22;
4054		uint64_t tmrd:4;
4055		uint64_t reserved_8_21:14;
4056		uint64_t tckeon:8;
4057	} s;
4058	struct cvmx_lmcx_timing_params0_cn61xx {
4059		uint64_t reserved_47_63:17;
4060		uint64_t trp_ext:1;
4061		uint64_t tcksre:4;
4062		uint64_t trp:4;
4063		uint64_t tzqinit:4;
4064		uint64_t tdllk:4;
4065		uint64_t tmod:4;
4066		uint64_t tmrd:4;
4067		uint64_t txpr:4;
4068		uint64_t tcke:4;
4069		uint64_t tzqcs:4;
4070		uint64_t reserved_0_9:10;
4071	} cn61xx;
4072	struct cvmx_lmcx_timing_params0_cn61xx cn63xx;
4073	struct cvmx_lmcx_timing_params0_cn63xxp1 {
4074		uint64_t reserved_46_63:18;
4075		uint64_t tcksre:4;
4076		uint64_t trp:4;
4077		uint64_t tzqinit:4;
4078		uint64_t tdllk:4;
4079		uint64_t tmod:4;
4080		uint64_t tmrd:4;
4081		uint64_t txpr:4;
4082		uint64_t tcke:4;
4083		uint64_t tzqcs:4;
4084		uint64_t tckeon:10;
4085	} cn63xxp1;
4086	struct cvmx_lmcx_timing_params0_cn61xx cn66xx;
4087	struct cvmx_lmcx_timing_params0_cn61xx cn68xx;
4088	struct cvmx_lmcx_timing_params0_cn61xx cn68xxp1;
4089	struct cvmx_lmcx_timing_params0_cn70xx {
4090		uint64_t reserved_48_63:16;
4091		uint64_t tcksre:4;
4092		uint64_t trp:5;
4093		uint64_t tzqinit:4;
4094		uint64_t tdllk:4;
4095		uint64_t tmod:5;
4096		uint64_t tmrd:4;
4097		uint64_t txpr:6;
4098		uint64_t tcke:4;
4099		uint64_t tzqcs:4;
4100		uint64_t reserved_0_7:8;
4101	} cn70xx;
4102	struct cvmx_lmcx_timing_params0_cn70xx cn70xxp1;
4103	struct cvmx_lmcx_timing_params0_cn73xx {
4104		uint64_t reserved_54_63:10;
4105		uint64_t tbcw:6;
4106		uint64_t tcksre:4;
4107		uint64_t trp:5;
4108		uint64_t tzqinit:4;
4109		uint64_t tdllk:4;
4110		uint64_t tmod:5;
4111		uint64_t tmrd:4;
4112		uint64_t txpr:6;
4113		uint64_t tcke:4;
4114		uint64_t tzqcs:4;
4115		uint64_t reserved_0_7:8;
4116	} cn73xx;
4117	struct cvmx_lmcx_timing_params0_cn73xx cn78xx;
4118	struct cvmx_lmcx_timing_params0_cn73xx cn78xxp1;
4119	struct cvmx_lmcx_timing_params0_cn61xx cnf71xx;
4120	struct cvmx_lmcx_timing_params0_cn73xx cnf75xx;
4121};
4122
4123/**
4124 * cvmx_lmc#_timing_params1
4125 */
4126union cvmx_lmcx_timing_params1 {
4127	u64 u64;
4128	struct cvmx_lmcx_timing_params1_s {
4129		uint64_t reserved_59_63:5;
4130		uint64_t txp_ext:1;
4131		uint64_t trcd_ext:1;
4132		uint64_t tpdm_full_cycle_ena:1;
4133		uint64_t trfc_dlr:7;
4134		uint64_t reserved_4_48:45;
4135		uint64_t tmprr:4;
4136	} s;
4137	struct cvmx_lmcx_timing_params1_cn61xx {
4138		uint64_t reserved_47_63:17;
4139		uint64_t tras_ext:1;
4140		uint64_t txpdll:5;
4141		uint64_t tfaw:5;
4142		uint64_t twldqsen:4;
4143		uint64_t twlmrd:4;
4144		uint64_t txp:3;
4145		uint64_t trrd:3;
4146		uint64_t trfc:5;
4147		uint64_t twtr:4;
4148		uint64_t trcd:4;
4149		uint64_t tras:5;
4150		uint64_t tmprr:4;
4151	} cn61xx;
4152	struct cvmx_lmcx_timing_params1_cn61xx cn63xx;
4153	struct cvmx_lmcx_timing_params1_cn63xxp1 {
4154		uint64_t reserved_46_63:18;
4155		uint64_t txpdll:5;
4156		uint64_t tfaw:5;
4157		uint64_t twldqsen:4;
4158		uint64_t twlmrd:4;
4159		uint64_t txp:3;
4160		uint64_t trrd:3;
4161		uint64_t trfc:5;
4162		uint64_t twtr:4;
4163		uint64_t trcd:4;
4164		uint64_t tras:5;
4165		uint64_t tmprr:4;
4166	} cn63xxp1;
4167	struct cvmx_lmcx_timing_params1_cn61xx cn66xx;
4168	struct cvmx_lmcx_timing_params1_cn61xx cn68xx;
4169	struct cvmx_lmcx_timing_params1_cn61xx cn68xxp1;
4170	struct cvmx_lmcx_timing_params1_cn70xx {
4171		uint64_t reserved_49_63:15;
4172		uint64_t txpdll:5;
4173		uint64_t tfaw:5;
4174		uint64_t twldqsen:4;
4175		uint64_t twlmrd:4;
4176		uint64_t txp:3;
4177		uint64_t trrd:3;
4178		uint64_t trfc:7;
4179		uint64_t twtr:4;
4180		uint64_t trcd:4;
4181		uint64_t tras:6;
4182		uint64_t tmprr:4;
4183	} cn70xx;
4184	struct cvmx_lmcx_timing_params1_cn70xx cn70xxp1;
4185	struct cvmx_lmcx_timing_params1_cn73xx {
4186		uint64_t reserved_59_63:5;
4187		uint64_t txp_ext:1;
4188		uint64_t trcd_ext:1;
4189		uint64_t tpdm_full_cycle_ena:1;
4190		uint64_t trfc_dlr:7;
4191		uint64_t txpdll:5;
4192		uint64_t tfaw:5;
4193		uint64_t twldqsen:4;
4194		uint64_t twlmrd:4;
4195		uint64_t txp:3;
4196		uint64_t trrd:3;
4197		uint64_t trfc:7;
4198		uint64_t twtr:4;
4199		uint64_t trcd:4;
4200		uint64_t tras:6;
4201		uint64_t tmprr:4;
4202	} cn73xx;
4203	struct cvmx_lmcx_timing_params1_cn73xx cn78xx;
4204	struct cvmx_lmcx_timing_params1_cn73xx cn78xxp1;
4205	struct cvmx_lmcx_timing_params1_cn61xx cnf71xx;
4206	struct cvmx_lmcx_timing_params1_cn73xx cnf75xx;
4207};
4208
4209/**
4210 * cvmx_lmc#_timing_params2
4211 *
4212 * This register sets timing parameters for DDR4.
4213 *
4214 */
4215union cvmx_lmcx_timing_params2 {
4216	u64 u64;
4217	struct cvmx_lmcx_timing_params2_s {
4218		uint64_t reserved_16_63:48;
4219		uint64_t trrd_l_ext:1;
4220		uint64_t trtp:4;
4221		uint64_t t_rw_op_max:4;
4222		uint64_t twtr_l:4;
4223		uint64_t trrd_l:3;
4224	} s;
4225	struct cvmx_lmcx_timing_params2_cn70xx {
4226		uint64_t reserved_15_63:49;
4227		uint64_t trtp:4;
4228		uint64_t t_rw_op_max:4;
4229		uint64_t twtr_l:4;
4230		uint64_t trrd_l:3;
4231	} cn70xx;
4232	struct cvmx_lmcx_timing_params2_cn70xx cn70xxp1;
4233	struct cvmx_lmcx_timing_params2_s cn73xx;
4234	struct cvmx_lmcx_timing_params2_s cn78xx;
4235	struct cvmx_lmcx_timing_params2_s cn78xxp1;
4236	struct cvmx_lmcx_timing_params2_s cnf75xx;
4237};
4238
4239/**
4240 * cvmx_lmc#_tro_ctl
4241 *
4242 * LMC_TRO_CTL = LMC Temperature Ring Osc Control
4243 * This register is an assortment of various control fields needed to
4244 * control the temperature ring oscillator
4245 *
4246 * Notes:
4247 * To bring up the temperature ring oscillator, write TRESET to 0, and
4248 * follow by initializing RCLK_CNT to desired value
4249 */
4250union cvmx_lmcx_tro_ctl {
4251	u64 u64;
4252	struct cvmx_lmcx_tro_ctl_s {
4253		uint64_t reserved_33_63:31;
4254		uint64_t rclk_cnt:32;
4255		uint64_t treset:1;
4256	} s;
4257	struct cvmx_lmcx_tro_ctl_s cn61xx;
4258	struct cvmx_lmcx_tro_ctl_s cn63xx;
4259	struct cvmx_lmcx_tro_ctl_s cn63xxp1;
4260	struct cvmx_lmcx_tro_ctl_s cn66xx;
4261	struct cvmx_lmcx_tro_ctl_s cn68xx;
4262	struct cvmx_lmcx_tro_ctl_s cn68xxp1;
4263	struct cvmx_lmcx_tro_ctl_s cnf71xx;
4264};
4265
4266/**
4267 * cvmx_lmc#_tro_stat
4268 *
4269 * LMC_TRO_STAT = LMC Temperature Ring Osc Status
4270 * This register is an assortment of various control fields needed to
4271 * control the temperature ring oscillator
4272 */
4273union cvmx_lmcx_tro_stat {
4274	u64 u64;
4275	struct cvmx_lmcx_tro_stat_s {
4276		uint64_t reserved_32_63:32;
4277		uint64_t ring_cnt:32;
4278	} s;
4279	struct cvmx_lmcx_tro_stat_s cn61xx;
4280	struct cvmx_lmcx_tro_stat_s cn63xx;
4281	struct cvmx_lmcx_tro_stat_s cn63xxp1;
4282	struct cvmx_lmcx_tro_stat_s cn66xx;
4283	struct cvmx_lmcx_tro_stat_s cn68xx;
4284	struct cvmx_lmcx_tro_stat_s cn68xxp1;
4285	struct cvmx_lmcx_tro_stat_s cnf71xx;
4286};
4287
4288/**
4289 * cvmx_lmc#_wlevel_ctl
4290 */
4291union cvmx_lmcx_wlevel_ctl {
4292	u64 u64;
4293	struct cvmx_lmcx_wlevel_ctl_s {
4294		uint64_t reserved_22_63:42;
4295		uint64_t rtt_nom:3;
4296		uint64_t bitmask:8;
4297		uint64_t or_dis:1;
4298		uint64_t sset:1;
4299		uint64_t lanemask:9;
4300	} s;
4301	struct cvmx_lmcx_wlevel_ctl_s cn61xx;
4302	struct cvmx_lmcx_wlevel_ctl_s cn63xx;
4303	struct cvmx_lmcx_wlevel_ctl_cn63xxp1 {
4304		uint64_t reserved_10_63:54;
4305		uint64_t sset:1;
4306		uint64_t lanemask:9;
4307	} cn63xxp1;
4308	struct cvmx_lmcx_wlevel_ctl_s cn66xx;
4309	struct cvmx_lmcx_wlevel_ctl_s cn68xx;
4310	struct cvmx_lmcx_wlevel_ctl_s cn68xxp1;
4311	struct cvmx_lmcx_wlevel_ctl_s cn70xx;
4312	struct cvmx_lmcx_wlevel_ctl_s cn70xxp1;
4313	struct cvmx_lmcx_wlevel_ctl_s cn73xx;
4314	struct cvmx_lmcx_wlevel_ctl_s cn78xx;
4315	struct cvmx_lmcx_wlevel_ctl_s cn78xxp1;
4316	struct cvmx_lmcx_wlevel_ctl_s cnf71xx;
4317	struct cvmx_lmcx_wlevel_ctl_s cnf75xx;
4318};
4319
4320/**
4321 * cvmx_lmc#_wlevel_dbg
4322 *
4323 * A given write of LMC()_WLEVEL_DBG returns the write leveling pass/fail
4324 * results for all possible delay settings (i.e. the BITMASK) for only one
4325 * byte in the last rank that the hardware write leveled.
4326 * LMC()_WLEVEL_DBG[BYTE] selects the particular byte. To get these
4327 * pass/fail results for a different rank, you must run the hardware write
4328 * leveling again. For example, it is possible to get the [BITMASK] results
4329 * for every byte of every rank if you run write leveling separately for
4330 * each rank, probing LMC()_WLEVEL_DBG between each write-leveling.
4331 */
4332union cvmx_lmcx_wlevel_dbg {
4333	u64 u64;
4334	struct cvmx_lmcx_wlevel_dbg_s {
4335		uint64_t reserved_12_63:52;
4336		uint64_t bitmask:8;
4337		uint64_t byte:4;
4338	} s;
4339	struct cvmx_lmcx_wlevel_dbg_s cn61xx;
4340	struct cvmx_lmcx_wlevel_dbg_s cn63xx;
4341	struct cvmx_lmcx_wlevel_dbg_s cn63xxp1;
4342	struct cvmx_lmcx_wlevel_dbg_s cn66xx;
4343	struct cvmx_lmcx_wlevel_dbg_s cn68xx;
4344	struct cvmx_lmcx_wlevel_dbg_s cn68xxp1;
4345	struct cvmx_lmcx_wlevel_dbg_s cn70xx;
4346	struct cvmx_lmcx_wlevel_dbg_s cn70xxp1;
4347	struct cvmx_lmcx_wlevel_dbg_s cn73xx;
4348	struct cvmx_lmcx_wlevel_dbg_s cn78xx;
4349	struct cvmx_lmcx_wlevel_dbg_s cn78xxp1;
4350	struct cvmx_lmcx_wlevel_dbg_s cnf71xx;
4351	struct cvmx_lmcx_wlevel_dbg_s cnf75xx;
4352};
4353
4354/**
4355 * cvmx_lmc#_wlevel_rank#
4356 *
4357 * Four of these CSRs exist per LMC, one for each rank. Write level setting
4358 * is measured in units of 1/8 CK, so the below BYTEn values can range over
4359 * 4 CK cycles. Assuming LMC()_WLEVEL_CTL[SSET]=0, the BYTEn<2:0> values are
4360 * not used during write leveling, and they are overwritten by the hardware
4361 * as part of the write leveling sequence. (Hardware sets [STATUS] to 3 after
4362 * hardware write leveling completes for the rank). Software needs to set
4363 * BYTEn<4:3> bits.
4364 *
4365 * Each CSR may also be written by software, but not while a write leveling
4366 * sequence is in progress. (Hardware sets [STATUS] to 1 after a CSR write.)
4367 * Software initiates a hardware write-leveling sequence by programming
4368 * LMC()_WLEVEL_CTL and writing RANKMASK and INIT_START=1 with SEQ_SEL=6 in
4369 * LMC*0_CONFIG.
4370 *
4371 * LMC will then step through and accumulate write leveling results for 8
4372 * unique delay settings (twice), starting at a delay of LMC()_WLEVEL_RANK()
4373 * [BYTEn<4:3>]* 8 CK increasing by 1/8 CK each setting. Hardware will then
4374 * set LMC()_WLEVEL_RANK()[BYTEn<2:0>] to indicate the first write leveling
4375 * result of 1 that followed a result of 0 during the sequence by searching
4376 * for a '1100' pattern in the generated bitmask, except that LMC will always
4377 * write LMC()_WLEVEL_RANK()[BYTEn<0>]=0. If hardware is unable to find a match
4378 * for a '1100' pattern, then hardware sets LMC()_WLEVEL_RANK() [BYTEn<2:0>]
4379 * to 0x4. See LMC()_WLEVEL_CTL.
4380 *
4381 * LMC()_WLEVEL_RANKi values for ranks i without attached DRAM should be set
4382 * such that they do not increase the range of possible BYTE values for any
4383 * byte lane. The easiest way to do this is to set LMC()_WLEVEL_RANKi =
4384 * LMC()_WLEVEL_RANKj, where j is some rank with attached DRAM whose
4385 * LMC()_WLEVEL_RANKj is already fully initialized.
4386 */
4387union cvmx_lmcx_wlevel_rankx {
4388	u64 u64;
4389	struct cvmx_lmcx_wlevel_rankx_s {
4390		uint64_t reserved_47_63:17;
4391		uint64_t status:2;
4392		uint64_t byte8:5;
4393		uint64_t byte7:5;
4394		uint64_t byte6:5;
4395		uint64_t byte5:5;
4396		uint64_t byte4:5;
4397		uint64_t byte3:5;
4398		uint64_t byte2:5;
4399		uint64_t byte1:5;
4400		uint64_t byte0:5;
4401	} s;
4402	struct cvmx_lmcx_wlevel_rankx_s cn61xx;
4403	struct cvmx_lmcx_wlevel_rankx_s cn63xx;
4404	struct cvmx_lmcx_wlevel_rankx_s cn63xxp1;
4405	struct cvmx_lmcx_wlevel_rankx_s cn66xx;
4406	struct cvmx_lmcx_wlevel_rankx_s cn68xx;
4407	struct cvmx_lmcx_wlevel_rankx_s cn68xxp1;
4408	struct cvmx_lmcx_wlevel_rankx_s cn70xx;
4409	struct cvmx_lmcx_wlevel_rankx_s cn70xxp1;
4410	struct cvmx_lmcx_wlevel_rankx_s cn73xx;
4411	struct cvmx_lmcx_wlevel_rankx_s cn78xx;
4412	struct cvmx_lmcx_wlevel_rankx_s cn78xxp1;
4413	struct cvmx_lmcx_wlevel_rankx_s cnf71xx;
4414	struct cvmx_lmcx_wlevel_rankx_s cnf75xx;
4415};
4416
4417/**
4418 * cvmx_lmc#_wodt_ctl0
4419 *
4420 * LMC_WODT_CTL0 = LMC Write OnDieTermination control
4421 * See the description in LMC_WODT_CTL1.
4422 *
4423 * Notes:
4424 * Together, the LMC_WODT_CTL1 and LMC_WODT_CTL0 CSRs control the write
4425 * ODT mask.  See LMC_WODT_CTL1.
4426 *
4427 */
4428union cvmx_lmcx_wodt_ctl0 {
4429	u64 u64;
4430	struct cvmx_lmcx_wodt_ctl0_s {
4431		uint64_t reserved_0_63:64;
4432	} s;
4433	struct cvmx_lmcx_wodt_ctl0_cn30xx {
4434		uint64_t reserved_32_63:32;
4435		uint64_t wodt_d1_r1:8;
4436		uint64_t wodt_d1_r0:8;
4437		uint64_t wodt_d0_r1:8;
4438		uint64_t wodt_d0_r0:8;
4439	} cn30xx;
4440	struct cvmx_lmcx_wodt_ctl0_cn30xx cn31xx;
4441	struct cvmx_lmcx_wodt_ctl0_cn38xx {
4442		uint64_t reserved_32_63:32;
4443		uint64_t wodt_hi3:4;
4444		uint64_t wodt_hi2:4;
4445		uint64_t wodt_hi1:4;
4446		uint64_t wodt_hi0:4;
4447		uint64_t wodt_lo3:4;
4448		uint64_t wodt_lo2:4;
4449		uint64_t wodt_lo1:4;
4450		uint64_t wodt_lo0:4;
4451	} cn38xx;
4452	struct cvmx_lmcx_wodt_ctl0_cn38xx cn38xxp2;
4453	struct cvmx_lmcx_wodt_ctl0_cn38xx cn50xx;
4454	struct cvmx_lmcx_wodt_ctl0_cn30xx cn52xx;
4455	struct cvmx_lmcx_wodt_ctl0_cn30xx cn52xxp1;
4456	struct cvmx_lmcx_wodt_ctl0_cn30xx cn56xx;
4457	struct cvmx_lmcx_wodt_ctl0_cn30xx cn56xxp1;
4458	struct cvmx_lmcx_wodt_ctl0_cn38xx cn58xx;
4459	struct cvmx_lmcx_wodt_ctl0_cn38xx cn58xxp1;
4460};
4461
4462/**
4463 * cvmx_lmc#_wodt_ctl1
4464 *
4465 * LMC_WODT_CTL1 = LMC Write OnDieTermination control
4466 * System designers may desire to terminate DQ/DQS/DM lines for higher
4467 * frequency DDR operations (667MHz and faster), especially on a multi-rank
4468 * system. DDR2 DQ/DM/DQS I/O's have built in Termination resistor that can
4469 * be turned on or off by the controller, after meeting tAOND and tAOF
4470 * timing requirements. Each Rank has its own ODT pin that fans out to all
4471 * the memory parts in that DIMM. System designers may prefer different
4472 * combinations of ODT ON's for read and write into different ranks. Octeon
4473 * supports full programmability by way of the mask register below.
4474 * Each Rank position has its own 8-bit programmable field.
4475 * When the controller does a write to that rank, it sets the 8 ODT pins
4476 * to the MASK pins below. For eg., When doing a write into Rank0, a system
4477 * designer may desire to terminate the lines with the resistor on
4478 * Dimm0/Rank1. The mask WODT_D0_R0 would then be [00000010]. If ODT feature
4479 * is not desired, the DDR parts can be programmed to not look at these pins by
4480 * writing 0 in QS_DIC. Octeon drives the appropriate mask values on the ODT
4481 * pins by default.
4482 * If this feature is not required, write 0 in this register.
4483 *
4484 * Notes:
4485 * Together, the LMC_WODT_CTL1 and LMC_WODT_CTL0 CSRs control the write
4486 * ODT mask. When a given RANK is selected, the WODT mask for that RANK
4487 * is used.  The resulting WODT mask is driven to the DIMMs in the following
4488 * manner:
4489 *            BUNK_ENA=1     BUNK_ENA=0
4490 * Mask[7] -> DIMM3, RANK1    DIMM3
4491 * Mask[6] -> DIMM3, RANK0
4492 * Mask[5] -> DIMM2, RANK1    DIMM2
4493 * Mask[4] -> DIMM2, RANK0
4494 * Mask[3] -> DIMM1, RANK1    DIMM1
4495 * Mask[2] -> DIMM1, RANK0
4496 * Mask[1] -> DIMM0, RANK1    DIMM0
4497 * Mask[0] -> DIMM0, RANK0
4498 */
4499union cvmx_lmcx_wodt_ctl1 {
4500	u64 u64;
4501	struct cvmx_lmcx_wodt_ctl1_s {
4502		uint64_t reserved_32_63:32;
4503		uint64_t wodt_d3_r1:8;
4504		uint64_t wodt_d3_r0:8;
4505		uint64_t wodt_d2_r1:8;
4506		uint64_t wodt_d2_r0:8;
4507	} s;
4508	struct cvmx_lmcx_wodt_ctl1_s cn30xx;
4509	struct cvmx_lmcx_wodt_ctl1_s cn31xx;
4510	struct cvmx_lmcx_wodt_ctl1_s cn52xx;
4511	struct cvmx_lmcx_wodt_ctl1_s cn52xxp1;
4512	struct cvmx_lmcx_wodt_ctl1_s cn56xx;
4513	struct cvmx_lmcx_wodt_ctl1_s cn56xxp1;
4514};
4515
4516/**
4517 * cvmx_lmc#_wodt_mask
4518 *
4519 * System designers may desire to terminate DQ/DQS lines for higher-frequency
4520 * DDR operations, especially on a multirank system. DDR3 DQ/DQS I/Os have
4521 * built-in termination resistors that can be turned on or off by the
4522 * controller, after meeting TAOND and TAOF timing requirements. Each rank
4523 * has its own ODT pin that fans out to all of the memory parts in that DIMM.
4524 * System designers may prefer different combinations of ODT ONs for write
4525 * operations into different ranks. CNXXXX supports full programmability by
4526 * way of the mask register below. Each rank position has its own 8-bit
4527 * programmable field. When the controller does a write to that rank,
4528 * it sets the four ODT pins to the mask pins below. For example, when
4529 * doing a write into Rank0, a system designer may desire to terminate the
4530 * lines with the resistor on DIMM0/Rank1. The mask [WODT_D0_R0] would then
4531 * be [00000010].
4532 *
4533 * CNXXXX drives the appropriate mask values on the ODT pins by default.
4534 * If this feature is not required, write 0x0 in this register. When a
4535 * given RANK is selected, the WODT mask for that RANK is used. The
4536 * resulting WODT mask is driven to the DIMMs in the following manner:
4537 */
4538union cvmx_lmcx_wodt_mask {
4539	u64 u64;
4540	struct cvmx_lmcx_wodt_mask_s {
4541		uint64_t wodt_d3_r1:8;
4542		uint64_t wodt_d3_r0:8;
4543		uint64_t wodt_d2_r1:8;
4544		uint64_t wodt_d2_r0:8;
4545		uint64_t wodt_d1_r1:8;
4546		uint64_t wodt_d1_r0:8;
4547		uint64_t wodt_d0_r1:8;
4548		uint64_t wodt_d0_r0:8;
4549	} s;
4550	struct cvmx_lmcx_wodt_mask_s cn61xx;
4551	struct cvmx_lmcx_wodt_mask_s cn63xx;
4552	struct cvmx_lmcx_wodt_mask_s cn63xxp1;
4553	struct cvmx_lmcx_wodt_mask_s cn66xx;
4554	struct cvmx_lmcx_wodt_mask_s cn68xx;
4555	struct cvmx_lmcx_wodt_mask_s cn68xxp1;
4556	struct cvmx_lmcx_wodt_mask_cn70xx {
4557		uint64_t reserved_28_63:36;
4558		uint64_t wodt_d1_r1:4;
4559		uint64_t reserved_20_23:4;
4560		uint64_t wodt_d1_r0:4;
4561		uint64_t reserved_12_15:4;
4562		uint64_t wodt_d0_r1:4;
4563		uint64_t reserved_4_7:4;
4564		uint64_t wodt_d0_r0:4;
4565	} cn70xx;
4566	struct cvmx_lmcx_wodt_mask_cn70xx cn70xxp1;
4567	struct cvmx_lmcx_wodt_mask_cn70xx cn73xx;
4568	struct cvmx_lmcx_wodt_mask_cn70xx cn78xx;
4569	struct cvmx_lmcx_wodt_mask_cn70xx cn78xxp1;
4570	struct cvmx_lmcx_wodt_mask_s cnf71xx;
4571	struct cvmx_lmcx_wodt_mask_cn70xx cnf75xx;
4572};
4573
4574#endif
4575