1239313Sdim/* origin: FreeBSD /usr/src/lib/msun/src/e_jnf.c */
2239313Sdim/*
3239313Sdim * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
4239313Sdim */
5239313Sdim/*
6239313Sdim * ====================================================
7239313Sdim * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8239313Sdim *
9239313Sdim * Developed at SunPro, a Sun Microsystems, Inc. business.
10239313Sdim * Permission to use, copy, modify, and distribute this
11252723Sdim * software is freely granted, provided that this notice
12252723Sdim * is preserved.
13239313Sdim * ====================================================
14239313Sdim */
15239313Sdim
16239313Sdim#define _GNU_SOURCE
17245431Sdim#include "libm.h"
18252723Sdim
19239313Sdimfloat jnf(int n, float x)
20239313Sdim{
21239313Sdim	uint32_t ix;
22239313Sdim	int nm1, sign, i;
23239313Sdim	float a, b, temp;
24245431Sdim
25245431Sdim	GET_FLOAT_WORD(ix, x);
26245431Sdim	sign = ix>>31;
27245431Sdim	ix &= 0x7fffffff;
28239313Sdim	if (ix > 0x7f800000) /* nan */
29245431Sdim		return x;
30245431Sdim
31239313Sdim	/* J(-n,x) = J(n,-x), use |n|-1 to avoid overflow in -n */
32263509Sdim	if (n == 0)
33239313Sdim		return j0f(x);
34239313Sdim	if (n < 0) {
35239313Sdim		nm1 = -(n+1);
36239313Sdim		x = -x;
37239313Sdim		sign ^= 1;
38239313Sdim	} else
39239313Sdim		nm1 = n-1;
40245431Sdim	if (nm1 == 0)
41239313Sdim		return j1f(x);
42239313Sdim
43239313Sdim	sign &= n;  /* even n: 0, odd n: signbit(x) */
44239313Sdim	x = fabsf(x);
45239313Sdim	if (ix == 0 || ix == 0x7f800000)  /* if x is 0 or inf */
46239313Sdim		b = 0.0f;
47239313Sdim	else if (nm1 < x) {
48239313Sdim		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
49252723Sdim		a = j0f(x);
50252723Sdim		b = j1f(x);
51252723Sdim		for (i=0; i<nm1; ){
52252723Sdim			i++;
53252723Sdim			temp = b;
54252723Sdim			b = b*(2.0f*i/x) - a;
55252723Sdim			a = temp;
56252723Sdim		}
57252723Sdim	} else {
58252723Sdim		if (ix < 0x35800000) { /* x < 2**-20 */
59239313Sdim			/* x is tiny, return the first Taylor expansion of J(n,x)
60239313Sdim			 * J(n,x) = 1/n!*(x/2)^n  - ...
61239313Sdim			 */
62239313Sdim			if (nm1 > 8)  /* underflow */
63239313Sdim				nm1 = 8;
64239313Sdim			temp = 0.5f * x;
65239313Sdim			b = temp;
66239313Sdim			a = 1.0f;
67239313Sdim			for (i=2; i<=nm1+1; i++) {
68239313Sdim				a *= (float)i;    /* a = n! */
69239313Sdim				b *= temp;        /* b = (x/2)^n */
70239313Sdim			}
71239313Sdim			b = b/a;
72245431Sdim		} else {
73239313Sdim			/* use backward recurrence */
74239313Sdim			/*                      x      x^2      x^2
75252723Sdim			 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
76252723Sdim			 *                      2n  - 2(n+1) - 2(n+2)
77252723Sdim			 *
78252723Sdim			 *                      1      1        1
79252723Sdim			 *  (for large x)   =  ----  ------   ------   .....
80239313Sdim			 *                      2n   2(n+1)   2(n+2)
81252723Sdim			 *                      -- - ------ - ------ -
82252723Sdim			 *                       x     x         x
83239313Sdim			 *
84239313Sdim			 * Let w = 2n/x and h=2/x, then the above quotient
85239313Sdim			 * is equal to the continued fraction:
86239313Sdim			 *                  1
87252723Sdim			 *      = -----------------------
88245431Sdim			 *                     1
89239313Sdim			 *         w - -----------------
90239313Sdim			 *                        1
91239313Sdim			 *              w+h - ---------
92239313Sdim			 *                     w+2h - ...
93252723Sdim			 *
94252723Sdim			 * To determine how many terms needed, let
95252723Sdim			 * Q(0) = w, Q(1) = w(w+h) - 1,
96252723Sdim			 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
97252723Sdim			 * When Q(k) > 1e4      good for single
98252723Sdim			 * When Q(k) > 1e9      good for double
99252723Sdim			 * When Q(k) > 1e17     good for quadruple
100252723Sdim			 */
101263509Sdim			/* determine k */
102252723Sdim			float t,q0,q1,w,h,z,tmp,nf;
103252723Sdim			int k;
104263509Sdim
105252723Sdim			nf = nm1+1.0f;
106252723Sdim			w = 2*nf/x;
107252723Sdim			h = 2/x;
108252723Sdim			z = w+h;
109252723Sdim			q0 = w;
110252723Sdim			q1 = w*z - 1.0f;
111252723Sdim			k = 1;
112252723Sdim			while (q1 < 1.0e4f) {
113252723Sdim				k += 1;
114252723Sdim				z += h;
115252723Sdim				tmp = z*q1 - q0;
116252723Sdim				q0 = q1;
117252723Sdim				q1 = tmp;
118252723Sdim			}
119252723Sdim			for (t=0.0f, i=k; i>=0; i--)
120252723Sdim				t = 1.0f/(2*(i+nf)/x-t);
121252723Sdim			a = t;
122252723Sdim			b = 1.0f;
123252723Sdim			/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
124252723Sdim			 *  Hence, if n*(log(2n/x)) > ...
125252723Sdim			 *  single 8.8722839355e+01
126252723Sdim			 *  double 7.09782712893383973096e+02
127252723Sdim			 *  long double 1.1356523406294143949491931077970765006170e+04
128252723Sdim			 *  then recurrent value may overflow and the result is
129252723Sdim			 *  likely underflow to zero
130252723Sdim			 */
131252723Sdim			tmp = nf*logf(fabsf(w));
132252723Sdim			if (tmp < 88.721679688f) {
133263509Sdim				for (i=nm1; i>0; i--) {
134263509Sdim					temp = b;
135263509Sdim					b = 2.0f*i*b/x - a;
136263509Sdim					a = temp;
137263509Sdim				}
138263509Sdim			} else {
139252723Sdim				for (i=nm1; i>0; i--){
140252723Sdim					temp = b;
141252723Sdim					b = 2.0f*i*b/x - a;
142252723Sdim					a = temp;
143252723Sdim					/* scale b to avoid spurious overflow */
144252723Sdim					if (b > 0x1p60f) {
145252723Sdim						a /= b;
146252723Sdim						t /= b;
147252723Sdim						b = 1.0f;
148252723Sdim					}
149252723Sdim				}
150252723Sdim			}
151252723Sdim			z = j0f(x);
152252723Sdim			w = j1f(x);
153252723Sdim			if (fabsf(z) >= fabsf(w))
154252723Sdim				b = t*z/b;
155252723Sdim			else
156252723Sdim				b = t*w/a;
157252723Sdim		}
158252723Sdim	}
159252723Sdim	return sign ? -b : b;
160252723Sdim}
161252723Sdim
162252723Sdimfloat ynf(int n, float x)
163252723Sdim{
164252723Sdim	uint32_t ix, ib;
165252723Sdim	int nm1, sign, i;
166252723Sdim	float a, b, temp;
167252723Sdim
168252723Sdim	GET_FLOAT_WORD(ix, x);
169252723Sdim	sign = ix>>31;
170252723Sdim	ix &= 0x7fffffff;
171252723Sdim	if (ix > 0x7f800000) /* nan */
172252723Sdim		return x;
173252723Sdim	if (sign && ix != 0) /* x < 0 */
174252723Sdim		return 0/0.0f;
175252723Sdim	if (ix == 0x7f800000)
176252723Sdim		return 0.0f;
177252723Sdim
178252723Sdim	if (n == 0)
179252723Sdim		return y0f(x);
180252723Sdim	if (n < 0) {
181252723Sdim		nm1 = -(n+1);
182252723Sdim		sign = n&1;
183252723Sdim	} else {
184252723Sdim		nm1 = n-1;
185252723Sdim		sign = 0;
186252723Sdim	}
187252723Sdim	if (nm1 == 0)
188252723Sdim		return sign ? -y1f(x) : y1f(x);
189252723Sdim
190252723Sdim	a = y0f(x);
191252723Sdim	b = y1f(x);
192252723Sdim	/* quit if b is -inf */
193252723Sdim	GET_FLOAT_WORD(ib,b);
194252723Sdim	for (i = 0; i < nm1 && ib != 0xff800000; ) {
195252723Sdim		i++;
196252723Sdim		temp = b;
197252723Sdim		b = (2.0f*i/x)*b - a;
198252723Sdim		GET_FLOAT_WORD(ib, b);
199252723Sdim		a = temp;
200252723Sdim	}
201252723Sdim	return sign ? -b : b;
202252723Sdim}
203252723Sdim