1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2018-2020 Marvell International Ltd.
4 */
5
6/*
7 * Simple allocate only memory allocator. Used to allocate memory at
8 * application start time.
9 */
10
11#include <asm/global_data.h>
12
13#include <linux/compat.h>
14#include <linux/io.h>
15#include <linux/types.h>
16
17#include <mach/octeon-model.h>
18#include <mach/cvmx-bootmem.h>
19#include <mach/cvmx-coremask.h>
20#include <mach/cvmx-regs.h>
21
22DECLARE_GLOBAL_DATA_PTR;
23
24/**
25 * This is the physical location of a struct cvmx_bootmem_desc
26 * structure in Octeon's memory. Note that dues to addressing
27 * limits or runtime environment it might not be possible to
28 * create a C pointer to this structure.
29 */
30static u64 cvmx_bootmem_desc_addr;
31
32/**
33 * This macro returns the size of a member of a structure.
34 * Logically it is the same as "sizeof(s::field)" in C++, but
35 * C lacks the "::" operator.
36 */
37#define SIZEOF_FIELD(s, field) sizeof(((s *)NULL)->field)
38
39/**
40 * This macro returns a member of the struct cvmx_bootmem_desc
41 * structure. These members can't be directly addressed as
42 * they might be in memory not directly reachable. In the case
43 * where bootmem is compiled with LINUX_HOST, the structure
44 * itself might be located on a remote Octeon. The argument
45 * "field" is the member name of the struct cvmx_bootmem_desc to read.
46 * Regardless of the type of the field, the return type is always
47 * a u64.
48 */
49#define CVMX_BOOTMEM_DESC_GET_FIELD(field)				\
50	__cvmx_bootmem_desc_get(cvmx_bootmem_desc_addr,			\
51				offsetof(struct cvmx_bootmem_desc, field), \
52				SIZEOF_FIELD(struct cvmx_bootmem_desc, field))
53
54/**
55 * This macro writes a member of the struct cvmx_bootmem_desc
56 * structure. These members can't be directly addressed as
57 * they might be in memory not directly reachable. In the case
58 * where bootmem is compiled with LINUX_HOST, the structure
59 * itself might be located on a remote Octeon. The argument
60 * "field" is the member name of the struct cvmx_bootmem_desc to write.
61 */
62#define CVMX_BOOTMEM_DESC_SET_FIELD(field, value)			\
63	__cvmx_bootmem_desc_set(cvmx_bootmem_desc_addr,			\
64				offsetof(struct cvmx_bootmem_desc, field), \
65				SIZEOF_FIELD(struct cvmx_bootmem_desc, field), \
66				value)
67
68/**
69 * This macro returns a member of the
70 * struct cvmx_bootmem_named_block_desc structure. These members can't
71 * be directly addressed as they might be in memory not directly
72 * reachable. In the case where bootmem is compiled with
73 * LINUX_HOST, the structure itself might be located on a remote
74 * Octeon. The argument "field" is the member name of the
75 * struct cvmx_bootmem_named_block_desc to read. Regardless of the type
76 * of the field, the return type is always a u64. The "addr"
77 * parameter is the physical address of the structure.
78 */
79#define CVMX_BOOTMEM_NAMED_GET_FIELD(addr, field)			\
80	__cvmx_bootmem_desc_get(addr,					\
81		offsetof(struct cvmx_bootmem_named_block_desc,  field),	\
82		SIZEOF_FIELD(struct cvmx_bootmem_named_block_desc, field))
83
84/**
85 * This macro writes a member of the struct cvmx_bootmem_named_block_desc
86 * structure. These members can't be directly addressed as
87 * they might be in memory not directly reachable. In the case
88 * where bootmem is compiled with LINUX_HOST, the structure
89 * itself might be located on a remote Octeon. The argument
90 * "field" is the member name of the
91 * struct cvmx_bootmem_named_block_desc to write. The "addr" parameter
92 * is the physical address of the structure.
93 */
94#define CVMX_BOOTMEM_NAMED_SET_FIELD(addr, field, value)		\
95	__cvmx_bootmem_desc_set(addr,					\
96		offsetof(struct cvmx_bootmem_named_block_desc, field),	\
97		SIZEOF_FIELD(struct cvmx_bootmem_named_block_desc, field), \
98				value)
99
100/**
101 * This function is the implementation of the get macros defined
102 * for individual structure members. The argument are generated
103 * by the macros inorder to read only the needed memory.
104 *
105 * @param base   64bit physical address of the complete structure
106 * @param offset Offset from the beginning of the structure to the member being
107 *               accessed.
108 * @param size   Size of the structure member.
109 *
110 * Return: Value of the structure member promoted into a u64.
111 */
112static inline u64 __cvmx_bootmem_desc_get(u64 base, int offset,
113					  int size)
114{
115	base = (1ull << 63) | (base + offset);
116	switch (size) {
117	case 4:
118		return cvmx_read64_uint32(base);
119	case 8:
120		return cvmx_read64_uint64(base);
121	default:
122		return 0;
123	}
124}
125
126/**
127 * This function is the implementation of the set macros defined
128 * for individual structure members. The argument are generated
129 * by the macros in order to write only the needed memory.
130 *
131 * @param base   64bit physical address of the complete structure
132 * @param offset Offset from the beginning of the structure to the member being
133 *               accessed.
134 * @param size   Size of the structure member.
135 * @param value  Value to write into the structure
136 */
137static inline void __cvmx_bootmem_desc_set(u64 base, int offset, int size,
138					   u64 value)
139{
140	base = (1ull << 63) | (base + offset);
141	switch (size) {
142	case 4:
143		cvmx_write64_uint32(base, value);
144		break;
145	case 8:
146		cvmx_write64_uint64(base, value);
147		break;
148	default:
149		break;
150	}
151}
152
153/**
154 * This function returns the address of the bootmem descriptor lock.
155 *
156 * Return: 64-bit address in KSEG0 of the bootmem descriptor block
157 */
158static inline u64 __cvmx_bootmem_get_lock_addr(void)
159{
160	return (1ull << 63) |
161		(cvmx_bootmem_desc_addr + offsetof(struct cvmx_bootmem_desc, lock));
162}
163
164/**
165 * This function retrieves the string name of a named block. It is
166 * more complicated than a simple memcpy() since the named block
167 * descriptor may not be directly accessible.
168 *
169 * @param addr   Physical address of the named block descriptor
170 * @param str    String to receive the named block string name
171 * @param len    Length of the string buffer, which must match the length
172 *               stored in the bootmem descriptor.
173 */
174static void CVMX_BOOTMEM_NAMED_GET_NAME(u64 addr, char *str, int len)
175{
176	int l = len;
177	char *ptr = str;
178
179	addr |= (1ull << 63);
180	addr += offsetof(struct cvmx_bootmem_named_block_desc, name);
181	while (l) {
182		/*
183		 * With big-endian in memory byte order, this gives uniform
184		 * results for the CPU in either big or Little endian mode.
185		 */
186		u64 blob = cvmx_read64_uint64(addr);
187		int sa = 56;
188
189		addr += sizeof(u64);
190		while (l && sa >= 0) {
191			*ptr++ = (char)(blob >> sa);
192			l--;
193			sa -= 8;
194		}
195	}
196	str[len] = 0;
197}
198
199/**
200 * This function stores the string name of a named block. It is
201 * more complicated than a simple memcpy() since the named block
202 * descriptor may not be directly accessible.
203 *
204 * @param addr   Physical address of the named block descriptor
205 * @param str    String to store into the named block string name
206 * @param len    Length of the string buffer, which must match the length
207 *               stored in the bootmem descriptor.
208 */
209void CVMX_BOOTMEM_NAMED_SET_NAME(u64 addr, const char *str, int len)
210{
211	int l = len;
212
213	addr |= (1ull << 63);
214	addr += offsetof(struct cvmx_bootmem_named_block_desc, name);
215
216	while (l) {
217		/*
218		 * With big-endian in memory byte order, this gives uniform
219		 * results for the CPU in either big or Little endian mode.
220		 */
221		u64 blob = 0;
222		int sa = 56;
223
224		while (l && sa >= 0) {
225			u64 c = (u8)(*str++);
226
227			l--;
228			if (l == 0)
229				c = 0;
230			blob |= c << sa;
231			sa -= 8;
232		}
233		cvmx_write64_uint64(addr, blob);
234		addr += sizeof(u64);
235	}
236}
237
238/* See header file for descriptions of functions */
239
240/*
241 * Wrapper functions are provided for reading/writing the size and next block
242 * values as these may not be directly addressible (in 32 bit applications, for
243 * instance.)
244 *
245 * Offsets of data elements in bootmem list, must match
246 * struct cvmx_bootmem_block_header
247 */
248#define NEXT_OFFSET 0
249#define SIZE_OFFSET 8
250
251static void cvmx_bootmem_phy_set_size(u64 addr, u64 size)
252{
253	cvmx_write64_uint64((addr + SIZE_OFFSET) | (1ull << 63), size);
254}
255
256static void cvmx_bootmem_phy_set_next(u64 addr, u64 next)
257{
258	cvmx_write64_uint64((addr + NEXT_OFFSET) | (1ull << 63), next);
259}
260
261static u64 cvmx_bootmem_phy_get_size(u64 addr)
262{
263	return cvmx_read64_uint64((addr + SIZE_OFFSET) | (1ull << 63));
264}
265
266static u64 cvmx_bootmem_phy_get_next(u64 addr)
267{
268	return cvmx_read64_uint64((addr + NEXT_OFFSET) | (1ull << 63));
269}
270
271/**
272 * Check the version information on the bootmem descriptor
273 *
274 * @param exact_match
275 *               Exact major version to check against. A zero means
276 *               check that the version supports named blocks.
277 *
278 * Return: Zero if the version is correct. Negative if the version is
279 *         incorrect. Failures also cause a message to be displayed.
280 */
281static int __cvmx_bootmem_check_version(int exact_match)
282{
283	int major_version;
284
285	major_version = CVMX_BOOTMEM_DESC_GET_FIELD(major_version);
286	if ((major_version > 3) ||
287	    (exact_match && major_version != exact_match)) {
288		debug("ERROR: Incompatible bootmem descriptor version: %d.%d at addr: 0x%llx\n",
289		      major_version,
290		      (int)CVMX_BOOTMEM_DESC_GET_FIELD(minor_version),
291		      CAST_ULL(cvmx_bootmem_desc_addr));
292		return -1;
293	} else {
294		return 0;
295	}
296}
297
298/**
299 * Get the low level bootmem descriptor lock. If no locking
300 * is specified in the flags, then nothing is done.
301 *
302 * @param flags  CVMX_BOOTMEM_FLAG_NO_LOCKING means this functions should do
303 *               nothing. This is used to support nested bootmem calls.
304 */
305static inline void __cvmx_bootmem_lock(u32 flags)
306{
307	if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) {
308		/*
309		 * Unfortunately we can't use the normal cvmx-spinlock code as
310		 * the memory for the bootmem descriptor may be not accessible
311		 * by a C pointer. We use a 64bit XKPHYS address to access the
312		 * memory directly
313		 */
314		u64 lock_addr = (1ull << 63) |
315			(cvmx_bootmem_desc_addr + offsetof(struct cvmx_bootmem_desc,
316							   lock));
317		unsigned int tmp;
318
319		__asm__ __volatile__(".set noreorder\n"
320				     "1: ll   %[tmp], 0(%[addr])\n"
321				     "   bnez %[tmp], 1b\n"
322				     "   li   %[tmp], 1\n"
323				     "   sc   %[tmp], 0(%[addr])\n"
324				     "   beqz %[tmp], 1b\n"
325				     "   nop\n"
326				     ".set reorder\n"
327				     : [tmp] "=&r"(tmp)
328				     : [addr] "r"(lock_addr)
329				     : "memory");
330	}
331}
332
333/**
334 * Release the low level bootmem descriptor lock. If no locking
335 * is specified in the flags, then nothing is done.
336 *
337 * @param flags  CVMX_BOOTMEM_FLAG_NO_LOCKING means this functions should do
338 *               nothing. This is used to support nested bootmem calls.
339 */
340static inline void __cvmx_bootmem_unlock(u32 flags)
341{
342	if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) {
343		/*
344		 * Unfortunately we can't use the normal cvmx-spinlock code as
345		 * the memory for the bootmem descriptor may be not accessible
346		 * by a C pointer. We use a 64bit XKPHYS address to access the
347		 * memory directly
348		 */
349		u64 lock_addr = __cvmx_bootmem_get_lock_addr();
350
351		CVMX_SYNCW;
352		__asm__ __volatile__("sw $0, 0(%[addr])\n"
353				     : : [addr] "r"(lock_addr)
354				     : "memory");
355		CVMX_SYNCW;
356	}
357}
358
359/*
360 * Some of the cvmx-bootmem functions dealing with C pointers are not
361 * supported when we are compiling for CVMX_BUILD_FOR_LINUX_HOST. This
362 * ifndef removes these functions when they aren't needed.
363 *
364 * This functions takes an address range and adjusts it as necessary
365 * to match the ABI that is currently being used.  This is required to
366 * ensure that bootmem_alloc* functions only return valid pointers for
367 * 32 bit ABIs
368 */
369static int __cvmx_validate_mem_range(u64 *min_addr_ptr,
370				     u64 *max_addr_ptr)
371{
372	u64 max_phys = (1ull << 29) - 0x10;	/* KSEG0 */
373
374	*min_addr_ptr = min_t(u64, max_t(u64, *min_addr_ptr, 0x0), max_phys);
375	if (!*max_addr_ptr) {
376		*max_addr_ptr = max_phys;
377	} else {
378		*max_addr_ptr = max_t(u64, min_t(u64, *max_addr_ptr,
379						 max_phys), 0x0);
380	}
381
382	return 0;
383}
384
385u64 cvmx_bootmem_phy_alloc_range(u64 size, u64 alignment,
386				 u64 min_addr, u64 max_addr)
387{
388	s64 address;
389
390	__cvmx_validate_mem_range(&min_addr, &max_addr);
391	address = cvmx_bootmem_phy_alloc(size, min_addr, max_addr,
392					 alignment, 0);
393	if (address > 0)
394		return address;
395	else
396		return 0;
397}
398
399void *cvmx_bootmem_alloc_range(u64 size, u64 alignment,
400			       u64 min_addr, u64 max_addr)
401{
402	s64 address;
403
404	__cvmx_validate_mem_range(&min_addr, &max_addr);
405	address = cvmx_bootmem_phy_alloc(size, min_addr, max_addr,
406					 alignment, 0);
407
408	if (address > 0)
409		return cvmx_phys_to_ptr(address);
410	else
411		return NULL;
412}
413
414void *cvmx_bootmem_alloc_address(u64 size, u64 address,
415				 u64 alignment)
416{
417	return cvmx_bootmem_alloc_range(size, alignment, address,
418					address + size);
419}
420
421void *cvmx_bootmem_alloc_node(u64 node, u64 size, u64 alignment)
422{
423	return cvmx_bootmem_alloc_range(size, alignment,
424					node << CVMX_NODE_MEM_SHIFT,
425					((node + 1) << CVMX_NODE_MEM_SHIFT) - 1);
426}
427
428void *cvmx_bootmem_alloc(u64 size, u64 alignment)
429{
430	return cvmx_bootmem_alloc_range(size, alignment, 0, 0);
431}
432
433void *cvmx_bootmem_alloc_named_range_once(u64 size, u64 min_addr,
434					  u64 max_addr, u64 align,
435					  const char *name,
436					  void (*init)(void *))
437{
438	u64 named_block_desc_addr;
439	void *ptr;
440	s64 addr;
441
442	__cvmx_bootmem_lock(0);
443
444	__cvmx_validate_mem_range(&min_addr, &max_addr);
445	named_block_desc_addr =
446		cvmx_bootmem_phy_named_block_find(name,
447						  CVMX_BOOTMEM_FLAG_NO_LOCKING);
448
449	if (named_block_desc_addr) {
450		addr = CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_desc_addr,
451						    base_addr);
452		__cvmx_bootmem_unlock(0);
453		return cvmx_phys_to_ptr(addr);
454	}
455
456	addr = cvmx_bootmem_phy_named_block_alloc(size, min_addr, max_addr,
457						  align, name,
458						  CVMX_BOOTMEM_FLAG_NO_LOCKING);
459
460	if (addr < 0) {
461		__cvmx_bootmem_unlock(0);
462		return NULL;
463	}
464	ptr = cvmx_phys_to_ptr(addr);
465
466	if (init)
467		init(ptr);
468	else
469		memset(ptr, 0, size);
470
471	__cvmx_bootmem_unlock(0);
472	return ptr;
473}
474
475void *cvmx_bootmem_alloc_named_range_flags(u64 size, u64 min_addr,
476					   u64 max_addr, u64 align,
477					   const char *name, u32 flags)
478{
479	s64 addr;
480
481	__cvmx_validate_mem_range(&min_addr, &max_addr);
482	addr = cvmx_bootmem_phy_named_block_alloc(size, min_addr, max_addr,
483						  align, name, flags);
484	if (addr >= 0)
485		return cvmx_phys_to_ptr(addr);
486	else
487		return NULL;
488}
489
490void *cvmx_bootmem_alloc_named_range(u64 size, u64 min_addr,
491				     u64 max_addr, u64 align,
492				     const char *name)
493{
494	return cvmx_bootmem_alloc_named_range_flags(size, min_addr, max_addr,
495						    align, name, 0);
496}
497
498void *cvmx_bootmem_alloc_named_address(u64 size, u64 address,
499				       const char *name)
500{
501	return cvmx_bootmem_alloc_named_range(size, address, address + size,
502					      0, name);
503}
504
505void *cvmx_bootmem_alloc_named(u64 size, u64 alignment,
506			       const char *name)
507{
508	return cvmx_bootmem_alloc_named_range(size, 0, 0, alignment, name);
509}
510
511void *cvmx_bootmem_alloc_named_flags(u64 size, u64 alignment,
512				     const char *name, u32 flags)
513{
514	return cvmx_bootmem_alloc_named_range_flags(size, 0, 0, alignment,
515						    name, flags);
516}
517
518int cvmx_bootmem_free_named(const char *name)
519{
520	return cvmx_bootmem_phy_named_block_free(name, 0);
521}
522
523/**
524 * Find a named block with flags
525 *
526 * @param name is the block name
527 * @param flags indicates the need to use locking during search
528 * Return: pointer to named block descriptor
529 *
530 * Note: this function returns a pointer to a static structure,
531 * and is therefore not re-entrant.
532 * Making this function re-entrant will break backward compatibility.
533 */
534const struct cvmx_bootmem_named_block_desc *
535__cvmx_bootmem_find_named_block_flags(const char *name, u32 flags)
536{
537	static struct cvmx_bootmem_named_block_desc desc;
538	u64 named_addr = cvmx_bootmem_phy_named_block_find(name, flags);
539
540	if (named_addr) {
541		desc.base_addr = CVMX_BOOTMEM_NAMED_GET_FIELD(named_addr,
542							      base_addr);
543		desc.size = CVMX_BOOTMEM_NAMED_GET_FIELD(named_addr, size);
544		strncpy(desc.name, name, sizeof(desc.name));
545		desc.name[sizeof(desc.name) - 1] = 0;
546		return &desc;
547	} else {
548		return NULL;
549	}
550}
551
552const struct cvmx_bootmem_named_block_desc *
553cvmx_bootmem_find_named_block(const char *name)
554{
555	return __cvmx_bootmem_find_named_block_flags(name, 0);
556}
557
558void cvmx_bootmem_print_named(void)
559{
560	cvmx_bootmem_phy_named_block_print();
561}
562
563int cvmx_bootmem_init(u64 mem_desc_addr)
564{
565	if (!cvmx_bootmem_desc_addr)
566		cvmx_bootmem_desc_addr = mem_desc_addr;
567
568	return 0;
569}
570
571u64 cvmx_bootmem_available_mem(u64 min_block_size)
572{
573	return cvmx_bootmem_phy_available_mem(min_block_size);
574}
575
576/*
577 * The cvmx_bootmem_phy* functions below return 64 bit physical
578 * addresses, and expose more features that the cvmx_bootmem_functions
579 * above.  These are required for full memory space access in 32 bit
580 * applications, as well as for using some advance features.  Most
581 * applications should not need to use these.
582 */
583
584s64 cvmx_bootmem_phy_alloc(u64 req_size, u64 address_min,
585			   u64 address_max, u64 alignment,
586			   u32 flags)
587{
588	u64 head_addr, ent_addr, ent_size;
589	u64 target_ent_addr = 0, target_prev_addr = 0;
590	u64 target_size = ~0ull;
591	u64 free_start, free_end;
592	u64 next_addr, prev_addr = 0;
593	u64 new_ent_addr = 0, new_ent_size;
594	u64 desired_min_addr, usable_max;
595	u64 align, align_mask;
596
597	debug("%s: req_size: 0x%llx, min_addr: 0x%llx, max_addr: 0x%llx, align: 0x%llx\n",
598	      __func__, CAST_ULL(req_size), CAST_ULL(address_min),
599	      CAST_ULL(address_max), CAST_ULL(alignment));
600
601	if (__cvmx_bootmem_check_version(0))
602		return -1;
603
604	/*
605	 * Do a variety of checks to validate the arguments.  The
606	 * allocator code will later assume that these checks have
607	 * been made.  We validate that the requested constraints are
608	 * not self-contradictory before we look through the list of
609	 * available memory
610	 */
611
612	/* 0 is not a valid req_size for this allocator */
613	if (!req_size)
614		return -1;
615
616	/* Round req_size up to multiple of minimum alignment bytes */
617	req_size = (req_size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) &
618		~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1);
619
620	/* Make sure alignment is power of 2, and at least the minimum */
621	for (align = CVMX_BOOTMEM_ALIGNMENT_SIZE;
622	     align < (1ull << 48);
623	     align <<= 1) {
624		if (align >= alignment)
625			break;
626	}
627
628	align_mask = ~(align - 1);
629
630	/*
631	 * Adjust address minimum based on requested alignment (round
632	 * up to meet alignment).  Do this here so we can reject
633	 * impossible requests up front. (NOP for address_min == 0)
634	 */
635	address_min = (address_min + (align - 1)) & align_mask;
636
637	/*
638	 * Convert !0 address_min and 0 address_max to special case of
639	 * range that specifies an exact memory block to allocate.  Do
640	 * this before other checks and adjustments so that this
641	 * tranformation will be validated
642	 */
643	if (address_min && !address_max)
644		address_max = address_min + req_size;
645	else if (!address_min && !address_max)
646		address_max = ~0ull;	/* If no limits given, use max */
647
648	/*
649	 * Reject inconsistent args.  We have adjusted these, so this
650	 * may fail due to our internal changes even if this check
651	 * would pass for the values the user supplied.
652	 */
653	if (req_size > address_max - address_min)
654		return -1;
655
656	__cvmx_bootmem_lock(flags);
657
658	/* Walk through the list entries to find the right fit */
659	head_addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
660
661	for (ent_addr = head_addr;
662	     ent_addr != 0ULL && ent_addr < address_max;
663	     prev_addr = ent_addr,
664		     ent_addr = cvmx_bootmem_phy_get_next(ent_addr)) {
665		/* Raw free block size */
666		ent_size = cvmx_bootmem_phy_get_size(ent_addr);
667		next_addr = cvmx_bootmem_phy_get_next(ent_addr);
668
669		/* Validate the free list ascending order */
670		if (ent_size < CVMX_BOOTMEM_ALIGNMENT_SIZE ||
671		    (next_addr && ent_addr > next_addr)) {
672			debug("ERROR: %s: bad free list ent: %#llx, next: %#llx\n",
673			      __func__, CAST_ULL(ent_addr),
674			      CAST_ULL(next_addr));
675			goto error_out;
676		}
677
678		/* adjust free block edges for alignment */
679		free_start = (ent_addr + align - 1) & align_mask;
680		free_end = (ent_addr + ent_size) &  align_mask;
681
682		/* check that free block is large enough */
683		if ((free_start + req_size) > free_end)
684			continue;
685
686		/* check that desired start is within the free block */
687		if (free_end < address_min || free_start > address_max)
688			continue;
689		if ((free_end - address_min) < req_size)
690			continue;
691		if ((address_max - free_start) < req_size)
692			continue;
693
694		/* Found usebale free block */
695		target_ent_addr = ent_addr;
696		target_prev_addr = prev_addr;
697		target_size = ent_size;
698
699		/* Continue looking for highest/best block that fits */
700	}
701
702	/* Bail if the search has resulted in no eligible free blocks */
703	if (target_ent_addr == 0) {
704		debug("%s: eligible free block not found\n", __func__);
705		goto error_out;
706	}
707
708	/* Found the free block to allocate from */
709	ent_addr = target_ent_addr;
710	prev_addr = target_prev_addr;
711	ent_size = target_size;
712
713	debug("%s: using free block at %#010llx size %#llx\n",
714	      __func__, CAST_ULL(ent_addr), CAST_ULL(ent_size));
715
716	/* Always allocate from the end of a free block */
717	usable_max = min_t(u64, address_max, ent_addr + ent_size);
718	desired_min_addr = usable_max - req_size;
719	desired_min_addr &= align_mask;
720
721	/* Split current free block into up to 3 free blocks */
722
723	/* Check for head room */
724	if (desired_min_addr > ent_addr) {
725		/* Create a new free block at the allocation address */
726		new_ent_addr = desired_min_addr;
727		new_ent_size = ent_size - (desired_min_addr - ent_addr);
728
729		cvmx_bootmem_phy_set_next(new_ent_addr,
730					  cvmx_bootmem_phy_get_next(ent_addr));
731		cvmx_bootmem_phy_set_size(new_ent_addr, new_ent_size);
732
733		/* Split out head room into a new free block */
734		ent_size -= new_ent_size;
735		cvmx_bootmem_phy_set_next(ent_addr, new_ent_addr);
736		cvmx_bootmem_phy_set_size(ent_addr, ent_size);
737
738		debug("%s: splitting head, addr %#llx size %#llx\n",
739		      __func__, CAST_ULL(ent_addr), CAST_ULL(ent_size));
740
741		/* Make the allocation target the current free block */
742		prev_addr = ent_addr;
743		ent_addr = new_ent_addr;
744		ent_size = new_ent_size;
745	}
746
747	/* Check for tail room */
748	if ((desired_min_addr + req_size) < (ent_addr + ent_size)) {
749		new_ent_addr = ent_addr + req_size;
750		new_ent_size = ent_size - req_size;
751
752		/* Create a new free block from tail room */
753		cvmx_bootmem_phy_set_next(new_ent_addr,
754					  cvmx_bootmem_phy_get_next(ent_addr));
755		cvmx_bootmem_phy_set_size(new_ent_addr, new_ent_size);
756
757		debug("%s: splitting tail, addr %#llx size %#llx\n",
758		      __func__, CAST_ULL(new_ent_addr), CAST_ULL(new_ent_size));
759
760		/* Adjust the current block to exclude tail room */
761		ent_size = ent_size - new_ent_size;
762		cvmx_bootmem_phy_set_next(ent_addr, new_ent_addr);
763		cvmx_bootmem_phy_set_size(ent_addr, ent_size);
764	}
765
766	/* The current free block IS the allocation target */
767	if (desired_min_addr != ent_addr || ent_size != req_size)
768		debug("ERROR: %s: internal error - addr %#llx %#llx size %#llx %#llx\n",
769		      __func__, CAST_ULL(desired_min_addr), CAST_ULL(ent_addr),
770		      CAST_ULL(ent_size), CAST_ULL(req_size));
771
772	/* Remove the current free block from list */
773	if (prev_addr) {
774		cvmx_bootmem_phy_set_next(prev_addr,
775					  cvmx_bootmem_phy_get_next(ent_addr));
776	} else {
777		/* head of list being returned, so update head ptr */
778		CVMX_BOOTMEM_DESC_SET_FIELD(head_addr,
779					    cvmx_bootmem_phy_get_next(ent_addr));
780	}
781
782	__cvmx_bootmem_unlock(flags);
783	debug("%s: allocated size: %#llx, at addr: %#010llx\n",
784	      __func__,
785	      CAST_ULL(req_size),
786	      CAST_ULL(desired_min_addr));
787
788	return desired_min_addr;
789
790error_out:
791	/* Requested memory not found or argument error */
792	__cvmx_bootmem_unlock(flags);
793	return -1;
794}
795
796int __cvmx_bootmem_phy_free(u64 phy_addr, u64 size, u32 flags)
797{
798	u64 cur_addr;
799	u64 prev_addr = 0;	/* zero is invalid */
800	int retval = 0;
801
802	debug("%s addr: %#llx, size: %#llx\n", __func__,
803	      CAST_ULL(phy_addr), CAST_ULL(size));
804
805	if (__cvmx_bootmem_check_version(0))
806		return 0;
807
808	/* 0 is not a valid size for this allocator */
809	if (!size || !phy_addr)
810		return 0;
811
812	/* Round size up to mult of minimum alignment bytes */
813	size = (size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) &
814		~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1);
815
816	__cvmx_bootmem_lock(flags);
817	cur_addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
818	if (cur_addr == 0 || phy_addr < cur_addr) {
819		/* add at front of list - special case with changing head ptr */
820		if (cur_addr && phy_addr + size > cur_addr)
821			goto bootmem_free_done;	/* error, overlapping section */
822		else if (phy_addr + size == cur_addr) {
823			/* Add to front of existing first block */
824			cvmx_bootmem_phy_set_next(phy_addr,
825						  cvmx_bootmem_phy_get_next(cur_addr));
826			cvmx_bootmem_phy_set_size(phy_addr,
827						  cvmx_bootmem_phy_get_size(cur_addr) + size);
828			CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, phy_addr);
829
830		} else {
831			/* New block before first block */
832			/* OK if cur_addr is 0 */
833			cvmx_bootmem_phy_set_next(phy_addr, cur_addr);
834			cvmx_bootmem_phy_set_size(phy_addr, size);
835			CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, phy_addr);
836		}
837		retval = 1;
838		goto bootmem_free_done;
839	}
840
841	/* Find place in list to add block */
842	while (cur_addr && phy_addr > cur_addr) {
843		prev_addr = cur_addr;
844		cur_addr = cvmx_bootmem_phy_get_next(cur_addr);
845	}
846
847	if (!cur_addr) {
848		/*
849		 * We have reached the end of the list, add on to end, checking
850		 * to see if we need to combine with last block
851		 */
852		if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) == phy_addr) {
853			cvmx_bootmem_phy_set_size(prev_addr,
854						  cvmx_bootmem_phy_get_size(prev_addr) + size);
855		} else {
856			cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
857			cvmx_bootmem_phy_set_size(phy_addr, size);
858			cvmx_bootmem_phy_set_next(phy_addr, 0);
859		}
860		retval = 1;
861		goto bootmem_free_done;
862	} else {
863		/*
864		 * insert between prev and cur nodes, checking for merge with
865		 * either/both
866		 */
867		if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) == phy_addr) {
868			/* Merge with previous */
869			cvmx_bootmem_phy_set_size(prev_addr,
870						  cvmx_bootmem_phy_get_size(prev_addr) + size);
871			if (phy_addr + size == cur_addr) {
872				/* Also merge with current */
873				cvmx_bootmem_phy_set_size(prev_addr,
874							  cvmx_bootmem_phy_get_size(cur_addr) +
875							  cvmx_bootmem_phy_get_size(prev_addr));
876				cvmx_bootmem_phy_set_next(prev_addr,
877							  cvmx_bootmem_phy_get_next(cur_addr));
878			}
879			retval = 1;
880			goto bootmem_free_done;
881		} else if (phy_addr + size == cur_addr) {
882			/* Merge with current */
883			cvmx_bootmem_phy_set_size(phy_addr,
884						  cvmx_bootmem_phy_get_size(cur_addr) + size);
885			cvmx_bootmem_phy_set_next(phy_addr,
886						  cvmx_bootmem_phy_get_next(cur_addr));
887			cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
888			retval = 1;
889			goto bootmem_free_done;
890		}
891
892		/* It is a standalone block, add in between prev and cur */
893		cvmx_bootmem_phy_set_size(phy_addr, size);
894		cvmx_bootmem_phy_set_next(phy_addr, cur_addr);
895		cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
896	}
897	retval = 1;
898
899bootmem_free_done:
900	__cvmx_bootmem_unlock(flags);
901	return retval;
902}
903
904void cvmx_bootmem_phy_list_print(void)
905{
906	u64 addr;
907
908	addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
909	printf("\n\n\nPrinting bootmem block list, descriptor: 0x%llx, head is 0x%llx\n",
910	       CAST_ULL(cvmx_bootmem_desc_addr), CAST_ULL(addr));
911	printf("Descriptor version: %d.%d\n",
912	       (int)CVMX_BOOTMEM_DESC_GET_FIELD(major_version),
913	       (int)CVMX_BOOTMEM_DESC_GET_FIELD(minor_version));
914	if (CVMX_BOOTMEM_DESC_GET_FIELD(major_version) > 3)
915		debug("Warning: Bootmem descriptor version is newer than expected\n");
916
917	if (!addr)
918		printf("mem list is empty!\n");
919
920	while (addr) {
921		printf("Block address: 0x%08llx, size: 0x%08llx, next: 0x%08llx\n", CAST_ULL(addr),
922		       CAST_ULL(cvmx_bootmem_phy_get_size(addr)),
923		       CAST_ULL(cvmx_bootmem_phy_get_next(addr)));
924		addr = cvmx_bootmem_phy_get_next(addr);
925	}
926	printf("\n\n");
927}
928
929u64 cvmx_bootmem_phy_available_mem(u64 min_block_size)
930{
931	u64 addr;
932
933	u64 available_mem = 0;
934
935	__cvmx_bootmem_lock(0);
936	addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
937	while (addr) {
938		if (cvmx_bootmem_phy_get_size(addr) >= min_block_size)
939			available_mem += cvmx_bootmem_phy_get_size(addr);
940		addr = cvmx_bootmem_phy_get_next(addr);
941	}
942	__cvmx_bootmem_unlock(0);
943	return available_mem;
944}
945
946u64 cvmx_bootmem_phy_named_block_find(const char *name, u32 flags)
947{
948	u64 result = 0;
949
950	debug("%s: %s\n", __func__, name);
951
952	__cvmx_bootmem_lock(flags);
953	if (!__cvmx_bootmem_check_version(3)) {
954		int i;
955		u64 named_block_array_addr =
956			CVMX_BOOTMEM_DESC_GET_FIELD(named_block_array_addr);
957		int num_blocks =
958			CVMX_BOOTMEM_DESC_GET_FIELD(named_block_num_blocks);
959		int name_length =
960			CVMX_BOOTMEM_DESC_GET_FIELD(named_block_name_len);
961		u64 named_addr = named_block_array_addr;
962
963		for (i = 0; i < num_blocks; i++) {
964			u64 named_size =
965				CVMX_BOOTMEM_NAMED_GET_FIELD(named_addr, size);
966			if (name && named_size) {
967				char name_tmp[name_length + 1];
968
969				CVMX_BOOTMEM_NAMED_GET_NAME(named_addr,
970							    name_tmp,
971							    name_length);
972				if (!strncmp(name, name_tmp, name_length)) {
973					result = named_addr;
974					break;
975				}
976			} else if (!name && !named_size) {
977				result = named_addr;
978				break;
979			}
980
981			named_addr +=
982				sizeof(struct cvmx_bootmem_named_block_desc);
983		}
984	}
985	__cvmx_bootmem_unlock(flags);
986	return result;
987}
988
989int cvmx_bootmem_phy_named_block_free(const char *name, u32 flags)
990{
991	u64 named_block_addr;
992
993	if (__cvmx_bootmem_check_version(3))
994		return 0;
995
996	debug("%s: %s\n", __func__, name);
997
998	/*
999	 * Take lock here, as name lookup/block free/name free need to be
1000	 * atomic
1001	 */
1002	__cvmx_bootmem_lock(flags);
1003
1004	named_block_addr = cvmx_bootmem_phy_named_block_find(name,
1005							     CVMX_BOOTMEM_FLAG_NO_LOCKING);
1006	if (named_block_addr) {
1007		u64 named_addr =
1008			CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr,
1009						     base_addr);
1010		u64 named_size =
1011			CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr, size);
1012
1013		debug("%s: %s, base: 0x%llx, size: 0x%llx\n",
1014		      __func__, name, CAST_ULL(named_addr),
1015		      CAST_ULL(named_size));
1016
1017		__cvmx_bootmem_phy_free(named_addr, named_size,
1018					CVMX_BOOTMEM_FLAG_NO_LOCKING);
1019
1020		/* Set size to zero to indicate block not used. */
1021		CVMX_BOOTMEM_NAMED_SET_FIELD(named_block_addr, size, 0);
1022	}
1023
1024	__cvmx_bootmem_unlock(flags);
1025	return !!named_block_addr;	/* 0 on failure, 1 on success */
1026}
1027
1028s64 cvmx_bootmem_phy_named_block_alloc(u64 size, u64 min_addr,
1029				       u64 max_addr,
1030				       u64 alignment, const char *name,
1031				       u32 flags)
1032{
1033	s64 addr_allocated;
1034	u64 named_block_desc_addr;
1035
1036	debug("%s: size: 0x%llx, min: 0x%llx, max: 0x%llx, align: 0x%llx, name: %s\n",
1037	      __func__, CAST_ULL(size), CAST_ULL(min_addr), CAST_ULL(max_addr),
1038	      CAST_ULL(alignment), name);
1039
1040	if (__cvmx_bootmem_check_version(3))
1041		return -1;
1042
1043	/*
1044	 * Take lock here, as name lookup/block alloc/name add need to be
1045	 * atomic
1046	 */
1047	__cvmx_bootmem_lock(flags);
1048
1049	named_block_desc_addr =
1050		cvmx_bootmem_phy_named_block_find(name, flags |
1051						  CVMX_BOOTMEM_FLAG_NO_LOCKING);
1052	if (named_block_desc_addr) {
1053		__cvmx_bootmem_unlock(flags);
1054		return -1;
1055	}
1056
1057	/* Get pointer to first available named block descriptor */
1058	named_block_desc_addr =
1059		cvmx_bootmem_phy_named_block_find(NULL, flags |
1060						  CVMX_BOOTMEM_FLAG_NO_LOCKING);
1061	if (!named_block_desc_addr) {
1062		__cvmx_bootmem_unlock(flags);
1063		return -1;
1064	}
1065
1066	/*
1067	 * Round size up to mult of minimum alignment bytes
1068	 * We need the actual size allocated to allow for blocks to be
1069	 * coallesced when they are freed.  The alloc routine does the
1070	 * same rounding up on all allocations.
1071	 */
1072	size = (size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) &
1073		~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1);
1074
1075	addr_allocated = cvmx_bootmem_phy_alloc(size, min_addr, max_addr,
1076						alignment,
1077						flags | CVMX_BOOTMEM_FLAG_NO_LOCKING);
1078	if (addr_allocated >= 0) {
1079		CVMX_BOOTMEM_NAMED_SET_FIELD(named_block_desc_addr, base_addr,
1080					     addr_allocated);
1081		CVMX_BOOTMEM_NAMED_SET_FIELD(named_block_desc_addr, size, size);
1082		CVMX_BOOTMEM_NAMED_SET_NAME(named_block_desc_addr, name,
1083					    CVMX_BOOTMEM_DESC_GET_FIELD(named_block_name_len));
1084	}
1085
1086	__cvmx_bootmem_unlock(flags);
1087	return addr_allocated;
1088}
1089
1090void cvmx_bootmem_phy_named_block_print(void)
1091{
1092	int i;
1093	int printed = 0;
1094
1095	u64 named_block_array_addr =
1096		CVMX_BOOTMEM_DESC_GET_FIELD(named_block_array_addr);
1097	int num_blocks = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_num_blocks);
1098	int name_length = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_name_len);
1099	u64 named_block_addr = named_block_array_addr;
1100
1101	debug("%s: desc addr: 0x%llx\n",
1102	      __func__, CAST_ULL(cvmx_bootmem_desc_addr));
1103
1104	if (__cvmx_bootmem_check_version(3))
1105		return;
1106
1107	printf("List of currently allocated named bootmem blocks:\n");
1108	for (i = 0; i < num_blocks; i++) {
1109		u64 named_size =
1110			CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr, size);
1111		if (named_size) {
1112			char name_tmp[name_length + 1];
1113			u64 named_addr =
1114				CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr,
1115							     base_addr);
1116			CVMX_BOOTMEM_NAMED_GET_NAME(named_block_addr, name_tmp,
1117						    name_length);
1118			printed++;
1119			printf("Name: %s, address: 0x%08llx, size: 0x%08llx, index: %d\n", name_tmp,
1120			       CAST_ULL(named_addr),
1121			       CAST_ULL(named_size), i);
1122		}
1123		named_block_addr +=
1124			sizeof(struct cvmx_bootmem_named_block_desc);
1125	}
1126
1127	if (!printed)
1128		printf("No named bootmem blocks exist.\n");
1129}
1130
1131s64 cvmx_bootmem_phy_mem_list_init(u64 mem_size,
1132				   u32 low_reserved_bytes,
1133				   struct cvmx_bootmem_desc *desc_buffer)
1134{
1135	u64 cur_block_addr;
1136	s64 addr;
1137	int i;
1138
1139	debug("%s (arg desc ptr: %p, cvmx_bootmem_desc: 0x%llx)\n",
1140	      __func__, desc_buffer, CAST_ULL(cvmx_bootmem_desc_addr));
1141
1142	/*
1143	 * Descriptor buffer needs to be in 32 bit addressable space to be
1144	 * compatible with 32 bit applications
1145	 */
1146	if (!desc_buffer) {
1147		debug("ERROR: no memory for cvmx_bootmem descriptor provided\n");
1148		return 0;
1149	}
1150
1151	if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) {
1152		mem_size = OCTEON_MAX_PHY_MEM_SIZE;
1153		debug("ERROR: requested memory size too large, truncating to maximum size\n");
1154	}
1155
1156	if (cvmx_bootmem_desc_addr)
1157		return 1;
1158
1159	/* Initialize cvmx pointer to descriptor */
1160	cvmx_bootmem_init(cvmx_ptr_to_phys(desc_buffer));
1161
1162	/* Fill the bootmem descriptor */
1163	CVMX_BOOTMEM_DESC_SET_FIELD(lock, 0);
1164	CVMX_BOOTMEM_DESC_SET_FIELD(flags, 0);
1165	CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, 0);
1166	CVMX_BOOTMEM_DESC_SET_FIELD(major_version, CVMX_BOOTMEM_DESC_MAJ_VER);
1167	CVMX_BOOTMEM_DESC_SET_FIELD(minor_version, CVMX_BOOTMEM_DESC_MIN_VER);
1168	CVMX_BOOTMEM_DESC_SET_FIELD(app_data_addr, 0);
1169	CVMX_BOOTMEM_DESC_SET_FIELD(app_data_size, 0);
1170
1171	/*
1172	 * Set up global pointer to start of list, exclude low 64k for exception
1173	 * vectors, space for global descriptor
1174	 */
1175	cur_block_addr = (OCTEON_DDR0_BASE + low_reserved_bytes);
1176
1177	if (mem_size <= OCTEON_DDR0_SIZE) {
1178		__cvmx_bootmem_phy_free(cur_block_addr,
1179					mem_size - low_reserved_bytes, 0);
1180		goto frees_done;
1181	}
1182
1183	__cvmx_bootmem_phy_free(cur_block_addr,
1184				OCTEON_DDR0_SIZE - low_reserved_bytes, 0);
1185
1186	mem_size -= OCTEON_DDR0_SIZE;
1187
1188	/* Add DDR2 block next if present */
1189	if (mem_size > OCTEON_DDR1_SIZE) {
1190		__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
1191		__cvmx_bootmem_phy_free(OCTEON_DDR2_BASE,
1192					mem_size - OCTEON_DDR2_BASE, 0);
1193	} else {
1194		__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
1195	}
1196frees_done:
1197
1198	/* Initialize the named block structure */
1199	CVMX_BOOTMEM_DESC_SET_FIELD(named_block_name_len, CVMX_BOOTMEM_NAME_LEN);
1200	CVMX_BOOTMEM_DESC_SET_FIELD(named_block_num_blocks,
1201				    CVMX_BOOTMEM_NUM_NAMED_BLOCKS);
1202	CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, 0);
1203
1204	/* Allocate this near the top of the low 256 MBytes of memory */
1205	addr = cvmx_bootmem_phy_alloc(CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
1206				      sizeof(struct cvmx_bootmem_named_block_desc),
1207				      0, 0x10000000, 0,
1208				      CVMX_BOOTMEM_FLAG_END_ALLOC);
1209	if (addr >= 0)
1210		CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, addr);
1211
1212	debug("%s: named_block_array_addr: 0x%llx)\n",
1213	      __func__, CAST_ULL(addr));
1214
1215	if (addr < 0) {
1216		debug("FATAL ERROR: unable to allocate memory for bootmem descriptor!\n");
1217		return 0;
1218	}
1219
1220	for (i = 0; i < CVMX_BOOTMEM_NUM_NAMED_BLOCKS; i++) {
1221		CVMX_BOOTMEM_NAMED_SET_FIELD(addr, base_addr, 0);
1222		CVMX_BOOTMEM_NAMED_SET_FIELD(addr, size, 0);
1223		addr += sizeof(struct cvmx_bootmem_named_block_desc);
1224	}
1225
1226	return 1;
1227}
1228
1229s64 cvmx_bootmem_phy_mem_list_init_multi(u8 node_mask,
1230					 u32 mem_sizes[],
1231					 u32 low_reserved_bytes,
1232					 struct cvmx_bootmem_desc *desc_buffer)
1233{
1234	u64 cur_block_addr;
1235	u64 mem_size;
1236	s64 addr;
1237	int i;
1238	int node;
1239	u64 node_base;	/* Make u64 to reduce type casting */
1240
1241	mem_sizes[0] = gd->ram_size / (1024 * 1024);
1242
1243	debug("cvmx_bootmem_phy_mem_list_init (arg desc ptr: %p, cvmx_bootmem_desc: 0x%llx)\n",
1244	      desc_buffer, CAST_ULL(cvmx_bootmem_desc_addr));
1245
1246	/*
1247	 * Descriptor buffer needs to be in 32 bit addressable space to be
1248	 * compatible with 32 bit applications
1249	 */
1250	if (!desc_buffer) {
1251		debug("ERROR: no memory for cvmx_bootmem descriptor provided\n");
1252		return 0;
1253	}
1254
1255	cvmx_coremask_for_each_node(node, node_mask) {
1256		if ((mem_sizes[node] * 1024 * 1024) > OCTEON_MAX_PHY_MEM_SIZE) {
1257			mem_sizes[node] = OCTEON_MAX_PHY_MEM_SIZE /
1258				(1024 * 1024);
1259			debug("ERROR node#%lld: requested memory size too large, truncating to maximum size\n",
1260			      CAST_ULL(node));
1261		}
1262	}
1263
1264	if (cvmx_bootmem_desc_addr)
1265		return 1;
1266
1267	/* Initialize cvmx pointer to descriptor */
1268	cvmx_bootmem_init(cvmx_ptr_to_phys(desc_buffer));
1269
1270	/* Fill the bootmem descriptor */
1271	CVMX_BOOTMEM_DESC_SET_FIELD(lock, 0);
1272	CVMX_BOOTMEM_DESC_SET_FIELD(flags, 0);
1273	CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, 0);
1274	CVMX_BOOTMEM_DESC_SET_FIELD(major_version, CVMX_BOOTMEM_DESC_MAJ_VER);
1275	CVMX_BOOTMEM_DESC_SET_FIELD(minor_version, CVMX_BOOTMEM_DESC_MIN_VER);
1276	CVMX_BOOTMEM_DESC_SET_FIELD(app_data_addr, 0);
1277	CVMX_BOOTMEM_DESC_SET_FIELD(app_data_size, 0);
1278
1279	cvmx_coremask_for_each_node(node, node_mask) {
1280		if (node != 0)	/* do not reserve memory on remote nodes */
1281			low_reserved_bytes = 0;
1282
1283		mem_size = (u64)mem_sizes[node] * (1024 * 1024); /* MBytes */
1284
1285		/*
1286		 * Set up global pointer to start of list, exclude low 64k
1287		 * for exception vectors, space for global descriptor
1288		 */
1289
1290		node_base = (u64)node << CVMX_NODE_MEM_SHIFT;
1291		cur_block_addr = (OCTEON_DDR0_BASE + low_reserved_bytes) |
1292			node_base;
1293
1294		if (mem_size <= OCTEON_DDR0_SIZE) {
1295			__cvmx_bootmem_phy_free(cur_block_addr,
1296						mem_size - low_reserved_bytes,
1297						0);
1298			continue;
1299		}
1300
1301		__cvmx_bootmem_phy_free(cur_block_addr,
1302					OCTEON_DDR0_SIZE - low_reserved_bytes,
1303					0);
1304
1305		mem_size -= OCTEON_DDR0_SIZE;
1306
1307		/* Add DDR2 block next if present */
1308		if (mem_size > OCTEON_DDR1_SIZE) {
1309			__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE |
1310						node_base,
1311						OCTEON_DDR1_SIZE, 0);
1312			__cvmx_bootmem_phy_free(OCTEON_DDR2_BASE |
1313						node_base,
1314						mem_size - OCTEON_DDR1_SIZE, 0);
1315		} else {
1316			__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE |
1317						node_base,
1318						mem_size, 0);
1319		}
1320	}
1321
1322	debug("%s: Initialize the named block\n", __func__);
1323
1324	/* Initialize the named block structure */
1325	CVMX_BOOTMEM_DESC_SET_FIELD(named_block_name_len, CVMX_BOOTMEM_NAME_LEN);
1326	CVMX_BOOTMEM_DESC_SET_FIELD(named_block_num_blocks,
1327				    CVMX_BOOTMEM_NUM_NAMED_BLOCKS);
1328	CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, 0);
1329
1330	/* Allocate this near the top of the low 256 MBytes of memory */
1331	addr = cvmx_bootmem_phy_alloc(CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
1332				      sizeof(struct cvmx_bootmem_named_block_desc),
1333				      0, 0x10000000, 0,
1334				      CVMX_BOOTMEM_FLAG_END_ALLOC);
1335	if (addr >= 0)
1336		CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, addr);
1337
1338	debug("cvmx_bootmem_phy_mem_list_init: named_block_array_addr: 0x%llx)\n",
1339	      CAST_ULL(addr));
1340
1341	if (addr < 0) {
1342		debug("FATAL ERROR: unable to allocate memory for bootmem descriptor!\n");
1343		return 0;
1344	}
1345
1346	for (i = 0; i < CVMX_BOOTMEM_NUM_NAMED_BLOCKS; i++) {
1347		CVMX_BOOTMEM_NAMED_SET_FIELD(addr, base_addr, 0);
1348		CVMX_BOOTMEM_NAMED_SET_FIELD(addr, size, 0);
1349		addr += sizeof(struct cvmx_bootmem_named_block_desc);
1350	}
1351
1352	cvmx_bootmem_phy_list_print();
1353
1354	return 1;
1355}
1356
1357int cvmx_bootmem_reserve_memory(u64 start_addr, u64 size,
1358				const char *name, u32 flags)
1359{
1360	u64 addr;
1361	int rc = 1;
1362	static unsigned int block_num;
1363	char block_name[CVMX_BOOTMEM_NAME_LEN];
1364
1365	debug("%s: start %#llx, size: %#llx, name: %s, flags:%#x)\n",
1366	      __func__, CAST_ULL(start_addr), CAST_ULL(size), name, flags);
1367
1368	if (__cvmx_bootmem_check_version(3))
1369		return 0;
1370
1371	addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
1372	if (!addr)
1373		return 0;
1374
1375	if (!name)
1376		name = "__cvmx_bootmem_reserved";
1377
1378	while (addr && rc) {
1379		u64 block_size = cvmx_bootmem_phy_get_size(addr);
1380		u64 reserve_size = 0;
1381
1382		if (addr >= start_addr && addr < start_addr + size) {
1383			reserve_size = size - (addr - start_addr);
1384			if (block_size < reserve_size)
1385				reserve_size = block_size;
1386		} else if (start_addr > addr &&
1387			   start_addr < (addr + block_size)) {
1388			reserve_size = block_size - (start_addr - addr);
1389		}
1390
1391		if (reserve_size) {
1392			snprintf(block_name, sizeof(block_name),
1393				 "%.32s_%012llx_%u",
1394				 name, (unsigned long long)start_addr,
1395				 (unsigned int)block_num);
1396
1397			debug("%s: Reserving 0x%llx bytes at address 0x%llx with name %s\n",
1398			      __func__, CAST_ULL(reserve_size),
1399			      CAST_ULL(addr), block_name);
1400
1401			if (cvmx_bootmem_phy_named_block_alloc(reserve_size,
1402							       addr, 0, 0,
1403							       block_name,
1404							       flags) == -1) {
1405				debug("%s: Failed to reserve 0x%llx bytes at address 0x%llx\n",
1406				      __func__, CAST_ULL(reserve_size),
1407				      (unsigned long long)addr);
1408				rc = 0;
1409				break;
1410			}
1411
1412			debug("%s: Reserved 0x%llx bytes at address 0x%llx with name %s\n",
1413			      __func__, CAST_ULL(reserve_size),
1414			      CAST_ULL(addr), block_name);
1415		}
1416
1417		addr = cvmx_bootmem_phy_get_next(addr);
1418		block_num++;
1419	}
1420
1421	return rc;
1422}
1423
1424void cvmx_bootmem_lock(void)
1425{
1426	__cvmx_bootmem_lock(0);
1427}
1428
1429void cvmx_bootmem_unlock(void)
1430{
1431	__cvmx_bootmem_unlock(0);
1432}
1433
1434void *__cvmx_phys_addr_to_ptr(u64 phys, int size)
1435{
1436	void *tmp;
1437
1438	if (sizeof(void *) == 8) {
1439		tmp = CASTPTR(void, CVMX_ADD_SEG(CVMX_MIPS_SPACE_XKPHYS, phys));
1440	} else {
1441		u32 phy32 = (u32)(phys & 0x7fffffffULL);
1442
1443		tmp = CASTPTR(void, CVMX_ADD_SEG32(CVMX_MIPS32_SPACE_KSEG0,
1444						   phy32));
1445	}
1446
1447	return tmp;
1448}
1449
1450void *__cvmx_bootmem_internal_get_desc_ptr(void)
1451{
1452	return cvmx_phys_to_ptr(cvmx_bootmem_desc_addr);
1453}
1454