1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * (C) Copyright 2013-2020
4 * NVIDIA Corporation <www.nvidia.com>
5 */
6
7/* Tegra210 Clock control functions */
8
9#include <common.h>
10#include <errno.h>
11#include <init.h>
12#include <log.h>
13#include <asm/cache.h>
14#include <asm/io.h>
15#include <asm/arch/clock.h>
16#include <asm/arch/sysctr.h>
17#include <asm/arch/tegra.h>
18#include <asm/arch-tegra/clk_rst.h>
19#include <asm/arch-tegra/timer.h>
20#include <div64.h>
21#include <fdtdec.h>
22#include <linux/bitops.h>
23#include <linux/delay.h>
24
25#include <dt-bindings/clock/tegra210-car.h>
26
27/*
28 * Clock types that we can use as a source. The Tegra210 has muxes for the
29 * peripheral clocks, and in most cases there are four options for the clock
30 * source. This gives us a clock 'type' and exploits what commonality exists
31 * in the device.
32 *
33 * Letters are obvious, except for T which means CLK_M, and S which means the
34 * clock derived from 32KHz. Beware that CLK_M (also called OSC in the
35 * datasheet) and PLL_M are different things. The former is the basic
36 * clock supplied to the SOC from an external oscillator. The latter is the
37 * memory clock PLL.
38 *
39 * See definitions in clock_id in the header file.
40 */
41enum clock_type_id {
42	CLOCK_TYPE_AXPT,	/* PLL_A, PLL_X, PLL_P, CLK_M */
43	CLOCK_TYPE_MCPA,	/* and so on */
44	CLOCK_TYPE_MCPT,
45	CLOCK_TYPE_PCM,
46	CLOCK_TYPE_PCMT,
47	CLOCK_TYPE_PDCT,
48	CLOCK_TYPE_ACPT,
49	CLOCK_TYPE_ASPTE,
50	CLOCK_TYPE_PDD2T,
51	CLOCK_TYPE_PCST,
52	CLOCK_TYPE_DP,
53
54	CLOCK_TYPE_PC2CC3M,
55	CLOCK_TYPE_PC2CC3S_T,
56	CLOCK_TYPE_PC2CC3M_T,
57	CLOCK_TYPE_PC2CC3M_T16,	/* PC2CC3M_T, but w/16-bit divisor (I2C) */
58	CLOCK_TYPE_MC2CC3P_A,
59	CLOCK_TYPE_M,
60	CLOCK_TYPE_MCPTM2C2C3,
61	CLOCK_TYPE_PC2CC3T_S,
62	CLOCK_TYPE_AC2CC3P_TS2,
63	CLOCK_TYPE_PC01C00_C42C41TC40,
64
65	CLOCK_TYPE_COUNT,
66	CLOCK_TYPE_NONE = -1,   /* invalid clock type */
67};
68
69enum {
70	CLOCK_MAX_MUX   = 8     /* number of source options for each clock */
71};
72
73/*
74 * Clock source mux for each clock type. This just converts our enum into
75 * a list of mux sources for use by the code.
76 *
77 * Note:
78 *  The extra column in each clock source array is used to store the mask
79 *  bits in its register for the source.
80 */
81#define CLK(x) CLOCK_ID_ ## x
82static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX+1] = {
83	{ CLK(AUDIO),	CLK(XCPU),	CLK(PERIPH),	CLK(OSC),
84		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
85		MASK_BITS_31_30},
86	{ CLK(MEMORY),	CLK(CGENERAL),	CLK(PERIPH),	CLK(AUDIO),
87		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
88		MASK_BITS_31_30},
89	{ CLK(MEMORY),	CLK(CGENERAL),	CLK(PERIPH),	CLK(OSC),
90		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
91		MASK_BITS_31_30},
92	{ CLK(PERIPH),	CLK(CGENERAL),	CLK(MEMORY),	CLK(NONE),
93		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
94		MASK_BITS_31_30},
95	{ CLK(PERIPH),	CLK(CGENERAL),	CLK(MEMORY),	CLK(OSC),
96		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
97		MASK_BITS_31_30},
98	{ CLK(PERIPH),	CLK(DISPLAY),	CLK(CGENERAL),	CLK(OSC),
99		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
100		MASK_BITS_31_30},
101	{ CLK(AUDIO),	CLK(CGENERAL),	CLK(PERIPH),	CLK(OSC),
102		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
103		MASK_BITS_31_30},
104	{ CLK(AUDIO),	CLK(SFROM32KHZ),	CLK(PERIPH),	CLK(OSC),
105		CLK(EPCI),	CLK(NONE),	CLK(NONE),	CLK(NONE),
106		MASK_BITS_31_29},
107	{ CLK(PERIPH),	CLK(NONE),	CLK(DISPLAY),	CLK(NONE),
108		CLK(NONE),	CLK(DISPLAY2),	CLK(OSC),	CLK(NONE),
109		MASK_BITS_31_29},
110	{ CLK(PERIPH),	CLK(CGENERAL),	CLK(SFROM32KHZ),	CLK(OSC),
111		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
112		MASK_BITS_31_28},
113	/* CLOCK_TYPE_DP */
114	{ CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
115		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
116		MASK_BITS_31_28},
117
118	/* Additional clock types on Tegra114+ */
119	/* CLOCK_TYPE_PC2CC3M */
120	{ CLK(PERIPH),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
121		CLK(MEMORY),	CLK(NONE),	CLK(NONE),	CLK(NONE),
122		MASK_BITS_31_29},
123	/* CLOCK_TYPE_PC2CC3S_T */
124	{ CLK(PERIPH),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
125		CLK(SFROM32KHZ), CLK(NONE),	CLK(OSC),	CLK(NONE),
126		MASK_BITS_31_29},
127	/* CLOCK_TYPE_PC2CC3M_T */
128	{ CLK(PERIPH),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
129		CLK(MEMORY),	CLK(NONE),	CLK(OSC),	CLK(NONE),
130		MASK_BITS_31_29},
131	/* CLOCK_TYPE_PC2CC3M_T, w/16-bit divisor (I2C) */
132	{ CLK(PERIPH),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
133		CLK(MEMORY),	CLK(NONE),	CLK(OSC),	CLK(NONE),
134		MASK_BITS_31_29},
135	/* CLOCK_TYPE_MC2CC3P_A */
136	{ CLK(MEMORY),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
137		CLK(PERIPH),	CLK(NONE),	CLK(AUDIO),	CLK(NONE),
138		MASK_BITS_31_29},
139	/* CLOCK_TYPE_M */
140	{ CLK(MEMORY),		CLK(NONE),	CLK(NONE),	CLK(NONE),
141		CLK(NONE),	CLK(NONE),	CLK(NONE),	CLK(NONE),
142		MASK_BITS_31_30},
143	/* CLOCK_TYPE_MCPTM2C2C3 */
144	{ CLK(MEMORY),	CLK(CGENERAL),	CLK(PERIPH),	CLK(OSC),
145		CLK(MEMORY2),	CLK(CGENERAL2),	CLK(CGENERAL3),	CLK(NONE),
146		MASK_BITS_31_29},
147	/* CLOCK_TYPE_PC2CC3T_S */
148	{ CLK(PERIPH),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
149		CLK(OSC),	CLK(NONE),	CLK(SFROM32KHZ), CLK(NONE),
150		MASK_BITS_31_29},
151	/* CLOCK_TYPE_AC2CC3P_TS2 */
152	{ CLK(AUDIO),	CLK(CGENERAL2),	CLK(CGENERAL),	CLK(CGENERAL3),
153		CLK(PERIPH),	CLK(NONE),	CLK(OSC),	CLK(SRC2),
154		MASK_BITS_31_29},
155	/* CLOCK_TYPE_PC01C00_C42C41TC40 */
156	{ CLK(PERIPH),	CLK(CGENERAL_1), CLK(CGENERAL_0), CLK(NONE),
157		CLK(CGENERAL4_2), CLK(CGENERAL4_1), CLK(OSC), CLK(CGENERAL4_0),
158		MASK_BITS_31_29},
159};
160
161/*
162 * Clock type for each peripheral clock source. We put the name in each
163 * record just so it is easy to match things up
164 */
165#define TYPE(name, type) type
166static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = {
167	/* 0x00 */
168	TYPE(PERIPHC_I2S2,	CLOCK_TYPE_AXPT),
169	TYPE(PERIPHC_I2S3,	CLOCK_TYPE_AXPT),
170	TYPE(PERIPHC_SPDIF_OUT,	CLOCK_TYPE_AXPT),
171	TYPE(PERIPHC_SPDIF_IN,	CLOCK_TYPE_PC2CC3M),
172	TYPE(PERIPHC_PWM,	CLOCK_TYPE_PC2CC3S_T),
173	TYPE(PERIPHC_05h,	CLOCK_TYPE_NONE),
174	TYPE(PERIPHC_SBC2,	CLOCK_TYPE_PC2CC3M_T),
175	TYPE(PERIPHC_SBC3,	CLOCK_TYPE_PC2CC3M_T),
176
177	/* 0x08 */
178	TYPE(PERIPHC_08h,	CLOCK_TYPE_NONE),
179	TYPE(PERIPHC_I2C1,	CLOCK_TYPE_PC2CC3M_T16),
180	TYPE(PERIPHC_I2C5,	CLOCK_TYPE_PC2CC3M_T16),
181	TYPE(PERIPHC_0bh,	CLOCK_TYPE_NONE),
182	TYPE(PERIPHC_0ch,	CLOCK_TYPE_NONE),
183	TYPE(PERIPHC_SBC1,	CLOCK_TYPE_PC2CC3M_T),
184	TYPE(PERIPHC_DISP1,	CLOCK_TYPE_PDD2T),
185	TYPE(PERIPHC_DISP2,	CLOCK_TYPE_PDD2T),
186
187	/* 0x10 */
188	TYPE(PERIPHC_10h,	CLOCK_TYPE_NONE),
189	TYPE(PERIPHC_11h,	CLOCK_TYPE_NONE),
190	TYPE(PERIPHC_VI,	CLOCK_TYPE_MC2CC3P_A),
191	TYPE(PERIPHC_13h,	CLOCK_TYPE_NONE),
192	TYPE(PERIPHC_SDMMC1,	CLOCK_TYPE_PC2CC3M_T),
193	TYPE(PERIPHC_SDMMC2,	CLOCK_TYPE_PC2CC3M_T),
194	TYPE(PERIPHC_16h,	CLOCK_TYPE_NONE),
195	TYPE(PERIPHC_17h,	CLOCK_TYPE_NONE),
196
197	/* 0x18 */
198	TYPE(PERIPHC_18h,	CLOCK_TYPE_NONE),
199	TYPE(PERIPHC_SDMMC4,	CLOCK_TYPE_PC2CC3M_T),
200	TYPE(PERIPHC_VFIR,	CLOCK_TYPE_PC2CC3M_T),
201	TYPE(PERIPHC_1Bh,	CLOCK_TYPE_NONE),
202	TYPE(PERIPHC_1Ch,	CLOCK_TYPE_NONE),
203	TYPE(PERIPHC_HSI,	CLOCK_TYPE_PC2CC3M_T),
204	TYPE(PERIPHC_UART1,	CLOCK_TYPE_PC2CC3M_T),
205	TYPE(PERIPHC_UART2,	CLOCK_TYPE_PC2CC3M_T),
206
207	/* 0x20 */
208	TYPE(PERIPHC_HOST1X,	CLOCK_TYPE_MC2CC3P_A),
209	TYPE(PERIPHC_21h,	CLOCK_TYPE_NONE),
210	TYPE(PERIPHC_22h,	CLOCK_TYPE_NONE),
211	TYPE(PERIPHC_23h,	CLOCK_TYPE_NONE),
212	TYPE(PERIPHC_24h,	CLOCK_TYPE_NONE),
213	TYPE(PERIPHC_25h,	CLOCK_TYPE_NONE),
214	TYPE(PERIPHC_I2C2,	CLOCK_TYPE_PC2CC3M_T16),
215	TYPE(PERIPHC_EMC,	CLOCK_TYPE_MCPTM2C2C3),
216
217	/* 0x28 */
218	TYPE(PERIPHC_UART3,	CLOCK_TYPE_PC2CC3M_T),
219	TYPE(PERIPHC_29h,	CLOCK_TYPE_NONE),
220	TYPE(PERIPHC_VI_SENSOR,	CLOCK_TYPE_MC2CC3P_A),
221	TYPE(PERIPHC_2bh,	CLOCK_TYPE_NONE),
222	TYPE(PERIPHC_2ch,	CLOCK_TYPE_NONE),
223	TYPE(PERIPHC_SBC4,	CLOCK_TYPE_PC2CC3M_T),
224	TYPE(PERIPHC_I2C3,	CLOCK_TYPE_PC2CC3M_T16),
225	TYPE(PERIPHC_SDMMC3,	CLOCK_TYPE_PC2CC3M_T),
226
227	/* 0x30 */
228	TYPE(PERIPHC_UART4,	CLOCK_TYPE_PC2CC3M_T),
229	TYPE(PERIPHC_UART5,	CLOCK_TYPE_PC2CC3M_T),
230	TYPE(PERIPHC_VDE,	CLOCK_TYPE_PC2CC3M_T),
231	TYPE(PERIPHC_OWR,	CLOCK_TYPE_PC2CC3M_T),
232	TYPE(PERIPHC_NOR,	CLOCK_TYPE_PC2CC3M_T),
233	TYPE(PERIPHC_CSITE,	CLOCK_TYPE_PC2CC3M_T),
234	TYPE(PERIPHC_I2S1,	CLOCK_TYPE_AXPT),
235	TYPE(PERIPHC_DTV,	CLOCK_TYPE_NONE),
236
237	/* 0x38 */
238	TYPE(PERIPHC_38h,	CLOCK_TYPE_NONE),
239	TYPE(PERIPHC_39h,	CLOCK_TYPE_NONE),
240	TYPE(PERIPHC_3ah,	CLOCK_TYPE_NONE),
241	TYPE(PERIPHC_3bh,	CLOCK_TYPE_NONE),
242	TYPE(PERIPHC_MSENC,	CLOCK_TYPE_MC2CC3P_A),
243	TYPE(PERIPHC_TSEC,	CLOCK_TYPE_PC2CC3M_T),
244	TYPE(PERIPHC_3eh,	CLOCK_TYPE_NONE),
245	TYPE(PERIPHC_OSC,	CLOCK_TYPE_NONE),
246
247	/* 0x40 */
248	TYPE(PERIPHC_40h,	CLOCK_TYPE_NONE),	/* start with 0x3b0 */
249	TYPE(PERIPHC_MSELECT,	CLOCK_TYPE_PC2CC3M_T),
250	TYPE(PERIPHC_TSENSOR,	CLOCK_TYPE_PC2CC3T_S),
251	TYPE(PERIPHC_I2S4,	CLOCK_TYPE_AXPT),
252	TYPE(PERIPHC_I2S5,	CLOCK_TYPE_AXPT),
253	TYPE(PERIPHC_I2C4,	CLOCK_TYPE_PC2CC3M_T16),
254	TYPE(PERIPHC_SBC5,	CLOCK_TYPE_PC2CC3M_T),
255	TYPE(PERIPHC_SBC6,	CLOCK_TYPE_PC2CC3M_T),
256
257	/* 0x48 */
258	TYPE(PERIPHC_AUDIO,	CLOCK_TYPE_AC2CC3P_TS2),
259	TYPE(PERIPHC_49h,	CLOCK_TYPE_NONE),
260	TYPE(PERIPHC_4ah,	CLOCK_TYPE_NONE),
261	TYPE(PERIPHC_4bh,	CLOCK_TYPE_NONE),
262	TYPE(PERIPHC_4ch,	CLOCK_TYPE_NONE),
263	TYPE(PERIPHC_HDA2CODEC2X, CLOCK_TYPE_PC2CC3M_T),
264	TYPE(PERIPHC_ACTMON,	CLOCK_TYPE_PC2CC3S_T),
265	TYPE(PERIPHC_EXTPERIPH1, CLOCK_TYPE_ASPTE),
266
267	/* 0x50 */
268	TYPE(PERIPHC_EXTPERIPH2, CLOCK_TYPE_ASPTE),
269	TYPE(PERIPHC_EXTPERIPH3, CLOCK_TYPE_ASPTE),
270	TYPE(PERIPHC_52h,	CLOCK_TYPE_NONE),
271	TYPE(PERIPHC_I2CSLOW,	CLOCK_TYPE_PC2CC3S_T),
272	TYPE(PERIPHC_SYS,	CLOCK_TYPE_NONE),
273	TYPE(PERIPHC_55h,	CLOCK_TYPE_NONE),
274	TYPE(PERIPHC_56h,	CLOCK_TYPE_NONE),
275	TYPE(PERIPHC_57h,	CLOCK_TYPE_NONE),
276
277	/* 0x58 */
278	TYPE(PERIPHC_58h,	CLOCK_TYPE_NONE),
279	TYPE(PERIPHC_59h,	CLOCK_TYPE_NONE),
280	TYPE(PERIPHC_5ah,	CLOCK_TYPE_NONE),
281	TYPE(PERIPHC_5bh,	CLOCK_TYPE_NONE),
282	TYPE(PERIPHC_SATAOOB,	CLOCK_TYPE_PCMT),
283	TYPE(PERIPHC_SATA,	CLOCK_TYPE_PCMT),
284	TYPE(PERIPHC_HDA,	CLOCK_TYPE_PC2CC3M_T),
285	TYPE(PERIPHC_5fh,	CLOCK_TYPE_NONE),
286
287	/* 0x60 */
288	TYPE(PERIPHC_XUSB_CORE_HOST, CLOCK_TYPE_NONE),
289	TYPE(PERIPHC_XUSB_FALCON, CLOCK_TYPE_NONE),
290	TYPE(PERIPHC_XUSB_FS,	CLOCK_TYPE_NONE),
291	TYPE(PERIPHC_XUSB_CORE_DEV, CLOCK_TYPE_NONE),
292	TYPE(PERIPHC_XUSB_SS,	CLOCK_TYPE_NONE),
293	TYPE(PERIPHC_CILAB,	CLOCK_TYPE_NONE),
294	TYPE(PERIPHC_CILCD,	CLOCK_TYPE_NONE),
295	TYPE(PERIPHC_CILE,	CLOCK_TYPE_NONE),
296
297	/* 0x68 */
298	TYPE(PERIPHC_DSIA_LP,	CLOCK_TYPE_NONE),
299	TYPE(PERIPHC_DSIB_LP,	CLOCK_TYPE_NONE),
300	TYPE(PERIPHC_ENTROPY,	CLOCK_TYPE_NONE),
301	TYPE(PERIPHC_DVFS_REF,	CLOCK_TYPE_NONE),
302	TYPE(PERIPHC_DVFS_SOC,	CLOCK_TYPE_NONE),
303	TYPE(PERIPHC_TRACECLKIN, CLOCK_TYPE_NONE),
304	TYPE(PERIPHC_6eh,	CLOCK_TYPE_NONE),
305	TYPE(PERIPHC_6fh,	CLOCK_TYPE_NONE),
306
307	/* 0x70 */
308	TYPE(PERIPHC_EMC_LATENCY, CLOCK_TYPE_NONE),
309	TYPE(PERIPHC_SOC_THERM,	CLOCK_TYPE_NONE),
310	TYPE(PERIPHC_72h,	CLOCK_TYPE_NONE),
311	TYPE(PERIPHC_73h,	CLOCK_TYPE_NONE),
312	TYPE(PERIPHC_74h,	CLOCK_TYPE_NONE),
313	TYPE(PERIPHC_75h,	CLOCK_TYPE_NONE),
314	TYPE(PERIPHC_VI_SENSOR2, CLOCK_TYPE_NONE),
315	TYPE(PERIPHC_I2C6,	CLOCK_TYPE_PC2CC3M_T16),
316
317	/* 0x78 */
318	TYPE(PERIPHC_78h,	CLOCK_TYPE_NONE),
319	TYPE(PERIPHC_EMC_DLL,	CLOCK_TYPE_MCPTM2C2C3),
320	TYPE(PERIPHC_7ah,	CLOCK_TYPE_NONE),
321	TYPE(PERIPHC_CLK72MHZ,	CLOCK_TYPE_NONE),
322	TYPE(PERIPHC_7ch,	CLOCK_TYPE_NONE),
323	TYPE(PERIPHC_7dh,	CLOCK_TYPE_NONE),
324	TYPE(PERIPHC_VIC,	CLOCK_TYPE_NONE),
325	TYPE(PERIPHC_7Fh,	CLOCK_TYPE_NONE),
326
327	/* 0x80 */
328	TYPE(PERIPHC_SDMMC_LEGACY_TM,	CLOCK_TYPE_NONE),
329	TYPE(PERIPHC_NVDEC,	CLOCK_TYPE_NONE),
330	TYPE(PERIPHC_NVJPG,	CLOCK_TYPE_NONE),
331	TYPE(PERIPHC_NVENC,	CLOCK_TYPE_NONE),
332	TYPE(PERIPHC_84h,	CLOCK_TYPE_NONE),
333	TYPE(PERIPHC_85h,	CLOCK_TYPE_NONE),
334	TYPE(PERIPHC_86h,	CLOCK_TYPE_NONE),
335	TYPE(PERIPHC_87h,	CLOCK_TYPE_NONE),
336
337	/* 0x88 */
338	TYPE(PERIPHC_88h,	CLOCK_TYPE_NONE),
339	TYPE(PERIPHC_89h,	CLOCK_TYPE_NONE),
340	TYPE(PERIPHC_DMIC3,	CLOCK_TYPE_NONE),
341	TYPE(PERIPHC_APE,	CLOCK_TYPE_NONE),
342	TYPE(PERIPHC_QSPI,	CLOCK_TYPE_PC01C00_C42C41TC40),
343	TYPE(PERIPHC_VI_I2C,	CLOCK_TYPE_PC2CC3M_T16),
344	TYPE(PERIPHC_USB2_HSIC_TRK, CLOCK_TYPE_NONE),
345	TYPE(PERIPHC_PEX_SATA_USB_RX_BYP, CLOCK_TYPE_NONE),
346
347	/* 0x90 */
348	TYPE(PERIPHC_MAUD,	CLOCK_TYPE_NONE),
349	TYPE(PERIPHC_TSECB,	CLOCK_TYPE_NONE),
350};
351
352/*
353 * This array translates a periph_id to a periphc_internal_id
354 *
355 * Not present/matched up:
356 *	uint vi_sensor;	 _VI_SENSOR_0,		0x1A8
357 *	SPDIF - which is both 0x08 and 0x0c
358 *
359 */
360#define NONE(name) (-1)
361#define OFFSET(name, value) PERIPHC_ ## name
362#define INTERNAL_ID(id) (id & 0x000000ff)
363static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = {
364	/* Low word: 31:0 */
365	NONE(CPU),
366	NONE(COP),
367	NONE(TRIGSYS),
368	NONE(ISPB),
369	NONE(RESERVED4),
370	NONE(TMR),
371	PERIPHC_UART1,
372	PERIPHC_UART2,	/* and vfir 0x68 */
373
374	/* 8 */
375	NONE(GPIO),
376	PERIPHC_SDMMC2,
377	PERIPHC_SPDIF_IN,
378	PERIPHC_I2S2,
379	PERIPHC_I2C1,
380	NONE(RESERVED13),
381	PERIPHC_SDMMC1,
382	PERIPHC_SDMMC4,
383
384	/* 16 */
385	NONE(TCW),
386	PERIPHC_PWM,
387	PERIPHC_I2S3,
388	NONE(RESERVED19),
389	PERIPHC_VI,
390	NONE(RESERVED21),
391	NONE(USBD),
392	NONE(ISP),
393
394	/* 24 */
395	NONE(RESERVED24),
396	NONE(RESERVED25),
397	PERIPHC_DISP2,
398	PERIPHC_DISP1,
399	PERIPHC_HOST1X,
400	NONE(VCP),
401	PERIPHC_I2S1,
402	NONE(CACHE2),
403
404	/* Middle word: 63:32 */
405	NONE(MEM),
406	NONE(AHBDMA),
407	NONE(APBDMA),
408	NONE(RESERVED35),
409	NONE(RESERVED36),
410	NONE(STAT_MON),
411	NONE(RESERVED38),
412	NONE(FUSE),
413
414	/* 40 */
415	NONE(KFUSE),
416	PERIPHC_SBC1,		/* SBCx = SPIx */
417	PERIPHC_NOR,
418	NONE(RESERVED43),
419	PERIPHC_SBC2,
420	NONE(XIO),
421	PERIPHC_SBC3,
422	PERIPHC_I2C5,
423
424	/* 48 */
425	NONE(DSI),
426	NONE(RESERVED49),
427	PERIPHC_HSI,
428	NONE(RESERVED51),
429	NONE(CSI),
430	NONE(RESERVED53),
431	PERIPHC_I2C2,
432	PERIPHC_UART3,
433
434	/* 56 */
435	NONE(MIPI_CAL),
436	PERIPHC_EMC,
437	NONE(USB2),
438	NONE(USB3),
439	NONE(RESERVED60),
440	PERIPHC_VDE,
441	NONE(BSEA),
442	NONE(BSEV),
443
444	/* Upper word 95:64 */
445	NONE(RESERVED64),
446	PERIPHC_UART4,
447	PERIPHC_UART5,
448	PERIPHC_I2C3,
449	PERIPHC_SBC4,
450	PERIPHC_SDMMC3,
451	NONE(PCIE),
452	PERIPHC_OWR,
453
454	/* 72 */
455	NONE(AFI),
456	PERIPHC_CSITE,
457	NONE(PCIEXCLK),
458	NONE(AVPUCQ),
459	NONE(LA),
460	NONE(TRACECLKIN),
461	NONE(SOC_THERM),
462	NONE(DTV),
463
464	/* 80 */
465	NONE(RESERVED80),
466	PERIPHC_I2CSLOW,
467	NONE(DSIB),
468	PERIPHC_TSEC,
469	NONE(RESERVED84),
470	NONE(RESERVED85),
471	NONE(RESERVED86),
472	NONE(EMUCIF),
473
474	/* 88 */
475	NONE(RESERVED88),
476	NONE(XUSB_HOST),
477	NONE(RESERVED90),
478	PERIPHC_MSENC,
479	NONE(RESERVED92),
480	NONE(RESERVED93),
481	NONE(RESERVED94),
482	NONE(XUSB_DEV),
483
484	/* V word: 31:0 */
485	NONE(CPUG),
486	NONE(CPULP),
487	NONE(V_RESERVED2),
488	PERIPHC_MSELECT,
489	NONE(V_RESERVED4),
490	PERIPHC_I2S4,
491	PERIPHC_I2S5,
492	PERIPHC_I2C4,
493
494	/* 104 */
495	PERIPHC_SBC5,
496	PERIPHC_SBC6,
497	PERIPHC_AUDIO,
498	NONE(APBIF),
499	NONE(V_RESERVED12),
500	NONE(V_RESERVED13),
501	NONE(V_RESERVED14),
502	PERIPHC_HDA2CODEC2X,
503
504	/* 112 */
505	NONE(ATOMICS),
506	NONE(V_RESERVED17),
507	NONE(V_RESERVED18),
508	NONE(V_RESERVED19),
509	NONE(V_RESERVED20),
510	NONE(V_RESERVED21),
511	NONE(V_RESERVED22),
512	PERIPHC_ACTMON,
513
514	/* 120 */
515	NONE(EXTPERIPH1),
516	NONE(EXTPERIPH2),
517	NONE(EXTPERIPH3),
518	NONE(OOB),
519	PERIPHC_SATA,
520	PERIPHC_HDA,
521	NONE(TZRAM),
522	NONE(SE),
523
524	/* W word: 31:0 */
525	NONE(HDA2HDMICODEC),
526	NONE(SATACOLD),
527	NONE(W_RESERVED2),
528	NONE(W_RESERVED3),
529	NONE(W_RESERVED4),
530	NONE(W_RESERVED5),
531	NONE(W_RESERVED6),
532	NONE(W_RESERVED7),
533
534	/* 136 */
535	NONE(CEC),
536	NONE(W_RESERVED9),
537	NONE(W_RESERVED10),
538	NONE(W_RESERVED11),
539	NONE(W_RESERVED12),
540	NONE(W_RESERVED13),
541	NONE(XUSB_PADCTL),
542	NONE(W_RESERVED15),
543
544	/* 144 */
545	NONE(W_RESERVED16),
546	NONE(W_RESERVED17),
547	NONE(W_RESERVED18),
548	NONE(W_RESERVED19),
549	NONE(W_RESERVED20),
550	NONE(ENTROPY),
551	NONE(DDS),
552	NONE(W_RESERVED23),
553
554	/* 152 */
555	NONE(W_RESERVED24),
556	NONE(W_RESERVED25),
557	NONE(W_RESERVED26),
558	NONE(DVFS),
559	NONE(XUSB_SS),
560	NONE(W_RESERVED29),
561	NONE(W_RESERVED30),
562	NONE(W_RESERVED31),
563
564	/* X word: 31:0 */
565	NONE(SPARE),
566	NONE(X_RESERVED1),
567	NONE(X_RESERVED2),
568	NONE(X_RESERVED3),
569	NONE(CAM_MCLK),
570	NONE(CAM_MCLK2),
571	PERIPHC_I2C6,
572	NONE(X_RESERVED7),
573
574	/* 168 */
575	NONE(X_RESERVED8),
576	NONE(X_RESERVED9),
577	NONE(X_RESERVED10),
578	NONE(VIM2_CLK),
579	NONE(X_RESERVED12),
580	NONE(X_RESERVED13),
581	NONE(EMC_DLL),
582	NONE(X_RESERVED15),
583
584	/* 176 */
585	NONE(X_RESERVED16),
586	NONE(CLK72MHZ),
587	NONE(VIC),
588	NONE(X_RESERVED19),
589	NONE(X_RESERVED20),
590	NONE(DPAUX),
591	NONE(SOR0),
592	NONE(X_RESERVED23),
593
594	/* 184 */
595	NONE(GPU),
596	NONE(X_RESERVED25),
597	NONE(X_RESERVED26),
598	NONE(X_RESERVED27),
599	NONE(X_RESERVED28),
600	NONE(X_RESERVED29),
601	NONE(X_RESERVED30),
602	NONE(X_RESERVED31),
603
604	/* Y: 192 (192 - 223) */
605	NONE(Y_RESERVED0),
606	PERIPHC_SDMMC_LEGACY_TM,
607	PERIPHC_NVDEC,
608	PERIPHC_NVJPG,
609	NONE(Y_RESERVED4),
610	PERIPHC_DMIC3,		/* 197 */
611	PERIPHC_APE,		/* 198 */
612	NONE(Y_RESERVED7),
613
614	/* 200 */
615	NONE(Y_RESERVED8),
616	NONE(Y_RESERVED9),
617	NONE(Y_RESERVED10),
618	NONE(Y_RESERVED11),
619	NONE(Y_RESERVED12),
620	NONE(Y_RESERVED13),
621	NONE(Y_RESERVED14),
622	NONE(Y_RESERVED15),
623
624	/* 208 */
625	PERIPHC_VI_I2C,		/* 208 */
626	NONE(Y_RESERVED17),
627	NONE(Y_RESERVED18),
628	PERIPHC_QSPI,		/* 211 */
629	NONE(Y_RESERVED20),
630	NONE(Y_RESERVED21),
631	NONE(Y_RESERVED22),
632	NONE(Y_RESERVED23),
633
634	/* 216 */
635	NONE(Y_RESERVED24),
636	NONE(Y_RESERVED25),
637	NONE(Y_RESERVED26),
638	PERIPHC_NVENC,		/* 219 */
639	NONE(Y_RESERVED28),
640	NONE(Y_RESERVED29),
641	NONE(Y_RESERVED30),
642	NONE(Y_RESERVED31),
643};
644
645/*
646 * PLL divider shift/mask tables for all PLL IDs.
647 */
648struct clk_pll_info tegra_pll_info_table[CLOCK_ID_PLL_COUNT] = {
649	/*
650	 * NOTE: If kcp_mask/kvco_mask == 0, they're not used in that PLL (PLLC, etc.)
651	 *       If lock_ena or lock_det are >31, they're not used in that PLL (PLLC, etc.)
652	 */
653	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 10, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F,
654	  .lock_ena = 32,  .lock_det = 27, .kcp_shift = 0, .kcp_mask = 0, .kvco_shift = 0, .kvco_mask = 0 },	/* PLLC */
655	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8,  .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F,
656	  .lock_ena = 4,  .lock_det = 27, .kcp_shift = 1, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 },	/* PLLM */
657	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 10, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F,
658	  .lock_ena = 18, .lock_det = 27, .kcp_shift = 0, .kcp_mask = 3, .kvco_shift = 2, .kvco_mask = 1 },	/* PLLP */
659	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8,  .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F,
660	  .lock_ena = 28, .lock_det = 27, .kcp_shift = 25, .kcp_mask = 3, .kvco_shift = 24, .kvco_mask = 1 },	/* PLLA */
661	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8,  .n_mask = 0xFF, .p_shift = 16, .p_mask = 0x1F,
662	  .lock_ena = 29, .lock_det = 27, .kcp_shift = 25, .kcp_mask = 3, .kvco_shift = 24, .kvco_mask = 1 },	/* PLLU */
663	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 11, .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x07,
664	  .lock_ena = 18, .lock_det = 27, .kcp_shift = 23, .kcp_mask = 3, .kvco_shift = 22, .kvco_mask = 1 },	/* PLLD */
665	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8,  .n_mask = 0xFF, .p_shift = 20, .p_mask = 0x1F,
666	  .lock_ena = 18, .lock_det = 27, .kcp_shift = 1, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 },	/* PLLX */
667	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8,  .n_mask = 0xFF, .p_shift = 0,  .p_mask = 0,
668	  .lock_ena = 9,  .lock_det = 11, .kcp_shift = 6, .kcp_mask = 3, .kvco_shift = 0, .kvco_mask = 1 },	/* PLLE */
669	{ .m_shift = 0, .m_mask = 0, .n_shift = 0, .n_mask = 0, .p_shift = 0, .p_mask = 0,
670	  .lock_ena = 0, .lock_det = 0, .kcp_shift = 0, .kcp_mask = 0, .kvco_shift = 0, .kvco_mask = 0 },	/* PLLS (gone)*/
671	{ .m_shift = 0, .m_mask = 0xFF, .n_shift = 8, .n_mask = 0xFF,  .p_shift = 19,  .p_mask = 0x1F,
672	  .lock_ena = 30, .lock_det = 27, .kcp_shift = 25, .kcp_mask = 3, .kvco_shift = 24, .kvco_mask = 1 },	/* PLLDP */
673};
674
675/*
676 * Get the oscillator frequency, from the corresponding hardware configuration
677 * field. Note that T30+ supports 3 new higher freqs.
678 */
679enum clock_osc_freq clock_get_osc_freq(void)
680{
681	struct clk_rst_ctlr *clkrst =
682			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
683	u32 reg;
684
685	reg = readl(&clkrst->crc_osc_ctrl);
686	return (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
687}
688
689/* Returns a pointer to the clock source register for a peripheral */
690u32 *get_periph_source_reg(enum periph_id periph_id)
691{
692	struct clk_rst_ctlr *clkrst =
693		(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
694	enum periphc_internal_id internal_id;
695
696	/* Coresight is a special case */
697	if (periph_id == PERIPH_ID_CSI)
698		return &clkrst->crc_clk_src[PERIPH_ID_CSI+1];
699
700	assert(periph_id >= PERIPH_ID_FIRST && periph_id < PERIPH_ID_COUNT);
701	internal_id = INTERNAL_ID(periph_id_to_internal_id[periph_id]);
702	assert(internal_id != -1);
703
704	if (internal_id < PERIPHC_VW_FIRST)
705		/* L, H, U */
706		return &clkrst->crc_clk_src[internal_id];
707
708	if (internal_id < PERIPHC_X_FIRST) {
709		/* VW */
710		internal_id -= PERIPHC_VW_FIRST;
711		return &clkrst->crc_clk_src_vw[internal_id];
712	}
713
714	if (internal_id < PERIPHC_Y_FIRST) {
715		/* X */
716		internal_id -= PERIPHC_X_FIRST;
717		return &clkrst->crc_clk_src_x[internal_id];
718	}
719
720	/* Y */
721	internal_id -= PERIPHC_Y_FIRST;
722	return &clkrst->crc_clk_src_y[internal_id];
723}
724
725int get_periph_clock_info(enum periph_id periph_id, int *mux_bits,
726			  int *divider_bits, int *type)
727{
728	enum periphc_internal_id internal_id;
729
730	if (!clock_periph_id_isvalid(periph_id))
731		return -1;
732
733	internal_id = INTERNAL_ID(periph_id_to_internal_id[periph_id]);
734	if (!periphc_internal_id_isvalid(internal_id))
735		return -1;
736
737	*type = clock_periph_type[internal_id];
738	if (!clock_type_id_isvalid(*type))
739		return -1;
740
741	*mux_bits = clock_source[*type][CLOCK_MAX_MUX];
742
743	if (*type == CLOCK_TYPE_PC2CC3M_T16)
744		*divider_bits = 16;
745	else
746		*divider_bits = 8;
747
748	return 0;
749}
750
751enum clock_id get_periph_clock_id(enum periph_id periph_id, int source)
752{
753	enum periphc_internal_id internal_id;
754	int type;
755
756	if (!clock_periph_id_isvalid(periph_id))
757		return CLOCK_ID_NONE;
758
759	internal_id = INTERNAL_ID(periph_id_to_internal_id[periph_id]);
760	if (!periphc_internal_id_isvalid(internal_id))
761		return CLOCK_ID_NONE;
762
763	type = clock_periph_type[internal_id];
764	if (!clock_type_id_isvalid(type))
765		return CLOCK_ID_NONE;
766
767	return clock_source[type][source];
768}
769
770/**
771 * Given a peripheral ID and the required source clock, this returns which
772 * value should be programmed into the source mux for that peripheral.
773 *
774 * There is special code here to handle the one source type with 5 sources.
775 *
776 * @param periph_id	peripheral to start
777 * @param source	PLL id of required parent clock
778 * @param mux_bits	Set to number of bits in mux register: 2 or 4
779 * @param divider_bits Set to number of divider bits (8 or 16)
780 * Return: mux value (0-4, or -1 if not found)
781 */
782int get_periph_clock_source(enum periph_id periph_id,
783	enum clock_id parent, int *mux_bits, int *divider_bits)
784{
785	enum clock_type_id type;
786	int mux, err;
787
788	err = get_periph_clock_info(periph_id, mux_bits, divider_bits, &type);
789	assert(!err);
790
791	for (mux = 0; mux < CLOCK_MAX_MUX; mux++)
792		if (clock_source[type][mux] == parent)
793			return mux;
794
795	/* if we get here, either us or the caller has made a mistake */
796	printf("Caller requested bad clock: periph=%d, parent=%d\n", periph_id,
797	       parent);
798	return -1;
799}
800
801void clock_set_enable(enum periph_id periph_id, int enable)
802{
803	struct clk_rst_ctlr *clkrst =
804		(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
805	u32 *clk;
806	u32 reg;
807
808	/* Enable/disable the clock to this peripheral */
809	assert(clock_periph_id_isvalid(periph_id));
810	if ((int)periph_id < (int)PERIPH_ID_VW_FIRST)
811		clk = &clkrst->crc_clk_out_enb[PERIPH_REG(periph_id)];
812	else if ((int)periph_id < (int)PERIPH_ID_X_FIRST)
813		clk = &clkrst->crc_clk_out_enb_vw[PERIPH_REG(periph_id)];
814	else if ((int)periph_id < (int)PERIPH_ID_Y_FIRST)
815		clk = &clkrst->crc_clk_out_enb_x;
816	else
817		clk = &clkrst->crc_clk_out_enb_y;
818
819	reg = readl(clk);
820	if (enable)
821		reg |= PERIPH_MASK(periph_id);
822	else
823		reg &= ~PERIPH_MASK(periph_id);
824	writel(reg, clk);
825}
826
827void reset_set_enable(enum periph_id periph_id, int enable)
828{
829	struct clk_rst_ctlr *clkrst =
830		(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
831	u32 *reset;
832	u32 reg;
833
834	/* Enable/disable reset to the peripheral */
835	assert(clock_periph_id_isvalid(periph_id));
836	if (periph_id < PERIPH_ID_VW_FIRST)
837		reset = &clkrst->crc_rst_dev[PERIPH_REG(periph_id)];
838	else if ((int)periph_id < (int)PERIPH_ID_X_FIRST)
839		reset = &clkrst->crc_rst_dev_vw[PERIPH_REG(periph_id)];
840	else if ((int)periph_id < (int)PERIPH_ID_Y_FIRST)
841		reset = &clkrst->crc_rst_devices_x;
842	else
843		reset = &clkrst->crc_rst_devices_y;
844
845	reg = readl(reset);
846	if (enable)
847		reg |= PERIPH_MASK(periph_id);
848	else
849		reg &= ~PERIPH_MASK(periph_id);
850	writel(reg, reset);
851}
852
853#ifdef CONFIG_OF_CONTROL
854/*
855 * Convert a device tree clock ID to our peripheral ID. They are mostly
856 * the same but we are very cautious so we check that a valid clock ID is
857 * provided.
858 *
859 * @param clk_id    Clock ID according to tegra210 device tree binding
860 * Return: peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid
861 */
862enum periph_id clk_id_to_periph_id(int clk_id)
863{
864	if (clk_id > PERIPH_ID_COUNT)
865		return PERIPH_ID_NONE;
866
867	switch (clk_id) {
868	case PERIPH_ID_RESERVED4:
869	case PERIPH_ID_RESERVED25:
870	case PERIPH_ID_RESERVED35:
871	case PERIPH_ID_RESERVED36:
872	case PERIPH_ID_RESERVED38:
873	case PERIPH_ID_RESERVED43:
874	case PERIPH_ID_RESERVED49:
875	case PERIPH_ID_RESERVED53:
876	case PERIPH_ID_RESERVED64:
877	case PERIPH_ID_RESERVED84:
878	case PERIPH_ID_RESERVED85:
879	case PERIPH_ID_RESERVED86:
880	case PERIPH_ID_RESERVED88:
881	case PERIPH_ID_RESERVED90:
882	case PERIPH_ID_RESERVED92:
883	case PERIPH_ID_RESERVED93:
884	case PERIPH_ID_RESERVED94:
885	case PERIPH_ID_V_RESERVED2:
886	case PERIPH_ID_V_RESERVED4:
887	case PERIPH_ID_V_RESERVED17:
888	case PERIPH_ID_V_RESERVED18:
889	case PERIPH_ID_V_RESERVED19:
890	case PERIPH_ID_V_RESERVED20:
891	case PERIPH_ID_V_RESERVED21:
892	case PERIPH_ID_V_RESERVED22:
893	case PERIPH_ID_W_RESERVED2:
894	case PERIPH_ID_W_RESERVED3:
895	case PERIPH_ID_W_RESERVED4:
896	case PERIPH_ID_W_RESERVED5:
897	case PERIPH_ID_W_RESERVED6:
898	case PERIPH_ID_W_RESERVED7:
899	case PERIPH_ID_W_RESERVED9:
900	case PERIPH_ID_W_RESERVED10:
901	case PERIPH_ID_W_RESERVED11:
902	case PERIPH_ID_W_RESERVED12:
903	case PERIPH_ID_W_RESERVED13:
904	case PERIPH_ID_W_RESERVED15:
905	case PERIPH_ID_W_RESERVED16:
906	case PERIPH_ID_W_RESERVED17:
907	case PERIPH_ID_W_RESERVED18:
908	case PERIPH_ID_W_RESERVED19:
909	case PERIPH_ID_W_RESERVED20:
910	case PERIPH_ID_W_RESERVED23:
911	case PERIPH_ID_W_RESERVED29:
912	case PERIPH_ID_W_RESERVED30:
913	case PERIPH_ID_W_RESERVED31:
914		return PERIPH_ID_NONE;
915	default:
916		return clk_id;
917	}
918}
919
920/*
921 * Convert a device tree clock ID to our PLL ID.
922 *
923 * @param clk_id	Clock ID according to tegra210 device tree binding
924 * Return: clock ID, or CLOCK_ID_NONE if the clock ID is invalid
925 */
926enum clock_id clk_id_to_pll_id(int clk_id)
927{
928	switch (clk_id) {
929	case TEGRA210_CLK_PLL_C:
930		return CLOCK_ID_CGENERAL;
931	case TEGRA210_CLK_PLL_M:
932		return CLOCK_ID_MEMORY;
933	case TEGRA210_CLK_PLL_P:
934		return CLOCK_ID_PERIPH;
935	case TEGRA210_CLK_PLL_A:
936		return CLOCK_ID_AUDIO;
937	case TEGRA210_CLK_PLL_U:
938		return CLOCK_ID_USB;
939	case TEGRA210_CLK_PLL_D:
940	case TEGRA210_CLK_PLL_D_OUT0:
941		return CLOCK_ID_DISPLAY;
942	case TEGRA210_CLK_PLL_X:
943		return CLOCK_ID_XCPU;
944	case TEGRA210_CLK_PLL_E:
945		return CLOCK_ID_EPCI;
946	case TEGRA210_CLK_CLK_32K:
947		return CLOCK_ID_32KHZ;
948	case TEGRA210_CLK_CLK_M:
949		return CLOCK_ID_CLK_M;
950	default:
951		return CLOCK_ID_NONE;
952	}
953}
954#endif /* CONFIG_OF_CONTROL */
955
956/*
957 * T210 redefines PLLP_OUT2 as PLLP_VCO/DIVP, so do different OUT1-4 setup here.
958 * PLLP_BASE/MISC/etc. is already set up for 408MHz in the BootROM.
959 */
960void tegra210_setup_pllp(void)
961{
962	struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
963	u32 reg;
964
965	/* Set PLLP_OUT1, 3 & 4 freqs to 9.6, 102 & 204MHz */
966
967	/* OUT1 */
968	/* Assert RSTN before enable */
969	reg = PLLP_OUT1_RSTN_EN;
970	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
971	/* Set divisor and reenable */
972	reg = (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO)
973		| PLLP_OUT1_OVR | PLLP_OUT1_CLKEN | PLLP_OUT1_RSTN_DIS;
974	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
975
976	/* OUT3, 4 */
977	/* Assert RSTN before enable */
978	reg = PLLP_OUT4_RSTN_EN | PLLP_OUT3_RSTN_EN;
979	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
980	/* Set divisor and reenable */
981	reg = (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO)
982		| PLLP_OUT4_OVR | PLLP_OUT4_CLKEN | PLLP_OUT4_RSTN_DIS
983		| (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO)
984		| PLLP_OUT3_OVR | PLLP_OUT3_CLKEN | PLLP_OUT3_RSTN_DIS;
985	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
986
987	/*
988	 * NOTE: If you want to change PLLP_OUT2 away from 204MHz,
989	 * you can change PLLP_BASE DIVP here. Currently defaults
990	 * to 1, which is 2^1, or 2, so PLLP_OUT2 is 204MHz.
991	 * See Table 13 in section 5.1.4 in T210 TRM for more info.
992	 */
993}
994
995void clock_early_init(void)
996{
997	struct clk_rst_ctlr *clkrst =
998		(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
999	struct clk_pll_info *pllinfo = &tegra_pll_info_table[CLOCK_ID_DISPLAY];
1000	u32 data;
1001
1002	tegra210_setup_pllp();
1003
1004	/*
1005	 * PLLC output frequency set to 600Mhz
1006	 * PLLD output frequency set to 925Mhz
1007	 */
1008	switch (clock_get_osc_freq()) {
1009	case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
1010	case CLOCK_OSC_FREQ_48_0: /* OSC is 48Mhz */
1011		clock_set_rate(CLOCK_ID_CGENERAL, 600, 12, 0, 8);
1012		clock_set_rate(CLOCK_ID_DISPLAY, 925, 12, 0, 12);
1013		break;
1014
1015	case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
1016		clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
1017		clock_set_rate(CLOCK_ID_DISPLAY, 925, 26, 0, 12);
1018		break;
1019
1020	case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
1021	case CLOCK_OSC_FREQ_16_8: /* OSC is 16.8Mhz */
1022		clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
1023		clock_set_rate(CLOCK_ID_DISPLAY, 925, 13, 0, 12);
1024		break;
1025	case CLOCK_OSC_FREQ_19_2:
1026		clock_set_rate(CLOCK_ID_CGENERAL, 125, 4, 0, 0);
1027		clock_set_rate(CLOCK_ID_DISPLAY, 96, 2, 0, 12);
1028		break;
1029	case CLOCK_OSC_FREQ_38_4:
1030		clock_set_rate(CLOCK_ID_CGENERAL, 125, 8, 0, 0);
1031		clock_set_rate(CLOCK_ID_DISPLAY, 96, 4, 0, 0);
1032		break;
1033	default:
1034		/*
1035		 * These are not supported. It is too early to print a
1036		 * message and the UART likely won't work anyway due to the
1037		 * oscillator being wrong.
1038		 */
1039		break;
1040	}
1041
1042	/* PLLC_MISC1: Turn IDDQ off. NOTE: T210 PLLC_MISC_1 maps to pll_misc */
1043	clrbits_le32(&clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_misc,
1044		     (1 << PLLC_IDDQ));
1045	udelay(2);
1046
1047	/*
1048	 * PLLC_MISC: Take PLLC out of reset. NOTE: T210 PLLC_MISC maps
1049	 * to pll_out[1]
1050	 */
1051	clrbits_le32(&clkrst->crc_pll[CLOCK_ID_CGENERAL].pll_out[1],
1052		     (1 << PLLC_RESET));
1053	udelay(2);
1054
1055	/* PLLD_MISC: Set CLKENABLE and LOCK_DETECT bits */
1056	data = (1 << PLLD_ENABLE_CLK) | (1 << pllinfo->lock_ena);
1057	writel(data, &clkrst->crc_pll[CLOCK_ID_DISPLAY].pll_misc);
1058	udelay(2);
1059}
1060
1061unsigned int clk_m_get_rate(unsigned parent_rate)
1062{
1063	struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
1064	u32 value, div;
1065
1066	value = readl(&clkrst->crc_spare_reg0);
1067	div = ((value >> 2) & 0x3) + 1;
1068
1069	return parent_rate / div;
1070}
1071
1072void arch_timer_init(void)
1073{
1074	struct sysctr_ctlr *sysctr = (struct sysctr_ctlr *)NV_PA_TSC_BASE;
1075	u32 freq, val;
1076
1077	freq = clock_get_rate(CLOCK_ID_CLK_M);
1078	debug("%s: clk_m freq is %dHz [0x%08X]\n", __func__, freq, freq);
1079
1080	if (current_el() == 3)
1081		asm("msr cntfrq_el0, %0\n" : : "r" (freq));
1082
1083	/* Only Tegra114+ has the System Counter regs */
1084	debug("%s: setting CNTFID0 to 0x%08X\n", __func__, freq);
1085	writel(freq, &sysctr->cntfid0);
1086
1087	val = readl(&sysctr->cntcr);
1088	val |= TSC_CNTCR_ENABLE | TSC_CNTCR_HDBG;
1089	writel(val, &sysctr->cntcr);
1090	debug("%s: TSC CNTCR = 0x%08X\n", __func__, val);
1091}
1092
1093#define PLLREFE_MISC			0x4c8
1094#define  PLLREFE_MISC_LOCK		BIT(27)
1095#define  PLLREFE_MISC_IDDQ		BIT(24)
1096
1097#define PLLREFE_BASE			0x4c4
1098#define  PLLREFE_BASE_BYPASS		BIT(31)
1099#define  PLLREFE_BASE_ENABLE		BIT(30)
1100#define  PLLREFE_BASE_REF_DIS		BIT(29)
1101#define  PLLREFE_BASE_KCP(kcp)		(((kcp) & 0x3) << 27)
1102#define  PLLREFE_BASE_KVCO		BIT(26)
1103#define  PLLREFE_BASE_DIVP(p)		(((p) & 0x1f) << 16)
1104#define  PLLREFE_BASE_DIVN(n)		(((n) & 0xff) << 8)
1105#define  PLLREFE_BASE_DIVM(m)		(((m) & 0xff) << 0)
1106
1107static int tegra_pllref_enable(void)
1108{
1109	u32 value;
1110	unsigned long start;
1111
1112	/*
1113	 * This sequence comes from Tegra X1 TRM section "Cold Boot, with no
1114	 * Recovery Mode or Boot from USB", sub-section "PLLREFE".
1115	 */
1116
1117	value = readl(NV_PA_CLK_RST_BASE + PLLREFE_MISC);
1118	value &= ~PLLREFE_MISC_IDDQ;
1119	writel(value, NV_PA_CLK_RST_BASE + PLLREFE_MISC);
1120
1121	udelay(5);
1122
1123	value = PLLREFE_BASE_ENABLE |
1124		PLLREFE_BASE_KCP(0) |
1125		PLLREFE_BASE_DIVP(0) |
1126		PLLREFE_BASE_DIVN(0x41) |
1127		PLLREFE_BASE_DIVM(4);
1128	writel(value, NV_PA_CLK_RST_BASE + PLLREFE_BASE);
1129
1130	debug("waiting for pllrefe lock\n");
1131	start = get_timer(0);
1132	while (get_timer(start) < 250) {
1133		value = readl(NV_PA_CLK_RST_BASE + PLLREFE_MISC);
1134		if (value & PLLREFE_MISC_LOCK)
1135			break;
1136	}
1137	if (!(value & PLLREFE_MISC_LOCK)) {
1138		debug("  timeout\n");
1139		return -ETIMEDOUT;
1140	}
1141	debug("  done\n");
1142
1143	return 0;
1144}
1145
1146#define PLLE_SS_CNTL 0x68
1147#define  PLLE_SS_CNTL_SSCINCINTR(x) (((x) & 0x3f) << 24)
1148#define  PLLE_SS_CNTL_SSCINC(x) (((x) & 0xff) << 16)
1149#define  PLLE_SS_CNTL_SSCINVERT (1 << 15)
1150#define  PLLE_SS_CNTL_SSCCENTER (1 << 14)
1151#define  PLLE_SS_CNTL_SSCBYP (1 << 12)
1152#define  PLLE_SS_CNTL_INTERP_RESET (1 << 11)
1153#define  PLLE_SS_CNTL_BYPASS_SS (1 << 10)
1154#define  PLLE_SS_CNTL_SSCMAX(x) (((x) & 0x1ff) << 0)
1155
1156#define PLLE_BASE 0x0e8
1157#define  PLLE_BASE_ENABLE (1 << 31)
1158#define  PLLE_BASE_PLDIV_CML(x) (((x) & 0x1f) << 24)
1159#define  PLLE_BASE_NDIV(x) (((x) & 0xff) << 8)
1160#define  PLLE_BASE_MDIV(x) (((x) & 0xff) << 0)
1161
1162#define PLLE_MISC 0x0ec
1163#define  PLLE_MISC_IDDQ_SWCTL (1 << 14)
1164#define  PLLE_MISC_IDDQ_OVERRIDE_VALUE (1 << 13)
1165#define  PLLE_MISC_LOCK (1 << 11)
1166#define  PLLE_PTS (1 << 8)
1167#define  PLLE_MISC_KCP(x) (((x) & 0x3) << 6)
1168#define  PLLE_MISC_VREG_CTRL(x) (((x) & 0x3) << 2)
1169#define  PLLE_MISC_KVCO (1 << 0)
1170
1171#define PLLE_AUX 0x48c
1172#define  PLLE_AUX_SS_SEQ_INCLUDE (1 << 31)
1173#define  PLLE_AUX_REF_SEL_PLLREFE (1 << 28)
1174#define  PLLE_AUX_SEQ_ENABLE (1 << 24)
1175#define  PLLE_AUX_SS_SWCTL (1 << 6)
1176#define  PLLE_AUX_ENABLE_SWCTL (1 << 4)
1177#define  PLLE_AUX_USE_LOCKDET (1 << 3)
1178
1179int tegra_plle_enable(void)
1180{
1181	u32 value;
1182	unsigned long start;
1183
1184	/* PLLREF feeds PLLE */
1185	tegra_pllref_enable();
1186
1187	/*
1188	 * This sequence comes from Tegra X1 TRM section "Cold Boot, with no
1189	 * Recovery Mode or Boot from USB", sub-section "PLLEs".
1190	 */
1191
1192	/* 1. Select XTAL as the source */
1193
1194	value = readl(NV_PA_CLK_RST_BASE + PLLE_AUX);
1195	value &= ~PLLE_AUX_REF_SEL_PLLREFE;
1196	writel(value, NV_PA_CLK_RST_BASE + PLLE_AUX);
1197
1198	value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
1199	value &= ~PLLE_MISC_IDDQ_OVERRIDE_VALUE;
1200	writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
1201
1202	/* 2. Wait 5 us */
1203	udelay(5);
1204
1205	/*
1206	 * 3. Program the following registers to generate a low jitter 100MHz
1207	 * clock.
1208	 */
1209
1210	value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
1211	value &= ~PLLE_BASE_PLDIV_CML(0x1f);
1212	value &= ~PLLE_BASE_NDIV(0xff);
1213	value &= ~PLLE_BASE_MDIV(0xff);
1214	value |= PLLE_BASE_PLDIV_CML(0xe);
1215	value |= PLLE_BASE_NDIV(0x7d);
1216	value |= PLLE_BASE_MDIV(2);
1217	writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
1218
1219	value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
1220	value |= PLLE_PTS;
1221	value &= ~PLLE_MISC_KCP(3);
1222	value &= ~PLLE_MISC_VREG_CTRL(3);
1223	value &= ~PLLE_MISC_KVCO;
1224	writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
1225
1226	value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
1227	value |= PLLE_BASE_ENABLE;
1228	writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
1229
1230	/* 4. Wait for LOCK */
1231
1232	debug("waiting for plle lock\n");
1233	start = get_timer(0);
1234	while (get_timer(start) < 250) {
1235		value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
1236		if (value & PLLE_MISC_LOCK)
1237			break;
1238	}
1239	if (!(value & PLLE_MISC_LOCK)) {
1240		debug("  timeout\n");
1241		return -ETIMEDOUT;
1242	}
1243	debug("  done\n");
1244
1245	/* 5. Enable SSA */
1246
1247	value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1248	value &= ~PLLE_SS_CNTL_SSCINC(0xff);
1249	value |= PLLE_SS_CNTL_SSCINC(1);
1250	value &= ~PLLE_SS_CNTL_SSCINCINTR(0x3f);
1251	value |= PLLE_SS_CNTL_SSCINCINTR(0x23);
1252	value &= ~PLLE_SS_CNTL_SSCMAX(0x1fff);
1253	value |= PLLE_SS_CNTL_SSCMAX(0x21);
1254	value &= ~PLLE_SS_CNTL_SSCINVERT;
1255	value &= ~PLLE_SS_CNTL_SSCCENTER;
1256	value &= ~PLLE_SS_CNTL_BYPASS_SS;
1257	value &= ~PLLE_SS_CNTL_SSCBYP;
1258	writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1259
1260	/* 6. Wait 300 ns */
1261
1262	udelay(1);
1263	value &= ~PLLE_SS_CNTL_INTERP_RESET;
1264	writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
1265
1266	return 0;
1267}
1268
1269struct clk_pll_simple *clock_get_simple_pll(enum clock_id clkid)
1270{
1271	struct clk_rst_ctlr *clkrst =
1272			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
1273
1274	switch (clkid) {
1275	case CLOCK_ID_XCPU:
1276	case CLOCK_ID_EPCI:
1277	case CLOCK_ID_SFROM32KHZ:
1278		return &clkrst->crc_pll_simple[clkid - CLOCK_ID_FIRST_SIMPLE];
1279	default:
1280		return NULL;
1281	}
1282}
1283
1284struct periph_clk_init periph_clk_init_table[] = {
1285	{ PERIPH_ID_SBC1, CLOCK_ID_PERIPH },
1286	{ PERIPH_ID_SBC2, CLOCK_ID_PERIPH },
1287	{ PERIPH_ID_SBC3, CLOCK_ID_PERIPH },
1288	{ PERIPH_ID_SBC4, CLOCK_ID_PERIPH },
1289	{ PERIPH_ID_SBC5, CLOCK_ID_PERIPH },
1290	{ PERIPH_ID_SBC6, CLOCK_ID_PERIPH },
1291	{ PERIPH_ID_HOST1X, CLOCK_ID_PERIPH },
1292	{ PERIPH_ID_SDMMC1, CLOCK_ID_PERIPH },
1293	{ PERIPH_ID_SDMMC2, CLOCK_ID_PERIPH },
1294	{ PERIPH_ID_SDMMC3, CLOCK_ID_PERIPH },
1295	{ PERIPH_ID_SDMMC4, CLOCK_ID_PERIPH },
1296	{ PERIPH_ID_PWM, CLOCK_ID_PERIPH },
1297	{ PERIPH_ID_I2C1, CLOCK_ID_PERIPH },
1298	{ PERIPH_ID_I2C2, CLOCK_ID_PERIPH },
1299	{ PERIPH_ID_I2C3, CLOCK_ID_PERIPH },
1300	{ PERIPH_ID_I2C4, CLOCK_ID_PERIPH },
1301	{ PERIPH_ID_I2C5, CLOCK_ID_PERIPH },
1302	{ PERIPH_ID_I2C6, CLOCK_ID_PERIPH },
1303	{ -1, },
1304};
1305