1294838Szbb// SPDX-License-Identifier: GPL-2.0
2294838Szbb/*
3294838Szbb * Copyright (c) 2010-2019, NVIDIA CORPORATION.  All rights reserved.
4294838Szbb */
5294838Szbb
6294838Szbb/* Tegra SoC common clock control functions */
7294838Szbb
8294838Szbb#include <common.h>
9294838Szbb#include <div64.h>
10294838Szbb#include <dm.h>
11294838Szbb#include <errno.h>
12294838Szbb#include <log.h>
13294838Szbb#include <time.h>
14294838Szbb#include <asm/io.h>
15294838Szbb#include <asm/arch/clock.h>
16294838Szbb#include <asm/arch/tegra.h>
17294838Szbb#include <asm/arch-tegra/ap.h>
18294838Szbb#include <asm/arch-tegra/clk_rst.h>
19294838Szbb#include <asm/arch-tegra/pmc.h>
20294838Szbb#include <asm/arch-tegra/timer.h>
21294838Szbb#include <linux/delay.h>
22294838Szbb
23294838Szbb/*
24294838Szbb * This is our record of the current clock rate of each clock. We don't
25294838Szbb * fill all of these in since we are only really interested in clocks which
26294838Szbb * we use as parents.
27294838Szbb */
28294838Szbbstatic unsigned pll_rate[CLOCK_ID_COUNT];
29294838Szbb
30294838Szbb/*
31294838Szbb * The oscillator frequency is fixed to one of seven set values. Based on this
32294838Szbb * the other clocks are set up appropriately.
33294838Szbb */
34294838Szbbstatic unsigned osc_freq[CLOCK_OSC_FREQ_COUNT] = {
35294838Szbb	13000000,
36294838Szbb	16800000,
37294838Szbb	       0,
38294838Szbb	       0,
39294838Szbb	19200000,
40294838Szbb	38400000,
41294838Szbb	       0,
42294838Szbb	       0,
43294838Szbb	12000000,
44294838Szbb	48000000,
45294838Szbb	       0,
46294838Szbb	       0,
47294838Szbb	26000000,
48294838Szbb};
49294838Szbb
50294838Szbb/* return 1 if a peripheral ID is in range */
51294838Szbb#define clock_type_id_isvalid(id) ((id) >= 0 && \
52294838Szbb		(id) < CLOCK_TYPE_COUNT)
53294838Szbb
54294838Szbbchar pllp_valid = 1;	/* PLLP is set up correctly */
55294838Szbb
56294838Szbb/* return 1 if a periphc_internal_id is in range */
57294838Szbb#define periphc_internal_id_isvalid(id) ((id) >= 0 && \
58294838Szbb		(id) < PERIPHC_COUNT)
59294838Szbb
60294838Szbb/* number of clock outputs of a PLL */
61294838Szbbstatic const u8 pll_num_clkouts[] = {
62294838Szbb	1,	/* PLLC */
63294838Szbb	1,	/* PLLM */
64294838Szbb	4,	/* PLLP */
65294838Szbb	1,	/* PLLA */
66294838Szbb	0,	/* PLLU */
67294838Szbb	0,	/* PLLD */
68294838Szbb};
69294838Szbb
70294838Szbbint clock_get_osc_bypass(void)
71294838Szbb{
72294838Szbb	struct clk_rst_ctlr *clkrst =
73294838Szbb			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
74294838Szbb	u32 reg;
75294838Szbb
76294838Szbb	reg = readl(&clkrst->crc_osc_ctrl);
77294838Szbb	return (reg & OSC_XOBP_MASK) >> OSC_XOBP_SHIFT;
78294838Szbb}
79294838Szbb
80294838Szbb/* Returns a pointer to the registers of the given pll */
81294838Szbbstatic struct clk_pll *get_pll(enum clock_id clkid)
82294838Szbb{
83294838Szbb	struct clk_rst_ctlr *clkrst =
84294838Szbb			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
85294838Szbb
86294838Szbb	assert(clock_id_is_pll(clkid));
87294838Szbb	if (clkid >= (enum clock_id)TEGRA_CLK_PLLS) {
88294838Szbb		debug("%s: Invalid PLL %d\n", __func__, clkid);
89294838Szbb		return NULL;
90294838Szbb	}
91294838Szbb	return &clkrst->crc_pll[clkid];
92294838Szbb}
93294838Szbb
94294838Szbb__weak struct clk_pll_simple *clock_get_simple_pll(enum clock_id clkid)
95294838Szbb{
96294838Szbb	return NULL;
97294838Szbb}
98294838Szbb
99294838Szbbint clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn,
100294838Szbb		u32 *divp, u32 *cpcon, u32 *lfcon)
101294838Szbb{
102294838Szbb	struct clk_pll *pll = get_pll(clkid);
103294838Szbb	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
104294838Szbb	u32 data;
105294838Szbb
106294838Szbb	assert(clkid != CLOCK_ID_USB);
107294838Szbb
108294838Szbb	/* Safety check, adds to code size but is small */
109294838Szbb	if (!clock_id_is_pll(clkid) || clkid == CLOCK_ID_USB)
110294838Szbb		return -1;
111294838Szbb	data = readl(&pll->pll_base);
112294838Szbb	*divm = (data >> pllinfo->m_shift) & pllinfo->m_mask;
113294838Szbb	*divn = (data >> pllinfo->n_shift) & pllinfo->n_mask;
114294838Szbb	*divp = (data >> pllinfo->p_shift) & pllinfo->p_mask;
115294838Szbb	data = readl(&pll->pll_misc);
116294838Szbb	/* NOTE: On T210, cpcon/lfcon no longer exist, moved to KCP/KVCO */
117294838Szbb	*cpcon = (data >> pllinfo->kcp_shift) & pllinfo->kcp_mask;
118294838Szbb	*lfcon = (data >> pllinfo->kvco_shift) & pllinfo->kvco_mask;
119294838Szbb
120294838Szbb	return 0;
121294838Szbb}
122294838Szbb
123294838Szbbunsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn,
124294838Szbb		u32 divp, u32 cpcon, u32 lfcon)
125294838Szbb{
126294838Szbb	struct clk_pll *pll = NULL;
127294838Szbb	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
128294838Szbb	struct clk_pll_simple *simple_pll = NULL;
129294838Szbb	u32 misc_data, data;
130294838Szbb
131294838Szbb	if (clkid < (enum clock_id)TEGRA_CLK_PLLS)
132294838Szbb		pll = get_pll(clkid);
133294838Szbb	else
134294838Szbb		simple_pll = clock_get_simple_pll(clkid);
135294838Szbb
136294838Szbb	if (!simple_pll && !pll) {
137294838Szbb		log_err("Unknown PLL id %d\n", clkid);
138294838Szbb		return 0;
139294838Szbb	}
140294838Szbb
141294838Szbb	/*
142294838Szbb	 * pllinfo has the m/n/p and kcp/kvco mask and shift
143294838Szbb	 * values for all of the PLLs used in U-Boot, with any
144294838Szbb	 * SoC differences accounted for.
145294838Szbb	 *
146294838Szbb	 * Preserve EN_LOCKDET, etc.
147294838Szbb	 */
148294838Szbb	if (pll)
149294838Szbb		misc_data = readl(&pll->pll_misc);
150294838Szbb	else
151294838Szbb		misc_data = readl(&simple_pll->pll_misc);
152	misc_data &= ~(pllinfo->kcp_mask << pllinfo->kcp_shift);
153	misc_data |= cpcon << pllinfo->kcp_shift;
154	misc_data &= ~(pllinfo->kvco_mask << pllinfo->kvco_shift);
155	misc_data |= lfcon << pllinfo->kvco_shift;
156
157	data = (divm << pllinfo->m_shift) | (divn << pllinfo->n_shift);
158	data |= divp << pllinfo->p_shift;
159	data |= (1 << PLL_ENABLE_SHIFT);	/* BYPASS s/b 0 already */
160
161	if (pll) {
162		writel(misc_data, &pll->pll_misc);
163		writel(data, &pll->pll_base);
164	} else {
165		writel(misc_data, &simple_pll->pll_misc);
166		writel(data, &simple_pll->pll_base);
167	}
168
169	/* calculate the stable time */
170	return timer_get_us() + CLOCK_PLL_STABLE_DELAY_US;
171}
172
173void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source,
174			unsigned divisor)
175{
176	u32 *reg = get_periph_source_reg(periph_id);
177	u32 value;
178
179	value = readl(reg);
180
181	value &= ~OUT_CLK_SOURCE_31_30_MASK;
182	value |= source << OUT_CLK_SOURCE_31_30_SHIFT;
183
184	value &= ~OUT_CLK_DIVISOR_MASK;
185	value |= divisor << OUT_CLK_DIVISOR_SHIFT;
186
187	writel(value, reg);
188}
189
190int clock_ll_set_source_bits(enum periph_id periph_id, int mux_bits,
191			     unsigned source)
192{
193	u32 *reg = get_periph_source_reg(periph_id);
194
195	switch (mux_bits) {
196	case MASK_BITS_31_30:
197		clrsetbits_le32(reg, OUT_CLK_SOURCE_31_30_MASK,
198				source << OUT_CLK_SOURCE_31_30_SHIFT);
199		break;
200
201	case MASK_BITS_31_29:
202		clrsetbits_le32(reg, OUT_CLK_SOURCE_31_29_MASK,
203				source << OUT_CLK_SOURCE_31_29_SHIFT);
204		break;
205
206	case MASK_BITS_31_28:
207		clrsetbits_le32(reg, OUT_CLK_SOURCE_31_28_MASK,
208				source << OUT_CLK_SOURCE_31_28_SHIFT);
209		break;
210
211	default:
212		return -1;
213	}
214
215	return 0;
216}
217
218static int clock_ll_get_source_bits(enum periph_id periph_id, int mux_bits)
219{
220	u32 *reg = get_periph_source_reg(periph_id);
221	u32 val = readl(reg);
222
223	switch (mux_bits) {
224	case MASK_BITS_31_30:
225		val >>= OUT_CLK_SOURCE_31_30_SHIFT;
226		val &= OUT_CLK_SOURCE_31_30_MASK;
227		return val;
228	case MASK_BITS_31_29:
229		val >>= OUT_CLK_SOURCE_31_29_SHIFT;
230		val &= OUT_CLK_SOURCE_31_29_MASK;
231		return val;
232	case MASK_BITS_31_28:
233		val >>= OUT_CLK_SOURCE_31_28_SHIFT;
234		val &= OUT_CLK_SOURCE_31_28_MASK;
235		return val;
236	default:
237		return -1;
238	}
239}
240
241void clock_ll_set_source(enum periph_id periph_id, unsigned source)
242{
243	clock_ll_set_source_bits(periph_id, MASK_BITS_31_30, source);
244}
245
246/**
247 * Given the parent's rate and the required rate for the children, this works
248 * out the peripheral clock divider to use, in 7.1 binary format.
249 *
250 * @param divider_bits	number of divider bits (8 or 16)
251 * @param parent_rate	clock rate of parent clock in Hz
252 * @param rate		required clock rate for this clock
253 * Return: divider which should be used
254 */
255static int clk_get_divider(unsigned divider_bits, unsigned long parent_rate,
256			   unsigned long rate)
257{
258	u64 divider = parent_rate * 2;
259	unsigned max_divider = 1 << divider_bits;
260
261	divider += rate - 1;
262	do_div(divider, rate);
263
264	if ((s64)divider - 2 < 0)
265		return 0;
266
267	if ((s64)divider - 2 >= max_divider)
268		return -1;
269
270	return divider - 2;
271}
272
273int clock_set_pllout(enum clock_id clkid, enum pll_out_id pllout, unsigned rate)
274{
275	struct clk_pll *pll = get_pll(clkid);
276	int data = 0, div = 0, offset = 0;
277
278	if (!clock_id_is_pll(clkid))
279		return -1;
280
281	if (pllout + 1 > pll_num_clkouts[clkid])
282		return -1;
283
284	div = clk_get_divider(8, pll_rate[clkid], rate);
285
286	if (div < 0)
287		return -1;
288
289	/* out2 and out4 are in the high part of the register */
290	if (pllout == PLL_OUT2 || pllout == PLL_OUT4)
291		offset = 16;
292
293	data = (div << PLL_OUT_RATIO_SHIFT) |
294			PLL_OUT_OVRRIDE | PLL_OUT_CLKEN | PLL_OUT_RSTN;
295	clrsetbits_le32(&pll->pll_out[pllout >> 1],
296			PLL_OUT_RATIO_MASK << offset, data << offset);
297
298	return 0;
299}
300
301/**
302 * Given the parent's rate and the divider in 7.1 format, this works out the
303 * resulting peripheral clock rate.
304 *
305 * @param parent_rate	clock rate of parent clock in Hz
306 * @param divider which should be used in 7.1 format
307 * Return: effective clock rate of peripheral
308 */
309static unsigned long get_rate_from_divider(unsigned long parent_rate,
310					   int divider)
311{
312	u64 rate;
313
314	rate = (u64)parent_rate * 2;
315	do_div(rate, divider + 2);
316	return rate;
317}
318
319unsigned long clock_get_periph_rate(enum periph_id periph_id,
320		enum clock_id parent)
321{
322	u32 *reg = get_periph_source_reg(periph_id);
323	unsigned parent_rate = pll_rate[parent];
324	int div = (readl(reg) & OUT_CLK_DIVISOR_MASK) >> OUT_CLK_DIVISOR_SHIFT;
325
326	switch (periph_id) {
327	case PERIPH_ID_UART1:
328	case PERIPH_ID_UART2:
329	case PERIPH_ID_UART3:
330	case PERIPH_ID_UART4:
331	case PERIPH_ID_UART5:
332#ifdef CONFIG_TEGRA20
333		/* There's no divider for these clocks in this SoC. */
334		return parent_rate;
335#else
336		/*
337		 * This undoes the +2 in get_rate_from_divider() which I
338		 * believe is incorrect. Ideally we would fix
339		 * get_rate_from_divider(), but... Removing the +2 from
340		 * get_rate_from_divider() would probably require remove the -2
341		 * from the tail of clk_get_divider() since I believe that's
342		 * only there to invert get_rate_from_divider()'s +2. Observe
343		 * how find_best_divider() uses those two functions together.
344		 * However, doing so breaks other stuff, such as Seaboard's
345		 * display, likely due to clock_set_pllout()'s call to
346		 * clk_get_divider(). Attempting to fix that by making
347		 * clock_set_pllout() subtract 2 from clk_get_divider()'s
348		 * return value doesn't help. In summary this clock driver is
349		 * quite broken but I'm afraid I have no idea how to fix it
350		 * without completely replacing it.
351		 *
352		 * Be careful to avoid a divide by zero error.
353		 */
354		if (div >= 1)
355			div -= 2;
356		break;
357#endif
358	default:
359		break;
360	}
361
362	return get_rate_from_divider(parent_rate, div);
363}
364
365/**
366 * Find the best available 7.1 format divisor given a parent clock rate and
367 * required child clock rate. This function assumes that a second-stage
368 * divisor is available which can divide by powers of 2 from 1 to 256.
369 *
370 * @param divider_bits	number of divider bits (8 or 16)
371 * @param parent_rate	clock rate of parent clock in Hz
372 * @param rate		required clock rate for this clock
373 * @param extra_div	value for the second-stage divisor (not set if this
374 *			function returns -1.
375 * Return: divider which should be used, or -1 if nothing is valid
376 *
377 */
378static int find_best_divider(unsigned divider_bits, unsigned long parent_rate,
379				unsigned long rate, int *extra_div)
380{
381	int shift;
382	int best_divider = -1;
383	int best_error = rate;
384
385	/* try dividers from 1 to 256 and find closest match */
386	for (shift = 0; shift <= 8 && best_error > 0; shift++) {
387		unsigned divided_parent = parent_rate >> shift;
388		int divider = clk_get_divider(divider_bits, divided_parent,
389						rate);
390		unsigned effective_rate = get_rate_from_divider(divided_parent,
391						divider);
392		int error = rate - effective_rate;
393
394		/* Given a valid divider, look for the lowest error */
395		if (divider != -1 && error < best_error) {
396			best_error = error;
397			*extra_div = 1 << shift;
398			best_divider = divider;
399		}
400	}
401
402	/* return what we found - *extra_div will already be set */
403	return best_divider;
404}
405
406/**
407 * Adjust peripheral PLL to use the given divider and source.
408 *
409 * @param periph_id	peripheral to adjust
410 * @param source	Source number (0-3 or 0-7)
411 * @param mux_bits	Number of mux bits (2 or 4)
412 * @param divider	Required divider in 7.1 or 15.1 format
413 * Return: 0 if ok, -1 on error (requesting a parent clock which is not valid
414 *		for this peripheral)
415 */
416static int adjust_periph_pll(enum periph_id periph_id, int source,
417				int mux_bits, unsigned divider)
418{
419	u32 *reg = get_periph_source_reg(periph_id);
420
421	clrsetbits_le32(reg, OUT_CLK_DIVISOR_MASK,
422			divider << OUT_CLK_DIVISOR_SHIFT);
423	udelay(1);
424
425	/* work out the source clock and set it */
426	if (source < 0)
427		return -1;
428
429	clock_ll_set_source_bits(periph_id, mux_bits, source);
430
431	udelay(2);
432	return 0;
433}
434
435enum clock_id clock_get_periph_parent(enum periph_id periph_id)
436{
437	int err, mux_bits, divider_bits, type;
438	int source;
439
440	err = get_periph_clock_info(periph_id, &mux_bits, &divider_bits, &type);
441	if (err)
442		return CLOCK_ID_NONE;
443
444	source = clock_ll_get_source_bits(periph_id, mux_bits);
445
446	return get_periph_clock_id(periph_id, source);
447}
448
449unsigned clock_adjust_periph_pll_div(enum periph_id periph_id,
450		enum clock_id parent, unsigned rate, int *extra_div)
451{
452	unsigned effective_rate;
453	int mux_bits, divider_bits, source;
454	int divider;
455	int xdiv = 0;
456
457	/* work out the source clock and set it */
458	source = get_periph_clock_source(periph_id, parent, &mux_bits,
459					 &divider_bits);
460
461	divider = find_best_divider(divider_bits, pll_rate[parent],
462				    rate, &xdiv);
463	if (extra_div)
464		*extra_div = xdiv;
465
466	assert(divider >= 0);
467	if (adjust_periph_pll(periph_id, source, mux_bits, divider))
468		return -1U;
469	debug("periph %d, rate=%d, reg=%p = %x\n", periph_id, rate,
470		get_periph_source_reg(periph_id),
471		readl(get_periph_source_reg(periph_id)));
472
473	/* Check what we ended up with. This shouldn't matter though */
474	effective_rate = clock_get_periph_rate(periph_id, parent);
475	if (extra_div)
476		effective_rate /= *extra_div;
477	if (rate != effective_rate)
478		debug("Requested clock rate %u not honored (got %u)\n",
479			rate, effective_rate);
480	return effective_rate;
481}
482
483unsigned clock_start_periph_pll(enum periph_id periph_id,
484		enum clock_id parent, unsigned rate)
485{
486	unsigned effective_rate;
487
488	reset_set_enable(periph_id, 1);
489	clock_enable(periph_id);
490	udelay(2);
491
492	effective_rate = clock_adjust_periph_pll_div(periph_id, parent, rate,
493						 NULL);
494
495	reset_set_enable(periph_id, 0);
496	return effective_rate;
497}
498
499void clock_enable(enum periph_id clkid)
500{
501	clock_set_enable(clkid, 1);
502}
503
504void clock_disable(enum periph_id clkid)
505{
506	clock_set_enable(clkid, 0);
507}
508
509void reset_periph(enum periph_id periph_id, int us_delay)
510{
511	/* Put peripheral into reset */
512	reset_set_enable(periph_id, 1);
513	udelay(us_delay);
514
515	/* Remove reset */
516	reset_set_enable(periph_id, 0);
517
518	udelay(us_delay);
519}
520
521void reset_cmplx_set_enable(int cpu, int which, int reset)
522{
523	struct clk_rst_ctlr *clkrst =
524			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
525	u32 mask;
526
527	/* Form the mask, which depends on the cpu chosen (2 or 4) */
528	assert(cpu >= 0 && cpu < MAX_NUM_CPU);
529	mask = which << cpu;
530
531	/* either enable or disable those reset for that CPU */
532	if (reset)
533		writel(mask, &clkrst->crc_cpu_cmplx_set);
534	else
535		writel(mask, &clkrst->crc_cpu_cmplx_clr);
536}
537
538unsigned int __weak clk_m_get_rate(unsigned int parent_rate)
539{
540	return parent_rate;
541}
542
543unsigned clock_get_rate(enum clock_id clkid)
544{
545	struct clk_pll *pll = NULL;
546	struct clk_pll_simple *simple_pll = NULL;
547	u32 base, divm;
548	u64 parent_rate, rate;
549	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
550
551	parent_rate = osc_freq[clock_get_osc_freq()];
552	if (clkid == CLOCK_ID_OSC)
553		return parent_rate;
554
555	if (clkid == CLOCK_ID_CLK_M)
556		return clk_m_get_rate(parent_rate);
557
558	if (clkid < (enum clock_id)TEGRA_CLK_PLLS)
559		pll = get_pll(clkid);
560	else
561		simple_pll = clock_get_simple_pll(clkid);
562
563	if (!simple_pll && !pll) {
564		log_err("Unknown PLL id %d\n", clkid);
565		return 0;
566	}
567
568	if (pll)
569		base = readl(&pll->pll_base);
570	else
571		base = readl(&simple_pll->pll_base);
572
573	rate = parent_rate * ((base >> pllinfo->n_shift) & pllinfo->n_mask);
574	divm = (base >> pllinfo->m_shift) & pllinfo->m_mask;
575	/*
576	 * PLLU uses p_mask/p_shift for VCO on all but T210,
577	 * T210 uses normal DIVP. Handled in pllinfo table.
578	 */
579#ifdef CONFIG_TEGRA210
580	/*
581	 * PLLP's primary output (pllP_out0) on T210 is the VCO, and divp is
582	 * not applied. pllP_out2 does have divp applied. All other pllP_outN
583	 * are divided down from pllP_out0. We only support pllP_out0 in
584	 * U-Boot at the time of writing this comment.
585	 */
586	if (clkid != CLOCK_ID_PERIPH)
587#endif
588		divm <<= (base >> pllinfo->p_shift) & pllinfo->p_mask;
589	do_div(rate, divm);
590	return rate;
591}
592
593/**
594 * Set the output frequency you want for each PLL clock.
595 * PLL output frequencies are programmed by setting their N, M and P values.
596 * The governing equations are:
597 *     VCO = (Fi / m) * n, Fo = VCO / (2^p)
598 *     where Fo is the output frequency from the PLL.
599 * Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi)
600 *     216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1
601 * Please see Tegra TRM section 5.3 to get the detail for PLL Programming
602 *
603 * @param n PLL feedback divider(DIVN)
604 * @param m PLL input divider(DIVN)
605 * @param p post divider(DIVP)
606 * @param cpcon base PLL charge pump(CPCON)
607 * Return: 0 if ok, -1 on error (the requested PLL is incorrect and cannot
608 *		be overridden), 1 if PLL is already correct
609 */
610int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon)
611{
612	u32 base_reg, misc_reg;
613	struct clk_pll *pll = NULL;
614	struct clk_pll_simple *simple_pll = NULL;
615	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
616
617	if (clkid < (enum clock_id)TEGRA_CLK_PLLS)
618		pll = get_pll(clkid);
619	else
620		simple_pll = clock_get_simple_pll(clkid);
621
622	if (!simple_pll && !pll) {
623		log_err("Unknown PLL id %d\n", clkid);
624		return 0;
625	}
626
627	if (pll)
628		base_reg = readl(&pll->pll_base);
629	else
630		base_reg = readl(&simple_pll->pll_base);
631
632	/* Set BYPASS, m, n and p to PLL_BASE */
633	base_reg &= ~(pllinfo->m_mask << pllinfo->m_shift);
634	base_reg |= m << pllinfo->m_shift;
635
636	base_reg &= ~(pllinfo->n_mask << pllinfo->n_shift);
637	base_reg |= n << pllinfo->n_shift;
638
639	base_reg &= ~(pllinfo->p_mask << pllinfo->p_shift);
640	base_reg |= p << pllinfo->p_shift;
641
642	if (clkid == CLOCK_ID_PERIPH) {
643		/*
644		 * If the PLL is already set up, check that it is correct
645		 * and record this info for clock_verify() to check.
646		 */
647		if (base_reg & PLL_BASE_OVRRIDE_MASK) {
648			base_reg |= PLL_ENABLE_MASK;
649			if (base_reg != readl(&pll->pll_base))
650				pllp_valid = 0;
651			return pllp_valid ? 1 : -1;
652		}
653		base_reg |= PLL_BASE_OVRRIDE_MASK;
654	}
655
656	base_reg |= PLL_BYPASS_MASK;
657	if (pll)
658		writel(base_reg, &pll->pll_base);
659	else
660		writel(base_reg, &simple_pll->pll_base);
661
662	/* Set cpcon (KCP) to PLL_MISC */
663	if (pll)
664		misc_reg = readl(&pll->pll_misc);
665	else
666		misc_reg = readl(&simple_pll->pll_misc);
667
668	misc_reg &= ~(pllinfo->kcp_mask << pllinfo->kcp_shift);
669	misc_reg |= cpcon << pllinfo->kcp_shift;
670	if (pll)
671		writel(misc_reg, &pll->pll_misc);
672	else
673		writel(misc_reg, &simple_pll->pll_misc);
674
675	/* Enable PLL */
676	base_reg |= PLL_ENABLE_MASK;
677	if (pll)
678		writel(base_reg, &pll->pll_base);
679	else
680		writel(base_reg, &simple_pll->pll_base);
681
682	/* Disable BYPASS */
683	base_reg &= ~PLL_BYPASS_MASK;
684	if (pll)
685		writel(base_reg, &pll->pll_base);
686	else
687		writel(base_reg, &simple_pll->pll_base);
688
689	return 0;
690}
691
692void clock_ll_start_uart(enum periph_id periph_id)
693{
694	/* Assert UART reset and enable clock */
695	reset_set_enable(periph_id, 1);
696	clock_enable(periph_id);
697	clock_ll_set_source(periph_id, 0); /* UARTx_CLK_SRC = 00, PLLP_OUT0 */
698
699	/* wait for 2us */
700	udelay(2);
701
702	/* De-assert reset to UART */
703	reset_set_enable(periph_id, 0);
704}
705
706#if CONFIG_IS_ENABLED(OF_CONTROL)
707int clock_decode_periph_id(struct udevice *dev)
708{
709	enum periph_id id;
710	u32 cell[2];
711	int err;
712
713	err = dev_read_u32_array(dev, "clocks", cell, ARRAY_SIZE(cell));
714	if (err)
715		return -1;
716	id = clk_id_to_periph_id(cell[1]);
717	assert(clock_periph_id_isvalid(id));
718	return id;
719}
720
721/*
722 * Get periph clock id and its parent from device tree.
723 *
724 * @param dev		udevice associated with FDT node
725 * @param clk_id	pointer to u32 array of 2 values
726 *			first is periph clock, second is
727 *			its PLL parent according to FDT.
728 */
729int clock_decode_pair(struct udevice *dev, int *clk_id)
730{
731	u32 cell[4];
732	int err;
733
734	err = dev_read_u32_array(dev, "clocks", cell, ARRAY_SIZE(cell));
735	if (err)
736		return -EINVAL;
737
738	clk_id[0] = clk_id_to_periph_id(cell[1]);
739	clk_id[1] = clk_id_to_pll_id(cell[3]);
740
741	return 0;
742}
743#endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
744
745int clock_verify(void)
746{
747	struct clk_pll *pll = get_pll(CLOCK_ID_PERIPH);
748	u32 reg = readl(&pll->pll_base);
749
750	if (!pllp_valid) {
751		printf("Warning: PLLP %x is not correct\n", reg);
752		return -1;
753	}
754	debug("PLLP %x is correct\n", reg);
755	return 0;
756}
757
758void clock_init(void)
759{
760	int i;
761
762	pll_rate[CLOCK_ID_CGENERAL] = clock_get_rate(CLOCK_ID_CGENERAL);
763	pll_rate[CLOCK_ID_MEMORY] = clock_get_rate(CLOCK_ID_MEMORY);
764	pll_rate[CLOCK_ID_PERIPH] = clock_get_rate(CLOCK_ID_PERIPH);
765	pll_rate[CLOCK_ID_USB] = clock_get_rate(CLOCK_ID_USB);
766	pll_rate[CLOCK_ID_DISPLAY] = clock_get_rate(CLOCK_ID_DISPLAY);
767	pll_rate[CLOCK_ID_XCPU] = clock_get_rate(CLOCK_ID_XCPU);
768	pll_rate[CLOCK_ID_SFROM32KHZ] = 32768;
769	pll_rate[CLOCK_ID_OSC] = clock_get_rate(CLOCK_ID_OSC);
770	pll_rate[CLOCK_ID_CLK_M] = clock_get_rate(CLOCK_ID_CLK_M);
771#ifndef CONFIG_TEGRA20
772	pll_rate[CLOCK_ID_DISPLAY2] = clock_get_rate(CLOCK_ID_DISPLAY2);
773#endif
774
775	debug("Osc = %d\n", pll_rate[CLOCK_ID_OSC]);
776	debug("CLKM = %d\n", pll_rate[CLOCK_ID_CLK_M]);
777	debug("PLLC = %d\n", pll_rate[CLOCK_ID_CGENERAL]);
778	debug("PLLM = %d\n", pll_rate[CLOCK_ID_MEMORY]);
779	debug("PLLP = %d\n", pll_rate[CLOCK_ID_PERIPH]);
780	debug("PLLU = %d\n", pll_rate[CLOCK_ID_USB]);
781	debug("PLLD = %d\n", pll_rate[CLOCK_ID_DISPLAY]);
782	debug("PLLX = %d\n", pll_rate[CLOCK_ID_XCPU]);
783
784	for (i = 0; periph_clk_init_table[i].periph_id != -1; i++) {
785		enum periph_id periph_id;
786		enum clock_id parent;
787		int source, mux_bits, divider_bits;
788
789		periph_id = periph_clk_init_table[i].periph_id;
790		parent = periph_clk_init_table[i].parent_clock_id;
791
792		source = get_periph_clock_source(periph_id, parent, &mux_bits,
793						 &divider_bits);
794		clock_ll_set_source_bits(periph_id, mux_bits, source);
795	}
796}
797
798static void set_avp_clock_source(u32 src)
799{
800	struct clk_rst_ctlr *clkrst =
801			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
802	u32 val;
803
804	val = (src << SCLK_SWAKEUP_FIQ_SOURCE_SHIFT) |
805		(src << SCLK_SWAKEUP_IRQ_SOURCE_SHIFT) |
806		(src << SCLK_SWAKEUP_RUN_SOURCE_SHIFT) |
807		(src << SCLK_SWAKEUP_IDLE_SOURCE_SHIFT) |
808		(SCLK_SYS_STATE_RUN << SCLK_SYS_STATE_SHIFT);
809	writel(val, &clkrst->crc_sclk_brst_pol);
810	udelay(3);
811}
812
813/*
814 * This function is useful on Tegra30, and any later SoCs that have compatible
815 * PLLP configuration registers.
816 * NOTE: Not used on Tegra210 - see tegra210_setup_pllp in T210 clock.c
817 */
818void tegra30_set_up_pllp(void)
819{
820	struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
821	u32 reg;
822
823	/*
824	 * Based on the Tegra TRM, the system clock (which is the AVP clock) can
825	 * run up to 275MHz. On power on, the default sytem clock source is set
826	 * to PLLP_OUT0. This function sets PLLP's (hence PLLP_OUT0's) rate to
827	 * 408MHz which is beyond system clock's upper limit.
828	 *
829	 * The fix is to set the system clock to CLK_M before initializing PLLP,
830	 * and then switch back to PLLP_OUT4, which has an appropriate divider
831	 * configured, after PLLP has been configured
832	 */
833	set_avp_clock_source(SCLK_SOURCE_CLKM);
834
835	/*
836	 * PLLP output frequency set to 408Mhz
837	 * PLLC output frequency set to 228Mhz
838	 */
839	switch (clock_get_osc_freq()) {
840	case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
841	case CLOCK_OSC_FREQ_48_0: /* OSC is 48Mhz */
842		clock_set_rate(CLOCK_ID_PERIPH, 408, 12, 0, 8);
843		clock_set_rate(CLOCK_ID_CGENERAL, 456, 12, 1, 8);
844		break;
845
846	case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
847		clock_set_rate(CLOCK_ID_PERIPH, 408, 26, 0, 8);
848		clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
849		break;
850
851	case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
852	case CLOCK_OSC_FREQ_16_8: /* OSC is 16.8Mhz */
853		clock_set_rate(CLOCK_ID_PERIPH, 408, 13, 0, 8);
854		clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
855		break;
856
857	case CLOCK_OSC_FREQ_19_2:
858	case CLOCK_OSC_FREQ_38_4:
859	default:
860		/*
861		 * These are not supported. It is too early to print a
862		 * message and the UART likely won't work anyway due to the
863		 * oscillator being wrong.
864		 */
865		break;
866	}
867
868	/* Set PLLP_OUT1, 2, 3 & 4 freqs to 9.6, 48, 102 & 204MHz */
869
870	/* OUT1, 2 */
871	/* Assert RSTN before enable */
872	reg = PLLP_OUT2_RSTN_EN | PLLP_OUT1_RSTN_EN;
873	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
874	/* Set divisor and reenable */
875	reg = (IN_408_OUT_48_DIVISOR << PLLP_OUT2_RATIO)
876		| PLLP_OUT2_OVR | PLLP_OUT2_CLKEN | PLLP_OUT2_RSTN_DIS
877		| (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO)
878		| PLLP_OUT1_OVR | PLLP_OUT1_CLKEN | PLLP_OUT1_RSTN_DIS;
879	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
880
881	/* OUT3, 4 */
882	/* Assert RSTN before enable */
883	reg = PLLP_OUT4_RSTN_EN | PLLP_OUT3_RSTN_EN;
884	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
885	/* Set divisor and reenable */
886	reg = (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO)
887		| PLLP_OUT4_OVR | PLLP_OUT4_CLKEN | PLLP_OUT4_RSTN_DIS
888		| (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO)
889		| PLLP_OUT3_OVR | PLLP_OUT3_CLKEN | PLLP_OUT3_RSTN_DIS;
890	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
891
892	set_avp_clock_source(SCLK_SOURCE_PLLP_OUT4);
893}
894
895int clock_external_output(int clk_id)
896{
897	u32 val;
898
899	if (clk_id >= 1 && clk_id <= 3) {
900		val = tegra_pmc_readl(offsetof(struct pmc_ctlr,
901				      pmc_clk_out_cntrl));
902		val |= 1 << (2 + (clk_id - 1) * 8);
903		tegra_pmc_writel(val,
904				 offsetof(struct pmc_ctlr,
905				 pmc_clk_out_cntrl));
906
907	} else {
908		printf("%s: Unknown output clock id %d\n", __func__, clk_id);
909		return -EINVAL;
910	}
911
912	return 0;
913}
914
915__weak bool clock_early_init_done(void)
916{
917	return true;
918}
919