1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * (C) Copyright 2007
4 * Sascha Hauer, Pengutronix
5 *
6 * (C) Copyright 2009 Freescale Semiconductor, Inc.
7 */
8
9#include <common.h>
10#include <command.h>
11#include <log.h>
12#include <asm/io.h>
13#include <linux/errno.h>
14#include <asm/arch/imx-regs.h>
15#include <asm/arch/crm_regs.h>
16#include <asm/arch/clock.h>
17#include <div64.h>
18#include <asm/arch/sys_proto.h>
19
20enum pll_clocks {
21	PLL1_CLOCK = 0,
22	PLL2_CLOCK,
23	PLL3_CLOCK,
24#ifdef CONFIG_MX53
25	PLL4_CLOCK,
26#endif
27	PLL_CLOCKS,
28};
29
30struct mxc_pll_reg *mxc_plls[PLL_CLOCKS] = {
31	[PLL1_CLOCK] = (struct mxc_pll_reg *)PLL1_BASE_ADDR,
32	[PLL2_CLOCK] = (struct mxc_pll_reg *)PLL2_BASE_ADDR,
33	[PLL3_CLOCK] = (struct mxc_pll_reg *)PLL3_BASE_ADDR,
34#ifdef	CONFIG_MX53
35	[PLL4_CLOCK] = (struct mxc_pll_reg *)PLL4_BASE_ADDR,
36#endif
37};
38
39#define AHB_CLK_ROOT    133333333
40#define SZ_DEC_1M       1000000
41#define PLL_PD_MAX      16      /* Actual pd+1 */
42#define PLL_MFI_MAX     15
43#define PLL_MFI_MIN     5
44#define ARM_DIV_MAX     8
45#define IPG_DIV_MAX     4
46#define AHB_DIV_MAX     8
47#define EMI_DIV_MAX     8
48#define NFC_DIV_MAX     8
49
50#define MX5_CBCMR	0x00015154
51#define MX5_CBCDR	0x02888945
52
53struct fixed_pll_mfd {
54	u32 ref_clk_hz;
55	u32 mfd;
56};
57
58const struct fixed_pll_mfd fixed_mfd[] = {
59	{MXC_HCLK, 24 * 16},
60};
61
62struct pll_param {
63	u32 pd;
64	u32 mfi;
65	u32 mfn;
66	u32 mfd;
67};
68
69#define PLL_FREQ_MAX(ref_clk)  (4 * (ref_clk) * PLL_MFI_MAX)
70#define PLL_FREQ_MIN(ref_clk) \
71		((2 * (ref_clk) * (PLL_MFI_MIN - 1)) / PLL_PD_MAX)
72#define MAX_DDR_CLK     420000000
73#define NFC_CLK_MAX     34000000
74
75struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)MXC_CCM_BASE;
76
77void set_usboh3_clk(void)
78{
79	clrsetbits_le32(&mxc_ccm->cscmr1,
80			MXC_CCM_CSCMR1_USBOH3_CLK_SEL_MASK,
81			MXC_CCM_CSCMR1_USBOH3_CLK_SEL(1));
82	clrsetbits_le32(&mxc_ccm->cscdr1,
83			MXC_CCM_CSCDR1_USBOH3_CLK_PODF_MASK |
84			MXC_CCM_CSCDR1_USBOH3_CLK_PRED_MASK,
85			MXC_CCM_CSCDR1_USBOH3_CLK_PRED(4) |
86			MXC_CCM_CSCDR1_USBOH3_CLK_PODF(1));
87}
88
89void enable_usboh3_clk(bool enable)
90{
91	unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
92
93	clrsetbits_le32(&mxc_ccm->CCGR2,
94			MXC_CCM_CCGR2_USBOH3_60M(MXC_CCM_CCGR_CG_MASK),
95			MXC_CCM_CCGR2_USBOH3_60M(cg));
96}
97
98#ifdef CONFIG_SYS_I2C_MXC
99/* i2c_num can be from 0, to 1 for i.MX51 and 2 for i.MX53 */
100int enable_i2c_clk(unsigned char enable, unsigned i2c_num)
101{
102	u32 mask;
103
104#if defined(CONFIG_MX51)
105	if (i2c_num > 1)
106#elif defined(CONFIG_MX53)
107	if (i2c_num > 2)
108#endif
109		return -EINVAL;
110	mask = MXC_CCM_CCGR_CG_MASK <<
111			(MXC_CCM_CCGR1_I2C1_OFFSET + (i2c_num << 1));
112	if (enable)
113		setbits_le32(&mxc_ccm->CCGR1, mask);
114	else
115		clrbits_le32(&mxc_ccm->CCGR1, mask);
116	return 0;
117}
118#endif
119
120void set_usb_phy_clk(void)
121{
122	clrbits_le32(&mxc_ccm->cscmr1, MXC_CCM_CSCMR1_USB_PHY_CLK_SEL);
123}
124
125#if defined(CONFIG_MX51)
126void enable_usb_phy1_clk(bool enable)
127{
128	unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
129
130	clrsetbits_le32(&mxc_ccm->CCGR2,
131			MXC_CCM_CCGR2_USB_PHY(MXC_CCM_CCGR_CG_MASK),
132			MXC_CCM_CCGR2_USB_PHY(cg));
133}
134
135void enable_usb_phy2_clk(bool enable)
136{
137	/* i.MX51 has a single USB PHY clock, so do nothing here. */
138}
139#elif defined(CONFIG_MX53)
140void enable_usb_phy1_clk(bool enable)
141{
142	unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
143
144	clrsetbits_le32(&mxc_ccm->CCGR4,
145			MXC_CCM_CCGR4_USB_PHY1(MXC_CCM_CCGR_CG_MASK),
146			MXC_CCM_CCGR4_USB_PHY1(cg));
147}
148
149void enable_usb_phy2_clk(bool enable)
150{
151	unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
152
153	clrsetbits_le32(&mxc_ccm->CCGR4,
154			MXC_CCM_CCGR4_USB_PHY2(MXC_CCM_CCGR_CG_MASK),
155			MXC_CCM_CCGR4_USB_PHY2(cg));
156}
157#endif
158
159/*
160 * Calculate the frequency of PLLn.
161 */
162static uint32_t decode_pll(struct mxc_pll_reg *pll, uint32_t infreq)
163{
164	uint32_t ctrl, op, mfd, mfn, mfi, pdf, ret;
165	uint64_t refclk, temp;
166	int32_t mfn_abs;
167
168	ctrl = readl(&pll->ctrl);
169
170	if (ctrl & MXC_DPLLC_CTL_HFSM) {
171		mfn = readl(&pll->hfs_mfn);
172		mfd = readl(&pll->hfs_mfd);
173		op = readl(&pll->hfs_op);
174	} else {
175		mfn = readl(&pll->mfn);
176		mfd = readl(&pll->mfd);
177		op = readl(&pll->op);
178	}
179
180	mfd &= MXC_DPLLC_MFD_MFD_MASK;
181	mfn &= MXC_DPLLC_MFN_MFN_MASK;
182	pdf = op & MXC_DPLLC_OP_PDF_MASK;
183	mfi = MXC_DPLLC_OP_MFI_RD(op);
184
185	/* 21.2.3 */
186	if (mfi < 5)
187		mfi = 5;
188
189	/* Sign extend */
190	if (mfn >= 0x04000000) {
191		mfn |= 0xfc000000;
192		mfn_abs = -mfn;
193	} else
194		mfn_abs = mfn;
195
196	refclk = infreq * 2;
197	if (ctrl & MXC_DPLLC_CTL_DPDCK0_2_EN)
198		refclk *= 2;
199
200	do_div(refclk, pdf + 1);
201	temp = refclk * mfn_abs;
202	do_div(temp, mfd + 1);
203	ret = refclk * mfi;
204
205	if ((int)mfn < 0)
206		ret -= temp;
207	else
208		ret += temp;
209
210	return ret;
211}
212
213#ifdef CONFIG_MX51
214/*
215 * This function returns the Frequency Pre-Multiplier clock.
216 */
217static u32 get_fpm(void)
218{
219	u32 mult;
220	u32 ccr = readl(&mxc_ccm->ccr);
221
222	if (ccr & MXC_CCM_CCR_FPM_MULT)
223		mult = 1024;
224	else
225		mult = 512;
226
227	return MXC_CLK32 * mult;
228}
229#endif
230
231/*
232 * This function returns the low power audio clock.
233 */
234static u32 get_lp_apm(void)
235{
236	u32 ret_val = 0;
237	u32 ccsr = readl(&mxc_ccm->ccsr);
238
239	if (ccsr & MXC_CCM_CCSR_LP_APM)
240#if defined(CONFIG_MX51)
241		ret_val = get_fpm();
242#elif defined(CONFIG_MX53)
243		ret_val = decode_pll(mxc_plls[PLL4_CLOCK], MXC_HCLK);
244#endif
245	else
246		ret_val = MXC_HCLK;
247
248	return ret_val;
249}
250
251/*
252 * Get mcu main rate
253 */
254u32 get_mcu_main_clk(void)
255{
256	u32 reg, freq;
257
258	reg = MXC_CCM_CACRR_ARM_PODF_RD(readl(&mxc_ccm->cacrr));
259	freq = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
260	return freq / (reg + 1);
261}
262
263/*
264 * Get the rate of peripheral's root clock.
265 */
266u32 get_periph_clk(void)
267{
268	u32 reg;
269
270	reg = readl(&mxc_ccm->cbcdr);
271	if (!(reg & MXC_CCM_CBCDR_PERIPH_CLK_SEL))
272		return decode_pll(mxc_plls[PLL2_CLOCK], MXC_HCLK);
273	reg = readl(&mxc_ccm->cbcmr);
274	switch (MXC_CCM_CBCMR_PERIPH_CLK_SEL_RD(reg)) {
275	case 0:
276		return decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
277	case 1:
278		return decode_pll(mxc_plls[PLL3_CLOCK], MXC_HCLK);
279	case 2:
280		return get_lp_apm();
281	default:
282		return 0;
283	}
284	/* NOTREACHED */
285}
286
287/*
288 * Get the rate of ipg clock.
289 */
290static u32 get_ipg_clk(void)
291{
292	uint32_t freq, reg, div;
293
294	freq = get_ahb_clk();
295
296	reg = readl(&mxc_ccm->cbcdr);
297	div = MXC_CCM_CBCDR_IPG_PODF_RD(reg) + 1;
298
299	return freq / div;
300}
301
302/*
303 * Get the rate of ipg_per clock.
304 */
305static u32 get_ipg_per_clk(void)
306{
307	u32 freq, pred1, pred2, podf;
308
309	if (readl(&mxc_ccm->cbcmr) & MXC_CCM_CBCMR_PERCLK_IPG_CLK_SEL)
310		return get_ipg_clk();
311
312	if (readl(&mxc_ccm->cbcmr) & MXC_CCM_CBCMR_PERCLK_LP_APM_CLK_SEL)
313		freq = get_lp_apm();
314	else
315		freq = get_periph_clk();
316	podf = readl(&mxc_ccm->cbcdr);
317	pred1 = MXC_CCM_CBCDR_PERCLK_PRED1_RD(podf);
318	pred2 = MXC_CCM_CBCDR_PERCLK_PRED2_RD(podf);
319	podf = MXC_CCM_CBCDR_PERCLK_PODF_RD(podf);
320	return freq / ((pred1 + 1) * (pred2 + 1) * (podf + 1));
321}
322
323/* Get the output clock rate of a standard PLL MUX for peripherals. */
324static u32 get_standard_pll_sel_clk(u32 clk_sel)
325{
326	u32 freq = 0;
327
328	switch (clk_sel & 0x3) {
329	case 0:
330		freq = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
331		break;
332	case 1:
333		freq = decode_pll(mxc_plls[PLL2_CLOCK], MXC_HCLK);
334		break;
335	case 2:
336		freq = decode_pll(mxc_plls[PLL3_CLOCK], MXC_HCLK);
337		break;
338	case 3:
339		freq = get_lp_apm();
340		break;
341	}
342
343	return freq;
344}
345
346/*
347 * Get the rate of uart clk.
348 */
349static u32 get_uart_clk(void)
350{
351	unsigned int clk_sel, freq, reg, pred, podf;
352
353	reg = readl(&mxc_ccm->cscmr1);
354	clk_sel = MXC_CCM_CSCMR1_UART_CLK_SEL_RD(reg);
355	freq = get_standard_pll_sel_clk(clk_sel);
356
357	reg = readl(&mxc_ccm->cscdr1);
358	pred = MXC_CCM_CSCDR1_UART_CLK_PRED_RD(reg);
359	podf = MXC_CCM_CSCDR1_UART_CLK_PODF_RD(reg);
360	freq /= (pred + 1) * (podf + 1);
361
362	return freq;
363}
364
365/*
366 * get cspi clock rate.
367 */
368static u32 imx_get_cspiclk(void)
369{
370	u32 ret_val = 0, pdf, pre_pdf, clk_sel, freq;
371	u32 cscmr1 = readl(&mxc_ccm->cscmr1);
372	u32 cscdr2 = readl(&mxc_ccm->cscdr2);
373
374	pre_pdf = MXC_CCM_CSCDR2_CSPI_CLK_PRED_RD(cscdr2);
375	pdf = MXC_CCM_CSCDR2_CSPI_CLK_PODF_RD(cscdr2);
376	clk_sel = MXC_CCM_CSCMR1_CSPI_CLK_SEL_RD(cscmr1);
377	freq = get_standard_pll_sel_clk(clk_sel);
378	ret_val = freq / ((pre_pdf + 1) * (pdf + 1));
379	return ret_val;
380}
381
382/*
383 * get esdhc clock rate.
384 */
385static u32 get_esdhc_clk(u32 port)
386{
387	u32 clk_sel = 0, pred = 0, podf = 0, freq = 0;
388	u32 cscmr1 = readl(&mxc_ccm->cscmr1);
389	u32 cscdr1 = readl(&mxc_ccm->cscdr1);
390
391	switch (port) {
392	case 0:
393		clk_sel = MXC_CCM_CSCMR1_ESDHC1_MSHC1_CLK_SEL_RD(cscmr1);
394		pred = MXC_CCM_CSCDR1_ESDHC1_MSHC1_CLK_PRED_RD(cscdr1);
395		podf = MXC_CCM_CSCDR1_ESDHC1_MSHC1_CLK_PODF_RD(cscdr1);
396		break;
397	case 1:
398		clk_sel = MXC_CCM_CSCMR1_ESDHC2_MSHC2_CLK_SEL_RD(cscmr1);
399		pred = MXC_CCM_CSCDR1_ESDHC2_MSHC2_CLK_PRED_RD(cscdr1);
400		podf = MXC_CCM_CSCDR1_ESDHC2_MSHC2_CLK_PODF_RD(cscdr1);
401		break;
402	case 2:
403		if (cscmr1 & MXC_CCM_CSCMR1_ESDHC3_CLK_SEL)
404			return get_esdhc_clk(1);
405		else
406			return get_esdhc_clk(0);
407	case 3:
408		if (cscmr1 & MXC_CCM_CSCMR1_ESDHC4_CLK_SEL)
409			return get_esdhc_clk(1);
410		else
411			return get_esdhc_clk(0);
412	default:
413		break;
414	}
415
416	freq = get_standard_pll_sel_clk(clk_sel) / ((pred + 1) * (podf + 1));
417	return freq;
418}
419
420static u32 get_axi_a_clk(void)
421{
422	u32 cbcdr = readl(&mxc_ccm->cbcdr);
423	u32 pdf = MXC_CCM_CBCDR_AXI_A_PODF_RD(cbcdr);
424
425	return  get_periph_clk() / (pdf + 1);
426}
427
428static u32 get_axi_b_clk(void)
429{
430	u32 cbcdr = readl(&mxc_ccm->cbcdr);
431	u32 pdf = MXC_CCM_CBCDR_AXI_B_PODF_RD(cbcdr);
432
433	return  get_periph_clk() / (pdf + 1);
434}
435
436static u32 get_emi_slow_clk(void)
437{
438	u32 cbcdr = readl(&mxc_ccm->cbcdr);
439	u32 emi_clk_sel = cbcdr & MXC_CCM_CBCDR_EMI_CLK_SEL;
440	u32 pdf = MXC_CCM_CBCDR_EMI_PODF_RD(cbcdr);
441
442	if (emi_clk_sel)
443		return  get_ahb_clk() / (pdf + 1);
444
445	return  get_periph_clk() / (pdf + 1);
446}
447
448static u32 get_ddr_clk(void)
449{
450	u32 ret_val = 0;
451	u32 cbcmr = readl(&mxc_ccm->cbcmr);
452	u32 ddr_clk_sel = MXC_CCM_CBCMR_DDR_CLK_SEL_RD(cbcmr);
453#ifdef CONFIG_MX51
454	u32 cbcdr = readl(&mxc_ccm->cbcdr);
455	if (cbcdr & MXC_CCM_CBCDR_DDR_HIFREQ_SEL) {
456		u32 ddr_clk_podf = MXC_CCM_CBCDR_DDR_PODF_RD(cbcdr);
457
458		ret_val = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
459		ret_val /= ddr_clk_podf + 1;
460
461		return ret_val;
462	}
463#endif
464	switch (ddr_clk_sel) {
465	case 0:
466		ret_val = get_axi_a_clk();
467		break;
468	case 1:
469		ret_val = get_axi_b_clk();
470		break;
471	case 2:
472		ret_val = get_emi_slow_clk();
473		break;
474	case 3:
475		ret_val = get_ahb_clk();
476		break;
477	default:
478		break;
479	}
480
481	return ret_val;
482}
483
484/*
485 * The API of get mxc clocks.
486 */
487unsigned int mxc_get_clock(enum mxc_clock clk)
488{
489	switch (clk) {
490	case MXC_ARM_CLK:
491		return get_mcu_main_clk();
492	case MXC_AHB_CLK:
493		return get_ahb_clk();
494	case MXC_IPG_CLK:
495		return get_ipg_clk();
496	case MXC_IPG_PERCLK:
497	case MXC_I2C_CLK:
498		return get_ipg_per_clk();
499	case MXC_UART_CLK:
500		return get_uart_clk();
501	case MXC_CSPI_CLK:
502		return imx_get_cspiclk();
503	case MXC_ESDHC_CLK:
504		return get_esdhc_clk(0);
505	case MXC_ESDHC2_CLK:
506		return get_esdhc_clk(1);
507	case MXC_ESDHC3_CLK:
508		return get_esdhc_clk(2);
509	case MXC_ESDHC4_CLK:
510		return get_esdhc_clk(3);
511	case MXC_FEC_CLK:
512		return get_ipg_clk();
513	case MXC_SATA_CLK:
514		return get_ahb_clk();
515	case MXC_DDR_CLK:
516		return get_ddr_clk();
517	default:
518		break;
519	}
520	return -EINVAL;
521}
522
523u32 imx_get_uartclk(void)
524{
525	return get_uart_clk();
526}
527
528u32 imx_get_fecclk(void)
529{
530	return get_ipg_clk();
531}
532
533static int gcd(int m, int n)
534{
535	int t;
536	while (m > 0) {
537		if (n > m) {
538			t = m;
539			m = n;
540			n = t;
541		} /* swap */
542		m -= n;
543	}
544	return n;
545}
546
547/*
548 * This is to calculate various parameters based on reference clock and
549 * targeted clock based on the equation:
550 *      t_clk = 2*ref_freq*(mfi + mfn/(mfd+1))/(pd+1)
551 * This calculation is based on a fixed MFD value for simplicity.
552 */
553static int calc_pll_params(u32 ref, u32 target, struct pll_param *pll)
554{
555	u64 pd, mfi = 1, mfn, mfd, t1;
556	u32 n_target = target;
557	u32 n_ref = ref, i;
558
559	/*
560	 * Make sure targeted freq is in the valid range.
561	 * Otherwise the following calculation might be wrong!!!
562	 */
563	if (n_target < PLL_FREQ_MIN(ref) ||
564		n_target > PLL_FREQ_MAX(ref)) {
565		printf("Targeted peripheral clock should be"
566			"within [%d - %d]\n",
567			PLL_FREQ_MIN(ref) / SZ_DEC_1M,
568			PLL_FREQ_MAX(ref) / SZ_DEC_1M);
569		return -EINVAL;
570	}
571
572	for (i = 0; i < ARRAY_SIZE(fixed_mfd); i++) {
573		if (fixed_mfd[i].ref_clk_hz == ref) {
574			mfd = fixed_mfd[i].mfd;
575			break;
576		}
577	}
578
579	if (i == ARRAY_SIZE(fixed_mfd))
580		return -EINVAL;
581
582	/* Use n_target and n_ref to avoid overflow */
583	for (pd = 1; pd <= PLL_PD_MAX; pd++) {
584		t1 = n_target * pd;
585		do_div(t1, (4 * n_ref));
586		mfi = t1;
587		if (mfi > PLL_MFI_MAX)
588			return -EINVAL;
589		else if (mfi < 5)
590			continue;
591		break;
592	}
593	/*
594	 * Now got pd and mfi already
595	 *
596	 * mfn = (((n_target * pd) / 4 - n_ref * mfi) * mfd) / n_ref;
597	 */
598	t1 = n_target * pd;
599	do_div(t1, 4);
600	t1 -= n_ref * mfi;
601	t1 *= mfd;
602	do_div(t1, n_ref);
603	mfn = t1;
604	debug("ref=%d, target=%d, pd=%d," "mfi=%d,mfn=%d, mfd=%d\n",
605		ref, n_target, (u32)pd, (u32)mfi, (u32)mfn, (u32)mfd);
606	i = 1;
607	if (mfn != 0)
608		i = gcd(mfd, mfn);
609	pll->pd = (u32)pd;
610	pll->mfi = (u32)mfi;
611	do_div(mfn, i);
612	pll->mfn = (u32)mfn;
613	do_div(mfd, i);
614	pll->mfd = (u32)mfd;
615
616	return 0;
617}
618
619#define calc_div(tgt_clk, src_clk, limit) ({		\
620		u32 v = 0;				\
621		if (((src_clk) % (tgt_clk)) <= 100)	\
622			v = (src_clk) / (tgt_clk);	\
623		else					\
624			v = ((src_clk) / (tgt_clk)) + 1;\
625		if (v > limit)				\
626			v = limit;			\
627		(v - 1);				\
628	})
629
630#define CHANGE_PLL_SETTINGS(pll, pd, fi, fn, fd) \
631	{	\
632		writel(0x1232, &pll->ctrl);		\
633		writel(0x2, &pll->config);		\
634		writel((((pd) - 1) << 0) | ((fi) << 4),	\
635			&pll->op);			\
636		writel(fn, &(pll->mfn));		\
637		writel((fd) - 1, &pll->mfd);		\
638		writel((((pd) - 1) << 0) | ((fi) << 4),	\
639			&pll->hfs_op);			\
640		writel(fn, &pll->hfs_mfn);		\
641		writel((fd) - 1, &pll->hfs_mfd);	\
642		writel(0x1232, &pll->ctrl);		\
643		while (!readl(&pll->ctrl) & 0x1)	\
644			;\
645	}
646
647static int config_pll_clk(enum pll_clocks index, struct pll_param *pll_param)
648{
649	u32 ccsr = readl(&mxc_ccm->ccsr);
650	struct mxc_pll_reg *pll = mxc_plls[index];
651
652	switch (index) {
653	case PLL1_CLOCK:
654		/* Switch ARM to PLL2 clock */
655		writel(ccsr | MXC_CCM_CCSR_PLL1_SW_CLK_SEL,
656				&mxc_ccm->ccsr);
657		CHANGE_PLL_SETTINGS(pll, pll_param->pd,
658					pll_param->mfi, pll_param->mfn,
659					pll_param->mfd);
660		/* Switch back */
661		writel(ccsr & ~MXC_CCM_CCSR_PLL1_SW_CLK_SEL,
662				&mxc_ccm->ccsr);
663		break;
664	case PLL2_CLOCK:
665		/* Switch to pll2 bypass clock */
666		writel(ccsr | MXC_CCM_CCSR_PLL2_SW_CLK_SEL,
667				&mxc_ccm->ccsr);
668		CHANGE_PLL_SETTINGS(pll, pll_param->pd,
669					pll_param->mfi, pll_param->mfn,
670					pll_param->mfd);
671		/* Switch back */
672		writel(ccsr & ~MXC_CCM_CCSR_PLL2_SW_CLK_SEL,
673				&mxc_ccm->ccsr);
674		break;
675	case PLL3_CLOCK:
676		/* Switch to pll3 bypass clock */
677		writel(ccsr | MXC_CCM_CCSR_PLL3_SW_CLK_SEL,
678				&mxc_ccm->ccsr);
679		CHANGE_PLL_SETTINGS(pll, pll_param->pd,
680					pll_param->mfi, pll_param->mfn,
681					pll_param->mfd);
682		/* Switch back */
683		writel(ccsr & ~MXC_CCM_CCSR_PLL3_SW_CLK_SEL,
684				&mxc_ccm->ccsr);
685		break;
686#ifdef CONFIG_MX53
687	case PLL4_CLOCK:
688		/* Switch to pll4 bypass clock */
689		writel(ccsr | MXC_CCM_CCSR_PLL4_SW_CLK_SEL,
690				&mxc_ccm->ccsr);
691		CHANGE_PLL_SETTINGS(pll, pll_param->pd,
692					pll_param->mfi, pll_param->mfn,
693					pll_param->mfd);
694		/* Switch back */
695		writel(ccsr & ~MXC_CCM_CCSR_PLL4_SW_CLK_SEL,
696				&mxc_ccm->ccsr);
697		break;
698#endif
699	default:
700		return -EINVAL;
701	}
702
703	return 0;
704}
705
706/* Config CPU clock */
707static int config_core_clk(u32 ref, u32 freq)
708{
709	int ret = 0;
710	struct pll_param pll_param;
711
712	memset(&pll_param, 0, sizeof(struct pll_param));
713
714	/* The case that periph uses PLL1 is not considered here */
715	ret = calc_pll_params(ref, freq, &pll_param);
716	if (ret != 0) {
717		printf("Error:Can't find pll parameters: %d\n", ret);
718		return ret;
719	}
720
721	return config_pll_clk(PLL1_CLOCK, &pll_param);
722}
723
724static int config_nfc_clk(u32 nfc_clk)
725{
726	u32 parent_rate = get_emi_slow_clk();
727	u32 div;
728
729	if (nfc_clk == 0)
730		return -EINVAL;
731	div = parent_rate / nfc_clk;
732	if (div == 0)
733		div++;
734	if (parent_rate / div > NFC_CLK_MAX)
735		div++;
736	clrsetbits_le32(&mxc_ccm->cbcdr,
737			MXC_CCM_CBCDR_NFC_PODF_MASK,
738			MXC_CCM_CBCDR_NFC_PODF(div - 1));
739	while (readl(&mxc_ccm->cdhipr) != 0)
740		;
741	return 0;
742}
743
744void enable_nfc_clk(unsigned char enable)
745{
746	unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
747
748	clrsetbits_le32(&mxc_ccm->CCGR5,
749		MXC_CCM_CCGR5_EMI_ENFC(MXC_CCM_CCGR_CG_MASK),
750		MXC_CCM_CCGR5_EMI_ENFC(cg));
751}
752
753#ifdef CONFIG_FSL_IIM
754void enable_efuse_prog_supply(bool enable)
755{
756	if (enable)
757		setbits_le32(&mxc_ccm->cgpr,
758			     MXC_CCM_CGPR_EFUSE_PROG_SUPPLY_GATE);
759	else
760		clrbits_le32(&mxc_ccm->cgpr,
761			     MXC_CCM_CGPR_EFUSE_PROG_SUPPLY_GATE);
762}
763#endif
764
765/* Config main_bus_clock for periphs */
766static int config_periph_clk(u32 ref, u32 freq)
767{
768	int ret = 0;
769	struct pll_param pll_param;
770
771	memset(&pll_param, 0, sizeof(struct pll_param));
772
773	if (readl(&mxc_ccm->cbcdr) & MXC_CCM_CBCDR_PERIPH_CLK_SEL) {
774		ret = calc_pll_params(ref, freq, &pll_param);
775		if (ret != 0) {
776			printf("Error:Can't find pll parameters: %d\n",
777				ret);
778			return ret;
779		}
780		switch (MXC_CCM_CBCMR_PERIPH_CLK_SEL_RD(
781				readl(&mxc_ccm->cbcmr))) {
782		case 0:
783			return config_pll_clk(PLL1_CLOCK, &pll_param);
784			break;
785		case 1:
786			return config_pll_clk(PLL3_CLOCK, &pll_param);
787			break;
788		default:
789			return -EINVAL;
790		}
791	}
792
793	return 0;
794}
795
796static int config_ddr_clk(u32 emi_clk)
797{
798	u32 clk_src;
799	s32 shift = 0, clk_sel, div = 1;
800	u32 cbcmr = readl(&mxc_ccm->cbcmr);
801
802	if (emi_clk > MAX_DDR_CLK) {
803		printf("Warning:DDR clock should not exceed %d MHz\n",
804			MAX_DDR_CLK / SZ_DEC_1M);
805		emi_clk = MAX_DDR_CLK;
806	}
807
808	clk_src = get_periph_clk();
809	/* Find DDR clock input */
810	clk_sel = MXC_CCM_CBCMR_DDR_CLK_SEL_RD(cbcmr);
811	switch (clk_sel) {
812	case 0:
813		shift = 16;
814		break;
815	case 1:
816		shift = 19;
817		break;
818	case 2:
819		shift = 22;
820		break;
821	case 3:
822		shift = 10;
823		break;
824	default:
825		return -EINVAL;
826	}
827
828	if ((clk_src % emi_clk) < 10000000)
829		div = clk_src / emi_clk;
830	else
831		div = (clk_src / emi_clk) + 1;
832	if (div > 8)
833		div = 8;
834
835	clrsetbits_le32(&mxc_ccm->cbcdr, 0x7 << shift, (div - 1) << shift);
836	while (readl(&mxc_ccm->cdhipr) != 0)
837		;
838	writel(0x0, &mxc_ccm->ccdr);
839
840	return 0;
841}
842
843#ifdef CONFIG_MX53
844static int config_ldb_clk(u32 ref, u32 freq)
845{
846	int ret = 0;
847	struct pll_param pll_param;
848
849	memset(&pll_param, 0, sizeof(struct pll_param));
850
851	ret = calc_pll_params(ref, freq, &pll_param);
852	if (ret != 0) {
853		printf("Error:Can't find pll parameters: %d\n",
854			ret);
855		return ret;
856	}
857
858	return config_pll_clk(PLL4_CLOCK, &pll_param);
859}
860#else
861static int config_ldb_clk(u32 ref, u32 freq)
862{
863	/* Platform not supported */
864	return -EINVAL;
865}
866#endif
867
868/*
869 * This function assumes the expected core clock has to be changed by
870 * modifying the PLL. This is NOT true always but for most of the times,
871 * it is. So it assumes the PLL output freq is the same as the expected
872 * core clock (presc=1) unless the core clock is less than PLL_FREQ_MIN.
873 * In the latter case, it will try to increase the presc value until
874 * (presc*core_clk) is greater than PLL_FREQ_MIN. It then makes call to
875 * calc_pll_params() and obtains the values of PD, MFI,MFN, MFD based
876 * on the targeted PLL and reference input clock to the PLL. Lastly,
877 * it sets the register based on these values along with the dividers.
878 * Note 1) There is no value checking for the passed-in divider values
879 *         so the caller has to make sure those values are sensible.
880 *      2) Also adjust the NFC divider such that the NFC clock doesn't
881 *         exceed NFC_CLK_MAX.
882 *      3) IPU HSP clock is independent of AHB clock. Even it can go up to
883 *         177MHz for higher voltage, this function fixes the max to 133MHz.
884 *      4) This function should not have allowed diag_printf() calls since
885 *         the serial driver has been stoped. But leave then here to allow
886 *         easy debugging by NOT calling the cyg_hal_plf_serial_stop().
887 */
888int mxc_set_clock(u32 ref, u32 freq, enum mxc_clock clk)
889{
890	freq *= SZ_DEC_1M;
891
892	switch (clk) {
893	case MXC_ARM_CLK:
894		if (config_core_clk(ref, freq))
895			return -EINVAL;
896		break;
897	case MXC_PERIPH_CLK:
898		if (config_periph_clk(ref, freq))
899			return -EINVAL;
900		break;
901	case MXC_DDR_CLK:
902		if (config_ddr_clk(freq))
903			return -EINVAL;
904		break;
905	case MXC_NFC_CLK:
906		if (config_nfc_clk(freq))
907			return -EINVAL;
908		break;
909	case MXC_LDB_CLK:
910		if (config_ldb_clk(ref, freq))
911			return -EINVAL;
912		break;
913	default:
914		printf("Warning:Unsupported or invalid clock type\n");
915	}
916
917	return 0;
918}
919
920#ifdef CONFIG_MX53
921/*
922 * The clock for the external interface can be set to use internal clock
923 * if fuse bank 4, row 3, bit 2 is set.
924 * This is an undocumented feature and it was confirmed by Freescale's support:
925 * Fuses (but not pins) may be used to configure SATA clocks.
926 * Particularly the i.MX53 Fuse_Map contains the next information
927 * about configuring SATA clocks :  SATA_ALT_REF_CLK[1:0] (offset 0x180C)
928 * '00' - 100MHz (External)
929 * '01' - 50MHz (External)
930 * '10' - 120MHz, internal (USB PHY)
931 * '11' - Reserved
932*/
933void mxc_set_sata_internal_clock(void)
934{
935	u32 *tmp_base =
936		(u32 *)(IIM_BASE_ADDR + 0x180c);
937
938	set_usb_phy_clk();
939
940	clrsetbits_le32(tmp_base, 0x6, 0x4);
941}
942#endif
943
944#ifndef CONFIG_SPL_BUILD
945/*
946 * Dump some core clockes.
947 */
948static int do_mx5_showclocks(struct cmd_tbl *cmdtp, int flag, int argc,
949			     char *const argv[])
950{
951	u32 freq;
952
953	freq = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
954	printf("PLL1       %8d MHz\n", freq / 1000000);
955	freq = decode_pll(mxc_plls[PLL2_CLOCK], MXC_HCLK);
956	printf("PLL2       %8d MHz\n", freq / 1000000);
957	freq = decode_pll(mxc_plls[PLL3_CLOCK], MXC_HCLK);
958	printf("PLL3       %8d MHz\n", freq / 1000000);
959#ifdef	CONFIG_MX53
960	freq = decode_pll(mxc_plls[PLL4_CLOCK], MXC_HCLK);
961	printf("PLL4       %8d MHz\n", freq / 1000000);
962#endif
963
964	printf("\n");
965	printf("AHB        %8d kHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000);
966	printf("IPG        %8d kHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000);
967	printf("IPG PERCLK %8d kHz\n", mxc_get_clock(MXC_IPG_PERCLK) / 1000);
968	printf("DDR        %8d kHz\n", mxc_get_clock(MXC_DDR_CLK) / 1000);
969#ifdef CONFIG_MXC_SPI
970	printf("CSPI       %8d kHz\n", mxc_get_clock(MXC_CSPI_CLK) / 1000);
971#endif
972	return 0;
973}
974
975/***************************************************/
976
977U_BOOT_CMD(
978	clocks,	CONFIG_SYS_MAXARGS, 1, do_mx5_showclocks,
979	"display clocks",
980	""
981);
982#endif
983